WorldWideScience

Sample records for hot rotating 46ti

  1. Fission of hot rotating nuclei: A selfconsistent Thomas-Fermi calculation

    Energy Technology Data Exchange (ETDEWEB)

    Garcias, F.; Barranco, M.; Nemeth, J.; Ngo, C.; Vinas, X.

    1989-05-01

    We have studied the symmetric fission of excited nuclei within an axially deformed Thomas-Fermi model that incorporates selfconsistently the effect of rotation and temperature. We have used a realistic Skyrme force and included up to Planck constant/sup 2/ correction terms in the kinetic energy density.

  2. Rotations

    Science.gov (United States)

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  3. ExoMol molecular line lists - XVII. The rotation-vibration spectrum of hot SO3

    DEFF Research Database (Denmark)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2016-01-01

    Sulphur trioxide (SO3) is a trace species in the atmospheres of the Earth and Venus, as well as being an industrial product and an environmental pollutant. A variational line list for 32S16O3, named UYT2, is presented containing 21 billion vibration-rotation transitions. UYT2 can be used to model...

  4. ExoMol molecular line lists - XIV. The rotation-vibration spectrum of hot SO2

    DEFF Research Database (Denmark)

    Underwood, Daniel S.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2016-01-01

    Sulphur dioxide is well-known in the atmospheres of planets and satellites, where its presence is often associated with volcanism, and in circumstellar envelopes of young and evolved stars as well as the interstellar medium. This work presents a line list of 1.3 billion 32S16O2 vibration-rotation...

  5. WASP-167b/KELT-13b: joint discovery of a hot Jupiter transiting a rapidly rotating F1V star

    Science.gov (United States)

    Temple, L. Y.; Hellier, C.; Albrow, M. D.; Anderson, D. R.; Bayliss, D.; Beatty, T. G.; Bieryla, A.; Brown, D. J. A.; Cargile, P. A.; Collier Cameron, A.; Collins, K. A.; Colón, K. D.; Curtis, I. A.; D'Ago, G.; Delrez, L.; Eastman, J.; Gaudi, B. S.; Gillon, M.; Gregorio, J.; James, D.; Jehin, E.; Joner, M. D.; Kielkopf, J. F.; Kuhn, R. B.; Labadie-Bartz, J.; Latham, D. W.; Lendl, M.; Lund, M. B.; Malpas, A. L.; Maxted, P. F. L.; Myers, G.; Oberst, T. E.; Pepe, F.; Pepper, J.; Pollacco, D.; Queloz, D.; Rodriguez, J. E.; Ségransan, D.; Siverd, R. J.; Smalley, B.; Stassun, K. G.; Stevens, D. J.; Stockdale, C.; Tan, T. G.; Triaud, A. H. M. J.; Udry, S.; Villanueva, S.; West, R. G.; Zhou, G.

    2017-11-01

    We report the joint WASP/KELT discovery of WASP-167b/KELT-13b, a transiting hot Jupiter with a 2.02-d orbit around a V = 10.5, F1V star with [Fe/H] = 0.1 ± 0.1. The 1.5 RJup planet was confirmed by Doppler tomography of the stellar line profiles during transit. We place a limit of <8 MJup on its mass. The planet is in a retrograde orbit with a sky-projected spin-orbit angle of λ = -165° ± 5°. This is in agreement with the known tendency for orbits around hotter stars to be more likely to be misaligned. WASP-167/KELT-13 is one of the few systems where the stellar rotation period is less than the planetary orbital period. We find evidence of non-radial stellar pulsations in the host star, making it a δ-Scuti or γ-Dor variable. The similarity to WASP-33, a previously known hot-Jupiter host with pulsations, adds to the suggestion that close-in planets might be able to excite stellar pulsations.

  6. Vibration-rotation pattern in acetylene. II. Introduction of Coriolis coupling in the global model and analysis of emission spectra of hot acetylene around 3 μm

    Science.gov (United States)

    Amyay, Badr; Robert, Séverine; Herman, Michel; Fayt, André; Raghavendra, Balakrishna; Moudens, Audrey; Thiévin, Jonathan; Rowe, Bertrand; Georges, Robert

    2009-09-01

    A high temperature source has been developed and coupled to a high resolution Fourier transform spectrometer to record emission spectra of acetylene around 3 μm up to 1455 K under Doppler limited resolution (0.015 cm-1). The ν3-ground state (GS) and ν2+ν4+ν5 (Σu+ and Δu)-GS bands and 76 related hot bands, counting e and f parities separately, are assigned using semiautomatic methods based on a global model to reproduce all related vibration-rotation states. Significantly higher J-values than previously reported are observed for 40 known substates while 37 new e or f vibrational substates, up to about 6000 cm-1, are identified and characterized by vibration-rotation parameters. The 3 811 new or improved data resulting from the analysis are merged into the database presented by Robert et al. [Mol. Phys. 106, 2581 (2008)], now including 15 562 lines accessing vibrational states up to 8600 cm-1. A global model, updated as compared to the one in the previous paper, allows all lines in the database to be simultaneously fitted, successfully. The updates are discussed taking into account, in particular, the systematic inclusion of Coriolis interaction.

  7. Vibration-rotation pattern in acetylene. II. Introduction of Coriolis coupling in the global model and analysis of emission spectra of hot acetylene around 3 microm.

    Science.gov (United States)

    Amyay, Badr; Robert, Séverine; Herman, Michel; Fayt, André; Raghavendra, Balakrishna; Moudens, Audrey; Thiévin, Jonathan; Rowe, Bertrand; Georges, Robert

    2009-09-21

    A high temperature source has been developed and coupled to a high resolution Fourier transform spectrometer to record emission spectra of acetylene around 3 mum up to 1455 K under Doppler limited resolution (0.015 cm(-1)). The nu(3)-ground state (GS) and nu(2)+nu(4)+nu(5) (Sigma(u) (+) and Delta(u))-GS bands and 76 related hot bands, counting e and f parities separately, are assigned using semiautomatic methods based on a global model to reproduce all related vibration-rotation states. Significantly higher J-values than previously reported are observed for 40 known substates while 37 new e or f vibrational substates, up to about 6000 cm(-1), are identified and characterized by vibration-rotation parameters. The 3 811 new or improved data resulting from the analysis are merged into the database presented by Robert et al. [Mol. Phys. 106, 2581 (2008)], now including 15 562 lines accessing vibrational states up to 8600 cm(-1). A global model, updated as compared to the one in the previous paper, allows all lines in the database to be simultaneously fitted, successfully. The updates are discussed taking into account, in particular, the systematic inclusion of Coriolis interaction.

  8. KELT-21b: A Hot Jupiter Transiting the Rapidly Rotating Metal-poor Late-A Primary of a Likely Hierarchical Triple System

    Science.gov (United States)

    Johnson, Marshall C.; Rodriguez, Joseph E.; Zhou, George; Gonzales, Erica J.; Cargile, Phillip A.; Crepp, Justin R.; Penev, Kaloyan; Stassun, Keivan G.; Gaudi, B. Scott; Colón, Knicole D.; Stevens, Daniel J.; Strassmeier, Klaus G.; Ilyin, Ilya; Collins, Karen A.; Kielkopf, John F.; Oberst, Thomas E.; Maritch, Luke; Reed, Phillip A.; Gregorio, Joao; Bozza, Valerio; Calchi Novati, Sebastiano; D’Ago, Giuseppe; Scarpetta, Gaetano; Zambelli, Roberto; Latham, David W.; Bieryla, Allyson; Cochran, William D.; Endl, Michael; Tayar, Jamie; Serenelli, Aldo; Silva Aguirre, Victor; Clarke, Seth P.; Martinez, Maria; Spencer, Michelle; Trump, Jason; Joner, Michael D.; Bugg, Adam G.; Hintz, Eric G.; Stephens, Denise C.; Arredondo, Anicia; Benzaid, Anissa; Yazdi, Sormeh; McLeod, Kim K.; Jensen, Eric L. N.; Hancock, Daniel A.; Sorber, Rebecca L.; Kasper, David H.; Jang-Condell, Hannah; Beatty, Thomas G.; Carroll, Thorsten; Eastman, Jason; James, David; Kuhn, Rudolf B.; Labadie-Bartz, Jonathan; Lund, Michael B.; Mallonn, Matthias; Pepper, Joshua; Siverd, Robert J.; Yao, Xinyu; Cohen, David H.; Curtis, Ivan A.; DePoy, D. L.; Fulton, Benjamin J.; Penny, Matthew T.; Relles, Howard; Stockdale, Christopher; Tan, Thiam-Guan; Villanueva, Steven, Jr.

    2018-02-01

    We present the discovery of KELT-21b, a hot Jupiter transiting the V = 10.5 A8V star HD 332124. The planet has an orbital period of P = 3.6127647 ± 0.0000033 days and a radius of {1.586}-0.040+0.039 {R}{{J}}. We set an upper limit on the planetary mass of {M}Pv\\sin {I}* =146 km s‑1, the highest projected rotation velocity of any star known to host a transiting hot Jupiter. The star also appears to be somewhat metal poor and α-enhanced, with [{Fe}/{{H}}]=-{0.405}-0.033+0.032 and [α/Fe] = 0.145 ± 0.053 these abundances are unusual, but not extraordinary, for a young star with thin-disk kinematics like KELT-21. High-resolution imaging observations revealed the presence of a pair of stellar companions to KELT-21, located at a separation of 1.″2 and with a combined contrast of {{Δ }}{K}S=6.39+/- 0.06 with respect to the primary. Although these companions are most likely physically associated with KELT-21, we cannot confirm this with our current data. If associated, the candidate companions KELT-21 B and C would each have masses of ∼0.12 {M}ȯ , a projected mutual separation of ∼20 au, and a projected separation of ∼500 au from KELT-21. KELT-21b may be one of only a handful of known transiting planets in hierarchical triple stellar systems.

  9. WASP-167b/KELT-13b : joint discovery of a hot Jupiter transiting a rapidly rotating F1V star

    OpenAIRE

    Temple, L. Y.; Hellier, C.; Albrow, M. D.; Anderson, D. R.; Bayliss, D.; Beatty, T. G.; Bieryla, A.; Brown, D. J. A.; Cargile, P. A.; Collier Cameron, A.; Collins, K. A.; Colón, K. D.; Curtis, I. A.; D'Ago, G.; Delrez, L.

    2017-01-01

    We report the joint WASP/KELT discovery of WASP-167b/KELT-13b, a transiting hot Jupiter with a 2.02-d orbit around a $V$ = 10.5, F1V star with [Fe/H] = 0.1 $\\pm$ 0.1. The 1.5 R$_{\\rm Jup}$ planet was confirmed by Doppler tomography of the stellar line profiles during transit. We place a limit of $

  10. First rotational analysis of the (111) and (021) vibrational state of S16O18O from the "hot" ν1 +ν2 +ν3 -ν2 and 2ν2 +ν3 -ν2 bands

    Science.gov (United States)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Ziatkova, A. G.; Sklyarova, E. A.; Kuznetsov, S. I.; Sydow, C.; Bauerecker, S.

    2017-11-01

    The rotational structure of the (111) and (021) vibrational states is determined for the first time from the high resolution analysis of the ν1 +ν2 +ν3 -ν2 and 2ν2 +ν3 -ν2 ;hot; bands. The 480 and 74 transitions of these bands (Jmax /Kamax = 45/14 and 15/12 respectively) were assigned in the spectra, which have been recorded with the Bruker IFS 120 Fourier transform infrared (FTIR) spectrometer. A weighted fit analysis allowed us to generate a set of 5 fitted parameters for the (111) state and 4 fitted parameters for the (021) state. Calculation with the 9 parameters, obtained from the fit, reproduces the initial 363 energy values (about 550 assigned experimental transitions) of two vibrational states with the drms deviations of 3.2 ×10-4 cm-1 , which is comparable with the experimental uncertainties of very weak transitions of the ν1 +ν2 +ν3 -ν2 and 2ν2 +ν3 -ν2 ;hot; bands in our experiment.

  11. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Nikolaos Stergioulas

    1998-06-01

    Full Text Available Because of the information they can yield about the equation of state of matter at extremely high densities and because they are one of the more possible sources of detectable gravitational waves, rotating relativistic stars have been receiving significant attention in recentyears. We review the latest theoretical and numerical methods for modeling rotating relativistic stars, including stars with a strong magnetic field and hot proto-neutron stars. We also review nonaxisymmetric oscillations and instabilities in rotating stars and summarize the latest developments regarding the gravitational wave-driven (CFS instability in both polar and axial quasi-normal modes.

  12. Improving the API dissolution rate during pharmaceutical hot-melt extrusion I: Effect of the API particle size, and the co-rotating, twin-screw extruder screw configuration on the API dissolution rate.

    Science.gov (United States)

    Li, Meng; Gogos, Costas G; Ioannidis, Nicolas

    2015-01-15

    The dissolution rate of the active pharmaceutical ingredients in pharmaceutical hot-melt extrusion is the most critical elementary step during the extrusion of amorphous solid solutions - total dissolution has to be achieved within the short residence time in the extruder. Dissolution and dissolution rates are affected by process, material and equipment variables. In this work, we examine the effect of one of the material variables and one of the equipment variables, namely, the API particle size and extruder screw configuration on the API dissolution rate, in a co-rotating, twin-screw extruder. By rapidly removing the extruder screws from the barrel after achieving a steady state, we collected samples along the length of the extruder screws that were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC) to determine the amount of undissolved API. Analyses of samples indicate that reduction of particle size of the API and appropriate selection of screw design can markedly improve the dissolution rate of the API during extrusion. In addition, angle of repose measurements and light microscopy images show that the reduction of particle size of the API can improve the flowability of the physical mixture feed and the adhesiveness between its components, respectively, through dry coating of the polymer particles by the API particles. Copyright © 2014. Published by Elsevier B.V.

  13. Hot Flashes

    Science.gov (United States)

    ... Risk factors Not all women who go through menopause have hot flashes, and it's not clear why some women do have them. Factors that may increase your risk include: Smoking. Women who smoke are more likely to get hot flashes. Obesity. A high body mass index (BMI) is associated ...

  14. Hot flushes

    African Journals Online (AJOL)

    without thermoregulatory homeostatic mechanisms, such as sweating, being triggered. Small fluctuations in core body. Abstract. Vasomotor symptoms, such as hot flushes and night sweats, are considered to be the cardinal symptoms of menopause, and are experienced by most women. The physiology of hot flushes is not ...

  15. Hot Soak

    OpenAIRE

    Goldwater, H.

    2005-01-01

    The DVD is documentation of Hot Soak, as performed at the Queen’s Hotel, Penzance, Cornwall in an en suite bathroom, for Tract: Live Art Festival, 2006, curated by Art Surgery/ Newlyn Art Gallery. Hot Soak was originally made for home, London, 2005. This piece marries an everyday environment (bathroom) with extraordinary materials (ice cubes/ dress bleeding red into water) creating the surreal. Sontag’s understanding of camp as a love of the unnatural, artifice and exaggeration, can be ci...

  16. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  17. Rotating optical tubes for vertical transport of atoms

    Science.gov (United States)

    Al Rsheed, Anwar; Lyras, Andreas; Aldossary, Omar M.; Lembessis, Vassilis E.

    2016-12-01

    The classical dynamics of a cold atom trapped inside a vertical rotating helical optical tube (HOT) is investigated by taking also into account the gravitational field. The resulting equations of motion are solved numerically. The rotation of the HOT induces a vertical motion for an atom initially at rest. The motion is a result of the action of two inertial forces, namely, the centrifugal force and the Coriolis force. Both inertial forces force the atom to rotate in a direction opposite to that of the angular velocity of the HOT. The frequency and the turning points of the atom's global oscillation can be controlled by the value and the direction of the angular velocity of the HOT. However, at large values of the angular velocity of the HOT the atom can escape from the global oscillation and be transported along the axis of the HOT. In this case, the rotating HOT operates as an optical Archimedes' screw for atoms.

  18. Hot spots

    National Research Council Canada - National Science Library

    Nia, Amir M; Gassanov, Natig; Er, Fikret

    2014-01-01

    ..., several reddened skin lesions were observed. The obvious ''hot spots'' were located on both sides in the groin and above the bladder, with extension to the genital region, compli- cating the ability to catheterize the patient (Figure 1). The rest of the body surface was not affected, and no infectious source for the skin lesions was evident. After suc...

  19. Rotating Optical Tubes: An Archimedes' Screw for Atoms

    CERN Document Server

    Rsheed, Anwar Al; Aldossary, Omar M; Lembessis, Vassilis E

    2016-01-01

    The classical dynamics of a cold atom trapped inside a vertical rotating helical optical tube (HOT) is investigated by taking also into account the gravitational field. The resulting equations of motion are solved numerically. The rotation induces a vertical motion for an atom initially at rest. The motion is a result of the action of two inertial forces, namely the centrifugal force and the Coriolis force. Both inertial forces force the atom to rotate in a direction opposite to that of the angular velocity of the HOT. The frequency and the turning points of the atom's global oscillation can be controlled by the value and the direction of the angular velocity of the HOT. However, at large values of the angular velocity of the HOT the atom can escape from the global oscillation and be transported along the axis of the HOT. In this case, the rotating HOT operates as an Optical Archimedes' Screw (OAS) for atoms.

  20. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  1. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  2. Rotational elasticity

    Science.gov (United States)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  3. Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres

    Science.gov (United States)

    Tan, Xianyu; Showman, Adam P.

    2017-10-01

    Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.

  4. 'Coronae' of rotating interstellar clouds

    Science.gov (United States)

    Rosner, R.; Hartquist, T. W.

    1979-01-01

    This letter considers differential rotation of cool interstellar clouds in the presence of internal magnetic fields, and shows that because of the relative ineffectiveness of field dissipation within the clouds, magnetized gas experiences buoyant forces. The resulting field loops emerge from the cloud and dissipate their energy by field reconnection. The consequent heating is sufficient to produce relatively hot (T approximately 10,000 K) 'coronae' about the clouds.

  5. Neptune's 'Hot' South Pole

    Science.gov (United States)

    2007-01-01

    These thermal images show a 'hot' south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere. The images were obtained with the Very Large Telescope in Chile, using an imager/spectrometer for mid-infrared wavelengths on Sept. 1 and 2, 2006. The telescope is operated by the European Organization for Astronomical Research in the Southern Hemisphere (known as ESO). Scientists say Neptune's south pole is 'hotter' than anywhere else on the planet by about 10 degrees Celsius (50 degrees Fahrenheit). The average temperature on Neptune is about minus 200 degrees Celsius (minus 392 degrees Fahrenheit). The upper left image samples temperatures near the top of Neptune's troposphere (near 100 millibar pressure, which is one-tenth the Earth atmospheric pressure at sea level). The hottest temperatures are indicated at the lower part of the image, at Neptune's south pole (see the graphic at the upper right). The lower two images, taken 6.3 hours apart, sample temperatures at higher altitudes in Neptune's stratosphere. They do show generally warmer temperatures near, but not at, the south pole. They also show a distinct warm area which can be seen in the lower left image and rotated completely around the back of the planet and returned to the earth-facing hemisphere in the lower right image.

  6. Rotator Cuff Exercises

    Science.gov (United States)

    ... Home Prevention and Wellness Exercise and Fitness Injury Rehabilitation Rotator Cuff Exercises Rotator Cuff Exercises Share Print Rotator Cuff ... Best Rotator Cuff ExercisesNational Institutes of Health: MedlinePlus, ... and WellnessTags: Exercise Prescription, prevention, Shoulder Problems, ...

  7. Rotating Cavitation Supression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating cavitation,...

  8. Really Hot Stars

    Science.gov (United States)

    2003-04-01

    like the Sun, the remnant object is a hot "white dwarf", a star barely larger than the Earth and the surrounding nebula is called a "Planetary Nebula (PN)". This historical term refers to the planet-like appearance of such a nebula in a small telescope. A fine example is the "Dumbbell Nebula", photographed by the VLT in 1998, cf. ESO PR Photos 38a-b/98. On the other hand, heavier stars explode violently - such dramatic events are seen as supernovae - and leave behind a exceedingly hot and dense, rotating "neutron star" of diameter 10-20 km (or, in the case of the heaviest stars, presumably a "black hole") as well as a surrounding nebula, the supernova remnant (SNR). A famous example is the "Crab Nebula" from the supernova that exploded in the year 1054, cf. ESO PR Photos 40f-i/99. Finally, the radiation of young hot stars embedded in an interstellar cloud is also able to heat the surrounding gas, resulting in the apparition of an emission nebula, that shines mostly in the light of ionized hydrogen (H) atoms. Such nebulae are therefore often referred to as "HII regions". The well-known Orion Nebula is an outstanding example of that type of nebula, cf. ESO PR Photos 03a-c/01.

  9. Hot-pressed geopolymer

    DEFF Research Database (Denmark)

    Ranjbar, Navid; Mehrali, Mohammad; Maheri, Mahmoud R.

    2017-01-01

    /FA, duration of hot-pressing and sodium concentration are studied. Together with detailed experimental studies, our results reveal that the most dominant factor is the induced pressure. The main results indicated that the highest compressive strength of the geopolymer (134 MPa) could be obtained by employing...... the hot pressing, temperature and duration of 41.4 MPa, 350 °C and 20 min, respectively. The microstructure of the hot-pressed specimens showed more developed geopolymer matrix compared with conventional ones leading to higher compressive strength in much shortest time. The improved mechanical properties...

  10. China's 'Hot Money' Problems

    National Research Council Canada - National Science Library

    Martin, Michael F; Morrison, Wayne M

    2008-01-01

    .... The recent large inflow of financial capital into China, commonly referred to as "hot money," has led some economists to warn that such flows may have a destabilizing effect on China's economy...

  11. Hot Weather Tips

    Science.gov (United States)

    ... hot, heavy meals and don’t use the oven. Monitor medications: Find out if the person’s medications ... nia.nih.gov Photo: By High Contrast (Own work) [CC BY 3.0 de ( http://creativecommons.org/ ...

  12. Rotational Preference in Gymnastics

    National Research Council Canada - National Science Library

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference...

  13. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...

  14. How does stellar irradiation make hot Jupiters puffy?

    Science.gov (United States)

    Wei, Yu-Jie; Gu, Pin-Gao

    2017-06-01

    Hot Jupiters appear to be re-inflated as their host stars evolve and become more luminous, shedding more light on the intriguing correlation between stellar irradiation and the size of hot Jupiters. To account for the phenomenon, one of the well-known models is the thermal-tide scenario proposed by Arras and Socrates. We present a linear analysis of semi-diurnal thermal tides in a hot Jupiter. The Coriolis effect is added to our equation, which generates more wave modes than non-rotating models, such as Rossby, Yanai, and inertial waves. We attempt to investigate where and which mode contributes most of the torque that maintains the planet in an asynchronous state against gravitational tides, leading to re-inflation of a hot Jupiter.

  15. Galaxy cluster's rotation

    Science.gov (United States)

    Manolopoulou, M.; Plionis, M.

    2017-03-01

    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  16. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  17. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  18. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard

    2013-01-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...... the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient...... than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy...

  19. Experience with hot catchpots

    Energy Technology Data Exchange (ETDEWEB)

    1945-02-02

    The first part of this report was actually a letter regarding the question, ''could the hot circulating pump be omitted when processing pitch at 700 atm.'' It had been stated that the hot circulation pump could be omitted if the quantity of cold letdown was correspondingly increased. The latest experiences with the catchpot at Poelitz showed the following. When running pitch, tar, or petroleum in the liquid-phase stalls, frequent trouble with the hot catchpot was encountered due to the coking. This coking was caused by irregular letdown yield, which could not be avoided due to small temperature fluctuations in the stall. This caused interruption of the uniform flow in the hot catchpot and the deposition of the solids contained in the letdown, largely catalyst solids, due to the asphalt content. Coking of the product was initiated by this concentration of catalyst solids. A perforated double jacket was inserted in the conical part of the catchpot through which about 3000 m/sup 3/ per hour of cold gas was blown in continuously. By this agitation and cooling in the lowest part of the catchpot, catalyst deposits were prevented from forming and the product received a continuous added supply of hydrogen. Another letter was given discussing the same question and an alternate solution. This second letter described Welheim's design for the hot catchpot. It featured introduction of 5000 to 6000 m/sup 3//hr of cold circulating gas into the lower part of the catchpot, and withdrawal of letdown from a point above the gas inlet. The advantages were continued agitation and cooling of the sludge and constant retention of some cold sludge in the catchpot (which evened out throughput and content fluctuations)

  20. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  1. SMA millimeter observations of hot molecular cores

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Hernández, Vicente; Zapata, Luis; Kurtz, Stan [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72 (Xangari), 58090 Morelia, Michoacán (Mexico); Garay, Guido, E-mail: v.hernandez@crya.unam.mx [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile)

    2014-05-01

    We present Submillimeter Array observations in the 1.3 mm continuum and the CH{sub 3}CN (12 {sub K}-11 {sub K}) line of 17 hot molecular cores associated with young high-mass stars. The angular resolution of the observations ranges from 1.''0 to 4.''0. The continuum observations reveal large (>3500 AU) dusty structures with gas masses from 7 to 375 M {sub ☉}, which probably surround multiple young stars. The CH{sub 3}CN line emission is detected toward all the molecular cores at least up to the K = 6 component and is mostly associated with the emission peaks of the dusty objects. We used the multiple K-components of the CH{sub 3}CN and both the rotational diagram method and a simultaneous synthetic local thermodynamic equilibrium model with the XCLASS program to estimate the temperatures and column densities of the cores. For all sources, we obtained reasonable fits from XCLASS by using a model that combines two components: an extended and warm envelope and a compact hot core of molecular gas, suggesting internal heating by recently formed massive stars. The rotational temperatures lie in the range of 40-132 K and 122-485 K for the extended and compact components, respectively. From the continuum and CH{sub 3}CN results, we infer fractional abundances from 10{sup –9} to 10{sup –7} toward the compact inner components, which increase with the rotational temperature. Our results agree with a chemical scenario in which the CH{sub 3}CN molecule is efficiently formed in the gas phase above 100-300 K, and its abundance increases with temperature.

  2. The hot chocolate effect

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Frank S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    1982-05-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.

  3. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  4. Faraday rotation measure synthesis

    NARCIS (Netherlands)

    Brentjens, MA; de Bruyn, AG

    2005-01-01

    We extend the rotation measure work of Burn ( 1966, MNRAS, 133, 67) to the cases of limited sampling of lambda(2) space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n pi ambiguity problems with the lambda(2)

  5. CONTROL ROD ROTATING MECHANISM

    Science.gov (United States)

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  6. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  7. Deconstructing Mental Rotation

    DEFF Research Database (Denmark)

    Larsen, Axel

    2014-01-01

    A random walk model of the classical mental rotation task is explored in two experiments. By assuming that a mental rotation is repeated until sufficient evidence for a match/mismatch is obtained, the model accounts for the approximately linearly increasing reaction times (RTs) on positive trials...

  8. SMAP Faraday Rotation

    Science.gov (United States)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  9. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  10. Rapidly rotating red giants

    Science.gov (United States)

    Gehan, Charlotte; Mosser, Benoît; Michel, Eric

    2017-10-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.

  11. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-11-01

    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  12. Hot skull: Malignant or feminine

    Energy Technology Data Exchange (ETDEWEB)

    Roos, J.C.; Isslet, J.W. van; Buul, M.M.C. van; Oei, H.Y.; Rijk, P.P. van

    1987-07-01

    Diffusely increased uptake in the calvarium on bone scintigraphy (a hot skull) is often present in patients with bone metastases and metabolic diseases. Excluding these known facts the prevalence of the hot skull and its relation with malignancy and, more specifically, with breast carcinoma have been studied in 673 patients. In women, the hot skull is clearly related to malignancy and to a lesser extent to breast carcinoma. However, another remarkable feature of the hot skull is its predominance in women in general (compared to men) and, therefore, the data suggest that the hot skull can also represent a normal variant of the female skull. We conclude that the hot skull has no clinical value in screening protocols.

  13. Rotator Cuff Injuries

    Science.gov (United States)

    ... cuff are common. They include tendinitis, bursitis, and injuries such as tears. Rotator cuff tendons can become ... cuff depends on age, health, how severe the injury is, and how long you've had the ...

  14. Rotator cuff repair - slideshow

    Science.gov (United States)

    ... presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  15. The Earth's rotation problem

    Science.gov (United States)

    Brumberg, V. A.; Ivanova, T. V.

    2008-09-01

    The aim of the present paper is to find the trigonometric solution of the equations of the Earth's rotation around its centre of mass in the form of polynomial trigonometric series (Poisson series) without secular and mixed therms. For that the techniques of the General Planetary Theory (GPT) ( Brumberg, 1995) and the Poisson Series Processor (PSP) (Ivanova, 1995) are used. The GPT allows to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation in Euler parameters to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  16. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... to a non-linear manifold and re-normalization or orthogonalization must be applied to obtain proper rotations. These latter steps have been viewed as ad hoc corrections for the errors introduced by assuming a vector space. The article shows that the two approximative methods can be derived from natural...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation....

  17. Hot, Dry and Cloudy

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system. The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles. Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone. This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged, even as the planet

  18. Rotating Workforce Scheduling

    OpenAIRE

    Granfeldt, Caroline

    2015-01-01

    Several industries use what is called rotating workforce scheduling. This often means that employees are needed around the clock seven days a week, and that they have a schedule which repeats itself after some weeks. This thesis gives an introduction to this kind of scheduling and presents a review of previous work done in the field. Two different optimization models for rotating workforce scheduling are formulated and compared, and some examples are created to demonstrate how the addition of...

  19. Ipsilateral Rotational Autokeratoplasty

    OpenAIRE

    Yesim Altay

    2016-01-01

    Corneal opacity is a leading cause of monocular blindness, and corneal transplantation is the most commonly performed solid organ transplantation in the world. Keratoplasty techniques for corneal opacities include lamellar allokeratoplasty and penetrating allokeratoplasty. Ipsilateral rotational autokeratoplasty can be an effective alternative to penetrating allokeratoplasty for some patients with corneal scars. This procedure involves a rotation of the patient%u2019s own cornea to move opaci...

  20. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  1. Modelling the spectroscopic behaviour of hot molecules

    Science.gov (United States)

    Tennyson, Jonathan

    2010-05-01

    At elevated temperatures the molecules absorb and emit light in a very complicated fashion which is hard to characterise on the basis of laboraroty measurement. Computed line lists of molecule transitions therefore provide a vital input for models of hot atmospheres. I will describe the calculation and use of such line lists including the BT2 water line list [1], which contains some 500 million distinct rotation-vibration transitions. This linelist proved crucial in the detection of water in extrasolar planet HD189733b and has been used extensively in atmospheric modelling. Illustrations will be given at the meeting. A new linelist for the ammonia molecule has just been completed [2] which shows that standard compilations for this molecule need to be improved. Progress on a more extensive linelist for hot ammonia and linelists for other molecules will be discussed at the meeting. [1] R.J. Barber, J. Tennyson, G.J. Harris and R.N. Tolchenov, Mon. Not. R. Astr. Soc., 368, 1087-1094 (2006) [2] S.N. Yurchenko, R.J. Barber, A. Yachmenev, W. Theil, P. Jensen and J. Tennyson, J. Phys. Chem. A, 113, 11845-11855 (2009).

  2. Sugar cane bagasse prehydrolysis using hot water

    Directory of Open Access Journals (Sweden)

    D. Abril

    2012-03-01

    Full Text Available Results are presented on the hot water prehydrolysis of sugar cane bagasse for obtaining ethanol by fermentation. The experimental study consisted of the determination of the effect of temperature and time of prehydrolysis on the extraction of hemicelluloses, with the objective of selecting the best operating conditions that lead to increased yield of extraction with a low formation of inhibitors. The study, carried out in a pilot plant scale rotational digester, using a 3² experimental design at temperatures of 150-190ºC and times of 60-90 min, showed that it is possible to perform the hot water prehydrolysis process between 180-190ºC in times of 60-82 min, yielding concentrations of xylose > 35 g/L, furfural < 2.5 g/L, phenols from soluble lignin < 1.5 g/L, and concentrations < 3.0 g/L of hemicelluloses in the cellolignin residue. These parameters of temperature and prehydrolysis time could be used for the study of the later hydrolysis and fermentation stages of ethanol production from sugar cane bagasse.

  3. The evolution of magnetic fields in hot stars

    Science.gov (United States)

    Oksala, Mary E.; Neiner, Coralie; Georgy, Cyril; Przybilla, Norbert; Keszthelyi, Zsolt; Wade, Gregg; Mathis, Stéphane; Blazère, Aurore; Buysschaert, Bram

    2017-11-01

    Over the last decade, tremendous strides have been achieved in our understanding of magnetism in main sequence hot stars. In particular, the statistical occurrence of their surface magnetism has been established (~10%) and the field origin is now understood to be fossil. However, fundamental questions remain: how do these fossil fields evolve during the post-main sequence phases, and how do they influence the evolution of hot stars from the main sequence to their ultimate demise? Filling the void of known magnetic evolved hot (OBA) stars, studying the evolution of their fossil magnetic fields along stellar evolution, and understanding the impact of these fields on the angular momentum, rotation, mass loss, and evolution of the star itself, is crucial to answering these questions, with far reaching consequences, in particular for the properties of the precursors of supernovae explosions and stellar remnants. In the framework of the BRITE spectropolarimetric survey and LIFE project, we have discovered the first few magnetic hot supergiants. Their longitudinal surface magnetic field is very weak but their configuration resembles those of main sequence hot stars. We present these first observational results and propose to interpret them at first order in the context of magnetic flux conservation as the radius of the star expands with evolution. We then also consider the possible impact of stellar structure changes along evolution.

  4. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  5. TRUEX hot demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

    1990-04-01

    In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

  6. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    . With this additional information, the criteria can, for the first time, be used to their full potential.The purpose of this paper is to first give an introduction to a stress/strain simulation procedure that can be used in any foundry. Then, some results how to predict the hot cracking tendency in a casting are shown......The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...

  7. Hot Spot Cosmic Accelerators

    Science.gov (United States)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  8. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  9. Ipsilateral Rotational Autokeratoplasty

    Directory of Open Access Journals (Sweden)

    Yesim Altay

    2016-09-01

    Full Text Available Corneal opacity is a leading cause of monocular blindness, and corneal transplantation is the most commonly performed solid organ transplantation in the world. Keratoplasty techniques for corneal opacities include lamellar allokeratoplasty and penetrating allokeratoplasty. Ipsilateral rotational autokeratoplasty can be an effective alternative to penetrating allokeratoplasty for some patients with corneal scars. This procedure involves a rotation of the patient%u2019s own cornea to move opacity out of the visual axis. An important consideration when selecting cases for rotational autokeratoplasty is the dimensions of the corneal scar. Although ipsilateral autokeratoplasty may not provide as good a quality of vision as penetrating allokeratoplasty because of higher astigmatism and reduced corneal pupillary clear zone, these disadvantages are often outweighed when the risk of allograft rejection is high, as in pediatric patients and those with vascularised corneas. This technique would at least partially resolve the issue of scarcity of donor corneal tissue in developing countries.

  10. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel

    1997-01-01

    further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  11. Rotation of Giant Stars

    Science.gov (United States)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  12. Hot Hydrogen Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    W. David Swank

    2007-02-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  13. Solutions for Hot Situations

    Science.gov (United States)

    2003-01-01

    From the company that brought the world an integral heating and cooling food service system after originally developing it for NASA's Apollo Program, comes yet another orbital offshoot: a product that can be as thin as paper and as strong as steel. Nextel Ceramic Textiles and Composites from 3M Company offer space-age protection and innovative solutions for hot situations, ranging from NASA to NASCAR. With superior thermal protection, Nextel fabrics, tape, and sleevings outperform other high temperature textiles such as aramids, carbon, glass, and quartz, permitting engineers and manufacturers to handle applications up to 2,500 F (1,371 C). The stiffness and strength of Nextel Continuous Ceramic Fibers make them a great match for improving the rigidity of aluminum in metal matrix composites. Moreover, the fibers demonstrate low shrinkage at operating temperatures, which allow for the manufacturing of a dimensionally stable product. These novel fibers also offer excellent chemical resistance, low thermal conductivity, thermal shock resistance, low porosity, and unique electrical properties.

  14. Rotationally Actuated Prosthetic Hand

    Science.gov (United States)

    Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.

  15. Rotational waves in geodynamics

    Science.gov (United States)

    Gerus, Artyom; Vikulin, Alexander

    2015-04-01

    The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)

  16. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan

    2009-01-01

    The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...

  17. Rotator Cuff Injuries.

    Science.gov (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  18. Convective flow patterns in inclined rectangular cavities with rotation

    Science.gov (United States)

    Avila, Ruben; Perez-Espejel, Diana

    2015-11-01

    The natural convection in inclined three dimensional rectangular cavities with rotation is numerically investigated by using a spectral element method. When the rate of rotation (Ta number) is equal to zero, the critical Rayleigh number Rac for the onset of transverse or longitudinal rolls is obtained by solving (using the Tau-Chebyshev spectral method) the equations of the linear stability theory. In the numerical approach, the rotation is imposed once the steady state of the longitudinal or transverse rolls is attained. The cavity rotates around an axis that is orthogonal to its cold and hot surfaces, and passes through the center of these surfaces. In all the analyzed cases, the tilted angle δ, from the horizontal, varies in the interval 0° <= δ <90° (the cavity is heated from its lower surface, then an unstable condition prevails) and 90° < δ <= 180° (the cavity is heated from its upper surface, then a stable condition prevails). We report the influence of the Ta number on the critical Ra number, the average Nusselt number (evaluated at the hot surface), and the flow patterns in the tilted cavity. DGAPA-PAPIIT Project: IN117314-3.

  19. The Atmospheric Circulation of Hot Jupiters: a Hierarchical Modeling Approach

    Science.gov (United States)

    Komacek, Thaddeus D.; Showman, Adam P.

    2017-10-01

    The atmospheres of extrasolar gas giants that receive strong stellar irradiation, or “hot Jupiters,” are beginning to be characterized as a population. Photometric full-phase light curves of hot Jupiters allow for basic inferences of their atmospheric circulation, providing two key observables. First, they measure the amplitude of brightness variation, which has shown that the fractional brightness temperature difference between the dayside and nightside in the atmospheres of these tidally locked planets can approach unity. Additionally, each planet has a significant observed offset of the brightest point in their light curve, and offsets in the infrared ubiquitously occur before secondary eclipse. These infrared offsets are best explained by strong (~km/s) eastward winds in hot Jupiter atmospheres. Motivated by these observations, we have developed a first-principles analytic theory that predicts dayside-nightside temperature differences and horizontal and vertical wind speeds as a function of incident stellar flux, rotation rate, frictional drag strength, and atmospheric pressure level. To complement and compare with this theory, we have performed a hierarchy of three-dimensional numerical simulations of the atmospheric circulation to explore changes with incident stellar flux, rotation rate, and drag strength. Both the theory and numerical simulations predict that the dayside-nightside temperature differences of hot Jupiters and their wind speeds should increase with increasing incident stellar flux and decrease with increasing drag strength. So far, this has been hinted at in the observed sample of nine hot Jupiter phase curves, but we predict that these broad trends will be robust with a larger observed population. We extend our theory to estimate vertical mixing rates, which is critical for understanding the impact of clouds and disequilibrium chemistry on observations of hot Jupiters. To show the regimes that this theory applies in, we compare

  20. Hot semiworks Redox studies

    Energy Technology Data Exchange (ETDEWEB)

    Evans, T.F.; Tomlinson, R.E.

    1954-01-27

    The separations Hot Semiworks at the Hanford Atomic Products Operation was built in order to: (1) develop optimum conditions for the economic operation of the Redox and TBP plants, (2) procure engineering design data which would allow the specification of process equipment required for new processes such as Purex, (3) provide facilities for the study of future process and engineering problems on a semiworks scale employing radioactive process solutions, and (4) provide facilities for immediate trouble shooting for urgent separations plant problems. The initial operation of this facility was designed to develop conditions for the economic operation of the Redox Plant. These studies, covering a period from November, 1952 to October, 1953, are described in this report. The Redox process is used at Hanford for the separation of uranium and plutonium from fission products and from each other. The basis of the process is the preferential extraction of uranium and plutonium nitrates from an aqueous phase of high salting strength into an organic solvent (methyl isobutyl ketone) to effect the separation from fission products. This operation is conducted continuously in columns, packed with Raschig rings, through which the phases are passed counter-currently. Uranium and plutonium are separated by converting the plutonium to a lower valence state, in which form it is preferentially extracted back into an aqueous phase of high salting strength in a second column. Uranium is then returned to an aqueous phase of low salting strength in a third column. The products are further decontaminated in similar additional cycles. A detailed description of the process is given in the Redox Technical Manual.

  1. Strain effects on rotational property in nanoscale rotation system.

    Science.gov (United States)

    Huang, Jianzhang; Han, Qiang

    2018-01-11

    This paper presents a study of strain effects on nanoscale rotation system consists of double-walls carbon nanotube and graphene. It is found that the strain effects can be a real-time controlling method for nano actuator system. The strain effects on rotational property as well as the effect mechanism is studied systematically through molecular dynamics simulations, and it obtains valuable conclusions for engineering application of rotational property management of nanoscale rotation system. It founds that the strain effects tune the rotational property by influencing the intertube supporting effect and friction effect of double-walls carbon nanotube, which are two critical factors of rotational performance. The mechanism of strain effects on rotational property is investigated in theoretical level based on analytical model established through lattice dynamics theory. This work suggests great potentials of strain effects for nanoscale real-time control, and provides new ideas for design and application of real-time controllable nanoscale rotation system.

  2. Rotational dynamics and heating of trapped nanovaterite particles

    Science.gov (United States)

    Arita, Yoshihiko; Richards, Joseph M.; Mazilu, Michael; Spalding, Gabriel C.; Skelton Spesyvtseva, Susan E.; Craig, Derek; Dholakia, Kishan

    2017-04-01

    We synthesize, optically trap, and rotate individual nanovaterite crystals with a mean particle radius of 423 nm. Rotation rates of up to 4.9 kHz in heavy water are recorded [1]. Laser-induced heating due to residual absorption of the nanovaterite particle results in the superlinear behavior of the rotation rate as a function of trap power. A finite element method based on the Navier-Stokes model for the system allows us to determine the residual optical absorption coefficient for a trapped nanovaterite particle. This is further confirmed by the theoretical model. Our data reveal that the nanoparticle experiences a different Stokes drag torque or force depending on whether we consider rotational or translational motion, which is in a good agreement with the theoretical prediction of the rotational hot Brownian motion [2]. The data allow us to determine the correction factors for the local viscosity for both the rotational and translational motion of the nanoparticle. The use of nanovaterite particles opens up new studies for levitated optomechanics in vacuum [3-6] as well as microrheological properties of cells or biological media [7]. For these latter studies, nanovaterite offers prospects of microviscosity measurements in ultrasmall volumes and, due to its size, potentially simpler uptake by cellular media [8].

  3. The decay of hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  4. Do scientists trace hot topics?

    CERN Document Server

    Wei, Tian; Wu, Chensheng; Yan, XiaoYong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  5. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  6. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  7. Rotational Baroclinic Adjustment

    DEFF Research Database (Denmark)

    Holtegård Nielsen, Steen Morten

    the reciprocal of the socalled Coriolis parameter, and the length scale, which is known as the Rossby radius. Also, because of their limited width currents influenced by rotation are quite persistent. The flow which results from the introduction of a surface level discontinuity across a wide channel is discussed...... of the numerical model a mechanism for the generation of along-frontal instabilities and eddies is suggested. Also, the effect of an irregular bathymetry is studied.Together with observations of wind and water levels some of the oceanographical observations from the old lightvessels are used to study...... with the horizontal extent of many other parts of the Danish inland waters implies that the dynamics of these should also be discussed in terms of rotational effects....

  8. Marginal deformations & rotating horizons

    Science.gov (United States)

    Anninos, Dionysios; Anous, Tarek; D'Agnolo, Raffaele Tito

    2017-12-01

    Motivated by the near-horizon geometry of four-dimensional extremal black holes, we study a disordered quantum mechanical system invariant under a global SU(2) symmetry. As in the Sachdev-Ye-Kitaev model, this system exhibits an approximate SL(2, ℝ) symmetry at low energies, but also allows for a continuous family of SU(2) breaking marginal deformations. Beyond a certain critical value for the marginal coupling, the model exhibits a quantum phase transition from the gapless phase to a gapped one and we calculate the critical exponents of this transition. We also show that charged, rotating extremal black holes exhibit a transition when the angular velocity of the horizon is tuned to a certain critical value. Where possible we draw parallels between the disordered quantum mechanics and charged, rotating black holes.

  9. Isotropic stochastic rotation dynamics

    Science.gov (United States)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten

    2017-12-01

    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  10. Neptune's Wandering Hot Pole

    Science.gov (United States)

    Orton, Glenn; Fletcher, Leigh; Yanamandra-Fisher, Padma; Geballe, Tom; Hammel, Heidi; Fujiyoshi, Takuya; Encrenaz, Therese; Hofstadter, Mark; Mousis, Olivier; Fuse, Tetsuharu

    2010-05-01

    Images of stratospheric emission from Neptune obtained in 2006 at ESO's Very Large Telescope (Orton et al., 2007, A&A 473, L5) revealed a near-polar hot spot near 70 deg. S latitude that was detectable in different filters sampling both methane (~7-micron) and ethane (~12-micron) emission from Neptune's stratosphere. Such a feature was not present in 2003 Keck and 2005 Gemini North observations: these showed only a general warming trend towards Neptune's pole that was longitudinally homogeneous. Because of the paucity of longitudinal sampling in the 2003, 2005 and 2006 images, it was not clear whether the failure to see this phenomenon in 2003 and 2005 was simply the result of insufficient longitudinal sampling or whether the phenomenon was truly variable in time. To unravel these two possibilities, we proposed for time on large telescopes that were capable of resolving Neptune at these wavelengths. We were granted time at Gemini South in 2007 using T-Recs, Subaru time in 2008 using the COMICS instrument and VLT time in 2008 and 2009 using VISIR. Two serendipitous T-Recs images of Neptune were also obtained in 2007 using a broad-band N (8-14 micron) filter, whose radiance is dominated by 12-micron ethane emission, and whose primary purpose was navigation of N-band spectroscopy. The feature was re-observed (i) in 2007 in the T-Recs N-band filter and (ii) in 2008 with COMICS in a 12.5-micron image. Unfortunately, none of the telescope time granted was sufficient to sample all longitudes over the 12-hour period of this latitude, and so no definitive separation of the two possibilities was obtained. However, considering the ensemble of images as a random sample of longitudes, it is likely that the phenomenon is ephemeral in time, as it was observed only twice among 9 independent observing epochs. We will continue to request observations to sample all longitudes systematically, but our current sample argues that the phenomenon is truly ephemera, because we most likely

  11. The Rotation of Europa

    Science.gov (United States)

    Henrard, Jacques

    2005-01-01

    We present a semi-analytical theory of the rotation of Europa the Galilean satellite of Jupiter. The theory is semi-analytical in the sense that it is based on a synthetic theory of the orbit of Europa developed by Lainey. The theory is developed in the framework of Hamiltonian mechanics, using Andoyer variables and assumes that Europa is a rigid body. We consider this theory as a first step toward the modelization of a non rigid Europa covered by an ocean.

  12. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  13. Method for Design Rotation

    Science.gov (United States)

    1993-08-01

    central composite design and give the orthogonal matrix that yields the rotation, but they do not discuss how the orthogonal matrix was found. Doehlert ... Doehlert and Klee (1972) was to start with a known orthogonal matrix of simple form and then augment the matrix with additional rows and columns to get a...larger region, a symmetric treatment of the factors, or both. 114. SUBJECT TERMS 15. NUMBER OF PAGES Orthogonal matrix Response surface design 27

  14. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  15. Tidal Dissipation in Hot Jupiter Atmospheres

    Science.gov (United States)

    Johnson, Eric T.

    2009-01-01

    Short-period extrasolar giant planets (hot Jupiters) experience periods of strong tidal dissipation. It is not well known whether tidal energy is deposited primarily in the deep interior or the surface layers of these planets, or what effect the location of tidal heating has on their evolution and observable properties (e.g. radii, spectra, and rate of mass loss in a planetary wind). I present a study of the local tidal heating rate as a function of latitude and depth in the radiative envelope and atmosphere (between pressure levels of about 1 kilobar and 0.001 microbars). Results are based on a nonadiabatic linear analysis of the tide in this region, which takes the form of an upward-propagating train of inertial-gravity waves excited at the interface between the convective interior and the stably-stratified envelope. Radiative damping dominates the dissipation. Careful attention is paid to the computation of the radiative relaxation timescale, using nongray radiative transfer to transition smoothly from the optically thick to the optically thin regime. The potential exists for conversion from inertial-gravity waves to pure inertial waves in the presence of strong radiative damping. This raises the possibility that a significant tidal energy flux can be transported as high as the base of the thermosphere, where it would contribute to driving atmospheric escape. Results can be used to chart local tidal heating rates over the lifetime of a hot Jupiter as its orbit and rotation rate evolve. Although the potential for high-altitude tidal heating is intriguing, I find that over a wide range of orbital parameters the bulk of the energy flux is dissipated nearer the IR photosphere. Tidal heating at those heights (around 0.1-10 bars) has the greatest potential to affect the emergent spectrum, and is least likely to slow the planet's rate of contraction.

  16. 29 CFR 1915.14 - Hot work.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Hot work. 1915.14 Section 1915.14 Labor Regulations... Dangerous Atmospheres in Shipyard Employment § 1915.14 Hot work. (a) Hot work requiring testing by a Marine Chemist or Coast Guard authorized person. (1) The employer shall ensure that hot work is not performed in...

  17. Three-mode orthomax rotation

    NARCIS (Netherlands)

    Kiers, Henk A.L.

    1997-01-01

    Factor analysis and principal components analysis (PCA) are often followed by an orthomax rotation to rotate a loading matrix to simple structure. The simple structure is usually defined in terms of the simplicity of the columns of the loading matrix. In Three-made PCA, rotational freedom of the so

  18. AN INVESTIGATION OF THE EFFECT OF THE HOT END PLUGS ON THE EFFICIENCY OF THE RANQUE-HILSCH VORTEX TUBE

    Directory of Open Access Journals (Sweden)

    MAZIAR ARJOMANDI

    2007-12-01

    Full Text Available The phenomenon of temperature distribution in confined steady rotating gas flows is called Ranque-Hilsch effect. The simple counter-flow vortex tube consists of a long hollow cylinder with tangential nozzle at one end for injecting compressed air. The flow inside the vortex tube can be described as rotating air, which moves in a spring-shaped vortex track. The peripheral flow moves toward the hot end where a hot end plug is placed and the axial flow, which is forced back by the plug, moves in the opposite direction toward the cold end. This paper focuses on the effect of the size of hot nozzle on the performance of the Ranque–Hilsch vortex tube. Series of plugs were used in the experiment in order to find the relationship between the diameter of hot end plug and the performance of the vortex tube.

  19. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Becker, Daniel [Department of Physics, University of California, Berkeley, CA 94720 (United States); Showman, Adam P. [Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-10-20

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ{sub wave}, plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ{sub wave}∼√(τ{sub rad}/Ω), where τ{sub rad} is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ{sub rad} ∼ τ{sub vert}, where τ{sub vert} is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ{sub rad} and the horizontal day

  20. Hot Jupiter Magnetospheres

    Science.gov (United States)

    Trammell, George B.; Arras, Phil; Li, Zhi-Yun

    2011-02-01

    The upper atmospheres of close-in gas giant exoplanets ("hot Jupiters") are subjected to intense heating and tidal forces from their parent stars. The atomic (H) and ionized (H+) hydrogen layers are sufficiently rarefied that magnetic pressure may dominate gas pressure for expected planetary magnetic field strength. We examine the structure of the magnetosphere using a 3D isothermal magnetohydrodynamic model that includes a static "dead zone" near the magnetic equator containing gas confined by the magnetic field, a "wind zone" outside the magnetic equator in which thermal pressure gradients and the magneto-centrifugal-tidal effect give rise to a transonic outflow, and a region near the poles where sufficiently strong tidal forces may suppress transonic outflow. Using dipole field geometry, we estimate the size of the dead zone to be several to tens of planetary radii for a range of parameters. Tides decrease the size of the dead zone, while allowing the gas density to increase outward where the effective gravity is outward. In the wind zone, the rapid decrease of density beyond the sonic point leads to smaller densities relative to the neighboring dead zone, which is in hydrostatic equilibrium. To understand the appropriate base conditions for the 3D isothermal model, we compute a simple 1D thermal model in which photoelectric heating from the stellar Lyman continuum is balanced by collisionally excited Lyα cooling. This 1D model exhibits a H layer with temperature T ~= 5000-10,000 K down to a pressure P ~ 10-100 nbar. Using the 3D isothermal model, we compute maps of the H column density as well as the Lyα transmission spectra for parameters appropriate for HD 209458b. Line-integrated transit depths sime5%-10% can be achieved for the above base conditions, in agreement with the results of Koskinen et al. A deep, warm H layer results in a higher mass-loss rate relative to that for a more shallow layer, roughly in proportion to the base pressure. Strong magnetic

  1. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  2. On general Earth's rotation theory

    Science.gov (United States)

    Brumberg, V.; Ivanova, T.

    2009-09-01

    This paper dealing with the general problem of the rigid-body rotation of the three-axial Earth represents a straightforward extension of (Brumberg and Ivanova, 2007) where the simplified Poisson equations of rotation of the axially symmetrical Earth have been considered. The aim of the present paper is to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation around its centre of mass to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  3. STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Abbot, Dorian S. [Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Boué, Gwenaël; Fabrycky, Daniel C., E-mail: abbot@uchicago.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2014-05-20

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

  4. AN INVESTIGATION OF THE EFFECT OF THE HOT END PLUGS ON THE EFFICIENCY OF THE RANQUE-HILSCH VORTEX TUBE

    OpenAIRE

    MAZIAR ARJOMANDI; YUNPENG XUE

    2007-01-01

    The phenomenon of temperature distribution in confined steady rotating gas flows is called Ranque-Hilsch effect. The simple counter-flow vortex tube consists of a long hollow cylinder with tangential nozzle at one end for injecting compressed air. The flow inside the vortex tube can be described as rotating air, which moves in a spring-shaped vortex track. The peripheral flow moves toward the hot end where a hot end plug is placed and the axial flow, which is forced back by the plug, moves in...

  5. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul

    1993-01-01

    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  6. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  7. ROTATING PLASMA DEVICE

    Science.gov (United States)

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  8. Promethus Hot Leg Piping Concept

    Energy Technology Data Exchange (ETDEWEB)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  9. Heat Transport Effects in Rotating Gases and Plasmas

    Science.gov (United States)

    Kolmes, Elijah; Geyko, Vasily; Fisch, Nathaniel

    2016-10-01

    In some contexts, rotating gases and plasmas exhibit heat transport effects that are substantially different from what would be found in the absence of rotation. For instance, a Ranque-Hilsch vortex tube is a device which separates an input stream of (neutral) gas into hot and cold streams by setting up a rotating flow in a specially designed cylindrical chamber. One class of vortex tube models involves radial motion that carries gas up and down the pressure gradients set up by the centrifugal potential inside the tube and which results in adiabatic heating and cooling of the radially moving material. The approach of producing heat transport in a rotating flow using pressure gradients and motion along those gradients may have applications in plasma systems. We discuss possible applications for rotational heat transport effects in plasma systems, including Z-pinch configurations. Princeton Plasma Physics Laboratory; U.S. Defense Reduction Agency Grant No. HDTRA1-11-1-0037; and the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948.

  10. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  11. Rotating Wheel Wake

    Science.gov (United States)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer

    2016-11-01

    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  12. Rotational Spectrum of Saccharine

    Science.gov (United States)

    Alonso, Elena R.; Mata, Santiago; Alonso, José L.

    2017-06-01

    A significant step forward in the structure-activity relationships of sweeteners was the assignment of the AH-B moiety in sweeteners by Shallenberger and Acree. They proposed that all sweeteners contain an AH-B moiety, known as glucophore, in which A and B are electronegative atoms separated by a distance between 2.5 to 4 Å. H is a hydrogen atom attached to one of the electronegative atom by a covalent bond. For saccharine, one of the oldest artificial sweeteners widely used in food and drinks, two possible B moieties exist ,the carbonyl oxygen atom and the sulfoxide oxygen atom although there is a consensus of opinion among scientists over the assignment of AH-B moieties to HN-SO. In the present work, the solid of saccharine (m.p. 220°C) has been vaporized by laser ablation (LA) and its rotational spectrum has been analyzed by broadband CP-FTMW and narrowband MB-FTMW Fourier transform microwave techniques. The detailed structural information extracted from the rotational constants and ^{14}N nuclear quadrupole coupling constants provided enough information to ascribe the glucophore's AH and B sites of saccharine. R. S. Shallenberger, T. E. Acree. Nature 216, 480-482 Nov 1967. R. S. Shallenberger. Taste Chemistry; Blackie Academic & Professional, London, (1993).

  13. Pure Nano-Rotation Scanner

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.

  14. Instability windows and evolution of rapidly rotating neutron stars.

    Science.gov (United States)

    Gusakov, Mikhail E; Chugunov, Andrey I; Kantor, Elena M

    2014-04-18

    We consider an instability of rapidly rotating neutron stars in low-mass x-ray binaries (LMXBs) with respect to excitation of r modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. Using a simple phenomenological model we demonstrate that neutron stars with high spin frequency may spend a substantial amount of time at these "resonance" temperatures. This finding allows us to explain puzzling observations of hot rapidly rotating neutron stars in LMXBs and to predict a new class of hot, nonaccreting, rapidly rotating neutron stars, some of which may have already been observed and tentatively identified as quiescent LMXB candidates. We also impose a new theoretical limit on the neutron star spin frequency, which can explain the cutoff spin frequency ∼730  Hz, following from the statistical analysis of accreting millisecond x-ray pulsars. In addition to explaining the observations, our model provides a new tool to constrain superdense matter properties by comparing measured and theoretically predicted resonance temperatures.

  15. An Investigation on the Effect of the Hot End Plugs on the Efficiency of the Ranque-Hilsch Vortex Tube

    Science.gov (United States)

    Arjomandi, M.; Xue, Y. P.

    The phenomenon of temperature distribution in confined steady rotating gas flows is called as Ranque-Hilsch effect. The simple counter-flow vortex tube consists of a long hollow cylinder with tangential nozzles at one end for injecting compressed air. Rotating air escapes the tube through two different outlets-a central orifice diaphragm placed near the inlet (cold end) and a ring-shaped peripheral outlet at the opposite end of the tube (hot end).

  16. Response to rotating forcing of the von-Karman disk boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Mukund; Siddiqui, M Ehtisham; Pier, Benoit; Scott, Julian; Azouzi, Alexandre; Michelet, Roger; Nicot, Christian, E-mail: benoit.pier@ec-lyon.fr [Laboratoire de mecanique des fluides et d' acoustique (CNRS-Universite de Lyon) Ecole centrale de Lyon, 36 avenue Guy-de-Collongue, 69134 Ecully (France)

    2011-12-22

    In the present experimental investigation of the three-dimensional boundary layer due to a disk rotating in otherwise still air, the aim is to study the response to a radially localized perturbation applied with a prescribed relative frequency with respect to the disk. The response to localized rotating forcing is measured with a hot-wire probe. The rotation rate of the forcing element is controlled independently of the disk rotation rate, and the dynamics of the spatial response is studied as a function of the ratio between the two rotation rates. The theoretically expected disturbance trajectories are derived from an instability analysis based on the exact local dispersion relations computed from the complete linearized Navier-Stokes equations. Theoretical predictions and experimental measurements are shown to be in good agreement.

  17. Why Are Hot Jupiters So Lonely?

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Spalding and Konstantin Batygin, propose an alternative picture in which both types of planets form through identical pathways. Instead, they argue, a hot Jupiters apparent loneliness arises over time through interactions with its host star.Stellar Interactions Impact CompanionsSemimajor axis for the outer companion (a2) vs that of the close-in giant planet (a1) at three different system ages. Outer companions within the shaded region will not encounter the resonance investigated by the authors, instead remaining coplanar with the inner giant. For this reason, warm Jupiters will have evident companions whereas hot Jupiters will not. [Spalding Batygin 2017]Whether giant planets form in situ near their hosts or migrate inward, they can still have close-in, co-transiting companions outside of their orbit shortly after their birth, Spalding and Batygin argue. But after the disk in which they were born dissipates, the orbits of their companions may be altered.The authors demonstrate that because hot Jupiters are so close to their hosts, these giants eventually encounter a resonance with their stellar hosts quadrupole moment, which arises because rotating stars arent perfectly spherical. This resonance tilts the orbits of the hot Jupiters outer, lower-mass companions, rendering the companions undetectable in transit surveys.Warm Jupiters, on the other hand, are located just far enough away from their hosts to avoid feeling the effects of this resonance which allows them to keep their outer companions in the same plane.Based on their model, Spalding and Batygin make direct predictions for the systems they expect to be observed in large upcoming surveys like the Transiting Exoplanet Survey Satellite (TESS) which means we should soon have a sense of whether their picture is correct. If it is, it will confirm that the non-sphericity of stars can have significant impact on the dynamics and architecture of exoplanetary systems.CitationChristopher Spalding and Konstantin Batygin 2017

  18. Hot-spots in tapwaterleidingen

    NARCIS (Netherlands)

    Wolferen, J. van; Sluis, S.M. van der

    2002-01-01

    ln opdracht van de VNI is een aantal berekeningen uitgevoerd voor het vaststellen van aanvullende richtlijnen in verband met hot-spots in tapwaterleidingen. Hierbij is deels voortgebouwd op berekeningen die reeds eerder in opdracht van Novem zijn uitgevoerd t.b.v. ISSO publicatie 55.1, Handleiding

  19. Hot Corrosion in Gas Turbines.

    Science.gov (United States)

    1983-04-27

    in hot corrosion under some circumstances, because its role seems to be principally through reduction of NagSO, or erosion by pyrolytic graphite...same morphology could be produced either by spray -coating with NaxSO, or by diffusing NIS into the cut- edge region under argon at temperature and then

  20. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  1. Wormholes immersed in rotating matter

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    2018-03-01

    Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  2. Isovector rotational model

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Inst. fuer Theoretische Physik, Univ. Tuebingen (Germany))

    1994-04-18

    The explicit form of the canonical angle operator is found and the isovector rotor is quantized in canonical relative variables ensuring the exact separation of the spurious mode. The main characteristics of the resulting joint mode, together with the low- and high-frequency parts of the split mode are obtained. It is found that the isovector rotational mode exhausts all the non-spurious M1 strength at low and high energy, providing a strong support for the interpretation of all the orbital 1[sup +] excitations as a scissors mode. Self-consistent residual interactions do not change the non-spurious restoring force of the deformed potential. Simple numerical estimates, derived from a schematic deformed oscillator, are in a good qualitative agreement with microscopic RPA results. Relationships with the results of the two-rotor model and the microscopic realization of the scissors state are established. (orig.)

  3. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  4. Asteroid Ida Rotation Sequence

    Science.gov (United States)

    1994-01-01

    This montage of 14 images (the time order is right to left, bottom to top) shows Ida as it appeared in the field of view of Galileo's camera on August 28, 1993. Asteroid Ida rotates once every 4 hours, 39 minutes and clockwise when viewed from above the north pole; these images cover about one Ida 'day.' This sequence has been used to create a 3-D model that shows Ida to be almost croissant shaped. The earliest view (lower right) was taken from a range of 240,000 kilometers (150,000 miles), 5.4 hours before closest approach. The asteroid Ida draws its name from mythology, in which the Greek god Zeus was raised by the nymph Ida.

  5. Rotations, quaternions, and double groups

    CERN Document Server

    Altmann, Simon L

    2005-01-01

    This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems.Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the g

  6. The stellar seismology of hot white dwarfs and planetary nebula nuclei

    Science.gov (United States)

    Kawaler, Steven D.

    1987-01-01

    The pulsation properties of hot white dwarfs make it possible to determine their mass, surface composition, rotation, and rate of evolution, and provide constraints on their internal structure. Period spacings are sensitive measures of stellar mass and indicate surface layer structure. Measurement of the rate of period change for these stars provide a way to determine their cooling rates. Attention is also given to how well (or poorly) models of excitation of the pulsations fit within current models of planetary nebula nuclei and hot white dwarfs.

  7. Detecting Hot Gaseous Halos of Galaxies with Arcus

    Science.gov (United States)

    Bregman, Joel N.; Hodges-Kluck, Edmund; Li, Jiangtao; Li, Yunyang; Miller, Matthew; Qu, Zhijie

    2018-01-01

    A long-lived component of galaxies is the hot extended atmosphere with a temperature near the virial temperature. It can contain a significant fraction of the missing baryons and can act as a reservoir of matter for future generations of stars. This extended hot halo is detected around the Milky Way in absorption and emission lines of highly ionized species (e.g., O VII, O VIII), but weighted to be within about 50 kpc. From current data there are not many high fidelity absorption line detections and the lines are badly under-resolved. These shortcomings will be rectified with Arcus, which will provide high-quality line measurements in several ions for about 50 sight lines. Lines will often be resolved, revealing the dynamics of the hot halo, such as rotation and the turbulence resulting from feedback. We show how metallicities will be determined from a comparison of these absorption lines with existing emission line data. Arcus will detect O VII absorption from similar halos around external galaxies, for the first time, and out to ~R200, if not beyond. Using random lines of sight, Arcus will complete the metal census of the Universe.

  8. Surface dimpling on rotating work piece using rotation cutting tool

    Science.gov (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  9. OUT Success Stories: Solar Hot Water Technology

    Energy Technology Data Exchange (ETDEWEB)

    Clyne, R.

    2000-08-31

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  10. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  11. Iron losses during desulphurisation of hot metal

    OpenAIRE

    Magnelöv, Marianne

    2014-01-01

    After injection of calcium carbide and magnesium during desulphurisation of hot metal, the slag is normally solid and contains large amounts of iron. Besides the enclosed iron droplets in the slag, drawn-off hot metal during slag skimming also accounts for iron losses during desulphurisation of hot metal. Iron losses during hot metal desulphurisation using both calcium carbide (mono-injection), and calcium carbide and magnesium (co-injection), have been studied by large-scale investigations o...

  12. Rotational energy surfaces of molecules exhibiting internal rotation

    Science.gov (United States)

    Ortigoso, Juan; Hougen, Jon T.

    1994-08-01

    Rotational energy surfaces [W. G. Harter and C. W. Patterson, J. Chem. Phys. 80, 4241 (1984)] for a molecule with internal rotation are constructed. The study is limited to torsional states at or below the top of the barrier to internal rotation, where the extra (torsional) degree of freedom can be eliminated by expanding eigenvalues of the torsion-K-rotation Hamiltonian as a Fourier series in the rotational degree of freedom. For acetaldehyde, considered as an example, this corresponds to considering vt=0, 1, and 2 (below the barrier) and vt=3 (just above the barrier). The rotational energy surfaces are characterized by locating their stationary points (maxima, minima, and saddles) and separatrices. Rather complicated catastrophe histories describing the creation and annihilation of pairs of stationary points as a function of J are found at moderate J for given torsional quantum number (vt) and symmetry species (A,E). Trajectories on the rotational energy surface which quantize the action are examined, and changes from rotational to vibrational trajectories caused by changes in the separatrix structure are found as a function of J for vt=2. The concept of a ``best'' quantization axis for the molecule-fixed component of the total angular momentum is examined from a classical point of view, and it is shown that labeling ambiguities encountered in the literature for torsion-rotation energy levels, calculated numerically in the rho-axis system, can be eliminated by reprojecting basis-set K values onto an axis passing through an appropriate stationary point on the rotational energy surface.

  13. I.S.Mu.L.T - Rotator Cuff Tears Guidelines

    Science.gov (United States)

    Oliva, Francesco; Piccirilli, Eleonora; Bossa, Michela; Via, Alessio Giai; Colombo, Alessandra; Chillemi, Claudio; Gasparre, Giuseppe; Pellicciari, Leonardo; Franceschetti, Edoardo; Rugiero, Clelia; Scialdoni, Alessandro; Vittadini, Filippo; Brancaccio, Paola; Creta, Domenico; Buono, Angelo Del; Garofalo, Raffaele; Franceschi, Francesco; Frizziero, Antonio; Mahmoud, Asmaa; Merolla, Giovanni; Nicoletti, Simone; Spoliti, Marco; Osti, Leonardo; Padulo, Johnny; Portinaro, Nicola; Tajana, Gianfranco; Castagna, Alex; Foti, Calogero; Masiero, Stefano; Porcellini, Giuseppe; Tarantino, Umberto; Maffulli, Nicola

    2015-01-01

    Despite the high level achieved in the field of shoulder surgery, a global consensus on rotator cuff tears management is lacking. This work is divided into two main sessions: in the first, we set questions about hot topics involved in the rotator cuff tears, from the etiopathogenesis to the surgical treatment. In the second, we answered these questions by mentioning Evidence Based Medicine. The aim of the present work is to provide easily accessible guidelines: they could be considered as recommendations for a good clinical practice developed through a process of systematic review of the literature and expert opinion, in order to improve the quality of care and rationalize the use of resources. PMID:26958532

  14. High-Current Rotating Contactor

    Science.gov (United States)

    Hagan, David W.; Wolff, Edwin D.

    1996-01-01

    Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.

  15. Rotation of the planet mercury.

    Science.gov (United States)

    Jefferys, W H

    1966-04-08

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  16. KEPLER RAPIDLY ROTATING GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  17. Evolution of temporal disturbances in the boundary layer over a rotating disk

    Science.gov (United States)

    Othman, Hesham; Corke, Thomas

    2004-11-01

    Small amplitude (linear) temporal disturbances are introduced into a laminar boundary layer on a rotating disk using a micro pulsed air jet. The rotating disk facility consists of a polished aluminum disk mounted on an air-bearing with an integrated dc-motor. An optical encoder feedback maintains a constant rotation speed to within 0.003%, and provides a reference for disk rotation ensemble averaging. The micro-jet is suspended above the disk with the jet flow directed downward towards the disk surface. The time duration of the jet pulse is much shorter than the disk rotation period and results in an azimuthally-narrow cross-flow instability wave packet. The evolution of the wave packet is measured with a hot wire sensor. Both the location of the micro-jet and hot wire sensor move independently so that their locations with respect to critical linear and absolute instability radii can be varied. Both stationary (with respect to the disk rotation frame) and traveling disturbances are followed along constant angle spiral arcs representative of the cross-flow modes. Their evolution is analyzed for evidence of temporal growth associated with an absolute instability.

  18. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  19. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu

    2017-08-01

    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  20. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke

    2016-01-01

    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  1. Rotation periods and photometric variability of rapidly rotating ultracool dwarfs

    Science.gov (United States)

    Miles-Páez, P. A.; Pallé, E.; Zapatero Osorio, M. R.

    2017-12-01

    We used the optical and near-infrared imagers located on the Liverpool, the IAC80, and the William Herschel telescopes to monitor 18 M7-L9.5 dwarfs with the objective of measuring their rotation periods. We achieved accuracies typically in the range ±1.5-28 mmag by means of differential photometry, which allowed us to detect photometric variability at the 2σ level in the 50 per cent of the sample. We also detected periodic modulation with periods in the interval 1.5-4.4 h in 9 out of 18 dwarfs that we attribute to rotation. Our variability detections were combined with data from the literature; we found that 65 ± 18 per cent of M7-L3.5 dwarfs with v sin I ≥ 30 km s-1 exhibit photometric variability with typical amplitudes ≤20 mmag in the I band. For those targets and field ultracool dwarfs with measurements of v sin I and rotation period we derived the expected inclination angle of their rotation axis, and found that those with v sin I ≥ 30 km s-1 are more likely to have inclinations ≳40 deg. In addition, we used these rotation periods and others from the literature to study the likely relationship between rotation and linear polarization in dusty ultracool dwarfs. We found a correlation between short rotation periods and large values of linear polarization at optical and near-infrared wavelengths.

  2. Rotational Twin Paradox

    Science.gov (United States)

    Smarandache, Florentin

    2012-10-01

    Two twins settle on a massive spherical planet at a train station S. Let's consider that each twin has an accompanying clock, and the two clocks are synchronized. One twin T1 remains in the train station, while the other twin T2 travels at a uniform high speed with the train around the planet (on the big circle of the planet) until he gets back to the same train station S. Assume the planet is not rotating. Since the planet is massive, we can consider that on a very small part on its surface the train rail road is linear, so the train is in a linear uniform motion. The larger is the planet's radius the more the rail road approaches a linear trajectory. Because the GPS clocks are alleged to be built on the Theory of Relativity, one can consider the twin T2 train's circular trajectory alike the satellite's orbit. In addition, the gravitation is the same for the reference frames of T1 and T2. Each twin sees the other twin as traveling, therefore each twin finds the other one has aged slower than him. Thus herein we have a relativistic symmetry. When T2 returns to train station S, he finds out that he is younger than T1 (therefore asymmetry). Thus, one gets a contradiction between symmetry and asymmetry.

  3. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  4. A case of familial hot tub lung

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kitahara

    2016-01-01

    Full Text Available Hot tub lung is a lung disease caused by Mycobacterium avium complex. We report the first case of familial hot tub lung appearing simultaneously in a husband and wife. Our case supports the consideration that hot tub lung is a hypersensitivity pneumonitis rather than an infectious lung disease. It also suggests that the state of hot tub lung changes seasonally depending on temperature variations, in a manner similar to summer-type hypersensitivity pneumonitis. This case demonstrates similarities between hot tub lung and summer-type hypersensitivity pneumonitis in regards to familial occurrence and seasonal changes in the disease state.

  5. Morphology of a Hot Coronal Cavity Core as Observed by Hinode/XRT

    Science.gov (United States)

    Reeves, K. K.; Gibson, S. E.; Kucera, T. A.; Hudson, H. S.

    2010-01-01

    We follow a coronal cavity that was observed by Hinode/XRT during the summer of 2008. This cavity has a persistent area of relatively bright X-ray emission in its center. We use multifilter data from XRT to study the thermal emission from this cavity, and find that the bright center is hotter than the surrounding cavity plasma with temperatures of about 1.6 MK. We follow the morphology of this hot feature as the cavity structure rotates over the limb during the several days between July 19 - 23 2008. We find that the hot structure at first looks fairly circular, then appears to expand and elongate, and then shrinks again to a compact circular shape. We interpret this apparent change in shape as being due to the morphology of the filament channel associated with the cavity, and the change in viewing angle as the structure rotates over the limb of the Sun.

  6. Canonical elements of rotational motion

    Science.gov (United States)

    Fukushima, T.

    2009-09-01

    We present a new set of canonical variables to describe general rotation of a triaxial rigid body. Explicit are both the forward and backward transformations from the new variables to the Andoyer canonical variables, which are universal. The rotational kinetic energy is expressed as a quadratic monomial of one new momentum. Consequently, the torque-free rotations are expressed as a linear function of time for the conjugate coordinate and constants of time for the rest two coordinates and three momenta. This means that the new canonical variables are universal elements in a broad sense.

  7. On fast solid-body rotation of the solar core and differential (liquid-like) rotation of the solar surface

    Science.gov (United States)

    Pashitskii, E. A.

    2017-07-01

    On the basis of a two-component (two-fluid) hydrodynamic model, it is shown that the probable phenomenon of solar core rotation with a velocity higher than the average velocity of global rotation of the Sun, discovered by the SOHO mission, can be related to fast solid-body rotation of the light hydrogen component of the solar plasma, which is caused by thermonuclear fusion of hydrogen into helium inside the hot dense solar core. Thermonuclear fusion of four protons into a helium nucleus (α-particle) creates a large free specific volume per unit particle due to the large difference between the densities of the solar plasma and nuclear matter. As a result, an efficient volumetric sink of one of the components of the solar substance—hydrogen—forms inside the solar core. Therefore, a steady-state radial proton flux converging to the center should exist inside the Sun, which maintains a constant concentration of hydrogen as it burns out in the solar core. It is demonstrated that such a converging flux of hydrogen plasma with the radial velocity v r ( r) = -β r creates a convective, v r ∂ v φ/∂ r, and a local Coriolis, v r v φ/ r,φ nonlinear hydrodynamic forces in the solar plasma, rotating with the azimuthal velocity v φ. In the absence of dissipation, these forces should cause an exponential growth of the solid-body rotation velocity of the hydrogen component inside the solar core. However, friction between the hydrogen and helium components of the solar plasma due to Coulomb collisions of protons with α-particles results in a steady-state regime of rotation of the hydrogen component in the solar core with an angular velocity substantially exceeding the global rotational velocity of the Sun. It is suggested that the observed differential (liquid-like) rotation of the visible surface of the Sun (photosphere) with the maximum angular velocity at the equator is caused by sold-body rotation of the solar plasma in the radiation zone and strong turbulence in

  8. Optical diagnostics of a low frequency instability rotating around a magnetized plasma column

    Energy Technology Data Exchange (ETDEWEB)

    Escarguel, A. [Universite de Provence, Centre de Saint Jerome, Lab. PIIM, UMR 6633 CNRS, 13 - Marseille (France)

    2010-01-15

    An argon magnetized plasma column is created with primary energetic electrons in the Mistral device. Low frequency instabilities regularly rotating around this column are observed with an ultra-fast camera and a spectroscopic device. Experimental results coupled to a coronal code show the presence of a few percents of fast (hot) electrons inside the ejected plasma. It also shows that ultra-fast camera analysis of the ejected plasma can only give information on the primary electron population. Finally, these results suggest that the radial decrease of the light emitted by the ejected plasma is essentially due to the radial decrease of the mean energy of the hot electrons. (author)

  9. Constraining Hot Jupiter Atmospheric Structure and Dynamics through Doppler-shifted Emission Spectra

    Science.gov (United States)

    Zhang, Jisheng; Kempton, Eliza M.-R.; Rauscher, Emily

    2017-12-01

    We present a coupled 3D atmospheric dynamics and radiative transfer model to predict the disk-integrated thermal emission spectra of transiting exoplanets in edge-on orbits. We calculate spectra at high resolution to examine the extent to which high-resolution emission spectra are influenced by 3D atmospheric dynamics and planetary rotation and to determine whether and how we can constrain thermal structures and atmospheric dynamics through high-resolution spectroscopy. This study represents the first time that the line-of-sight geometry and resulting Doppler shifts from winds and rotation have been treated self-consistently in an emission spectrum radiative transfer model, which allows us to assess the impact of the velocity field on thermal emission spectra. We apply our model to predict emission spectra as a function of orbital phase for three hot Jupiters: HD 209458b, WASP-43b, and HD 189733b. We find net Doppler shifts in modeled spectra due to a combination of winds and rotation at a level of 1–3 km s‑1. These Doppler signatures vary in a quasi-sinusoidal pattern over the course of the planets’ orbits as the hot spots approach and recede from the observer’s viewpoint. We predict that WASP-43b produces the largest Doppler shift due to its fast rotation rate. We find that the net Doppler shift in an exoplanet’s disk-integrated thermal emission spectrum results from a complex combination of winds, rotation, and thermal structure. However, we offer a simple method that estimates the magnitude of equatorial wind speeds in hot Jupiters through measurements of net Doppler shifts and lower-resolution thermal phase curves.

  10. Optical wheel-rotation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Veeser, L.; Rodriguez, P.; Forman, P. [Los Alamos National Lab., NM (United States); Deeter, M. [National Inst. of Standards and Technology, Boulder, CO (United States)

    1994-05-01

    We describe a fiber-optic rotation sensor based on diffraction of light in a magneto-optic crystal (BIG). Exploitation of this effect permits the construction of a sensor requiring no polarization elements or lenses.

  11. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain

    2011-03-01

    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  12. Economics of Hot Water Dipping

    OpenAIRE

    P., Maxin; K., Klopp

    2004-01-01

    Hot water dipping is an appropriate method to protect apples against spoilage caused by gloeosporium rot. Tests on the varieties Topaz and Ingrid Marie at the OVB Jork (Germany) have demonstrated an effective reduction of spoilage from between 80% and 92% in charges by an infection rate of 40%. The result of an intensive R&D process between 2002 and 2003 is the development of a praxis-tested big box (300 kg) dipping station. With the first Bio Dipping systems now on the mark...

  13. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  14. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  15. Hot Flow Anomalies at Venus

    Science.gov (United States)

    Collinson, G. A.; Sibeck, David Gary; Boardsen, Scott A.; Moore, Tom; Barabash, S.; Masters, A.; Shane, N.; Slavin, J.A.; Coates, A.J.; Zhang, T. L.; hide

    2012-01-01

    We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

  16. POLI: Polarised hot neutron diffractometer

    Directory of Open Access Journals (Sweden)

    Vladimir Hutanu

    2015-08-01

    Full Text Available POLI, which is operated by the Institute of Crystallography, RWTH Aachen University in cooperation with JCNS, Forschungszentrum Jülich, is a versatile two axes single crystal diffractometer with broad field of applications. Mostly dedicated to the investigation of magnetic structures in single crystals using neutron spin polarisation, POLI is also used for classical structural investigations under extreme conditions. High intensity hot neutrons flux makes it attractive also for the other applications like study of parity violations phenomena in nuclear physics or BNCT (boron neutron-capture therapy in medicine.

  17. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  18. Line Heat-Source Guarded Hot Plate

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...

  19. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F

    2014-01-01

    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized......-limbic network with hyper-activity in limbic and ventral prefrontal regions paired with hypo-activity of dorsal prefrontal regions subserve these abnormalities. A cross-talk of 'hot' and 'cold' cognition disturbances in MDD occurs. Disturbances in 'hot cognition' may also contribute to the perpetuation...

  20. HotSpot Wizard: a web server for identification of hot spots in protein engineering

    National Research Council Canada - National Science Library

    Pavelka, Antonin; Chovancova, Eva; Damborsky, Jiri

    2009-01-01

    HotSpot Wizard is a web server for automatic identification of 'hot spots' for engineering of substrate specificity, activity or enantioselectivity of enzymes and for annotation of protein structures...

  1. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  2. Motion of a hot particle in viscous fluids

    Science.gov (United States)

    Oppenheimer, Naomi; Navardi, Shahin; Stone, Howard A.

    2016-05-01

    We study the motion of a hot particle in a viscous liquid at low Reynolds numbers, which is inspired by recent experiments with Brownian particles heated by a laser. The difference in temperature between a particle and the ambient fluid causes a spatial variation of the viscosity in the vicinity of the solid body. We derive a general analytical expression determining the force and the torque on a particle for low Péclet numbers by exploiting the Lorentz reciprocal theorem. For small temperature and viscosity variations, a perturbation analysis is implemented to evaluate the leading-order correction to the hydrodynamic force and torque on the particle. The results are applied to describe dynamics of a uniformly hot spherical particle and to spherical particles with a nonuniform surface temperature described by dipole and quadrupole moments. Among other results, we find for dipolar thermal fields that there is coupling of the translational and rotational motions when there are local viscosity variations; such coupling is absent in an isothermal fluid.

  3. Spline screw multiple rotations mechanism

    Science.gov (United States)

    Vranish, John M. (Inventor)

    1993-01-01

    A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.

  4. Level density and thermodynamics in the hot rotating 96Tc nucleus

    Science.gov (United States)

    Dey, Balaram; Pandit, Deepak; Bhattacharya, Srijit; Hung, N. Quang; Dang, N. Dinh; Phuc, L. Tan; Mondal, Debasish; Mukhopadhyay, S.; Pal, Surajit; De, A.; Banerjee, S. R.

    2017-11-01

    Evaporated neutron energy spectra have been measured in coincidence with low-energy discrete γ rays in the reaction 4He+93Nb at E (4He)=28 MeV. The low-energy light-ion beam provides the scope of extracting the experimental nuclear level density (NLD) in the compound nuclear reaction. Angular-momentum gated NLDs have been extracted in the excitation energy range of E*˜5 -15 MeV from the measured neutron energy spectra. The extracted NLDs have been compared with different theoretical calculations such as the exact pairing plus independent particle model at finite temperature (EP+IPM), Hartree-Fock plus BCS (HFBCS), and Hartree-Fock-Bogoliubov plus combinatorial method (HFBC). Interestingly, the experimental NLDs are in good agreement with the results of the EP+IPM, whereas the HFBCS and HFBC fail to describe these data. Consequently, the thermodynamic properties of 96Tc at finite angular momentum have been extracted using the EP+IPM NLDs. Through the analysis of the calculated thermodynamic quantities, it is shown that no pronounced bump is seen in the heat capacity of 96Tc, in opposition with the earlier results of 96Mo, which showed a prominent bump at T ˜0.7 -1 MeV. This difference is understandable since pairing in the even-even system (96Mo) is always stronger than that in the odd-odd one (96Tc).

  5. Hot Jupiters around young stars

    Science.gov (United States)

    Yu, L. F.; Donati, J.-F.

    2017-12-01

    This conference paper presents the results of the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of massive close-in Exoplanets) observation programme, regarding the search for giant exoplanets around weak-line T Tauri stars (wTTS), as of early 2017. The discoveries of two hot Jupiters (hJs), around V830 Tau and TAP 26, sun-like stars of respectively ˜2 Myr and ˜17 Myr, are summarized here. Both exoplanets seem to have undergone type-II migration (planet-disc interaction leading the orbit to narrow around the host) based on their low orbital eccentricity. The methods which were used are given more focus in the paper Stellar activity filtering methods for the detection of exoplanets in the present book.

  6. Hot spots of mutualistic networks.

    Science.gov (United States)

    Gilarranz, Luis J; Sabatino, Malena; Aizen, Marcelo A; Bascompte, Jordi

    2015-03-01

    Incorporating interactions into a biogeographical framework may serve to understand how interactions and the services they provide are distributed in space. We begin by simulating the spatiotemporal dynamics of realistic mutualistic networks inhabiting spatial networks of habitat patches. We proceed by comparing the predicted patterns with the empirical results of a set of pollination networks in isolated hills of the Argentinian Pampas. We first find that one needs to sample up to five times as much area to record interactions as would be needed to sample the same proportion of species. Secondly, we find that peripheral patches have fewer interactions and harbour less nested networks - therefore potentially less resilient communities - compared to central patches. Our results highlight the important role played by the structure of dispersal routes on the spatial distribution of community patterns. This may help to understand the formation of biodiversity hot spots. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  7. TRUEX hot demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

    1990-04-01

    In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

  8. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  9. Status on the Global Vibration-Rotation Model in Acetylene

    Science.gov (United States)

    Amyay, B.; Herman, M.; Fayt, A.

    2009-06-01

    We have developed a global model to deal with all vibration-rotation levels in acetylene up to high vibrational excitation energy, typically up to 9000 wavenumbers. It has been applied to a number of isotopologues, considering all known vibration-rotation lines published in the literature, for various purposes such as line assignment and astrophysical applications. Coriolis interaction is now systematically being introduced in the model. Recent results concerning the analysis of hot emission FTIR spectra recorded around 3 microns by R. Georges et al. at the University of Rennes (France) and of CW-CRDS spectra recorded around 1.5 microns by A. Campargue et al. at the University of Grenoble (France) will help illustrate the role of this vibration-rotation coupling in the global polyad scheme. S. Robert, M. Herman, A. Fayt, A. Campargue, S. Kassi, A. Liu, L. Wang, G. Di Lonardo, and L. Fusina, Mol. Phys., 106, 2581 (2008). A. Jolly, Y. Benilan, E. Cané, L. Fusina, F. Tamassia, A. Fayt, S. Robert, and M. Herman, J.Q.S.R.T., 109, 2846 (2008).

  10. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  11. Constraining hot Jupiter’s atmospheric structure and dynamics through Doppler shifted emission spectra

    Science.gov (United States)

    Zhang, Jisheng; Kempton, Eliza; Rauscher, Emily

    2017-01-01

    In recent years, astronomers have begun successfully observing the atmospheres of extrasolar planets using ground-based telescopes equipped with spectrographs capable of observing at high spectral resolution (R~105). Such studies are capable of diagnosing the atmospheric structure, composition, and dynamics (winds and rotation) of both transiting and non-transiting exoplanets. However, few studies have examined how the 3-D atmospheric dynamics could alter the emitted light of hot Jupiters at such high spectral resolution. Here, we present a model to explore such influence on the hot Jupiters’ thermal emission spectra. Our aim is to investigate the extent to which the effects of 3-D atmospheric dynamics are imprinted on planet-averaged thermal emission spectra. We couple together a 3-D general circulation model of hot Jupiter atmospheric dynamics (Rauscher & Menou, 2012) with a radiative transfer solver to predict the planet’s disk-integrated emission spectrum as a function of its orbital phase. For the first time, we self-consistently include the effects of the line-of-sight atmospheric motions (resulting from winds and rotation) in the calculation to produce Doppler-shifted spectral line profiles that result from the atmospheric dynamics. We focus our study on three benchmark hot Jupiters, HD 189733b, HD 209458b, and WASP-43b which have been the focus of previous detailed observational studies. We find that the high-resolution Doppler shifted thermal emission spectra can be used to diagnose key properties of the dynamical atmosphere - the planet’s longitudinal temperature and wind structure, and its rotation rate.

  12. Rotational Modes in Phononic Crystals

    Science.gov (United States)

    Wu, Ying; Peng, Pai; Mei, Jun

    2014-03-01

    We propose a lumped model for the rotational modes in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model not only can reproduce the dispersion relations in a certain range with one fitted parameter, but also gives simple analytical expressions for the frequencies of the eigenmodes at the high symmetry points in the Brillouin zone. These expressions provide physical understandings of the rotational modes as well as certain translational and hybrid mode, and predict the presence of accidental degeneracy of the rotational and dipolar modes, which leads to a Dirac-like cone in the Brillouin zone center. Supported by KAUST Baseline Research Fund, National Natural Science Foundation of China (Grants No. 10804086 and No. 11274120), and the Fundamental Research Funds for the Central Universities (Grant No. 2012ZZ0077).

  13. Instabilities in coaxial rotating jets

    Science.gov (United States)

    Ivanic, Tanja; Foucault, Eric; Pecheux, Jean; Gilard, Virginie

    2000-12-01

    The aim of this study is the characterization of the cylindrical mixing layer resulting from the interaction of two coaxial swirling jets. The experimental part of this study was performed in a cylindrical water tunnel, permitting an independent rotation of two coaxial jets. The rotations are generated by means of 2×36 blades localized in two swirling chambers. As expected, the evolution of the main instability modes presents certain differences compared to the plane-mixing-layer case. Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex pairs in the near field region. This method also permitted the observation of the evolution and interaction of different modes. PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distorts the typical top-hat axial velocity profile. The transition of the axial velocity profile from jet-like into wake-like is also observed.

  14. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F

    2014-01-01

    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized...

  15. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    . The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  16. Variational Theory of Hot Dense Matter

    Science.gov (United States)

    Mukherjee, Abhishek

    2009-01-01

    We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and pair…

  17. DEMONSTRATING INTEGRATED PEST MANAGEMENT OF HOT PEPPERS

    Science.gov (United States)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  18. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  19. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  20. Hot Tub Rash (Pseudomonas Dermatitis/Folliculitis)

    Science.gov (United States)

    ... name=”commit” type=”submit” value=”Submit” /> Healthy Water Home Rashes Language: English (US) Español (Spanish) Recommend on ... scrubbing and cleaning? Replacement of the hot tub water filter according to manufacturer’s recommendations? Replacement of hot tub ...

  1. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  2. The Hot Hand Belief and Framing Effects

    Science.gov (United States)

    MacMahon, Clare; Köppen, Jörn; Raab, Markus

    2014-01-01

    Purpose: Recent evidence of the hot hand in sport--where success breeds success in a positive recency of successful shots, for instance--indicates that this pattern does not actually exist. Yet the belief persists. We used 2 studies to explore the effects of framing on the hot hand belief in sport. We looked at the effect of sport experience and…

  3. Hot-dry-rock feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The hot-dry-rock project tasks are covered as follows: hot-dry-rock reservoir; generation facilities; water resources; transmission requirements; environmental issues; government and community institutional factors; leasing, ownership and management of facilities; regulations, permits, and laws; and financial considerations. (MHR)

  4. Astrogeodynamic Studies of Earth Rotation

    Science.gov (United States)

    Pacheco, A.; Alonso, E.; Podesta, R.; Actis, E.

    2006-06-01

    From OAFA's Photoelectric Astrolabe Pa II systematic observations of stellar fundamental groups on period 1992 - 2002 we have determined (UT0-UTC) Time Variation Curve corresponding to Earth Rotation and its comparison with data (UT1-UTC) given by International Earth Rotation Service (IERS) We have obtained values of the curve from the average of observations of each night with their respective weights, and have corrected them by Pole Movement. We have also studied the possibility of relations between anomalies on Time Variation (UT0-UTC) and important earthquakes happened on the neighborhood of the Astrolabe.

  5. Rotationally actuated prosthetic helping hand

    Science.gov (United States)

    Norton, William E. (Inventor); Belcher, Jewell G., Jr. (Inventor); Carden, James R. (Inventor); West, Thomas W. (Inventor)

    1991-01-01

    A prosthetic device has been developed for below-the-elbow amputees. The device consists of a cuff, a stem, a housing, two hook-like fingers, an elastic band for holding the fingers together, and a brace. The fingers are pivotally mounted on a housing that is secured to the amputee's upper arm with the brace. The stem, which also contains a cam, is rotationally mounted within the housing and is secured to the cuff, which fits over the amputee's stump. By rotating the cammed stem between the fingers with the lower arm, the amputee can open and close the fingers.

  6. Mercury's rotation axis and period

    Science.gov (United States)

    Klaasen, K. P.

    1976-01-01

    Recent measurements made from high-resolution Mariner 10 photography of the planet Mercury yield a rotation period of 58.6461 + or 0.005 days, in excellent agreement with the period required for a precise 2/3 resonance with its orbital period (58.6462 days). The axis of rotation of the planet was calculated to be offset about 2 deg from the perpendicular to its orbital plane within a 50% probability error ellipse of + or - 2.6 deg by + or - 6.5 deg. Dynamical considerations make it most likely that the true displacement from the orbit normal is less than 1 deg.

  7. Relativity on Rotated Graph Paper

    CERN Document Server

    Salgado, Roberto B

    2011-01-01

    We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called "light-clock diamonds") represent units of measurement modeled on the ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra. We use the Doppler Effect, in the spirit of the Bondi k-calculus, to motivate the method.

  8. Strongly interacting matter under rotation

    Directory of Open Access Journals (Sweden)

    Jiang Yin

    2018-01-01

    Full Text Available The vorticity-driven effects are systematically studied in various aspects. With AMPT the distributions of vorticity has been investigated in heavy ion collisions with different collision parameters. Taking the rotational polarization effect into account a generic condensate suppression mechanism is discussed and quantitatively studied with NJL model. And in chiral restored phase the chiral vortical effects would generate a new collective mode, i.e. the chiral vortical wave. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Λ baryons.

  9. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F

    2014-01-01

    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized...... of negative emotional states in MDD. Limited success in the identification of susceptibility genes in MDD has led to great research interest in identifying vulnerability biomarkers or endophenotypes. Emerging evidence points to the persistence of 'hot' cognition dysfunction during remission and to subtle 'hot......' cognition deficits in healthy relatives of patients with MDD. Taken together, these findings suggest that abnormalities in 'hot' cognition may constitute a candidate neurocognitive endophenotype for depression....

  10. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F

    2014-01-01

    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized...... to the perpetuation of negative emotional states in MDD. Limited success in the identification of susceptibility genes in MDD has led to great research interest in identifying vulnerability biomarkers or endophenotypes. Emerging evidence points to the persistence of 'hot' cognition dysfunction during remission...... and to subtle 'hot' cognition deficits in healthy relatives of patients with MDD. Taken together, these findings suggest that abnormalities in 'hot' cognition may constitute a candidate neurocognitive endophenotype for depression....

  11. The 4.5 μm Full-orbit Phase Curve of the Hot Jupiter HD 209458b

    OpenAIRE

    Zellem, Robert T.; Lewis, Nikole K.; Knutson, Heather A.; Griffith, Caitlin A.; Showman, Adam P.; Fortney, Jonathan J.; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam; Charbonneau, David; Deming, Drake; Laughlin, Gregory; Langton, Jonathan

    2014-01-01

    The hot Jupiter HD 209458b is particularly amenable to detailed study as it is among the brightest transiting exoplanet systems currently known (V-mag = 7.65; K-mag = 6.308) and has a large planet-to-star contrast ratio. HD 209458b is predicted to be in synchronous rotation about its host star with a hot spot that is shifted eastward of the substellar point by superrotating equatorial winds. Here we present the first full-orbit observations of HD 209458b, in which its 4.5 μm emission was reco...

  12. Hot workability of magnesium alloys

    Science.gov (United States)

    Mwembela, Aaron Absalom

    For the alloy AZ91 (Mg-9.OAl-0.7Zn-0.13Mn) die cast specimens were subjected to torsion testing at 150, 180, 240, 300, 420 and 450°C at 0.05 0.5 and 5.0 s--1 The as-cast specimens exhibited hot shortness at 360°C and above; however in that domain, after prior thermomechanical processing (TMP) at 300°C, they showed much improved properties (which were reported along with as-cast properties at 300°C and below). For AZ31-Mn (Mg-3.2Al-1-1Zn-0.34Mn), AZ31 (Mg-2-8Al-0-88Zn-0.01Mn), AZ63 (Mg-5-5Al-2.7Zn-0.34Mn) and ZK60 (Mg-5.7Zn-0.65Zr-O-O1A]), the specimens were subjected to hot torsion testing in the range 180 to 450°C and 0.01, 0.1, and 1.0 s--1. In the temperature range below 300°C flow curves rise to a peak with failure occurring immediately thereafter. Above 300°C the flow curves exhibited a peak and a gradual decline towards steady state. The temperature and strain rate dependence of the strength is described by a sinh-Arrhenius equation with QHW between 125 and 144 kJ/mol; this indicates control by climb in comparison with creep in the range 200--400°C. The alloy strength and activation energy declined in the order AZ63, AZ31-Mn AZ91, AZ31 and ZK60, while ductility increased with decreasing strength. In working of Mg alloys from 150 to 450°C, the flow curves harden to a peak and work soften to a steady state regime above 300°C. At temperatures below 300°C, twinning is observed initially to bring grains into more suitable slip orientations. At high T a substructure develops due to basal and prismatic slip, Forming cells of augmented misorientation first near the grain boundaries and later towards the grain cores. Near the peak, new grains appear along the old boundaries (mantle) as a result of dynamic recrystallization DRX but not in the core of the initial grains. As T rises, the new grains are larger and the mantle broader, enhanced DRX results in higher ductility. At intermediate T, shear bands form through alignment of mantle zones resulting in

  13. ENGINEERING BULLETIN: ROTATING BIOLOGICAL CONTACTORS

    Science.gov (United States)

    Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...

  14. Rotational alignment in soft nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Yadrena Fizika i Yadrena Energetika)

    1983-12-08

    It is shown that in transitional odd-A nuclei, where the rotation-aligned coupling scheme usually takes place, the low collective angular momentum states of the decoupled band are not completely aligned due to core softness. This is illustrated on the example of La-nuclei.

  15. Rotational dynamics with geometric algebra

    Science.gov (United States)

    Hestenes, D.

    1983-01-01

    A new spinor formulation of rotational dynamics is developed. A general theorem is established reducing the theory of the symmetric top to that of the spherical top. The classical problems of Lagrange and Poinsot are treated in detail, along with a modern application to the theory of magnetic resonance.

  16. Rotational diffusion in dense suspensions

    NARCIS (Netherlands)

    Hagen, M. H. J.; Frenkel, D.; Lowe, C.P.

    1999-01-01

    We have computed the rotational diffusion coefficient for a suspension of hard spheres. We find excellent agreement with experimental results over a density range up to, and including, the colloidal crystal. However, we find that theories derived to second order in the volume fraction overestimate

  17. Rotating black hole and quintessence

    CERN Document Server

    Ghosh, Sushant G

    2015-01-01

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole (BH), which has additional parameters ($\\alpha$ and $\\omega$) due to the quintessential matter, apart from the mass ($M$). In turn, we employ the Newman\\(-\\)Janis complex transformation to this spherical quintessence BH solution and present a rotating counterpart that is identified, for $\\alpha=-e^2 \

  18. Ultrasonography of the Rotator Cuff

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Cheol [Samsung Medica Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)

    2006-09-15

    The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance

  19. Synchrotron Radiation and Faraday Rotation

    NARCIS (Netherlands)

    Heald, George

    2015-01-01

    Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For

  20. Hot Leg Piping Materials Issues

    Energy Technology Data Exchange (ETDEWEB)

    V. Munne

    2006-07-19

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

  1. Controllable High-Speed Rotation of Nanowires

    Science.gov (United States)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.

    2005-06-01

    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  2. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro

    1954-01-01

    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  3. GIANT CORONAL LOOPS DOMINATE THE QUIESCENT X-RAY EMISSION IN RAPIDLY ROTATING M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O.; Yadav, R.; Garraffo, C.; Saar, S. H.; Wolk, S. J.; Kashyap, V. L.; Drake, J. J.; Pillitteri, I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-01-01

    Observations indicate that magnetic fields in rapidly rotating stars are very strong, on both small and large scales. What is the nature of the resulting corona? Here we seek to shed some light on this question. We use the results of an anelastic dynamo simulation of a rapidly rotating fully convective M star to drive a physics-based model for the stellar corona. We find that due to the several kilo Gauss large-scale magnetic fields at high latitudes, the corona, and its X-ray emission are dominated by star-size large hot loops, while the smaller, underlying colder loops are not visible much in the X-ray. Based on this result, we propose that, in rapidly rotating stars, emission from such coronal structures dominates the quiescent, cooler but saturated X-ray emission.

  4. A Soft Sensor Development for the Rotational Speed Measurement of an Electric Propeller

    Directory of Open Access Journals (Sweden)

    Fengchao Ye

    2016-12-01

    Full Text Available In recent decades, micro air vehicles driven by electric propellers have become a hot topic, and developed quickly. The performance of the vehicles depends on the rotational speed of propellers, thus, improving the accuracy of rotational speed measurement is beneficial to the vehicle’s performance. This paper presents the development of a soft sensor for the rotational speed measurement of an electric propeller. An adaptive learning algorithm is derived for the soft sensor by using Popov hyperstability theory, based on which a one-step-delay adaptive learning algorithm is further proposed to solve the implementation problem of the soft sensor. It is important to note that only the input signal and the commutation instant of the motor are employed as inputs in the algorithm, which makes it possible to be easily implemented in real-time. The experimental test results have demonstrated the learning performance and the accuracy of the soft sensor.

  5. Heat transport and flow structure in rotating Rayleigh-B\\'enard convection

    CERN Document Server

    Stevens, Richard J A M; Lohse, Detlef

    2013-01-01

    Here we summarize the results from our direct numerical simulations (DNS) and experimental measurements on rotating Rayleigh-B\\'enard (RB) convection. Our experiments and simulations are performed in a cylindrical samples with aspect ratio of $0.5 \\leq \\Gamma\\leq 2.0$. Here \\Gamma=D/L with D and L are the diameter and height of the sample, respectively. When the rotation rate is increased, while a fixed temperature difference between the hot bottom and cold top plate is maintained, a sharp increase in the heat transfer is observed before the heat transfer drops drastically at stronger rotation rates. Here we focus on the question of how the heat transfer enhancement with respect to the non-rotating case depends on the Rayleigh number Ra, the Prandtl number Pr, and the rotation rate, indicated by the Rossby number Ro. Special attention will be given to influence of the aspect ratio on rotation rate that is required to get heat transport enhancement. In addition, we will discuss the relation between the heat tr...

  6. A review on hot tearing of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Jiangfeng Song

    2016-09-01

    Full Text Available Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products. Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood, it is of great importance to investigate the hot tearing behaviour of magnesium alloys. This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades. The hot tearing criteria including recently developed Kou's criterion are summarized and compared. The numeric simulation and assessing methods of hot tearing, factors influencing hot tearing, and hot tearing susceptibility (HTS of magnesium alloys are discussed.

  7. Polyakov loop modeling for hot QCD

    Science.gov (United States)

    Fukushima, Kenji; Skokov, Vladimir

    2017-09-01

    We review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  8. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  9. Integrated Optics Rotation Sensor (IORS)

    Science.gov (United States)

    Fitzpatrick, Colleen M.; Vali, Victor; Youmans, Bruce R.; Yang, Ching Mei; Milbrodt, Michele; Minford, William J.

    1997-07-01

    The Integrated Optics Rotation SEnsor (IORS) is a rugged, lightweight, and low cost gyro instrument which is currently being sponsored by the Defense Advanced Research Projects Agency under funding from Small Business Innovative Research/Technology Reinvestment Program. It uses glass-on- silicon optical waveguide technology. The design of the IORS is quite simple, and can potentially be adapted to a number of military and commercial applications, including yaw rate sensing for an anti-skid safety device in automobiles, rotation rate sensing for robotics, weapon aiming,and guidance of smart munitions. The basic design is presented, along with preliminary performance specifications for an IORS prototype. The characteristics of the IORS is also compared to other gyros in terms of performance, size, weight, and price.

  10. Faraday rotation system. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, L.E.; Wang, W.

    1994-07-01

    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  11. Rotating concave eddy current probe

    Science.gov (United States)

    Roach, Dennis P [Albuquerque, NM; Walkington, Phil [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Hohman, Ed [Albuquerque, NM

    2008-04-01

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  12. Gravitational lensing by rotating wormholes

    Science.gov (United States)

    Jusufi, Kimet; Ã-vgün, Ali

    2018-01-01

    In this paper the deflection angle of light by a rotating Teo wormhole spacetime is calculated in the weak limit approximation. We mainly focus on the weak deflection angle by revealing the gravitational lensing as a partially global topological effect. We apply the Gauss-Bonnet theorem (GBT) to the optical geometry osculating the Teo-Randers wormhole optical geometry to calculate the deflection angle. Furthermore we find the same result using the standard geodesic method. We have found that the deflection angle can be written as a sum of two terms, namely the first term is proportional to the throat of the wormhole and depends entirely on the geometry, while the second term is proportional to the spin angular momentum parameter of the wormhole. A direct observation using lensing can shed light and potentially test the nature of rotating wormholes by comparing with the black holes systems.

  13. Tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  14. Rotation sensing with trapped ions

    Science.gov (United States)

    Campbell, W. C.; Hamilton, P.

    2017-03-01

    We present a protocol for rotation measurement via matter-wave Sagnac interferometry using trapped ions. The ion trap based interferometer encloses a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without contrast loss. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, Doppler laser cooling should be sufficient to reach a sensitivity of { S }=1.4× {10}-6 {{rad}} {{{s}}}-1 {{{H}}{{z}}}-1/2. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Wes Campbell was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  15. Shoulder Impingement/Rotator Cuff Tendinitis

    Science.gov (United States)

    ... by the American Academy of Orthopaedic Surgeons. .org Shoulder Impingement/Rotator Cuff Tendinitis cont. Page ( 2 ) Symptoms Rotator cuff pain commonly causes local swelling and tenderness in the ...

  16. SEG Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert; Laughlin, Darren; Brune, Bob

    2016-10-17

    Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.

  17. Area spectrum of slowly rotating black holes

    OpenAIRE

    Myung, Yun Soo

    2010-01-01

    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  18. Rotating optical coupler for signal transmission

    Science.gov (United States)

    Ivie, C. V.

    1977-01-01

    Optical coupler using Dove prism assembly to form stationary image of rotating object, transmits data across rotating interface without sliprings or other mechanical contacts. Device can handle many high-bit-rate data channels.

  19. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F

    2014-01-01

    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized...... of negative emotional states in MDD. Limited success in the identification of susceptibility genes in MDD has led to great research interest in identifying vulnerability biomarkers or endophenotypes. Emerging evidence points to the persistence of 'hot' cognition dysfunction during remission and to subtle 'hot...... databases in May 2014 augmented by hand searches of reference lists. We included original articles in which MDD participants (or their healthy first-degree relatives) and a healthy control group were compared on standard measures of emotional processing or reward/ punishment processing as well as systematic...

  20. VT New Market Tax Credit - Hot Zones

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The EconOther_NMTC layer delineates New Market Tax Credit (NMTC) "hot zones" and qualified counties and census tracts. This dataset is designed to...

  1. TERA for Rotating Equipment Selection

    OpenAIRE

    Khan, Raja S. R.

    2012-01-01

    This thesis looks at creating a multidisciplinary simulation tool for rotating plant equipment selection, specifically gas turbines, for the liquefaction of natural gas (LNG). This is a collaborative project between Shell Global Solutions and Cranfield University in the UK. The TERA LNG tool uses a Techno-economic, Environmental and Risk Analysis (TERA) approach in order to satisfy the multidisciplinary nature of the investigation. The benefits of the tool are to act as an aid ...

  2. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  3. Crop rotations for grain production

    OpenAIRE

    Olesen, Jørgen E.; Rasmussen, Ilse Ankær; Askegaard, Margrethe

    2000-01-01

    There is an increasing demand for organically grown cereal grains in Denmark, which is expected to cause a change in the typical organic farm structure away from dairy farming and towards arable farming. Such a change may reduce the stability of the farming systems, because of decreasing soil fertility and problems with weed control. There have only been a limited number of studies under temperate conditions in Europe and North America, where different crop rotations have been compared under ...

  4. Semiclassics of rotation and torsion.

    OpenAIRE

    Braun, Petr A.; Gerwinski, Peter; Haake, Fritz; Schomerus, Henning

    1996-01-01

    We discuss semiclassical approximations of the spectrum of the periodically kicked top, both by diagonalizing the semiclassically approximated Floquet matrix F and by employing periodic-orbit theory. In the regular case when F accounts only for a linear rotation periodic-orbit theory yields the exact spectrum. In the chaotic case the first method yields the quasienergies with an accuracy of better than 3% of the mean spacing. By working in the representation where the torsional part of the Fl...

  5. Developing an Asteroid Rotational Theory

    Science.gov (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald

    2018-01-01

    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  6. Slowly rotating supercompact Schwarzschild stars

    Science.gov (United States)

    Posada, Camilo

    2017-06-01

    The Schwarzschild interior solution, or 'Schwarzschild star', which describes a spherically symmetric homogeneous mass with a constant energy density, shows a divergence in pressure when the radius of the star reaches the Schwarzschild-Buchdahl bound. Recently, Mazur and Mottola showed that this divergence is integrable through the Komar formula, inducing non-isotropic transverse stresses on a surface of some radius R0. When this radius approaches the Schwarzschild radius Rs = 2 M, the interior solution becomes one of negative pressure evoking a de Sitter space-time. This gravitational condensate star, or gravastar, is an alternative solution to the idea of a black hole as the ultimate state of gravitational collapse. Using Hartle's model to calculate equilibrium configurations of slowly rotating masses, we report results of surface and integral properties for a Schwarzschild star in the very little studied region Rs < R < (9/8)Rs. We found that in the gravastar limit, the angular velocity of the fluid relative to the local inertial frame tends to zero, indicating rigid rotation. Remarkably, the normalized moment of inertia I/MR2 and the mass quadrupole moment Q approach the corresponding values for the Kerr metric to second order in Ω. These results provide a solution to the problem of the source of a slowly rotating Kerr black hole.

  7. Simultaneity on the Rotating Disk

    Science.gov (United States)

    Koks, Don

    2017-04-01

    The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".

  8. Microseismic sources of rotational type

    Science.gov (United States)

    Pasternak, Elena; Dyskin, Arcady; He, Junxian

    2017-04-01

    Traditionally the sources of seismic and microseismic events are related to shear fractures. The analysis of the seismic moment tensors of the sources associated with rock fracturing and hydraulic fracturing in the laboratory experiments and in-situ reveals that while there exist tensile and compressive sources, the shear sources prevail. The appearance of multiple shear sources, accompanied rock fracturing contradicts the results of the direct experiments suggesting that the rock as well as other materials not exhibiting clear plastic flow fail in tension. This contradiction is conventionally resolved by assuming the presence of multiple pre-existing shear fractures (faults or microfaults) whose sudden sliding provides microseismic events of shear type. We consider alternative mechanisms associated with bending of links between rotating particles and fragments of geomaterial and bending of bridges connecting opposite sides of hydraulic fractures. In both cases the fracturing is caused by the action of moments (or moment stresses) leading to bending, while at microscale the failure is associated with tensile microstresses leading to formation of tensile microcracks. In other words, at microscale the moment-related failure is failure in tension, as routinely observed in materials even in compression. It is easy to demonstrate that from a distance the sources of rotational type are equivalent to a standard double couple, similar to the one associated with shear fracturing. In other words what is currently interpreted as shear microseismic sources can in fact be rotational sources. This calls for new methods of detecting and interpreting microseismic sources; some possible methods are discussed.

  9. Bibliography on Hot Isostatic Pressing (HIP) Technology

    Science.gov (United States)

    1992-11-01

    Carbon Astrology Subjected to Hot Isostatic Pressing Jablonski, D. A. Mater Sci Eng 48 (2), 189-98, 1981 ( AD-D121 615) Key Words: Udimet 700...turbine components, heat treatment, microstructure tensile properties, fractography, porosity 73. Manufacture of Low Carbon Astrology Turbine Disk...Pyromet CTX- 1, Pyromet 3 i, tensile properties, creep rupture, microstructure 119 15. Manufacture of Low Carbon Astrology Turbine Disk Shapes by Hot

  10. Sealed source dismantling hot cell - startup

    Energy Technology Data Exchange (ETDEWEB)

    Dellamano, Jose Claudio; Ferreira, Robson de Jesus, E-mail: jcdellam@ipen.br, E-mail: rojefer@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Rejeitos radioativos

    2013-07-01

    Sealed radioactive sources are widely used in many applications of nuclear technology and at the end of the useful life, most sources become radioactive waste. In Brazil, this waste is received by the Institutes of the National Nuclear Energy Commission and kept under centralized storage. The Waste Management Department at the Nuclear and Energy Research Institute is the main storage center, having received around 20,000 disused sources. A hot cell was designed and constructed to manage Co-60 spent sealed sources with activity up to 3.7 10{sup 1}0 Bq and other sources with equivalent activities. In the hot cell the sources are withdraw from their original shielding and transferred to a standard shielding for further disposal off. The original shielding disassembling is made outside the hot cell and after opening, it is transferred inside the hot cell and the sealed source is removed remotely. The source is checked in relation to external contamination and its activity is checked. After this, the source is positioned in the standard shielding located inside an overpack at the bottom of the hot cell. This paper describes some pre-operational tests carried out in it, that include: opening and closing doors and locks, checking of all electrical and pneumatic controls, the original shielding movement inside the hot-cell, dose rate measurements outside the hot-cell, insertion of the sealed sources inside the activity meter chamber, transferring the sealed source to the standard shielding, movement of the overpack with the standard shielding to outside of the hot-cell and plugging of the standard shielding. (author)

  11. Gravity controlled anti-reverse rotation device

    Science.gov (United States)

    Dickinson, Robert J.; Wetherill, Todd M.

    1983-01-01

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  12. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

    2014-01-01

    and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...

  13. Rotating structures and Bryan’s effect

    CSIR Research Space (South Africa)

    Joubert, SV

    2009-05-01

    Full Text Available In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes...

  14. What Is Rotating in Exploratory Factor Analysis?

    Science.gov (United States)

    Osborne, Jason W.

    2015-01-01

    Exploratory factor analysis (EFA) is one of the most commonly-reported quantitative methodology in the social sciences, yet much of the detail regarding what happens during an EFA remains unclear. The goal of this brief technical note is to explore what "rotation" is, what exactly is rotating, and why we use rotation when performing…

  15. Visualizing Compound Rotations with Virtual Reality

    Science.gov (United States)

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  16. Rotational versions of the Crofton formula

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel

    1995-01-01

    Inspired by recent developments in stereology, rotational versions of the Crofton formula are derived. The first version involves rotation averages of Minkowski functionals. It is shown that for the special case where the Minkowski functional is surface area, the rotation average can be expressed...

  17. Measuring Stellar Rotation Periods with Kepler

    DEFF Research Database (Denmark)

    Nielsen, M. B.; Gizon, L.; Schunker, H.

    2013-01-01

    We measure rotation periods for 12151 stars in the Kepler field, based on photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample of stars enables us to study rotation periods...

  18. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  19. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  20. Spontaneous L-H transitions under marginal hot cathode biasing in the Tohoku University Heliac

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, S [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Takahashi, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Tanaka, Y [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Utoh, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Yokoyama, M [National Institute for Fusion Science, Toki (Japan); Inagaki, S [National Institute for Fusion Science, Toki (Japan); Suzuki, Y [National Institute for Fusion Science, Toki (Japan); Nishimura, K [National Institute for Fusion Science, Toki (Japan); Shinde, J [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Ogawa, M [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Iwazaki, K [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Aoyama, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Okamoto, A [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Shinto, K [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Sasao, M [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan)

    2006-05-15

    A series of hot cathode biasing experiments with marginal conditions for improved mode transition were carried out in the Tohoku University Heliac (TU-Heliac). Spontaneous transitions were observed accompanied by a delay of a few milliseconds. Transition conditions were explored over a wide operation range. The transition points can be identified clearly and easily in the operation range, because the plasma parameters changed slowly until the spontaneous transition. Although operation conditions were spread over a wide range, poloidal Mach numbers for transitions were concentrated in the range of -M{sub p} = 1-2 and normalized driving forces for poloidal rotation agreed well with the local maximum value of ion viscosity predicted by neoclassical theory. The local maximum of ion viscosity against the poloidal Mach number was found to play a key role in the L-H transition. Marginal hot cathode biasing is suitable to determine the threshold conditions for the L-H transition.

  1. Rotational parameters using linearized theory of rotational states

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, N.

    1985-03-01

    The problem of collective rotational parameters is studied using a new expansion of the good angular momentum states Vertical BarPsi/sub J/> and linearization procedure. It is shown that the approximation correctly reproduces Skyrme's formula. The approximation is applied to parametrize the value of the matrix element Vertical BarVertical Bar. The agreement with the values deduced from experimental data on the nuclei 1 /sub 64//sup 56/Gd/sub 92/ and 1 /sub 70//sup 76/Yb/sub 106/ is fairly good.

  2. Drag and lift forces on a counter-rotating cylinder in rotating flow

    NARCIS (Netherlands)

    Sun, Chao; Mullin, Tom; van Wijngaarden, L.; van Wijngaarden, L.; Lohse, Detlef

    2010-01-01

    Results are reported of an experimental investigation into the motion of a heavy cylinder free to move inside a water-filled drum rotating around its horizontal axis. The cylinder is observed to either co-rotate or, counter-intuitively, counter-rotate with respect to the rotating drum. The flow was

  3. Rotational joint assembly and method for constructing the same

    Science.gov (United States)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)

    2012-01-01

    A rotational joint assembly and a method for constructing a rotational joint assembly are provided. The rotational joint assembly includes a first rotational component, a second rotational component coupled to the first rotational component such that the second rotational component is rotatable relative to the first rotational component in first and second rotational directions about an axis, and a flexure member, being deflectable in first and second deflection directions, coupled to at least one of the first and second rotational components such that when the second rotational component is rotated relative to the first rotational component in each of the first and second rotational directions about the axis, the flexure member is deflected in the first deflection direction and exerts a force on the second rotational component opposing the rotation.

  4. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov

    2017-03-01

    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  5. Rotating optical microcavities with broken chiral symmetry

    CERN Document Server

    Sarma, Raktim; Wiersig, Jan; Cao, Hui

    2014-01-01

    We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.

  6. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  7. Hot temperatures line lists for metal hydrides

    Science.gov (United States)

    Gorman, M.; Lodi, L.; Leyland, P. pC; Hill, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ExoMol project is an ERC funded project set up with the purpose of calculating high quality theoretical molecular line list data to facilitate the emerging field of exoplanet and cool star atmospheric haracterisation [1]. Metal hydrides are important building blocks of interstellar physical chemistry. For molecular identification and characterisation in astrophysical sources, one requires accurate and complete spectroscopic data including transitional frequencies and intensities in the form of a line list. The ab initio methods offer the best opportunity for detailed theoretical studies of free diatomic metal hydrides and other simple hydride molecules. In this contribution we present progress on theoretical line lists for AlH, CrH, MgH, NiH, NaH and TiH obtained from first principles, applicable for a large range of temperatures up to 3500 K. Among the hydrides, AlH is of special interest because of a relatively high cosmic abundance of aluminium. The presence of AlH has been detected in the spectra of M-type and S-type stars as well as in sunspots (See [2] and references therein). CrH is a molecule of astrophysical interest; under the classification scheme developed by Kirkpatrick et al [3], CrH is of importance in distinguishing L type brown dwarfs. It has been proposed that theoretical line-lists of CrH and CrD could be used to facilitate a 'Deuterium test' for use in distinguishing planets, brown dwarfs and stars [5] and also it has been speculated that CrH exists in sunspots [4] but a higherquality hot-temperature line-list is needed to confirm this finding. The presence of MgH in stellar spectra is well documented through observation of the A2 ! X 2+ and B0 2+ ! X 2+ transitions. Different spectral features of MgH have been used as an indicator for the magnesium isotope abundances in the atmospheres of different stars from giants to dwarfs including the Sun, to measure the temperature of stars, surface gravity, stars' metal abundance, gravitational, as

  8. Rotating polygon instability of a swirling free surface flow.

    Science.gov (United States)

    Tophøj, L; Mougel, J; Bohr, T; Fabre, D

    2013-05-10

    We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990) and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)] in terms of resonant interactions between gravity waves on the outer part of the surface and centrifugal waves on the inner part. Our model is based on potential flow theory, linearized around a potential vortex flow with a free surface for which we show that unstable resonant states appear. Limiting our attention to the lowest order mode of each type of wave and their interaction, we obtain an analytically soluble model, which, together with estimates of the circulation based on angular momentum balance, reproduces the main features of the experimental phase diagram. The generality of our arguments implies that the instability should not be limited to flows with a rotating bottom (implying singular behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container.

  9. WASP-157b, a Transiting Hot Jupiter Observed with K2

    Science.gov (United States)

    Močnik, T.; Anderson, D. R.; Brown, D. J. A.; Collier Cameron, A.; Delrez, L.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G.

    2016-12-01

    We announce the discovery of the transiting hot Jupiter WASP-157b in a 3.95-d orbit around a V = 12.9 G2 main-sequence star. This moderately inflated planet has a Saturn-like density, with a mass of 0.57 ± 0.10 MJup and a radius of 1.06 ± 0.05 RJup. We do not detect any rotational or phase curve modulations, nor the secondary eclipse, with conservative semi-amplitude upper limits of 250 and 20 ppm, respectively.

  10. EPIC211089792 b: an aligned and inflated hot jupiter in a young visual binary

    OpenAIRE

    Santerne, A.; Hébrard, G.; Lillo-Box, J; Armstrong, D J; Barros, S. C. C.; Demangeon, O; Barrado, D.; Debackere, A.; Deleuil, M.; Mena, E. Delgado; Montalto, M.; Pollacco, D.; Osborn, H. P.; Sousa, S. G.; Abe, L.

    2016-01-01

    In the present paper we report the discovery of a new hot Jupiter, EPIC211089792 b, first detected by the Super-WASP observatory and then by the K2 space mission during its campaign 4. The planet has a period of 3.25d, a mass of 0.73 +/- 0.04 Mjup, and a radius of 1.19 +/- 0.02 Rjup. The host star is a relatively bright (V=12.5) G7 dwarf with a nearby K5V companion. Based on stellar rotation and the abundance of Lithium, we find that the system might be as young as about 450 Myr. The observat...

  11. Experiments with the hot list strategy

    Energy Technology Data Exchange (ETDEWEB)

    Wos, L.

    1997-10-01

    Experimentation strongly suggests that, for attacking deep questions and hard problems with the assistance of an automated reasoning program, the more effective paradigms rely on the retention of deduced information. A significant obstacle ordinarily presented by such a paradigm is the deduction and retention of one or more needed conclusions whose complexity sharply delays their consideration. To mitigate the severity of the cited obstacle, the author formulates and features in this report the hot list strategy. The hot list strategy asks the researcher to choose, usually from among the input statements, one or more clauses that are conjectured to play a key role for assignment completion. The chosen clauses - conjectured to merit revisiting, again and again - are placed in an input list of clauses, called the hot list. When an automated reasoning program has decided to retain a new conclusion C - before any other clause is chosen to initiate conclusion drawing - the presence of a nonempty hot list (with an appropriate assignment of the input parameter known as heat) causes each inference rule in use to be applied to C together with the appropriate number of members of the hot list. Members of the hot list are used to complete applications of inference rules and not to initiate applications. The use of the hot list strategy thus enables an automated reasoning program to briefly consider a newly retained conclusion whose complexity would otherwise prevent its use for perhaps many CPU-hours. To give evidence of the value of the strategy, the author focuses on four contexts: (1) dramatically reducing the CPU time required to reach a desired goal; (2) finding a proof of a theorem that had previously resisted all but the more inventive automated attempts; (3) discovering a proof that is more elegant than previously known; and (4) answering a question that had steadfastly eluded researchers relying on an automated reasoning program.

  12. THE BORROWER CHARACTERISTICS IN HOT EQUITY MARKETS

    Directory of Open Access Journals (Sweden)

    HALIL DINCER KAYA

    2017-06-01

    Full Text Available In this study, I examine the characteristics of U.S. corporate borrowers (public debt, private placement, and syndicated loan firms in HOT versus COLD equity markets. My main objective is to see the characteristics of firms that choose debt financing even when the equity market is HOT. HOT equity markets are defined as the top twenty percent of the months in terms of the de-trended number of equity offerings. I find that the HOT equity market borrowers generally have higher market-to-book ratios compared to the COLD market borrowers. Also, in HOT equity markets, the public debt firms (i.e. the corporate bond issuers tend to have fewer tangible assets, the private placement firms tend to be smaller and highly levered, and the syndicated loan firms tend to be smaller, more profitable, and less levered compared to the COLD market firms. When I look at the number of transactions in each market, I find that when the equity market is active (i.e. HOT, the syndicated loan market is even more active. During these periods, the public debt market is also active (although not as much as the equity or the syndicated loan markets. When I look at the sizes of the transactions in each market, I find that the private placements tend to be significantly larger in HOT markets compared to COLD markets. I conclude that while the equity, the public debt, and the syndicated loan markets move together in terms of market activity, the equity market and the private placement markets move together in terms of the size of the transaction.

  13. Omni rotational driving and steering wheel

    DEFF Research Database (Denmark)

    2008-01-01

    Abstract of WO 2008138346  (A1) There is disclosed a driving and steering wheel (112) module (102) with an omni rotational part (106), the module comprising a flange part (104) fixable on a robot, and the omni rotational part (106) comprises an upper omni rotational part (105) and a driving...... and steering wheel part (108), where the omni rotational part (106) is provided for infinite rotation relative to the flange part (104) by both a drive motor (110) and a steering motor (114) being positionable on the flange part (104), and the driving and steering wheel part (108) is suspended from the upper...... omni rotational part (105) with a suspension (116) such that wheel part (108) can move relatively to the upper omni rotational part (105) in a suspension direction (118), and a reduction gear (120) for gearing the drive torque is provided in the wheel part (108) in order e.g. to assure traction...

  14. Measurement of fluctuations in the supersonic poloidal flow driven by a hot cathode

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Takahashi, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Utoh, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Shinde, J [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Ogawa, M [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Iwazaki, K [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Aoyama, H [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Okamoto, A [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Shinto, K [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Kitajima, S [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan); Yokoyama, M [National Institute for Fusion Science, Toki (Japan); Inagaki, S [National Institute for Fusion Science, Toki (Japan); Suzuki, Y [National Institute for Fusion Science, Toki (Japan); Nishimura, K [National Institute for Fusion Science, Toki (Japan); Sasao, M [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan)

    2006-05-15

    The density and potential fluctuations were measured in hot-cathode biasing plasma at the Tohoku University Heliac. In the improved mode, high-frequency fluctuations (>100 kHz) appeared in the density signal. On the other hand, low-frequency fluctuations (<100 kHz) in the density and potential signals were suppressed. The characteristics of high-frequency fluctuation were compared with three kinds of instability, and they were consistent with those of the flute instability driven by the supersonic poloidal rotation. The suppression of low-frequency fluctuations in improved mode is considered the effect of E x B poloidal rotation or its shear. The profile of the anomalous particle flux was estimated by analysing the low-frequency fluctuation signals. The flux decreased in the improved mode in most of the region, although the decrease in flux was small near the rational surface (n/m = 5/3)

  15. Collisional disruptions of rotating targets

    Science.gov (United States)

    Ševeček, Pavel; Broz, Miroslav

    2017-10-01

    Collisions are key processes in the evolution of the Main Asteroid Belt and impact events - i.e. target fragmentation and gravitational reaccumulation - are commonly studied by numerical simulations, namely by SPH and N-body methods. In our work, we extend the previous studies by assuming rotating targets and we study the dependence of resulting size-distributions on the pre-impact rotation of the target. To obtain stable initial conditions, it is also necessary to include the self-gravity already in the fragmentation phase which was previously neglected.To tackle this problem, we developed an SPH code, accelerated by SSE/AVX instruction sets and parallelized. The code solves the standard set of hydrodynamic equations, using the Tillotson equation of state, von Mises criterion for plastic yielding and scalar Grady-Kipp model for fragmentation. We further modified the velocity gradient by a correction tensor (Schäfer et al. 2007) to ensure a first-order conservation of the total angular momentum. As the intact target is a spherical body, its gravity can be approximated by a potential of a homogeneous sphere, making it easy to set up initial conditions. This is however infeasible for later stages of the disruption; to this point, we included the Barnes-Hut algorithm to compute the gravitational accelerations, using a multipole expansion of distant particles up to hexadecapole order.We tested the code carefully, comparing the results to our previous computations obtained with the SPH5 code (Benz and Asphaug 1994). Finally, we ran a set of simulations and we discuss the difference between the synthetic families created by rotating and static targets.

  16. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions...

  17. Optical wheel-rotation sensor

    Science.gov (United States)

    Veeser, Lynn R.; Rodriguez, Patrick A.; Forman, Peter; Deeter, Merritt N.

    1994-09-01

    We describe a fiber-optic rotation sensor being developed for anti-lock braking systems. The basis of the sensor is the magneto-optic detection of the magnetic fields generated by a wheel of alternating magnetized magnets fixed to a wheel of the automobile. Highly sensitive iron garnet crystals serve as the magneto-optic sensing elements. For films with perpendicularly- magnetized domains, the domain structure produces diffraction which is magnetic-field dependent. Exploitation of this effect permits the construction of magneto-optic magnetic field sensors requiring no polarization elements or lenses.

  18. Generalization of stochastic visuomotor rotations.

    Directory of Open Access Journals (Sweden)

    Hugo L Fernandes

    Full Text Available Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many theories of neural representation. However, little is known about how uncertainty, resulting from variability in the environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects learn, the perturbation generalizes independently of uncertainty.

  19. Parallel computation of rotating flows

    DEFF Research Database (Denmark)

    Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær

    1999-01-01

    This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process....... In the first step, the vorticity at the new time level is computed using the velocity at the previous time level. In the second step, the velocity at the new time level is computed using the new vorticity. We discuss here the second part which is by far the most time‐consuming. The numerical problem...

  20. Generalization of Stochastic Visuomotor Rotations

    Science.gov (United States)

    Fernandes, Hugo L.; Stevenson, Ian H.; Kording, Konrad P.

    2012-01-01

    Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many theories of neural representation. However, little is known about how uncertainty, resulting from variability in the environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects learn, the perturbation generalizes independently of uncertainty. PMID:22916198

  1. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria

    2013-01-01

    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  2. Rotational spectroscopy and observational astronomy of prebiotic molecules

    Science.gov (United States)

    Widicus Weaver, Susanna Leigh

    It is now widely believed that prebiotic molecules were delivered to the early Earth by planetesimals and their associated interplanetary dust particles. Yet the formation pathways for these molecules are not clear. Amino acids and sugars have been found in carbonaceous chondrites, but only much simpler species have been detected in the interstellar medium (ISM). Prebiotic organics could have formed in the ISM and been directly incorporated into planetesimals, or simpler species could have: formed in the ISM and then been incorporated into planetesimals, undergone further processing, and been delivered to Earth. Limits on interstellar chemistry must therefore be established through observational astronomy before potential prebiotic formation pathways can be assessed. These observations require laboratory spectroscopic investigation of the species of interest. This thesis is an interdisciplinary study involving laboratory rotational spectroscopy and astronomical observations of several key prebiotic molecules. The laboratory work has focused on obtaining the rotational spectra of the simplest three-carbon ketose sugar, 1,3-dihydroxyacetone, and its structural isomers methyl glycolate and dimethyl carbonate, as well as aminoethanol, the predicted interstellar precursor to alanine. The pure rotational spectral analysis of the low-lying torsional states of the simplest a-hydroxy aldehyde, glycolaldehyde, has also been completed. The original Balle-Flygare Fourier transform microwave spectrometer was used to obtain the microwave spectra, while both the Jet Propulsion Laboratory and Caltech direct absorption flow cell spectrometers were used for additional direct absorption millimeter and submillimeter studies. The results of these laboratory experiments were used to guide observational searches with the Caltech Submillimeter Observatory, the Owens Valley Millimeter Array; and the Green Bank Telascope toward the hot core sources Sgr B2(N-LMH), Orion Hot Core

  3. Metamaterial perfect absorber based hot electron photodetection.

    Science.gov (United States)

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems.

  4. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew

    2014-05-01

    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  5. Rotational disorder in lithium borohydride

    Directory of Open Access Journals (Sweden)

    Remhof Arndt

    2015-01-01

    Full Text Available LiBH4 has been discussed as a promising hydrogen storage material and as a solid-state electrolyte in lithium-ion batteries. It contains 18.5 wt% hydrogen and undergoes a structural phase transition at 381 K which is associated with a large increase in rotational disorder of the [BH4]− anion and the increase of [Li]+ conductivity by three orders of magnitude. We investigated the [BH4]− anion dynamic in bulk LiBH4, in LiBH4-LiI solid solutions and in nano-confined LiBH4 by quasielastic neutron scattering, complemented by DFT calculations. In all cases the H-dynamics is dominated by thermally activated rotational jumps of the [BH4]− anion in the terahertz range. The addition of LiI as well as nano-confinement favours the disordered high temperature phase and lowers the phase transition below room temperatures. The results are discussed on the basis of first principles calculations and in relation to ionic conductivity of [Li]+.

  6. Metalloproteases and rotator cuff disease.

    Science.gov (United States)

    Del Buono, Angelo; Oliva, Francesco; Longo, Umile Giuseppe; Rodeo, Scott A; Orchard, John; Denaro, Vincenzo; Maffulli, Nicola

    2012-02-01

    The molecular changes occurring in rotator cuff tears are still unknown, but much attention has been paid to better understand the role of matrix metalloproteinases (MMP) in the development of tendinopathy. These are potent enzymes that, once activated, can completely degrade all components of the connective tissue, modify the extracellular matrix (ECM), and mediatethe development of painful tendinopathy and tendon rupture. To control the local activity of activated proteinases, the same cells produce tissue inhibitors of metalloproteinases (TIMP) that bind to the enzymes and prevent degradation. The balance between the activities of MMPs and TIMPs regulates tendon remodeling, whereas an imbalance produces a collagen dis-regulation and disturbances intendons. ADAMs (a disintegrin and metalloproteinase) are cell membrane-linked enzymes with proteolytic and cell signaling functions. ADAMTSs (ADAM with thrombospondin motifs) are secreted into the circulation, and constitute a heterogenous family of proteases with both anabolic and catabolic functions. Biologic modulation of endogenous MMP activity to basal levels may reduce pathologic tissue degradation and favorably influence healing after rotator cuff repair. Further studies are needed to better define the mechanism of action, and whether these new strategies are safe and effective in larger models. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  7. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  8. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons

    2016-09-01

    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  9. Differentiating the differential rotation effect.

    Science.gov (United States)

    Boyarskaya, Evgenia; Hecht, Heiko

    2012-07-01

    As an observer views a picture from different viewing angles, objects in the picture appear to maintain their orientation relative to the observer. For instance, the eyes of a portrait appear to follow the observer as he or she views the image from different angles. We have explored this rotation effect, often called the Mona Lisa effect. We report three experiments that used portrait photographs to test variations of the Mona Lisa effect. The first experiment introduced picture displacements relative to the observer in directions beyond the horizontal plane. The Mona Lisa effect remained robust for vertical and/or diagonal observer displacements. The experiment also included conditions in which the portrait had averted gaze directions. An interaction between picture position relative to the observer and gaze direction was found. The second experiment followed up on very pronounced individual differences, suggesting that the Mona Lisa effect is even stronger than it should be for half of all observers (over-rotators). These individual differences do not correlate with any of the standard personality dimensions (Big Five) or with spatial intelligence. In the third experiment, we extended the experiment to virtual 3D heads using the same gaze directions and picture displacements as for the 2D portrait faces. Besides the picture displacements relative to the observer, we also added observer displacements relative to the picture. 3D pictures showed the Mona Lisa effect, but to a smaller extent than did 2D pictures. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. A Case of Hot Foot Syndrome

    Directory of Open Access Journals (Sweden)

    Mutlu Çayırlı

    2012-09-01

    Full Text Available Hot foot syndrome (HFS is a benign, self-limited disorder, which is apparently caused by Pseudomonas aeruginosa infection. The disease is characterized by the acute onset in children with painful plantar nodules which generally does not require antibiotic therapy. Particularly, the mechanically stressed areas of the foot are affected after contact with contaminated water from saunas, swimming pools or hot tubs. HFS is a potentially important public health hazard that may causes outbreaks. In search of literature we detected three published reports to date of outbreaks of pseudomonas hot foot syndrome associated with the use of community whirlpools. Here we present a four-year old girl presented with painful plantar erythematous nodules localized in heels that developed one day after contacting with contaminated water from bath tub. According to data of literature we able to reach, our case is the first HFS case presented in Turkey. (Turk J Dermatol 2012; 6: 111-3

  12. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F

    2014-01-01

    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized...... to the perpetuation of negative emotional states in MDD. Limited success in the identification of susceptibility genes in MDD has led to great research interest in identifying vulnerability biomarkers or endophenotypes. Emerging evidence points to the persistence of 'hot' cognition dysfunction during remission...... databases in May 2014 augmented by hand searches of reference lists. We included original articles in which MDD participants (or their healthy first-dregree relatives) and a healthy control group were compared on standard measures of emotional processing or reward/ punishment processing as well...

  13. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  14. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  15. Seeded hot dark matter models with inflation

    Science.gov (United States)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  16. Kepler constraints on planets near hot Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  17. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  18. Are hot-spots occluded from water?

    Science.gov (United States)

    Moreira, Irina Sousa; Ramos, Rui Miguel; Martins, Joao Miguel; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2014-01-01

    Protein-protein interactions are the basis of many biological processes and are governed by focused regions with high binding affinities, the warm- and hot-spots. It was proposed that these regions are surrounded by areas with higher packing density leading to solvent exclusion around them - "the O-ring theory." This important inference still lacks sufficient demonstration. We have used Molecular Dynamics (MD) simulations to investigate the validity of the O-ring theory in the context of the conformational flexibility of the proteins, which is critical for function, in general, and for interaction with water, in particular. The MD results were analyzed for a variety of solvent-accessible surface area (SASA) features, radial distribution functions (RDFs), protein-water distances, and water residence times. The measurement of the average solvent-accessible surface area features for the warm- and hot-spots and the null-spots, as well as data for corresponding RDFs, identify distinct properties for these two sets of residues. Warm- and hot-spots are found to be occluded from the solvent. However, it has to be borne in mind that water-mediated interactions have significant power to construct an extensive and strongly bonded interface. We observed that warm- and hot-spots tend to form hydrogen bond (H-bond) networks with water molecules that have an occupancy around 90%. This study provides strong evidence in support of the O-ring theory and the results show that hot-spots are indeed protected from the bulk solvent. Nevertheless, the warm- and hot-spots still make water-mediated contacts, which are also important for protein-protein binding.

  19. An integrated modular hot gas conditioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Abatzoglou, N.; Bangala, D.; Chornet, E. [Kemestrie Inc., Sherbrooke, Quebec (Canada)

    1999-07-01

    Hot gas conditioning is considered the most scientific and technological challenge on the road towards commercialization of large biomass and waste gasification units. The modular hot gas conditioning system presented in this paper is designed to be integrated into any gasification unit regardless of feedstock type and operation pressure. It comprises a mobile granular bed filtration system and an in-series multi-tubular fixed-bed downdraft steam catalytic reformer. In this work we discuss the concept, the design, the methodology and our results. (author)

  20. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F

    2014-01-01

    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized...... as systematic reviews and meta-analyses. A total of 116 articles met the inclusion criteria of which 97 were original studies. Negative biases in perception, attention and memory for emotional information, and aberrant reward/punishment processing occur in MDD. Imbalanced responses to negative stimuli...

  1. Thermal tides on a hot Jupiter

    Directory of Open Access Journals (Sweden)

    Hsieh H.-F.

    2011-07-01

    Full Text Available Following the linear analysis laid out by Gu & Ogilvie 2009 (hereafter GO09, we investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. Besides the internal and Rossby waves considered by GO09, we study the Kelvin waves excited by the diurnal Fourier harmonic of the prograde stellar irradiation. We also present a 2-dimensional plot of internal waves excited by the semi-diurnal component of the stellar irradiation and postulate that thermal bulges may arise in a hot Jupiter. Whether our postulation is valid and is consistent with the recent results from Arras & Socrates (2009b requires further investigation.

  2. Hot-carrier effects in MOS devices

    CERN Document Server

    Takeda, Eiji; Miura-Hamada, Akemi

    1995-01-01

    The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world.This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work

  3. Hot dry rock venture risks investigation:

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  4. Regional warming of hot extremes accelerated by surface energy fluxes

    Science.gov (United States)

    Donat, M. G.; Pitman, A. J.; Seneviratne, S. I.

    2017-07-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hot spots of accelerated warming of model-simulated hot extremes in Europe, North America, South America, and Southeast China. These hot spots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most Coupled Model Intercomparison Project Phase 5 models. Exploring the conditions on the specific day when the hot extreme occurs demonstrates that the hot spots are explained by changes in the surface energy fluxes consistent with drying soils. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a reevaluation of how climate models resolve the relevant terrestrial processes.

  5. Rotating Polygons on a Fluid Surface

    DEFF Research Database (Denmark)

    Bohr, Tomas; Jansson, Thomas; Haspang, Martin

    The free surface of a rotating fluid will, due to the centrifugal force, be pressed radially outward. If the fluid rotates as a rigid body in a cylindrical container the surface will assume a parabolic shape. If, however, the flow is driven by rotating the bottom plate, the axial symmetry can bre...... and R. Miraghaie, ”Symmetry breaking in free-surface cylinder flows”, J. Fluid Mech., 502, 99 (2004)). The polygons occur at much larger Reynolds numbers, for water around 500.000. Correspondingly, the dependence on viscosity is rather small.......The free surface of a rotating fluid will, due to the centrifugal force, be pressed radially outward. If the fluid rotates as a rigid body in a cylindrical container the surface will assume a parabolic shape. If, however, the flow is driven by rotating the bottom plate, the axial symmetry can break...

  6. Contained Modes In Mirrors With Sheared Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  7. Capacity for visual features in mental rotation

    Science.gov (United States)

    Xu, Yangqing; Franconeri, Steven L.

    2015-01-01

    Although mental rotation is a core component of scientific reasoning, we still know little about its underlying mechanism. For instance - how much visual information can we rotate at once? Participants rotated a simple multi-part shape, requiring them to maintain attachments between features and moving parts. The capacity of this aspect of mental rotation was strikingly low – only one feature could remain attached to one part. Behavioral and eyetracking data showed that this single feature remained ‘glued’ via a singular focus of attention, typically on the object’s top. We argue that the architecture of the human visual system is not suited for keeping multiple features attached to multiple parts during mental rotation. Such measurement of the capacity limits may prove to be a critical step in dissecting the suite of visuospatial tools involved in mental rotation, leading to insights for improvement of pedagogy in science education contexts. PMID:26174781

  8. Rotations with Rodrigues' vector

    Energy Technology Data Exchange (ETDEWEB)

    Pina, E, E-mail: pge@xanum.uam.mx [Prof. Eugenio Mendez Docurro de la, Escuela Superior de Fisica y Matematicas del IPN, Zacatenco 07738, Mexico DF (Mexico)

    2011-09-15

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  9. Physics, Formation and Evolution of Rotating Stars

    CERN Document Server

    Maeder, André

    2009-01-01

    Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...

  10. Giant Faraday Rotation in Mesogenic Organic Molecules

    OpenAIRE

    Vandendriessche, Stefaan; Cleuvenbergen, Stijn,; Willot, Pieter; Hennrich, Gunther; Srebro, Monika; V. K. Valev, Ventsislav; Koeckelberghs, Guy; Clays, Koen; Autschbach, Jochen; Verbiest, Thierry

    2013-01-01

    Faraday rotation, the rotation of the polarization of light due to a magnetic field in the direction of propagation of the light, is used in applications ranging from quantum memory to the detection of biomagnetic fields. For these applications large Faraday rotation is necessary, but absorption of light is detrimental. In search of these properties, we have characterized the Verdet constant of a so far unexplored class of mesogenic organic molecules. We report their spectra and provide an in...

  11. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  12. Spontaneous Toroidal Rotation in Tokamaks

    Science.gov (United States)

    Haines, Malcolm

    2007-11-01

    When two-fluid MHD theory of stability is employed the resulting growth rates are complex, and the perturbing magnetic fields move with a velocity that depends both on the components of the electron drift and heat flux perpendicular to the equilibrium magnetic field and on the diamagnetic velocity. On diffusing into a resistive wall a drag force is exerted on the wall which is proportional to the square-root of the velocity of the perturbing fields. The equal and opposite force or torque will be on the plasma, centred at the singular rational surface for each mode[1]. For typical experimental conditions this leads to a spontaneous, or intrinsic toroidal rotation of 20km/s occurring in a few milliseconds for perturbing magnetic fields of 0.0025tesla. The induced poloidal rotation by this mechanism is generally much larger, but there is considerable poloidal damping due to trapped particles on the ion-ion collision time- scale[2]. Furthermore poloidal angular momentum is in general not conserved for an isolated plasma, and any up-down asymmetry can act as a source or sink[3]; for example, Pfirsch-Schluter diffusion [3 damping by trapped particles[2] and the Ware pinch[4]. [1] J.B.Taylor, Phys.Rev.Lett. 91, 115002 (2003). [2] R.C.Morris, M.G.Haines and R.J.Hastie, Phys.Plasmas 3, 4513 (1996). [3] M.G.Haines, Phys.Rev.Lett. 25, 1480 (1970). [4] M.G.Haines and P.Martin, Phys.Plasmas 3, 4536 (1996).

  13. Confirmation of bistable stellar differential rotation profiles

    Science.gov (United States)

    Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.

    2014-10-01

    Context. Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow. Aims: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive (Λ effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. To avoid this problem while still representing the same rotational influence on the flow as in the Sun, we increase the luminosity by a factor of roughly 106 and the rotation rate by a factor of 102. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. The anti-solar profiles are found to be more stable against perturbations in the level of convective turbulent velocity than the solar-type solutions. Conclusions: Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main

  14. Peculiar rotation of electron vortex beams.

    Science.gov (United States)

    Schachinger, T; Löffler, S; Stöger-Pollach, M; Schattschneider, P

    2015-11-01

    Standard electron optics predicts Larmor image rotation in the magnetic lens field of a TEM. Introducing the possibility to produce electron vortex beams with quantized orbital angular momentum brought up the question of their rotational dynamics in the presence of a magnetic field. Recently, it has been shown that electron vortex beams can be prepared as free electron Landau states showing peculiar rotational dynamics, including no and cyclotron (double-Larmor) rotation. Additionally very fast Gouy rotation of electron vortex beams has been observed. In this work a model is developed which reveals that the rotational dynamics of electron vortices are a combination of slow Larmor and fast Gouy rotations and that the Landau states naturally occur in the transition region in between the two regimes. This more general picture is confirmed by experimental data showing an extended set of peculiar rotations, including no, cyclotron, Larmor and rapid Gouy rotations all present in one single convergent electron vortex beam. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Onset of chaos in rapidly rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, S. (Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, TN (USA) Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, S-22100 Lund (Sweden))

    1990-06-25

    The onset of chaos is investigated for excited, rapidly rotating nuclei, utilizing a schematic two-body residual interaction added to the cranked Nilsson Hamiltonian. Dynamical effects at various degrees of mixing between regularity and chaos are studied in terms of fragmentation of the collective rotational strength. It is found that the onset of chaos is connected to a saturation of the average standard deviation of the rotational strength function. Still, the rotational-damping width may exhibit motional narrowing in the chaotic regime.

  16. Polygons on a rotating fluid surface

    DEFF Research Database (Denmark)

    Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.

    2006-01-01

    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon...... rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...

  17. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah

    2017-08-11

    Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.

  18. Disentangling rotational velocity distribution of stars

    Science.gov (United States)

    Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra

    2017-11-01

    Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.

  19. Too hot to handle? Hot water bottle injuries in Sydney, Australia.

    Science.gov (United States)

    Goltsman, David; Li, Zhe; Bruce, Eleanor; Darton, Anne; Thornbury, Kelly; Maitz, Peter K M; Kennedy, Peter

    2015-06-01

    Hot water bottles are frequently used in the community as a source of warmth, and to alleviate a number of medical symptoms. In Australia it is believed that over 500,000 water bottles are sold annually (Whittam et al., 2010). This simple treatment is known to result in significant burns and has led to mandatory labeling requirements on hot water bottles in Australia. Despite this, few published studies have documented the incidence and nature of burns sustained through their use. This study aimed to assess the incidence, causation and outcome of hot water bottle burns presenting to a major burn trauma unit in Sydney (Australia). The New South Wales Agency for Clinical Innovation Statewide Burn Injury database and admission data to the Concord Hospital Burns Injury Unit (major treatment unit) provided information on hot water bottle burns occurring between 2005 and 2013. Demographic details, cause of burn, burn depth, total burn surface area (%TBSA), and outcome of burn were ascertained. In order to assess the burn potential of hot water bottles, a separate study examined the thermic properties of hot water bottles in 'real life' scenarios. There were 155 hot water bottle burn presentations resulting in 41 admissions and 24 grafts. The majority of patients were female, and most burns resulted from appliance rupture when used for local pain relief. Patients had an average TBSA of 2.4%. Burns patients were slightly more likely to reside in areas with greater socio-economic disadvantage. In real life scenarios, hot water bottles were shown to retain heat over 50°C for at least 3 hours (h). Hot water bottles are a source of common and preventable burns in the community, with women being more at risk than men. Hot water bottles may retain harmful levels of heat over an extended period of time. Additional labeling requirements pertaining to the longevity of hot water bottles and their use among people especially at risk of burns (i.e. children, the elderly, patients who

  20. Hot-spot tectonics on Io

    Science.gov (United States)

    Mcewen, A. S.

    1985-01-01

    The thesis is that extensional tectonics and low-angle detachment faults probably occur on Io in association with the hot spots. These processes may occur on a much shorter timescale on Ion than on Earth, so that Io could be a natural laboratory for the study of thermotectonics. Furthermore, studies of heat and detachment in crustal extension on Earth and the other terresrial planets (especially Venus and Mars) may provide analogs to processes on Io. The geology of Io is dominated by volcanism and hot spots, most likely the result of tidal heating. Hot spots cover 1 to 2% of Io's surface, radiating at temperatures typically from 200 to 400 K, and occasionally up to 700K. Heat loss from the largest hot spots on Io, such as Loki Patera, is about 300 times the heat loss from Yellowstone, so a tremendous quantity of energy is available for volcanic and tectonic work. Active volcanism on Io results in a resurfacing rate as high as 10 cm per year, yet many structural features are apparent on the surface. Therefore, the tectonics must be highly active.

  1. Hot flushes in breast cancer patients

    NARCIS (Netherlands)

    Mom, CH; Buijs, C; Willemse, PHB; Mourits, MJE; de Vries, EGE

    Objective : A literature search was conducted to gather information concerning the pathophysiologic mechanisms leading to hot flushes, their prevelence and severity in breast cancer patients, their influence on quality of life, and the best therapeutic option. Methods: Relevant studies in English

  2. Viscosity: From air to hot nuclei

    Indian Academy of Sciences (India)

    2014-10-09

    Oct 9, 2014 ... After a brief review of the history of viscosity from classical to quantal fluids, a discussion of how the shear viscosity of a finite hot nucleus is calculated directly from the width and energy of the giant dipole resonance (GDR) of the nucleus is given in this paper. The ratio / with s being the entropy volume ...

  3. Hot-dry-rock geothermal resource 1980

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  4. Solar-powered hot-water system

    Science.gov (United States)

    Collins, E. R.

    1979-01-01

    Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

  5. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  6. Esophageal thermal injury by hot adlay tea.

    Science.gov (United States)

    Go, Hoon; Yang, Hyeon Woong; Jung, Sung Hee; Park, Young A; Lee, Jung Yun; Kim, Sae Hee; Lim, Sin Hyung

    2007-03-01

    Reversible thermal injury to the esophagus as the result of drinking hot liquids has been reported to generate alternating white and red linear mucosal bands, somewhat reminiscent of a candy cane. This phenomenon is associated with chest pain, dysphagia, odynophagia, and epigastric pain. Here, we report a case of thermal injury to the esophageal and oral cavity due to the drinking of hot tea, including odynophagia and dysphagia. A 69-year-old man was referred due to a difficulty in swallowing which had begun a week prior to referral. The patient, at the time of admission, was unable to swallow even liquids. He had recently suffered from hiccups, and had consumed five cups of hot adlay tea one week prior to admission, as a folk remedy for the hiccups. Upon physical examination, the patient's oral cavity evidenced mucosal erosion, hyperemia, and mucosa covered by a whitish pseudomembrane. Nonspecific findings were detected on the laboratory and radiological exams. Upper endoscopy revealed diffuse hyperemia, and erosions with thick and whitish pseudomembraneous mucosa on the entire esophagus. The stomach and duodenum appeared normal. We diagnosed the patient with thermal esophageal injury inflicted by the hot tea. He was treated with pantoprazole, 40 mg/day, for 14 days, and evidenced significant clinical and endoscopic improvement.

  7. Hot topics in flavor physics at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Soon Yung; /Carnegie Mellon U.

    2005-01-01

    Hot topics in flavor physics at CDF are reviewed. Selected results of top, beauty, charm physics and exotic states in about 200 pb{sup -1} data collected by the CDF II detector in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron are presented.

  8. Hot Flashes amd Night Sweats (PDQ)

    Science.gov (United States)

    ... that it is only slightly better than a placebo (pill that has no effect). Most studies of soy and black cohosh show they are no better than a placebo in reducing hot flashes. Soy contains estrogen -like substances; the effect of soy on the risk of breast cancer ...

  9. Evaluation of hot in-place recycle.

    Science.gov (United States)

    2010-06-01

    This report documents the construction of hot in-place recycled (HIPR) pavement on SR 542. : HIPR is a process by which rehabilitation of the existing HMA pavement occurs on site in one : operation. HIPR project selection, mix design, construction an...

  10. Advances in hot gas filtration technology

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.

    The past decade has seen the introduction of new filter media specifically designed for 'hot-gas' filtration. These media are available as woven or knitted fabrics and as non-wovens, i.e. needled felts. Needlefelted fabrics have proven so highly successful in the dedusting of hot gases that they are widely used nowadays in this new and necessary technology. Hot-gas filtration offers advantages in, for example, the saving or recycling of energy, the elimination of the cooling process, and the short-circuiting of process steps. This paper gives a survey of the types of textile fibres available for hot-gas filtration from the more recently developed organic fibres to refractory fibres. It describes, compares and contrasts their salient properties and lists the uses to which they may be put. It concentrates on such fibres which are generally referred to as 'high performance materials', since they are expected to provide satisfactory performance under extreme conditions of temperature, chemical environment and mechanical stress. It touches on filtration theory governing the collection mechanism. 9 refs., 7 figs., 3 tabs.

  11. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  12. "Hot Tub Rash" and "Swimmer's Ear" (Pseudomonas)

    Science.gov (United States)

    ... Hot Tub Rash > Remove swimsuits and shower with soap after getting out of the water. > Clean swimsuits after getting out of the water. ... in locations that have been closed because of pollution. Pseudomonas can multiply quickly when water disinfectant levels drop, so testing your pool or ...

  13. Cycling the Hot CNO: A Teaching Methodology

    Science.gov (United States)

    Frost-Schenk, J. W.; Diget, C. Aa.; Bentley, M. A.; Tuff, A.

    2018-01-01

    An interactive activity to teach the hot Carbon, Nitrogen and Oxygen (HCNO) cycle is proposed. Justification for why the HCNO cycle is important is included via an example of x-ray bursts. The activity allows teaching and demonstration of half-life, nuclear isotopes, nuclear reactions, protons and a-particles, and catalytic processes. Whilst the…

  14. Rotating With Rotated Text: A Natural Behavior Approach to Investigating Cognitive Offloading

    National Research Council Canada - National Science Library

    Risko, Evan F; Medimorec, Srdan; Chisholm, Joseph; Kingstone, Alan

    2014-01-01

    ...) as a strategy in letter naming and reading stimuli that are upright or rotated. We demonstrate that the frequency of this natural behavior is modulated by the cost of stimulus rotation on performance...

  15. Geothermal Exploration in Hot Springs, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  16. NEW WAY OF DEFINITION OF OPTIMUM FREQUENCY ROTATION THE CANS AT ROTATIONAL THERMAL STERILIZATION

    Directory of Open Access Journals (Sweden)

    M. M. Achmedov

    2014-01-01

    Full Text Available In work results of researches on development of a new way of determination of optimum frequency of rotation of cans at rotational sterilization are presented.Optimum frequencies of rotation for various product range are specified in various banks. It is established that the optimum speed of rotation of cans can be determined on the maximum speed of heating of a product in the least warmed up point.

  17. Modeling of Prosthetic Limb Rotation Control by Sensing Rotation of Residual Arm Bone

    OpenAIRE

    Li, Guanglin; Kuiken, Todd A.

    2008-01-01

    We proposed a new approach to improve the control of prosthetic arm rotation in amputees. Arm rotation is sensed by implanting a small permanent magnet into the distal end of the residual bone, which produces a magnetic field. The position of the bone rotation can be derived from magnetic field distribution detected with magnetic sensors on the arm surface, and then conveyed to the prosthesis controller to manipulate the rotation of the prosthesis. Proprioception remains intact for residual l...

  18. WESF hot cells waste minimization criteria hot cells window seals evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Walterskirchen, K.M.

    1997-03-31

    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years.

  19. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Costache, Marius V; Valenzuela, Sergio O

    2015-06-10

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  20. Laboratory spectra of hot molecules: Data needs for hot super-Earth exoplanets

    Science.gov (United States)

    Tennyson, Jonathan; Yurchenko, Sergei N.

    2017-09-01

    The majority of stars are now thought to support exoplanets. Many of those exoplanets discovered thus far are categorized as rocky objects with an atmosphere. Most of these objects are however hot due to their short orbital period. Models suggest that water is the dominant species in their atmospheres. The hot temperatures are expected to turn these atmospheres into a (high pressure) steam bath containing remains of melted rock. The spectroscopy of these hot rocky objects will be very different from that of cooler objects or hot gas giants. Molecules suggested to be important for the spectroscopy of these objects are reviewed together with the current status of the corresponding spectroscopic data. Perspectives of building a comprehensive database of linelist/cross sections applicable for atmospheric models of rocky super-Earths as part of the ExoMol project are discussed. The quantum-mechanical approaches used in linelist productions and their challenges are summarized.

  1. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... Share this! Home » Health Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency ... the overwhelming dangers associated with leaving anyone, especially children in hot, unventilated vehicles during the summer. Children ...

  2. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... hot outside for it to be brutally hot inside the car. Be especially careful if you are ... act like a greenhouse, trapping sunlight and heat inside with no ventilation. A car parked in direct ...

  3. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... of Emergency Phycisians Toggle navigation Emergency 101 Is it an Emergency? Emergency Care or Urgent Care? When ... being left alone in a hot vehicle. “Putting it bluntly, leaving your child in a hot car ...

  4. Cancer treatment: dealing with hot flashes and night sweats

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000826.htm Cancer treatment: dealing with hot flashes and night sweats To use ... stress reduction. Learning how to decrease stress and anxiety may help relieve hot flashes in some people. ...

  5. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... Health Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency physicians are warning ... it bluntly, leaving your child in a hot car is like leaving your child in a lit ...

  6. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... each year as a direct result of being left alone in a hot vehicle. “Putting it bluntly, ... reach from children. If you see a child left alone in a hot vehicle, call the police. ...

  7. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency physicians are warning the ... the country die each year as a direct result of being left alone in a hot vehicle. “ ...

  8. Dynamic rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Yang, Wenjun [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Wu, Xiaodong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  9. Regolith on Super Fast Rotators

    Science.gov (United States)

    Sanchez Lana, Diego Paul; Scheeres, Daniel J.

    2017-10-01

    The current understanding of small asteroids in the Solar System is that they are gravitational aggregates held together by gravitational, cohesive and adhesive forces. Results from the Hayabusa mission to Itokawa along with in situ, thermal and radar observations of asteroids have shown that they can be covered in a size distribution of grains that spans from microns to tens of meters. Before the Hayabusa mission, it was generally thought that smaller asteroids would likely be “regolith-free,” due to impact seismic shaking removing the loose covering. Given the regolith-rich surface of that body, it is now an open question whether even smaller bodies, down to a few meters in size, could also retain regolith covering. The question is especially compelling for the small-fast rotators, whose surface centripetal accelerations exceed their gravitational attraction. When the physical theory of cohesion is considered, it becomes possible for small-fast rotators to retain regolith.We use a Soft-Sphere discrete element method (SSDEM) code to simulate a longitudinal slice of a spherical monolith covered by cohesive regolith. The simulations are carried out in the body frame. Tensile strength is varied to span the observed strength of asteroids and spin rate is elevated in small steps until the majority of regolith is removed from the surface. The simulations show that under an increasing spin rate (such as due to the YORP effect), the regolith covering on an otherwise monolithic asteroid is preferentially lost across certain regions of the body. In general, regolith from the mid latitudes is the first to fail at high spin rates. This failure happens either by regolith flowing towards the equator or by detachment of large coherent chunks of material depending on the tensile strength of the regolith. Regolith from the equator region fails next, usually by the detachment of large pieces. Regolith from the poles stays in place unless the spin rates are extremely high. With

  10. An Improved Triangular Element With Drilling Rotations

    DEFF Research Database (Denmark)

    Damkilde, Lars; Grønne, Mikael

    2002-01-01

    by rotations in the corner nodes. Compared to Allman's plane element which was the first succesfull implementation of drilling rotations the proposed element has extra displacements in the mid-side nodes parallel to the element sides. The performance should therefore be better and closer to the LST...

  11. Swordplay: an exercise in rotational dynamics

    Science.gov (United States)

    Denny, Mark

    2006-07-01

    The historical evolution of European swords can be understood by applying physical principles that must have been recognized empirically in antiquity. Here we show how rotational dynamics permits a quantitative evaluation of sword effectiveness and ease of use. Swords provide a historically important and familiar vehicle for teaching rotational dynamics concepts such as moment of inertia and centre of percussion.

  12. Treatment alternative for irreparable rotator cuff ruptures ...

    African Journals Online (AJOL)

    Background: The treatment of massive irreparable rotator cuff rupture has still no consensus among shoulder surgeons. It is assumed that symptomatic rotator cuff tendon rupture is accepted as irreparable if retraction amount of tendon is Patte stage 3 on MRI; degree of fatty atrophy is Goutallier stage 3 or 4; narrowing of ...

  13. Expressing intrinsic volumes as rotational integrals

    DEFF Research Database (Denmark)

    Auneau, Jeremy Michel; Jensen, Eva Bjørn Vedel

    2010-01-01

    A new rotational formula of Crofton type is derived for intrinsic volumes of a compact subset of positive reach. The formula provides a functional defined on the section of X with a j-dimensional linear subspace with rotational average equal to the intrinsic volumes of X. Simplified forms...

  14. Slowly Rotating Black Holes with Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    S. H. Hendi

    2014-01-01

    4 dimensions. These solutions are asymptotically AdS and their horizon has spherical topology. We calculate the physical properties of these black holes and study their dependence on the rotation parameter a as well as the nonlinearity parameter β. In the limit β→∞, the solution describes slowly rotating AdS type black holes.

  15. Rotationally Vibrating Electric-Field Mill

    Science.gov (United States)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  16. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  17. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    subspace of asymptotically free scattering states. 3. Evolution in a rotating frame. Here we study the time evolution in a rotating frame for potentials which no longer have to be smooth. This transformation yields an explicit formula for the propagator U(t,s) in terms of the unitary group for some time-independent generator.

  18. Probabilistic stellar rotation periods with Gaussian processes

    Science.gov (United States)

    Angus, Ruth; Aigrain, Suzanne; Foreman-Mackey, Daniel

    2015-08-01

    Stellar rotation has many applications in the field of exoplanets. High-precision photometry from space-based missions like Kepler and K2 allows us to measure stellar rotation periods directly from light curves. Stellar variability produced by rotation is usually not sinusoidal or perfectly periodic, therefore sine-fitting periodograms are not well suited to rotation period measurement. Autocorrelation functions are often used to extract periodic information from light curves, however uncertainties on rotation periods measured by autocorrelation are difficult to define. A ‘by eye’ check, or a set of heuristic criteria are used to validate measurements and rotation periods are only reported for stars that pass this vetting process. A probabilistic rotation period measurement method, with a suitable generative model bypasses the need for a validation stage and can produce realistic uncertainties. The physics driving the production of variability in stellar light curves is still poorly understood and difficult to model. We therefore use an effective model for stellar variability: a Gaussian process with a quasi-periodic covariance function. By injecting fake signals into Kepler light curves we show that the GP model is well suited to quasi-periodic, non-sinusoidal signals, is capable of modelling noise and physical signals simultaneously and provides probabilistic rotation period measurements with realistic uncertainties.

  19. Short rotation coppice: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, N.

    1993-01-01

    This Report summarises scientific literature relating to the influence of coppice management upon wildlife. Where information is available, special attention is given to short rotation coppice. The Report also summarises the literature regarding coppice woodland management techniques which could be applied to enhance the nature conservation interest of short rotation coppice sites generally. (2 tables, 57 references) (author)

  20. Design of a piezoelectric rotation actuator

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Babakhani, B.; Brouwer, Dannis Michel

    2012-01-01

    In order to facilitate active damping within a linear motion system, a self-sensing piezoelectric rotation actuator has been designed. The rotation actuator consists of two piezoelectric stacks that function as linear actuators, embedded in a mechanical interface with several elastic elements, thus

  1. Trade Space Analysis: Rotational Analyst Research Project

    Science.gov (United States)

    2015-09-01

    A., & Sundararaj, G. J. (2000, May). Interactive Physical Programming: Tradeoff Analysis and Decision Making in Multicriteria Optimization. AIAA...TRAC-M-TR-15-028 September 2015 Trade Space Analysis : Rotational Analyst Research Project TRADOC Analysis ...PAGE INTENTIONALLY LEFT BLANK TRAC-M-TR-15-028 September 2015 Trade Space Analysis : Rotational Analyst Research Project

  2. Spontaneous generation of rotation in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Parra Diaz, Felix [Oxford University

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  3. Rotational image deblurring with sparse matrices

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Nagy, James G.; Tigkos, Konstantinos

    2014-01-01

    We describe iterative deblurring algorithms that can handle blur caused by a rotation along an arbitrary axis (including the common case of pure rotation). Our algorithms use a sparse-matrix representation of the blurring operation, which allows us to easily handle several different boundary cond...

  4. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  5. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  6. Influence of toroidal rotation on tearing modes

    Science.gov (United States)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  7. Properties of relativistically rotating quark stars

    Science.gov (United States)

    Zhou, Enping

    2017-06-01

    In this work, quasi-equilibrium models of rapidly rotating triaxially deformed quark stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polynomial equation of state. Especially, since we are using a full 3-D numerical relativity initial data code, we are able to consider the triaxially deformed rotating quark stars at very high spins. Such triaxially deformed stars are possible gravitational radiation sources detectable by ground based gravitational wave observatories. Additionally, the bifurcation from axisymmetric rotating sequence to triaxially rotating sequence hints a more realistic spin up limit for rotating compact stars compared with the mass-shedding limit. With future observations such as sub-millisecond pulsars, we could possibly distinguish between equation of states of compact stars, thus better understanding strong interaction in the low energy regime.

  8. Slow Rotating Trojans: Tidally Synchronized Binaries?

    Science.gov (United States)

    Noll, Keith

    2017-08-01

    We propose HST observations of six slow-rotating Trojans to search for tidally synchronous binaries similar to the Patroclus binary system. A significant excess of slow rotators over Maxwellian suggests that additional binaries may be present. If any of the targets are binary, they can be resolved by HST. This target selection strategy has recently yielded the third known resolved Trojan binary, detected in a sample of seven slow-rotating Trojans. We wish to extend this successful strategy with another similarly selected sample. Even one additional resolved binary in the Trojans, which would become the fourth, would be of extreme interest. The discovery of no binaries among this group of slow rotators would challenge the understanding of the source of the excess slow rotators in the Trojans.

  9. Solar Interior Rotation and its Variation

    Directory of Open Access Journals (Sweden)

    Howe Rachel

    2009-02-01

    Full Text Available This article surveys the development of observational understanding of the interior rotation of the Sun and its temporal variation over approximately forty years, starting with the 1960s attempts to determine the solar core rotation from oblateness and proceeding through the development of helioseismology to the detailed modern picture of the internal rotation deduced from continuous helioseismic observations during solar cycle 23. After introducing some basic helioseismic concepts, it covers, in turn, the rotation of the core and radiative interior, the “tachocline” shear layer at the base of the convection zone, the differential rotation in the convection zone, the near-surface shear, the pattern of migrating zonal flows known as the torsional oscillation, and the possible temporal variations at the bottom of the convection zone. For each area, the article also briefly explores the relationship between observations and models.

  10. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  11. 21 CFR 880.6085 - Hot/cold water bottle.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  12. Venlafaxine hydrochloride for the treatment of hot flashes.

    Science.gov (United States)

    Schober, Christina E; Ansani, Nicole T

    2003-11-01

    To review the literature evaluating venlafaxine for the treatment of hot flashes. Clinical literature accessed through MEDLINE (1966-August 2002), PubMed, Harrison's Online, and references of reviewed articles. Key terms used were venlafaxine, Effexor, hot flashes, and vasomotor symptoms. Not all patients experiencing hot flashes are candidates for traditional hormonal therapy. Nonhormonal alternatives have long been explored, but conflicting evidence of efficacy exists. Venlafaxine is an effective nonhormonal alternative for relief from uncontrolled hot flashes.

  13. Investigation of Usibor 1500 Formability in a Hot Forming Operation

    OpenAIRE

    Güler, Hande

    2013-01-01

    The hot forming process included heating metals to a temperature in the austenite range, transferring the austenitized sheet from the furnace to a press, forming and simultaneously quenched. In this work, Usibor 1500 steel was hot stamped using water-cooled prototype mould. Micro structural analyses as well as tensile tests and hardness measurements of hot stamped samples were performed. The results showed that most of austenite microstructure was changed into martensite by the hot forming. T...

  14. Hot Electron Injection into Uniaxially Strained Silicon

    Science.gov (United States)

    Kim, Hyun Soo

    In semiconductor spintronics, silicon attracts great attention due to the long electron spin lifetime. Silicon is also one of the most commonly used semiconductor in microelectronics industry. The spin relaxation process of diamond crystal structure such as silicon is dominant by Elliot-Yafet mechanism. Yafet shows that intravalley scattering process is dominant. The conduction electron spin lifetime measured by electron spin resonance measurement and electronic measurement using ballistic hot electron method well agrees with Yafet's theory. However, the recent theory predicts a strong contribution of intervalley scattering process such as f-process in silicon. The conduction band minimum is close the Brillouin zone edge, X point which causes strong spin mixing at the conduction band. A recent experiment of electric field-induced hot electron spin relaxation also shows the strong effect of f-process in silicon. In uniaxially strained silicon along crystal axis [100], the suppression of f-process is predicted which leads to enhance electron spin lifetime. By inducing a change in crystal structure due to uniaxial strain, the six fold degeneracy becomes two fold degeneracy, which is valley splitting. As the valley splitting increases, intervalley scattering is reduced. A recent theory predicts 4 times longer electron spin lifetime in 0.5% uniaxially strained silicon. In this thesis, we demonstrate ballistic hot electron injection into silicon under various uniaxial strain. Spin polarized hot electron injection under strain is experimentally one of the most challenging part to measure conduction electron spin lifetime in silicon. Hot electron injection adopts tunnel junction which is a thin oxide layer between two conducting materials. Tunnel barrier, which is an oxide layer, is only 4 ˜ 5 nm thick. Also, two conducting materials are only tens of nanometer. Therefore, under high pressure to apply 0.5% strain on silicon, thin films on silicon substrate can be easily

  15. Ipsilateral rotational autokeratoplasty: a review.

    Science.gov (United States)

    Arnalich-Montiel, F; Dart, J K G

    2009-10-01

    Corneal opacity is a major cause of monocular blindness and, after cataract, is also a leading cause of blindness worldwide. Keratoplasty techniques for the treatment of corneal opacities include deep anterior lamellar allokeratoplasty, penetrating allokeratoplasty, penetrating bilateral autokeratoplasty, and ipsilateral rotational autokeratoplasty (IRA). This review describes the indications, technique, and outcomes of IRA. IRA is only indicated for patients with a localised opacity leaving a minimum diameter of 4-5 mm of uninvolved clear cornea. For these few patients in whom the procedure is practicable, the surgery can be planned by manipulating digital images to estimate the trephine size and location and/or by the use of formulas. IRA may not provide either as good spectacle acuity or as good quality of vision as penetrating keratoplasty because of higher astigmatism and a reduced corneal pupillary clear zone, but these disadvantages are often outweighed when the risk of allograft rejection is high, as in paediatric patients and those with vascularised corneas. The main benefits of IRA are the retention of host endothelium, thereby eliminating both the risk of endothelial rejection and the prolonged attrition of endothelial cell numbers that occurs following penetrating keratoplasty, and the reduced requirement for postoperative steroid therapy with its associated complications.

  16. Synchronous states of slowly rotating pendula

    Energy Technology Data Exchange (ETDEWEB)

    Kapitaniak, Marcin [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, AB24 3UE Aberdeen, Scotland (United Kingdom); Czolczynski, Krzysztof; Perlikowski, Przemysław; Stefanski, Andrzej [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland); Kapitaniak, Tomasz, E-mail: tomasz.kapitaniak@p.lodz.pl [Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz (Poland)

    2014-08-01

    Coupled systems that contain rotating elements are typical in physical, biological and engineering applications and for years have been the subject of intensive studies. One problem of scientific interest, which among others occurs in such systems is the phenomenon of synchronization of different rotating parts. Despite different initial conditions, after a sufficiently long transient, the rotating parts move in the same way — complete synchronization, or a permanent constant shift is established between their displacements, i.e., the angles of rotation — phase synchronization. Synchronization occurs due to dependence of the periods of rotating elements motion and the displacement of the base on which these elements are mounted. We review the studies on the synchronization of rotating pendula and compare them with the results obtained for oscillating pendula. As an example we consider the dynamics of the system consisting of n pendula mounted on the movable beam. The pendula are excited by the external torques which are inversely proportional to the angular velocities of the pendula. As the result of such excitation each pendulum rotates around its axis of rotation. It has been assumed that all pendula rotate in the same direction or in the opposite directions. We consider the case of slowly rotating pendula and estimate the influence of the gravity on their motion. We classify the synchronous states of the identical pendula and observe how the parameters mismatch can influence them. We give evidence that synchronous states are robust as they exist in the wide range of system parameters and can be observed in a simple experiment.

  17. AUDITOR ROTATION - A CRITICAL AND COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Mocanu Mihaela

    2011-12-01

    Full Text Available The present paper starts out from the challenge regarding auditor tenure launched in 2010 by the Green Paper of the European Commission Audit Policy: Lessons from the Crisis. According to this document, the European Commission speaks both in favor of the mandatory rotation of the audit firm, and in favor of the mandatory rotation of audit partners. Rotation is considered a solution to mitigate threats to independence generated by familiarity, intimidation and self-interest in the context of a long-term audit-client relationship. At international level, there are several studies on auditor rotation, both empirical (e.g. Lu and Sivaramakrishnan, 2009, Li, 2010, Kaplan and Mauldin, 2008, Jackson et al., 2008 and normative in nature (e.g. Marten et al., 2007, Muller, 2006 and Gelter, 2004. The objective of the present paper is to perform a critical and comparative analysis of the regulations on internal and external rotation in force at international level, in the European Union and in the United States of America. Moreover, arguments both in favor and against mandatory rotation are brought into discussion. With regard to the research design, the paper has a normative approach. The main findings are first of all that by comparison, all regulatory authorities require internal rotation at least in the case of public interest entities, while the external rotation is not in the focus of the regulators. In general, the most strict and detailed requirements are those issued by the Securities and Exchange Commission from the United States of America. Second of all, in favor of mandatory rotation speaks the fact that the auditor becomes less resilient in case of divergence of opinions between him and company management, less stimulated to follow his own interest, and more scrupulous in conducting the audit. However, mandatory rotation may also have negative consequences, thus the debate on the opportunity of this regulatory measure remains open-ended.

  18. Plasmonic non-concentric nanorings array as an unidirectional nano-optical conveyor belt actuated by polarization rotation.

    Science.gov (United States)

    Jiang, Min; Wang, Guanghui; Jiao, Wenxiang; Ying, Zhoufeng; Zou, Ningmu; Ho, Ho-Pui; Sun, Tianyu; Zhang, Xuping

    2017-01-15

    We report a nano-optical conveyor belt containing an array of gold plasmonic non-concentric nanorings (PNNRs) for the realization of trapping and unidirectional transportation of nanoparticles through rotating the polarization of an excitation beam. The location of hot spots within an asymmetric plasmonic nanostructure is polarization dependent, thus making it possible to manipulate a trapped target by rotating the incident polarization state. In the case of PNNR, the two poles have highly unbalanced trap potential. This greatly enhances the chance of transferring trapped particles between adjacent PNNRs in a given direction through rotating the polarization. As confirmed by three-dimensional finite-difference time-domain analysis, an array of PNNRs forms an unidirectional nano-optical conveyor belt, which delivers target nanoparticles or biomolecules over a long distance with nanometer accuracy. With the capacity to trap and to transfer, our design offers a versatile scheme for conducting mechanical sample manipulation in many on-chip optofluidic applications.

  19. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water immersion treatment schedules. 305.22... Hot water immersion treatment schedules. (a) T102-d. (1) Fruit must be grown and treated in Hawaii. (2) Fruit must be submerged at least 4 inches below the water's surface in a hot water immersion treatment...

  20. 29 CFR 1915.503 - Precautions for hot work.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Precautions for hot work. 1915.503 Section 1915.503 Labor... Employment § 1915.503 Precautions for hot work. (a) General requirements—(1) Designated Areas. The employer may designate areas for hot work in sites such as vessels, vessel sections, fabricating shops, and...

  1. Hot Pepper Reaction to Field Diseases | Nsabiyera | African Crop ...

    African Journals Online (AJOL)

    Diseases are major constraints to hot pepper (Capsicum annum L.) production in sub-Saharan Africa. The search for cultivars resistant to the major diseases of hot pepper has been limited. This study was conducted in Uganda to evaluate exotic and local hot pepper genotypes for disease resistance. Viral diseases and ...

  2. Rotational properties of L4 Trojan asteroids from K2

    Science.gov (United States)

    Ryan, Erin L.; Woodward, Charles E.; Sharkey, Benjamin N. L.

    2016-10-01

    Our understanding of solar system formation is undergoing a renaissance as new planetary systems are found, often unlike our own. Many questions now ask how the giant planets and their satellite systems accreted and if there is evidence that they migrated to new orbital positions. One of the keys to understanding these questions within our own solar system is the Jupiter Trojan population which is co-orbital with Jupiter. The two Trojan clouds at the stable L4 and L5 Lagrangian points are in orbits which are stable over the age of the Solar System, unlike many other present epoch small body populations. Planetary migration models suggest that the Trojan asteroids, and the dynamically hot (i.e. "scattered"), population of Kuiper Belt objects originate from the same region in the early solar system. While these objects would have started with the same compositions, establishing compositional linkages is challenging and complicated due to a paucity of distinct and easily identifiable mineralogical features in the optical, where these objects are the brightest. While the surface compositions and colors of the Trojans match objects in the inner solar system, as well as the Kuiper Belt, physical characterization of this large population of objects has been scarce. During Campaign 6 in late 2015, the 115 square degree K2 spacecraft field of view overlapped with the L4 Trojan cloud, allowing for long term monitoring. We report on the fitted rotational periods and lightcurve amplitudes from 56 Trojan asteroids that were observed for an average of 11 days by K2. We find ~20% of objects have rotational periods longer than 50 hours and ~40% of the objects have lightcurves with shapes characteristic of contact binary systems.

  3. Controllable rotating behavior of individual dielectric microrod in a rotating electric field.

    Science.gov (United States)

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Chen, Xiaoming

    2017-06-01

    We report herein controllable rotating behavior of an individual dielectric microrod driven by a background rotating electric field. By disposing or removing structured floating microelectrode, the rigid rod suspended in electrolyte solution accordingly exhibits cofield or antifield rotating motion. In the absence of the ideally polarizable metal surface, the dielectric rod rotates opposite to propagation of electric field, with the measured rotating rate much larger than predicted by Maxwell-Wager interfacial polarization theory incorporating surface conduction of fixed bond charge. Surprisingly, with floating electrode embedded, a novel kind of cofield rotation mode occurs in the presence of induced double-layer polarization, due to the action of hydrodynamic torque from rotating induced-charge electroosmosis. This method of achieving switchable spin modes of dielectric particles would direct implications in constructing flexible electrokinetic framework for analyzing 3D profile of on-chip biomicrofluidic samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Alternatives to estrogen to manage hot flushes.

    Science.gov (United States)

    Albertazzi, Paola

    2005-01-01

    Hot flushes are probably the most common symptom resulting in medical consultation in relation to the menopause and, when severe, they can affect quite dramatically women's quality of life. Hormone (estrogen) replacement therapy (HRT) is the most effective treatment for this symptom and in the ideal setting of clinical trials, under optimal selection of patients and compliance, it reduces hot flushes by about 70-80%. Recently, however, a series of 'scares' has had large resonance in the lay press about possible adverse effects of HRT. These have undermined both doctors' and women's confidence in the use of these compounds. This has been witnessed by the recent fall in HRT sales. A number of compounds, both pharmacological and herbal in origin, have been used for the treatment of neurovegetative symptoms in menopausal women. The present article critically reviews evidence of the efficacy of some of the most commonly used compounds and assesses their effect in relation to that of HRT.

  5. Hot Electron Nanoscopy and Spectroscopy (HENs)

    KAUST Repository

    Giugni, Andrea

    2017-08-17

    This chapter includes a brief description of different laser coupling methods with guided surface plasmon polariton (SPP) modes at the surface of a cone. It shows some devices, their electromagnetic simulations, and their optical characterization. A theoretical section illustrates the optical and quantum description of the hot charge generation rate as obtained for the SPP propagation along the nanocone in adiabatic compression. The chapter also shows some experimental results concerning the application of the hot electron nanoscopy and spectroscopy (HENs) in the so-called Schottky configuration, highlighting the sensitivity and the nanoscale resolution of the technique. The comparison with Kelvin probe and other electric atomic force microscopy (AFM) techniques points out the intrinsic advantages of the HENs. In the end, some further insights are given about the possibility of exploiting HENs with a pulsed laser at the femtosecond time scale without significant pulse broadening and dispersion.

  6. Mathematical modeling of deformation during hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Centre for Metallurgical Processing Engineering

    1994-12-31

    The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.

  7. Archaeal diversity in Icelandic hot springs

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries...... in combination with 14 t-RFLP profiles revealed a high abundance of clones clustering together with sequences from the nonthermophilic I.1b group of Crenarchaeota. The archaeal diversity in one solfatara was high; 26 different RFLP patterns were found using double digestion of the PCR products with restriction......Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation...

  8. The hot γ Doradus and Maia stars

    Science.gov (United States)

    Balona, L. A.; Engelbrecht, C. A.; Joshi, Y. C.; Joshi, S.; Sharma, K.; Semenko, E.; Pandey, G.; Chakradhari, N. K.; Mkrtichian, David; Hema, B. P.; Nemec, J. M.

    2016-08-01

    The hot γ Doradus stars have multiple low frequencies characteristic of γ Dor or SPB variables, but are located between the red edge of the SPB and the blue edge of the γ Dor instability strips where all low-frequency modes are stable in current models of these stars. Though δ Sct stars also have low frequencies, there is no sign of high frequencies in hot γ Dor stars. We obtained spectra to refine the locations of some of these stars in the H-R diagram and conclude that these are, indeed, anomalous pulsating stars. The Maia variables have multiple high frequencies characteristic of β Cep and δ Sct stars, but lie between the red edge of the β Cep and the blue edge of the δ Sct instability strips. We compile a list of all Maia candidates and obtain spectra of two of these stars. Again, it seems likely that these are anomalous pulsating stars which are currently not understood.

  9. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    variability in the (economically allowed) designs - i.e., to allow them to think out of the box. To address this challenge The Danish National Advanced Technology Foundation (now InnovationsFonden) is currently supporting the BladeRunner project that involves several Danish companies and public institutions....... The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...... are mainly concerned with the rationalization of the architects’ CAD drawings into surfaces that can be created via this particular sweeping and cutting technology....

  10. Hot subdwarf formation: Confronting theory with observation

    Directory of Open Access Journals (Sweden)

    Geier S.

    2013-03-01

    Full Text Available The formation of hot subdwarf stars is still unclear. Both single-star and binary scenarios have been proposed to explain the properties of these evolved stars situated at the extreme blue end of the horizontal branch. The observational evidence gathered in the last decade, which revealed high fractions of binaries, shifted the focus from the single-star to the binary formation scenarios. Common envelope ejection, stable Roche lobe overflow and the merger of helium white dwarfs seemed to be sufficient to explain the formation of both the binary as well as the remaining single hot subdwarfs. However, most recent and rather unexpected observations challenge the standard binary evolution scenarios.

  11. Hot carriers in a bipolar graphene

    OpenAIRE

    Balev, Oleg G.; Vasko, Fedir T.

    2010-01-01

    Hot carriers in a doped graphene under dc electric field is described taking into account the intraband energy relaxation due to acoustic phonon scattering and the interband generation-recombination transitions caused by thermal radiation. The consideration is performed for the case when the intercarrier scattering effectively establishes the quasiequilibrium electron-hole distributions, with effective temperature and concentrations of carriers. The concentration and energy balance equations ...

  12. ACTIVATED HOT PRESSING BEHAVIOR OF WC NANOPOWDERS

    Directory of Open Access Journals (Sweden)

    Edwin GEVORKYAN

    2010-06-01

    Full Text Available The questions of consolidation of nanopowders concerning hot compaction by pressing activated by electric current action are considered. Mechanisms of grain boundary creep-sliding which are sequentially prevalent in a forming of compacted structures under influence of temperature factor and in the presence of a direct electric heating are discussed. Structural-transformational sources and conditions of forming of high physical-mechanical properties of nanopowder refractory solid-state products are described.

  13. Physiologically assessed hot flashes and endothelial function among midlife women.

    Science.gov (United States)

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; von Känel, Roland; Landsittel, Doug P; Matthews, Karen A

    2017-08-01

    Hot flashes are experienced by most midlife women. Emerging data indicate that they may be associated with endothelial dysfunction. No studies have tested whether hot flashes are associated with endothelial function using physiologic measures of hot flashes. We tested whether physiologically assessed hot flashes were associated with poorer endothelial function. We also considered whether age modified associations. Two hundred seventy-two nonsmoking women reporting either daily hot flashes or no hot flashes, aged 40 to 60 years, and free of clinical cardiovascular disease, underwent ambulatory physiologic hot flash and diary hot flash monitoring; a blood draw; and ultrasound measurement of brachial artery flow-mediated dilation to assess endothelial function. Associations between hot flashes and flow-mediated dilation were tested in linear regression models controlling for lumen diameter, demographics, cardiovascular disease risk factors, and estradiol. In multivariable models incorporating cardiovascular disease risk factors, significant interactions by age (P women in the sample (age 40-53 years), the presence of hot flashes (beta [standard error] = -2.07 [0.79], P = 0.01), and more frequent physiologic hot flashes (for each hot flash: beta [standard error] = -0.10 [0.05], P = 0.03, multivariable) were associated with lower flow-mediated dilation. Associations were not accounted for by estradiol. Associations were not observed among the older women (age 54-60 years) or for self-reported hot flash frequency, severity, or bother. Among the younger women, hot flashes explained more variance in flow-mediated dilation than standard cardiovascular disease risk factors or estradiol. Among younger midlife women, frequent hot flashes were associated with poorer endothelial function and may provide information about women's vascular status beyond cardiovascular disease risk factors and estradiol.

  14. Estimation of energy consumption for domestic hot water in hospitals

    Energy Technology Data Exchange (ETDEWEB)

    Katsanis, J.S.; Tsarabaris, P.T.; Bourkas, P.D. [National Technical Univ. of Athens, Athens (Greece). Dept. of Electrical and Computer Engineering; Halaris, P.G. [Asklepieon Voulas General Hospital, Athens (Greece). Electrical Engineering Dept. of Biomedical Technology; Malahias, G.N. [Hellenic Naval Academy, Athens (Greece)

    2006-07-01

    Hospitals are among the largest energy consumers in the building sector, with hot water constituting the largest part of the base load which consists of partial loads for heating, sanitary hot water, sterilization, disinfection, kitchen thermal load and laundry thermal load. This study estimated the energy consumption for domestic hot water (DHW) for Greek hospitals. The purpose was to evaluate the feasibility of using cogeneration systems in hospitals, which would combine electric and thermal energy from the same energy source. In this study, only the data for the consumption of DHW was presented. DHW in Greek hospitals is 45 degrees C except for the kitchen, laundry and anatomic room supply where hot water reaches 65 degrees C. Water consumption varies considerably depending on the condition of the hospital and extent of outpatients and clinical provisions. Hot water production is typically achieved in thermal substations through hot water production centres that include hot water storage tanks; heat exchangers; heating medium circuits; pipework for domestic hot water and connection with cold water supply. This presentation described the sizing of the DHW system and estimated the simultaneity factor for hot and cold water in hospitals. The hot water demand curve was used to estimate the energy consumption per day for hot water based on 18 hours of operation. Assuming that the hot water demand curve is typical, the energy consumption was estimated for sanitary hot water per day as a function of the specific water consumption for hospital with different number of beds. The hot water energy use was nearly 50 kWh per cubic meter water. The thermal losses in the hot water piping network were not considered in this study. 17 refs., 6 tabs., 6 figs.

  15. Hot corrosion of the B2 nickel aluminides

    Science.gov (United States)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  16. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  17. Hot forming of composite prepreg : Experimental study

    Science.gov (United States)

    Tardif, Xavier; Duthille, Bertrand; Bechtel, Stephane; le Pinru, Louis; Campagne, Benjamin; Destombes, Gautier; Deshors, Antoine; Marchand, Christophe; Azzouzi, Khalid El; Moro, Tanguy

    2017-10-01

    The hot forming of thermoset prepreg consists in bending an uncured composite part by applying a mechanical constrain on the hot laminate. Most of the time, the mold is inserted in a vacuum box and the mechanical constrain is applied on the composite laminate by a single membrane or a double-membrane. But the performance improvement products resulted in forming increasingly complex parts with advanced materials having a less formability. These new complex parts require a finer comprehension of the process and an optimization of the key parameters to get acceptable quality. In this work, an experimental study has been carried out to identify the process conditions that do not lead to unacceptable defaults: undulations of fibers. In the present study, downward-bending has been evaluated with an original light mechanical forming concept, for a given stacking sequence. The influence of the part's temperature and the part's bending speed are investigated. To carry this study out, a hot forming test bench has been designed and manufactured to have a precise supervision of the process conditions. It is able to bend parts of 1500 mm length x 600 mm width x 20 mm thick.

  18. Nuclear track radiography of 'hot' aerosol particles

    CERN Document Server

    Boulyga, S F; Kievets, M K; Lomonosova, E M; Zhuk, I V; Yaroshevich, O I; Perelygin, V P; Petrova, R I; Brandt, R; Vater, P

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the alpha-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (gamma,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 1 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 sup - sup 6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical imag...

  19. Hot Dry Rock Geothermal Energy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  20. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  1. Adhesion of Zinc Hot-dip Coatings

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  2. Current Biomechanical Concepts for Rotator Cuff Repair

    Science.gov (United States)

    2013-01-01

    For the past few decades, the repair of rotator cuff tears has evolved significantly with advances in arthroscopy techniques, suture anchors and instrumentation. From the biomechanical perspective, the focus in arthroscopic repair has been on increasing fixation strength and restoration of the footprint contact characteristics to provide early rehabilitation and improve healing. To accomplish these objectives, various repair strategies and construct configurations have been developed for rotator cuff repair with the understanding that many factors contribute to the structural integrity of the repaired construct. These include repaired rotator cuff tendon-footprint motion, increased tendon-footprint contact area and pressure, and tissue quality of tendon and bone. In addition, the healing response may be compromised by intrinsic factors such as decreased vascularity, hypoxia, and fibrocartilaginous changes or aforementioned extrinsic compression factors. Furthermore, it is well documented that torn rotator cuff muscles have a tendency to atrophy and become subject to fatty infiltration which may affect the longevity of the repair. Despite all the aforementioned factors, initial fixation strength is an essential consideration in optimizing rotator cuff repair. Therefore, numerous biomechanical studies have focused on elucidating the strongest devices, knots, and repair configurations to improve contact characteristics for rotator cuff repair. In this review, the biomechanical concepts behind current rotator cuff repair techniques will be reviewed and discussed. PMID:23730471

  3. Quantitative rotating frame relaxometry methods in MRI.

    Science.gov (United States)

    Gilani, Irtiza Ali; Sepponen, Raimo

    2016-06-01

    Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Rotating Reverse-Osmosis for Water Purification

    Science.gov (United States)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  5. TWRS tank waste pretreatment process development hot test siting report

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F. [Westinghouse Hanford Co., Richland, WA (United States); Hansen, R.I.; Reynolds, B.A. [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities.

  6. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  7. INFORMATIONAL MODEL OF MENTAL ROTATION OF FIGURES

    Directory of Open Access Journals (Sweden)

    V. A. Lyakhovetskiy

    2016-01-01

    Full Text Available Subject of Study.The subject of research is the information structure of objects internal representations and operations over them, used by man to solve the problem of mental rotation of figures. To analyze this informational structure we considered not only classical dependencies of the correct answers on the angle of rotation, but also the other dependencies obtained recently in cognitive psychology. Method.The language of technical computing Matlab R2010b was used for developing information model of the mental rotation of figures. Such model parameters as the number of bits in the internal representation, an error probability in a single bit, discrete rotation angle, comparison threshold, and the degree of difference during rotation can be changed. Main Results.The model reproduces qualitatively such psychological dependencies as the linear increase of time of correct answers and the number of errors on the angle of rotation for identical figures, "flat" dependence of the time of correct answers and the number of errors on the angle of rotation for mirror-like figures. The simulation results suggest that mental rotation is an iterative process of finding a match between the two figures, each step of which can lead to a significant distortion of the internal representation of the stored objects. Matching is carried out within the internal representations that have no high invariance to rotation angle. Practical Significance.The results may be useful for understanding the role of learning (including the learning with a teacher in the development of effective information representation and operations on them in artificial intelligence systems.

  8. Rotating black holes in brane worlds

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Valeri P.; Stojkovic, Dejan; Fursaev, Dmitri V. E-mail: fursaev@thsun1.jinr.ru

    2004-06-01

    We study interaction of rotating higher dimensional black holes with a brane in space-times with large extra dimensions. We demonstrate that a rotating black hole attached to a brane can be stationary only if the null Killing vector generating the black hole horizon is tangent to the brane world-sheet. The characteristic time when a rotating black hole with the gravitational radius r{sub 0} reaches this final stationary state is T {approx} r{sub 0}{sup p}'-'1/(G{sigma}), where G is the higher dimensional gravitational coupling constant, {sigma} is the brane tension, and p is the number of extra dimensions. (author)

  9. Rotating black holes in brane worlds

    OpenAIRE

    Frolov, Valeri P.; Fursaev, Dmitri V.; Stojkovic, Dejan

    2004-01-01

    We study interaction of rotating higher dimensional black holes with a brane in space-times with large extra dimensions. We demonstrate that a rotating black hole attached to a brane can be stationary only if the null Killing vector generating the black hole horizon is tangent to the brane world-sheet. The characteristic time when a rotating black hole with the gravitational radius $r_0$ reaches this final stationary state is $T\\sim r_0^{p-1}/(G\\sigma)$, where $G$ is the higher dimensional gr...

  10. Rotational nuclear models and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moya de Guerra, E.

    1986-05-01

    A review is made of the basic formalism involved in the application of nuclear rotational models to the problem of electron scattering from axially symmetric deformed nuclei. Emphasis is made on the use of electron scattering to extract information on the nature of the collective rotational model. In this respect, the interest of using polarized beam and target is discussed with the help of illustrative examples. Concerning the nuclear structure four rotational models are considered: Two microscopic models, namely the Projected Hartree-Fock (PHF) and cranking models; and two collective models, the rigid rotor and the irrotational flow models. The problem of current conservation within the different models is also discussed.

  11. Rotating transformers in wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, J. [Chalmers Univ. of Technology, Goeteborg (Sweden); Engstroem, S. [Aegir konsult AB, Lidingoe (Sweden)

    1996-12-01

    The power consumption of rotating electrical components is often supplied via slip-rings in wind turbines. Slip-ring equipment is expensive and need maintenance and are prone to malfunction. If the slip-rings could be replaced with contact-less equipment better turbines could be designed. This paper presents the design, some FE calculations and some measurements on a prototype rotating transformer. The proposed transformer consists of a secondary rotating winding and a stationary exciting primary winding. The results indicate that this transformer could be used to replace slip-rings in wind turbines. 4 refs, 3 figs

  12. Rotating black holes and Coriolis effect

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)

    2016-10-10

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  13. Rotating black holes and Coriolis effect

    Directory of Open Access Journals (Sweden)

    Chia-Jui Chou

    2016-10-01

    Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  14. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær

    2007-01-01

    -Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been......This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier...

  15. Rotating saddle trap as Foucault's pendulum

    Science.gov (United States)

    Kirillov, Oleg N.; Levi, Mark

    2016-01-01

    One of the many surprising results found in the mechanics of rotating systems is the stabilization of a particle in a rapidly rotating planar saddle potential. Besides the counterintuitive stabilization, an unexpected precessional motion is observed. In this note, we show that this precession is due to a Coriolis-like force caused by the rotation of the potential. To our knowledge, this is the first example where such a force arises in an inertial reference frame. We also propose a simple mechanical demonstration of this effect.

  16. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  17. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  18. Crop rotation and tillage system effects on reducing ryegrass ...

    African Journals Online (AJOL)

    rotation treatments under minimum-tillage differed significantly from the control. In the field wheat–medic–wheat–medic rotations under no-tillage out-performed all other rotations, followed by wheat–lupin–wheat–canola under minimumtillage.

  19. Hot particulate removal and desulfurization results from the METC integrated gasification and hot gas cleanup facility

    Energy Technology Data Exchange (ETDEWEB)

    Rockey, J.M.

    1995-06-01

    The Morgantown Energy Technology Center (METC) is conducting experimental testing using a 10-inch diameter fluid-bed gasifier (FBG) and modular hot gas cleanup rig (MGCR) to develop advanced methods for removing contaminants in hot coal gasifier gas streams for commercial development of integrated gasification combined-cycle (IGCC) power systems. The program focus is on hot gas particulate removal and desulfurization technologies that match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose of this poster is to present the program objectives and results of the work conducted in cooperation with industrial users and vendors to meet the vision for IGCC of reducing the capital cost per kilowatt to $1050 and increasing the plant efficiency to 52% by the year 2010.

  20. Fourier analysis for rotating-element ellipsometers.

    Science.gov (United States)

    Cho, Yong Jai; Chegal, Won; Cho, Hyun Mo

    2011-01-15

    We introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions. Unlike the Hadamard transform, a well-known data acquisition method that is used only for conventional multichannel rotating-element ellipsometers with line arrays with specific readout-mode timing, this Fourier analysis is applicable to various line arrays with either nonoverlap or overlap readout-mode timing. To assess the effects of the novel Fourier analysis, the Fourier coefficients for a sample were measured with a custom-built rotating-polarizer ellipsometer, using this Fourier analysis with various numbers of scans, integration times, and rotational speeds of the polarizer.

  1. Rotational Rebound Attacks on Reduced Skein

    DEFF Research Database (Denmark)

    Khovratovich, Dmitry; Nikolić, Ivica; Rechberger, Christian

    2014-01-01

    number of rounds. We also use neutral bits and message modification methods from the practice of collision search in MD5 and SHA-1 hash functions. These methods push the rotational property through more rounds than previous analysis suggested, and eventually establish a distinguishing property......In this paper we combine two powerful methods of symmetric cryptanalysis: rotational cryptanalysis and the rebound attack. Rotational cryptanalysis was designed for the analysis of bit-oriented designs like ARX (Addition-Rotation-XOR) schemes. It has been applied to several hash functions and block...... ciphers, including the new standard SHA-3 (Keccak). The rebound attack is a start-from-the-middle approach for finding differential paths and conforming pairs in byte-oriented designs like Substitution-Permutation networks and AES. We apply our new compositional attack to the reduced version of the hash...

  2. Rotational isovector vibrations in titanium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.; Taigel, T.

    1989-01-30

    The strong M1 states with K/sup ..pi../ = 1/sup +/ in /sup 44,46,48,50/Ti are described microscopically with a deformed Woods-Saxon potential plus QRPA using a parameter-free self-consistent quadrupole force and an interaction, which restores the rotational symmetry. The available experimental data (energies, B(M1) values and (e,e') form factors in /sup 46,48/Ti) are well described in terms of isovector quadrupole rotational vibrations. These RPA states correspond to the scissor-type of isovector motion described by the two-rotor model, but they overlap only 20-30% with the collective isovector rotational state of this model since only few quasiparticle configurations take part in the RPA rotational vibration.

  3. Rotating mandrel speeds assembly of plastic inflatables

    Science.gov (United States)

    Mac Fadden, J. A.; Stenlund, S. J.; Wendt, A. J.

    1966-01-01

    Rotating mandrel permits the accurate cutting, forming, and sealing of plastic gores for assembly of an inflatable surface of revolution. The gores remain on the mandrel until the final seam is reached. Tolerances are tightly controlled by the mandrel configuration.

  4. Ferrofluid drops in rotating magnetic fields

    CERN Document Server

    Lebedev, A V; Morozov, K I; Bauke, H

    2003-01-01

    Drops of a ferrofluid floating in a non-magnetic liquid of the same density and spun by a rotating magnetic field are investigated experimentally and theoretically. The parameters for the experiment are chosen such that different stationary drop shapes including non-axis-symmetric configurations could be observed. Within an approximate theoretical analysis the character of the occurring shape bifurcations, the different stationary drop forms, as well as the slow rotational motion of the drop is investigated. The results are in qualitative, and often quantitative agreement, with the experimental findings. It is also shown that a small eccentricity of the rotating field may have a substantial impact on the rotational motion of the drop.

  5. Suggested notation conventions for rotational seismology

    Science.gov (United States)

    Evans, J.R.

    2009-01-01

    We note substantial inconsistency among authors discussing rotational motions observed with inertial seismic sensors (and much more so in the broader topic of rotational phenomena). Working from physics and other precedents, we propose standard terminology and a preferred reference frame for inertial sensors (Fig. 1) that may be consistently used in discussions of both finite and infinitesimal observed rotational and translational motions in seismology and earthquake engineering. The scope of this article is limited to observations because there are significant differences in the analysis of finite and infinitesimal rotations, though such discussions should remain compatible with those presented here where possible. We recommend the general use of the notation conventions presented in this tutorial, and we recommend that any deviations or alternatives be explicitly defined.

  6. Imaging interferometry to measure surface rotation field

    DEFF Research Database (Denmark)

    Travaillot, Thomas; Dohn, Søren; Boisen, Anja

    2013-01-01

    This paper describes a polarized-light imaging interferometer to measure the rotation field of reflecting surfaces. This setup is based on a homemade prism featuring a birefringence gradient. The arrangement is presented before focusing on the homemade prism and its manufacturing process. The dep....... The dependence of the measured optical phase on the rotation of the surface is derived, thus highlighting the key parameters driving the sensitivity. The system’s capabilities are illustrated by imaging the rotation field at the surface of a tip-loaded polymer specimen.......This paper describes a polarized-light imaging interferometer to measure the rotation field of reflecting surfaces. This setup is based on a homemade prism featuring a birefringence gradient. The arrangement is presented before focusing on the homemade prism and its manufacturing process...

  7. Mathematical Minute: Rotating a Function Graph

    Science.gov (United States)

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  8. Leeuwenhoek's "Proof" of the Earth's Rotation.

    Science.gov (United States)

    Kruglak, Haym; Johnson, Rand H.

    1995-01-01

    Leeuwenhoek's demonstration proving the Earth's rotation, which leads to some significant errors in reasoning, can be reproduced from this article and used to provide an interesting discussion in undergraduate astronomy and physics courses or clubs. (LZ)

  9. Rotating Space Elevators: Classical and Statistical Mechanics

    Science.gov (United States)

    Knudsen, Steven

    We investigate a novel and unique dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of strings reaching beyond the Earth geo-synchronous satellite orbit. Objects sliding along the RSE string ("climbers") do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. The RSE is a double rotating floppy string. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in the double rotating frame. The RSE exhibits a variety of interesting dynamical phenomena studied in this thesis.

  10. Rapid Rotation of a Heavy White Dwarf

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    New Kepler observations of a pulsating white dwarf have revealed clues about the rotation of intermediate-mass stars.Learning About ProgenitorsStars weighing in at under 8 solar masses generally end their lives as slowly cooling white dwarfs. By studying the rotation of white dwarfs, therefore, we are able to learn about the final stages of angular momentum evolution in these progenitor stars.Most isolated field white dwarfs cluster in mass around 0.62 solar masses, which corresponds to a progenitor mass of around 2.2 solar masses. This abundance means that weve already learned a good deal about the final rotation of low-mass (13 solar-mass) stars. Our knowledge about the angular momentum of intermediate-mass (38 solar-mass) stars, on the other hand, remains fairly limited.Fourier transform of the pulsations from SDSSJ0837+1856. The six frequencies of stellar variability, marked with red dots, reveal a rotation period of 1.13 hours. [Hermes et al. 2017]Record-Breaking FindA newly discovered white dwarf, SDSSJ0837+1856, is now helping to shed light on this mass range. SDSSJ0837+1856 appears to be unusually massive: its measured at 0.87 solar masses, which corresponds to a progenitor mass of roughly 4.0 solar masses. Determining the rotation of this white dwarf would therefore tell us about the final stages of angular momentum in an intermediate-mass star.In a new study led by J.J. Hermes (Hubble Fellow at University of North Carolina, Chapel Hill), a team of scientists presents a series of measurements of SDSSJ0837+1856 that suggest its the highest-mass and fastest-rotating isolated pulsating white dwarf known.Histogram of rotation rates determined from the asteroseismology of pulsating white dwarfs (marked in red). SDSSJ0837+1856 (indicated in black) is more massive and rotates faster than any other known pulsating white dwarf. [Hermes et al. 2017]Rotation from PulsationsWhy pulsating? In the absence of measurable spots and other surface features, the way we

  11. Faraday Rotation Measurement with the SMAP Radiometer

    Science.gov (United States)

    Le Vine, D. M.; Abraham, S.

    2016-01-01

    Faraday rotation is an issue that needs to be taken into account in remote sensing of parameters such as soil moisture and ocean salinity at L-band. This is especially important for SMAP because Faraday rotation varies with azimuth around the conical scan. SMAP retrieves Faraday rotation in situ using the ratio of the third and second Stokes parameters, a procedure that was demonstrated successfully by Aquarius. This manuscript reports the performance of this algorithm on SMAP. Over ocean the process works reasonably well and results compare favorably with expected values. But over land, the inhomogeneous nature of the scene results in much noisier, and in some cases unreliable estimates of Faraday rotation.

  12. Some dynamic problems of rotating windmill systems

    Science.gov (United States)

    Dugundji, J.

    1976-01-01

    The basic whirl stability of a rotating windmill on a flexible tower is reviewed. Effects of unbalance, gravity force, gyroscopic moments, and aerodynamics are discussed. Some experimental results on a small model windmill are given.

  13. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Melatos, A., E-mail: amelatos@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  14. Fast Fossil Rotation of Neutron Star Cores

    Science.gov (United States)

    Melatos, A.

    2012-12-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed ~103 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  15. Exploring molecular complexity with ALMA (EMoCA): Detection of three new hot cores in Sagittarius B2(N)

    Science.gov (United States)

    Bonfand, M.; Belloche, A.; Menten, K. M.; Garrod, R. T.; Müller, H. S. P.

    2017-08-01

    Context. The Sagittarius B2 molecular cloud contains several sites forming high-mass stars. Sgr B2(N) is one of its main centers of activity. It hosts several compact and ultra-compact HII regions, as well as two known hot molecular cores (Sgr B2(N1) and Sgr B2(N2)) in the early stage of the high-mass star formation process, where complex organic molecules (COMs) are detected in the gas phase. Aims: Our goal is to use the high sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) to characterize the hot core population in Sgr B2(N) and thereby shed new light on the star formation process in this star-forming region. Methods: We use a complete 3 mm spectral line survey conducted with ALMA to search for faint hot cores in the Sgr B2(N) region. The chemical composition of the detected sources and the column densities are derived by modeling the whole spectra under the assumption of local thermodynamic equilibrium. Population diagrams are constructed to fit rotational temperatures. Integrated intensity maps are produced to derive the peak position and fit the size of each molecule's emission distribution. The kinematic structure of the hot cores is investigated by analyzing the line wing emission of typical outflow tracers. The H2 column densities are computed from ALMA and SMA continuum emission maps. Results: We report the discovery of three new hot cores in Sgr B2(N) that we call Sgr B2(N3), Sgr B2(N4), and Sgr B2(N5). The three sources are associated with class II methanol masers, well known tracers of high-mass star formation, and Sgr B2(N5), also with a UCHII region. Their H2 column densities are found to be between approximately 16 and 36 times lower than the one of the main hot core Sgr B2(N1). The spectra of these new hot cores have spectral line densities of 11 up to 31 emission lines per GHz above the 7σ level, assigned to 22-25 molecules plus 13-20 less abundant isotopologs. We derive rotational temperatures of approximately 140-180 K for

  16. IMPORTANCE OF PREDECESSORS IN MODERN CROP ROTATION

    Directory of Open Access Journals (Sweden)

    Gavrail Kundurdzhiev

    2016-06-01

    Full Text Available The paper examines the peculiarities of modern systems of field crop rotations. A review is made of the criteria for selecting the precursors for basic cereals in arable crop rotations in Bulgaria. It reflects the results of years of comparative field trials with different combinations of factors - genotype-fertilization-predecessor. Conclusions are made on the impact of the predecessor on the energy productivity of crops.

  17. The rotation of the Sun's core.

    Science.gov (United States)

    Paterno, L.; Sofia, S.; di Mauro, M. P.

    1996-10-01

    The rotation of the Sun's core, below 0.3Rsun_, is inferred from two independent new results. The first is based on the recent oblateness measurements carried out by the Solar Disk Sextant (SDS) instrument outside the Earth's atmosphere, and the second on the very accurate measurements of rotational splittings of the lowest degree acoustic modes, carried out in the framework of the helioseismic network IRIS. By using the theory of slowly rotating stars applied to a solar standard model, we deduce a set of rotational laws for the innermost layers, which are consistent with both the measured oblateness value and the results of the inversion of helioseismic data. The SDS and IRIS results indicate that the Sun's central regions rotate at a rate in between 1.5 and 2 times the surface equatorial angular velocity. As a result of our analysis, we deduce a quadrupole moment J_2_=2.22x10^-7^, which implies an advance of Mercury's perihelion of 42.98arcsec/c, in agreement with the theory of General Relativity and the measurements of Mercury's orbit by means of planetary radar ranging. However, very recent results obtained by the helioseismic network BISON indicate that core rotation is even slower than the polar surface rotation and therefore imply a completely different scenario than that proposed here. If we assume the intermediate solution of rigid body rotation, an alternate source of the oblateness may be attributed to a magnetic field of the order of 10^5^Gauss in the interior of the Sun.

  18. Deconvolving Current from Faraday Rotation Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Stephen E. Mitchell

    2008-02-01

    In this paper, a unique software program is reported which automatically decodes the Faraday rotation signal into a time-dependent current representation. System parameters, such as the Faraday fiber’s Verdet constant and number of loops in the sensor, are the only user-interface inputs. The central aspect of the algorithm utilizes a short-time Fourier transform, which reveals much of the Faraday rotation measurement’s implicit information necessary for unfolding the dynamic current measurement.

  19. On continuum driven winds from rotating stars

    OpenAIRE

    Shacham, Tomer; Shaviv, Nir J.

    2012-01-01

    We study the dynamics of continuum driven winds from rotating stars, and develop an approximate analytical model. We then discuss the evolution of stellar angular momentum, and show that just above the Eddington limit, the winds are sufficiently concentrated towards the poles to spin up the star. A twin-lobe structure of the ejected nebula is seen to be a generic consequence of critical rotation. We find that if the pressure in such stars is sufficiently dominated by radiation, an equatorial ...

  20. Stable rotating dipole solitons in nonlocal media

    DEFF Research Database (Denmark)

    Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.

    2006-01-01

    We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....

  1. Rotational control of computer generated holograms.

    Science.gov (United States)

    Preece, Daryl; Rubinsztein-Dunlop, Halina

    2017-11-15

    We develop a basis for three-dimensional rotation of arbitrary light fields created by computer generated holograms. By adding an extra phase function into the kinoform, any light field or holographic image can be tilted in the focal plane with minimized distortion. We present two different approaches to rotate an arbitrary hologram: the Scheimpflug method and a novel coordinate transformation method. Experimental results are presented to demonstrate the validity of both proposed methods.

  2. Exotic rotational correlations in quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig

    2017-05-01

    It is argued by extrapolation of general relativity and quantum mechanics that a classical inertial frame corresponds to a statistically defined observable that rotationally fluctuates due to Planck scale indeterminacy. Physical effects of exotic nonlocal rotational correlations on large scale field states are estimated. Their entanglement with the strong interaction vacuum is estimated to produce a universal, statistical centrifugal acceleration that resembles the observed cosmological constant.

  3. Faraday rotation effect in periodic graphene structure

    Science.gov (United States)

    Liu, Daqing; Zhang, Shengli; Ma, Ning; Li, Xinghua

    2012-07-01

    We report the magneto-optical (MO) rotation effect in a periodic graphene-sheet structure. Due to the masslessness of carriers in graphene, the magnetic response is very sensitive and the magneto-optical rotation effect is therefore significant. We predict that the Verdet constant of the periodic graphene-sheet structure is roughly 10-100 times that of rare-earth-doped magneto-optical glass in the infrared region.

  4. Faraday rotation effect in periodic graphene structure

    OpenAIRE

    Liu, Daqing; Zhang, Shengli; Ma, Ning; Li, Xinghua

    2012-01-01

    We report the magneto-optical rotation effect in a periodic graphene-sheet structure. Due to the masslessness of carriers in graphene, the magnetic response is very sensitive and the magneto-optical rotation effect is therefore significant. We predict that the Verdet constant of the periodic graphene-sheet structure is roughly 10-100 times that of rare-earth-doped magneto-optical glass in the infrared region.

  5. Mobility recovery after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Gumina, Stefano; Izzo, Rosanna; Pintabona, Giovanni; Candela, Vittorio; Savastano, Riccardo; Santilli, Valter

    2017-02-01

    Mobility recovery after arthroscopic rotator cuff repair in different tears size. To investigate, after arthroscopic rotator cuff repair, the range of motion (ROM) progression in different sized tears (small, large and massive), and evaluating ROM changes in the pre- and postoperative periods of each group. Cohort study. Policlinico Umberto I, "Sapienza" University, Rome, Italy. Ninety-two patients with reparable rotator cuff tears. Patients were divided in three groups: group A (small lesions), group B (large lesions) and group C (reparable massive lesions) composed by 29, 31 and 32 patients, respectively. ROM were measured preoperatively (T0), and after 45 (T1), 70 (T2) and 100 (T3) days after the arthroscopic treatment. From T0 to T3, small lesions are associated to excellent results, with an improvement of all parameters; the same in patients with large lesions, except for flexion parameter; in reparable massive lesions only external and internal rotation improved. Not all parameters recover in the same way: postoperative rehabilitative protocol is an integral contributor to favorable outcomes in patients with rotator cuff tears. The knowledge about ROM recovering after arthroscopic rotator cuff repair is a strategic information for the patient, as well as for the surgeon and physiatrist.

  6. Nonlinear dynamics of a rotating double pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Soumyabrata, E-mail: ayanmaiti19@gmail.com [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, 711103 (India); Roy, Jyotirmoy, E-mail: jyotirmoy.roy@live.com [UM-DAE Centre for Excellence in Basic Sciences, Santa Cruz, Mumbai, 400098 (India); Mallik, Asok K., E-mail: asokiitk@gmail.com [Department of Applied Mechanics and Aerospace Engineering, Indian Institute of Engineering Science and Technology, Shibpur, 711103 (India); Bhattacharjee, Jayanta K., E-mail: jayanta.bhattacharjee@gmail.com [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2016-01-28

    Nonlinear dynamics of a double pendulum rotating at a constant speed about a vertical axis passing through the top hinge is investigated. Transitions of oscillations from chaotic to quasiperiodic and back to chaotic again are observed with increasing speed of rotation. With increasing speed, a pair of new stable equilibrium states, different from the normal vertical one, appear and the quasiperiodic oscillations occur. These oscillations are first centered around the origin, but with increasing rotation speed they cover the origin and the new fixed points. At a still higher speed, more than one pair of fixed points appear and the oscillation again turns chaotic. The onset of chaos is explained in terms of internal resonance. Analytical and numerical results confirm the critical values of the speed parameter at various transitions. - Highlights: • The rotating double pendulum shows transitions from chaos to order and back to chaos. • These transitions occur as the rotation speed is increased. • The dynamics is quasi-periodic in the ordered state. • Within the ordered state the nature of quasi-periodicity changes with rotation speed. • The chaotic state always emerges as a result of an internal resonance.

  7. Rotator cuff tear: A detailed update

    Directory of Open Access Journals (Sweden)

    Vivek Pandey

    2015-01-01

    Full Text Available Rotator cuff tear has been a known entity for orthopaedic surgeons for more than two hundred years. Although the exact pathogenesis is controversial, a combination of intrinsic factors proposed by Codman and extrinsic factors theorized by Neer is likely responsible for most rotator cuff tears. Magnetic resonance imaging remains the gold standard for the diagnosis of rotator cuff tears, but the emergence of ultrasound has revolutionized the diagnostic capability. Even though mini-open rotator cuff repair is still commonly performed, and results are comparable to arthroscopic repair, all-arthroscopic repair of rotator cuff tear is now fast becoming a standard care for rotator cuff repair. Appropriate knowledge of pathology and healing pattern of cuff, strong and biological repair techniques, better suture anchors, and gradual rehabilitation of postcuff repair have led to good to excellent outcome after repair. As the healing of degenerative cuff tear remains unpredictable, the role of biological agents such as platelet-rich plasma and stem cells for postcuff repair augmentation is still under evaluation. The role of scaffolds in massive cuff tear is also being probed.

  8. Passive RFID Rotation Dimension Reduction via Aggregation

    Science.gov (United States)

    Matthews, Eric

    Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag's similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%.

  9. A method to deconvolve stellar rotational velocities

    Science.gov (United States)

    Curé, Michel; Rial, Diego F.; Christen, Alejandra; Cassetti, Julia

    2014-05-01

    Aims: Rotational speed is an important physical parameter of stars, and knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle v sin i. Methods: We developed a method to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities extending the work of Chandrasekhar & Münch (1950, ApJ, 111, 142) Results: This method is applied: a) to theoretical synthetic data recovering the original velocity distribution with a very small error; and b) to a sample of about 12.000 field main-sequence stars, corroborating that the velocity distribution function is non-Maxwellian, but is better described by distributions based on the concept of maximum entropy, such as Tsallis or Kaniadakis distribution functions. Conclusions: This is a very robust and novel method that deconvolves the rotational velocity cumulative distribution function from a sample of v sin i data in a single step without needing any convergence criteria.

  10. Stress field rotation or block rotation: An example from the Lake Mead fault system

    Science.gov (United States)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-02-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  11. Rotational quantum friction in superfluids: Radiation from object rotating in superfluid vacuum

    OpenAIRE

    Calogeracos, A.; Volovik, G. E.

    1999-01-01

    We discuss the friction experienced by the body rotating in superfluid liquid at T=0. The effect is analogous to the amplification of electromagnetic radiation and spontaneous emission by the body or black hole rotating in quantum vacuum, first discussed by Zel'dovich and Starobinsky. The friction is caused by the interaction of the part of the liquid, which is rigidly connected with the rotating body and thus represents the comoving detector, with the "Minkowski" vacuum outside the body. The...

  12. Multifrequency emission from hot ion disks

    Science.gov (United States)

    Maisack, Michael; Becker, Peter A.; Kafatos, Menas

    1994-01-01

    The discovery of a large number of gamma-emitting active galactic nuclei (AGNs) by the EGRET instrument on the Compton Gamma Ray Observatory (CGRO) has spawned a lot of theoretical interest in the high-energy and multifrequency emission from these objects. Since most of them show evidence for relativistic outflow, jet models have received most of the attention so far. However, the presence of soft photons at the center of the active nucleus and the resulting Compton drag make it difficult to produce the observed amount of MeV/GeV emission. We explore hot, two-temperature accretion disks around Kerr black holes as an alternative to relativistic beam models for the production of the high-enerty emission. The decay of neutral pions created in the hot region produces photons with energies up to several hundred MeV. Relativistic pairs created as a result of charged pion decays produce additional inverse-Compton radiation in the range of approx. 1 keV-4 MeV if the pairs are exposed to UV radiation, or in the range of approx. 40 keV-150 MeV if the pairs are exposed to soft X-rays. This suggests that high-energy flares in AGNs may be triggered by changes in the disk structure (such as phase transitions or the development of electron scattering coronae) that temporarily shield the hot inner region from UV photons emitted at larger radii, thereby reducing the optical depth for MeV/GeV gamma-rays. Stochastic processes may also play a role in accelerating the utrarelativistic electrons responsible for producing the highest energy (GeV) emission.

  13. Rotation-Vibration Constants for the ν 1, ν 22, ν 24, ν 22+ ν 24, and Ground States in Pyrrole ( 12C 4H 5N)

    Science.gov (United States)

    Mellouki, Abdeloihid; Vander Auwera, Jean; Herman, Michel

    1999-01-01

    We have recorded the infrared absorption spectrum of pyrrole at 0.005 cm-1spectral resolution using a Fourier transform interferometer. The rotational analysis of the symmetric out-of-plane C-H bend 2210fundamental band at 722.132993(5) cm-1was performed, allowing 6760 lines to be assigned. These lines were fitted simultaneously to literature data on ν1[A. Mellouki, R. Georges, M. Herman, D. L. Snavely, and S. Leytner,Chem. Phys.220, 311-322 (1997)] and microwave lines [G. Wlodarczak, L. Martinache, J. Demaison, and B. P. Van Eijck,J. Mol. Spectrosc.127, 200-208 (1988)]. A set of rotation parameters was determined for the ground state in Irand IIIrrepresentations, together with vibration-rotation constants for thev1= 1 andv22= 1 vibrational states. The fine structure in the strongest of the hot bands in that range was highlighted by division, from the experimental data, of the spectrum of the 2210band, computed using the vibration-rotation parameters. The rotational assignment of 930 lines in the strongest hot band was performed. The 22102411vibrational assignment is proposed, leading tox22,24= 1.90 cm-1. The transition dipole matrix element for the 2210band is estimated to ‖‖ = 2 × 10-4D.

  14. Rotation-Vibration Constants for the nu1, nu22, nu24, nu22 + nu24, and Ground States in Pyrrole (12C4H5N).

    Science.gov (United States)

    Mellouki; Vander Auwera J; Herman

    1999-01-01

    We have recorded the infrared absorption spectrum of pyrrole at 0.005 cm-1 spectral resolution using a Fourier transform interferometer. The rotational analysis of the symmetric out-of-plane C-H bend 22(1)0 fundamental band at 722.132993(5) cm-1 was performed, allowing 6760 lines to be assigned. These lines were fitted simultaneously to literature data on nu1 [A. Mellouki, R. Georges, M. Herman, D. L. Snavely, and S. Leytner, Chem. Phys. 220, 311-322 (1997)] and microwave lines [G. Wlodarczak, L. Martinache, J. Demaison, and B. P. Van Eijck, J. Mol. Spectrosc. 127, 200-208 (1988)]. A set of rotation parameters was determined for the ground state in Ir and IIIr representations, together with vibration-rotation constants for the v1 = 1 and v22 = 1 vibrational states. The fine structure in the strongest of the hot bands in that range was highlighted by division, from the experimental data, of the spectrum of the 22(1)0 band, computed using the vibration-rotation parameters. The rotational assignment of 930 lines in the strongest hot band was performed. The 22(1)024(1)1 vibrational assignment is proposed, leading to x22,24 = 1.90 cm-1. The transition dipole matrix element for the 22(1)0 band is estimated to || || = 2 x 10(-4) D. Copyright 1999 Academic Press.

  15. Earth rotation prevents exact solid body rotation of fluids in the laboratory

    CERN Document Server

    Boisson, J; Moisy, F; Cortet, P -P

    2012-01-01

    We report direct evidence of a secondary flow excited by the Earth rotation in a water-filled spherical container spinning at constant rotation rate. This so-called {\\it tilt-over flow} essentially consists in a rotation around an axis which is slightly tilted with respect to the rotation axis of the sphere. In the astrophysical context, it corresponds to the flow in the liquid cores of planets forced by precession of the planet rotation axis, and it has been proposed to contribute to the generation of planetary magnetic fields. We detect this weak secondary flow using a particle image velocimetry system mounted in the rotating frame. This secondary flow consists in a weak rotation, thousand times smaller than the sphere rotation, around a horizontal axis which is stationary in the laboratory frame. Its amplitude and orientation are in quantitative agreement with the theory of the tilt-over flow excited by precession. These results show that setting a fluid in a perfect solid body rotation in a laboratory exp...

  16. Hot Fuel Examination Facility/South

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

  17. Hot Air Drying of Green Table Olives

    Directory of Open Access Journals (Sweden)

    Sayit Sargin

    2005-01-01

    Full Text Available The characteristics of hot air-drying of green table olives (Domat variety by using a tray dryer were studied. Air temperature varied from 40 to 70 °C with an air velocity of 1 m/s. Drying rate curves were determined and quality of dried green olives was evaluated by instrumental analysis (bulk density, particle density, porosity, shrinkage, moisture content, water activity, colour value, protein content, oil content, peroxide value and acidity. Consumers’ acceptance test and microbiological analysis were also applied.

  18. [PFBC Hot Gas Cleanup Test Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP's pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.

  19. Observational signatures of hot-star magnetospheres

    Science.gov (United States)

    Oksala, Mary E.

    2017-11-01

    Magnetic fields play an important role in shaping the circumstellar environment of hot, massive stars. Observational diagnostics give clues to the presence of magnetism across the entire electromagnetic spectrum. Infrared features can show more complex structure, indicating they may probe deeper opacities than optical features. Optical and infrared features mimic each other, with identical blue and red peak variations and identical peak velocity of material. These comparisons indicate the location of the infrared and optical emitting material is similar. Longer wavelength diagnostics are currently being developed and tested. IR spectroscopy is a viable tool to detect magnetic candidates in the Galactic center and star forming regions.

  20. The "hot money" phenomenon in Brazil

    Directory of Open Access Journals (Sweden)

    Mylène Gaulard

    2012-09-01

    Full Text Available Because of its high interest rates, Brazil attracts more and more speculative capital flows, called "hot money", under the form of foreign loans, direct or portfolio investments. Actually, the country is directly involved in a carry-trade strategy that tends to appreciate the real, what penalizes the Brazilian exportations of manufactured products. Moreover, capital inflows are extremely volatile, and their departure, causing a fall in loans granted to the Brazilian private banks, could provoke a dangerous burst of the speculative bubble they have contributed to form in the Brazilian real estate sector.

  1. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  2. Designing for hot-blade cutting

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Clausen, Kenn

    2016-01-01

    In this paper we present a novel method for the generation of doubly-curved, architectural design surfaces using swept Euler elastica and cubic splines. The method enables a direct design to production workflow with robotic hot-blade cutting, a novel robotic fabrication method under development......-trivial constraints of blade-cutting in a bottom-up fashion, enabling an exploration of the unique architectural potential of this fabrication approach. The method is implemented as prototype design tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting of expanded polystyrene foam design...

  3. Phase boundary of hot dense fluid hydrogen.

    Science.gov (United States)

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-11-09

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations.

  4. Reliability of measurement of glenohumeral internal rotation, external rotation, and total arc of motion in 3 test positions

    National Research Council Canada - National Science Library

    Kevern, Mark A; Beecher, Michael; Rao, Smita

    2014-01-01

    .... To determine intrarater reliability, interrater reliability, and standard error of measurement for shoulder internal rotation, external rotation, and total arc of motion using an inclinometer in 3...

  5. Heterotaxy syndromes and abnormal bowel rotation

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Beverley [Stanford University, Lucile Packard Children' s Hospital, Department of Radiology, Stanford, CA (United States); Koppolu, Raji; Sylvester, Karl [Lucile Packard Children' s Hospital at Stanford, Department of Surgery, Stanford, CA (United States); Murphy, Daniel [Lucile Packard Children' s Hospital at Stanford, Department of Cardiology, Stanford, CA (United States)

    2014-05-15

    Bowel rotation abnormalities in heterotaxy are common. As more children survive cardiac surgery, the management of gastrointestinal abnormalities has become controversial. To evaluate imaging of malrotation in heterotaxy with surgical correlation and provide an algorithm for management. Imaging reports of heterotaxic children with upper gastrointestinal (UGI) and/or small bowel follow-through (SBFT) were reviewed. Subsequently, fluoroscopic images were re-reviewed in conjunction with CT/MR studies. The original reports and re-reviewed images were compared and correlated with surgical findings. Nineteen of 34 children with heterotaxy underwent UGI, 13/19 also had SBFT. In 15/19 reports, bowel rotation was called abnormal: 11 malrotation, 4 non-rotation, no cases of volvulus. Re-review, including CT (10/19) and MR (2/19), designated 17/19 (90%) as abnormal, 10 malrotation (abnormal bowel arrangement, narrow or uncertain length of mesentery) and 7 non-rotation (small bowel and colon on opposite sides plus low cecum with probable broad mesentery). The most useful CT/MR findings were absence of retroperitoneal duodenum in most abnormal cases and location of bowel, especially cecum. Abnormal orientation of mesenteric vessels suggested malrotation but was not universal. Nine children had elective bowel surgery; non-rotation was found in 4/9 and malrotation was found in 5/9, with discrepancies (non-rotation at surgery, malrotation on imaging) with 4 original interpretations and 1 re-review. We recommend routine, early UGI and SBFT studies once other, urgent clinical concerns have been stabilized, with elective laparoscopic surgery in abnormal or equivocal cases. Cross-sectional imaging, usually obtained for other reasons, can contribute diagnostically. Attempting to assess mesenteric width is important in differentiating non-rotation from malrotation and more accurately identifies appropriate surgical candidates. (orig.)

  6. Toward a systematic approach to opioid rotation

    Directory of Open Access Journals (Sweden)

    Smith HS

    2014-10-01

    Full Text Available Howard S Smith,1,† John F Peppin2,3 1Department of Anesthesiology, Albany Medical College, Albany, NY, USA; 2Global Scientific Affairs, Mallinckrodt Pharmaceuticals, St Louis, MO, USA; 3Center for Bioethics, Pain Management and Medicine, St Louis, MO, USA†Author deceased May 18, 2013 Abstract: Patients requiring chronic opioid therapy may not respond to or tolerate the first opioid prescribed to them, necessitating rotation to another opioid. They may also require dose increases for a number of reasons, including worsening disease and increased pain. Dose escalation to restore analgesia using the primary opioid may lead to increased adverse events. In these patients, rotation to a different opioid at a lower-than-equivalent dose may be sufficient to maintain adequate tolerability and analgesia. In published trials and case series, opioid rotation is performed either using a predetermined substitute opioid with fixed conversion methods, or in a manner that appears to be no more systematic than trial and error. In clinical practice, opioid rotation must be performed with consideration of individual patient characteristics, comorbidities (eg, concurrent psychiatric, pulmonary, renal, or hepatic illness, and concurrent medications, using flexible dosing protocols that take into account incomplete opioid cross-tolerance. References cited in this review were identified via a search of PubMed covering all English language publications up to May 21, 2013 pertaining to opioid rotation, excluding narrative reviews, letters, and expert opinion. The search yielded a total of 129 articles, 92 of which were judged to provide relevant information and subsequently included in this review. Through a review of this literature and from the authors' empiric experience, this review provides practical information on performing opioid rotation in clinical practice. Keywords: chronic pain, opioid rotation, opioid analgesics

  7. Hot spots and hot moments in riparian zones: Potential for improved water quality management

    Science.gov (United States)

    Philippe Vidon; Craig Allan; Douglas Burns; Tim P. Duval; Noel Gurwick; Shreeram Inamdar; Richard Lowrance; Judy Okay; Durelle Scott; Stephen Sebestyen

    2010-01-01

    Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as "hot spots and moments" of retention, degradation, or production. Nevertheless, studies investigating...

  8. Hot dry rock geothermal potential of Roosevelt Hot Springs area: review of data and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1981-05-01

    The Roosevelt Hot Springs area in west-central Utah possesses several features indicating potential for hot dry rock (HDR) geothermal development. The area is characterized by extensional tectonics and a high regional heat flow of greater than 105 mW/m/sup 2/. The presence of silicic volcanic rocks as young as 0.5 to 0.8 Myr and totaling 14 km/sup 3/ in volume indicates underlying magma reservoirs may be the heat source for the thermal anomaly. Several hot dry wells have been drilled on the periphery of the geothermal field. Information obtained on three of these deep wells shows that they have thermal gradients of 55 to 60/sup 0/C/km and bottom in impermeable Tertiary granitic and Precambrian gneissic units. The Tertiary granite is the preferred HDR reservoir rock because Precambrian gneissic rocks possess a well-developed banded foliation, making fracture control over the reservoir more difficult. Based on a fairly conservative estimate of 160 km/sup 2/ for the thermal anomaly present at Roosevelt Hot Springs, the area designated favorable for HDR geothermal exploration may be on the order of seven times or more than the hydrogeothermal area currently under development.

  9. Hot stamping advanced manufacturing technology of lightweight car body

    CERN Document Server

    Hu, Ping; He, Bin

    2017-01-01

    This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers...

  10. METC CFD simulations of hot gas filtration

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.

  11. Hot flow behavior of boron microalloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Chipres, E. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo. Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Mejia, I. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo. Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico)], E-mail: imejia@zeus.umich.mx; Maldonado, C.; Bedolla-Jacuinde, A. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo. Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); El-Wahabi, M. [Departament de Ciencia dels Materials i Enginyeria Metallurgica, ETSEIB, Universitat Politecnica de Catalunya. Av. Diagonal 647, 08028 Barcelona (Spain); Cabrera, J.M. [Departament de Ciencia dels Materials i Enginyeria Metallurgica, ETSEIB, Universitat Politecnica de Catalunya. Av. Diagonal 647, 08028 Barcelona (Spain); CTM Centre Tecnologic. Av. de las Bases de Manresa, 1, de Manresa, 08240 Manresa (Spain)

    2008-05-15

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10{sup -3}, 10{sup -2} and 10{sup -1} s{sup -1}). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure.

  12. A novel solar hot plate for cooking

    Energy Technology Data Exchange (ETDEWEB)

    Rincon Mejia, Eduardo A; Osorio Jaramillo, Fidel A [Facultad de Ingenieria, UAEMex, Toluca, Edo. (Mexico)

    2000-07-01

    In Mexico and other developing countries, the use of firewood as combustible for cooking has contributed to deforestation and desertification of large zones. This is due to the lack of alternative combustibles for the poor inhabitants of the countryside and remote areas. In this paper, a new solar hot plate, intended for contributing to solve this problem, is presented. It can be used for cooking not only a great variety of prehispanic and traditional meals, like tortillas, fried meat and vegetables, but also hot cakes, bacon, eggs, steaks and fries. The hot plate solar cooker, called Tolocatzin, consists of a horizontal metallic plate, which is heated from both of its top and bottom surfaces by concentrated sun light from multicompound concentrator based on nonimaging optics, and built with nine ordinary plane glass-silvered, and two curved aluminum mirrors, so it can be manufactured easily in a small factory or at home. For an acceptance angle of 15 Celsius degrees, which allows the concentration of sun light without sun-tracking for about one hour, it can reach temperatures up to 240 Celsius degrees in a few minutes. This temperature is high enough for cooking almost all fried or grilled meals. The design was optimized using ray-trace procedures. The operational experience with early prototypes has shown that the Tolocatzin solar hot plate does an excellent cooking job and could really be massively used in sunny countries. [Spanish] En Mexico y otros paises en desarrollo, el uso de la madera como combustible para cocinar ha contribuido a la deforestacion y desertificacion de grandes zonas. Esto es debido a la falta de combustibles alternativos por parte de los habitantes pobres del campo y de areas remotas. En este articulo se presenta una nueva placa solar que tiene el proposito de contribuir a resolver este problema. Puede ser usada para cocinar no solamente una gran variedad de comidas prehispanicas y tradicionales, como tortillas, carne frita y verduras sino

  13. The menopausal hot flush--anything new?

    Science.gov (United States)

    Sturdee, David W

    2008-05-20

    Although the hot flush is generally recognised by women and the medical profession as the most characteristic and often a very distressing symptom of the climacteric, it remains an enigma. The physiological changes associated with the hot flush are different from any other flushing condition, with an increased peripheral blood flow, increased heart rate and in particular a decrease in galvanic skin resistance, which is unique to the flush. Flushing occurs as a result of disturbance of the temperature regulating mechanism situated in the hypothalamus, and probably a reduction in the thermoneutral zone, within which fluctuations of basal body temperature do not provoke compensatory vascular responses. Many factors have been implicated, including hormone releasing factors, gonadotrophins and neurohumorals. However, the role of oestrogen is critical and the clinical value of oestrogen therapy is well established and has been confirmed by a Cochrane review. Nevertheless, the precise mechanism by which reduced circulating levels of oestrogen are involved in causing the flush has not yet been established. Priming with oestrogen seems to be an essential pre-requisite for flushing, as young women with ovarian dysgenesis and very low circulating levels of oestrogen never have hot flushes unless they are given oestrogen replacement therapy, which is later discontinued. Oestrogen antagonist activity by selective oestrogen receptor modulators such as tamoxifen and raloxifene can also cause flushing. A link with gonadotrophins is demonstrated by a temporal association of flushes with the pulsatile release of luteinising hormone (LH). However, if LH pulses are eliminated by GnRH analogue, the frequency of flushing is not altered, which confirms that LH is merely associated with the flush rather than being causative. It is probable that the flush is initiated by a supra-pituitary mechanism which is influenced by the hypothalamic factors responsible for pulsatile LH release. A

  14. Quantum assisted enhancement of optical magnetometer with squeezed vacuum in hot Rb vapor

    Science.gov (United States)

    Mikhailov, Eugeniy; Horrom, Travis; Singh, Robinjeet

    2012-06-01

    We demonstrate enhancement to the sensitivity of an optical magnetometer based on the nonlinear magneto-optical Faraday effect in ^87Rb vapor with the use of squeezed vacuum. We generate quantum squeezed vacuum states via the polarization self-rotation effect in hot ^87Rb vapor exhibiting noise spectrum suppression ranging from frequencies of a few hundred Hz to several MHz. Injection of such squeezed states into a magneto-optical magnetometer provides broad band noise suppression of close to 2 dB. We study various parameters of the magnetometer such as Rb cell temperature, pump power, and the noise spectrum of the probe signal to identify the most favorable conditions for quantum enhanced magnetometry. Our experimental arrangement offers potential quantum improvement to the most sensitive magnetometers at frequencies down to hundreds of Hz, which can be useful for biological, geophysical, medical, or military sensing applications.

  15. Results from a Set of Three-Dimensional Numerical Experiments of a Hot Jupiter Atmosphere

    Science.gov (United States)

    Mayne, Nathan J.; Debras, Flirian; Baraffe, Isabelle; Thuburn, John; Amundsen, David S.; Acreman, David M.; Smith, Chris; Browning, Matthew K.; Manners, James; Wood Nigel

    2017-01-01

    We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.

  16. Quality of scintillating fibres after hot bump shrinking

    CERN Document Server

    Rodrigues Cavalcante, Ana Barbara; Joram, Christian

    2016-01-01

    Shrinking the diameter of fibre bumps by a hot drawing tool requires to run the fibre through the hot tool over its full length, bearing the risk of a degradation of the fibre performance. In this study we demonstrated that the hot bump shrinking method has no visible effect on the optical attenuation length, the light yield following ionising radiation, the diameter, the mechanical stability and the integrity of the cladding. For the latter, even a small positive impact was observed.

  17. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  18. Experiments on the turbulent boundary layer on a thin cylinder rotating in an axial flow. 1st Report. Properties of mean flow and turbulence; Jikuryuchu no hosonaga kaiten entojo no ranryu kyokaiso no jikken. 1. Heikinryu to nagare no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yano, H. [Daido Institute of Technology, Nagoya (Japan); Yamashita, S.; Naruse, Y.; Kondo, K. [Gifu University, Gifu (Japan). Faculty of Engineering

    1996-09-25

    The mean velocity and turbulent field in a three-dimensional turbulent boundary layer on a thin cylinder rotating in a uniform stream are examined experimentally. Measurements of mean velocity and all Reynolds stresses are made by means of a single rotatable hot-wire method. Mean velocity distribution is well represented in the relative main flow direction with respect to the rotating cylinder by a logarithmic law deduced in an earlier study. Johnston`s logarithmic law for 3-D turbulent boundary layers also accurately describes the present flow. Although turbulent intensities and Reynolds stresses all increased with rotation speed of the cylinder, their distributions are well represented by non-dimensionalization using the resultant velocity of the main flow and the peripheral velocity of the cylinder. Both eddy viscosities and mixing lengths increase with the rotation speed, and there is no evidence of isotropic eddy viscosity. 21 refs., 15 figs., 1 tab.

  19. Chaotic Rotation of Nix and Hydra

    Science.gov (United States)

    Showalter, Mark R.

    2014-05-01

    Disk-integrated photometry of Hydra and Nix from HST during 2010-2012 show large variations, which can be attributed to a combination of the phase function and the rotational light curves of the moons. After dividing out a model phase curve, variations by more than a factor of two remain, indicating that both Nix and Hydra are distinctly irregular in shape. Unexpectedly, Nix and Hydra's variations show no correlation with orbital longitude, as one would expect for bodies in synchronous rotation. In fact, Fourier analysis of the measurements does not reveal any fixed rotation periods compatible with the data. Compounding the mystery, Nix increased in absolute brightness by about 30% between 2010 and 2012, whereas Hydra was stable.I have developed a numeric integrator that tracks the position, velocity, orientation and rotation state of a moon as it orbits the Pluto-Charon "binary planet". The moons are represented by triaxial ellipsoids with arbitrary axial ratios. Pluto and Charon follow circular orbits about their common barycenter. I have run simulations for periods of up to 1000 years and for a variety of axial ratios and starting conditions. If an object is started in synchronous rotation with its long axis pointed toward the system barycenter, then it remains synchronously locked for the duration of the integrations. However, other initial conditions commonly lead to chaotic rotation, with Lyupanov times as brief as 30 days. Moons will sometimes temporarily lock into a nearly fixed rotation state, but commonly break out again within ~ 500 days. Depending on the axial ratios, polar flips are also commonly observed; this polar wander provides a plausible explanation for the year-by-year change in the observed brightness of Nix.Chaotic rotation is rare in the solar system, having previously been noted only for Hyperion and possibly Nereid. However, both photometry and dynamical simulations support the notion that chaotic rotation is a natural state for

  20. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  1. Dipole Alignment in Rotating MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  2. Molecular ring rotation in solid ferrocene revisited

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Markus, E-mail: appel@ill.eu [Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt (Germany); Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble (France); Frick, Bernhard [Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble (France); Spehr, Tinka Luise; Stühn, Bernd [Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt (Germany)

    2015-03-21

    We report on quasielastic neutron spectroscopy experiments on ferrocene (bis(η{sup 5}-cyclopentadienyl)iron) in its three different crystalline phases: the disordered monoclinic crystalline phase (T > 164 K), the metastable triclinic phase (T < 164 K), and the stable orthorhombic phase (T < 250 K). The cyclopentadienyl rings in ferrocene are known to undergo rotational reorientations for which the analysis of our large data set suggests partially a revision of the known picture of the dynamics and allows for an extension and completion of previous studies. In the monoclinic phase, guided by structural information, we propose a model for rotational jumps among non-equivalent sites in contrast to the established 5-fold jump rotation model. The new model takes the dynamical disorder into account and allows the cyclopentadienyl rings to reside in two different configurations which are found to be twisted by an angle of approximately 30°. In the triclinic phase, our analysis demands the use of a 2-ring model accounting for crystallographically independent sites with different barriers to rotation. For the orthorhombic phase of ferrocene, we confirm a significantly increased barrier of rotation using neutron backscattering spectroscopy. Our data analysis includes multiple scattering corrections and presents a novel approach of simultaneous analysis of different neutron scattering data by combining elastic and inelastic fixed window temperature scans with energy spectra, providing a very robust and reliable mean of extracting the individual activation energies of overlapping processes.

  3. Rotation-Induced Macromolecular Spooling of DNA

    Science.gov (United States)

    Shendruk, Tyler N.; Sean, David; Berard, Daniel J.; Wolf, Julian; Dragoman, Justin; Battat, Sophie; Slater, Gary W.; Leslie, Sabrina R.

    2017-07-01

    Genetic information is stored in a linear sequence of base pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands, resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.

  4. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  5. Midplane Faraday Rotation: A densitometer for BPX

    Energy Technology Data Exchange (ETDEWEB)

    Jobes, F.C.; Mansfield, D.K.

    1992-02-01

    The density in a high field, high density tokamak such as BPX can be determined by measuring the Faraday rotation of a 10.6 {mu}m laser directed tangent to the toroidal field. If there is a horizontal array of such beams, then n{sub e}(R) can be readily obtained with a simple Abel version about the center line of the tokamak. For BPX operated at full field and density, the rotation angle would be quite large -- about 75{degrees} per pass. A layout in which a single laser beam is fanned out in the horizontal midplane of the tokamak, with a set of retroreflectors on the far side of the vacuum vessel, would provide good spatial resolution, depending only upon the number of reflectors. With this proposed layout, only one window would be needed. Because the rotation angle is never more than 1 fringe,'' the data is always good, and it is also a continuous measurement in time. Faraday rotation is dependent only upon the plasma itself, and thus is not sensitive to vibration of the optical components. Simulations of the expected results show that BPX would be well served even at low densities by a Midplane Faraday Rotation densitometer of {approximately}64 channels. Both TFTR and PBX-M would be suitable test beds for the BPX system.

  6. Midplane Faraday Rotation: A densitometer for BPX

    Energy Technology Data Exchange (ETDEWEB)

    Jobes, F.C.; Mansfield, D.K.

    1992-02-01

    The density in a high field, high density tokamak such as BPX can be determined by measuring the Faraday rotation of a 10.6 {mu}m laser directed tangent to the toroidal field. If there is a horizontal array of such beams, then n{sub e}(R) can be readily obtained with a simple Abel version about the center line of the tokamak. For BPX operated at full field and density, the rotation angle would be quite large -- about 75{degrees} per pass. A layout in which a single laser beam is fanned out in the horizontal midplane of the tokamak, with a set of retroreflectors on the far side of the vacuum vessel, would provide good spatial resolution, depending only upon the number of reflectors. With this proposed layout, only one window would be needed. Because the rotation angle is never more than 1 ``fringe,`` the data is always good, and it is also a continuous measurement in time. Faraday rotation is dependent only upon the plasma itself, and thus is not sensitive to vibration of the optical components. Simulations of the expected results show that BPX would be well served even at low densities by a Midplane Faraday Rotation densitometer of {approximately}64 channels. Both TFTR and PBX-M would be suitable test beds for the BPX system.

  7. Augmentation techniques for rotator cuff repair.

    Science.gov (United States)

    Papalia, Rocco; Franceschi, Francesco; Zampogna, Biagio; D'Adamio, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2013-01-01

    There is a high rate of recurrence of tear and failed healing after rotator cuff repair. Several strategies have proposed to augment rotator cuff repairs to improve postoperative outcome and shoulder performance. We systematically review the literature on clinical outcome following rotator cuff augmentation. We performed a comprehensive search of Medline, CINAHL, Embase and the Cochrane Central Registry of Controlled Trials, from inception of the database to 20 June 2012, using various combinations of keywords. The reference lists of the previously selected articles were then examined by hand. Only studies focusing on clinical outcomes of human patients who had undergone augmented rotator cuff repair were selected. We then evaluated the methodological quality of each article using the Coleman methodology score (CMS), a 10 criteria scoring list assessing the methodological quality of the selected studies (CMS). Thirty-two articles were included in the present review. Two were retrospective studies, and 30 were prospective. Biologic, synthetic and cellular devices were used in 24, 7 and 1 studies, respectively. The mean modified Coleman methodology score was 64.0. Heterogeneity of the clinical outcome scores makes it difficult to compare different studies. None of the augmentation devices available is without problems, and each one presents intrinsic weaknesses. There is no dramatic increase in clinical and functional assessment after augmented procedures, especially if compared with control groups. More and better scientific evidence is necessary to use augmentation of rotator cuff repairs in routine clinical practice.

  8. Rotational equations usable for railway wheelsets

    Science.gov (United States)

    Pascal, Jean-Pierre; Marquis, Brian

    2014-03-01

    The Euler equation is a correct way for writing rotational moments of solids. But it is simple only if written in rotating frames. Applying it to railway wheelsets is difficult because it necessitates using the Euler angles, or Euler parameters, combined to rotation matrices or, numerically more stable, quaternions. Euler angles can be avoided in railway specific codes, by writing dynamical equations in track frames. However, academic literature [Landau LD, Lifshitz EM. Mechanics (Institute of Physical Problems, USSR Academy of Sciences, Moscow), Vol. 1, Course of theoretical physics. 21st English ed. Oxford (UK): Elsevier; 1960; Shabana AA, Zaazaa KE, Sugiyama H. Railroad vehicle dynamics. CRC Press; 2008.] does not provide simple solutions as to how properly writing equations of gyroscopic moments in no rotating frames. This paper describes how it is possible, owing to an approximation validated for railway applications, to avoid Euler angles and rotation matrices, while correctly taking into account gyroscopic effects. Using a most severe example, emphasising gyroscopic effects, it is demonstrated that a fast specific code using the approximation provides results equivalent to those of an multi body system generalised code with no approximation.

  9. Sheared and unsheared rotation of driven dust clusters

    Energy Technology Data Exchange (ETDEWEB)

    Schablinski, Jan; Block, Dietmar; Carstensen, Jan; Greiner, Franko; Piel, Alexander [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet Kiel, Leibnizstraße 19-Kiel, SH 24098 (Germany)

    2014-07-15

    Finite size plasma crystals confined in an anisotropic potential well were studied under a rotating and radially unsheared drive in experiment and simulation at moderate rotational frequencies. A radially sheared rotation of these strongly coupled systems is observed for most cluster configurations with a low symmetry. The results show that a differential rotation can be effected by a non-sheared driving force.

  10. Mental Rotation: Cross-Task Training and Generalization

    Science.gov (United States)

    Stransky, Debi; Wilcox, Laurie M.; Dubrowski, Adam

    2010-01-01

    It is well established that performance on standard mental rotation tasks improves with training (Peters et al., 1995), but thus far there is little consensus regarding the degree of transfer to other tasks which also involve mental rotation. In Experiment 1, we assessed the effect of mental rotation training on participants' Mental Rotation Test…

  11. Harvesting the loss: surface plasmon-based hot electron photodetection

    Science.gov (United States)

    Li, Wei; Valentine, Jason G.

    2017-01-01

    Although the nonradiative decay of surface plasmons was once thought to be only a parasitic process within the plasmonic and metamaterial communities, hot carriers generated from nonradiative plasmon decay offer new opportunities for harnessing absorption loss. Hot carriers can be harnessed for applications ranging from chemical catalysis, photothermal heating, photovoltaics, and photodetection. Here, we present a review on the recent developments concerning photodetection based on hot electrons. The basic principles and recent progress on hot electron photodetectors are summarized. The challenges and potential future directions are also discussed.

  12. History of hot flashes and aortic calcification among postmenopausal women.

    Science.gov (United States)

    Thurston, Rebecca C; Kuller, Lewis H; Edmundowicz, Daniel; Matthews, Karen A

    2010-03-01

    Menopausal hot flashes are considered largely a quality-of-life issue. However, emerging research also links hot flashes to cardiovascular risk. In some investigations, this risk is particularly apparent among women using hormone therapy. The aim of this study was to determine whether a longer history of reported hot flashes over the study period was associated with greater aortic and coronary artery calcification. Interactions with hormone therapy use were examined in an exploratory fashion. Participants included 302 women participating in the Healthy Women Study, a longitudinal study of cardiovascular risk during perimenopause and postmenopause, which was initiated in 1983. Hot flashes (any/none) were assessed when women were 1, 2, 5, and 8 years postmenopausal. Electron beam tomography measures of coronary artery calcification and aortic calcification were completed in 1997-2004. Associations between the number of visits with report of hot flashes, divided by the number of visits attended, and aortic or coronary artery calcification (transformed) were examined in linear regression models. Interactions by hormone therapy use were evaluated. Among women using hormone therapy, a longer history of reported hot flashes was associated with increased aortic calcification, controlling for traditional cardiovascular risk factors (b = 2.87, SE = 1.21, P hot flashes and coronary artery calcification. Among postmenopausal women using hormone therapy, a longer history of reported hot flashes measured prospectively was associated with increased aortic calcification, controlling for traditional cardiovascular risk factors. Hot flashes may signal adverse cardiovascular changes among certain postmenopausal women.

  13. Hot complaint intelligent classification based on text mining

    Directory of Open Access Journals (Sweden)

    XIA Haifeng

    2013-10-01

    Full Text Available The complaint recognizer system plays an important role in making sure the correct classification of the hot complaint,improving the service quantity of telecommunications industry.The customers’ complaint in telecommunications industry has its special particularity which should be done in limited time,which cause the error in classification of hot complaint.The paper presents a model of complaint hot intelligent classification based on text mining,which can classify the hot complaint in the correct level of the complaint navigation.The examples show that the model can be efficient to classify the text of the complaint.

  14. Sex Differences in Mental Rotation Tasks: Not Just in the Mental Rotation Process!

    Science.gov (United States)

    Boone, Alexander P.; Hegarty, Mary

    2017-01-01

    The paper-and-pencil Mental Rotation Test (Vandenberg & Kuse, 1978) consistently produces large sex differences favoring men (Voyer, Voyer, & Bryden, 1995). In this task, participants select 2 of 4 answer choices that are rotations of a probe stimulus. Incorrect choices (i.e., foils) are either mirror reflections of the probe or…

  15. Effective Rotations: Action Effects Determine the Interplay of Mental and Manual Rotations

    Science.gov (United States)

    Janczyk, Markus; Pfister, Roland; Crognale, Michael A.; Kunde, Wilfried

    2012-01-01

    The last decades have seen a growing interest in the impact of action on perception and other concurrent cognitive processes. One particularly interesting example is that manual rotation actions facilitate mental rotations in the same direction. The present study extends this research in two fundamental ways. First, Experiment 1 demonstrates that…

  16. Occult Interpositional Rotator Cuff - an Extremely Rare Case of Traumatic Rotator Cuff Tear

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei Ren; Jou, I Ming [National Cheng Kung University Hospital, Tainan (China); Lin, Cheng Li [Show-Chwan Memorial Hospital, Changhua (China); Chih, Wei Hsing [Chia-Yi Christian Hospital, Chiayi (China)

    2012-01-15

    Traumatic interposition of a rotator cuff tendon in the glenohumeral joint without recognizable glenohumeral dislocation is an unusual complication after shoulder trauma. Here we report the clinical and imaging presentations of a 17-year-old man with trapped rotator cuff tendons in the glenohumeral joint after a bicycle accident. The possible trauma mechanism is also discussed.

  17. Experimental Investigation of Flow and Thermal Patterns in the Rotated Arc Mixer

    Science.gov (United States)

    Baskan, Ozge; Speetjens, Michel; Metcalfe, Guy; Clercx, Herman

    2012-11-01

    Thermal patterns emerging during the downstream evolution of temperature fields in industrial inline mixers have been studied numerically yet experimental observation remains outstanding. This research concerns a comparative analysis between experimental and numerical studies on the evolution of the temperature fields of a representative configuration, namely the Rotated Arc Mixer (RAM), and its correlation with the flow field. The RAM is an inline mixer that is composed of a stationary inner cylinder with consecutive apertures and a rotating outer cylinder inducing transverse flow at the apertures. Design of the experimental facility is based on a 2D time-periodic simplification of the 3D spatially-periodic RAM, where the cross-sectional progression is represented by the temporal evolution. The setup consists of a circular test section with apertures on the circumference and motor-driven belts imitating the rotating cylinder. Constant circumferential temperature is achieved by an enclosing annular hot-water reservoir. The 2D flow and temperature fields are measured by 2D Particle-Imaging Velocimetry and Infrared Thermography. Preliminary results have exposed a clear correlation between temperature and flow fields: thermal patterns evolve in accordance with the time-periodic flow patterns and become persistent ultimately. The authors gratefully acknowledge the support by Dutch Technology Foundation STW.

  18. Rotational Laser Cooling of MgH+ Ions and Rotational Rate Measurements

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Staanum, Peter; Højbjerre, Klaus

    blackbody radiation field. To undertake such modelling, we will carry out measurements of a series of transition rates between rotational states in the vibronic ground state at room temperature. The measurements will be performed by the same Resonance Enhanced Multi-Photon Dissociation (REMPD) process used......A method of laser cooling vibrationally and translationally cold trapped MgH+ ions to the rotational ground state using optical pumping was recently demonstrated in our group [1]. This method relies on the 293 K blackbody radiation to redistribute population among the rotational states, while...... exciting a single rovibrational transition within the X1Σ+ electronic ground state for optical pumping into the rovibrational ground state. To model the expected rotational state distributions after the application of the laser beam, one has to know the various rotational transitions rates in the present...

  19. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  20. Ammonia and methyl cyanide in hot cores

    Science.gov (United States)

    Olmi, L.; Cesaroni, R.; Walmsley, C. M.

    1993-12-01

    We present the results of a work which used the IRAM 30-m telescope to observe the J=6--5, J=8--7, and J=12--11 rotational transitions of methyl cyanide (CH3CN) towards 11 ultracompact H{\\small II} regions in the inner galaxy. The sources observed were taken from a recent study of high-excitation ammonia lines by Cesaroni et al. (1992). All of the sources in our list were detected. We have analysed the data assuming the observed lines to be optically thin and have derived ``rotation temperatures'' and column densities. For four of the sources, we have carried out a more sophisticated analysis allowing for the effects of optical thickness using a large velocity gradient statistical equilibrium program. We find in this way methyl cyanide column densities in the range 310(15) --810(16) cm(-2) , and kinetic temperatures in the range 85--160 K. We also present results of a small survey of similar sources which we have observed in NH3 (4,4) and (5,5) using the Bonn 100-m telescope. An interesting feature of the new 100-m results is the discovery of two new sources showing high excitation ammonia in absorption. There is no obvious preference for sources to have ammonia absorption lines red-shifted relative to emission or vice-versa. Comparison with these and earlier ammonia results of Cesaroni et al. (1992) show that the inferred rotation temperatures are similar below 50 K, but there are large deviations between temperature estimates from the two molecules at higher temperatures. The abundance ratio [CH3CN]/[NH3] which we derive varies between 210(-4) and 810(-3) .

  1. Forces and torques on rotating spirochete flagella.

    Science.gov (United States)

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W

    2011-12-23

    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm.

  2. General Surgery Resident Satisfaction on Cardiothoracic Rotations.

    Science.gov (United States)

    Lussiez, Alisha; Bevins, Jack; Plaska, Andrew; Rosin, Vadim; Reddy, Rishindra M

    2016-01-01

    General surgery residents' exposure to cardiothoracic (CT) surgery rotations has decreased, which may affect resident satisfaction. We surveyed general surgery graduates to assess the relationships among rotation satisfaction, CT disease exposure, rotation length, mentorship, and mistreatment. A survey assessing CT curriculum, exposure, mentorship, and satisfaction was forwarded to general surgery graduates from 17 residency programs. A Wilcoxon rank-sum test was used to assess statistical significance of ordinal level data. Statistical significance was defined as p surgery residency programs who graduated between the years of 1999 to 2014. A total of 94 responses were completed and received. Receiving adequate exposure to CT procedures and disease management was significantly associated with higher satisfaction ratings for all procedures, particularly thoracotomy incisions (p Surgery. Published by Elsevier Inc. All rights reserved.

  3. Controlling inertial focussing using rotational motion.

    Science.gov (United States)

    Prohm, Christopher; Zöller, Nikolas; Stark, Holger

    2014-05-01

    In inertial microfluidics lift forces cause a particle to migrate across streamlines to specific positions in the cross section of a microchannel. We control the rotational motion of a particle and demonstrate that this allows to manipulate the lift-force profile and thereby the particle's equilibrium positions. We perform two-dimensional simulation studies using the method of multi-particle collision dynamics. Particles with unconstrained rotational motion occupy stable equilibrium positions in both halfs of the channel while the center is unstable. When an external torque is applied to the particle, two equilibrium positions annihilate by passing a saddle-node bifurcation and only one stable fixpoint remains so that all particles move to one side of the channel. In contrast, non-rotating particles accumulate in the center and are pushed into one half of the channel when the angular velocity is fixed to a non-zero value.

  4. Synchronized rotation in swarms of magnetotactic bacteria

    Science.gov (United States)

    Belovs, M.; Livanovičs, R.; CÄ`bers, A.

    2017-10-01

    Self-organizing behavior has been widely reported in both natural and artificial systems, typically distinguishing between temporal organization (synchronization) and spatial organization (swarming). Swarming has been experimentally observed in systems of magnetotactic bacteria under the action of external magnetic fields. Here we present a model of ensembles of magnetotactic bacteria in which hydrodynamic interactions lead to temporal synchronization in addition to the swarming. After a period of stabilization during which the bacteria form a quasiregular hexagonal lattice structure, the entire swarm begins to rotate in a direction opposite to the direction of the rotation of the magnetic field. We thus illustrate an emergent mechanism of macroscopic motion arising from the synchronized microscopic rotations of hydrodynamically interacting bacteria, reminiscent of the recently proposed concept of swarmalators.

  5. Rotation Breaking Induced by ELMs on EAST

    DEFF Research Database (Denmark)

    Xiong, H.; Xu, G.; Sun, Y.

    Spontaneous rotation has been observed in LHCD H-mode plasmas with type III ELMs (edge localized modes) on EAST, and it revealed that type III ELMs can induce the loss of both core and edge toroidal rotation. Here we work on the breaking mechanism during the ELMs. Several large tokamaks have...... discovered ELMs' filamentary structures. It revealed that the ELMs are filamentary perturbations of positive density formed along the local field lines close to the LCFS. Currents flowing in the filaments induce magnetic perturbations, which break symmetry of magnetic field strength and lead to deformation...... of magnetic surface, thus generate NTV (neoclassical toroidal viscosity) torque that affects toroidal rotation. We adopt 1cm maximum edge magnetic surface displacement from experimental observation, and our calculation shows that the edge torque is about 0.35 N/m2, and the core very small. The expected...

  6. Endothelial cell loss after autologous rotational keratoplasty.

    Science.gov (United States)

    Birnbaum, Florian; Reinhard, Thomas; Böhringer, Daniel; Sundmacher, Rainer

    2005-01-01

    To investigate whether it may be possible to ascertain the influence of immunological factors on chronic endothelial cell loss by comparing chronic endothelial cell loss after autologous rotational penetrating keratoplasty and after homologous penetrating keratoplasty. For six patients who had undergone autologous rotational penetrating keratoplasty the relative annual loss of endothelial cells was calculated by means of an exponential regression analysis. The findings were compared with those in a homogeneous historical control group (53 patients undergoing homologous penetrating keratoplasty for keratoconus). After autologous rotational keratoplasty relative annual loss of endothelial cells was 1.1%+/-2.6% (mean +/- standard deviation). Relative annual loss of endothelial cells in the control-group was 16.7%+/-20.8%. The results of the study lead to the assumption that immunological influences might be the main cause for chronic endothelial cell loss after homologous penetrating keratoplasty.

  7. Role of metalloproteinases in rotator cuff tear.

    Science.gov (United States)

    Garofalo, Raffaele; Cesari, Eugenio; Vinci, Enzo; Castagna, Alessandro

    2011-09-01

    The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPS) in the pathophysiology of rotator cuff tears has not been established yet. Recent advances empathize about the role of MMPs and TIMPS in extracellular matrix (ECM) remodeling and degradation in rotator cuff tears pathogenesis and healing after surgical repair. An increase in MMPs synthesis and the resulting MMPs mediated alterations in the ECM of tendons have been implicated in the etiopathogenesis of tendinopathy, and there is an increase in the expression of MMPs and a decrease in TIMP messenger ribonucleic acid expression in tenocytes from degenerative or ruptured tendons. Importantly, MMPs are amenable to inhibition by cheap, safe, and widely available drugs such as the tetracycline antibiotics and bisphosphonates. A better understanding of relationship and activity of these molecules could provide better strategies to optimize outcomes of rotator cuff therapy.

  8. A Rotative Electrical Impedance Tomography Reconstruction System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F-M [St. John' s and St. Mary' s Institute of Technology, Department of computer science and information Engineering, 499, Sec. 4, Tam King Road Tamsui, Taipei, Taiwan (China); Huang, C-N [National Central University, Department of Electrical Engineering, No.300, Jungda Rd, Jhongli City, 320 Taoyuan, Taiwan (China); Chang, F-W [National Central University, Department of Electrical Engineering, No.300, Jungda Rd, Jhongli City, 320 Taoyuan, Taiwan (China); Chung, H-Y [National Central University, Department of Electrical Engineering, No.300, Jungda Rd, Jhongli City, 320 Taoyuan, Taiwan (China)

    2006-10-15

    Electrical impedance tomography (EIT) is a powerful tool for mapping the conductivity distribution of estimated objects. The EIT system is entirely implemented by electrical technique, so it is a relatively cheap system and data can be collected very rapidly. But it has few commercially medical EIT systems available. This is because impedance image unable to achieve the essential spatial resolution and this technique has an intrinsically poor signal to noise ratio. In this paper, we have developed a high performance rotative EIT system (REIT) for expanding the independent measurements. By rotate the electrodes successive, REIT could change the position of electrodes and acquire more measurement data. This rotative measurement method not only can increase the resolution of impedance images, but also reduce the complexity of measurement system. We hope the improvement of REIT will bring some help in electrical impedance tomography.

  9. Earth Rotation Dynamics: Review and Prospects

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  10. Multiplexed Energy Coupler for Rotating Equipment

    Science.gov (United States)

    Zhao, Xiaoliang

    2011-01-01

    A multiplexing antenna assembly can efficiently couple AC signal/energy into, or out of, rotating equipment. The unit only passes AC energy while blocking DC energy. Concentric tubes that are sliced into multiple pieces are assembled together so that, when a piece from an outer tube aligns well with an inner tube piece, efficient energy coupling is achieved through a capacitive scheme. With N outer pieces and M inner pieces, an effective N x M combination can be achieved in a multiplexed manner. The energy coupler is non-contact, which is useful if isolation from rotating and stationary parts is required. Additionally, the innovation can operate in high temperatures. Applications include rotating structure sensing, non-contact energy transmission, etc.

  11. Renormalized vacuum polarization of rotating black holes

    CERN Document Server

    Ferreira, Hugo R C

    2015-01-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2+1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization (and, more importantly, the renormalized stress-energy tensor), for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  12. Rotational synchronization of two noncontact nanoparticles

    Science.gov (United States)

    Ameri, Vahid; Eghbali-Arani, Mohammad

    2017-12-01

    Proposing a system of two rotatable nanoparticles (NPs) in the presence of electromagnetic vacuum fluctuations, using the framework of canonical quantization, the electromagnetic and matter fields have been quantized. The non-contact frictional torque, affecting the rotation of NPs due to the presence of electromagnetic vacuum fluctuations and also by the matter field fluctuations have been derived. Considering the distance between NPs less than 100 nm in the near-field, we observe the rotations are phase locked. It has been shown that the electromagnetic vacuum fluctuations play the role of noises to break down the synchronization. Also surprisingly, we find the frictional torque between NPs in the near-field is much bigger than the popular contact friction between them where it causes a robust synchronization in the near-field.

  13. Statics and rotational dynamics of composite beams

    CERN Document Server

    Ghorashi, Mehrdaad

    2016-01-01

    This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a t...

  14. Targeted ROTational magnetic resonance angiography (TROTA).

    Science.gov (United States)

    Goldfarb, James W

    2007-09-01

    An MR angiographic method is presented in which a rotating 2D slice is centered on and targets a region or vessel of interest. Collecting a series of slices rotating about the center of the targeted region yields projection data sufficient for the calculation of 3D volumetric data of the region using conventional backprojection reconstruction techniques. These volumetric data depict the internal structure of the vessel and can be processed and displayed with multiplanar reformation, maximum intensity projections, and 3D rendering algorithms. The rotational angiographic acquisition preserves the high temporal resolution of 2D-MR digital subtraction angiography with the added benefit of 3D reformatting and display. The method is explained in detail and results from phantom and human experiments are presented. Copyright (c) 2007 Wiley-Liss, Inc.

  15. Rotational cooling of trapped polyatomic molecules

    CERN Document Server

    Glöckner, Rosa; Englert, Barbara G U; Rempe, Gerhard; Zeppenfeld, Martin

    2015-01-01

    Controlling the internal degrees of freedom is a key challenge for applications of cold and ultracold molecules. Here, we demonstrate rotational-state cooling of trapped methyl fluoride molecules (CH3F) by optically pumping the population of 16 M-sublevels in the rotational states J=3,4,5, and 6 into a single level. By combining rotational-state cooling with motional cooling, we increase the relative number of molecules in the state J=4, K=3, M=4 from a few percent to over 70%, thereby generating a translationally cold (~30mK) and nearly pure state ensemble of about 10^6 molecules. Our scheme is extendable to larger sets of initial states, other final states and a variety of molecule species, thus paving the way for internal-state control of ever larger molecules.

  16. Langevin dynamics of hot rotating nuclei: systematic calculations in the region Z sup 2 /A=34-42

    CERN Document Server

    Nadtochij, P N; Adeev, G D

    2002-01-01

    A stochastic approach to fission dynamics based on three-dimensional Langevin equations was applied to calculate a fission-fragment mass-energy distribution from a number of excited compound nuclei in the region Z sup 2 /A=34-42. A liquid-drop model with finite range of nuclear force and a modified one-body mechanism for nuclear dissipation have been used in the calculations. Evaporation of prescission light particles has taken into account using a statistical model. Inclusion of the third collective coordinate in Langevin equations leads to a considerable increase (up to 40-50%) of the variance of the mass and the kinetic energy distributions of fission fragments as compared with two-dimensional Langevin calculations. In order to reproduce simultaneously the measured prescission neutron multiplicities and the variance of the fission fragment mass-energy distribution, the reduction coefficient of the contribution from a wall formula has to be decreased at least by half of the one-body dissipation strength (0....

  17. Ego-rotation and object-rotation in major depressive disorder.

    Science.gov (United States)

    Chen, Jiu; Yang, Laiqi; Ma, Wentao; Wu, Xingqu; Zhang, Yan; Wei, Dunhong; Liu, Guangxiong; Deng, Zihe; Hua, Zhen; Jia, Ting

    2013-08-30

    Mental rotation (MR) performance provides a direct insight into a prototypical higher-level visuo-spatial cognitive operation. Previous studies suggest that progressive slowing with an increasing angle of orientation indicates a specific wing of object-based mental transformations in the psychomotor retardation that occurs in major depressive disorder (MDD). It is still not known, however, whether the ability of object-rotation is associated with the ability of ego-rotation in MDD. The present study was designed to investigate the level of impairment of mental transformation abilities in MDD. For this purpose we tested 33 MDD (aged 18-52 years, 16 women) and 30 healthy control subjects (15 women, age and education matched) by evaluating the performance of MDD subjects with regard to ego-rotation and object-rotation tasks. First, MDD subjects were significantly slower and made more errors than controls in mentally rotating hands and letters. Second, MDD and control subjects displayed the same pattern of response times to stimuli at various orientations in the letter task but not the hand task. Third, in particular, MDD subjects were significantly slower and made more errors during the mental transformation of hands than letters relative to control subjects and were significantly slower and made more errors in physiologically impossible angles than physiologically possible angles in the mental rotation hand task. In conclusion, MDD subjects present with more serious mental rotation deficits specific to the hand than the letter task. Importantly, deficits were more present during the mental transformation in outward rotation angles, thus suggesting that the mental imagery for hands and letters relies on different processing mechanisms which suggest a module that is more complex for the processing of human hands than for letters during mental rotation tasks. Our study emphasises the necessity of distinguishing different levels of impairment of action in MDD subjects

  18. Dynamics of wrist and forearm rotations.

    Science.gov (United States)

    Peaden, Allan W; Charles, Steven K

    2014-08-22

    Human movement generally involves multiple degrees of freedom (DOF) coordinated in a graceful and seemingly effortless manner even though the underlying dynamics are generally complex. Understanding these dynamics is important because it exposes the challenges that the neuromuscular system faces in controlling movement. Despite the importance of wrist and forearm rotations in everyday life, the dynamics of movements involving wrist and forearm rotations are currently unknown. Here we present equations of motion describing the torques required to produce movements combining flexion-extension (FE) and radial-ulnar deviation (RUD) of the wrist and pronation-supination (PS) of the forearm. The total torque is comprised of components required to overcome the effects of inertia, damping, stiffness, and gravity. Using experimentally measured kinematic data and subject-specific impedance parameters (inertia, damping, and stiffness), we evaluated movement torques to test the following hypotheses: the dynamics of wrist and forearm rotations are (1) dominated by stiffness, not inertial or damping effects, (2) significantly coupled through interaction torques due to stiffness and damping (but not inertia), and (3) too complex to be well approximated by a simple, linear model. We found that (1) the dynamics of movements combining the wrist and forearm are similar to wrist rotations in that stiffness dominates over inertial and damping effects (pwrist and forearm are significantly coupled through stiffness, while interactions due to inertia and damping are small, and (3) despite the complexity of the exact equations of motion, the dynamics of wrist and forearm rotations are well approximated by a simple, linear (but still coupled) model (the mean error in predicting torque was less than 1% of the maximum torque). The exact and approximate models are presented for modeling wrist and forearm rotations in future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Composite hot subdwarf binaries - I. The spectroscopically confirmed sdB sample

    Science.gov (United States)

    Vos, Joris; Németh, Péter; Vučković, Maja; Østensen, Roy; Parsons, Steven

    2018-01-01

    Hot subdwarf-B (sdB) stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts that these objects are circularized before the onset of Roche lobe overflow (RLOF). To increase our understanding of binary interaction processes during the RLOF phase, we started a long-term observing campaign to study wide sdB binaries. In this paper, we present a sample of composite binary sdBs, and the results of the spectral analysis of nine such systems. The grid search in stellar parameters (gssp) code is used to derive atmospheric parameters for the cool companions. To cross-check our results and also to characterize the hot subdwarfs, we used the independent XTgrid code, which employs Tlusty non-local thermodynamic equilibrium models to derive atmospheric parameters for the sdB component and phoenix synthetic spectra for the cool companions. The independent gssp and XTgrid codes are found to show good agreement for three test systems that have atmospheric parameters available in the literature. Based on the rotational velocity of the companions, we make an estimate for the mass accreted during the RLOF phase and the minimum duration of that phase. We find that the mass transfer to the companion is minimal during the subdwarf formation.

  20. The Detection of Hot Cores and Complex Organic Molecules in the Large Magellanic Cloud

    Science.gov (United States)

    Sewilo, Marta; Indebetouw, Remy; Charnley, Steven; Zahorecz, Sarolta; Oliveira, Joana M.; van Loon, Jacco Th.; Ward, Jacob L.; Chen, C.-H. Rosie; Wiseman, Jennifer; Fukui, Yasuo; Kawamura, Akiko; Meixner, Margaret; Onishi, Toshikazu; Schilke, Peter

    2018-01-01

    We report the detection of the complex organic molecules (COMs) dimethyl ether (CH3OCH3) and methyl formate (CH3OCHO), and their parent species methanol (CH3OH), toward the N113 star-formation region in the Large Magellanic Cloud (LMC) with the Atacama Large Millimeter/submillimeter Array (ALMA). This constitutes the first detection of CH3OCH3 and CH3OCHO outside the Milky Way. We calculated the rotational temperatures (Trot ~ 130 K) and total column densities (Nrot ~ 1016 cm-2) for two sources in N113 with the COMs detection based on multiple transitions of CH3OH, and measured abundances for all detected species. The physical and chemical properties of these sources, and the association with H2O and OH maser emission indicate that they are hot molecular cores. The fractional abundances of COMs scaled by a factor of 2.5 to account for the lower metallicity in the LMC are comparable to those found at the lower end of the range in Galactic hot cores. Our results have important implications for studies of organic chemistry at higher redshift.