WorldWideScience

Sample records for hot rock geothermal

  1. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  2. Hot-dry-rock geothermal resource 1980

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  3. Proceedings of the second NATO-CCMS information meeting on dry hot rock geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, J.J. (comp.)

    1977-11-01

    A summary is presented of the second and last NATO-CCMS (North Atlantic Treaty Organization--Committee on Challenges of Modern Society) Geothermal Pilot Study Information Meeting on Dry Hot Rock Geothermal Energy. Only summaries of the formal presentations are included. Overviews of the Energy Research and Development Administration (ERDA) and the U.S. Geological Survey (USGS) geothermal projects are included with emphasis on the Los Alamos Scientific Laboratory (LASL) Hot Dry Rock Geothermal Energy Development Project. Reports of developments in nine foreign countries and on geothermal projects in US universities are also presented.

  4. Generation by heated rock. Technology for hot dry rock geothermal power; Yakeishi ni mizu de hatsuden. Koon gantai hatsuden no gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1995-06-15

    Japan is one of the most distinguished volcanic country in the world and about 8% of the active volcanos of the world are distributed in Japan. This kind of a large quantity and natural energy resource near us are used as hot springs in the whole country and as for electricity in 10 geothermal power stations. In future, if this enormous underground geothermal energy could be utilized safely and economically by using new power generation system like hot dry rock geothermal power generation (HDR), it may contribute a little to the 21st century`s energy problem of Japan. Central Research Inst. of Electric Power Industry has installed `Okachi HDR testing ground` in Okachi-machi of Akita Ken, and is carrying out experiments since 1989. Hot dry rock geothermal power generation is a method in which water is injected to the hot dry rock and the thermal energy is recovered that the natural rock bed is used as a boiler. However, development of many new technologies is necessary to bring this system in practical use. 9 refs., 5 figs., 1 tab.

  5. Recent developments in the hot dry rock geothermal energy program

    Energy Technology Data Exchange (ETDEWEB)

    Franke, P.R.; Nunz, G.J.

    1985-01-01

    In recent years, most of the Hot Dry Rock Programs effort has been focused on the extraction technology development effort at the Fenton Hill test site. The pair of approximately 4000 m wells for the Phase II Engineering System of the Fenton Hill Project have been completed. During the past two years, hydraulic fracture operations have been carried out to develop the geothermal reservoir. Impressive advances have been made in fracture identification techniques and instrumentation. To develop a satisfactory interwellbore flow connection the next step is to redrill the lower section of one of the wells into the fractured region. Chemically reactive tracer techniques are being developed to determine the effective size of the reservoir area. A new estimate has been made of the US hot dry rock resource, based upon the latest geothermal gradiant data. 3 figs.

  6. Hot Dry Rock Geothermal Energy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  7. Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China

    OpenAIRE

    Guangzheng Jiang; Yi Wang; Yizuo Shi; Chao Zhang; Xiaoyin Tang; Shengbiao Hu

    2016-01-01

    Development and utilization of deep geothermal resources, especially a hot dry rock (HDR) geothermal resource, is beneficial for both economic and environmental consideration in oilfields. This study used data from multiple sources to assess the geothermal energy resource in the Daqing Oilfield. The temperature logs in boreholes (both shallow water wells and deep boreholes) and the drilling stem test temperature were used to create isothermal maps in depths. Upon the temperature field and the...

  8. Progress of the LASL dry hot rock geothermal energy project

    Science.gov (United States)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  9. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    OpenAIRE

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-01-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK “hot dry rock” experimental geothermal...

  10. Hot Dry Rock Geothermal Energy Development Project. Annual report, fiscal year 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    The feasibility of extracting geothermal energy from hot dry rock in the earth's crust was investigated. The concept being investigated involves drilling a deep hole, creating an artificial geothermal reservoir at the bottom of the hole by hydraulic fracturing, and then intersecting the fracture with a second borehole. At the beginning of FY77, the downhole system was complete, but the impedance to the flow of fluid was too high to proceed confidently with the planned energy extraction demonstration. Therefore, in FY77 work focused on an intensive investigation of the characteristics of the downhole system and on the development of the necessary tools and techniques for understanding and improving it. Research results are presented under the following section headings: introduction and history; hot dry rock resource assessment and site selection; instrumentation and equipment development; drilling and fracturing; reservoir engineering; energy extraction system; environmental studies; project management and liaison; and, looking back and ahead. (JGB)

  11. Hot dry rock heat mining

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1992-01-01

    Geothermal energy utilizing fluids from natural sources is currently exploited on a commercial scale at sites around the world. A much greater geothermal resource exists, however, in the form of hot rock at depth which is essentially dry. This hot dry rock (HDR) resource is found almost everywhere, but the depth at which usefully high temperatures are reached varies from place to place. The technology to mine the thermal energy from HDR has been under development for a number of years. Using techniques adapted from the petroleum industry, water is pumped at high pressure down an injection well to a region of usefully hot rock. The pressure forces open natural joints to form a reservoir consisting of a small amount of water dispensed in a large volume of hot rock. This reservoir is tapped by second well located at some distance from the first, and the heated water is brought to the surface where its thermal energy is extracted. The same water is then recirculated to mine more heat. Economic studies have indicated that it may be possible to produce electricity at competitive prices today in regions where hot rock is found relatively close to the surface

  12. Hot dry rock geothermal energy for U.S. electric utilities. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

  13. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  14. Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China

    Directory of Open Access Journals (Sweden)

    Guangzheng Jiang

    2016-10-01

    Full Text Available Development and utilization of deep geothermal resources, especially a hot dry rock (HDR geothermal resource, is beneficial for both economic and environmental consideration in oilfields. This study used data from multiple sources to assess the geothermal energy resource in the Daqing Oilfield. The temperature logs in boreholes (both shallow water wells and deep boreholes and the drilling stem test temperature were used to create isothermal maps in depths. Upon the temperature field and thermophysical parameters of strata, the heat content was calculated by 1 km × 1 km × 0.1 km cells. The result shows that in the southeastern part of Daqing Oilfield, the temperature can reach 150 °C at a depth of 3 km. The heat content within 3–5 km is 24.28 × 1021 J, wherein 68.2% exceeded 150 °C. If the recovery factor was given by 2% and the lower limit of temperature was set to be 150 °C, the most conservative estimate for recoverable HDR geothermal resource was 0.33 × 1021 J. The uncertainties of the estimation are mainly contributed to by the temperature extrapolation and the physical parameter selections.

  15. Drilling fluids and lost circulation in hot-dry-rock geothermal wells at Fenton Hill

    Energy Technology Data Exchange (ETDEWEB)

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.

    1981-01-01

    Geothermal hot dry rock drilling at Fenton Hill in northern New Mexico encountered problems of catastrophic lost circulation in cavernous areas of limestones in the Sandia Formation, severe corrosion due to temperatures of up to 320/sup 0/C, and torque problems caused by 35/sup 0/ hole angle and the abrasiveness of Precambrian crystalline rock. The use of polymeric flocculated bentonite fluid, clear water, fibrous material, dry drilling, oxygen scavengers, a biodegradable lubricant mixture of modified triglicerides and alcohol, and maintenance of a high pH, were some of the approaches taken toward solving these problems.

  16. The furnace in the basement: Part 1, The early days of the Hot Dry Rock Geothermal Energy Program, 1970--1973

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.

    1995-09-01

    This report presents the descriptions of the background information and formation of the Los Alamos Scientific Laboratory Geothermal Energy Group. It discusses the organizational, financial, political, public-relations,geologic, hydrologic, physical, and mechanical problems encountered by the group during the period 1970--1973. It reports the failures as well as the successes of this essential first stage in the development of hot dry rock geothermal energy systems.

  17. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  18. Unzen volcanic rocks as heat source of geothermal activity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masao; Sugiyama, Hiromi

    1987-03-25

    Only a few radiometric ages have been reported so far for the Unzen volcanic rocks. In this connection, in order to clarify the relation between volcanism and geothermal activity, fission track ages of zircon seperated from the Unzen volcanic rocks in western Kyushu have been dated. Since all the rocks are thought to be young, the external surface re-etch method was adopted. The results are that the age and standard error of the basal volcaniclastic rocks of the Tatsuishi formation are 0.28 +- 0.05 Ma and 0.25 +- 0.05 Ma. The next oldest Takadake lavas range from 0.26 to 0.20 Ma. The Kusenbudake lavas fall in a narrow range from 0.19 to 0.17 Ma. The latest Fugendake lavas are younger than 0.07 Ma.In conclusion, the most promising site for geothermal power generation is the Unzen hot spring field because of its very high temperature. After that, comes the Obama hot spring field because of the considerable high temperature chemically estimated. In addition, the northwestern area of the Unzen volcanic region will be promising for electric power generation in spite of no geothermal manifestations, since its volcanos are younger than 0.2 Ma. (14 figs, 14 tabs, 22 refs)

  19. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    Science.gov (United States)

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-03-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK "hot dry rock" experimental geothermal site (Rosemanowes, Cornwall). We quantify the evolution of several metrics used to characterise induced seismicity, including the seismic strain partition factor and the "seismogenic index". The results show a low strain partition factor of 0.01% and a low seismogenenic index indicating that aseismic processes dominate. We also analyse the spatio-temporal distribution of hypocentres, using simple models for the evolution of hydraulic diffusivity by (a) isotropic and (b) anisotropic pore-pressure relaxation. The principal axes of the diffusivity or permeability tensor inferred from the spatial distribution of earthquake foci are aligned parallel to the present-day stress field, although the maximum permeability is vertical, whereas the maximum principal stress is horizontal. Our results are consistent with a triggering mechanism that involves (a) seismic shear slip along optimally-oriented pre-existing fractures, (b) a large component of aseismic slip with creep (c) activation of tensile fractures as hydraulic conduits created by both the present-day stress field and by the induced shear slip, both exploiting pre-existing joint sets exposed in borehole data.

  20. Hot dry rock geothermal energy development program. Annual report, fiscal year 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, G.M. (comp.)

    1981-07-01

    Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

  1. Hot dry rock geothermal energy: status of exploration and assessment. Report No. 1 of the hot dry rock assessment panel

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The status of knowledge of attempts to utilize hot dry rock (HDR) geothermal energy is summarized. It contains (1) descriptions or case histories of the ERDA-funded projects at Marysville, MT, Fenton Hill, NM, and Coso Hot Springs, CA; (2) a review of the status of existing techniques available for exploration and delineation of HDR; (3) descriptions of other potential HDR sites; (4) definitions of the probable types of HDR resource localities; and (5) an estimate of the magnitude of the HDR resource base in the conterminous United States. The scope is limited to that part of HDR resource assessment related to the determination of the extent and character of HDR, with emphasis on the igneous-related type. It is estimated that approximately 74 Q (1 Q = 1,000 Quads) of heat is stored in these sites within the conterminous U.S. at depths less than 10 km and temperatures above 150/sup 0/C, the minimum for power generation. (Q = 10/sup 18/ BTU = 10/sup 21/J; the total U.S. consumption for 1972 was approximately 0.07 Q). Approximately 6300 Q are stored in the conduction-dominated parts of the crust in the western U.S. (23% of the total surface area), again at depths less than 10 km and temperatures above 150/sup 0/C. Nearly 10,000 Q are believed to be contained in crustal rocks underlying the entire conterminous U.S., at temperatures above 150/sup 0/C. The resource base is significantly larger for lower grade heat. (JGB)

  2. A Brief History With Lessons Learned From The Hot Dry Rock Geothermal Energy Program At Fenton Hill, New Mexico, USA

    Science.gov (United States)

    Kelkar, S.; Woldegabriel, G. W.; Rehfeldt, K. R.

    2009-12-01

    Important lessons were learned that continue to be relevant today from the world’s first successful demonstration of a Hot Dry Rock (HDR) system for extracting underground geothermal energy conducted at Fenton Hill, New Mexico. This experiment, conducted in hot, low-permeability, low-water context, crystalline basement rock was fundamentally different from the Enhanced Geothermal Systems (EGS) development currently underway at several sites in the U.S. and world. The HDR concept was developed in 1970’s at Los Alamos National Laboratory (LANL). Two HDR reservoirs with two wells each were created and tested at the Fenton Hill site. In spite of its proximity to the Valles caldera and the Rio Grande rift, geological information and heat-flow data were used successfully to select the Fenton Hill experimental site within a block of intact crystalline basement rocks. Deep crystalline basement rocks marginal to active fault/recent volcanic centers were good candidates for HDR systems: these rocks had high heat content, and low matrix permeability leading to low water losses. Reconnaissance surveys indicated significant potential HDR geothermal resources through out the USA. Drilling and completion operations in hot crystalline rocks were challenging requiring further R&D. Hydraulic stimulation activities were carried out successfully in deep, hot crystalline rocks. Logging tools and instruments were developed that could operate successfully in the ~250oC environment. Development of techniques and tools for microseismic data monitoring, analysis, and interpretation was found to be enormously valuable. It was found that the systematic process that should be followed in developing HDR reservoirs is to drill and stimulate the first well, use the microseismic data to locate the target zone, and then complete the additional wells. The largest fraction of the flow impedance was found to be near the production well. Combined interpretation of the pressure testing, microseismic

  3. Quartz dissolution and silica deposition in hot-dry-rock geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.

    1982-07-01

    The kinetics of quartz dissolution control the produced fluid dissolved silica concentration in geothermal systems in which the downhole residence time is finite. The produced fluid of the Phase I, Run Segment 5 experimental Hot Dry Rock (HDR) geothermal system at Fenton Hill, NM, was undersaturated with respect to quartz in one pass through the reservoir, suggesting that the rate of granite dissolution governed the outlet dissolved silica concentration in this system. The literature data for the rate of quartz dissolution in water from 65 to 625/sup 0/C is correlated using an empirical rate law which is first order in quartz surface area and degree of undersaturation of the fluid. The Arrhenius plot (ln k vs T/sup -1/) is linear over eight orders of magnitude of the rate constant, verifying the validity of the proposed rate expression. Carefully performed quartz dissolution experiments in the present study duplicated the literature data and completed the data base in the temperature range from 150 to 250/sup 0/C. Identical experiments using crushed granite indicate that the rate of quartz dissolution in the presence of granite could be as much as 1 to 2 orders of magnitude faster than the rates observed in the pure quartz experiments. A temperature dependent HDR reservoir model incorporates the quartz dissolution rate law to simulate the dissolved silica behavior during the Fenton Hill Run Segment 5 experiment. For this low-permeability, fracture-dominated reservoir, the assumptions of one-dimensional plug flow through a vertically-inclined rectangular fracture and one-dimensional rock heat conduction perpendicular to the direction of flow are employed. These simplifications lead to an analytical solution for the temperature field in the reservoir.

  4. Hydrogeochemical Characteristics and Evolution of Hot Springs in Eastern Tibetan Plateau Geothermal Belt, Western China: Insight from Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Zheming Shi

    2017-01-01

    Full Text Available The eastern Tibetan Plateau geothermal belt is one of the important medium-high temperature geothermal belts in China. However, less work has been done on the hydrochemical characteristic and its geological origin. Understanding the chemical characteristics and the hydrochemical evolution processes is important in evaluating the geothermal energy potential in this area. In the present study, we discussed the hydrochemical properties and their origins of 39 hot springs located in the eastern Tibetan Plateau geothermal belt (Kangding-Litang-Batang geothermal belt. Cluster analysis and factor analysis are employed to character the hydrochemical properties of hot springs in different fault zones and the possible hydrochemical evolution processes of these hot springs. Our study shows that the hot springs can be divided into three groups based on their locations. The hot springs in the first group mainly originate from the volcanic rock and the springs in the second group originate from the metamorphic rock while the springs in the third group originate from the result of mixture of shallow water. Water-rock interaction, cation exchange, and the water environment are the three dominant factors that control the hydrochemical evolution process in the eastern Tibetan Plateau. These results are also in well agreement with the isotopic and chemical analysis.

  5. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    Science.gov (United States)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  6. Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, J.; Goff, F.; Wohletz, K.

    1997-06-01

    The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

  7. Hydrogeochemical evaluation of conventional and hot dry rock geothermal resource potential in the Clear Lake region, California

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.

    1993-05-01

    Chemistry, stable isotope, and tritium contents of thermal/mineral waters in the Clear Lake region were used to evaluate conventional and hot dry rock (HDR) geothermal potential for electrical generation. Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connate types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connate (generic) end-members. The latter end-member has enriched {delta}D as well as enriched {delta}{sup 18}O, from typical high-temperature geothermal reservoir waters. Tritium data indicate most Clear Lake region waters are mixtures of old and young fluid components. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is {le}150{degree}C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures {le}150{degree}C (except for Sulphur Bank mine). HDR technologies are probably the best way to commercially exploit the known high-temperatures existing beneath the Clear Lake region particularly within and near the main Clear Lake volcanic field.

  8. Hot rock energy projects : Australian context

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, B.A.; Malavazos, M. [Society of Petroleum Engineers, Richardson, TX (United States); Hill, A.J.; Coda, J. [Primary Industries and Resources South Australia, Adelaide (Australia)]|[Australian Geothermal Energy Group, Adelaide (Australia); Budd, A.R.; Holgate, F.L. [Australian Geothermal Energy Group, Adelaide (Australia)]|[Geoscience Australia, Adelaide (Australia)

    2008-10-15

    The Australia Geothermal Energy Group is an alliance of companies, government agencies and research organizations with an interest in promoting geothermal energy use. Hot rocks (HR) geothermal energy is a valued addition to the portfolio of safe, secure and competitive energy supplies because it offers the potential of inexhaustible geothermal heat energy with zero emissions. Australia's vast HR resources have attracted global interest and government support for HR projects, which call upon integrated expertise from the petroleum minerals and power industries. Funding from the Australian government is aimed at reducing critical, sector-wide uncertainties and equates to nearly 25 per cent of the cost of the private sector's field efforts to date. A national HR resource assessment and a road-map for the commercialization of Australian HR plays will be published in 2008 to help in the decision making process by portfolio managers. The challenges and prospects for HR projects in Australia were presented. It has been estimated that converting only 1 per cent of Australia's crustal energy from depths of 5 km and 150 degrees C to electricity would supply 26,000 years of Australia's 2005 primary power use. The factors that distinguish Australian HR resources include abundant radioactive granites and areas of recent volcanic activity; and, Australia is converging with Indonesia on a plate scale resulting in common, naturally occurring subhorizontally fractured basement rocks that are susceptible to hydraulic fracture stimulation. Most projects are focused on HR to develop enhanced or engineered geothermal systems (EGS) to fuel binary power plants. Approximately 80 percent of these projects are located in South Australia. 14 refs., 3 tabs., 3 figs.

  9. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  10. Environmental monitoring for the hot dry rock geothermal energy development project. Annual report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Pettitt, R.A. (comp.)

    1976-09-01

    The objectives of this environmental monitoring report are to provide a brief conceptual and historical summary of the Hot Dry Rock Geothermal Project, a brief overview of the environmental monitoring responsibilities and activities of the Los Alamos Scientific Laboratory, and descriptions of the studies, problems, and results obtained from the various monitoring programs. Included are descriptions of the work that has been done in three major monitoring areas: (1) water quality, both surface and subsurface; (2) seismicity, with a discussion of the monitoring strategy of regional, local, and close-in detection networks; and (3) climatology. The purpose of these programs is to record baseline data, define potential effects from the project activities, and determine and record any impacts that may occur.

  11. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  12. Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site

    Energy Technology Data Exchange (ETDEWEB)

    Levey, Schon S.

    2010-12-01

    The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

  13. Cost modelling of electricity producing hot dry rock (HDR) geothermal systems in the UK

    International Nuclear Information System (INIS)

    Doherty, P.S.

    1992-03-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. (Author)

  14. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  15. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  16. Characterization of a hot dry rock reservoir at Acoculco geothermal zone, Pue.; Caracterizacion de un yacimiento de roca seca caliente en la zona geotermica de Acoculco, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo Pulido, Cecilia; Flores Armenta, Magaly Ramirez Silva, German [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: cecilia-lorenzo@cfe.gob.mx

    2011-01-15

    Hot dry rock (HDR) geothermal resources, also called enhanced (or engineered) geothermal systems (EGS), have been researched for a long time. The HDR concept is simple. Most of the reservoirs are found at depths of around 5000 m and comprised of impermeable rocks at temperatures between 150 degrees Celsius and 300 degrees Celsius -lacking fluid. Rock temperature is a main economic criterion, since to generate electric energy initial temperatures above 200 degrees Celsius are required. To develop a HDR system, two wells are drilled. Cold water is introduced in one well and hot water is obtained from the other well by passing the water through the hot rock. Since June 2008, a 1.5 MWe power plant has been operating in France, part of the Soultz-sous-Foret project financed by the European Deep Geothermal Energy Programme. To characterize the HDR reservoir multi-disciplinary information was gathered regarding: (1) the heat source origin, (2) qualitative information on temperature and transfer mechanisms of natural heat, (3) natural faults and fractures, (4) local stresses, and (5) the basement rock. The information was applied to a geothermal zone in Acoculco, Pue.. The zone was explored by the Exploration Department with wells EAC-1 and EAC-2, defining the presence of a high temperature reservoir (from 220 degrees Celsius to more than 250 degrees Celsius ). The zone presents the following features: (1) heat source origin: volcano-tectonic, (2) temperature logs show values of 263.8 degrees Celsius and 307.3 degrees Celsius at depths of 1900 m and 2000 m, respectively, (3) the exploration wells are located in a graben-like structure, and the core and cutting samples show evidences of natural faults and fractures partially or completely sealed by hydrothermal minerals such as epidote, quartz and pyrite, (4) stress analyses indicate the local NW-SE and E-W systems are the main systems in the geothermal zone, and (5) the basement rock is composed of limestones with contact

  17. Contribution to the study of the exploitation of heat from hot and dry rocks

    International Nuclear Information System (INIS)

    Bernaudat, Francois

    1983-01-01

    In its first part, this research thesis presents the basic concept of geothermal energy in hot and dry rocks, and describes various experiments performed in the USA, Great-Britain and Germany. The ENERGEROC project is then addressed in detail. The second part introduces models of heat transfer. The author proposes a detailed description of the different steps of the preliminary phase of the ENERGEROC project, and of interpretations obtained by using the models. Experimental results of the ENERGEROC project and of other projects are discussed. The last part addresses the extrapolation of the thermal behaviour of a hot-dry rock system

  18. Geochemistry of thermal/mineral waters in the Clear Lake region, California, and implications for hot dry rock geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.; Mansfield, J.

    1993-02-01

    Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connote types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast, ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connote end-members. The latter end-member has enriched [delta]D as well as enriched d[sup l8]O, very different from typical high-temperature geothermal reservoir waters. Tritium data and modeling of ages indicate most Clear Lake region waters are 500 to > 10,000 yr., although mixing of old and young components is implied by the data. The age of end-member connate water is probably > 10,000 yr. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is [le] 150[degrees]C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures [le] 150[degrees]C (except for Sulphur Bank Mine). Hot dry rock technologies are the best way to commercially exploit the known high temperatures existing beneath the Clear Lake region, particularly within the main Clear Lake volcanic field.

  19. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  20. Geothermics - energy for the future. Proceedings; Geothermie - Energie der Zukunft. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The proceedings volume of the 4th Geothermal Congress, held in Constance in 1996, comprises 74 papers on the following subjects: 1. Practical applications of hydrogeothermal resources; 2. Hot dry rock; 3. Geothermal heat pumps; 4; Economic aspects of geothermal energy. (AKF) [Deutsch] Der Tagungsband zur 4. Geothermischen Fachtagung 1996 in Konstanz enthaelt 74 Beitraege, die sich mit den folgenden Schwerpunkten befassen: 1. Praktische Anwendungen der Hydrogeothermie; 2. Hot-dry-rock; 3. Oberflaechennahe/untiefe Geothermie; 4. Geothermie und wirtschaftliche Fragen. (AKF)

  1. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  2. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  3. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  4. Geothermal regimes of the Clearlake region, northern California

    Energy Technology Data Exchange (ETDEWEB)

    Amador, M. [ed.; Burns, K.L.; Potter, R.M.

    1998-06-01

    The first commercial production of power from geothermal energy, at The Geysers steamfield in northern California in June 1960, was a triumph for the geothermal exploration industry. Before and since, there has been a search for further sources of commercial geothermal power in The Geysers--Clear Lake geothermal area surrounding The Geysers. As with all exploration programs, these were driven by models. The models in this case were of geothermal regimes, that is, the geometric distribution of temperature and permeability at depth, and estimates of the physical conditions in subsurface fluids. Studies in microseismicity and heat flow, did yield geophysical information relevant to active geothermal systems. Studies in stable-element geochemistry found hiatuses or divides at the Stoney Creek Fault and at the Collayomi Fault. In the region between the two faults, early speculation as to the presence of steamfields was disproved from the geochemical data, and the potential existence of hot-water systems was predicted. Studies in isotope geochemistry found the region was characterized by an isotope mixing trend. The combined geochemical data have negative implications for the existence of extensive hydrothermal systems and imply that fluids of deep origin are confined to small, localized systems adjacent to faults that act as conduits. There are also shallow hot-water aquifers. Outside fault-localized systems and hot-water aquifers, the area is an expanse of impermeable rock. The extraction of energy from the impermeable rock will require the development and application of new methods of reservoir creation and heat extraction such as hot dry rock technology.

  5. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  6. Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site

    Energy Technology Data Exchange (ETDEWEB)

    Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

    1984-05-01

    An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

  7. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  8. Geothermal Exploration in Hot Springs, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  9. Geothermal resources of the UK

    International Nuclear Information System (INIS)

    Batchelor, A.S.

    1990-01-01

    This paper reports that geothermal energy applications and research are being actively pursued in the United Kingdom despite the relatively normal heat flow regime. The cumulative expenditure on geothermal activity from 1975 to 1989 has been approximately Brit-pounds 46 million of 32% of the Renewable Energy Research Budget to date. The first practical application is a 2 MWt scheme at Southampton as part of a district heating scheme. Commercial operation started in February 1988 and further expansion is planned. The UK's enthusiasm for Hot Dry Rock has dimmed slightly as the entire program is reappraised and the long heralded deep exploration hole has yet to materialize. Future activity looks likely to focus on geothermal opportunities that have multiple uses or applications for the fluids in small scale schemes and Hot Dry Rock research will probably be linked to a pan-European program based in France

  10. Rock geochemistry related to mineralization processes in geothermal areas

    Science.gov (United States)

    Kausar, A. Al; Indarto, S.; Setiawan, I.

    2018-02-01

    Abundant geothermal systems in Indonesia suggest high heat and mass transfer associated with recent or paleovolcanic arcs. In the active geothermal system, the upflow of mixed fluid between late stage hydrothermal and meteoric water might contain mass of minerals associated with epithermal mineralisation process as exemplified at Lihir gold mine in Papua New Guinea. In Indonesia, there is a lack of study related to the precious metals occurrence within active geothermal area. Therefore, in this paper, we investigate the possibility of mineralization process in active geothermal area of Guci, Central Java by using geochemical analysis. There are a lot of conducted geochemical analysis of water, soil and gas by mapping the temperature, pH, Hg and CO2 distribution, and estimating subsurface temperature based on geothermometry approach. Then we also apply rock geochemistry to find minerals that indicate the presence of mineralization. The result from selected geothermal area shows the presence of pyrite and chalcopyrite minerals on the laharic breccias at Kali Putih, Sudikampir. Mineralization is formed within host rock and the veins are associated with gold polymetallic mineralization.

  11. Geothermal energy in Italy and abroad

    International Nuclear Information System (INIS)

    Caputo di Calvisi, C.

    2001-01-01

    Geothermal systems and fields are analysed giving particular evidence to the value of the geothermal source as an important natural source of energy. The paper analyses hydrothermal systems and describes the international experimental studies on the use of geothermal reservoirs in hot rocks with geopressured and magmatic systems. Experts are optimistic as far as the use of this innovative source of energy is possible in the medium-short term [it

  12. Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia

    Science.gov (United States)

    Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska

    2017-04-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.

  13. Geothermal energy technology: issues, R and D needs, and cooperative arrangements

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1986, the National Research Council, through its Energy Engineering Board, formed the Committee on Geothermal Energy Technology. The committee's study addressed major issues in geothermal energy technology, made recommendations for research and development, and considered cooperative arrangements among government, industry, and universities to facilitate RandD under current severe budget constraints. The report addresses four types of geothermal energy: hydrothermal, geopressured, hot dry rock, and magma systems. Hydrothermal systems are the only type that are now economically competitive commercially. Further technology development by the Department of Energy could make the uneconomical hydrothermal resources commercially attractive to the industry. The economics are more uncertain for the longer-term technologies for extracting energy from geopressured, hot dry rock, and magma systems. For some sites, the cost of energy derived from geopressured and hot dry rock systems is projected within a commercially competitive range. The use of magma energy is too far in the future to make reasonable economic calculations.

  14. Swiss geothermal energy update 1985 - 1990

    International Nuclear Information System (INIS)

    Rybach, L.; Hauber, L.

    1990-01-01

    Since 1985, geothermal R and D has evolved steadily in Switzerland. REgional low-enthalphy exploration and resource assessment are largely complete; emphasis is now on drilling and development. Vertical earth-heat exchangers (small-scale, decentralized, heat pump-coupled heating facilities) increase rapidly in number; the governmental system of risk coverage for geothermal drilling, established in 1987, gives rise to several drilling projects. Of these, a single well and a doublet have been successfully completed so far. Numerical modeling of coupled thermohydraulic processes in fracture-dominate Hot Dry Rock systems including rock-mechanics aspects, is in progress. In this paper some further efforts such as contributions to general geothermics, exploration and resource assessment activities in Switzerland, and financing of geothermal development abroad by Swiss banks are described

  15. International Workshop on Hot Dry Rock. Creation and evaluation of geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-11-04

    At the above-named event which met on November 4 and 5, 1988, a number of essays were presented concerning the fracture system, exploration, evaluation, geophysical measurement application, etc., as developed in the U.S., France, Sweden, Italy, Japan, England, etc. Novel technologies are necessary for a breakthrough in HDR (hot dry rock) exploitation. In the designing of an HDR system, the orientation and dimensions of a fracture to be hydraulically produced have to be appropriately predicted, for which knowledge of rock physical properties and geological structures and the technology of simulating them will be useful. Drilling and geophysical probing of rock mass are some means for fracture observation. Seismometer-aided mapping by AE (acoustic emission) observation is performed while hydraulic fracturing is under way. Upon completion of an HDR circulation system, evaluation of the reservoir by experiment or theory becomes necessary. The heat exchanging area and deposition are estimated using the geochemical data, temperature fall, etc., of the liquid in circulation. If fracture impedance or water loss is out of the designed level, the fracture needs improvement. (NEDO)

  16. A new assessment of combined geothermal electric generation and desalination in western Saudi Arabia: targeted hot spot development

    KAUST Repository

    Missimer, Thomas M.; Mai, Martin; Ghaffour, NorEddine

    2014-01-01

    High heat flow associated with the tectonic spreading of the Red Sea make western Saudi Arabia a region with high potential for geothermal energy development. The hydraulic properties of the Precambrian-age rocks occurring in this region are not conducive to direct production of hot water for heat exchange, which will necessitate use of the hot dry rock (HDR) heat harvesting method. This would require the construction of coupled deep wells; one for water injection and the other for steam recovery. There are some technological challenges in the design, construction, and operation of HDR geothermal energy systems. Careful geotechnical evaluation of the heat reservoir must be conducted to ascertain the geothermal gradient at the chosen site to allow pre-design modeling of the system for assessment of operational heat flow maintenance. Also, naturally occurring fractures or faults must be carefully evaluated to make an assessment of the potential for induced seismicity. It is anticipated that the flow heat exchange capacity of the system will require enhancement by the use of horizontal drilling and hydraulic fracturing in the injection well with the production well drilled into the fracture zone to maximum water recovery efficiency and reduce operating pressure. The heated water must be maintained under pressure and flashed to steam at surface to produce to the most effective energy recovery. Most past evaluations of geothermal energy development in this region have been focused on the potential for solely electricity generation, but direct use of produced steam could be coupled with thermally driven desalination technologies such as multi-effect distillation, adsorption desalination, and/or membrane distillation to provide a continuous source of heat to allow very efficient operation of the plants. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  17. A new assessment of combined geothermal electric generation and desalination in western Saudi Arabia: targeted hot spot development

    KAUST Repository

    Missimer, Thomas M.

    2014-07-17

    High heat flow associated with the tectonic spreading of the Red Sea make western Saudi Arabia a region with high potential for geothermal energy development. The hydraulic properties of the Precambrian-age rocks occurring in this region are not conducive to direct production of hot water for heat exchange, which will necessitate use of the hot dry rock (HDR) heat harvesting method. This would require the construction of coupled deep wells; one for water injection and the other for steam recovery. There are some technological challenges in the design, construction, and operation of HDR geothermal energy systems. Careful geotechnical evaluation of the heat reservoir must be conducted to ascertain the geothermal gradient at the chosen site to allow pre-design modeling of the system for assessment of operational heat flow maintenance. Also, naturally occurring fractures or faults must be carefully evaluated to make an assessment of the potential for induced seismicity. It is anticipated that the flow heat exchange capacity of the system will require enhancement by the use of horizontal drilling and hydraulic fracturing in the injection well with the production well drilled into the fracture zone to maximum water recovery efficiency and reduce operating pressure. The heated water must be maintained under pressure and flashed to steam at surface to produce to the most effective energy recovery. Most past evaluations of geothermal energy development in this region have been focused on the potential for solely electricity generation, but direct use of produced steam could be coupled with thermally driven desalination technologies such as multi-effect distillation, adsorption desalination, and/or membrane distillation to provide a continuous source of heat to allow very efficient operation of the plants. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  18. Exploration and comparison of geothermal areas in Indonesia by fluid-rock geochemistry

    NARCIS (Netherlands)

    Deon, F.; Barnhoorn, A.; Lievens, C.; Saptadij, N.; Sutopo, S.; van der Meer, F; den Hartog, T.; Brehmer, M; Bruhn, D.F.; de Jong, M; Ryannugroho, R.; Hutami, R.; Sule, R.; Hecker, C.; Bonté, D

    2016-01-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research.
    This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an

  19. Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs

    International Nuclear Information System (INIS)

    Kubota, Hiromi; Hondo, Hiroki; Hienuki, Shunichi; Kaieda, Hideshi

    2013-01-01

    After many years of stagnant growth in geothermal power generation, development plans for new geothermal plants have recently emerged throughout Japan. Through a literature review, we investigated the relationships between the principal barriers to geothermal development and we thereby analyzed the deciding factors in the future success of such enterprises. The results show that the societal acceptance of geothermal power by local stakeholders is the fundamental barrier as it affects almost all other barriers, such as financial, technical, and political risks. Thus, we conducted semi-structured interviews with 26 stakeholders including developers, hot spring inn managers, and local government officials. Some hot spring inn managers and local government officials noted that they have always been strongly concerned about the adverse effects of geothermal power generation on hot springs; their opposition has delayed decision-making by local governments regarding drilling permits, prolonged lead times, and caused other difficulties. A key reason for opposition was identified as uncertainty about the reversibility and predictability of the adverse effects on hot springs and other underground structures by geothermal power production and reinjection of hot water from reservoirs. Therefore, we discuss and recommend options for improving the risk management of hot springs near geothermal power plants. - Highlights: • We clarify relationships between barriers to geothermal power development in Japan. • Local acceptance by hot spring managers is the most prominent barrier. • Uncertainty of reversibility and predictability induces low acceptance. • Risk transfer system and dialogue are needed to alleviate concerns

  20. The National Energy Strategy - The role of geothermal technology development: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

  1. FY 1974 Report on results of Sunshine Project. Study on physicochemical properties of rocks in geothermal districts; 1974 nendo chinetsu chitai ni okeru ganseki no butsuri kagakuteki tokusei ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    The geothermal district is characterized by distributions of high temperature and hot water. The beds and rocks in these areas are characteristically altered by these conditions. It is an object of this research and development project to clarify how properties of the beds and rocks in these areas, exposed to the characteristic physicochemical conditions, differ from properties of those in other areas. There are may rock properties. In this project, the studied properties are centered by those used for physical exploitation (or geophysical methods), e.g., electrical properties (electrical exploitation), magnetic properties (magnetic exploitation), and thermal conductivity (measurement of heat flow rates and geothermal gradients). The FY 1974 project covers pigeonholing the basic data, establishment of the experimental procedures, and measurement of water quality characteristics and temperature distributions (geothermal temperature gradients) at the test site. This paper reports the results categorized by (I) measurement of rock resistivity and effects on moisture content on this property, (II) properties of water in the geothermal district (Yahata-daira District), and (III) relationships between rock thermal conductivity and other properties. (NEDO)

  2. A Rock Physics Feasibility Study of the Geothermal Gassum Reservoir, Copenhagen Area, Denmark

    DEFF Research Database (Denmark)

    Bredesen, Kenneth; Dalgaard, Esben Borch; Mathiesen, Anders

    The subsurface of Denmark stores significant amounts of renewable geothermal energy which may contribute to domestic heating for centuries. However, establishing a successful geothermal plant with robust production capacity require reservoirs with sufficient high porosity and permeability. Modern...... quantitative seismic interpretation is a good approach to de-risk prospects and gain reservoir insight, but is so far not widely used for geothermal applications. In this study we perform a rock physics feasibility study as a pre-step towards quantitative seismic interpretation of geothermal reservoirs......, primarily in areas around Copenhagen. The results argue that it may be possible to use AVO and seismic inversion data to distinguish geothermal sandstone reservoirs from surrounding shales and to estimate porosity and permeability. Moreover, this study may represent new possibilities for future rock physics...

  3. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  4. Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

    2000-09-29

    This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

  5. Prospects of geothermal resource exploitation

    International Nuclear Information System (INIS)

    Bourrelier, P.H.; Cornet, F.; Fouillac, C.

    1994-01-01

    The use of geothermal energy to generate electricity has only occurred during the past 50 years by drilling wells in aquifers close to magmas and producing either dry steam or hot water. The world's production of electricity from geothermal energy is over 6000 MWe and is still growing. The direct use of geothermal energy for major urban communities has been developed recently by exploitation of aquifers in sedimentary basins under large towns. Scaling up the extraction of heat implies the exploitation of larger and better located fields requiring an appropriate method of extraction; the objective of present attempts in USA, Japan and Europe is to create heat exchangers by the circulation of water between several deep wells. Two field categories are considered: the extension of classical geothermal fields beyond the aquifer areas, and areas favoured by both a high geothermal gradient, fractures inducing a natural permeability at large scale, and good commercial prospects (such as in the Rhenan Graben). Hot dry rocks concept has gained a large interest. 1 fig., 5 tabs., 11 refs

  6. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    Science.gov (United States)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was

  7. Deep geothermal energy: the Soultz-sous-Forets experience

    International Nuclear Information System (INIS)

    Genter, A.; Guenot, N.; Graff, J.J.

    2010-01-01

    This paper presents the mining exploitation project of the geothermal heat at Soultz-sous-Forets, located 50 km NE of Strasbourg (Bas Rhin, France). A geothermal power plant, inaugurated mid-2008, will commercialize its own power generation soon. This power plant is owned by a consortium of French-German industrialists through the European economical interest group for the mining exploitation of heat. The paper presents the geological characteristics of the hot dry rock geothermal reservoir, the deep geothermal wells, the hydraulic stimulation of the reservoir rock, the surface equipments of the power plants and the production pumps, the activities of the site in 2008 and 2009 and the perspectives of development of this energy source in France in the light of the Soultz-sous-Forets site experience. (J.S.)

  8. Geothermal characteristics in Korean peninsula for the disposal concept of high level radioactive waste

    International Nuclear Information System (INIS)

    Bae, Dae Seok; Kim, Chun Soo; Kim, Jin Woong; Han, Kyung Won; Chun, Kwan Sik

    2001-04-01

    In order to review the state-of-the-art of geothermal conditions and to supply the references for the concept development of high level radioactive waste disposal at deep geological formation in Korea. The existing data for the heat flow and geothermal gradient were evaluated and summarized over 300m in depth, which are mainly of the hot spring area. The heat flow in Korean peninsula is recorded as about 69mW/m 2 and has no significant differences, in general. This value is regarsed as similar as the average value over Korean peninsula, of 71mW/m 2 . This means The high geothermal anomalies are distributed around the south-western part of Korea and mainly covered with volcanic rocks. And, this value is within the range of the heat flow in Korean peninsula, as 50-80mW/m 2 . The geothermal gradient in each rock type are also shown a similar pattern by depth in Korea as belows. The sedimentary rock area: 25.34 deg C/km The plutonic rock area: 25.24 deg C/km (mainly granites) The metamorphic rock area: 23.56 deg C/km And, the geothermal gradient was measured as about 30 deg C/km around north- eastern part of Korea in 1996, where is distributed with granites. These values has been evaluated according to the existing data, which were mainly from the records of hot spring, in general. However, these properties would be abe to a propper references consideration with the low geothermal and areal characteristics of Korean peninsular. In the following stages, it is suggested that geothermal characteristics should be evaluated for the preferred host rocks

  9. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China

    Science.gov (United States)

    Du, Jianguo; Liu, Congqiang; Fu, Bihong; Ninomiya, Yoshiki; Zhang, Youlian; Wang, Chuanyuan; Wang, Hualiu; Sun, Zigang

    2005-04-01

    Geothermal variations, origins of carbon-bearing components and reservoir temperatures in the Rehai geothermal field (RGF) of Tengchong volcanic area, Yunnan Province, southwestern China, are discussed on the basis of carbon isotope compositions, combined with helium isotope ratios and geothermal data from 1973 to 2000. δ 13C values of CO 2, CH 4, HCO 3-, CO 3= and travertine in the hot springs range from -7.6‰ to -1.18‰, -56.9‰ to -19.48‰, -6.7‰ to -4.2‰, -6.4‰ to -4.2‰ and -27.1‰ to +0.6‰, respectively. The carbon dioxide probably has a mantle/magma origin, but CH 4 and He have multiple origins. HCO 3- and CO 3= in RGF thermal fluids are predominantly derived from igneous carbon dioxide, but other ions originate from rocks through which the fluids circulate. The 13C values of CO 2, HCO 3- (aq) and CO 3= (aq) illustrate that isotopic equilibriums between CO 2 and HCO 3- (aq), and CO 3= (aq) and between DIC and travertine were not achieved, and no carbon isotope fractionation between HCO 3- (aq) and CO 3= (aq) of the hot springs in RGF was found. Using various geothermometers, temperatures of the geothermal reservoirs are estimated in a wide range from 69 °C to 450 °C that fluctuated from time to time. The best estimate of subsurface reservoir temperature may be 250-300 °C. Contributions of mantle fluids and shallow crust fluids in Rehai geothermal field varied with time, which resulted in variations of chemical and isotopic compositions and reservoir temperatures.

  10. Hydrogen and oxygen isotope ratios of geothermal waters in the southern hachimantai area

    International Nuclear Information System (INIS)

    Matsubaya, Osamu; Etchu, Hiroshi; Takenaka, Teruo; Yoshida, Yutaka.

    1985-01-01

    Geothermal waters from the Matsukawa and Kakkonda Geothermal Plants, wells at Amihari-Motoyu, and Nyuto and Tazawako areas were isotopically studied. The geothermal waters from Mutsukawa, Kakkonda and Amihari-Motoyu have hydrogen isotope ratios similar to the local meteoric waters, while have higher oxygen isotope ratios than the local meteoric waters. This relationship of hydrogen and oxygen isotope ratios, that is called ''oxygen shift'', means that these geothermal waters are meteoric waters undergone the oxygen isotope exchange with rocks at high temperature of underground. The exygen shifts are 2 -- 3 per mil in Matsukawa and Kakkonda, and 7 per mil in Amihari-Motoyu. This difference may be important to understand the processe of water-rock interaction in this area. The geothermal waters at Nyuto and Tazawako areas also show 2 -- 3 per mil oxygen shift. The steam from the Tazawako-cho well and the hot spring water form the Tsurunoyu are estimated to be vapor and liquid phases separated form a single geothermal water of NaCl type, though the hot water from the Tsurunoyu is diluted with shallow meteoric water. (author)

  11. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  12. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    Science.gov (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  13. The economics of Plowshare geothermal power

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, J B; Stewart, D H [Battelle-Northwest (United States)

    1970-05-15

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application.

  14. The economics of Plowshare geothermal power

    International Nuclear Information System (INIS)

    Burnham, J.B.; Stewart, D.H.

    1970-01-01

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application

  15. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  16. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    Science.gov (United States)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  17. Cost modelling of electricity-producing hot dry rock (HDR) geothermal systems in the United Kingdom

    International Nuclear Information System (INIS)

    Doherty, P.; Harrison, R.

    1995-01-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. The geometrical arrangement and the shape of the reservoir constitute major uncertainties in HDR systems. Their effect on temperature has a major influence on system performance, and therefore a range of theoretically possible geometries have been studied and the importance of geometrical effects on HDR electricity costs assessed. The most cost effective HDR arrangement in terms of optimized volumes and flow rates has been investigated for a world-wide range of thermal settings. The main conclusions from this study suggests that for HDR electricity to be economic, thermal gradients of 55 o C/km and above, well depths of 5 km or less, and production fluid temperatures of 210 o C and above are required. (UK)

  18. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    Science.gov (United States)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  19. Vulcan Hot Springs known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

  20. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    International Nuclear Information System (INIS)

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-01-01

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite

  1. Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Sukir Maryanto

    2017-06-01

    Full Text Available An integrated magnetotelluric (MT and geochemical study of the Blawan geothermal field has been performed. The character of the hot springs, the reservoir temperature, and geothermal reserve potential of Blawan geothermal field are assessed. MT measurements, with 250 m up to 1200 m spacings, were made at 19 sites, and 6 locations at the Blawan hot springs have been sampled for geochemical survey. The results of 2D modelling indicated that the geothermal system in the research area consisted of a cap rock zone (≤32 Ω•m, reservoir zone (>32 – ≤512 Ω•m, and heat source zone (>512 Ω•m, and also identified faults. The characteristics of the hot spring water were identified through analyzing the major and minor elements. A ternary diagram (Cl-SO4-HCO3 showed that the Blawan hot springs consist of bicarbonate water (at locations of AP-01, AP-02, AP-03 and chloride water (at locations of AP-04, AP-05, and AP-06, with a reservoir temperature of approximately 90 °C based on the Na–K–Ca geothermometer results. An estimate of the geothermal energy using the volumetric method, gave a total geothermal reserve potential of 1.823 MWe.

  2. Outline of geothermal energy research and development in fiscal 1999; Heisei 11 nendo chinetsu enerugi kenkyu kaihatsu no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, T. [Agency of Industrial Science and Tehcnology, Tokyo (Japan)

    1999-11-18

    In this paper, the outline of the budget of geothermal energy relation in fiscal 1999, the system of research and development and the outline of research and development are described. Budgets in fiscal 1999 are the general account 17 million yen, the power development special account 3,222 million yen, sum total 323,900 million yen and it is a 33 million yen decrease compared with the preceding year. Within research and development, the following are included as a survey investigation research; a geothermal energy survey and picking technology, a verification investigation of a geothermal energy exploration technique, a deep geothermal resource investigation and an analysis and evaluation therefor. As a development of geothermal energy power plants using hot water, the following are included; development of the 10 MW binary cycle power generation plant, development of the bottom hole information system (MWD) in geothermal well drilling, technology development of the geothermal hot dry rock source system. As an analysis and evaluation of the bottom hole information detection system in geothermal well drilling, the following are included; an analysis and evaluation of the hot dry rock thermal extraction system, an analysis and evaluation of the deep geothermal resources picking technology, an analysis and evaluation of metallic materials for the geothermal deep direction and an analysis and evaluation of high polymer materials for the geothermal deep direction. (NEDO)

  3. Geothermal Progress Monitor, report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  4. Hot dry rock: What does it take to make it happen

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1993-01-01

    The ubiquitous heat in hot dry rock (HDR) is an abundant, widely distributed form of geothermal energy. Until recently, development of this energy source has been largely focused on understanding the scientific and engineering principles involved in forming and operating HDR reservoirs. During the past year, however, a pilot facility at Fenton Hill, NM has been run under steady-state conditions simulating the operation of a commercial HDR energy plant. Issues important to commercialization such as sustainability of thermal production, water loss, operating costs, and others have been addressed to the extent possible. The results, while not always definitive, have been encouraging. The stage is now set for the formation of an initiative led by private industry to take HDR technology from its current state of scientific and engineering demonstration to the production and marketing of energy in commercial quantities. Because of the technology risks involved, this can probably only be accomplished through a cost-shared industry/government effort. The potential rewards are great, since HDR represents the best, and perhaps the only, opportunity for geothermal energy to take its rightful place as a major energy source for the 21st century

  5. Numerical simulations of heat transfer through fractured rock for an enhanced geothermal system development in Seokmodo, Korea

    Science.gov (United States)

    Shin, Jiyoun; Kim, Kyung-Ho; Hyun, Yunjung; Lee, Kang-Keun

    2010-05-01

    Estimating the expected capacity and efficiency of energy is a crucial issue in the construction of geothermal plant. It is the lasting temperature of extracted geothermal water that determines the effectiveness of enhanced geothermal systems (EGS), so the heat transfer processes in geothermal reservoirs under site-specific geologic conditions should be understood first. The construction of the first geothermal plant in Korea is under planning in Seokmodo, where a few flowing artesian wells showing relatively high water temperature of around 70°C were discovered lately. The site of interest is a part of the island region, consisting of the reclaimed land surrounded by the sea and small mountains. Geothermal gradient measures approximately 45°C/km and the geothermal water is as saline as seawater. Geologic structure in this region is characterized by the fractured granite. In this study, thermo-hydrological (TH) numerical simulations for the temperature evolution in a fractured geothermal reservoir under the supposed injection-extraction operating conditions were carried out using TOUGH2. Multiple porosity model which is useful to calculate the transient interporosity flow in TH coupled heat transfer problem was used in simulations. Several fracture planes which had been investigated in the field were assigned to have highly permeable properties in order to avoid the averaging approximation and describe the dominant flow through the fractures. This heterogeneous model showed the rise of relatively hot geothermal water in the densely fractured region. The temperature of the extracted geothermal water also increased slowly for 50 years due to the rising flow through the fractures. The most sensitive factor which affects the underground thermal distribution and temperature of geothermal water was permeability of the medium. Change in permeabilities of rock and fracture within the range of 1 order might cause such an extreme change in the temperature of geothermal

  6. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea geothermal field, southeastern California

    International Nuclear Information System (INIS)

    Zukin, J.G.; Hammond, D.E.; Ku, Tehlung; Elders, W.A.

    1987-01-01

    Naturally occurring U and Th series radionuclides have been analyzed in high temperature brines (∼ 300 degree C, 25 wt% dissolved solids) and associated rocks from two deep geothermal wells located on the northeastern margin of the Salton Sea Geothermal Field (SSGF). These data are part of a study of the SSGF as a natural analog of possible radionuclide behavior near a nuclear waste repository constructed in salt beds, and permit evaluation of some characteristics of water-rock interaction in the SSGF

  7. Convective heat transfer of supercritical CO_2 in a rock fracture for enhanced geothermal systems

    International Nuclear Information System (INIS)

    Zhang, Le; Jiang, Peixue; Wang, Zhenchuan; Xu, Ruina

    2017-01-01

    Highlights: • Contrasting experiments between a rough and a smooth fracture were performed. • A numerical model of rough fracture was reconstructed based on CT scanning data. • Heat transfer in rough fracture was affected by channeling and disturbance effects. - Abstract: Convective heat transfer characteristics of supercritical pressure fluid in a rock fracture are important for building an accurate heat transfer model of enhanced geothermal systems. This paper presents experimental investigations of laminar convection heat transfer of supercritical pressure CO_2 in an artificial smooth parallel-plate fracture and a rough and tortuous fracture that was created using the Brazilian technique. Hot rock with a relatively high initial temperature reserves more heat, which can ensure a larger heat extraction rate for a longer time when cold fluid flows through the fracture. Compared with the smooth parallel-plate fracture, CO_2 flowing through the rough and tortuous fracture with an equivalent hydraulic aperture extracted less heat from the hot rock due to the less efficient heat exchange in a rough fracture caused by channeling effect. This was illustrated by numerical simulation results of the reconstructed fracture based on micro-computed tomography scan data. The overall Nusselt number obtained from the numerical results was larger in a rough fracture with a larger Reynolds number due to disturbance effect on the boundary layer development. The heat transfer performance in a rough fracture is therefore influenced by interactions of the channeling and disturbance effects caused by the tortuous flow path.

  8. Geothermal energy and hot springs in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Koga, T. (Hot Springs Therapeutics Research Institute, Kyushu, Univ., Japan)

    1971-01-01

    The hot springs in Ethiopia are concentrated in two areas: the North Afar depression and adjacent Red Sea shore, and a geothermal field 100 km from northeast to southwest in the central part of Ethiopia. The latter extends not only to the Great Rift Valley but also to the Aden Gulf. In the lake district in the central Great Rift Valley, there are a number of hot springs on the lake shore. These are along NE-SW fault lines, and the water is a sodium bicarbonate-type rich in HCO/sub 3/ and Na but low in C1 and Ca. In Dallol in the North Afar depression, CO/sub 2/-containing hot springs with high temperatures (110/sup 0/C) and a specific gravity of 1.4, were observed. In the South Afar depression, located in the northeastern part of the Rift Valley, there are many active volcanoes and hot springs between the lake district and the Danakil depression. The spring water is a sodium bicarbonate saline type. Nine graphs and maps are included.

  9. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  10. NEDO Forum 2000. Geothermal technology development session (new development of geothermal energy); Chinetsu gijutsu kaihatsu session. Chinetsu energy no shintenkai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The following themes were presented at this session: (1) geothermal development in the future, (2) the current status of geothermal development and utilization, (3) surveys on the promotion of geothermal development, and (4) verification and investigation on geothermal exploration technologies, development of hot water utilizing power generation plants, and international cooperation on geothermal development and utilization. In Item 2, report was made on the current status of geothermal power plants in Japan and their future development targets, long-term overview of geothermal development, measures and budgets to achieve the targets of geothermal development. In Item 3, it is reported that out of 48 areas completed of the survey (including the new promotion surveyed areas), the areas possible of steam power generation and confirmed of temperatures higher than 200 degrees C are 30 areas, and the areas possible of binary power generation (using down hole pumps) and small to medium scale power generation, confirmed of temperatures of 100 to 200 degrees C are 13 areas. In Item 4, reports were made on the reservoir bed variation exploring method, surveys on deep geothermal resources, a 10-MW demonstration plant, a system to detect well bottom information during excavation of geothermal wells, a technology to collect deep geothermal resources, and a hot-rock using power generation system. In Item 5, geothermal exploration in remote islands in the eastern part of Indonesia, and the IEA cooperation projects were reported. (NEDO)

  11. Research on isotope geology. Assessment of heat production potential of granitic rocks and development of geothermal exploration techniques using radioactive/stable isotopes and fission track 2

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Cheon; Chi, Se Jung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Radioelements and heat production rates of granitic rocks and stable isotopes of groundwaters were analyzed to investigate the geothermal potential of Wolchulsan granite complex in the southern Yeongam area. Wolchulsan granite complex is composed mainly by Cretaceous pink alkali-feldspar granite and partly Jurassic biotite granite. The main target for the geothermal exploration is the alkali-feldspar granite that is known in general to be favorable geothermal reservoir(e.g., Shap granite in UK). To develop exploration techniques for geothermal anomalies, all geochemical data were compared to those from the Jeonju granite complex. Heat production rates(HPR) of the alkali-feldspar granite is 1.8 - 10.6 {mu}Wm{sup -3}. High radio-thermal anomalies were revealed from the central western and northern parts of the granite body. These are relatively higher than the Caledonian hot dry granites in the UK. The integrated assessment of Wolchulsan granite complex suggests potential of the Cretaceous alkali-feldspar granite as a geothermal targets. Groundwater geochemistry of the Yeongam area reflects simple evaporation process and higher oxidation environment. Stable isotope data of groundwaters are plotted on or close to the Meteoric Water Line(MWL). These isotopic data indicate a significant meteoric water dominance and do not show oxygen isotope fractionation between groundwater and wall rocks. In despite of high HPR values of the Yeongam alkali-feldspar granite, groundwater samples do not show the same geochemical properties as a thermal water in the Jeonju area. This reason can be well explained by the comparison with geological settings of the Jeonju area. The Yeongam alkali-feldspar granite does not possess any adjacent heat source rocks despite its high radio-thermal HPR. While the Jeonju granite batholith has later heat source intrusive and suitable deep fracture system for water circulation with sedimentary cap rocks. (Abstract Truncated)

  12. Geothermal power plants principles, applications, case studies and environmental impact

    CERN Document Server

    DiPippo, Ronald

    2012-01-01

    Now in its 3e, this single resource covers all aspects of the utilization of geothermal energy for power generation using fundamental scientific and engineering principles. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader's understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. Important new chapters cover Hot Dry Rock, Enhanced Geothermal Systems, and Deep Hydrothermal Systems. New, international case studies provide practical, hands-on knowledge.

  13. Direct uses of hot water (geothermal) in dairying

    Energy Technology Data Exchange (ETDEWEB)

    Barmettler, E.R.; Rose, W.R. Jr.

    1978-01-01

    Digital computer simulation was used to investigate the peak, steady energy utilization of a geothermal energy-supported dairy. A digital computer program was also written to assess the lifetime economics of the dairy operation. A dynamic simulation program was written to design water storage tanks under diurnal transient loading. The geothermal site specified is the artesian spring named Hobo Wells near Susanville, California. The dairy configuration studies are unique, but consist of conventional processing equipment. In the dairy, cattle waste would be used to generate methane and carbon dioxide by anaerobic digestion. Some carbon dioxide would be removed from the gas stream with a pressurized water scrubber to raise the heating value. The product gas would be combusted in a spark ignition engine connected to an electric generator. The electrical power produced would be used for operation of fans, pumps, lights and other equipment in the dairy. An absorption chiller using a geothermal water driven generator would provide milk chilling. Space heating would be done with forced air hot water unit heaters.

  14. Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)

    Science.gov (United States)

    Förster, Andrea; Förster, Hans-Jürgen; Krentz, Ottomar

    2018-01-01

    This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity k, radiogenic heat production H). The uncertainties of modelled temperature caused by observed variations of k and H and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3-4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production ( 6 µW m-3) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.

  15. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    Science.gov (United States)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were applied in order to increase the initial low permeability by reactivating and dissolving sealed fractures in basement. The productivity was considerably improved and allows geothermal exploitation at 165° C and 20 L/s. Recent studies revealed the occurrences of permeable fractures in the limestones of Muschelkalk and the sandstones of Buntsandstein also. For

  16. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  17. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  18. An analysis of natural gas exploration potential in the Qiongdongnan Basin by use of the theory of “joint control of source rocks and geothermal heat”

    Directory of Open Access Journals (Sweden)

    Zhang Gongcheng

    2014-10-01

    Full Text Available The Oligocene Yacheng Fm contains the most important source rocks that have been confirmed by exploratory wells in the Qiongdongnan Basin. The efficiency of these source rocks is the key to the breakthrough in natural gas exploration in the study area. This paper analyzes the hydrocarbon potential of each sag in this basin from the perspective of control of both source rocks and geothermal heat. Two types of source rocks occur in the Yacheng Fm, namely mudstone of transitional facies and mudstone of neritic facies. Both of them are dominated by a kerogen of type-III, followed by type-II. Their organic matter abundances are controlled by the amount of continental clastic input. The mudstone of transitional facies is commonly higher in organic matter abundance, while that of neritic facies is lower. The coal-measure source rocks of transitional facies were mainly formed in such environments as delta plains, coastal plains and barrier tidal flat-marshes. Due to the control of Cenozoic lithosphere extension and influence of neotectonism, the geothermal gradient, terrestrial heat flow value (HFV and level of thermal evolution are generally high in deep water. The hot setting not only determines the predominance of gas generation in the deep-water sags, but can promote the shallow-buried source rocks in shallow water into oil window to generate oil. In addition to promoting the hydrocarbon generation of source rocks, the high geothermal and high heat flow value can also speed up the cracking of residual hydrocarbons, thus enhancing hydrocarbon generation efficiency and capacity. According to the theory of joint control of source quality and geothermal heat on hydrocarbon generation, we comprehensively evaluate and rank the exploration potentials of major sags in the Qiongdongnan Basin. These sags are divided into 3 types, of which type-I sags including Yanan, Lingshui, Baodao, Ledong and Huaguang are the highest in hydrocarbon exploration potential.

  19. An experimental investigation of transient heat transfer in surrounding rock mass of high geothermal roadway

    Directory of Open Access Journals (Sweden)

    Zhang Yuan

    2016-01-01

    Full Text Available A self-designed experimental installation for transient heat transfer in the modelling surrounding rock mass of high geothermal roadways was elaborated in this paper. By utilizing the new installation, the temperature variation rules in surrounding rock mass of the high geothermal roadway during mechanical ventilation were studied. The results show that the roadway wall temperature decreases dramatically at the early stage of ventilation, and the temperature at every position of the surrounding rock mass is decreasing constantly with time passing by. From roadway wall to deep area, the temperature gradually increases until reaching original rock temperature. The relationship between dimensionless temperature and dimensionless radius demonstrates approximately exponential function. Meanwhile, the temperature disturbance range in the simulated surrounding rock mass extends gradually from the roadway wall to deep area in the surrounding rock mass. Besides, as the air velocity increases, heat loss in the surrounding rock mass rises and the ratio of temperature reduction becomes larger, the speed of disturbance range expansion also gets faster.

  20. Cancer mortality and other causes of death in users of geothermal hot water.

    Science.gov (United States)

    Kristbjornsdottir, Adalbjorg; Rafnsson, Vilhjalmur

    2015-01-01

    Residents of geothermal areas have increased incidence of non-Hodgkin's lymphoma, breast, prostate, and kidney cancers. The aim was to study whether this is also reflected in cancer mortality among the population using geothermal hot water for space heating, washing, and showering. The follow-up was from 1981 to 2009. Personal identifier of those 5-64 years of age was used in record linkage with nationwide death registry. Thus, vital and emigration status was ascertained. The exposed population was defined as inhabitants of communities with district heating generated from geothermal wells since 1972. Reference populations were inhabitants of other areas with different degrees of volcanic/geothermal activity. Hazard ratio (HR) and 95% confidence intervals (CI) were adjusted for age, gender, education, housing, reproductive factors and smoking habits. Among those using geothermal water, the HR for all causes of death was 0.98 (95% CI 0.91-1.05) as compared with cold reference area. The HR for breast cancer was 1.53 (1.04-2.24), prostate cancer 1.74 (1.21-2.52), kidney cancer 1.78 (1.03-3.07), and for non-Hodgkin's lymphoma 2.01 (1.05-3.38). HR for influenza was 3.36 (1.32-8.58) and for suicide 1.49 (1.03-2.17). The significant excess mortality risk of breast and prostate cancers, and non-Hodgkin's lymphoma confirmed the results of similarly designed studies in Iceland on cancer incidence among populations from high-temperature geothermal areas and users of geothermal hot water. The risk is not confined to cancers with good prognosis, but also concerns fatal cancers. Further studies are needed on the chemical and physical content of the water and the environment emissions in geothermal areas.

  1. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  2. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  3. FY 1992 report on the survey of geothermal development promotion. Geochemical survey (Survey of geothermal water) (No.36 - Hongu area); 1992 nendo chinetsu kaihatsu sokushin chosa. Chikagaku chosa (Nessui no chosa) hokokusho (No.36 Hongu chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The test on jetting of geothermal water by the induced jetting, sampling of geothermal water and analysis/survey were carried out in the structure drilling well of N4-HG-2 in the Hongu area, Wakayama Prefecture. The induced jetting of the well was conducted by the Swabbing method up to the total pumping amount of 459.9m{sup 3} that is equal to about 24 times as much as the inner quantity of the well, but it did not result in jetting. The maximum temperature of geothermal water was 65.6 degrees C, pH was 6.6-7.5, electric conductivity was 2,800-2,900 {mu}S/cm, and Cl concentration was 500-700ppm. The geothermal water was classified into the HCO{sub 3} type that is neutral, and the spring quality and liquidity were the same as those of existing hot springs in this area. In the Hongu area, the distribution of new volcanic rocks has not known. The K-Ar age of quartz porphyry intrusive rocks was made about 13Ma, and it was considered that a possibility was low of the rocks being heat sources of geothermal activities. It was also considered that the geothermal water/hot spring water in this area, which originate in the surface water, were heated in heat transfer by magma activities in the deep underground and were flowing forming a small scale of hydrothermal convection system. (NEDO)

  4. Report on achievements in fiscal 1975 in Sunshine Project. Studies on physical and chemical properties of rocks in geothermal areas; 1975 nendo chinetsu chitai ni okeru ganseki no butsuri kagakuteki tokusei ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This paper reports the achievements of (A) studies on change in rock specific resistance due to temperature and water content, and (B) petrological, mineralogical and chemical studies on thermally transformed rocks. In the study (A), it was discovered that use of high-pressure capsules allow to obtain test samples in a condition of containing hot water as a result of studies on temperature change in rock specific resistance due to hot water content. In the measurements of geothermal gradient and heat conductivity of test drilled rock cores, the experiments revealed that there are different patterns of temperature restoration due to geological conditions and finish of wells, and properties of mud water used. The studies on thermal structures and underground structures decided shapes of measurement test samples of test drilled cores. In the measurements of heat conductivity and heat flow rate of test drilled rock cores, considerations were given on the relationship among sectional temperature increasing rate, heat conductivity and heat flow rate. The measurements of residual magnetism and magnetization in rocks described interpretation on the result of test drilled core measurement. In the study (B), aluminous sphere in the Hachimantai Onuma geothermal area is first described. Then, a description is given on the relationship between chemical constituents and electric conductivity of natural water in Mt. Akita Yakeyama and its vicinity. (NEDO)

  5. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  6. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    Science.gov (United States)

    1989-02-01

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.

  7. The characteristics of geothermal field of Qiabuqia town in Gonghe basin, northeastern Tibetan Plateau

    Science.gov (United States)

    Zhang, C.; Shi, Y.; Jiang, G.

    2017-12-01

    Located in the northeastern margin of Gonghe basin, Qiabuqia town displays the most potential of hot dry rock geothermal resources exploration and development in China so far. Although large quantities of geophysical exploration work have been down since 2013, the study of present geothermal field is almost empty, which is seriously restricting the evaluation and utilization of geothermal resources in Qiabuqia town. This study is to revel the geothermal characteristics of four hot dry rock boreholes (DR4, DR3, GR1 and GR2) though continuous steady temperature logging and thermal conductivity measurements of core samples. The main stratum of study area are Indosinian granitic rocks (below 1400 m) which is overlain by thick Paleogene, Neogene and Quaternary lacustrine strata (0 1400 m). Continuous temperature logs display that the bottom hole temperature of DR3 borehole is up to 180 oC at the depth of 3000 m and it is the first successfully verification of the existence of hot dry rock geothermal resources in China. The temperature gradients of these for boreholes are obtained by the linear least squares regression method and it turns out that the temperature gradient varies from 38 to 45.2 oC • km-1 with an average of 40.4 oC • km-1. Average thermal conductivity of bedrocks ranges from 2.07 to 3.10 W/(m • K) with an mean of 2.52 W/(m • K). Heat flow values are calculated as the product of least-square thermal gradients and corresponding thermal conductivity. By the result of the calculation, the heat flow are 98.9 mW • m-2, 114.7 mW • m-2, 96.2 mW • m-2, 97.8 mW • m-2 for DR4, DR3, GR1 and GR2 borehole, respectively. Compared to the adjacent Qaidam basin, Sichuan basin and Ordos basin, the study area appear to be a thermal abnormal area with high temperature gradient and high heat flow.

  8. Geothermal energy and its application opportunities in Serbia

    Directory of Open Access Journals (Sweden)

    Andrić Nenad M.

    2015-01-01

    Full Text Available Geothermal energy is accumulated heat in the fluid and rock masses in the Earth 's crust. The natural decay of radioactive elements (uranium, thorium and potassium in rocks produces heat energy. The simplest use of geothermal energy for heating is by heat pump. Geothermal energy can be used for production of electricity. It uses hot water and steam from the earth to run the generator. Serbia has significant potential for geothermal energy. The total amount of accumulated heat in geothermal resources in a depth of 3 km is two times higher than the equivalent thermal energy that could be obtained by burning all types of coal from all their sites in Serbia! The total abundance of geothermal resources in Serbia is 4000 l/s. Abundance of wells in Vojvodina is 10-20 l/s, and the temperature is from 40 to 60°C. Exploitation of thermal waters in Mačva could cause heating of following cities: Bogatić, Šabac, Sremska Mitrovica and Loznica, with a total population of 150.000 people. The richest hydrogeothermal resources are in Mačva, Vranje and Jošanička Banja. Using heat pumps, geothermal water can be exploited on the entire territory of Serbia! Although large producer, Serbia is importing food, ie., fruits and vegetables. With the construction of greenhouses, which will be heated with geothermal energy, Serbia can become an exporting country.

  9. Future directions and cycles for electricity production from geothermal resources

    International Nuclear Information System (INIS)

    Michaelides, Efstathios E.

    2016-01-01

    Graphical abstract: 25% more power may be produced using binary-flashing geothermal cycles. - Highlights: • Power from geothermal power plants is continuously available and “dispatchable.” • The next generation of geothermal will include more binary plants. • Lower temperature geothermal resources will be utilized in the future. • Dry rock resources may produce a high fraction of electricity in several countries. - Abstract: Geothermal power production is economically competitive and capable to produce a high percentage of the electric power demand in several countries. The currently operating geothermal power plants utilize water from an aquifer at relatively higher temperatures and produce power using dry steam, flashing or binary cycles. A glance at the map of the global geothermal resources proves that there is a multitude of sites, where the aquifer temperature is lower. There are also many geothermal resources where a high geothermal gradient exists in the absence of an aquifer. It becomes apparent that the next generation of geothermal power plants will utilize more of the lower-temperature aquifer resources or the dry resources. For such power plants to be economically competitive, modified or new cycles with higher efficiencies must be used. This paper presents two methods to increase the efficiency of the currently used geothermal cycles. The first uses a binary-flashing system to reduce the overall entropy production, thus, producing more electric power from the resource. The second describes a heat extraction system to be used with dry hot-rock resources.

  10. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2008-01-01

    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  11. Experimental thermomechanical damage as first approach to understand the petrophysical behavior of the granitic host-rocks from an active fractured-geothermal system (Liquiñe, Chile - 39º S)

    Science.gov (United States)

    Molina Piernas, E.; Sepúlveda, J.; Arancibia, G.; Roquer, T.; Morata, D.; Bracke, R.; Vázquez, P.

    2017-12-01

    Chile's location along an active subduction zone has endowed it with a high geothermal potential. However, a better understanding of the thermomechanical and fluid transport properties of rocks is required to assess the potential of geothermal systems and thereby enhance the possibilities for their use. We have focused in the area surrounding Liquiñe, in the Southern Andean Volcanic Zone (Chile, 39º S). This area hosts several recent thermal manifestations, predominantly hot springs, and it is affected by the Liquiñe-Ofqui Fault Zone (LOFZ), which controls the position of the modern volcanic arc in southern Chile and cuts the Patagonian batholith. We have carried out experimental analyzes in order to understand this geothermal system and the influence of the thermomechanical features over the granitic host-rocks (low-porous crystalline rocks). To do this, physical properties such as capillary water absorption coefficient, Vp-wave velocity and compressive resistance were evaluated before and after heating rock samples at 150 ºC and 210 ºC (at ambient pressure) in an oven at a heating rate of 6 °C/min and maintaining the maximum temperature for 4 hours. The cooling rate was less than 2 °C/min to avoid shrinkage phenomena. The results show that the damage by heat was greater at 210 ºC than 150 ºC, likely due to an increased capillary coefficient ( 30% and 25%). On the contrary, Vpvelocity ( -19% and -13%) and compressive resistance ( -27% in both cases) decreased, with respect to unheated samples. Consequently, we can infer an inherent effect on the later fracture process due to the thermal stress when this granitic body was at depth. After that, and considering the local and regional strain-stress state, both factors have facilitated the fluid flow, increasing the permeability of this granitic host-rock allowing the presence of hot-springs. Future work will be to acquire complementary petrophysical parameters, such as porosity, permeability, thermal

  12. The Role of Boron Chloride and noble gas isotope ratios in Taupo Volcanic Zone geothermal systems

    International Nuclear Information System (INIS)

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater con noble gases, at air saturated water concentrations, mixes with hot fluids of man origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks 'en route' the surface. It is demonstrated that this interaction is responsible for most of CO/sub 2/ in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed th the modelling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks like to be encountered in the geothermal system, but further information on the behaviour of B may be needed. If these problems can be overcome this modelling technique has promise for the estimation of the recharge of geothermal systems a hence the sustainability of these systems. (author). 17 refs., 4 figs

  13. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  14. Hydrothermal Alteration in Submarine Basaltic Rocks from the Reykjanes Geothermal Field, Iceland. (Invited)

    Science.gov (United States)

    Zierenberg, R. A.; Schiffman, P.; Fowler, A. P.; Marks, N.; Fridleifsson, G.; Elders, W. A.

    2013-12-01

    The Iceland Deep Drilling Project (IDDP) is preparing to drill to 4-5 km in the Reykjanes Geothermal Field to sample geothermal fluids at supercritical temperature and pressure for power generation. The Reykjanes geothermal field is the on-land extension of the Reykjanes Ridge spreading center. The upper 1-2 kilometers drilled at Reykjanes are submarine basalts and basaltic sediments, hyalloclastites, and breccias, with an increasing proportion of basaltic intrusive rocks below 2 km depth. Geothermal fluids are evolved seawater with a composition similar to mid-ocean ridge hydrothermal systems. Zn- and Cu-rich sulfide scale, locally enriched in Au and Ag, are deposited in production pipes. The sulfide deposits are compositionally and isotopically similar to seafloor massive sulfides. In anticipation of deeper drilling, we have investigated the mineralogy and geochemistry of drill cuttings from a 3 km deep well (RN-17). The depth zoning of alteration minerals is similar to that described from other Icelandic geothermal fields, and is comparable to observed seafloor metamorphic gradients in ODP drill holes and ophiolites. Chlorite-epidote alteration occurs at depths >400 m and passes downhole through epidote-actinolite alteration and into amphibole facies (hornblende-calcic plagioclase) alteration below 2.5 km. Local zones of high temperature (>800°C), granoblastic-textured, pyroxene hornfels, are interpreted to form by contact metamorphism during dike/sill emplacement. Similar granoblasically altered basalts were recovered from the base of the sheeted dikes in IODP Hole 1256D. Downhole compositional variations of drill cuttings, collected every 50 m, suggest that rocks below ~ 2 km are little altered. Whole-rock oxygen isotope profiles are consistent with low water/rock ratios, but suggest that early stages of hydrothermal alteration included meteoric water-derived fluids. Strontium isotope profiles indicate more extensive exchange with seawater-derived fluids

  15. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  16. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  17. The role of boron-chloride and noble gas isotope ratios in TVZ geothermal systems

    International Nuclear Information System (INIS)

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater containing noble gases, at air saturated water concentrations, mixes with hot fluids of mantle origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks en route to the surface. It is demonstrated that this interaction is responsible for most of the CO 2 in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed that the modelling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks likely to be encountered in the geothermal system, but further information on the behaviour of B may be needed. If these problems can be overcome this modelling technique has promise for the estimation of the recharge of geothermal systems and hence the sustainability of these systems. (author). 17 refs., 4 figs

  18. Geothermal hydrogen - a vision? Paper

    Energy Technology Data Exchange (ETDEWEB)

    Zittel, W.; Weindorf, W.; Wurster, R.; Bussmann, W.

    2001-07-01

    With the progresses in geothermal electricity production by means of the hot-dry-rock (HDR) method electricity might be produced at cost of between 0.07 - 0.09 ECU/kWh, depending on systems sizes of between 5 - 20 MW{sub e}. The electricity can be used to produce hydrogen from electrolysis and water. This method of electricity production offers high availability with operating hour of between 7,600 - 8,000 hours per year. The 40 GWh electricity production per year from one 5 MW{sub e} geothermal plant are sufficient to produce enough hydrogen for the operation of an average fueling station with about 400 refuelings per day at cost of about 20 - 30 percent higher than today's gasoline (including taxes). In this contribution some details of the analysis are presented as well as a general discussion of geothermal hydrogen production as a future energy vector. (orig.)

  19. Geothermal Program Review X: proceedings. Geothermal Energy and the Utility Market -- the Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R&D program. The conference serves several purposes: a status report on current R&D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year`s conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, ``Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,`` focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R&D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  20. Federal Geothermal Research Program Update Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  1. Fiscal 2000 report on geothermal energy development promotion survey. Phase 1. Report on environmental impact survey in No. C-5 Appi district (Hot spa fluctuation); 2000 nendo chinetsu kaihatsu sokushin chosa hokokusho. No. C-5. Appi chiiki kankyo chosa (onsen hendo) dai 1 ji

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    For the assessment of the environmental impact to be produced by geothermal exploration well boring and short-term outburst tests, water in hot spas, fountains, and rivers in and around the Appi survey district was inspected for fluctuation. A survey was conducted of multiple components to help analysis of the geothermal reservoir structure. Distributed in the alteration zone in this district are the hot spas of Kusanoyu, Shin-Kusanoyu, Appi, and so forth, and, in the vicinity, numerous hot spas including Iwahatanoyu belonging to the Appi hot spa. In the multiple component survey, 12 hot spas, 1 fountain, 8 rivers, and 2 gas wells were subjected to measurement. In the fluctuation survey, 5 hot spas, 1 fountain, 5 rivers, and the amount of precipitation were subjected to measurement. In the survey of river bottom quality and river bed rocks, river bottom quality was checked at 18 spots and river bed rocks at 12 spots. It was found that fluctuation was great in the amount of welling water at Kusanoyu, Shin-kusanoyu, and Appi, with the coefficient of fluctuation recording 10 or more. A negative correlation was detected between the welling amount and water temperature. It is deemed that the hot water spurts out of natural fountains or shallow wells and that its temperature tends to grow lower with an increase in meteoric water by which it is diluted. (NEDO)

  2. Long-term Sustainability of Fracture Conductivity in Geothermal Systems using Proppants

    Energy Technology Data Exchange (ETDEWEB)

    Earl D Mattson; Ghanashyam Neupane; Mitchell Plummer; Clay Jones; Joe Moore

    2016-02-01

    Long-term sustainability of fracture conductivity is critical for commercial success of engineered geothermal system (EGS) and hydrogeothermal field sites. The injection of proppants has been suggested as a means to enhance the conductivity in these systems. Several studies have examined the chemical behavior of proppants that are not at chemical equilibrium with the reservoir rock and water. These studies have suggested that in geothermal systems, geochemical reactions can lead to enhance proppant dissolution and deposition alteration minerals. We hypothesize that proppant dissolution will decrease the strength of the proppant and can potentially reduce the conductivity of the fracture. To examine the geomechanical strength of proppants, we have performed modified crushing tests of proppants and reservoir rock material that was subjected to geothermal reservoir temperature conditions. The batch reactor experiments heated crushed quartz monzonite rock material, proppants (either quartz sand, sintered bauxite or kryptospheres) with Raft River geothermal water to 250 ºC for a period of 2 months. Solid and liquid samples were shipped to University of Utah for chemical characterization with ICP-OES, ICP-MS, and SEM. A separate portion of the rock/proppant material was subjected to a modified American Petroleum Institute ISO 13503-2 proppant crushing test. This test is typically used to determine the maximum stress level that can be applied to a proppant pack without the occurrence of unacceptable proppant crushing. We will use the test results to examine potential changes in proppant/reservoir rock geomechanical properties as compared to samples that have not been subjected to geothermal conditions. These preliminary results will be used to screen the proppants for long term use in EGS and hot hydrogeothermal systems.

  3. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  4. Geothermal Energy R&D Program Annual Progress Report Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-04-01

    In this report, the DOE Geothermal Program activities were split between Core Research and Industrial Development. The technical areas covered are: Exploration Technology, Drilling Technology, Reservoir Technology (including Hot Dry Rock Research and The Geyser Cooperation), and Conversion Technology (power plants, materials, and direct use/direct heat). Work to design the Lake County effluent pipeline to help recharge The Geysers shows up here for the first time. This Progress Report is another of the documents that are reasonable starting points in understanding many of the details of the DOE Geothermal Program. (DJE 2005)

  5. Fractal analysis for heat extraction in geothermal system

    Directory of Open Access Journals (Sweden)

    Shang Xiaoji

    2017-01-01

    Full Text Available Heat conduction and convection play a key role in geothermal development. These two processes are coupled and influenced by fluid seepage in hot porous rock. A number of integer dimension thermal fluid models have been proposed to describe this coupling mechanism. However, fluid flow, heat conduction and convection in porous rock are usually non-linear, tortuous and fractal, thus the integer dimension thermal fluid flow models can not well describe these phenomena. In this study, a fractal thermal fluid coupling model is proposed to describe the heat conduction and flow behaviors in fractal hot porous rock in terms of local fractional time and space derivatives. This coupling equation is analytically solved through the fractal travelling wave transformation method. Analytical solutions of Darcy’s velocity, fluid temperature with fractal time and space are obtained. The solutions show that the introduction of fractional parameters is essential to describe the mechanism of heat conduction and convection.

  6. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  7. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  8. Numerical Study on CO2-Brine-Rock Interaction of Enhanced Geothermal Systems with CO2 as Heat Transmission Fluid

    Directory of Open Access Journals (Sweden)

    Wan Yuyu

    2016-01-01

    Full Text Available Enhanced Geothermal Systems (EGS with CO2 instead of water as heat transmission fluid is an attractive concept for both geothermal resources development and CO2 geological sequestration. Previous studies show that CO2 has lots of favorable properties as heat transmission fluid and also can offer geologic storage of CO2 as an ancillary benefit. However, after CO2 injection into geological formations, chemical reaction between brine and rock can change chemical characteristics of saline and properties of rock such as porosity and permeability. Is this advantage or disadvantage for EGS operating? To answer this question, we have performed chemically reactive transport modeling to investigate fluid-rock interactions and CO2 mineral carbonation of Enhanced Geothermal Systems (EGS site at Desert Peak (Nevada operated with CO2. The simulation results show that (1 injection CO2 can create a core zone fulfilled with CO2 as main working domain for EGS, and (2 CO2 storage can induced self-enhancing alteration of EGS.

  9. Conventional vs. unconventional enhanced (or engineered) geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Dzebisashvili, K.; Breede, K.; Liu, X.; Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Enhanced (or Engineered) Geothermal Systems (EGS) have evolved from the Hot Dry Rock (HDR) concept, implemented for the first time at Fenton Hill in 1977, and subsequently through the Stimulated Geothermal System, the Deep Heat Mining and finally the Deep Earth Geothermal. All of these systems usually imply petro-thermal processes. The term EGS has evolved to include conduction dominated, low permeability resources in sedimentary and basement formations, as well as geopressured, magma, and low-grade, unproductive hydrothermal resources. Co-produced hot water from hydrocarbon wells has also been included by some in the definition of EGS, which constitutes a considerable divergence from the original concept. Four decades on from the first EGS implementation, this paper highlights the lessons learned from 'conventional' systems and contrasts the 'unconventional' solutions that have been proposed. Examples of unconventional EGS include single-well solutions, downhole heat exchangers, engineered well profiles and using circulation fluids other than water. Perhaps some of the ideas proposed in the past, which would be considered unconventional, have remained dormant or never made it to a commercial stage for field implementation, but they may yet open doors to the future generations of EGS. (orig.)

  10. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Patten, Kim [Executive Office of the State of Arizona (Arizona Geological Survey); Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey); Coleman, Celia [Executive Office of the State of Arizona (Arizona Geological Survey); Chen, Genhan [Executive Office of the State of Arizona (Arizona Geological Survey)

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  11. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    Science.gov (United States)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  12. Modeling research in low-medium temperature geothermal field, Tianjin

    Institute of Scientific and Technical Information of China (English)

    WANG; Kun(王坤); LI; Chunhua(李春华)

    2002-01-01

    The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper Proterozoic. Hot springs are exposed in the northern mountain and confined geothermal water is imbedded in the southern plain. The geothermal reservoir is incised by several fractures. In recent years, TDS of the geothermal water have gone up along with the production rate increasing, along the eastern fracture zone (Cangdong Fracture and West Baitangkou Fracture). This means that the northern fracture system is the main seepage channel of the deep circulation geothermal water, and the reservoir has good connection in a certain area and definite direction. The isotopic research about hydrogen and carbon chronology indicates that the main recharge period of geothermal water is the Holocene Epoch, the pluvial and chilly period of 20 kaBP. The karst conduits in weathered carbonate rocks of the Proterozoic and Lower Paleozoic and the northeast regional fracture system are the main feeding channels of Tianjin geothermal water. Since the Holocene epoch, the geothermal water stayed at a sealed warm period. The tracer test in WR45 doublet system shows that the tracer test is a very effective measure for understanding the reservoir's transport nature and predicting the cooling time and transport velocity during the reinjection. 3-D numerical simulation shows that if the reinjection well keeps a suitable distance from the production well, reinjection will be a highly effective measure to extract more thermal energy from the rock matrix. The cooling of the production well will not be a problem.

  13. Direct use applications of geothermal resources at Desert Hot Springs, California. Final report, May 23, 1977--July 31, 1978. Volume II: appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, C.C.

    1978-07-01

    The following appendixes are included: Desert Hot Springs (DHS) Geothermal Project Advisory Board, Geothermal Citizens Advisory Committee, community needs assessment, geothermal resource characterization, a detailed discussion of the geothermal applications considered for DHS, space/water heating, agricultural operations, detailed analysis of a geothermal aquaculture facility, detailed discussion of proposed energy cascading systems for DHS, regulatory requirements, environmental impact assessment, resource management plan, and geothermal resources property rights and powers of cities to regulate indigenous geothermal resources and to finance construction of facilities for utilization of such resources. (MHR)

  14. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Clark, Ryan; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan; Matti, Jordan; Pape, Estelle; Musil, Leah

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive

  15. NEDO Forum 2001. Session on development of geothermal energy (Prospect of geothermal energy); NEDO Forum 2001. Chinetsu kaihatsu session (chinetsu energy no tenbo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-20

    The presentations made at the above-named session of the NEDO (New Energy and Industrial Technology Development Organization) forum held in Tokyo on September 20, 2001, are collected in this report. Director Noda of Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, delivered a lecture entitled 'Future course of geothermal technology development,' and Executive Director Iikura of Tokyo Toshi Kaihatsu, Inc., a lecture entitled 'Thinking of geothermal energy.' Described in an achievement report entitled 'Present state and future trend of geothermal development' were the present state of geothermal power generation and characteristics of geothermal energy, signification of the introduction of binary cycle power generation, and the promotion of the introduction of ground heat utilizing heat pump systems. Stated in a lecture entitled 'Geothermal development promotion survey' were the geothermal development promotion survey and its result and how to implement such surveys in the future. Reported in a lecture entitled 'Verification survey of geothermal energy probing technology and the like and the development of geothermal water utilizing power plant and the like' were reservoir fluctuation probing, deep-seated thermal resource probing and collecting, 10-MW class demonstration plant, Measurement While Drilling System, and a hot rock power generation system. (NEDO)

  16. The Marsili Volcanic Seamount (Southern Tyrrhenian Sea: A Potential Offshore Geothermal Resource

    Directory of Open Access Journals (Sweden)

    Francesco Italiano

    2014-06-01

    Full Text Available Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4, 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT. The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.

  17. Hot and cold CO{sub 2}-rich mineral waters in Chaves geothermal area (northern Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Aires-Barros, Luis; Marques, Jose Manuel; Graca, Rui Cores; Matias, Maria Jose [Universidade Tecnica de Lisboa, Lab. de Mineralogia e Petrologia (LAMPIST), Lisboa (Portugal); Weijden, Cornelis H. van der; Kreulen, Rob [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Eggenkamp, Hermanus Gerardus M. [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Reading Univ., Postgraduate Research Inst. for Sedimentology, Reading (United Kingdom)

    1998-02-01

    In order to update the geohydrologic characterisation of Chaves geothermal area, coupled isotopic and chemical studies have been carried out on hot and cold CO{sub 2}-rich mineral waters discharging, in northern Portugal, along one of the major regional NNE-trending faults (the so-called Verin-Chaves-Penacova Depression). Based upon their location, and chemical and isotopic composition, the analysed waters can be divided into two groups. The northern group belongs to the HCO{sub 3}/Na/CO{sub 2}-rich type, and consists of the hot spring waters of Chaves and the cold spring waters of Vilarelho da Raia. The {delta}D and {delta}{sup 18}O values show that these waters are of meteoric origin. The lack of an {sup 18}O shift indicates that there is no evidence of water/rock interaction at high temperatures. The southern group includes the cold spring waters of Campilho/Vidago and Sabroso/Pedras Salgadas. Their chemistry is similar to that of the northern group but their heavier {delta}D and {delta}{sup 18}O values could be attributed to different recharge altitudes. Mixing between deep mineralised waters and dilute superficial waters of meteoric origin might explain the higher {sup 3}H activity found in the Vidago and Pedras Salgadas mineral waters. Alternatively, they could be mainly related to shallow underground flowpaths. The {delta}{sup 13}C values support a deep-seated origin for the CO{sub 2}. The {delta}{sup 37}Cl is comparable in all the mineral waters of the study areas, indicating a common origin of Cl. The {sup 87}Sr/{sup 86}Sr ratios in waters seem to be dominated by the dissolution of plagioclases or granitic rocks. (Author)

  18. Geothermal heat for Erding. 2. Energy and wellness, geothermal heating station and hot-water indoor swimming pool; Geowaerme fuer Erding 2. Energie und Wellness, Geothermieheizwerk und Thermalbad

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, H. (comp.); Bussmann, W.

    1999-07-01

    This 17:20 minute VHS-PAL video film describes the project 'Geothermal heat for Erding 2', i.e. the construction of the geothermal heating station and a modern hot-water indoor swimming pool. [German] Der vorliegende VHS-PAL-Videofilm beschreibt innerhalb von 17:20 Min. Lauflaenge das Projekt 'Geowaerme fuer Erding 2'. Gezeigt werden die Entstehungsphasen dieses Projektes bestehend aus einem Geothermieheizwerk und einem modernen Thermalbad. (AKF)

  19. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    Science.gov (United States)

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  20. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation

  1. Laser-fluorescence determination of trace uranium in hot spring water, geothermal water and tap water in Xi'an Lishan region

    International Nuclear Information System (INIS)

    Ma Wenyan; Zhou Chunlin; Han Feng; Di Yuming

    2002-01-01

    Using the Laser-Fluorescence technique, an investigation was made, adopting the standard mix method, on trace uranium concentrations in hot spring water and geothermal water from Lishan region, and in tap water from some major cities in Shanxi province. Totally 40 samples from 27 sites were investigated. Measurement showed that the tap water contains around 10 -6 g/L of uranium, whose concentrations in both hot spring water and geothermal water are 10 -5 g/L. Most of samples are at normal radioactive background level, some higher contents were determined in a few samples

  2. Research on Formation Mechanisms of Hot Dry Rock Resources in China

    Science.gov (United States)

    Wang, G.; Xi, Y.

    2017-12-01

    As an important geothermal resource, hot dry rock(HDR) reserves have been studied in many countries. HDR resources in China have huge capacity and have become one of the most important resources for the potential replacement of fossil fuels. However, HDR resources are difficult to develop and utilise. Technologies for use with HDR, such as high-temperature drilling, reservoir characterisation, reservoir fracturing, microseismic monitoring and high-temperature power stations, originate from the field of oil and drilling. Addressing how to take advantage of these developed technologies is a key factor in the development of HDR reserves. Based on the thermal crustal structure in China, HDR resources can be divided into four types: high radioactive heat production, sedimentary basin, modern volcano and the inner-plate active tectonic belt. The prospective regions of HDR resources are located in South Tibet, West Yunnan, the southeast coast of China, Bohai Rim, Songliao Basin and Guanzhong Basin. The related essential technologies are relatively mature, and the prospect of HDR power generation is promising. Therefore, analysing the formation mechanisms of HDR resources and promoting the transformation of technological achievements, large-scale development and the utilisation of HDR resources can be achieved in China.

  3. Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  4. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale [Atlas-Copco Secoroc LLC, Fagersta (Sweden)

    2017-06-12

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.

  5. Biomass and electricity: the agricultural biomass. Geothermal energy from fractured rocks: prospective scenarios and impact on environment

    International Nuclear Information System (INIS)

    Delacroix, S.; Whitwham, M.

    1999-09-01

    This publication contains two articles. The first one aims at giving an assessment of energy production potential of biomass in France at a regional level. It gives estimates of volumes of breeding effluents in the different French regions and according to a low and a high hypothesis, presents various technologies used to produce energy from these effluents (examples in Denmark and in Great-Britain), gives estimates of quantities of wheat or barley straws which could be used for energy production in the different French regions and describes straw-based Danish cogeneration plants, gives estimates for other energetic crops (some trees and herbaceous crops) and reports the Belgium experience. The second text reports a middle-term or long-term prospective and economical feasibility study on the production of geothermal energy from fractured rocks. Some researches have already demonstrated the feasibility of a heat exchanger on very deep and cracked granitic rocks which could supply hot water that could be used for energy production. The study examines the different possibilities of evolution of this concept (deepness, increase in the number of wells, transformation into heat, electricity or cogeneration) and describes their technical and economical characteristics within an industrial development perspective on the long term

  6. Geothermal gradients map of Hokkaido; Hokkaido no chion kobaizu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Akita, F.; Matsunami, T.; Wakahama, H. [Hokkaido Geological Survey, Sapporo (Japan)

    1997-06-15

    This paper outlines the newly prepared geothermal gradient map (GGM) of Hokkaido which is important for survey on geothermal and hot spring resources. The temperature data of 687 wells were compiled by data collection and field survey. The geothermal gradient was calculated from the ratio of the temperature difference between the bottom (deepest well log) and the ground surface (10degC) to a bottom depth. GGM was prepared using data of 85 wells which show real geothermal temperatures through conductive temperature profiles, or SBHT (static bottom hole temperature) calculation is possible. Geological profiles were classified into three types based on base rocks. The thermal structure of GGM was clearly divided into a high geothermal gradient over 10degC/100m, and a low one within 3degC/100m. The former showed active volcano and high geothermal areas, while the latter showed a volcanic front arc area. This underground temperature structure relates to the formation process of volcanos and the origin of magma, and is also similar to the trend of a crust thermal flow rate. The geothermal gradient increases with a decrease in Curie point depth. 26 refs., 10 figs., 2 tabs.

  7. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif

    International Nuclear Information System (INIS)

    Buil gutierrez, B.; Garcia Sanz, S.; Lago San Jose, M.; Arranz Yague, E.; Auque Sanz, L.

    2002-01-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  8. FY 2000 report on the survey for introduction of the hot spring effect prediction method in the geothermal development promotion survey. Improvement of the hot spring effect prediction method in the geothermal development promotion survey; 2000 nendo chinetsu kaihatsu sokushin chosa. Onsen eikyo yosoku shuho donyu chosa - Chinetsu kaihatsu sokushin chosa ni okeru onsen eikyo yosoku shuho no kairyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Supposing the case where the geothermal development promotion survey was carried out in promising geothermal areas in Japan, investigational study was conducted on possibilities of introducing the hot spring effect prediction method, improvement of the method, etc. In the survey, adjustment/classification of formation mechanisms of hot spring were made. For each of the formation mechanisms, the mechanisms in case of the geothermal development having effects were studied/summarized. As to how effects are brought about, presumed were the lowering of water level and decrease in discharge amount in accordance with the decreasing pressure and the dilution by increase in mixture of the ground water around the area. Also cited were the vaporization of hot spring aquifers by the increasing rate of vapor inflow, etc. For the introduction of the hot spring effect prediction method to the geothermal development promotion survey, the problem is short supply of various data, and the examination for it was made. Based on the results of the survey, items to be studied in case of introducing the hot spring effect prediction method were selected. Further, the hot spring effect prediction flow in case of introducing surface survey and well survey was made out. (NEDO)

  9. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests

  10. Energy R and D. Geothermal energy and underground reservoirs; R et D energie. Geothermie et reservoirs souterrains

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Geothermal energy appears as a viable economic alternative among the different renewable energy sources. The French bureau of geological and mining researches (BRGM) is involved in several research and development programs in the domain of geothermal energy and underground reservoirs. This document presents the content of 5 programs: the deep hot dry rock system of Soultz-sous-Forets (construction and testing of the scientific pilot, modeling of the reservoir structure), the development of low and high enthalpy geothermal energy in the French West Indies, the comparison of the geothermal development success of Bouillante (Guadeloupe, French West Indies) with the check of the geothermal development of Nyssiros (Greece) and Pantelleria (Italy), the development of the high enthalpy geothermal potentialities of Reunion Island, and the underground storage of CO{sub 2} emissions in geologic formations (deep aquifers, geothermal reservoirs, abandoned mines or oil reservoirs). (J.S.)

  11. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  12. Environmental effects of geothermal energy exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H [Japan Metals and Chemicals Co., Ltd., Japan

    1975-01-01

    The environmental effects of geothermal power generation which cause air and water pollution and destruction of natural areas are reviewed. The production of steam and hot water affect existing hot springs sources and can cause ground subsidence. Harmful gas can be released onto the atmosphere from fumarolic gas and hot springs. Hydrothermal geothermal fields occasionally contain harmful substances such as arsenic in the hot water. Serious environmental effects can result from geothermal exploitation activities such as the felling of trees for road construction, well drilling, and plant construction. Once geothermal power generation has begun, the release of H/sub 2/S into the atmosphere and the reinjection of hot water are conducted continuously and sufficient countermeasures can be taken. One problem is the effects of plant construction and operation on natural parks. It is important to reach a compromise between development and protection of natural senic areas. Two figures, two tables, and 13 references are provided.

  13. Geothermal properties of Swiss Molasse Basin (depth range 0-500 m) - 2006 upgrade of the thermal conductivity, heat capacity, rock density and porosity data base

    International Nuclear Information System (INIS)

    Leu, W.; Megel, T.; Schaerli, U.

    2006-01-01

    The main aim of this project is the preparation of a specific data base of geothermal properties for typical rocks of the Swiss Molasse Basin (depth interval 0-500 m). The project includes the development of a new laboratory tool for efficient heat capacity measurements on rock samples, numerous new measurements of geothermal rock properties in the laboratory and calculation of such data from geophysical borehole logs. In the geographical area under review, 282 rock samples, mainly from deep boreholes, were analyzed with the successfully calibrated new heat capacity device and conventional thermal conductivity measuring techniques (cuttings and cores). Based on sonic and density log data from exploration wells, 374 additional data points were generated. This new data base characterizes in detail the six main lithological rock types in the three Molasse groups OSM, OMM and USM within the Swiss Plateau Molasse. The statistical evaluation of all data illustrates the regional variation of the petrophysical and geothermal parameters. For most data groups bulk rock density and thermal conductivity increase, whereas heat capacity decreases in the direction towards the Alpine front. Thermal conductivity shows a distinct increase with depth. Based on this new information and with the aid of the evaluation software tool SwEWS, the costs of planned geothermal installations can be optimized thanks to more precise heat extraction simulations with existing software packages like COSOND, TRNSYS, EWS or WPcalc. (author)

  14. Energy extracted from underground rock area by using a horizontal closed loop system in Mutah University/Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Mohammed Awwad Ali; Al-Rousan, Ammar A.

    2013-01-01

    Highlights: ► The ground can be used as a storage tank to store hot or cooled water in Jordan. ► The stored energy in rocks was utilized to provide heating cooling, and hot water for homes. ► The underground geothermal horizontal loop in rocks was technically approved. ► It can extract up to six times the heat energy that used in electrical energy. ► Its low capital cost and zero environmental emissions. - Abstract: Earth Energy Systems (EESs) utilize the thermal energy that is stored in rocks and ground water under the earth’s surface to provide homes, commercial buildings, and industrial facilities with heating, cooling, and hot water. Solar energy is absorbed by the earth’s surface which stores up to 50% of the sun’s energy that radiates on it. Consequently, the earth and groundwater’s temperature is relatively constant compared to that of the surface air. The earth’s temperature is generally warmer than the surface temperature during the colder months of the year, while it is generally cooler than the surface temperature during the hot months of the year. In this study, energy was extracted from the underground rocks at Mutah University in Jordan by using the geothermal horizontal closed loop system. Two-meter holes were drilled into the earth’s surface; copper pipes were inserted for liquid to pass through them into the heat exchange system. Then, the liquid was circulated back into the ground. Several temperature differences were measured and reported in the cold and hot months. The experimental results showed that thermal energy stored in rocks can be used to provide homes with heating, cooling, and hot water with low capital cost and zero environmental emissions.

  15. Review of induced seismic hazard for Hot Dry Rock Project, Rosemanowes, Cornwall

    International Nuclear Information System (INIS)

    Skipp, B.O.; Woo, G.; Eldred, P.J.L.

    1991-01-01

    Geothermal energy installations perturb the earth's crust and so may provoke earthquakes. The 21st Dry Rock (HDR) Geothermal Project at Rosemanowes Quarry in Cornwall has given rise to low level unfelt acoustic emission and possibly small, felt earthquakes. This review of induced seismic hazard study examines the effects that the HDR Project could have on seismic events. Events which are modified by the project, in magnitude and time of occurrence, as well as those which might not have occurred at all were studied. From an examination of the literature and relevant seismicity models, a broad estimate of induced seismic hazard was established. (U.K)

  16. Exploration of the crystalline underground by extension drilling of the Urach 3 well in the framework of a feasibility study for a hot dry rock demonstration project; Erkundung des kristallinen Untergrunds mit der Vertiefungsbohrung Urach 3 im Rahmen einer Machbarkeitsstudie fuer ein Hot-Dry-Rock-Demonstrationsprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, H [Stadtwerke Bad Urach (Germany); Genter, A; Hottin, A M [BRGM/GIG, Orleans (France)

    1997-12-01

    The prerequisites for specific research into the use of Hot Dry Rock geothermal energy at great depths and temperatures of up to 147 C. In Europe were created with the drilling and completition of the 3334 m deep research drill hole Urach 3 in its phase I (1977/78), and its subsequent extension to 3488 m in phase II (1982/83) within the metamorphic gneiss rock of Urach. A single hole circulation system was tested. Basic results concerning the temperature field, joint system, stress field and hydraulic behavior of the rock were achieved. According to the European HDR guidelines data from depths were a mean reservoir temperature of 175-180 C prevails were necessary to carry out a HDR pilot project. Within the scope of a feasibility study the already existing drill hole Urach 3 was extended from 3488 m to 4445 m depth where the required rock temperature of >170 C was expected. The objective of the project was to determine rock parameters at depth of high temperatures. The bottom hole temperature at true vertical depth of 4394.72 m was determined with 170 C. It can be proved that the temperature gradient is constant with 2.9 K/100 m depth. Due to the results of the investigations it is proposed that the Urach site located in a widespread tectonic horizontal strike-slip system is suitable for a HDR demonstration project. The results can be applied in south German and northern Swiss regions and in other large regions of Europe. Many potential consumers of geothermal energy produced by the HDR concept are situated close around the Urach 3 drill site. (orig./AKF) [Deutsch] Die Forschungsarbeiten zur Weiterentwicklung des Hot-Dry-Rock-Verfahrens begannen am Standort Bad Urach im Jahr 1975. In einer ersten Phase wurde die Bohrung Urach 3 1977/78 auf 3334 m mit einer Gesteinstemperatur von 143 C abgeteuft. Umfangreiche Hydraulische Tests und Frac-Versuche erfolgten. Hiermit wurden die Voraussetzungen fuer die Erkundung des Hot-Dry-Rock-Konzeptes in grossen Tiefen und

  17. Characterization of the natural radioactivity of the first deep geothermal doublet in Flanders, Belgium.

    Science.gov (United States)

    Vasile, M; Bruggeman, M; Van Meensel, S; Bos, S; Laenen, B

    2017-08-01

    Deep geothermal energy is a local energy resource that is based on the heat generated by the Earth. As the heat is continuously regenerated, geothermal exploitation can be considered as a renewable and, depending on the techniques used, a sustainable energy production system. In September 2015, the Flemish Institute for Technological Research (VITO) started drilling an exploration well targeting a hot water reservoir at a depth of about 3km on the Balmatt site near Mol. Geothermal hot water contains naturally occurring gases, chemicals and radionuclides at variable concentrations. The actual concentrations and potentially related hazards strongly depend on local geological and hydrogeological conditions. This paper summarizes the radiological characterization of several rock samples obtained from different depths during the drilling, the formation water, the salt and the sediment fraction. The results of our analyses show low values for the activity concentration for uranium and thorium in the formation water and in the precipitate/sediment fraction. Also, the activity concentrations of 210 Pb and 210 Po are low in these samples and the activity concentration of 226 Ra is dominant. From the analysis of the rock samples, it was found that the layer above the reservoir has a higher uranium and thorium concentration than the layer of the reservoir, which on the other hand contains more radium than the layer above it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells

    OpenAIRE

    Vidal , Jeanne; Genter , Albert

    2018-01-01

    International audience; Since the 1980′s, more than 15 geothermal wells have been drilled in the Upper Rhine Graben (URG), representing more than 60 km of drill length. Although some early concepts were related to purely matrix-porosity reservoirs or Hot Dry Rock systems, most projects in the URG are currently exploiting the geothermal resources that are trapped in fracture networks at the base of the sedimentary cover and in the granitic basement. Lessons-learnt from the European EGS referen...

  19. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    Energy Technology Data Exchange (ETDEWEB)

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in

  20. Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

  1. Assessment of the geothermal energy potential of the 'Canton de Vaud', Switzerland; Evaluation du potentiel geothermique du canton de Vaud

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, J. [Jules Wilhelm, Pully (Switzerland); Bianchetti, G. [ALPGEO, Sierre (Switzerland); Vuataz, F.-D. [University of Neuchatel, Neuchatel (Switzerland)

    2003-07-01

    This report presents an assessment of the geothermal energy potential in the provincial state of Vaud in western Switzerland. According to the authors the prospect for the three current main technologies: low-temperature surface water, deep hot water springs and advanced geothermal systems, is good. In about 10 years it would be possible to extract some 3.6x10{sup 6} MJ per year from low-temperature surface water while the energy production from deep hot springs could be near to 2x10{sup 4} MJ. Finally, in the forthcoming 20 years the construction of 3 advanced geothermal power plants ('Deep Heat Mining', i.e. the extraction of deep-rock thermal energy by water circulation) could produce about 30 MW electricity in a cogeneration operation mode. Recommendations are given regarding measures needed at the political level to promote geothermal power plants.

  2. Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW®

    Science.gov (United States)

    Nur Hidayat, Hardi; Gala Permana, Maximillian

    2017-12-01

    The study presents the simulation of hot sedimentary aquifer for geothermal utilization. Hot sedimentary aquifer (HSA) is a conduction-dominated hydrothermal play type utilizing deep aquifer, which is heated by near normal heat flow. One of the examples of HSA is Bavarian Molasse Basin in South Germany. This system typically uses doublet wells: an injection and production well. The simulation was run for 3650 days of simulation time. The technical feasibility and performance are analysed in regards to the extracted energy from this concept. Several parameters are compared to determine the model performance. Parameters such as reservoir characteristics, temperature information and well information are defined. Several assumptions are also defined to simplify the simulation process. The main results of the simulation are heat period budget or total extracted heat energy, and heat rate budget or heat production rate. Qualitative approaches for sensitivity analysis are conducted by using five parameters in which assigned lower and higher value scenarios.

  3. Preliminary studies of dry rock geothermal exploitation in south west England

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, A. S.; Pearson, C. M.

    1978-07-01

    A research program to develop a method to exploit the heat usually found in mines in the Cornwall area is described. Temperature gradients range from 27 to 34/sup 0/C/Km with a mean of 29.8/sup 0/C/Km. The exploitable area is defined and methods of creating an artificial geothermal field or artificial reservoir are described. Tests to determine fractures in rocks including gamma-gamma logging, tv camera, caliper, and 3-D sonic are described as are pumping tests. 15 references, 3 figures.

  4. Proceedings 43rd Stanford Geothermal Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart; Kirby, Stefan; Verplanck, Philip; Kelley, Karen

    2018-02-12

    Herein we summarize the results of an investigation dealing with the concentrations and inventories of strategic, critical and valuable materials (SCVM) in produced fluids from geothermal and hydrocarbon reservoirs (50-250° C) in Nevada and Utah. Water samples were collected from thirty-four production wells across eight geothermal fields, the Uinta Basin oil/gas province in northeast Utah, and the Covenant oil field in southwestern Utah; additional water samples were collected from six hot springs in the Sevier Thermal Belt in southwestern Utah. Most SCVM concentrations in produced waters range from <0.1 to 100 µg/kg; the main exception is lithium, which has concentrations that range from <1000 to 25,000 ug/kg. Relatively high concentrations of gallium, germanium, scandium, selenium, and tellurium are measured too. Geothermal waters contain very low concentrations of REEs, below analytical detections limits (0.01 µg/kg), but the concentrations of lanthanum, cerium, and europium range from 0.05 to 5 µg/kg in Uinta basin waters. Among the geothermal fields, the Roosevelt Hot Spring reservoir appears to have the largest inventories of germanium and lithium, and Patua appears to have the largest inventories of gallium, scandium, selenium, and tellurium. By comparison, the Uinta basin has larger inventories of gallium. The concentrations of gallium, germanium, lithium, scandium, selenium, and tellurium in produced waters appear to be partly related to reservoir temperature and concentrations of total dissolved salts. The relatively high concentration and large inventory of lithium occurring at Roosevelt Hot Springs may be related to granitic-gneissic crystalline rocks, which host the reservoir. Analyses of calcite scales from Dixie Valley indicate enrichments in cobalt, gallium, gold, palladium, selenium and tellurium, and these metals appear to be depositing at deep levels in production wells due to boiling. Comparisons with SCVM mineral deposits suggest that

  5. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  6. Geothermal technology in Australia: Investigating social acceptance

    International Nuclear Information System (INIS)

    Dowd, Anne-Maree; Boughen, Naomi; Ashworth, Peta; Carr-Cornish, Simone

    2011-01-01

    Issues of social acceptance, such as lack of awareness and negative community perceptions and reactions, can affect low emission energy technology development, despite general support observed for reducing carbon emissions and mitigating climate change. Negative community reactions and lack of understanding have affected geothermal developments, as demonstrated by the fearful community reactions and negative media experienced in response to seismic disturbances caused by 'hot rock' geothermal energy generation in Switzerland and Germany. Focusing on geothermal energy, this paper presents the results of using a participatory action research methodology to engage diverse groups within the Australian public. A key finding is that the majority of the Australian public report limited the knowledge or understanding of geothermal technology and have various concerns including water usage and seismic activity instigated by geothermal drilling. However, geothermal energy receives general support due to a common trend to champion renewable energy sources in preference to traditional forms of energy generation and controversial technologies. This paper also demonstrates the effectiveness of using an engagement process to explore public understanding of energy technologies in the context of climate change, and suggests a way forward for governments and industry to allocate resources for greatest impact when communicating about geothermal technology. - Highlights: → Majority of Australians have limited knowledge or understanding of geothermal technology. → Various concerns, including water usage and seismic activity instigated by drilling, were raised. → Geothermal energy has general support due to a common trend to champion renewable energy sources. → Methodology shows the effectiveness of an engagement process to explore public understanding. → Participants expressed intention to change behaviours, which can be a catalyst for change.

  7. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  8. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    Science.gov (United States)

    Plaksina, Tatyana; Kanfar, Mohammed

    2017-11-01

    With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3) approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  9. NEDO geothermal energy subcommittee. 18th project report meeting; NEDO chinetsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Reporting on geothermal energy-related efforts, Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, explains the promotion of researches on geothermal energy exploitation, researches on small and medium scale geothermal binary power system utilization, researches on geothermal exploration technology verification, and joint researches on small scale geothermal exploration on remote islands. Achievement reports are delivered concerning geothermal survey technology verification involving the development of reservoir fluctuation probing technology, deep-seated geothermal resources survey, and international joint projects. Concerning the research cooperation promotion project, a joint research program is reported involving a comprehensive geothermal resources analysis system for a remote island in the eastern part of Indonesia. In relation with the development of thermal water power plants, reports are delivered on the development of a 10MW class demonstration plant, development of technologies (study of elements) for a hot dry rock power system, development of a hole bottom data detection system for drilling in thermal water, and the development of deep-seated geothermal resources sampling technologies. (NEDO)

  10. FY 2000 report on the results of the data processing in the geothermal development promotion survey. Tertiary. No.B-7 Kuwanosawa area; 2000 nendo chinetsu kaihatsu sokushin chosa data shori hokokusho. No. B-7 Kuwanosawa chiiki (Dai 3 ji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    The comprehensive analysis was conducted of various data obtained in the geothermal development promotion survey conducted in the Kuwanosawa area, Yuzawa city, Akita prefecture, from FY 1998 to FY 2000. The geology of the Kuwanosawa area consists of the Pretertiary system and Quarternary system, through which intrusive rocks are recognized. Basement rocks are composed of the Paleozoic-origin crystalline schist and the Cretaceous-period granites which intruded into the schist. In the Kuwanosawa area, there were recognized no clear geothermal signs such as the discharge of geothermal fluids like hot spring, fumarolic gas, etc., places of high temperature and new geothermal alteration zones. The geothermal water of borehole N11-KN-1 is a low temperature/low CL concentration geothermal water which was stored in basement rocks, which is supposed to be the one conductively heated in the process of the meteoric water penetrating deep-underground. The geothermal system heat source in the Kuwanosawa area and the periphery is regarded as the relic magma which spewed out the volcanic rocks of Mt. Takamatsu-dake in the Quaternary period. However, the geothermal fluid included no components originating in high temperature volcanic emissions, and therefore, it is considered that the geothermal fluid was formed by the meteoric water conductively heated by volcanic heat source. (NEDO)

  11. High-temperature explosive development for geothermal well stimulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.W.; Mars, J.E.; Wang, C.

    1978-03-31

    A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

  12. Geothermal and heavy-oil resources in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Seni, S.J.; Walter, T.G.

    1994-01-01

    In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

  13. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    Science.gov (United States)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  14. GEODAT. Development of thermodynamic data for the thermodynamic equilibrium modeling of processes in deep geothermal formations. Combined report

    International Nuclear Information System (INIS)

    Moog, Helge C.; Regenspurg, Simona; Voigt, Wolfgang

    2015-02-01

    The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.

  15. Microbial Diversity, Distribution and Insight into Their Role in S, Fe and N Biogeochemical Cycling in the Hot Springs at Tengchong Geothermal Fields, Southwest China

    Science.gov (United States)

    Li, J.; Peng, X.; Zhang, L.

    2014-12-01

    Ten sediment samples collected from one acidic and three alkaline high temperature hot springs at Tengchong terrestrial geothermal field, Southwest China, were examined by the mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses suggested that these hot springs contain relative high concentrations of S, Fe and N chemical species. Specifically, the acidic hot spring was rich in Fe2+, SO42- and NH4+, while the alkaline hot springs were high in NO3-, H2S and S2O3-. Analyses of 16S rRNA sequences showed their bacterial communities were dominated by Aquificae, Cyanobacteria, Deinococci-Thermus, Firmicutes, Proteobacteria, and Thermodesulfobacteria, while the archeal clone libraries were dominated by Desulfurococcales, Sulfolobales, and Thermoproteales. Among them, the potential S-, N- and Fe-related oxidizing and reducing prokaryote were presenting as a relative high proportion but with a great difference in diversity and metabolic approaches of each sample. These findings provide some significant implications for the microbial function in element biogeochemical cycles within the Tengchong geothermal environments: i). the distinct differences in abundance and diversity of microbial communities of geothermal sediments were related to in situ different physicochemical conditions; ii). the S-, N- and Fe-related prokaryote would take advantage of the strong chemical disequilibria in the hot springs; iii). in return, their metabolic activities can promote the transformation of S, Fe and N chemical species, thus founded the bases of biogeochemical cycles in the terrestrial geothermal environments.

  16. Geothermal energy utilized in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schulz, R.

    1990-01-01

    This paper reports on the geothermal resources and reserves that have been estimated for selected aquifers in the Northwest German Basin, the Upper Rhine Graben and the South German Molasse Basin. The highest reserves (31 · 10 18 J) are located in the Malm aquifer in the Molasse Basin. Geothermal energy is utilized in 15 localities using low enthalpy water. The total installed capacity is about 8 MW t . Two small new installations (Waldsee, Weiden) have been realized in the last years. In another project (Bruchsal) the doublet, which is necessary because of the high saline water, is now in a working order. A prefeasibility study for a Hot Dry Rock system has been performed by a German-French group. The HDR test site is located in the Upper Rhine Graben

  17. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  18. Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Isachsen, Y.W.

    1978-09-27

    Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similar dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.

  19. A regional strategy for geothermal exploration with emphasis on gravity and magnetotellurics

    International Nuclear Information System (INIS)

    Aiken, C.L.V.; Ander, M.E.; Los Alamos Scientific Lab., NM

    1981-01-01

    Part of the resource evaluationProgram conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of anaylsis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources. (orig./ME)

  20. Geothermal Resources in China Les ressources géothermiques de la Chine

    OpenAIRE

    An K. S.; Huang S. Y.

    2006-01-01

    The present paper deals mainly with the distribution features, briefly describes the geology in the three geothermal fields of different types in Beijing, Yangbajing of Xizang (Tibet), and Dengwu of Guangdong, and finally gives on account of the development and utilization of geothermal resources. Up to now, more, than 2,500 geothermal water points (including hot springs, hot-water wells, and hot water in mines) have been found. Four major geothermal zones and three basic types of geothermal ...

  1. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China

    Science.gov (United States)

    Feng, Jin-Liang; Zhao, Zhen-Hong; Chen, Feng; Hu, Hai-Ping

    2014-10-01

    The mineralogical and geochemical composition of sinters from the geothermal areas on the Tibetan Plateau was determined. They occur as siliceous, salty and calcareous sinters but biogenic siliceous sinters were also found. The analyses indicate that there are no distinct inter -element relationships between individual rare earth elements (REEs) and other elements. Formed from the same geothermal water, the mineralogical and chemical composition of the sinters is influenced by their genesis and formation conditions. The REE distributions depend on the origin of the sinters. Fe-Mn phases in sinters tend to scavenge more REEs from geothermal water. Neither the REE fractionation nor the Ce anomaly seems to be associated with Fe-Mn phases in the sinters. The fourth tetrads of some sinters display weak W-type (concave) effects. In contrast, the third tetrads present large effects in some sinters due to positive Gd anomalies. The origin of the positive Eu anomalies in some sinters seems to be caused by preferential dissolution of feldspars during water-rock interaction. The complexing ligands in geothermal water may contribute significantly to the fractionation of REEs in sinters. The dominant CO32- and HCO3- complexing in geothermal water favors enrichment of heavy REEs in calcareous sinters.

  2. Direct utilization of geothermal energy in the Peoples Republic of China

    Science.gov (United States)

    Lund, J. W.

    1980-12-01

    A brief review of the direct utilization of geothermal energy in three regions of the Peoples' Republic of China is presented, stressing a development outline for the next five to ten years. The geothermal resource of the Tianjin-Beijing area is mainly to be developed for space heating, whereas along the coastal area of Fujian and Guangdong, it will be developed for agriculture, and industrial and residential use. Electric power generation will be the main concern in the southwest at Tengchong. Most theoretical research will be done on geologic structure interpretation, corrosion of pump shafts and buried pipelines, and heat flow, with some interest in the study of geopressure and hot dry rock systems. Specific examples from the Tianjin area include a wool factory; a wool rug weaving shop; heating of a hotel; public bathing; and well drilling for apartment heating, fish breeding, and greenhouses. Direct use of geothermal energy in the Beijing area includes cotton dyeing, humidifying, medical purposes, and animal husbandry. Experimental geothermal electric power plants are summarized in table form.

  3. Hydrochemical and isotopic studies in Aksaray geothermal fields central Anatolia, Turkey

    International Nuclear Information System (INIS)

    Burcak, M.

    2005-01-01

    The studied area is located at eastern part of Aksaray province in Central Anatolia. The basement rocks of studied area is Paleozoic aged Bozcaldag formation composed of marble, schist and gneiss and Cretaseous aged granitoid intrusion intrude within these basement rocks. These rock units are overlain uncomfortably by middle miocene to Quaternary aged volcanic rocks of Cappadocian volcanic belt interlayer sediments. The compositions of these units are mainly represented by tuff, ignimbrite, reworked tuff interlayer sediments, basalt lavas, ash fall deposits, pumice and dasite to rhyodasitic lava domes.The study area contains Ziga and Acigoel (Narkoey) thermal area, which they have similar geologic environments with in the Cappadocian volcanic belt of the Tertiary to Quaternary age. Existence of surface manifestation like that high regional heat flow, the presence of expanding acidic to weakly acidic hydrothermal alteration surrounding the geothermal area, hot springs which have a temperature of 44-65 degrees indicating the important of geothermal possibilities in the area. Water chemistry studies have been carried out on 34 water samples to estimate relation between hot and cold water, calculate reservoir temperature using geothermometre and mixing models, hydrological isotope studies were carried out to on 10 samples to clarify extending of recharging area and travel time from recharging area to discharging area. Water analyses results were assested using some diagram such as Fournier Cl-Entalphy, SiO 2 -Entalphy, Langelier- Ludwig, Piper, schoeller etc to classify them. Water-rock interaction have been tried to be define on the base of these result.On the base of water chemistry analyses, all of the cold waters are Ca-Mg-HCO 3 and CaHCO 3 type. the hot waters in Ziga field classified as Na-Cl-HCO 3 type and As and B bearing mineralized hot water. Geothermal fluids in Acigoel field, classified as Ca-Na-HCO 3 -Cl type and B bearing mineralized hot water, and

  4. Candidate sites for future hot-dry-rock development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Decker, E.R.

    1982-12-01

    Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is cateogrized accoridng to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are described: The Geysers-Clear lake region in California, the Roosevelt Hot Springs area in Utah, and the White Mountains region in New Hampshire. These areas are singled out to illustrate the roles of significantly different geology and geophysics, reservoir rocks, and reservoir heat contents in possible HDR developments.

  5. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  6. Fiscal 1999 geothermal energy development promotion survey. Report on survey of introduction of techniques for predicting impact on hot springs; 1999 nendo chinetsu kaihatsu sokushin chosa hokokusho. Onsen eikyo yosoku shuho donyu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    In an effort to find guidelines on how to proceed with geothermal energy development so that it may coexist with hot springs, investigations are conducted into cases of impacts on hot springs imposed by geothermal energy development activities. An impact is judged to exist when geothermal development results in a decrease or depletion of pumped or spontaneously welling hot spring water, change in the concentration of dissolved chemical ingredients, fall in water temperature, or in an increase in the amount of discharged steam. Keyword-aided retrieval of data from databases is performed, and geothermal magazines are referred to for information. There are articles reporting impacts imposed by geothermal development on hot springs in the Palinpinon area (Philippines) and 12 others and in the Corwin Springs area (U.S.) and 13 others. These articles carrying outlines and impacts of geothermal development are collected, put in order, and analyzed. Cases in which such impacts are found to exist are categorized into four groups and, in each group, episodes are differentiated from each other by the type of mechanism linking the aquifer and the reservoir which is the object of development. (NEDO)

  7. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    Science.gov (United States)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  8. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    Science.gov (United States)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have

  9. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    Directory of Open Access Journals (Sweden)

    Plaksina Tatyana

    2017-01-01

    Full Text Available With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3 approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  10. Site-specific analysis of hybrid geothermal/fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

  11. Thermodynamics of energy extraction from fractured hot dry rock

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J S; Bejan, A [Duke Univ., Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science; Kim, J H [Electric Power Research Inst., Palo Alto, CA (United States)

    1992-03-01

    It has been proposed to extract energy from the subterranean hot dry rock bed (HDR) by creating one or more narrow fractures in the rock and circulating cold water through the fractures. In time, the temperature of the rock region surrounding the crack drops under the influence of time-dependent conduction. This study presents the most basic thermodynamic aspects (first law and second law) of the HDR energy extraction process. It shows which parameters most influence the amount of useful energy (exergy) extracted from the HDR reservoir over a fixed time interval. For example, the water flow rate can be selected optimally in order to maximize the delivery of exergy over the lifetime of the HDR system. (author).

  12. Biophysical model of prokaryotic diversity in geothermal hot springs.

    Science.gov (United States)

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society

  13. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  14. Geothermal energy in Italy and abroad; La geotermia in Italia e all'estero

    Energy Technology Data Exchange (ETDEWEB)

    Caputo di Calvisi, C. [Rome Univ. La Sapienza, Rome (Italy). Dipt. di Meccanica

    2001-04-01

    Geothermal systems and fields are analysed giving particular evidence to the value of the geothermal source as an important natural source of energy. The paper analyses hydrothermal systems and describes the international experimental studies on the use of geothermal reservoirs in hot rocks with geopressured and magmatic systems. Experts are optimistic as far as the use of this innovative source of energy is possible in the medium-short term. [Italian] Si analizzano i sistemi e i campi geotermici, sottolineando il valore della fonte geotermica come risorsa naturale ragguardevole d'energia. Vengono descritti i sistemi idrotermali e gli esperimenti condotti a livello internazionale sull'utilizzo di serbatoi geotermici in rocce calde con sistemi geopressurizzati e magmatici. L'ottimismo degli esperti sull'utilizzo di questa innovativa sorgente d'energia in tempi medio-brevi.

  15. Geothermal development promotion survey report. No. 29. Upper reach region of Oita river; 1988-1990 chinetsu kaihatsu sokushin chosa hokokusho. No. 29 Oitagawa joryu chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The results of surveys conducted in the Oita river region, Oita Prefecture, in fiscal 1988-1989 are compiled in this report. Conducted were a geological/alteration zone survey, geochemical survey, electric prospecting (Schlumberger method), electromagnetic surveillance (simplified magnetotelluric method), electromagnetic surveillance (EMAP - Environmental Monitoring and Assessment Program method), heat flow rate survey, test boring, environmental impact survey, and so forth. Conclusions are mentioned below. It is inferred that the geothermal fluid results from groundwater originating in meteoric water, that the meteoric water takes many years to flow from the mountainous region into the ground where it is stored mainly in the Shonai stratum, that the stored water is warmed by heat from rocks in the neighborhood for development into a geothermal fluid, and that the geothermal fluid finally forms a hot spring water reservoir. Hot spring water reservoirs are found widely distributed in the basin of the Oita river. In view of the ground temperature distribution and the hot spring water geochemical temperature determined by structure boring, it is concluded that possibilities are quite low that there exists a high-temperature geothermal fluid usable for power generation. (NEDO)

  16. Geothermic analysis of high temperature hydrothermal activities area in Western plateau of Sichuan province, China

    Science.gov (United States)

    Zhang, J.

    2016-12-01

    There is a high temperature hydrothermal activity area in the western plateau of Sichuan. More than 200 hot springs points have been found in the region, including 11 hot spring water temperature above local boiling point. Most of these distribute along Jinshajjiang fracture, Dege-Xiangcheng fracture, Ganzi-Litang fracture as well as Xianshuihe fracture, and form three high-temperature hydrothermal activity strips in the NW-SE direction. Using gravity, magnetic, seismic and helium isotope data, this paper analyzed the crust-mantle heat flow structure, crustal heat source distribution and water heating system. The results show that the geothermal activity mainly controlled by the "hot" crust. The ratio of crustal heat flow and surface heat flow is higher than 60%. In the high temperature hydrothermal activities area, there is lower S wave velocity zone with VsGeothermal water mainly reserve in the Triassic strata of the containing water good carbonate rocks, and in the intrusive granite which is along the fault zone. The thermal energy of Surface heat thermal activities mainly comes from the high-temperature hot source which is located in the middle and lower crust. Being in the deep crustal fracture, the groundwater infiltrated to the deep crust and absorbed heat, then, quickly got back to the surface and formed high hot springs.

  17. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  18. Microbial diversity of acidic hot spring (kawah hujan B) in geothermal field of kamojang area, west java-indonesia.

    Science.gov (United States)

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria.

  19. Assessing geothermal energy potential in upstate New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S. [SUNY, Buffalo, NY (United States)

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  20. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)

    2017-08-11

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiple internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our

  1. Heat flow and geothermal processes in Iceland

    Science.gov (United States)

    Flóvenz, Ólafur G.; Saemundsson, Kristján

    1993-09-01

    Heat flow values, derived from temperature measurements in shallow boreholes in Iceland, vary substantially across the country. The near-surface temperature gradients range from almost 0 to 500°C/km. The thermal conductivity of water-saturated rocks varies from 1.6 to 2.0 W/m°C. The temperature gradient in Iceland is mainly dependent on four factors: (1) the regional heat flow through the crust, (2) hydrothermal activity, (3) the permeability of the rock, and (4) residual heat in extinct volcanic centers. As Iceland is mainly made of basaltic material the radiogenic heat production is almost negligible. The thermal conductivity is, on the other hand, mainly influenced by the porosity of the rock; it increases as the porosity decreases. Iceland is made of sequences of flood basalts that formed within the volcanic rift zone—a continuation of the axis of the Mid-Atlantic ridge—and subsequently drifted sideways. Fresh basaltic lava is usually highly porous (30%) and fractured, and heat is mainly transported by convection. Therefore, a very low or even no temperature gradient is observed at shallow levels within the volcanic rift zone. As the basalt becomes buried the pores close due to lithostatic pressure and formation of secondary minerals. Below 500-1000 m depth in an uneroded lava pile, the heat is mainly transported by conduction. In the lowlands and valleys of Iceland outside the volcanic rift zone, 1000-1500 m of the original lava pile has been eroded, leaving thermal conduction as the most important heat transport mechanism. The regional temperature gradient has been measured in drillholes in dense and poorly permeable rocks away from the geothermal fields. The results show that the temperature gradient varies from 50 to 150°C/km. The highest values are found close to the volcanic rift zone and the gradient decreases with distance from the spreading axis. This result is mainly based on numerous shallow boreholes (60-500 m) but in some cases the results

  2. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  3. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  4. A Novel Workflow for Geothermal Prospectively Mapping Weights-of-Evidence in Liaoning Province, Northeast China

    Directory of Open Access Journals (Sweden)

    Xuejia Sang

    2017-07-01

    Full Text Available Geological faults are highly developed in the eastern Liaoning Province in China, where Mesozoic granitic intrusions and Archean and Paleoproterozoic metamorphic rocks are widely distributed. Although the heat flow value in eastern Liaoning Province is generally low, the hot springs are very developed. It is obvious that the faults have significant control over the distribution of hot springs, and traditional methods of spatial data analysis such as WofE (weight of evidence usually do not take into account the direction of the distribution of geothermal resources in the geothermal forecast process, which seriously affects the accuracy of the prediction results. To overcome the deficiency of the traditional evidence weight method, wherein it does not take the direction of evidence factor into account, this study put forward a combination of the Fry and WofE methods, Fry-WofE, based on geological observation, gravity, remote sensing, and DEM (digital elevation model multivariate data. This study takes eastern Liaoning Province in China as an example, and the geothermal prospect was predicted respectively by the Fry-WofE and WofE methods from the statistical data on the spatial distribution of the exposed space of geothermal anomalies the surface. The result shows that the Fry-WofE method can achieve better prediction results when comparing the accuracy of these two methods. Based on the results of Fry-WofE prediction and water system extraction, 13 favorable geothermal prospect areas are delineated in eastern Liaoning Province. The Fry-WofE method is effective in study areas where the geothermal distribution area is obviously controlled by the fault. We provide not only a new method for solving the similar issue of geothermal exploration, but also a new insight into the distribution of geothermal resources in Liaoning Province.

  5. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China

    Science.gov (United States)

    Qi, Jihong; Xu, Mo; An, Chengjiao; Wu, Mingliang; Zhang, Yunhui; Li, Xiao; Zhang, Qiang; Lu, Guoping

    2017-02-01

    Abundant geothermal springs occur along the Moxi fault located in western Sichuan Province (the eastern edge of the Qinghai-Tibet plateau), highlighted by geothermal water outflow with an unusually high temperature of 218 °C at 21.5 MPa from a 2010-m borehole in Laoyulin, Kangding. Earthquake activity occurs relatively more frequently in the region and is considered to be related to the strong hydrothermal activity. Geothermal waters hosted by a deep fault may provide evidence regarding the deep underground; their aqueous chemistry and isotopic information can indicate the mechanism of thermal springs. Cyclical variations of geothermal water outflows are thought to work under the effect of solid earth tides and can contribute to understanding conditions and processes in underground geo-environments. This paper studies the origin and variations of the geothermal spring group controlled by the Moxi fault and discusses conditions in the deep ground. Flow variation monitoring of a series of parameters was performed to study the geothermal responses to solid tides. Geothermal reservoir temperatures are evaluated with Na-K-Mg data. The abundant sulfite content, dissolved oxygen (DO) and oxidation-reduction potential (ORP) data are discussed to study the oxidation-reduction states. Strontium isotopes are used to trace the water source. The results demonstrate that geothermal water could flow quickly through the Moxi fault the depth of the geothermal reservoir influences the thermal reservoir temperature, where supercritical hot water is mixed with circulating groundwater and can reach 380 °C. To the southward along the fault, the circulation of geothermal waters becomes shallower, and the waters may have reacted with metamorphic rock to some extent. Our results provide a conceptual deep heat source model for geothermal flow and the reservoir characteristics of the Moxi fault and indicate that the faulting may well connect the deep heat source to shallower depths. The

  6. France in the front line for geothermal energy

    International Nuclear Information System (INIS)

    Richard, Aude; Talpin, Juliette

    2016-01-01

    A set of articles illustrates that France is among the European leaders in heat networks fed by deep aquifers in sedimentary basins, and will soon possess new types of plants to valorise this hot water. A first article describes the operation principle and the distinction between the different geothermal energy levels (very low, low and medium, high). The still slow but actual development of geothermal energy is commented. It notably concerns local communities and industries, but not yet individuals. A brief focus is proposed on the case of the Aquitaine basin and of Bordeaux, and on the use of geothermal energy to cool the wine. The case of Ferney-Voltaire is then discussed: a whole district will be supplied with probe-based tempered water loops. The interest of the ADEME in geo-cooling is evoked. An article comments the development of a new model of deep geothermal energy developed by France and Germany: a dozen of plants are planned to be built by 2020, and the Ecogi plant in Rittershoffen is a showcase of a first application of fractured rock geothermal technology (the operation is described). A map indicates locations of geothermal search permits which have been awarded for 16 sites in France. An overview is given of various initiatives in Ile-de-France. The case of Geothermie Bouillante plant in Guadeloupe is evoked: it has been purchased by an American group and will multiply its electricity production by a factor 4 by 2025. The two last articles respectively address the need to boost the very low geothermal energy sector, and the use of geothermal energy in cities near Paris (Grigny and Viry-Chatillon) which aim at supplying energy at lower prices, and thus struggle against energy poverty

  7. 1996 Annual Meeting of Geothermal Research Society of Japan. Abstracts with programs; Nihon chinetsu gakkai 1996 nendo gakujutsu koenkai. Koen yoshishu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-08

    This is a compilation of all the papers made public in the meeting. It includes a total of 111 papers; 14 papers on physical survey, 14 on hot dry rock, 10 on geology, 4 on drilling, 4 on utilization, 21 on heat structure, 3 on scale, 4 on logging, 24 on reservoir, and 13 on geochemistry. Main themes were as follows: Study of MT method and self-potential method and results of the physical survey in New Zealand in the physical survey section. Plan in Ogachi, Akita pref. and development in Hijiori, Yamagata, pref. in the hot dry rock section. Heat source evaluation in the Yuzawa-Ogachi area, Akita pref., and electrical resistivity feature of hot spring reservoir in green tuff bed, Japan, in the geology section. Study of the MWD system in the drilling section. Utilization of geothermal water in Hokkaido in the utilization section. Formation of smectite scale, silica precipitation, and scale prevention measures for steam turbines, in the scale section. High-temperature PT memory system in the logging section. Study of areas of Kuju volcano, Mori, Kakkonda, Otake and Hacchobaru, in the heat structure section. Analysis of fluids from well of the geothermal power plant in the geochemistry section. Heat extraction system from magma in the reservoir section.

  8. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development

    Science.gov (United States)

    Lu, Lianghua; Pang, Zhonghe; Kong, Yanlong; Guo, Qi; Wang, Yingchun; Xu, Chenghua; Gu, Wen; Zhou, Lingling; Yu, Dandan

    2018-01-01

    Geothermal resources are practical and competitive clean-energy alternatives to fossil fuels, and study on the recharge sources of geothermal water supports its sustainable exploitation. In order to provide evidence on the recharge source of water and circulation dynamics of the Tangshan Geothermal System (TGS) near Nanjing (China), a comprehensive investigation was carried out using multiple chemical and isotopic tracers (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C and 3H). The results confirm that a local (rather than regional) recharge source feeds the system from the exposed Cambrian and Ordovician carbonate rocks area on the upper part of Tangshan Mountain. The reservoir temperature up to 87 °C, obtained using empirical as well as theoretical chemical geothermometers, requires a groundwater circulation depth of around 2.5 km. The temperature of the geothermal water is lowered during upwelling as a consequence of mixing with shallow cold water up to a 63% dilution. The corrected 14C age shows that the geothermal water travels at a very slow pace (millennial scale) and has a low circulation rate, allowing sufficient time for the water to become heated in the system. This study has provided key information on the genesis of TGS and the results are instructive to the effective management of the geothermal resources. Further confirmation and even prediction associated with the sustainability of the system could be achieved through continuous monitoring and modeling of the responses of the karstic geothermal reservoir to hot-water mining.

  9. FY 1997 report on the data processing of the geothermal development promotion survey. Primary. No.B-5 Mt. Musadake area; 1997 nendo chinetsu kaihatsu sokushin chosa data shori hokokusho. No. B-5 Musadake chiiki (Dai 1 ji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    As part of the geothermal development promotion survey, the comprehensive analysis was made on the survey of the existence amount of geothermal resource in the Mt. Musadake area, Shibetsu county, Hokkaido, which was conducted in FY 1997. In the surface survey, the following were carried out: survey of geology/alteration zone, age determination of rocks, alteration age determination by thermoluminescence method, geochemical survey (hot spring gas, hot spring water), gravity exploration and electromagnetic exploration. In the survey of environmental effects, survey of flora/fauna and survey of hot spring variations were made. The results of the analysis were outlined as follows. The geothermal system in this area seems to be controlled by the Mt. Musadake - Mt. Shitabanupuri fault, folding zone along the fault and Graben-state structure extending southeast of the zone. At deep underground, the existence of the deep geothermal water forming geothermal reservoirs is presumed, and the deep geothermal water seems to be helped by the thermal conduction and volcanic effluences from the magma reservoir related to a series of volcanoes, centered on Mt. Musadake that is regarded as heat source. The geothermal water has a temperature of over 250 degrees C and a high Cl concentration. (NEDO)

  10. Coupled heat and groundwater flow in porous rock

    International Nuclear Information System (INIS)

    Rae, J.; Robinson, P.C.; Wickens, L.M.

    1983-01-01

    There are a number of technical areas where coupled heat and flow problems occur for water in porous rock. The area of most interest to the authors has been the possible disposal underground of high-level radioactive waste. High-level waste can emit enough heat to drive significant flows by buoyancy effects and groundwater flow is expected to be the chief transport process for solute leached from such a repository. The possible disposal of radioactive waste under the seabed raises many similar questions and needs similar techniques to find answers. Other areas where related questions arise are the storage and retrieval of hot water in underground reservoirs, the attempts to extract useful geothermal energy by pumping water into fracture systems in hot rock and in certain thermal techniques for persuading oil to flow in tight reservoirs. The authors address questions in a rather general way and give examples which lie more in the area of waste disposal

  11. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    Science.gov (United States)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  12. An estimate of the cost of electricity production from hot-dry rock

    International Nuclear Information System (INIS)

    Pierce, K.G.; Livesay, B.J.

    1993-01-01

    This paper gives an estimate of the cost to produce electricity from hot-dry rock (HDR). Employment of the energy in HDR for the production of electricity requires drilling multiple wells from the surface to the hot rock, connecting the wells through hydraulic fracturing, and then circulating water through the fracture system to extract heat from the rock. The basic HDR system modeled in this paper consists of an injection well, two production wells, the fracture system (or HDR reservoir), and a binary power plant. Water is pumped into the reservoir through the injection well where it is heated and then recovered through the production wells. Upon recovery, the hot water is pumped through a heat exchanger transferring heat to the binary, or working, fluid in the power plant. The power plant is a net 5.1-MW e binary plant employing dry cooling. Make-up water is supplied by a local well. In this paper, the cost of producing electricity with the basic system is estimated as the sum of the costs of the individual parts. The effects on cost of variations to certain assumptions, as well as the sensitivity of costs to different aspects of the basic system, are also investigated

  13. Interactions between wall rocks around magma and hot water. Magma shuhen no hekigan/nessui sogo sayo

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.

    1992-12-01

    This paper describes interactions between wall rocks around magma and hot water. The paper discusses effects of hydrothermal environments on dynamic properties of rock minerals with respect to hydrolytic weakening (decrease in dynamic strength of a mineral under presence of water) and reaction enhanced deformation (deformation accelerated by chemical change occurring in a mineral itself). It also explains chemical reactivity of minerals under hydrothermal enviroments with respect to four types of chemical changes in minerals, factors governing mineral dissolution rates, and importance of equilibrium and non-equilibrium in main components in reactions between minerals and waters. These statements quote mainly results of indoor experiments. The paper indicates the following matters as problems to be discussed on interactions between wall rocks around intrusive rocks and hot waters: Deviation from chemical equilibrium in reactions between rocks and waters; change in permeability as a result of reactions between rocks and waters; and possibilities of hydrolytic weakening in rocks around intrusive rock bodies. 52 refs., 6 figs.

  14. Case histories of roller cone core bit application in crystalline rock

    International Nuclear Information System (INIS)

    Dahlem, J.S.

    1988-01-01

    The increased interest in deep crystalline rock drilling projects has resulted in a requirement for premium coring bits which are effective in such a harsh and abrasive environment. Hard formation roller cone insert bits have traditionally and constantly performed well in crystalline rock. As a result, the application of state of the art roller cone rock bit technology to the design and development of core bits has made crystalline coring projects more viable than ever before. This paper follows the development of roller cone core bits by examining their use on project such as HDR (Hot Dry Rock, Los Alamos); NAGRA (Nuclear Waste Disposal Wells in Switzerland); Camborne School of Mines Geothermal Project in Cornwall, UK; Deep Gas Project in Sweden; and the KTB Deep Drilling Project in West Germany

  15. Fiscal 1980 Sunshine Project research report. International cooperation project for energy technology. International research cooperation for geothermal energy (Japan-U.S. R and D cooperation for geothermal resource assessment); 1980 nendo energy gijutsu kokusai kyoryoku jigyo chinetsu energy kokusai kyoryoku seika hokokusho. Chinetsu shigen hyoka ni kansuru Nichibei kenkyu kaihatsu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Based on the Japan-U.S. agreement on promotion of geothermal energy applications, the R and D cooperation specialist panel was held in America on March 12-20, 1981 to exchange the current R and D information on geothermal resources. It was clarified through the meeting in Department of Energy (DOE) that the U.S. budget was reduced by the Reagan Administration largely, resulting in delays in development of geothermal energy and construction of geothermal power plants. The following themes were discussed: Japanese and American geothermal development programs, DOE's industrialization activity, hot dry rock program, geoscience program, and geothermal prospecting technology program. It was clarified through the meeting in U.S. Geological Survey (USGS) that since the governmental resource assessment is made by USGS, however, wide data collection is made by other organizations generally, acquisition of data required for the assessment is difficult. Study on MOU is necessary together with fund allocation. Field survey was also made in Raft River, Cove Fort and Roosevelt. (NEDO)

  16. Fiscal 1980 Sunshine Project research report. International cooperation project for energy technology. International research cooperation for geothermal energy (Japan-U.S. R and D cooperation for geothermal resource assessment); 1980 nendo energy gijutsu kokusai kyoryoku jigyo chinetsu energy kokusai kyoryoku seika hokokusho. Chinetsu shigen hyoka ni kansuru Nichibei kenkyu kaihatsu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Based on the Japan-U.S. agreement on promotion of geothermal energy applications, the R and D cooperation specialist panel was held in America on March 12-20, 1981 to exchange the current R and D information on geothermal resources. It was clarified through the meeting in Department of Energy (DOE) that the U.S. budget was reduced by the Reagan Administration largely, resulting in delays in development of geothermal energy and construction of geothermal power plants. The following themes were discussed: Japanese and American geothermal development programs, DOE's industrialization activity, hot dry rock program, geoscience program, and geothermal prospecting technology program. It was clarified through the meeting in U.S. Geological Survey (USGS) that since the governmental resource assessment is made by USGS, however, wide data collection is made by other organizations generally, acquisition of data required for the assessment is difficult. Study on MOU is necessary together with fund allocation. Field survey was also made in Raft River, Cove Fort and Roosevelt. (NEDO)

  17. The R and D program on geothermal energy of the commission of the European communities results and future

    International Nuclear Information System (INIS)

    Louwrier, K.P.; Garnish, J.D.; Staroste, E.

    1992-01-01

    DGXII of the Commission of the European Communities has supported research and development in the field of the geothermal energy since 1975, and has just begun the fifth, and probably final, four year program. The first program concentrated on the data collection in order to establish the geothermal potential of the Community. This work resulted in the drafting and publication of two Atlases, one dealing with sub-surface temperatures and one with geothermal resources. Three multidisciplinary studies were undertaken on three known geothermal reservoirs with different characteristics, in order to test the validity of various exploration methods. A major element in recent years has been Hot Dry Rock studies, which have evolved during the course of the various program s from laboratory experiments and work in shallow holes towards a European test site where an international team of scientists coordinates research teams from different Member States. Basic scientific support to exploitation of geothermal energy has been given by geochemistry. The present R and D program centers on HDR research and abatement of corrosion and scaling in geothermal systems. Besides the geothermal work the program also supports studies in deep reservoir geology

  18. DE-FOA-EE0005502 Advanced Percussive Drilling Technology for Geothermal Exploration and Development Phase II Report.

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale R. [Atlas-Copco Secoroc, LLC, Fagersta (Sweden)

    2017-05-01

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two- phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high- operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for user in the driller's toolbox.

  19. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

  20. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California

    Science.gov (United States)

    Zukin, Jeffrey G.; Hammond, Douglas E.; Teh-Lung, Ku; Elders, Wilfred A.

    1987-10-01

    Naturally occurring U and Th series radionuclides have been analyzed in high temperature brines (~300°C, 25 wt% dissolved solids) and associated rocks from two deep geothermal wells located on the northeastern margin of the Salton Sea Geothermal Field (SSGF). These data are part of a study of the SSGF as a natural analog of possible radionuclide behavior near a nuclear waste repository constructed in salt beds, and permit evaluation of some characteristics of water-rock interaction in the SSGF. Rock/Brine concentration ratios ( Rc = (dpm/ g) rock/(dpm/ g) brine) were found to vary from near unity for isotopes of Ra, Pb and Rn to about 5 × 10 5 for 232Th. The high sorptivity of 232Th is closely followed by that of 238U and 234U ( Rc ~ 5 × 10 4), suggesting that U is retained in the +4 oxidation state by the reducing conditions in the brines. The relatively high solubility of 210Pb and 212Pb is attributed to formation of chloride complexes, while the high Ra solubility is attributed to chloride complexing, a lack of suitable adsorption sites due to the high brine salinity and temperature, and the reducing conditions that prevent MnO 2 and RaSO 4 from forming. The 228Ra /226Ra ratios in the brines are approximately equal to those of their parents ( 232Th /230Th ) in associated rocks, indicating that Ra equilibration in the brine-rock system is achieved within the mean life of 228Ra (8.3 years). The 224Ra /228Ra ratios in these brines are about 0.7, indicating that either (1) brine composition is not homogeneous and 224Ra decays in fracture zones deficient in Ra and Th as the brine travels to the wellhead or (2) Ra equilibration in the brine-host rock system is not complete within the mean life of 224Ra (5.2 days) because the desorption of 224Ra from the solid phase is impeded. The 228Ac /228Ra activity ratio in the SSGF brines studied is <0.1, and from this ratio the residence time of 228Ac in the brine before sorption onto solid surfaces is estimated to be <70

  1. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  2. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  3. Geothermal energy - availability - economy - prospects

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1992-01-01

    The heat contained in the earth's crust represents an inexhaustible reservoir of energy on the technical scale, which is available at all times of day and at all seasons. In the volcanically active zones, the earth's heat is used industrially: Worldwide, the electrical power of geothermal powerstations is about 5000 MW; in addition, about 10,000 MW are used for direct thermal applications (heating) in regions with normal geothermal conditions. The geothermal power plants have been expanded at an annual rate of 12.2% since 1970. In many developing countries, the geothermal energy is the most important home source of energy for electricity generation. In Europe, in the Paris Basin, hot groundwater is pumped from a depth of about 2 km and is used for heating blocks of flats. In France as a whole, about 170,000 flats have been supplied with heat and hot water from underground for more than a decade. (orig./DG) [de

  4. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    Science.gov (United States)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and

  5. SW England seismic monitoring for the HDR geothermal programme in Cornwall 1989 to September 1991

    International Nuclear Information System (INIS)

    Walker, A.B.

    1992-01-01

    The potential for earthquakes to be triggered by fluid injected into boreholes has been recognised for 25 years and natural earthquakes in Cornwall have been reported for over 250 years. As a result, the Geothermal Steering Committee advising the Hot Dry Rock project recommended that background seismic monitoring be undertaken around the HDR experimental site at Rosemanowes. A network of seismographs was established for this purpose by the British Geological Survey (BGS) in late 1980 and has been operated continuously through September 1991. The primary aim of the network has been to provide an independent, continuous assessment of all vibrational transients in order to discriminate between those caused by the Hot Dry Rock experiments and those of natural origin or from other man-made sources. In this respect, the work provides an insurance against claims that extraneous seismic activity is related to those experiments. (author)

  6. NANA Geothermal Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in the Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.

  7. Geophysical Well Logs Applied to Geothermal Resource Evaluation Application des diagraphies à l'évaluation des ressources géothermiques

    Directory of Open Access Journals (Sweden)

    Fertl W. H.

    2006-11-01

    Full Text Available Well logging in the petroleum industry has been developed over five decades into a mature industry, whereas geothermal well logging is a relatively new enterprise. Fundamental differences also occur in the geologic environments and key objectives of both logging applications. Geothermal reservoirs are frequently in fractured igneous and metamorphic rocks, which contain hot water or stem at temperature exceeding 150°C. The discussion focuses on present day logging technology, geologic and reservoir engineering objectives, and qualitive and quantitative formation interpretation techniques for geothermal resource evaluation. Specific field case studies illustrate the interpretive state-of-the-art, including examples from the Geysers dry steam field in the Imperial Valley of California, hot water fields in California, Nevada, and Idaho, and the LASL Hot Dry Rock test project in the Valles Caldera of New Mexico. Les diagraphies dans les forages pétroliers ont atteint leur maturité, alors que le contrôle diagraphique des sondages géothermiques est une entreprise relativement nouvelle. Des différences fondamentales apparaissent aussi dans les environnements géologiques et dans les objectifs clés des deux types d'applications des diagraphies. Les réservoirs géothermiques se situent souvent dans les roches ignées ou métamorphiques fracturées qui contiennent de l'eau chaude ou de la vapeur à des températures dépassant 150 °C. L'exposé sera concentré sur les techniques actuelles d'enregistrements, les objectifs géologiques et liés à l'exploitation des réserves et sur les techniques qualitatives et quantitatives d'interprétation des formations pour l'évaluation des ressources géothermiques. Quelques cas particuliers illustrent l'état actuel des techniques d'interprétation avec des exemples pris dans le champ de vapeur sèche des geysers dans Imperial Valley de Californie, des champs d'eau chaude en Californie, Nevada et Idaho et

  8. Geothermal development promotion survey. No. B-3 Kumaishi area; Chinethu kaihatsu sokushin chosa seika hokokusho. No. B-3. Kumaishi chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper summarizes the result of a geothermal resource survey carried out from fiscal 1995 through fiscal 1997 in the Kumaishi Area located in the western center of Oshima Peninsula in the south western part of Hokkaido. The survey for this area was performed with an objective to search the spread of high temperature area continuing from the adjoining Yakumo area where the highest temperature of 233 degrees C has been confirmed in a structural test well (N63-YK-6), to identify high water permeating areas in great depth points underground, and to find possibility of existence of geothermal resources. The survey included geological and alteration zone survey, geochemical survey, gravitation exploration, electromagnetic exploration, drilling and temperature logging of five structural test wells, water injection test, temperature restoration test, core survey and hot water survey. Also performed were environmental effect survey, rock age measurement, alteration age measurement, and fluid inclusion test. As a result of the survey, it was identified that the verified geothermal hot water has been stored in granites with poor water permeability, whose low temperature has not formed convection systems spreading in wide areas despite having been heated, making each system exist in small scale independently. It was estimated that the possibility is low to expect geothermal power generation. (NEDO)

  9. Kinetics of radioisotope exchange between brine and rock in a geothermal system

    International Nuclear Information System (INIS)

    Hammond, D.E.; Zukin, J.G.; Teh-Lung Ku

    1988-01-01

    A wide range of isotopes in the /sup 238/U, /sup 235/U, and /sup 232/Th decay chains was measured in geothermal brines collected from two production zones at 1898 and 3220 m in the Salton Sea Scientific Drilling Project well. High concentrations of radium, radon, and lead isotopes are generated and maintained by the input of these isotopes from solid phases into brine by both recoil and leaching processes, by the high chloride content of the brine which complexes radium and lead, and by the apparent absence of suitable unoccupied adsorption sites. In contrast, uranium, thorium, actinium, bismuth, and polonium isotopes all have low concentrations due to their efficient sorption from brine to rock. Measurements of short-lived isotopes in these decay series yield insights regarding the mechanisms controlling radioisotope exchange, and they permit estimation of rates of brine-rock interaction. For example, the /sup 228/Ac//sup 228/Ra activity ratio of 0.2 in brines indicates that the mean residence time of actinium in solution before sorption onto solid surfaces is less than 2.5 hours

  10. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  11. Geothermal heat from solid rock - increased energy extraction through hydraulic pressurizing of drill wells

    International Nuclear Information System (INIS)

    Ramstad, Randi Kalskin; Hilmo, Bernt Olav; Skarphagen, Helge

    2005-01-01

    New equipment for hydraulic pressurizing, a double collar of the type FrakPak - AIP 410-550, is developed by the Broennteknologi AS. The equipment is tested in the laboratory and in the field at Lade in Trondheim. By the construction of two pilot plants for geothermal heat at Bryn and on the previous grounds of the energy company in Asker and Baerum (EAB) extensive studies connected to hydraulic pressurizing are carried out both with water and sand injection. The geothermal heat plants at Bryn and AEB were supposed to be based on pumped ground water from rock wells where increased effect was obtained through pumping up, returning and circulating the water. The aim of the study was to test and develop the methods for hydraulic pressurizing both with water and sand injection, document the effect of the various types of pressurizing as well as mapping the hydro- and rock geological conditions for this type of geothermal heat plants. In addition to stimulating 10 drill holes with hydraulic pressurizing with water and sand injection, the studies have carried out test pumping, water sampling, geophysical logging, measurements of alterations in the terrain, current and rock strain measurements and geothermal response tests. Furthermore an efficacy test and a theoretical model of the energy potential of the plants are carried out. The results from the pilot plant at Bryn show that the drill hole capacities are significantly increased both through hydraulic pressurizing with water and sand injection. There seems to be a greater need for sand as ''prepping agent'' or distance maker in cracks with high pressure resistance than in cracks with lower resistance. The grain size of the sand should be adapted to the resistance pressure and injection of coarser sand is recommended in cracks with lower resistance pressure. The rock strength and strain conditions determine the successes of hydraulic pressurizing at the reopening of existing or opening of new faults. Test pumping was

  12. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  13. Geothermal properties of deep crystalline rock formations in the Rhone valley - Preliminary study; Geothermie du cristallin profond de la vallee du Rhone - Etude preliminaire

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, G; Crestin, G [Alpgeo Sarl, Sierre (Switzerland); Kohl, T [Geowatt AG, Zuerich (Switzerland); Graf, G [Bureau de service et d' ingenierie BSI SA, Lausanne (Switzerland)

    2006-07-01

    This report prepared for the Swiss Federal Office of Energy (SFOE) examines the possibility of cogenerating electric power and heat from geothermal energy stored in deep aquifers in the southwestern Swiss Alps. The project AGEPP (Alpine Geothermal Power Production) investigates an alternative to the well known Hot-Dry-Rock systems by looking at the crystalline formations in the alpine Rhone valley. Since centuries, these formations have been utilized for thermal spas. Two locations, Brigerbad and Lavey-les-Bains have been evaluated in the present report by the companies ALPGEO Sarl, GEOWATT AG and BSI SA. Existing boreholes at both locations show ample flow and substantial temperature gradients down to 600 meters, suggesting possible reservoir temperatures above 110 {sup o}C and a low mineralization (below 5 grams per liter). Flow rates of 50 to 75 liters/s at 110 {sup o}C seem possible and could be utilized in an ORC (Organic Rankine Cycle) for power production up to 1.3 MW. The power production costs are estimated at 0.08 CHF/kWh (singlet system) and 0.27 CHF/kWh (doublet system) respectively. The study implies that cogenerated heat is sold at a price of 0.08 CHF/kWh. These prices could compete with other alternative energies. Phase 2 of the project will evaluate the feasibility at the location of Lavey-les-Bains.

  14. The geothermal partnership: Industry, utilities, and government meeting the challenges of the 90's

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal community. This year's conference, Program Review IX, was held in San Francisco on March 19--21, 1991. The theme of this review was The Geothermal Partnership -- Industry, Utilities, and Government Meeting the Challenges of the 90's.'' The importance of this partnership has increased markedly as demands for improved technology must be balanced with available research resources. By working cooperatively, the geothermal community, including industry, utilities, DOE, and other state and federal agencies, can more effectively address common research needs. The challenge currently facing the geothermal partnership is to strengthen the bonds that ultimately will enhance opportunities for future development of geothermal resources. Program Review IX consisted of eight sessions including an opening session. The seven technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy and the progress associated with the Long Valley Exploratory Well. Individual papers have been cataloged separately.

  15. Report on geothermal development promotion survey data processing in fiscal 1997. Tsujinodake Area No. B-6 (first report); 1997 nendo chinetsu kaihatsu sokushin chosa data shori hokokusho. 1. Tsujinodake chiiki No.B-6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This paper reports the achievements in the geothermal development promotion survey data processing in fiscal 1997 for Tsujinodake Area. Geological, alteration band and fluid geochemical surveys, gravity and electromagnetic exploration, and environment influence survey were generalized to summarize the state of existence of geothermal resources. Sea water permeated into deep underground portion was mixed with meteoric water from Ikeda Lake and Unagi Pond; heated by deep hot water originated from magma pools as the source of volcanic activities after formation of the Ata caldera; the resultant neutral high salt concentration hot water has risen on the Takeyama-Tsujinodake structural line; and was reserved in deep portion of Mr. Tsujinodake. The sea water permeated into deep underground portion was heated by the same deep hot water originated from magma pools as described above, has risen along the Ata caldera wall, and been reserved in the deep portion of Kaimon Dake Spa. Around the Yamakawa geothermal power plant, the permeated sea water was heated by the same magma pools as described above and by the intrusive rocks originated therefrom as the heat source. The water has risen along the shattered belt developing around the intrusive rocks or the Takeyama-Tsujinodake structure line, and been reserved. Around the Unagi pond, mixed sea and meteoric water has risen along the Yamakawa-Matsugakubo structure line, and been reserved. (NEDO)

  16. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also

  17. Isotopic and noble gas geochemistry in geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B.M.; DePaolo, D.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb) are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.

  18. Geochemical Study of Ampallas Geothermal Area, Mamuju District, West Sulawesi Province

    Science.gov (United States)

    Fauziyyah, F.; Prabowo, T. R.; Shalihin, M. G. J.; Setiawan, D. I.; Yushantarti, A.

    2016-09-01

    Ampallas is one of the areas with geothermal potential which located in Mamuju district, near from the capital city of West Sulawesi. This research was carried out to understand the characteristic of this geothermal field based on chemistry of the surface manifestation, including fluid characteristic and soil anomaly. Geothermal research in Ampallas area focused on 4 hot springs; Ampallas, Batupane, Karema, and Gantungan. With average temperature around 34 - 67°C. Ampallas 1,2,3,4,7,8 hot springs water type is chloride - bicarbonate, which means it came from the reservoir while Batupane, Gantungan, Karema and Ampallas 5 are all bicarbonate type. Ampallas 1,2,3,4,7,8, Karema and Gantungan hot springs fluid plotted in partial equilibrium zone while Batupane and Ampallas 5 plotted in immature water zone. It means the Ampallas hot springs (except Ampallas-5) mixed with meteoric water right after reached the equilibrium state. It is also concluded that Ampallas 5 hot springs came from the same reservoir with Batupane, but not Gantungan and Karema hot springs. The speculative resource potential of Ampallas geothermal system is estimated around 30 MWe. But if detailed geophysical method was applied the result could be more accurate.

  19. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    OpenAIRE

    Jun He; Quansheng Liu; Zhijun Wu; Yalong Jiang

    2018-01-01

    One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM) is developed in this study to simulate the thermo-elastic fracturing ...

  20. Geothermal Progress Monitor: Report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  1. Change with time in extrusion and chemical composition of volcanic rock in geothermal areas in central Kyushu

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Hiroki

    1986-10-01

    Changes with time in extrusion and chemical composition of volcanic rocks in central Kyushu are studied to provide basic data required for evaluation of geothermal resources. Distribution of volcanic rocks in successive 1Ma (10/sup 6/ year) periods and the average thickness of volcanic rock layers in each period are determined, from which the volume of volcanic rocks in each 1Ma period is calculated. Results indicate that volcanos in central Kyushu extruded about 3,000 km/sup 3//Ma of volcanic rocks during the early periods (about 5Ma), followed by a series of declining periods up to the present. Comparison of volcanic extrusive rocks of each 1Ma period shows that lava of hornblende andesite and pyroxenic andesite has been extruded in great quantities in every period. Chemical composition is studied based on diagrams showing changes in SiO/sub 2/ content. The K/sub 2/O content is relatively high in most volcanos younger than 1.6Ma, compared to those older than 1.6Ma. the K/sub 2/O content in extruded rocks has been high during the latest 0.4Ma in the Aso volcanic area, unlike other island arc conjunction areas. (4 figs, 5 tabs, 28 refs)

  2. Geothermal Program Review VI: proceedings. Beyond goals and objectives

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Program Review VI was comprised of six sessions, including an opening session, four technical sessions that addressed each of the major DOE research areas, and a session on special issues. The technical sessions were on Hydrothermal, Hot Dry Rock, Geopressured and Magma resources. Presenters in the technical sessions discussed their R and D activities within the context of specific GTD Programmatic Objectives for that technology, their progress toward achieving those objectives, and the value of those achievements to industry. The ''Special Issues'' presentations addressed several topics such as the interactions between government and industry on geothermal energy R and D; the origin and basis for the programmatic objectives analytical computer model; and international marketing opportunities for US geothermal equipment and services. The unique aspect of Program Review VI was that it was held in conjunction with the National Geothermal Association's Industry Round Table on Federal R and D. The Round Table provided a forum for open and lively discussions between industry and government researchers and gave industry an opportunity to convey their needs and perspectives on DOE's research programs. These discussions also provided valuable information to DOE regarding industry's priorities and directions.

  3. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Science.gov (United States)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  4. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  5. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  6. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  7. Hot Dry Rock energy annual report fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Duchane, D.V.; Winchester, W.W.

    1993-04-01

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  8. Hot Dry Rock energy annual report fiscal year 1992

    International Nuclear Information System (INIS)

    Winchester, W.W.; Duchane, D.V.

    1993-04-01

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180 degrees C (356 degrees F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site

  9. IN SITU GEOTHERMAL ENERGY TECHNOLOGY: AN APPROACH FOR BUILDING CLEANER AND GREENER ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Md. Faruque Hossain

    2016-01-01

    Full Text Available Geothermal energy is abundant everywhere in the world. It certainly would be a great benefit for human being once it is produced by a sophisticated technology. Consequently, it would be the biggest console for earth considering environmental sustainability. Unfortunately, the current status of commercial production of geothermal energy primarily from hydrothermal, geopressured, hot dry rock, and magma are limited to a few countries due to technological difficulties and production cost. This paper describes a simple technology where an in situ geothermal plant assisted by a heat pump would act as a high-temperature production (>150°C to provide excellent capacity of energy generation. The issue related to costs is interestingly cheaper on production, comparing to other technologies, such as solar, hydro, wind, and traditional geothermal technology as described in this article. Therefore, it is suggested that heat pump assisted in situ geothermal energy sources has a great potentiality to be a prime energy source in near future. Since the technology has a number of positive characteristics (simple, safe, and provides continuous baseload, load following, or peaking capacity and benign environmental attributes (zero emissions of CO2, SOx, and NOx, it certainly would be an interesting technology in both developed, and developing countries as an attractive option to produce clean energy to confirm a better environment.

  10. Engineering and Economic Analysis of Non-Electric Applications for Geothermal Heat Resources at Desert Hot Sprlngs, Califormia

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-28

    A study will be conducted to evaluate non-electric applications of an identifiable geothermal energy resource in terms of engineering, economic, and institutional considerations and to formulate the preliminary design and implementation plan of the most promising demonstration or industrial development project. The purpose of this study is to determine potential options that the Energy Research and Development Administration may exercise in developing low- and moderate-temperature hydrothermal resources as an economically and environmentally acceptable alternate energy source and in enhancing the development of a coherent geothermal industry. The study will focus upon a reservoir-specific, multiple use application of hydrothermal resources underlying the City of Desert Hot Springs. Potential applications to be considered include a space conditioning utility network for commercial and residential buildings and an aquacultural and agricultural installation in individual as well as energy cascading systems. To extend the utility of the study findings, the evaluation of potential applications will be conducted within the wider context of satisfying broad regional needs. The study will also be conducted in the framework of a moving baseline to account for emerging technologies and possible future cost escalations and availability of alternate energy sources. The progress of this study will be monitored by an Advisory Board comprised of a representative cross-section of the geothermal community. Results of the study will be disseminated through reports and a workshop to maximize information exchange with the geothermal community. In addition, a self-start manual will be prepared and distributed so that interested communities having similar geothermal resources can readily evaluate appropriate nonelectric applications to meet their specific needs and gain added insight into how best to implement these applications.

  11. Sustainable renewable energy seawater desalination using combined-cycle solar and geothermal heat sources

    KAUST Repository

    Missimer, Thomas M.

    2013-01-01

    Key goals in the improvement of desalination technology are to reduce overall energy consumption, make the process "greener," and reduce the cost of the delivered water. Adsorption desalination (AD) is a promising new technology that has great potential to reduce the need for conventional power, to use solely renewable energy sources, and to reduce the overall cost of water treatment. This technology can desalt seawater or water of even higher salinity using waste heat, solar heat, or geothermal heat. An AD system can operate effectively at temperatures ranging from 55 to 80 °C with perhaps an optimal temperature of 80 °C. The generally low temperature requirement for the feedwater allows the system to operate quite efficiently using an alternative energy source, such as solar power. Solar power, particularly in warm dry regions, can generate a consistent water temperature of about 90 °C. Although this temperature is more than adequate to run the system, solar energy collection only can occur during daylight hours, thereby necessitating the use of heat storage during nighttime or very cloudy days. With increasing capacity, the need for extensive thermal storage may be problematic and could add substantial cost to the development of an AD system. However, in many parts of the world, there are subsurface geothermal energy sources that have not been extensively used. Combining a low to moderate geothermal energy recovery system to an AD system would provide a solution to the thermal storage issue. However, geothermal energy development from particularly Hot Dry Rock is limited by the magnitude of the heat flow required for the process and the thermal conductivity of the rock material forming the heat reservoir. Combining solar and geothermal energy using an alternating 12-h cycle would reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of renewable energy. © 2013 Desalination Publications.

  12. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  13. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  14. INTERPRETATION OF BOUGUER ANOMALY TO DETERMINE FAULT AND SUBSURFACE STRUCTURE AT BLAWAN-IJEN GEOTHERMAL AREA

    Directory of Open Access Journals (Sweden)

    Anjar Pranggawan Azhari

    2016-10-01

    Full Text Available Gravity survey has been acquired by Gravimeter Lacoste & Romberg G-1035 at Blawan-Ijen geothermal area. It was a focusing study from previous research. The residual Bouguer anomaly data was obtain after applying gravity data reduction, reduction to horizontal plane, and upward continuation. Result of Bouguer anomaly interpretation shows occurrence of new faults and their relative movement. Blawan fault (F1, F2, F3, and F6 are normal fault. Blawan fault is main fault controlling hot springs at Blawan-Ijen geothermal area. F4 and F5 are oblique fault and forming a graben at Banyupahit River. F7 is reverse fault. Subsurface model shows that Blawan-Ijen geothermal area was dominated by the Ijen caldera forming ignimbrite (ρ1=2.670 g/cm3, embedded shale and sand (ρ2=2.644 g/cm3 as Blawan lake sediments, magma intrusion (ρ3=2.814 g/cm3 & ρ7=2.821 g/cm3, andesite rock (ρ4=2.448 g/cm3 as geothermal reservoir, pyroclastic air fall deposits (ρ5=2.613 g/cm3 from Mt. Blau, and lava flow (ρ6=2.890 g/cm3.

  15. White paper on geothermal sustainability; Grundlagenpapier 'Geothermal sustainability - A review with identified research needs'

    Energy Technology Data Exchange (ETDEWEB)

    Rybach, L.; Megel, T.

    2006-12-15

    This comprehensive appendix contained in a comprehensive annual report 2006 for the Swiss Federal Office of Energy (SFOE) reviews research needs identified in connection with the topic of geothermal sustainability. It is noted that excessive production often pursued - mostly for economical reasons - can lead to the depletion of heat reservoirs. Sustainable production can be achieved with lower production rates and still provide similar total energy yields. The regeneration of geothermal resources following exploitation is discussed. The need for further research into geothermal production sustainability is noted. A doublet system realised in Riehen, Switzerland, is discussed, as is an Enhanced Geothermal System EGS using circulation in fractured rock layers. Research still needed is noted.

  16. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    Science.gov (United States)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  17. The relation between well spacing and Net Present Value in fluvial Hot Sedimentary Aquifer geothermal doublets : a West Netherlands Basin case study

    NARCIS (Netherlands)

    Willems, C.J.L.; Goense, T.; Maghami Nick, Hamidreza M.; Bruhn, D.F.

    2016-01-01

    This paper analyzes the relation between well spacing and Net Present Value of a Hot Sedimentary Aquifer geothermal doublet. First, a sensitivity analysis is carried out to evaluate the effect of uncertainty of geological and production parameters on the Net present Value. Second a finite-element

  18. Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001; FINAL

    International Nuclear Information System (INIS)

    Schochet, Daniel N.; Cunniff, Roy A.

    2001-01-01

    The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well

  19. Multi-usages of the Ilan geothermal field, NE Taiwan

    Science.gov (United States)

    Lee, C. S.; Tseng, P.; Wang, S.; Chang, C.

    2017-12-01

    The tectonics of Taiwan is very dynamic. The area produces more than 30,000 earthquakes/year; the mountains uplift 4-5 cm/year; the rainfall culminates 3,000 mm/year; there are some 4,000 hot spring operators. One of the two hot geothermal areas is located in NE Taiwan - the Ilan geothermal field. In order to develop the geothermal energy for the electricity need, the Ministry of Science and Technology have provided the fund to drill two 2,500 deep wells. The results are not so encourage for the need of an Enhanced Geothermal System. However, one of the wells has a bottom temperature of 160oC and the water up loading with 60 ton/hr. This can be combined with the near-by wells drilled by the private drilling company and the Cardinal Tien Junior College of Healthcare and Management to develop the multi-usages of the geothermal energy, such as 1 MW of electricity for the college and village, the long-term healthcare and hot spring medicare, aquaculture and agriculture need etc. The universities and private drilling company cooperate together to join the development. Hope this will provide a new model for the need of a self-sufficient community. The geothermal is a clean, renewable, and no pollution energy. Taiwan is in an initial stage of using this green energy.

  20. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  1. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    Science.gov (United States)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  2. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    Science.gov (United States)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal

  3. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    Science.gov (United States)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  4. Change in color of the hot spring deposits at the Chinoike-Jigoku hot pool, Beppu geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Kazuthoshi, Oue; Ohsawa, Shinji; Yusa, Yuki [Kyoto University, Beppu (Japan). Beppu Geothermal Research Laboratory, Graduate School of Science

    2002-06-01

    The Chinoike-Jigoku hot pool in Beppu geothermal field, Central Kyushu, Japan, displays a blood-red color due to the hematite (Fe{sub 2}O{sub 3}) deposited at the bottom of the pool. The colors of the deposits collected on 1 October 1990, on 27 March 1995, and on 6 March 1996 were measured with a colorimeter. The results show that the red deposits became yellower in 1995 and 1996 than they were in 1990. X-ray diffraction (XRD) patterns and chemical compositions of the deposits indicate that the discoloration of the Chinoike-Jigoku pool water is caused by an increase in the content of jarosite [KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}]. The temperature of the subsurface thermal water beneath the Chinoike-Jigoku hot pool, as estimated by the anhydrite chemical geothermometer, has declined from 200 to 150{sup o}C over the past 25 years. The Na and Cl concentrations of the hot spring water discharging from Chinoike-Jigoku have decreased, while the SO{sub 4} concentration has increased. The temporal variations in subsurface temperature and dissolved ion concentrations suggest that the mixing ratio between the high-temperature, neutral Na-Cl type water and the relatively low-temperature, acid H-SO{sub 4} type water that form the thermal water of Chinoike-Jigoku has changed over the last 25 years. Hydrothermal studies of jarosite stability have confirmed that the increase in jarosite content in the deposits was caused by a temperature drop of the mixed thermal water beneath Chinoike-Jigoku pool, due to an increase in the contribution of the cooler H-SO{sub 4} water type to the thermal mixture. (author)

  5. Geothermics of the Apenninic subduction

    Directory of Open Access Journals (Sweden)

    G. Zito

    1997-06-01

    Full Text Available The subduction of the Adriatic microplate is analysed from a geothermal point of view. In particular four main geodynamic units are distinguished: foreland, foredeep and slab, accretionary prism, and back-arc basin. Each of them is examined from a geothermal point of view and the related open question are discussed. The most relevant results are the determination of the undisturbed geothermal gradient in the aquifer of the foreland; the discovery of a « hot » accretionary prism; and a new model of instantaneous extension of the back-arc basins. The main conclusion is that geothermal data are consistent with a westward dipping subduction that migrated eastward producing a sequence of several episodes at the surface.

  6. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barber E.; Fanelli, M.

    1977-01-01

    A comprehensive review covers the recognition of natural hot fluids in ancient times and their use for therapeutic baths; the first production of electricity from geothermal steam at Larderello, Italy, in 1904; the widespread geographical occurrence of geothermal fluids; exploration techniques; the extraction of geothermal fluids and their uses in spas, agriculture, aquaculture, domestic heating, and industrial applications; geothermal greenhouse heating world-wide; geothermal heating of animal and poultry houses, in culture of alligators and crocodiles (in Atagawa, Japan), and in fish culture; piping arrangements for district heating, and a tabulation of district heating installations world-wide; downhole exchanger systems used in Klamath Falls, Oregon, for domestic heating; industrial heating applications; and methods of disposal of geothermal fluids. Maps, diagrams, graphs, photographs, tables, and 48 references are included.

  7. Development of Genetic Occurrence Models for Geothermal Prospecting

    Science.gov (United States)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  8. Using mineral thermal diffusivities measured with Laser-Flash Analysis to redefine the continental geotherm

    Science.gov (United States)

    Branlund, J. M.; Hofmeister, A.; Merriman, J. D.; Nabelek, P. I.; Whittington, A. G.

    2010-12-01

    We've created a new model for the average continental geotherm by incorporating accurate thermal conductivity values into Fourier's law. Previous geotherm models used thermal conductivities (k) with systematic errors: (1) Pores and microcracks in polycrystalline samples provide artificially low k compared to buried rocks, (2) conventional measurement techniques involve contact losses between thermocouples and samples, especially at high temperature, and/or (3) many techniques inadequately remove ballistic radiative transfer, which does not represent true heat transfer in the earth. To provide k values appropriate for Earth’s interior, we measured thermal diffusivity and its temperature derivatives using laser-flash analysis (LFA) for common rock-forming minerals. To avoid problems of pores and microcracks artificially lowering measured k values, we mathematically mixed mineral data to create synthetic rocks representative of the upper and lower crust and mantle, and checked our values against measurements of rocks least contaminated. Compared to previous models using k of rocks measured with non-LFA methods, our mixture models give higher k of crustal rocks at room temperature, but lower values at higher temperatures. Calculating a geotherm with these revised thermal conductivity values gives a lower temperature throughout the lower crust and mantle lithosphere. Altering the composition of the crust will change the geotherm; crust with more quartz, olivine and/or pyroxene has higher k and a lower geothermal gradient. Adding calcic plagioclase lowers k and steepens the geotherm. The new constraints on k allow us to set bounds on the steady-state geotherm based on ranges of possible mineralogy, chemistry, and radiogenic contents.

  9. Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift

    Energy Technology Data Exchange (ETDEWEB)

    Abiye, Tamiru A. [School of Geosciences, Faculty of Science, University of the Witwatersrand, Private Bag X3, P.O. Box Wits, 2050 Johannesburg (South Africa); Tigistu Haile [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2008-12-15

    The Boku central volcano is located within the axial zone of the Central Ethiopian Rift near the town of Nazareth, Ethiopia. An integrated geophysical survey involving thermal, magnetic, electrical and gravimetric methods has been carried out over the Boku geothermal area in order to understand the circulation of fluids in the subsurface, and to localize the 'hot spot' providing heat to the downward migrating groundwaters before they return to the surface. The aim of the investigations was to reconstruct the geometry of the aquifers and the fluid flow paths in the Boku geothermal system, the country's least studied. Geological studies show that it taps heat from the shallow acidic Quaternary volcanic rocks of the Rift floor. The aquifer system is hosted in Quaternary Rift floor ignimbrites that are intensively fractured and receive regional meteoric water recharge from the adjacent escarpment and locally from precipitation and the Awash River. Geophysical surveys have mapped Quaternary faults that are the major geologic structures that allow the ascent of the hotter fluids towards the surface, as well as the cold-water recharge of the geothermal system. The shallow aquifers are mapped, preferred borehole sites for the extraction of thermal fluids are delineated and the depths to deeper thermal aquifers are estimated. (author)

  10. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  11. Geothermal Play-Fairway Analysis of the Tatun Volcano Group, Taiwan

    Science.gov (United States)

    Chen, Yan-Ru; Song, Sheng-Rong

    2017-04-01

    Geothermal energy is a sustainable and low-emission energy resource. It has the advantage of low-cost and withstanding nature hazards. Taiwan is located on the western Ring of Fire and characteristic of widespread hot spring and high surface heat flows, especially on the north of Taiwan. Many previous studies reveal that the Tatun Volcano Group (TVG) has great potential to develop the geothermal energy. However, investment in geothermal development has inherent risk and how to reduce the exploration risk is the most important. The exploration risk can be lowered by using the play-fairway analysis (PFA) that integrates existing data representing the composite risk segments in the region in order to define the exploration strategy. As a result, this study has adapted this logic for geothermal exploration in TVG. There are two necessary factors in geothermal energy, heat and permeability. They are the composite risk segments for geothermal play-fairway analysis. This study analyzes existing geologic, geophysical and geochemical data to construct the heat and permeability potential models. Heat potential model is based on temperature gradient, temperature of hot spring, proximity to hot spring, hydrothermal alteration zones, helium isotope ratios, and magnetics. Permeability potential model is based on fault zone, minor fault, and micro-earthquake activities. Then, these two potential models are weighted by using the Analytical Hierarchy Process (AHP) and combined to rank geothermal favorability. Uncertainty model is occurred by the quality of data and spatial accuracy of data. The goal is to combine the potential model with the uncertainty model as a risk map to find the best drilling site for geothermal exploration in TVG. Integrated results indicate where geothermal potential is the highest and provide the best information for those who want to develop the geothermal exploration in TVG.

  12. GEODAT. Development of thermodynamic data for the thermodynamic equilibrium modeling of processes in deep geothermal formations. Combined report; GEODAT. Entwicklung von thermodynamischen Daten zur thermodynamischen Gleichgewichtsmodellierung von Prozessen in tiefen, geothermalen Schichten. Synthesebericht

    Energy Technology Data Exchange (ETDEWEB)

    Moog, Helge C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Regenspurg, Simona [GeoForschungsZentrum Potsdam (Germany); Voigt, Wolfgang [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Anorganische Chemie

    2015-02-15

    The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.

  13. Densification and Grain Growth in Polycrystalline Olivine Rocks Synthesized By Evacuated Hot-Pressing

    Science.gov (United States)

    Meyers, C. D.; Kohlstedt, D. L.; Zimmerman, M. E.

    2017-12-01

    Experiments on laboratory-synthesized olivine-rich rocks form the starting material for many investigations of physical processes in the Earth's upper mantle (e.g., creep behavior, ionic diffusion, and grain growth). Typically, a fit of a constitutive law to experimental data provides a description of the kinetics of a process needed to extrapolate across several orders of magnitude from laboratory to geological timescales. Although grain-size is a critical parameter in determining physical properties such as viscosity, broad disagreement persists amongst the results of various studies of grain growth kinetics in olivine-rich rocks. Small amounts of impurities or porosity dramatically affect the kinetics of grain growth. In this study, we developed an improved method for densifying olivine-rich rocks fabricated from powdered, gem-quality single crystals that involves evacuating the pore space, with the aim of refining measurements of the kinetics of mantle materials. In previous studies, olivine powders were sealed in a metal can and hydrostatically annealed at roughly 300 MPa and 1250 °C. These samples, which appear opaque and milky-green, typically retain a small amount of porosity. Consequently, when annealed at 1 atm, extensive pore growth occurs, inhibiting grain growth. In addition, Fourier-transform infrared and confocal Raman spectroscopy reveal absorption peaks characteristic of CO2 in the pores of conventionally hot-pressed material. To avoid trapping of adsorbed contaminants, we developed an evacuated hot-pressing method, wherein the pore space of powder compacts is vented to vacuum during heating and pressurization. This method produces a highly dense, green-tinted, transparent material. No CO2 absorptions peaks exist in evacuated hot-pressed material. When reheated to annealing temperatures at 1 atm, the evacuated hot-pressed material undergoes limited pore growth and dramatically enhanced grain-growth rates. High-strain deformation experiments on

  14. Lithium Isotopes in Geothermal Fluids from Iceland

    Science.gov (United States)

    Millot, R.; Asmundsson, R.; Sanjuan, B.

    2008-12-01

    One of the main objectives of the HITI project (HIgh Temperature Instruments for supercritical geothermal reservoir characterization and exploitation), partially funded by the European Union, is to develop methods to characterize the reservoir and fluids of deep and very high temperature geothermal systems. The chemical composition of geothermal waters in terms of major and trace elements is related to the temperature, the degree of water/rock interaction and the mineralogical assemblage of the bedrock. Traditional geothermometers, such as silica, Na-K, Na-K-Ca or K-Mg applied to geothermal waters, make it possible to estimate the temperature at depth of the reservoir from which the waters are derived. However, the values estimated for deep temperature are not always concordant. The chemical geothermometer Na/Li which presents the singularity of associating two chemical elements, one a major element (sodium) and the other a trace element (Li), can be also used and gives an additional temperature estimation. The primary objective of this work was to better understand the behavior of this last geothermometer using the isotopic systematics of Li in order to apply it at very high temperature Icelandic geothermal systems. One particularly important aspect was to establish the nature, extent and mechanism of Li isotope fractionation between 100 and 350°C during water/rock interaction. For that purpose, we measured Li isotopes of about 25 geothermal waters from Iceland by using a Neptune MC-ICP-MS that enabled the analysis of Li isotopic ratios in geothermal waters with a level of precision of ±0.5‰ (2 standard deviations) on quantities of 10-50 ng of Li. Geothermal waters from Reykjanes, Svartsengi, Nesjavellir, Hveragerdi, Namafjall and Krafla geothermal systems were studied and particular emphasis was placed on the characterization of the behavior of Li isotopes in this volcanic context at high temperature with or without the presence of seawater during water/rock

  15. Fiscal 1999 survey report on Jozankei Hot Spring conservation (3rd phase); 1999 nendo Jozankei onsen hozen chosa hokokusho (dai sanji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    The impact of geothermal exploitation in the Yunosawa district on the Jozankei hot spring and others in the neighborhood was evaluated, and a survey was conducted of the formation and eruption mechanisms of the Jozankei hot spring for the purpose of hot spring conservation. Activities were conducted in the three fields of (1) geological structure analysis, (2) geochemical analysis of fluids, and (3) comprehensive analysis. Conducted in field (2) were analysis of hot spring utilization data and the contents, analysis of hot spring water and geothermal water, analysis of fluctuations in hot springs, and fluid movement models. Studied in field (3) were the outline of large area geothermal systems, geothermal structure models, relations between geothermal reservoirs and hot spring aquifers, and impact of geothermal exploitation on hot springs. Disclosed as the result were hot spring geological structure models, formation mechanism, eruption mechanism, origins of hot spring water, fluid movement models, interference between hot spring units, and changes in the hot springs as a whole. It was then concluded that the geothermal exploitation in the Yunosawa district would not exert any impact on the hot springs. (NEDO)

  16. Young (gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    Science.gov (United States)

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  17. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  18. FY 1996 geothermal development/promotion survey. Report of hot water survey results (No. B-3 Kumaishi area); 1996 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.B-3 Kumaishi chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Reported herein are the survey results of hot water in the Kumaishi area, Hokkaido, as part of the FY 1996 geothermal development/promotion survey project. A total of 277 spouting guidance tests were conducted by the swabbing method for 10 days at the N7-KI-1 well, which, however, failed to achieve continuous spouting of geothermal fluid. A total of 144 swabbing tests were conducted for 8 days at the N7-KI-2 well. The geothermal fluid is spontaneously spouted out, although intermittently, after the main valve was opened, because it had a pressure of 4.1 kg/cm{sup 2} G at the mouth of the well from the first. However, the final self-spouting quantity remained unchanged in spite of the guidance works. The hot water had a pH 6.4, and contained Na as a cation at 8,940 mg/L and Cl as an anion at 14,500 mg/L as the major impurities. The associated gas was mainly composed of carbon dioxide, containing little hydrogen sulfide. The hot water spouted out through the wells contained Na and a high concentration of Cl as the major impurities, suggesting possibility of mixing hot water containing a high concentration of salt with surface water. It is considered that neither hot water nor its impurity concentrations are evenly distributed in the deep underground of the Kumaishi area. It is therefore considered that the deep underground hot water sources for hot spring slightly vary in composition and impurity concentrations. (NEDO)

  19. Hydrogeological Modelling of the Geothermal Waters of Alaşehir in the Continental Rift Zone of the Gediz, Western Anatolia, Turkey

    Science.gov (United States)

    Ӧzgür, Nevzat; Bostancı, Yesim; Anilır Yürük, Ezgi

    2017-12-01

    hydrogeochemical analyses which also indicate intensive water-rock interaction and reactions with silicates. In the study area, the geothermal waters of meteoric origin. The infiltration takes place along the Menderes Massif. Due to the deep circulation which is made possible by the deep reaching fault system of the rift zone of Gediz, the meteoric waters are heated by recent subvolcanic activity such as Kula volcano with human foot prints. In the area of Alaşehir, the meteoric waters percolate at fault zones and permeable clastic sediments into the reaction zone of the roof area of a magma chamber (of Kula volcano) situated at a probable depth of 2-4 km where meteoric waters are heated by the cooling magmatic melt and ascend to the surface due to their lower density caused by convection cells. The volatile components of CO2, SO2, HCl, H2S, HB, HF and He out of magma reach the geothermal water reservoir where an equilibrium between altered rocks, gas components and geothermal waters performs. Thus, the geothermal waters ascend in tectonic zones of weakness at the rift zone of the Gediz in terms of hot springs, gases and steams. Finally, the geothermal waters of Alaşehir are distinguished by a 2,0 percent CO2 of productions in geothermal power plants especially.

  20. Geothermal heat; Energie aus der Tiefe. Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Karl

    2012-09-15

    The temperature in the interior of the earth increases with the depth. But for a long time, the geothermal energy only could be used at selected locations. Therefore, almost all major geothermal power plants are located at volcanic regions. The potential of the geothermal energy is not exhausted. Currently, many new power plants are developed. Although there is no volcanic activity in Germany, also some pilot plants develop the hot surface. The deep geothermal energy sometimes is difficult to be controlled. Before drilling experts rarely know how productive the subsoil is. Also, the drillings may trigger small earthquakes.

  1. Some geophysical and geological studies of the Tanzawa Mountains. [Nakagawa Hot Spring area, Hokizawa, and Higashizawa

    Energy Technology Data Exchange (ETDEWEB)

    Minakami, T; Matsuda, T; Hiraga, S; Horai, K I; Sugita, M

    1964-11-01

    Joints and zeolite-veins in both metamorphic rocks and quartz diorite exposed along the Nakagawa River were studied. Fractures with zeolite-veins are most developed in three areas, the Nakagawa hot spring area, Hokizawa, and Higashizawa. They follow two prevailing directions: N--S with minor right-lateral displacement and N60/sup 0/E with minor left-lateral displacement. The two fractures should represent a conjugate set that was produced by stress with maximum principal axis of N30/sup 0/E-S30/sup 0/W. Distribution and prevailing directions of fractures are illustrated. Geothermal gradients are measured in two newly opened boreholes, at the Nakagawa hot spring area and Higashizawa. The geothermal gradients are 12.60 +- 0.48/sup 0/C/100m at the Nakagawa hot spring and 5.55 +- 0.24/sup 0/C/100m at Higashizawa. Temperature-depth relationships in the two boreholes are given. Seismic observation was made at the Higashizawa. In five days 43 shocks were recorded, of which 20 are thought to have occurred 2 to 20km from the observation station, that is, in and very near the Tanzawa mountains. None have shallower hypocenters than 2 km in depth.

  2. Classification of public lands valuable for geothermal steam and associated geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  3. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania.

    Science.gov (United States)

    Coman, Cristian; Drugă, Bogdan; Hegedus, Adriana; Sicora, Cosmin; Dragoş, Nicolae

    2013-05-01

    The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

  4. Geothermal energy in Washington: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.

    1979-04-01

    This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number of serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)

  5. Report on geothermal development promotion survey in fiscal 1999. Survey on hot water (collection and analysis of hot water) in Tsujinodake Area No. B-6; 1999 nendo chinetsu kaihatsu sokushin chosa hokokusho. Nessui no chosa (nessui no saishu oyobi bunseki) No.B-6 Tsujinodake chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    This paper reports the survey on hot water in the geothermal development promotion survey in fiscal 1999 in the Tsujinodake area. The hot water pumped up at the N11-TD-2 well is considered to have been originated from sea water mixed with the same amount of meteoric water including waters from Ikeda Lake and Unagi Pond, and been heated mainly by heat conduction. The hot water temperature near the well is 120 to 130 degrees C, but the upper stream of hot water flow is estimated to be 160 to 230 degrees C. The test samples collected and analyzed are those pumped up from depths greater than 1,500 m, having the same origin as the high temperature hot water of higher than 200 degrees C flowing sideways at the relatively shallow portions (depths of 400 to 800 m). The hot water is estimated to be rising from deep portions of mainly the north-east shore of Unagi Pond in which exhalation bands are located, and its temperature is considered to be 260 to 270 degrees C at deep sections. The high temperature geothermal reservoir spreading in relatively shallow sections of the N11-TD-2 well mainly around the vicinity of the north-east shore of Unagi Pond has a high possibility of being continued even to the vicinity of the west Ibusuki area in the north-east direction. However, the spread of the geothermal reservoir with high temperatures (200 degrees C or higher) is considered not too large in the direction of the Matsugakubo in the north-west and the Narikawa area direction in the south-east. (NEDO)

  6. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    OpenAIRE

    Lun-Tao Tong; Shoung Ouyang; Tai-Rong Guo; Ching-Ray Lee; Kou-Hsin Hu; Chun-Li Lee; Chun-Jao Wang

    2008-01-01

    The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive t...

  7. Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001

    Energy Technology Data Exchange (ETDEWEB)

    Schochet, Daniel N.; Cunniff, Roy A.

    2001-02-01

    The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

  8. Strains and stresses in the rock around and unlined hot water cavern

    Science.gov (United States)

    Rehbinder, Göran

    1984-07-01

    Hot water stored in an unlined rock cavern is an efficient energy storage. A research program has been carried out with a test plant at the city of Avesta, Sweden. The plant consists of a rock cavern, the volume of which is 15000 m3, which serves as an energy buffer in the district heating system of the city. The water is heated from a garbage incinerator located close to the cavern. During the first test period the temperature of the stored water has varied between 40°C and 95°C. The heating of the rock causes strains and stresses in the rock. The measurements show that the state in the rock does mainly respond to the average temperature and not to the fluctuations. The maximum thermal stress is 9 MPa occurring at the wall of the cavern. The heave of the ground is less than 5 mm. The development of stress and strain will continue after the first test period since thermal equilibrium was not reached during this period.

  9. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  10. Geothermal Potential Based on Physical Characteristics of the Region (Case Study: Mount Karang, Pandeglang Regency and Banten Province

    Directory of Open Access Journals (Sweden)

    Russel Fhillipo

    2018-01-01

    Full Text Available This research is about geothermal potential of Mount Karang, Banten Province which is based on the characteristics of the region. This research method used is geochemistry sample of hot springs and integrated with GIS method for spatial of geothermal potential. Based on the geothermal potential, Mount Karang is divided into three regions, ie high potential, normal potential, and low potential. The high geothermal potential region covers an area of 24.16 Km2 and which there are Cisolong and Banjar 2 hot springs. The normal potential covers Kawah hot spring. Index of the fault of Mount Karang region is one of the significant physical characteristics to determine geothermal potential.

  11. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Science.gov (United States)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  12. Reservoir Considerations and Direct Uses of São Pedro do Sul Hydromineral and Geothermal Field, Northern Portugal

    Science.gov (United States)

    Ferreira Gomes, L. M.; Neves Trota, A. P.; Sousa Oliveira, A.; Soares Almeida, S. M.

    2017-12-01

    São Pedro do Sul Hydromineral and Geothermal Field, located in the northern interior zone of Portugal (Lafões zone), has the greatest widespread utilization of geothermal energy in Portugal mainland and is the most important thermal centre from the economical revenues point of view, obtained from direct and indirect utilization of the thermal water, mostly for wellness, health, and leisure of human beings. Recent utilization includes district and greenhouses heating and even cosmetic applications. The Hydromineral Field includes two exploitable zones: the Termas and Vau Poles. The waters are recognised for their mineral and medicinal effects, since the time of the Romans about 2000 years ago and, later on, on the 12th century, by the first King of Portugal, D. Afonso Henriques. The traditional spring and the 500 m well (AC1), located in the Termas Pole, currently supplies artesian hot water flow of about 16.9 L/s with a temperature of 67 °C. Despite the low flow rate of the actual two exploration wells drilled in the Vau Pole, the geothermal potential is high; a new deep well is planned to be drilled in this zone where is expected to obtain fluid temperature of around 75 °C. The occurrence of São Pedro do Sul mineral water, included in the sulphurous type waters, are linked to Hercynian granitoids, emplaced between 290 and 321 Myr. There is a close relationship between the placement of the main hot springs and the Verin-Chaves-Penacova fault, namely Verin (Spain), Chaves, Moledo, and S. Pedro do Sul (Portugal) hot springs. Heat flow generated at shallow crustal zones by the radiogenic host mineral of the granitic rocks, added to the deep Earth heat flow, heats the cold water inflow along fractures. Open fracture network along the main faults allows the hot fluids reach the surface, thus giving chance to the occurrence of hot springs and mineralized cold springs. Coupling between fracture opening and density difference between cold water inflow and hot water

  13. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  14. Performance of deep geothermal energy systems

    Science.gov (United States)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  15. Hydrogeochemistry of high-temperature geothermal systems in China: A review

    International Nuclear Information System (INIS)

    Guo, Qinghai

    2012-01-01

    As an important part of the Mediterranean-Himalayas geothermal belt, southern Tibet and western Yunnan are the regions of China where high-temperature hydrothermal systems are intensively distributed, of which Rehai, Yangbajing and Yangyi have been investigated systematically during the past several decades. Although much work has been undertaken at Rehai, Yangbajing and Yangyi to study the regional geology, hydrogeology, geothermal geology and geophysics, the emphasis of this review is on hydrogeochemical studies carried out in these geothermal fields. Understanding the geochemistry of geothermal fluids and their environmental impact is critical for sustainable exploitation of high-temperature hydrothermal resources in China. For comparison, the hydrogeochemistry of several similar high-temperature hydrothermal systems in other parts of the world are also included in this review. It has been confirmed by studies on Cl − and stable isotope geochemistry that magma degassing makes an important contribution to the geothermal fluids from Rehai, Yangbajing and Yangyi, though meteoric water is still the major source of recharge for these hydrothermal systems. However, the mechanisms of magma heat sources appear to be quite different in the three systems, as recorded by the 3 He/ 4 He ratios of escaping geothermal gases. A mantle-derived magma intrusion to shallow crust is present below Rehai, although the intruding magma has been heavily hybridized by crustal material. By contrast, the heat sources below Yangbajing and Yangyi are inferred to be remelted continental crust. Besides original sources, the geochemistry of characteristic constituents in the geothermal fluids have also been affected by temperature-dependent fluid–rock interactions, boiling and redox condition changes occurring in the upper part of hydrothermal systems, and mixing with cold near-surface waters. The geothermal fluids from Rehai, Yangbajing and Yangyi contain very high concentrations of some

  16. Policy for geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  17. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  18. Geothermal reservoir assessment manual; 1984-1992 nendo chinetsu choryusou hyoka shuhou manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    A geothermal reservoir assessment manual was prepared for the promotion of the development of geothermal power generation, based on the results of the 'geothermal reservoir assessment technique development project' implemented during the fiscal 1984-1992 period and on the results of surveys conducted in Japan and abroad. Of the geothermal systems generally classified into the steam dominant type and the hot water dominant type, encounters with the steam dominant type are but seldom reported. This manual therefore covers the hot water dominant type only. In addition to the explanation of the basic concept and the outline of geothermal reservoirs, the manual carries data necessary for reservoir assessment; geological and geophysical data analyses; geochemistry in reservoir assessment; data of underground logging and of fuming; conceptual models; simulators and models for reservoir simulation; natural-state simulation, history-matching simulation, and reservoir behavior predicting simulation; case history (modeling of a geothermal reservoir prior to exploitation), references, and so forth. (NEDO)

  19. Geothermal reservoir assessment manual; 1984-1992 nendo chinetsu choryusou hyoka shuhou manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    A geothermal reservoir assessment manual was prepared for the promotion of the development of geothermal power generation, based on the results of the 'geothermal reservoir assessment technique development project' implemented during the fiscal 1984-1992 period and on the results of surveys conducted in Japan and abroad. Of the geothermal systems generally classified into the steam dominant type and the hot water dominant type, encounters with the steam dominant type are but seldom reported. This manual therefore covers the hot water dominant type only. In addition to the explanation of the basic concept and the outline of geothermal reservoirs, the manual carries data necessary for reservoir assessment; geological and geophysical data analyses; geochemistry in reservoir assessment; data of underground logging and of fuming; conceptual models; simulators and models for reservoir simulation; natural-state simulation, history-matching simulation, and reservoir behavior predicting simulation; case history (modeling of a geothermal reservoir prior to exploitation), references, and so forth. (NEDO)

  20. The evolution of the Cappadocia Geothermal Province, Anatolia (Turkey): geochemical and geochronological evidence

    Science.gov (United States)

    Şener, M. Furkan; Şener, Mehmet; Uysal, I. Tonguç

    2017-12-01

    Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar-Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth's surface at about 5.30 Ma. Based on the δ18O-δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.

  1. Geothermal surveys in the oceanic volcanic island of Mauritius

    Science.gov (United States)

    Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio

    2017-04-01

    Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked

  2. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  3. Research on geochemical exploration in geotherm development

    International Nuclear Information System (INIS)

    Hirowatari, Kazuo; Imaizumi, Yukio; Koga, Akito; Iwanaga, Tatsuto.

    1987-01-01

    The decisive factor of geotherm development is to improve the exploration techniques. By effectively carrying out the selection of promising development spots and the decision of well drilling positions, the geotherm development exceeding existing energy sources becomes feasible. There have been many problems in conventional geotherm exploration such as the high cost and long work period, therefore, it was decided to advance the research on geochemical exploration techniques which are relatively simple and can be carried out with low cost. When the techniques of geochemistry are used, for example, in the case that there are hot springs or fumaroles, the temperature, origin, properties and so on of underground hot water reservoirs can be estimated from their chemical composition. The method of examining the mercury concentration in soil and soil air has been in practical use in the geothermal districts where the ground surface symptom lacks. This time, the method of investigation using radon, thoron and gamma ray as the exploration indices was newly studied. The index compositions for geochemical exploration, new exploration index compositions, the method of measurement, the basic investigation and on-the-spot investigation are reported. (Kako, I.)

  4. Hot and Steamy Fractures in the Philippines: The Geological Characterization and Permeability Evaluation of Fractures in the Southern Negros Geothermal Field, Philippines

    Science.gov (United States)

    Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.

    2016-12-01

    Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  5. Geothermal potential of Caledonian granites underlying Upper Palaeozoic sedimentary basins astride the Iapetus Suture Zone in Ireland

    Science.gov (United States)

    Fritschle, Tobias; Daly, J. Stephen; Whitehouse, Martin J.; McConnell, Brian; Buhre, Stephan

    2014-05-01

    heat production budget. Fritschle, T., Daly, J.S., Whitehouse, M.J., McConnell, B., Buhre, S., 2013. U-Pb Zircon Ages from Granites in the Iapetus Suture Zone in Ireland and the Isle of Man. Mineralogical Magazine, 77(5): 1115. Fritschle, T., Daly, J.S., Whitehouse, M.J., McConnell, B., Buhre, S., 2014. Zircon geochronology and Hf-O isotope geochemistry from granites in the Iapetus Suture Zone in Ireland and the Isle of Man. This issue. Goldstein, B.A., Hill, A.J., Long, A., Budd, A.R., Ayling, B., Malavazos, M., 2009. Hot rocks down under - evolution of a new energy industry. Geothermal Resources Council Transactions, 33: 185-198.

  6. Report on the geothermal development promotion survey. No.B-7. Kuwanosawa area; Chinetsu kaihatsu sokushin chosa hokokusho. No. B-7 Kuwanosawa chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    The paper summed up the results of the geothermal development promotion survey B 'Kuwanosawa area' which was carried out in Yuzawa city, Akita prefecture, from FY 1998 to FY 1999. In the survey, the following were conducted for the comprehensive analysis: geology/alteration zone survey, gravity exploration, electromagnetic exploration, environmental effect survey, well geology survey by drilling structural boreholes of N11-KN-1 and N12-KN-2, cuttings test, temperature log, temperature recovery test, electrical log, water injection test, etc. The geology in the Kuwanosawa area is composed of Pre-neogene period basement rocks, Neogene system and Quaternary system. In this area, there were recognized no gush of geothermal fluids such as hot spring and fumarolic gas and no obvious geothermal manifestation such as high-temperature places and new geothermal alteration zones. Around N12-KN-2, there exists the geothermal water with comparatively high-temperature/high-Cl concentration which is similar to that in the Wasabizawa area, but how it flows is unknown because there was no lost circulation in the depths of the borehole. Around N11-KN-1, there exists the low-temperature/low-Cl concentration geothermal water originating in meteoric water, and therefore, the area can be a rechargeable area. The Kuwanosawa area is regarded as the periphery of the Wasabizawa-Akinomiya geothermal area. (NEDO)

  7. Report on the geothermal development promotion survey. No.B-7. Kuwanosawa area; Chinetsu kaihatsu sokushin chosa hokokusho. No. B-7 Kuwanosawa chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    The paper summed up the results of the geothermal development promotion survey B 'Kuwanosawa area' which was carried out in Yuzawa city, Akita prefecture, from FY 1998 to FY 1999. In the survey, the following were conducted for the comprehensive analysis: geology/alteration zone survey, gravity exploration, electromagnetic exploration, environmental effect survey, well geology survey by drilling structural boreholes of N11-KN-1 and N12-KN-2, cuttings test, temperature log, temperature recovery test, electrical log, water injection test, etc. The geology in the Kuwanosawa area is composed of Pre-neogene period basement rocks, Neogene system and Quaternary system. In this area, there were recognized no gush of geothermal fluids such as hot spring and fumarolic gas and no obvious geothermal manifestation such as high-temperature places and new geothermal alteration zones. Around N12-KN-2, there exists the geothermal water with comparatively high-temperature/high-Cl concentration which is similar to that in the Wasabizawa area, but how it flows is unknown because there was no lost circulation in the depths of the borehole. Around N11-KN-1, there exists the low-temperature/low-Cl concentration geothermal water originating in meteoric water, and therefore, the area can be a rechargeable area. The Kuwanosawa area is regarded as the periphery of the Wasabizawa-Akinomiya geothermal area. (NEDO)

  8. Utilization of Geothermal Energy in Slovakia

    OpenAIRE

    Gabriel Wittenberger; Ján Pinka

    2005-01-01

    Owing to favourable geological conditions, Slovakia is a country abundant in occurrence of low-enthalpy sources. The Slovakian government sponsors new renewable ecological energy sources, among which belongs the geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas), agriculture (heating of greenhouses, fishing) and heating of houses. The effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and the hot water supp...

  9. Enthalpy restoration in geothermal energy processing system

    Science.gov (United States)

    Matthews, Hugh B.

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  10. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  11. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Ghanashyam [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Mattson, Earl D. [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States); McLing, Travis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Center for Advanced Energy Studies; Palmer, Carl D. [Univ. of Idaho, Idaho Falls, ID (United States); Smith, Robert W. [Univ. of Idaho and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Wood, Thomas R. [Univ. of Idaho and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Podgorney, Robert K. [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States)

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  12. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    International Nuclear Information System (INIS)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-01-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 - 61 °C/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 °C) to over 175 °C. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  13. Geothermal resource and utilization in Bulgaria

    International Nuclear Information System (INIS)

    Bojadgieva, K.; Benderev, A.

    2011-01-01

    Bulgarian territory is rich in thermal water of temperature in the range of 20 - 100 o C. The highest water temperature (98 o C) is measured in Sapareva banya geothermal reservoir. Electricity generation from geothermal water is not currently available in the country. The major direct thermal water use nowadays covers: balneology, space heating and air-conditioning, domestic hot water supply, greenhouses, swimming pools, bottling of potable water and geothermal ground source heat pumps (GSHP). The total installed capacity amounts to about 77.67 MW (excl. GSHP) and the produced energy is 1083.89 TJ/year. Two applications - balneology and geothermal ground source heat pumps show more stable development during the period of 2005 - 2010. The update information on the state-owned hydrothermal fields is based on issued permits and concessions by the state.

  14. Thermo-mechanical characterization of the lithosphere : Implications for geothermal resources

    NARCIS (Netherlands)

    Limberger, J.

    2018-01-01

    The two key ingredients needed to commercially exploit a geothermal energy system are (1) sufficiently high subsurface temperatures and (2) presence of rock formations suitable to act as a geothermal reservoir at reachable depths. Subsurface temperatures are controlled by the heat flowing from deep

  15. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  16. On-line corrosion monitoring in geothermal district heating systems

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 lm/y. The reason is high pH (9.5), low-conductivity (200 lm/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold ground...

  17. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  18. Geophysical contribution to evaluate the subsurface structural setting using magnetic and geothermal data in El-Bahariya Oasis, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Esmat Abd El All

    2015-12-01

    The geothermal studies in EL Bahariya-Oasis comprise subsurface temperature contour map which illustrates that the study area has geothermal groundwater reservoirs. The measurements of the geothermal properties for measured rock samples show that the rocks of the study area have moderate values of geothermal properties. This may be due to the seasonal variation in soil temperatures. These soil thermal properties depend on soil porosity and moisture content.

  19. Geothermal District Heating System City of Klamath Falls

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J; Rafferty, Kevin

    1991-12-01

    The city of Klamath Falls became interested in the possibility of a establishing geothermal district heating system for downtown government buildings in January 1977. Since that time, the project has undergone some controversial and interesting developments that may be of educational value to other communities contemplating such a project. The purpose and content of this article is to identify the historical development of the project; including the design of the system, well owner objections to the project, aquifer testing, piping failure, and future expansion and marketing incentives. The shallow geothermal reservoir in Klamath falls extends for at least 6.8 miles in a northwest-southeast direction, as shown on Figure 1, with a width of about 2 miles. More than 550 thermal wells ranging in depth from about 10 to 2,000 ft, and obtaining or contacting water from 70 to 230oF, have been drilled into the reservoir. The system is not geologically homogeneous. Great variations in horizontal permeability and many vertical discontinuities exist because of stratigraphy and structure of the area. Basalt flows, eruptive centers, fluvial and lacustrine deposits, diatomite and pyroclastic materials alternate in the rock column. Normal faults with large throw (estimated up to 1,700 ft) are spaced less than 3,300 ft apart and appear to be the main avenue of vertical movement of hot fluids. In order to more effectively utilize this resource, the city of Klamath Falls decided in 1978 to apply for a federal grant (Program Opportunity Notice to cost share field experiment projects) to construct a geothermal district heating system that would deliver geothermal fluids to areas not located on the resource. In 1977, several Geo-Heat Center staff members visited Reykjavik, Iceland, to study the design of their geothermal district heating systems. This was in part the basis for the conceptual design and feasibility study (Lund, 1979) of a downtown commercial district. The main difference

  20. Health impacts of geothermal energy

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  1. Multi-purpose utilization and development of geothermal water: European overseas investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, T [Natl. Research Institute of Agricultural Engineering, Japan

    1978-01-01

    In order to investigate the agricultural utilization of geothermal waters, a fact-finding team visited France, Italy, Iceland, and Turkey. In France, it was seen that the development and utilization of geothermal waters is in accord with Japanese practices. The production and reinjection wells are drilled to a depth of 1800 m. They are spaced about 10 m apart at the surface and about 800 m apart at the bottom. This is accomplished by drilling at an angle. The hot water is produced at a rate of about 90 t/h. It is passed through a heat exchanger where it warms surface water to about 70/sup 0/C. The warmed water is then supplied for purposes of district heating, greenhouse culture, and fish farming. The used hot water is then returned to the producing stratum via the reinjection well. Iceland began the production of hot geothermal water in 1925, and, at present, 99% of the city of Reykjavik is heated geothermally. The deepest production wells at Reykjavik reach 2000 m. The water produced has a temperature of 90-103/sup 0/C, and is also used for agricultural purposes.

  2. Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China

    Science.gov (United States)

    Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing

    2017-04-01

    Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.

  3. Geothermal properties of Swiss Molasse Basin (depth range 0-500 m) - 2006 upgrade of the thermal conductivity, heat capacity, rock density and porosity data base; Geothermische Eigenschaften der Schweizer Molasse (Tiefenbereich 0-500 m). Datenbank fuer Waermeleitfaehigkeit, spezifische Waermekapazitaet, Gesteinsdichte und Porositaet. Ueberarbeitung 2006

    Energy Technology Data Exchange (ETDEWEB)

    Leu, W. [Geoform AG, Minusio (Switzerland); Megel, T. [Geowatt, Zuerich (Switzerland); Schaerli, U. [Geologie und Geophysik, Zuerich (Switzerland)

    2006-07-01

    The main aim of this project is the preparation of a specific data base of geothermal properties for typical rocks of the Swiss Molasse Basin (depth interval 0-500 m). The project includes the development of a new laboratory tool for efficient heat capacity measurements on rock samples, numerous new measurements of geothermal rock properties in the laboratory and calculation of such data from geophysical borehole logs. In the geographical area under review, 282 rock samples, mainly from deep boreholes, were analyzed with the successfully calibrated new heat capacity device and conventional thermal conductivity measuring techniques (cuttings and cores). Based on sonic and density log data from exploration wells, 374 additional data points were generated. This new data base characterizes in detail the six main lithological rock types in the three Molasse groups OSM, OMM and USM within the Swiss Plateau Molasse. The statistical evaluation of all data illustrates the regional variation of the petrophysical and geothermal parameters. For most data groups bulk rock density and thermal conductivity increase, whereas heat capacity decreases in the direction towards the Alpine front. Thermal conductivity shows a distinct increase with depth. Based on this new information and with the aid of the evaluation software tool SwEWS, the costs of planned geothermal installations can be optimized thanks to more precise heat extraction simulations with existing software packages like COSOND, TRNSYS, EWS or WPcalc. (author)

  4. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    Science.gov (United States)

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  5. Hot and steamy fractures in the Philippines: the characterisation and permeability evaluation of fractures of the Southern Negros Geothermal Field, Negros Oriental, Philippines

    Science.gov (United States)

    Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan

    2017-04-01

    Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  6. Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field

    Science.gov (United States)

    Syarifudin, M.; Octavius, F.; Maurice, K.

    2016-09-01

    The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.

  7. Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico

    Science.gov (United States)

    Pfeiffer, K.; Ge, S.

    2017-12-01

    Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.

  8. Microearthquakes in the ahuachapan geothermal field, el salvador, central america.

    Science.gov (United States)

    Ward, P L; Jacob, K H

    1971-07-23

    Microearthquakes occur on a steeply dipping plane interpreted here as the fault that allows hot water to circulate to the surface in the geothermal region. These small earthquakes are common in many geothermal areas and may occur because of the physical or chemical effects of fluids and fluid pressure.

  9. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  10. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  11. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.

    2018-01-01

    A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...

  12. Geothermal energy in Montana: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. A listing of the majority of the known hot springs is included. A discussion of present and projected demand is included. The results of the site specific studies are addressed within the state energy picture. Possible uses and process requirements of geothermal resources are discussed. The factors which influence geothermal development were researched and presented according to relative importance. (MHR)

  13. Monitoring production using surface deformation: the Hijiori test site and the Okuaizu geothermal field

    International Nuclear Information System (INIS)

    Vasco, D.W.; Karasaki, Kenzi

    2002-01-01

    Production in geothermal reservoirs often leads to observable surface displacement. As shown in this paper, there is a direct relationship between such displacement and reservoir dynamics. This relationship is exploited in order to image fluid flow at two geothermal field sites. At the first locality, the Hijiori Hot Dry Rock (HDR) test site, 17 tilt meters record deformation associated with a 2.2 km deep injection experiment. Images of fluid migration along a ring fracture system of the collapsed Hijiori caldera are obtained. At the Okuaizu geothermal field, leveling and tilt meter data provide constraints on long- and short-term fluid movement within the reservoir. A set of 119 leveling data suggest that the north-to-northeast trending Takiyagawa fault acts as a barrier to flow. The northwesterly oriented Chinoikezawa and Sarukurazawa faults appear to channel fluid from the southeast. The tilt data from Okuaizu indicate that a fault paralleling the Takiyagawa fault zone acts as a conduit to transient flow, on a time scale of several weeks. The volume strain in a region adjacent to the injection wells reaches a maximum and then decreases with time. The transient propagation of fluid along the fault may be due to pressure build-up, resulting from the re-initiation of injection. (author)

  14. Into hot water

    Energy Technology Data Exchange (ETDEWEB)

    Beintein, Jim

    2011-11-15

    Geothermal developers are making inroads in oil country. The ability to transfer the technology of the oil and gas industry to geothermal has the potential to change the energy industry. While proponents say EGS will create baseload power at competitive prices and with minimal environmental impact, and that it can become a major contributor to a low-emissions energy world in this century, it is not yet considered commercial. One remaining barrier is accurate fracking in deep, hard rock.

  15. Geothermal investment analysis with site-specific applications to Roosevelt Hot Springs and Cove Fort-Sulphurdale, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Cassel, T.A.V.; Edelstein, R.H.; Blair, P.D.

    1978-12-01

    The analysis and modeling of investment behavior in the development of hydrothermal electric power facilities are reported. This investment behavior reflects a degree of sensitivity to public policy alternatives concerning taxation and regulation of the resource and its related energy conversion facilities. The objective of the current research is to provide a realistic and theoretically sound means for estimating the impacts of such public policy alternatives. A stochastic simulation model was developed which offers an efficient means for site-specific investment analysis of private sector firms and investors. The results of the first year of work are discussed including the identification, analysis, quantification and modeling of: a decision tree reflecting the sequence of procedures, timing and stochastic elements of hydrothermal resource development projects; investment requirements, expenses and revenues incurred in the exploration, development and utilization of hydrothermal resources for electric power generation; and multiattribute investment decision criteria of the several types of firms in the geothermal industry. An application of the investment model to specific resource sites in the state of Utah is also described. Site specific data for the Known Geothermal Resource Areas of Roosevelt Hot Springs and Cove Fort-Sulphurdale are given together with hypothesized generation capacity growth rates.

  16. Geothermal Exploration By Using Time Domain IP Method:Balikesir (Gure) And Canakkale (Geyikli) Cases From Turkey

    Science.gov (United States)

    Tezel, O.; Ozcep, F.

    2017-12-01

    Geothermal energy is heat derived from the earth. It is the thermal energy contained in the rock and fluid (that fills the fractures and pores within the rock) in the earth's crust. These resources are always at a temperature higher than 20°C. Geothermal energy requires no fuel, and is therefore virtually emission free and independent of fluctuations in fuel cost. Since a geothermal power plant doesn't rely on transient sources of energy, unlike, for example, wind turbines or solar panels, its capacity factor can be quite large. Induced polarization (IP) results at geothermal regions show prominent, extended low resistivity zones. Environmental-IP methods can assist in the assessment of the acid generating potential of waste rock and tailings from mine operations. Resistivity can be used to map contamination plumes. Resistivity and chargeability values were determined using the IP method on geothermal resources in Balikesir Güre (Turkey). In this study we found low resistance values and high chargeability values at the geothermal resource. Finally drilling and IP results were correlated to verify our findings. After the positive results of obtained data, a similar study was carried out in Geyikli Area (Canakkale) and a geothermal resource with 450C temperature of 5 lt/sec was explored at a depth of 970 m.

  17. Development of permeable fracture zones for exploitation of geothermal energy from hot dry rock systems; Erschliessung permeabler Risszonen fuer die Gewinnung geothermischer Energie aus heissen Tiefengesteinen

    Energy Technology Data Exchange (ETDEWEB)

    Jung, R [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Baumgaertner, J [SOCOMINE, Soultz-sous-Forets (France); Rummel, F [Bochum Univ. (Germany); Tenzer, H [Stadtwerke Bad Urach (Germany)

    1997-12-01

    The article describes the main results of the European Hot-Dry-Rock Project Soultz of the last 2 years. After a series of successful stimulation experiments and single-well hydraulic tests in the first deep well GPK1 (3590 m) in the previous project period the second deep well GPK2 (3876 m) was drilled during the winter 1994/95 in order to complete the doublet-system. Through the second well successfully penetrated the southern wing of the fracture system created in GPK1 the hydraulic connection was poor and a massive stimulation test had to be performed in GPK2 too. During this test a fracture system of about 1 km{sup 2} in size was stimulated in the depth range below 3200 m. This fracture system overlaps and penetrates the fracture system of borehole GPK1. (orig./AKF) [Deutsch] Der Artikel beschreibt die wesentlichen Ergebnisse des Hot-Dry-Rock Projekts Soultz der letzten beiden Jahre. Nach den erfolgreichen Einbohrloch-Tests in der Bohrung GPK1 in der vorangehenden Projektphase, bei denen ein ca. 1,5 km{sup 2} grosses kuenstliches Risssystem geschaffen wurde, aus dem infolge eines hydraulischen Anschlusses an grossraeumige permeable Stoerungszonen beachtliche Produktionsraten erzielt werden konnten, wurde im Winter 1994/95 die zweite Tiefbohrung GPK2 abgeteuft, um das Dublettensystem zu komplettieren. Trotz des erfolgreichen Abteufens der zweiten Bohrung in den Suedfluegel des bestehenden Risssystems, erwies sich der hydraulische Anschluss zunaechst als unzureichend, so dass ein massiver Stimulationstest in der neuen Bohrung angesetzt werden musste. Bei diesem Test wurden im Teufenbereich unterhalb 3200 m ein ca. 1 km{sup 2} grosses Risssystem erzeugt, das das Risssystem der Bohrung GPK1 ueberlappt und teilweise durchdringt. (orig./AKF)

  18. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  19. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Daud Yunus

    2018-01-01

    Full Text Available Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  20. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    Science.gov (United States)

    Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza

    2018-02-01

    Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  1. Outline of geothermal power generation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ezaki, Y

    1960-01-01

    The utilization of geothermal energy in electrical power generation throughout the world is described. Details of generating capacity and cost are given for Larderello, Italy; Wairakei, New Zealand: and the Geysers, USA. In Japan three types of conversion systems are used. These include the direct use of steam, direct use of hot water and binary fluid type systems. The history of Japanese investigation and exploitation of geothermal energy is reviewed and the status of the Matsukawa, Hakone, Otake and Takenoyu geothermal power plants is discussed. It is recommended that laws be enacted in Japan to encourage the development of this form of energy conversion.

  2. Southwest Alaska Regional Geothermal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  3. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth [Impact Technologies LLC, Tulsa, OK (United States); Woskov, Paul [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Einstein, Herbert [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Livesay, Bill [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be

  4. Dimensioning of Boreholes for Geothermal Heat Pumps

    Directory of Open Access Journals (Sweden)

    Ryška Jiøí

    2004-09-01

    Full Text Available The paper deals with determination of borehole depths for geothermal heat pumps. Basic formulae are stated for heat convection in rocks. Software EED 2.0 was used for calculation of borehole depth depending on different entering parameters. The crucial parameter is thermal conductivity of rocks. The thermal conductivity could be very variable for the same kind of rock. Therefore its in-situ determination by means of formation thermal conductivity testing is briefly described.

  5. Geothermal development promotion survey report. No. 22. Noboribetsu region; 1987-1990 chinetsu kaihatsu sokushin chosa hokokusho. No. 22 Noboribetsu chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The results of surveys conducted in the Noboribetsu region, Hokkaido, in fiscal 1987-1989 are compiled in this report. Conducted in the surveys were a geological/alteration zone survey, geochemical survey, electromagnetic surveillance (simplified magnetotelluric method), electric prospecting (Schlumberger method), electric prospecting (mise-a-la-masse method), heat flow rate survey, structural boring, precision structural boring, environmental exploration well, geothermal water survey, environmental impact survey, and so forth. Conclusions reached on the basis of the survey results are described below. It is supposed that a horizon, positioned in the Osarugawa stratum in the Karls Noboribetsu zone or in a fissure system in the Omagarisawa stratum below the Osarugawa stratum, contains a geothermal reservoir. The hot water at the Noboribetsu hot spring originates in gas or geothermal water separated from the deep-seated geothermal water while that at the Karls hot spring or the like originates in meteoric water built up in higher places. Although an area abundant in geothermal fluids is supposed to exist in the Karls-Noboribetsu zone, yet a section located between the Karls-Noboribetsu zone and the Noboribetsu hot spring area also draws attention as a zone having a potential to store geothermal fluids. (NEDO)

  6. Fairbanks Geothermal Energy Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Karl, Bernie [CHSR,LLC Owner

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  7. The Effect of Boiling on Seismic Properties of Water-Saturated Fractured Rock

    Science.gov (United States)

    Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Deuber, Claudia; Maurer, Hansruedi; Greenhalgh, Stewart

    2017-11-01

    Seismic campaigns for exploring geothermal systems aim at detecting permeable formations in the subsurface and evaluating the energy state of the pore fluids. High-enthalpy geothermal resources are known to contain fluids ranging from liquid water up to liquid-vapor mixtures in regions where boiling occurs and, ultimately, to vapor-dominated fluids, for instance, if hot parts of the reservoir get depressurized during production. In this study, we implement the properties of single- and two-phase fluids into a numerical poroelastic model to compute frequency-dependent seismic velocities and attenuation factors of a fractured rock as a function of fluid state. Fluid properties are computed while considering that thermodynamic interaction between the fluid phases takes place. This leads to frequency-dependent fluid properties and fluid internal attenuation. As shown in a first example, if the fluid contains very small amounts of vapor, fluid internal attenuation is of similar magnitude as attenuation in fractured rock due to other mechanisms. In a second example, seismic properties of a fractured geothermal reservoir with spatially varying fluid properties are calculated. Using the resulting seismic properties as an input model, the seismic response of the reservoir is then computed while the hydrothermal structure is assumed to vary over time. The resulting seismograms demonstrate that anomalies in the seismic response due to fluid state variability are small compared to variations caused by geological background heterogeneity. However, the hydrothermal structure in the reservoir can be delineated from amplitude anomalies when the variations due to geology can be ruled out such as in time-lapse experiments.

  8. Geothermal exploitation activity by the United Nations in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H. (Geological Survey of Japan)

    1971-01-01

    The Rift Valley in Ethiopia was investigated for geothermal exploitation by the United Nations because it has Quaternary volcanoes which often indicate possible geothermal power generation. Preparations for the project are still being made, and the chemical analysis of hot springs is being conducted. The Rift Valley has high temperature springs and potential mineral deposits. The Danakil basin in Ethiopia which is included in the Northern Afar, has several active volcanoes made up of basalt deposits and has active hot springs. The East Africa Rift Valley, the Red Sea Rift Valley, and the Afar area are also areas suitable for investigation. Seven maps are included.

  9. A new high background radiation area in the Geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa, India

    International Nuclear Information System (INIS)

    Baranwal, V.C.; Sharma, S.P.; Sengupta, D.; Sandilya, M.K.; Bhaumik, B.K.; Guin, R.; Saha, S.K.

    2006-01-01

    A high natural radiation zone is investigated for the first time in a geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa state in India. The surrounding area comprises a geothermal region which has surveyed using a portable pulsed Geiger-Muller counter. On the basis of findings of GM counter, an area was marked as a high radiation zone. Soil and rock samples collected from the high radiation zone were analyzed by γ-ray spectrometry (GRS) using NaI(Tl) detector. The radioactivity is found to be contributed mainly by thorium. Concentration of thorium is reported to be very high compared to their normal abundance in crustal rocks. Further, concentrations of 238 U and 40 K are also high compared to normal abundance in crustal rocks but their magnitude is comparatively less than that of thorium. The average concentrations of 238 U (i.e. U(β-γ)), 232 Th and 40 K are found to be 33, 459ppm and 3%, respectively, in soils and 312, 1723ppm and 5%, respectively, in the granitic rocks. Maximum concentrations of 238 U, 232 Th and 40 K are found to be 95, 1194ppm and 4%, respectively, in soils and 1434, 10,590ppm and 8%, respectively, in the granitic rocks. Radioactive element emits various energies in its decay chain. High energies are utilized to estimate the concentration of actual 238 U, 232 Th and 40 K using a NaI(Tl) detector, however, low energies are used for the same in an HPGe detector. Some of the rock samples (eight in number) were also analyzed using HPGe detector for studying the behavior of low energies emitted in the decay series of uranium and thorium. The absorbed gamma dose rate in air and external annual dose rate of the high radiation zone are calculated to be 2431nGy/h and 3.0mSv/y, respectively. It is approximately 10 times greater than the dose rates obtained outside the high radiation zone. The high concentration of uranium and thorium may be one of the possible heat sources together with the normal geothermal gradient for hot springs

  10. Geothermal prospects in British Columbia: Resource, market and regulatory aspects

    International Nuclear Information System (INIS)

    Ghomshei, M.M.; Brown, T.L.S.; MacRae, J.M.

    1992-01-01

    British Columbia is host to about 15 young volcanic centres and 60 hot springs, all evidence of presence of geothermal resources. Most high-grade geothermal prospects in British Columbia are located along 3 volcanic belts in the south-western region of the province. It is estimated that a minimum of 800 MWe can be generated from the known prospects in this region. Significant low-grade geothermal resources exist in several provincial regions. Market applications consistent with the geothermal resources known and expected to occur in British Columbia include electrical generation, process and other direct heat uses and recreation. Leasing, exploration and development operations for high-grade geothermal resources are addressed by the British Columbia open-quotes Geothermal Resources Actclose quotes which defines geothermal resources and reserves all rights to the Crown in the right of the Province

  11. In the Loop : A look at Manitoba's geothermal heat pump industry

    International Nuclear Information System (INIS)

    2002-03-01

    This booklet outlines the position of Manitoba's heat pump market with the objective of promoting the widespread use of geothermal heat pumps in the province. It makes reference to the size of the market, customer satisfaction with heat pumps, and opinion of key players in the industry regarding the heat pump market. The information in this booklet is drawn on market research and lessons learned in Europe and the United States. In October 2001, a group of key stakeholders in Manitoba's heat pump market attended an industry working meeting to address the issues of market barriers, market enablers and market hot buttons. Market barriers include the high cost of geothermal heat pumps, lack of consumer awareness, lack of consistent standards, and public perception that heat pumps are not reliable. Market enablers include the low and stable operating costs of geothermal heat pumps, high level of comfort, high quality and reliability of geothermal heat pumps, and financial incentives under Manitoba Hydro's Power Smart Commercial Construction Program. Market hot buttons include lowering the cost of geothermal heat pumps, improving industry performance, increasing consumer awareness, and forming a Manitoba Geothermal Trade Association. Approximately 2,500 heat pump systems have been installed in Manitoba. In 2001, heat pump sales in Manitoba grew 40 per cent. 1 tab., 6 figs

  12. Deep Heat Mining - Development of the hot dry rock and hot wet rock technologies for power and heat production in Switzerland; Deep Heat Mining. Entwicklung der Hot-Dry-Rock / Hot-Wet-Rock Technologie zur Strom- und Waermeproduktion in der Schweiz, insbesondere Deep Heat Mining, Basel

    Energy Technology Data Exchange (ETDEWEB)

    Haering, M. O.; Hopkirk, R. J.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the progress and achievements made for two heat mining projects in Basle and Geneva. Work initialised at further sites in southern Switzerland and in the Bernese 'Oberland' alpine area is also mentioned. Project organisation and planning topics are examined. Seismic monitoring aspects are discussed and first practical studies on using the geothermal heat in Basle using hybrid energy conversion systems are discussed. For the Geneva project, details on site selection are given and ideas on combined geothermal and gas turbine plant are discussed.

  13. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Daniel F. [Univ. of Texas, Austin, TX (United States)

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  14. Stable isotope studies of some low enthalpy geothermal systems in Kenya

    Science.gov (United States)

    Tole, Mwakio P.

    Oxygen and hydrogen isotope compositions of some low enthalpy geothermal systems in Kenya have been determined. Plots on δ 18O versus δD diagrams show that the compositions do not deviate appreciably from local meteoric water values. This would indicate that local meteoric waters are heated at depth and rise to the surface without much interaction with the country rocks. This is interpreted to be the case for the geothermal systems at Majimoto and Narosura, which have salinities of less than 350 ppm TDS and calculated reservoir temperatures of less than 110°C. The geothermal systems at Kapedo and Homa mountain which have high salinities (> 2 000 ppm TDS) and relatively higher calculated reservoir temperatures (> 150° C) are interpreted to have been operating for long periods of time, such that the rocks through which the present day geothermal waters are circulating have attained isotopic equilibrium with local meteoric waters.

  15. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  16. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2009-02-01

    The Yangyi geothermal field, located 72 km northwest to Lhasa City, capital of Tibet, has a high reservoir temperature up to at least 207.2 °C. The geothermal waters from both geothermal wells and hot springs belong to the HCO 3 (+CO 3)-Na type. Factor analysis of all the chemical constituents shows that they can be divided into two factors: F 1 factor receives the contributions of SO 42-, Cl -, SiO 2, As, B, Na +, K +, and Li +; whereas F 2 factor is explained by HCO 3-, F -, CO 32-, Ca 2+, and Sr 2+. The F 1 factor can be regarded as an indicator of the reservoir temperature distribution at Yangyi, but its variable correlation with the results of different geothermometers (Na-K, quartz and K-Mg) does not allow one to draw further inferences. Different from F 1, the F 2 factor is an indicator of a group of hydrogeochemical processes resulting from the CO 2 pressure decrease in geothermal water during its ascent from the deep underground, including transformation of HCO 3- to CO 32-, precipitation of Ca 2+ and Sr 2+, and release of F - from some fluoride-bearing minerals of reservoir rocks. The plot of enthalpy vs. chloride, prepared on the basis of Na-K equilibrium temperatures, suggests that a parent geothermal liquid (PGL) with Cl - concentration of 185 mg/L (that of sample YYT-8) and enthalpy of 1020 J/g (corresponding to a temperature of 236-237 °C, i.e., somewhat higher than that of sample YYT-6) is present in the geothermal reservoir of the Yangyi area, below both the Qialagai valley and the Bujiemu valley, although the samples less affected by mixing and cooling (YYT-6 and YYT-7) come from the second site. The discharge of geothermal waters with high contents of toxic elements such as B, As and F into the Luolang River, the only drinking water source for local residents, has caused slight pollution of the river water. Great care should therefore be taken in the geothermal water resource management at Yangyi.

  17. Geothermal energy in Montana: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. More specific information is included under the planning regions and site specific data summaries. A brief discussion of the geothermal characteristics and a listing of a majority of the known hot springs is included. The factors which influence geothermal development were researched and presented, including: economics, financing, state leasing, federal leasing, direct-use technology, water quality laws, water rights, and the Major Facility Siting Act. (MHR)

  18. Update of geothermal energy development in Greece

    International Nuclear Information System (INIS)

    Koutroupis, N.

    1992-01-01

    Following the completion of the Geothermal Reconnaissance Study in Greece and the successful drilling of seven deep geothermal wells in the Aegean islands of Milos and Nisyros, PPC started the first step towards geothermal development for electricity production as follows: A geothermal electric pilot plant of 2 MW e nominal capacity was installed on the Zephyria plain in Milos island (1985). During a nine month operation of the plant, problems connected with its long term operation were solved (hot reinjection of the high salinity brine, turbine washing etc). A feasibility study regarding exploitation of the Nisyros geothermal resources was completed and PPC connected Nisyros island electrically to Kos island via submarine cables. As consequence of the reaction against geothermal development by the people of Milos in early 1989, the power plant is still out of operation and the feasibility study planned for Milos has been postponed. For similar reasons the Nisyros drilling contract for five new geothermal deep wells has not come into force as yet. This paper summarizes the main PPC geothermal activities to date, the problems caused by the reactions of the Milos and Nisyros population and the relevant PPC countermeasures, as well as outlining the PPC development program for the near future

  19. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  20. Geophysical investigations of the Seferihisar geothermal area, Western Anatolia, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Drahor, Mahmut G.; Berge, Meric A. [Dokuz Eyluel University, Engineering Faculty, Department of Geophysics, Tinaztepe Campus, 35160 Buca-Izmir (Turkey)

    2006-06-15

    Self-potential (SP), magnetic and very low frequency electromagnetic (EM-VLF) surveys were carried out in the Seferihisar geothermal area to identify major and minor fault zones and characterize the geothermal system. The SP study provided useful information on the local faults and subsurface fluid flow. The main SP anomalies appear mostly along and near active fault zones in the area of the Cumali, Tuzla and Doganbey hot springs. Two of these anomalies near the Tuzla hot springs were further evaluated by SP modelling. Total magnetic field values increase from the Doganbey to the Cumali hot springs. Modelling performed on the magnetic data indicates that between these two spring areas are four different regions or units that can be distinguished on the basis of their magnetic susceptibility values. Fraser filtering of EM-VLF data also indicates that there are three significant conductive zones in the regions around the Cumali, Tuzla and Doganbey hot springs, and that they lie between important fault systems. The EM-VLF and total (stacked) SP data show that the conductive tilt anomalies obtained by Fraser filtering generally coincide with negative SP areas. According to our geophysical investigations, new exploratory wells should be drilled into the conductive zones located between the Cumali and Tuzla hot springs. We further recommend that resistivity and magnetotelluric methods be carried out in the area to obtain additional information on the Seferihisar geothermal system. (author)

  1. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    Science.gov (United States)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  2. Eastern Mediterranean geothermal resources and subduction dynamics

    Science.gov (United States)

    Roche, Vincent; Sternai, Pietro; Guillou-Frottier, Laurent; Jolivet, Laurent; Gerya, Taras

    2017-04-01

    The Aegean-Anatolian retreating subduction and collision zones have been investigated through 3D numerical geodynamic models involving slab rollback/tearing/breakoff constrained by, for instance, seismic tomography or anisotropy and geochemical proxies. Here, we integrate these investigations by using the well documented geothermal anomalies geothermal anomalies. First, we use 3D high-resolution thermo-mechanical numerical models to quantify the potential contribution of the past Aegean-Anatolian subduction dynamics to such present-day measured thermal anomalies. Results suggest an efficient control of subduction-related asthenospheric return flow on the regional distribution of thermal anomalies. Our quantification shows that the slab-induced shear heating at the base of the crust could partly explain the high heat flow values above the slab tear (i.e. in the Menderes Massif, Western Turkey). Second, the associated thermal signature at the base of the continental crust is used as basal thermal boundary condition for 2D crustal-scale models dedicated to the understanding of heat transfer from the abnormally hot mantle to the shallow geothermal reservoir. These models couple heat transfer and fluid flow equations with appropriate fluid and rock physical properties. Results suggest that permeable low-angle normal faults (detachments) in the back-arc region can control the bulk of the heat transport and fluid circulation patterns. We suggest that detachments can drain crustal and/or mantellic fluids up to several kilometers depths. At the basin-scale, we show that the permeability of detachments may control the reservoirs location. Temperatures at the base of detachments may be subject to protracted increase (due to anomalously high basal heat flow) through time, thereby generating dome-shaped thermal structures. These structures, usually with 20km characteristic wavelength, may reach the Moho involving lateral rheological contrasts and possibly crustal

  3. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  4. Geothermal map of the Canton of Ticino; Geothermische Karte Tessin. Waerme aus Boden und Wasser im Kanton Tessin

    Energy Technology Data Exchange (ETDEWEB)

    Thuering, M.

    2003-07-01

    This final report for the Swiss Federal Office of Energy presents the results of a project carried out by the University of Applied Science in the Canton of Ticino in southern Switzerland. The project involved the production of a geothermal map of the Canton with the aim of promoting of the use of geothermal energy. The interactive map is available on CD-Rom as well as on the Internet and provides information on existing geothermal installations, ground water protection zones, thermal parameters of various types of rock and geothermal heat flow. The geothermal information is enhanced with the practical information necessary for the implementation of installations that use geothermal energy. An important part of the project - the measurement of thermal parameters of various rock types - is also discussed.

  5. Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Jose M.; Matias, Maria J.; Basto, Maria J.; Aires-Barros, Luis A. [Instituto Superior Tecnico, Centro de Petrologia e Geoquimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Carreira, Paula M. [Instituto Tecnologico e Nuclear, Estrada Nacional n 10, 2686 - 953 Sacavem (Portugal); Goff, Fraser E. [Earth and Planetary Sciences Department, Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2010-06-15

    We discuss geochemical and isotopic ({sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H and {sup 87}Sr/{sup 86}Sr) data recording the hydrothermal alteration of northern Portuguese Hercynian granites by Na-HCO{sub 3}-CO{sub 2}-rich mineral waters. Whole-rock samples from drill cores of Vilarelho da Raia granite have {delta}{sup 18}O values in the +11.47 to +10.10 permille range. The lower values correspond to highly fractured granite samples displaying vein and pervasive alteration. In the pervasive alteration stage, which probably results from a convective hydrothermal system set up by the intrusion of the granites, the metamorphic waters are in equilibrium with hydrous minerals. In contrast, the vein alteration of these granitic rocks was caused by water of meteoric origin. The oxygen ratios between water (W) and rock (R), the so-called W/R ratios, obtained for the open system (where the heated water is lost from the system by escape to the surface) range between 0.05 and 0.11, suggesting that the recrystallization of the veins was influenced by a small flux of meteoric water. Stable isotope analyses performed on the cores show that the vein alteration stage relates to post-emplacement tectonic stresses acting on the granite, probably of late Hercynian age. Our results are consistent with the existence of two separate alteration events (pervasive and vein) caused by hydrothermal waters of different isotopic characteristics. The studies presented in this paper should be viewed as a natural analogue that uses the alteration features observed in a fossil geothermal system at Vilarelho da Raia to assess possible water-rock reactions presently occurring at depth in granitic rocks of the nearby Chaves area. (author)

  6. Geothermal absorption refrigeration for food processing industries. Final report, December 13, 1976--November 13, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.L.; Olson, G.K.; Mah, C.S.; Bujalski, J.H.

    1977-11-01

    The first step in the economic analysis of the integration of geothermally powered absorption refrigeration into a food processing plant was an evaluation of the potential geothermal sites in the Western United States. The evaluation covered availability of raw materials, transportation, adequate geothermal source, labor, and other requirements for food processing plants. Several attractive geothermal sites were identified--Raft River, Idaho; Sespe Hot Springs, California; Vale Hot Springs, Oregon; Weisler-Crane Creek, Idaho; Cosco Hot Springs, California; and the Imperial Valley, California. The most economically attractive food processing industry was then matched to the site based on its particular energy, raw material, and transportation requirements. The more promising food processors identified were for frozen potato or vegetable products, freeze-dried products, and meat processing. For the refrigeration temperature range of +32/sup 0/F to -40/sup 0/F and geothermal temperature range of 212/sup 0/F to 300/sup 0/F, an absorption refrigeration system had to be identified, designed, and evaluated. Both the conventional ammonia/water and an organic absorption refrigeration system using monochlorodifluoromethane (R-22) as the refrigerant and dimethyl formamide (DMF) as the absorbent were studied. In general, only a 60/sup 0/F to 100/sup 0/F temperature drop would be effectively used for refrigeration leaving the remainder of the allowable temperature drop available for other use. The economic evaluation of the geothermal system installed in a food processing plant required the comparison of several principal alternatives. These alternatives were evaluated for three different food processing plants located at their optimum geothermal site: a forzen potato product processing plant located at Raft River, Idaho; a freeze-dried product plant located at Sespe Hot Springs, California; a beef slaughter operation located in the Imperial Valley of California. (JGB)

  7. Geothermal Resources in China Les ressources géothermiques de la Chine

    Directory of Open Access Journals (Sweden)

    An K. S.

    2006-11-01

    Full Text Available The present paper deals mainly with the distribution features, briefly describes the geology in the three geothermal fields of different types in Beijing, Yangbajing of Xizang (Tibet, and Dengwu of Guangdong, and finally gives on account of the development and utilization of geothermal resources. Up to now, more, than 2,500 geothermal water points (including hot springs, hot-water wells, and hot water in mines have been found. Four major geothermal zones and three basic types of geothermal resources can be preliminarily divided. In China, geothermal resources have been used for the purposes of power generating, industry and agriculture, medical treatment, etc. This article contains a sketch map showing the distribution of geothermal water in China. Cet article porte sur les caractéristiques de répartition, les types essentiels et les conditions de formation des ressources géothermiques, explique brièvement la géologie de trois types différents de champs géothermiques : Pékin, Yanbajin de Xiang (Tibet et de Dengwu de Guangdong et enfin présente l'exploitation et l'utilisation des ressources géothermiques. Jusqu'à présent, on a découvert plus de 2500 points d'eaux géothermiques (y compris sources thermales, puits des eaux thermales et les eaux thermales apparues dans les mines. lis sont subdivisés en quatre zones géothermiques principales et trois types essentiels de ressources géothermiques. Les ressources géothermiques ont trouvé leur utilisation dans la production de l'électricité, dans l'industrie, l'agriculture et le traitement médical, etc. On trouve dans cet article une esquisse de répartition des ressources géothermiques de la Chine.

  8. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  9. Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field

    Directory of Open Access Journals (Sweden)

    Yuchao Zeng

    2017-12-01

    Full Text Available The main conditions affecting electricity generation performance of an enhanced geothermal system (EGS include reservoir porosity, reservoir permeability, rock heat conductivity, water production rate and injection temperature. Presently there is lack of systematic research the relative importance of the five aforementioned conditions. The orthogonal test method is a statistical approach to analyze multi-factor and multi-level influence on system performance. In this work, based on the geological data at Yangbajing geothermal field, we analyzed the five conditions affecting the electricity generation performance of EGS, and ranked the relative importance of the five factors. The results show that the order of the relative importance of the conditions on electric power is water production rate > injection temperature > reservoir porosity > rock heat conductivity > reservoir permeability; the order of the relative importance of the conditions on reservoir impedance is reservoir permeability > injection temperature > water production rate > reservoir porosity > rock heat conductivity; the order of the relative importance of the conditions on pump power is water production rate > reservoir permeability > injection temperature > reservoir porosity > rock heat conductivity, and; the order of the relative importance of the conditions on energy efficiency is water production rate > reservoir permeability > reservoir porosity > injection temperature > rock heat conductivity. The construction of an EGS reservoir should be located at a formation with higher reservoir porosity or rock heat conductivity, while the determination of reservoir permeability, water production rate and injection temperature should be based on the comprehensive target.

  10. Fiscal 1999 survey report on introducing technique for predicting impact on hot spring; 1999 nendo onsen eikyo yosoku shuho donyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    For the application of fruits of the geothermal development promotion project to survey phase C and for the study of technical means for appropriate development to employ after phase C, some cases of impacts imposed on hot springs by geothermal development were taken up and the causes of the impacts were investigated. Activities were conducted in the three fields of (1) the survey of actualities of impacts imposed on hot springs, (2) the survey of the causes of such impacts, and (3) a comprehensive survey. Keyword searches were conducted into the data system and geothermal energy related magazines, and 13 cases were found in which hot springs were affected by geothermal development, which included the Palinpinon district (Philippines), the Koso district (America), and the Wairakei district (New Zealand). Concerning the 13 cases, data on geology, geological structures, and geothermal fluids were collected and studies were conducted about relations of geothermal development with geological structures and geothermal fluids, as in the case of hot springs, and the two were integrated for the clarification of the causes of impacts. In concluding the report, the difference in mechanism is deliberated between cases with impacts on hot springs and cases without impacts on hot springs. (NEDO)

  11. Geological, Geophysical, And Thermal Characteristics Of The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Kasameyer, P. W.; Tewhey, J. D.

    1981-01-01

    The Salton Sea Geothermal Field is the largest water-dominated geothermal field in the Salton Trough in Southern California. Within the trough, local zones of extension among active right-stepping right-lateral strike-slip faults allow mantle-derived magmas to intrude the sedimentary sequence. The intrusions serves as heat sources to drive hydrothermal systems. We can characterize the field in detail because we have an extensive geological and geophysical data base. The sediments are relatively undeformed and can be divided into three categories as a function of depth: (1) low-permeability cap rock, (2) upper reservoir rocks consisting of sandstones, siltstones, and shales that were subject to minor alterations, and (3) lower reservoir rocks that were extensively altered. Because of the alteration, intergranular porosity and permeability are reduced with depth. permeability is enhanced by renewable fractures, i.e., fractures that can be reactivated by faulting or natural hydraulic fracturing subsequent to being sealed by mineral deposition. In the central portion of the field, temperature gradients are high near the surface and lower below 700 m. Surface gradients in this elliptically shaped region are fairly constant and define a thermal cap, which does not necessarily correspond to the lithologic cap. At the margin of the field, a narrow transition region, with a low near-surface gradient and an increasing gradient at greater depths, separates the high temperature resource from areas of normal regional gradient. Geophysical and geochemical evidence suggest that vertical convective motion in the reservoir beneath the thermal cap is confined to small units, and small-scale convection is superimposed on large-scale lateral flow of pore fluid. Interpretation of magnetic, resistivity, and gravity anomalies help to establish the relationship between the inferred heat source, the hydrothermal system, and the observed alteration patterns. A simple hydrothermal model is

  12. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    International Nuclear Information System (INIS)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-01-01

    The 36 Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The 36 Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field

  13. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  14. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at

  15. Assets of geothermal energy for buildings: heating, cooling and domestic hot water

    International Nuclear Information System (INIS)

    2016-01-01

    This publication first proposes a brief overview on the status, context and perspectives of geothermal energy in France by evoking the great number of heat pumps installed during the last decades and the choice made by public and private clients for this source of heating and cooling. While indicating how geothermal energy intervenes during a building project, this publication outlines that this energy is discrete and renewable, and that its technology is proven. Some examples are then evoked: use of geothermal energy for a public building in Saint-Malo, for estate projects near Paris, for a shopping centre in Roissy, and for office buildings

  16. Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures

    Directory of Open Access Journals (Sweden)

    Rzger A. Abdula

    2017-09-01

    Full Text Available Bottom hole temperature (BHT data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km was found for well Taq Taq-8 in the Low Folded Zone (central part of the area. The lowest geothermal gradients (14.9 °C/km were observed for well Bekhme-1 in the High Folded Zone (northern and northeastern parts of the area. The average regional geothermal gradient for Iraqi Kurdistan is 21 °C/km.

  17. Magnetotelluric investigation of the geothermal anomaly in Hailin, Mudanjiang, northeastern China

    Science.gov (United States)

    Zhang, Lili; Hao, Tianyao; Xiao, Qibin; Wang, Jie; Zhou, Liang; Qi, Min; Cui, Xiangpan; Cai, Ningxiao

    2015-07-01

    To study the occurrence conditions and locations of geothermal bodies in Hailin, Mudanjiang, northeastern China, we conducted a magnetotelluric investigation to delineate the electrical conductivity structure of the area on three parallel profiles. The area to the west of the Mudanjiang Fault lies in the Hailang sag of the Ning'an Basin. The data were processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Moreover, a modified anisotropic-diffusion-based method was used to suppress noise for the magnetotelluric time series data. This method retains the advantages of conventional anisotropic diffusion and is superior in its discrimination ability. The method is characteristic not only of the inherited features such as intra-region smoothing and edge preservation, but also of the adaptive selection of the diffusion coefficient. Data analysis revealed that the electrical resistivity structure can be approximated by a two-dimensional characterization. Two-dimensional inversion and rendering visualization show that a highly resistive granite basement is covered with conductive sedimentary layers and that a relatively low-resistivity anomalous structure with a resistivity of approximately 100-600 Ω·m is imbedded in the high-resistivity background. The anomalous structure has a narrow top and a wide bottom (the bottom depth is at least 3500 m). The shape and electrical features of the structure indicate favorable storage space for hot subsurface water. Fault activities and magma intrusion may result in the fractures of the basement, which are filled with hot water and thus produce the relatively low resistivity. Based on a comprehensive analysis, we infer that the structure is indicative of a geothermal reservoir. An exploratory well drilled near the structure confirms the occurrence of high temperatures. Several geological factors (cap rock, basement, and major faults

  18. Dissolved gas concentrations of the geothermal fluids in Taiwan

    Science.gov (United States)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  19. Geothermal energy, a new energy source

    Energy Technology Data Exchange (ETDEWEB)

    Murr, K

    1960-05-01

    A survey is made of the historical development of geothermal energy, and the geological situations appropriate for its exploitation are described. When prospecting for steam sources, several vertical drillings of about 200 m depth and 60-120 mm diameter are usually sufficient to give adequate knowledge of subsurface conditions. In Iceland, geothermal energy is used primarily for domestic space-heating and climate control in greenhouses, but due to the ready availability of hydroelectricity, geothermal energy is not widely applied for the generation of electricity. In Katanga (Congo), a tin mine is supplied by 220-275 kW power plant which is driven by a nearby hot-water source. Other major developments at the time (1960) included Larderello in Italy and Wairakei in New Zealand. Preliminary results from exploratory boreholes in El Salvador are discussed.

  20. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan

    Science.gov (United States)

    Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.

    2018-01-01

    Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping

  1. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-05-01

    Full Text Available One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM is developed in this study to simulate the thermo-elastic fracturing of rocklike granular materials. The Voronoi tessellation is incorporated into the pre-processor of NMM to represent the grain structure. A contact-based heat transfer model is developed to reflect heat interaction among grains. Based on the model, the transient thermal conduction algorithm for granular materials is established. To simulate the cohesion effects among grains and the fracturing process between grains, a damage-based contact fracture model is developed to improve the contact algorithm of NMM. In the developed numerical method, the heat interaction among grains as well as the heat transfer inside each solid grain are both simulated. Additionally, as damage evolution and fracturing at grain interfaces are also considered, the developed numerical method is applicable to simulate the geothermal-related thermal fracturing process.

  2. A proposal to investigate higher enthalpy geothermal systems in the USA

    Science.gov (United States)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly

  3. Application of telluric-telluric profiling combined with magnetotelluric and self-potential methods to geothermal exploration in the Fujian Province, China

    Science.gov (United States)

    Pham, Van-Ngoc; Boyer, Danièle; Yuan, Xue Cheng; Liu, Shao Cheng

    1995-05-01

    In the Fujian Province, southeastern China, most of the hot springs emerge in fluviatile valleys and the geothermal resources are mainly medium and low temperature ones by mixing of hot water with cold superficial groundwater. The occurrence of the thermal waters is controlled by deep tectonic fractures in the bedrock where higher-temperature geothermal reservoirs of economic interest are present. The objective of this study is to detect the deeper active hydrothermal zone under a thick sedimentary cover by geoelectrical methods. In the Gui-An site, the combination of telluric-telluric profiling and magnetotelluric methods turns out very efficient to delineate more accurately the width of the deep conductive fracture zone. Moreover, the self-potential method allows us to localize the most active geothermal zone by electrofiltration processes above a convective cell of hot water which flows up from a deep source. The combined results constitute a possible guide for deep geothermal exploration currently encountered in several geothermal regions over the world.

  4. OUT Success Stories: Chemical Treatments for Geothermal Brines

    International Nuclear Information System (INIS)

    Burr, R.

    2000-01-01

    DOE research helped develop the large, untapped geothermal resource beneath the Salton Sea in California's Imperial Valley. The very hot brines under high pressure make them excellent for electric power production. The brines are very corrosive and contain high concentrations of dissolved silica. DOE worked with San Diego Gas and Electric Company to find a solution to the silica-scaling problem. This innovative brine treatment eliminated scaling and made possible the development of the Salton Sea geothermal resource

  5. Geological and hydrogeochemical explorations for geothermal resources in eastern Sabalan, NW Iran.

    Science.gov (United States)

    Masoumi, Roohangiz

    2017-04-01

    Geological considerations in the east of Sabalan volcano indicate that the calc-alkaline volcanic-sedimentary units constitute the great volume of the geothermal reservoir in the study district. The rocks suffered argillic alteration acted as cap rocks for this reservoir. In some localities in the study district siliceous (chalcedony and opal) sinters were developed around the orifice of the hot springs. The geothermal fluids in the study district, in terms of physico-chemical parameters, have characteristics which differ from other geothermal fields around the Mount Sabalan particularly in the southern and northwestern districts. These differences are: (a) the measured pH values of the geothermal fluids range from approximately 4.5 to 8.8 signifying a variation from acidity to alkalinity; (b) the measured TDS values of these waters, in comparison with the average TDS values for most types of geothermal systems, are low and the minimum values were recorded in the Viladara area; (c) estimation of concentration values of anions and cations in the selected spring water samples indicate that they have chiefly chloride and bicarbonate anions however, samples from the Sardabeh area contain relatively high sulfate (SO42-) content. The concentration values of rare elements in these waters are noticeable. Selenium has the highest concentration value (170 mg/l) among the rare elements. The maximum concentration values of boron and arsenic were measured to be 7 mg/l and 10 mg/l, respectively. The rest of rare elements have relatively low concentration values in the studied samples. The calculation of solute-based geothermometry was done on the basis of Na-Li, Na-K, Na-K, Ca, and silica for the water samples. The results of all these procedures for estimation of temperature of the geothermal reservoir in the east of Mount Sabalan were relatively very close to one another. Nevertheless, the temperatures determined by the Na-Li and Na-K geothermometric methods are 225°C and 239

  6. Modeling of a deep-seated geothermal system near Tianjin, China.

    Science.gov (United States)

    Xun, Z; Mingyou, C; Weiming, Z; Minglang, L

    2001-01-01

    A geothermal field is located in deep-seated basement aquifers in the northeastern part of the North China Plain near Tianjin, China. Carbonate rocks of Ordovician and Middle and Upper Proterozoic age on the Cangxian Uplift are capable of yielding 960 to 4200 m3/d of 57 degrees C to 96 degrees C water to wells from a depth of more than 1000 m. A three-dimensional nonisothermal numerical model was used to simulate and predict the spatial and temporal evolution of pressure and temperature in the geothermal system. The density of the geothermal water, which appears in the governing equations, can be expressed as a linear function of pressure, temperature, and total dissolved solids. A term describing the exchange of heat between water and rock is incorporated in the governing heat transport equation. Conductive heat flow from surrounding formations can be considered among the boundary conditions. Recent data of geothermal water production from the system were used for a first calibration of the numerical model. The calibrated model was used to predict the future changes in pressure and temperature of the geothermal water caused by two pumping schemes. The modeling results indicate that both pressure and temperature have a tendency to decrease with time and pumping. The current withdrawal rates and a pumping period of five months followed by a shut-off period of seven months are helpful in minimizing the degradation of the geothermal resource potential in the area.

  7. Numerical simulation of pore size dependent anhydrite precipitation in geothermal reservoirs

    Science.gov (United States)

    Mürmann, Mario; Kühn, Michael; Pape, Hansgeorg; Clauser, Christoph

    2013-04-01

    Porosity and permeability of reservoirs are key parameters for an economical use of hot water from geothermal installations and can be significantly reduced by precipitation of minerals, such as anhydrite. The borehole Allermöhe 1 near Hamburg (Germany) represents a failed attempt of geothermal heat mining due to anhydrite precipitation (Baermann et al. 2000). For a risk assessment of future boreholes it is essential to understand how and when anhydrite cementation occurred under reservoir conditions. From core samples of the Allermöhe borehole it was determined that anhydrite precipitation took place in regions of relatively high porosity while regions of low porosity remained uncemented (Wagner et al. 2005). These findings correspond to the fact that e.g. halite precipitation in porous media is found only in relatively large pores (Putnis and Mauthe 2001). This study and others underline that pore size controls crystallization and that it is therefore necessary to establish a relation between pore size and nucleation. The work presented here is based on investigations of Emmanuel and Berkowitz (2007) who present such a relation by applying a thermodynamic approach. However this approach cannot explain the heterogeneous precipitation observed in the Allermöhe core samples. We chose an advanced approach by considering electric system properties resulting in another relation between pore size and crystallization. It is well known that a high fluid supersaturation can be maintained in porous rocks (Putnis and Mauthe 2001). This clearly indicates that a supersaturation threshold exists exceeding thermodynamic equilibrium considerably. In order to quantify spatially heterogeneous anhydrite cementation a theoretical approach was chosen which considered the electric interaction between surface charges of the matrix and calcium and sulphate ions in the fluid. This approach was implemented into the numerical code SHEMAT (Clauser 2003) and used to simulate anhydrite

  8. Geothermal energy utilisation in Slowakia and its future development

    Directory of Open Access Journals (Sweden)

    Sidorová Marína

    2004-09-01

    Full Text Available Owing to favourable geological conditions Slovakia is a country abundant in occurrence of low-enthalpy sources. The government of the state sponsors new renewable ecological energy sources, among which belongs geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas, agriculture (heating of greenhouses, fishing and heating of houses. Effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and hot water supply from geothermal sources are supported. Recently company Slovgeoterm has initiated heating of greenhouses in Podhajska and heating of hospital and 1231 flats in town Galanta. Nowadays, research for the biggest geothermal project in the Middle Europe – construction in Košice basin has started.

  9. Cleanings of the silica scale settled in the transportation-pipes of the geothermal hot water of the Onuma Geothermal Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Ito, J

    1978-09-01

    At the Onuma Geothermal Power Station, silica scale deposits in the hot water transportation pipes between production wells and injection wells, increased the thickness. The operations for cleaning the scale were effectively carried out by the following three methods. (1) Poli-Pig method: The shell-shaped plastic foam sponge mass named Poli-Pig was pressed in the pipes. Various shaped Poli-Pig such as armed by the steel spikes made scratches on the surface of the scale, and then stripped off. This method is effective when thickness of the scale is thinner than 20 mm. (2) Impact-Cutter method. Various shaped steel cutter blocks were attached at the end of a flexible shaft, and gave continuous impact by rotation on the scale and then smashing it away. This method is effective for various thickness, but pipes had to be cut off matched to the length of the flexible shaft. (3) Water-jet method. High pressured water jet through the special nozzle smashed away the scale. For this method the pipe had to be cut off at every joint.

  10. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization

    International Nuclear Information System (INIS)

    Millot, Romain; Hegan, Aimee; Négrel, Philippe

    2012-01-01

    Chemical and isotopic data for 23 geothermal water samples collected in New Zealand within the Taupo Volcanic Zone (TVZ) are reported. Major and trace elements including Li, B and Sr and their isotopic compositions (δ 7 Li, δ 11 B, 87 Sr/ 86 Sr) were determined in high temperature geothermal waters collected from deep boreholes in different geothermal fields (Ohaaki, Wairakei, Mokai, Kawerau and Rotokawa geothermal systems). Lithium concentrations are high (from 4.5 to 19.9 mg/L) and Li isotopic compositions (δ 7 Li) are homogeneous, ranging between −0.5‰ and +1.4‰. In particular, it is noteworthy that, except for the samples from the Kawerau geothermal field having slightly higher δ 7 Li values (+1.4%), the other geothermal waters have a near constant δ 7 Li signature around a mean value of 0‰ ± 0.6 (2σ, n = 21). Boron concentrations are also high and relatively homogeneous for the geothermal samples, falling between 17.5 and 82.1 mg/L. Boron isotopic compositions (δ 11 B) are all negative, and display a range between −6.7‰ and −1.9‰. These B isotope compositions are in agreement with those of the Ngawha geothermal field in New Zealand. Lithium and B isotope signatures are in a good agreement with a fluid signature mainly derived from water/rock interaction involving magmatic rocks with no evidence of seawater input. On the other hand, Sr concentrations are lower and more heterogeneous and fall between 2 and 165 μg/L. The 87 Sr/ 86 Sr ratios range from 0.70549 to 0.70961. These Sr isotope compositions overlap those of the Rotorua geothermal field in New Zealand, confirming that some geothermal waters (with more radiogenic Sr) have interacted with bedrocks from the metasedimentary basement. Each of these isotope systems on their own reveals important information about particular aspects of either water source or water/rock interaction processes, but, considered together, provide a more integrated understanding of the geothermal systems from

  11. Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures

    OpenAIRE

    Abdula, Rzger A.

    2016-01-01

    Bottom hole temperature (BHT) data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km) was found for well Taq Taq-8 in the Low Folded Zone (central part of the area). The lowest geothermal gradients (14.9 °C/km) were observed for well Bekhme-1 in the High Folded Zone (northern and...

  12. The Economics of Connecting of Small Buildings to Geothermal District Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2003-03-01

    Many of the communities co-located with geothermal resources are very small and as a result the buildings they contain tend to be small as well. Generally, small buildings (10,000 ft2) use heating systems which are not hot water based. Since geothermal district heating systems deliver hot water, the costs associated with the conversion of small building heating systems to use hot water for heating is an issue of great influence in terms of the potential development of such systems. This paper examines the typical retrofit costs associated with conversion of small buildings and the level of savings necessary to attract the interest of owners. In general, the prospects for connection of such buildings based only on energy savings is not positive.

  13. The economics of connecting of small buildings to geothermal district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2001-01-01

    Many of the communities co-located with geothermal resources are very small and as a result the buildings they contain tend to be small as well. Generally, small buildings (10,000 ft2) use heating systems which are not hot water based. Since geothermal district heating systems deliver hot water, the costs associated with the conversion of small building heating systems to use hot water for heating is an issue of great influence in terms of the potential development of such systems. This paper examines the typical retrofit costs associated with conversion of small buildings and the level of savings necessary to attract the interest of owners. In general, the prospects for connection of such buildings based only on energy savings is not positive.

  14. Rock-brine chemical interactions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

  15. Geothermal source potential and utilization for alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

  16. Detectability of geothermal areas using Skylab X-5 data

    Science.gov (United States)

    Siegal, B. S.; Kahle, A. B.; Goetz, A. F. H.; Gillespie, A. R.; Abrams, M. J.

    1975-01-01

    The results are presented of a study which was undertaken to determine if data from a single near-noon pass of Skylab could be used to detect geothermal areas. The size and temperature requirements for a geothermally heated area to be seen by Skylab S-192 MSS X-5 thermal sensor were calculated. This sensor obtained thermal data with the highest spatial resolution of any nonmilitary satellite system. Only very large hot areas could be expected to be unambiguously recognized with a single data set from this instrument. The study area chosen was The Geysers geothermal field in Sonoma County, California, the only geothermal area of significant size scanned by Skylab. Unfortunately, 95% of the Skylab thermal channel data was acquired within 3 hours of local noon. For The Geysers area only daytime X-5 data were available. An analysis of the thermal channel data (10.2 to 12.5 um) revealed that ground temperatures determined by Skylab were normally distributed. No anomalous hot spots were apparent. Computer enhancement techniques were used to delineate the hottest 100 and 300 ground areas (pixel, 75 m by 75 m) within the study region. It was found that the Skylab MSS with the X-5 thermal detector does not have sufficient spatial resolution to locate unambiguously from daytime data any but the largest and hottest convectively created geothermal features, which in general are prominent enough to have been previously recognized.

  17. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  18. Thermal water of the Yugawara Hot Spring

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Y; Ogino, K; Nagatsuka, Y; Hirota, S; Kokaji, F; Takahashi, S; Sugimoto, M

    1963-03-01

    The Yugawara Hot Spring is located in the bottom of the dissected creata of the Yugawara volcano. Natural hot spring water ran dry almost twenty five years ago, and thermal water is now pumped up by means of deep drill holes. The hydrorogy of the thermal water was studied from both geochemical and geophysical points of view. Two types of thermal water, sodium chloride and calcium sulfate, are recognized. Sodium chloride is predominant in the high temperature area and low in the surrounding low temperature area. Calcium sulfate predominates in the low temperature area. Sodium chloride is probably derived from deep magmatic emanations as indicated in the high Li content. Sulfate ion seems to originate from oxidation of pyrite whose impregnation took place in the ancient activity of the Yugawara volcano. The content of Ca is stoichiometrically comparable with SO/sub 4//sup 2 -/. It is suggested that sulfuric acid derived from the oxidation of pyrite attacks calcite formed during the hydrothermal alteration of rocks. Some consideration of well logging in the geothermal area is also discussed. Temperature measurement in recharging of cold water is applicable to the logging of drill holes as well as the electric logging.

  19. Intertidal geothermal hot springs as a source of trace elements to the coastal zone: A case study from Bahía Concepción, Gulf of California.

    Science.gov (United States)

    Leal-Acosta, María Luisa; Shumilin, Evgueni; Mirlean, Nicolai; Baturina, Elena Lounejeva; Sánchez-Rodríguez, Ignacio; Delgadillo-Hinojosa, Francisco; Borges-Souza, José

    2018-03-01

    We investigated the influence of the intertidal geothermal hot spring (GHS) on the biogeochemistry of trace elements in Santispac Bight, Bahía Concepción (Gulf of California). The geothermal fluids were enriched in As and Hg mainly in ionic form. The suspended particulate matter of the GHS had elevated enrichment factor (EF) >1 of As, Bi, Cd, Co, Cu, Mn, Mo, Sb, Sn, Sr, Ti, U and Zn. The sediment core from GHS1 had high concentration of As, Hg, C org , S, V, Mo, and U and the extremely high EF of these elements at 8cm of the core. The maximum bioaccumulation of As and Hg was in seaweeds Sargassum sinicola collected near the GHS2. The results confirm the input of trace elements to the coastal zone in Bahía Concepción from geothermal fluids and the evident modification of the chemical composition of the adjacent marine environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Queen, John H. [Hi-Geophysical, Inc., Ponca, OK (United States)

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parameters for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  1. Oxygen isotope studies of the Salton Sea geothermal field

    International Nuclear Information System (INIS)

    Olson, E.R.

    1978-01-01

    Interbedded shales and sandstones were drilled to a depth of 1588 metres in Sinclair Number Four Well, Salton Sea Geothermal Field. Bottom hole temperatures are approximately 290 0 C. The oxygen dels of hydrothermal and detrital calcite have a systematic relationship at any depth in the geothermal reservoir. Typical values are: vein calcite, +6 0 / 00 ; calcite in white sandstone, +10 0 / 00 ; calcite in dark gray shale, +11 0 / 00 ; calcite in light gray shale, +17 0 / 00 ; calcite in red-brown shale, +20 0 / 00 . This succession represents decreasing water-rock interaction that is also indicated by the clay mineralogy of the shales. Permeability has a marked effect on the equilibration of water and rocks at any given temperature. Original differences in permeability have resulted in partial preservation of original detrital sedimentary compositions. The fluids in the Salton Sea Geothermal Field are probabaly partially evaporated Colorado River water, and their oxygen del values vary as much as 4 0 / 00 throughout the field. Truesdell's (1974) data suggest that dissolved salts may make the water oxygen activity del as much as 6 0 / 00 greater than the concentration del in the geothermal reservoir. Such an uncertainty is a serious impediment to precise isotope geothermometry in this system.(auth.)

  2. Geothermal energy utilisation in Slowakia and its future development

    OpenAIRE

    Sidorová Marína; Pinka Ján; Wittenberger Gabriel

    2004-01-01

    Owing to favourable geological conditions Slovakia is a country abundant in occurrence of low-enthalpy sources. The government of the state sponsors new renewable ecological energy sources, among which belongs geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas), agriculture (heating of greenhouses, fishing) and heating of houses. Effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and hot water supply from ge...

  3. Technical-economic aspects of the utilization of geothermal waters

    International Nuclear Information System (INIS)

    Barbier, E.

    1989-01-01

    A brief description is given of the physico-chemical parameters characterized a hot water geothermal reservoir and of its exploitation by means of single or coupled (doublet) wells. The technical aspects of geothermal heat to the users is then discussed, beginning with corrosion of materials caused by seven main agents: oxygen, hydrogen sulphide, carbon dioxide, ammonia, hydrogen, sulphates and chlorides. A brief mention is made of scaling due to calcium carbonate, silica and calcium sulphates. The basic components of a geothermal plant for non-electric uses are then discussed: production pumps, surface pipelines, heat exchangers, heat pumps and reinjection pumps. The advantages and disadvantages of the different equipment and materials used in the geothermal sector are also presented. A list is also given of the criteria used in the energy and economic balance of a geothermal operation. (author). 24 refs, 13 figs, 2 tabs

  4. Geothermal heat pumps - Trends and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W

    1989-01-01

    Heat pumps are used where geothermal water or ground temperatures are only slightly above normal, generally 50 to 90 deg. F. Conventional geothermal heating (and cooling) systems are not economically efficient at these temperatures. Heat pumps, at these temperatures, can provide space heating and cooling, and with a desuperheater, domestic hot water. Two basic heat pump systems are available, air-source and water- or ground-source. Water- and ground-coupled heat pumps, referred to as geothermal heat pumps (GHP), have several advantages over air-source heat pumps. These are: (1) they consume about 33% less annual energy, (2) they tap the earth or groundwater, a more stable energy source than air, (3) they do not require supplemental heat during extreme high or low outside temperatures, (4) they use less refrigerant (freon), and (5) they have a simpler design and consequently less maintenance.

  5. Geothermal resource assessment of Ouray, Colorado. Resource series 15

    Energy Technology Data Exchange (ETDEWEB)

    Zacharakis, T.G.; Ringrose, C.D.; Pearl, R.H.

    1981-01-01

    In 1979, a program was initiated to delineate the geological features controlling the occurrence of geothermal resources in Colorado. In the Ouray area, this effort consisted of geological mapping, soil mercury geochemical surveys and resistivity geophysical surveys. The soil mercury obtained inconclusive results, with the Box Canyon area indicating a few anomalous values, but these values are questionable and probably are due to the hot spring activity and mineralization within the Leadville limestone rock. One isolated locality indicating anomalous values was near the Radium Springs pool and ball park, but this appears to be related to warm waters leaking from a buried pipe or from the Uncompahgre River. The electrical resistivity survey however, indicated several areas of low resistivity zones namely above the Box Canyon area, the power station area and the Wiesbaden Motel area. From these low zones it is surmised that the springs are related to a complex fault system which serves as a conduit for the deep circulation of ground waters through the system.

  6. FY1998 research report on the basic research on geothermal district heating in Kamchatka, Russia; 1998 nendo Roshia Renpo Kamchatka shu ni okeru chinetsu riyo ni yoru chiiki danbo ni kansuru kiso chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Petropavlovsk-Kamchatky (P-K) city in Kamchatka, Russia is operating hot-water district heating using heavy oil boilers and waste hot water of thermal power plants as heat sources. Feasibility study was made on district heating using natural geothermal hot water and/or geothermal heat pump systems as heat sources of hot water supply for reduction of greenhouse effect gas emission. Among 3 areas including geothermal hot water, use of hot water in K area was impossible because of lower temperature and less spring water. Use of hot water in P and UP areas was impossible as primary hot water because of temperature drop to 64 degrees C during hot water supply toward P-K city. The building heating operation test was carried out using the geothermal heat pump system installed in a newly drilled heat exchange well of 100m deep. As a result, sufficient heat recovery was achieved for heating. If all of 49 boiler houses for heating are replaced with such geothermal heat pump systems, CO{sub 2} reduction was estimated to be 520,000t/y. (NEDO)

  7. CSAMT investigations of the Caferbeyli (Manisa/Turkey) geothermal ...

    Indian Academy of Sciences (India)

    Geothermal energy is the accumulation of heat energy as hot ... of this study was to delineate the fracture zones in ... southern margin of the basin has been raised along ... Quaternary continental sequence with alkali olivine ..... Turkish Petrol.

  8. Application of Environmental Isotope and Hydrogeochemical Techniques in Investigating the Geothermal Resources

    International Nuclear Information System (INIS)

    Kamarudin Samuding; Noor Akhmal Kamarudin; Mohd Shahrizal Mohamed Sharifodin; Azrul Arifin; Kamaruzaman Mohamad

    2016-01-01

    An investigation of geothermal resources at Ulu Slim has been carried out using integrated environmental isotope and hydro-geochemical techniques. Environmental isotope Oxygen-18 ("1"8O) and Deuterium ("2H) and Tritium ("3H) were used to identify the recharge zones and origin of the water, whereas the hydro-geochemical technique is used to determine the water type and the level of solutes in the geothermal waters out flowing at the surface as well as in shallow and deep groundwater system. The sampling programme includes precipitations, surface waters, hot springs, groundwater for isotopes and hydro-geochemical analyses. The plot graph of (δ"1"8O vs δ"2H) show that the stable isotope composition of hot spring is relatively depleted as compared to surface water and groundwater. This indicates that the recharge of the hot spring is likely to occur from farther and higher elevation areas of the geothermal system. Tritium content in hot spring, groundwater and surface water is ranged between 0.85 - 0.92 TU, 0.81- 1.05 TU, 1.60-2.07 TU respectively. The values of TU in hot spring and groundwater is seen similar suggests that these samples are older than the surface water. Based on the plot of Ternary Major Anion diagram (Cl-SO_4- HCO_3) and Tri-linear Piper diagram, all the water samples are identified from the type of bicarbonate (HCO_3). Nevertheless, the content of sodium (Na) in hot spring is detected relatively higher as compared to surface water. Tri-linear Piper diagram also shows that there is no mixing process between hot spring and surface water. (author)

  9. Bibliographical review about Na/Li geo-thermometry and lithium isotopes applied to worldwide geothermal waters. Final report

    International Nuclear Information System (INIS)

    Sanjuan, B.; Millot, R.

    2009-09-01

    This study is performed within the framework of the FP6 European project HITI (High Temperature Instruments for supercritical geothermal reservoir characterization and exploitation). This research project, co-funded by EU and the different partners, aims to provide geophysical and geochemical sensors and methods to evaluate deep geothermal wells up to supercritical conditions (T > 370 deg. C), which are more cost-effective than those of the conventional wells. A deep geothermal well is currently being drilled for this purpose into the Krafla area, Iceland, as part of the IDDP ('Iceland Deep Drilling Project') and with joint funding from Icelandic industry and science Institutes. Another deep well will be drilled in the Reykjanes peninsula, Iceland, within the framework of the same project. This study, a bibliographical review about the Na/Li geo-thermometer and lithium isotopes applied on the world geothermal waters, is the first step of the task envisaged by BRGM to use and validate the sodium-lithium (Na-Li) chemical geo-thermometer on Icelandic geothermal waters at temperatures ranging from 25 to 500 deg. C. In this study, more than 120 temperature and chemical data from world geothermal and oil-fields, sedimentary basins, oceanic ridges, emerged rifts and island arcs have been collected and investigated. These additional data have allowed to confirm and refine the three existing Na/Li thermometric relationships. Moreover, a new Na/Li thermometric relationship relative to the processes of seawater or dilute seawater-basalt interaction occurring in the oceanic ridges and emerged rifts is proposed. Even if the running of Na/Li is still poorly understood, the existence of a new thermometric relationship confirms that the Na/Li ratios not only depend on the temperature but also on other parameters such as the fluid salinity and origin, or the nature of the reservoir rocks in contact with the geothermal fluids. For most of the geothermal waters in contact with

  10. Geothermal district heating system feasibility analysis, Thermopolis, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

    1982-04-26

    The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

  11. Preliminary interpretation of isotopic studies of geothermal waters from the Beijing region (P.R. China)

    International Nuclear Information System (INIS)

    Keyan, Zheng; Da-Lei, Ma; Changfang, Xie; Shangyao, Huang; Jianghua, Feng; Jingshu, Wu

    1982-01-01

    Isotopic studies of thermal and cold surface waters sampled in Beijing region have shown that the thermal waters are meteoric waters which have been precipitated in the mountainous area lying to the NW of Beijing. ΔD and over distances of more than 150 km in Sinian basement rocks which are 3 to 5 km in the SE sector of the region. Significant 18 O exchange with basement rocks occurs in the Jizhong Depression about 60 km to the SE of Beijing. On a smaller scale, a SE flow of thermal waters in basement rocks in corroborated by Δ 34 S data for the Beijing area and the Beijing geothermal field. The Beijing geothermal field and other geothermal fields in the SE sector of the Beijing region are an example for low temperature systems where the heat is derived from a normal or slightly greater than normal, terrestrial heat flow

  12. Isotope and hydrogeochemical studies of southern Jiangxi geothermal systems, China

    International Nuclear Information System (INIS)

    Zhou Wenbin; Li Xueli; Shi Weijun; Sun Zhanxue

    1999-01-01

    Southern Jiangxi is a geothermally active region, especially in Hengjing area. According to the work plan of IAEA Regional Collaboration in the Development of Geothermal Energy Resources and Environment Management through Isotope Techniques in East Asia and the Pacific (RAS-8-075), field investigation was carried out in Hengjing, southern Jiangxi Province, to demonstrate the use of isotope and geochemical techniques in low to medium temperature geothermal system. During the field investigation, 19 samples were taken from cold springs, hot springs and surface water in the area to determine their hydrochemical and gas compositions, hydrogen, oxygen, carbon and helium isotopes. The results of the study have shown that the geothermal waters in the studying region are of the same characteristics with the local meteoric water in oxygen and hydrogen isotope composition, indicating the geothermal waters are mainly derived from the local precipitation, while the gas composition and carbon and helium isotopes reveal that some gases in the geothermal waters have mantle origin. (author)

  13. Geothermal potential assessment of the Nevado del Ruiz volcano based on rock thermal conductivity measurements and numerical modeling of heat transfer

    Science.gov (United States)

    Vélez, Maria Isabel; Blessent, Daniela; Córdoba, Sebastián; López-Sánchez, Jacqueline; Raymond, Jasmin; Parra-Palacio, Eduardo

    2018-01-01

    This work presents an estimation of the geothermal potential of the Nevado del Ruiz (NDR) volcano, bridging the knowledge gap to develop geothermal energy in Colombia and improve resource estimates in South America. Field work, laboratory measurements, geological interpretations, 2D numerical modeling, and uncertainty analysis were conducted to the northwest of the NDR to assess temperature at depth and define thermal energy content. About 60 rock samples were collected at outcrops to measure thermal conductivity with a needle probe. A 2D numerical model, built from an inferred geological cross-section, was developed with the software OpenGeoSys to simulate the underground temperature distribution and then estimate the geothermal potential of a 1 km2 area with sufficient temperature, assuming a recovery factor equal to 2.4% and a 30 years exploitation time. Coupled groundwater flow and heat transfer were simulated in steady-state considering two different thermal conductivity scenarios. Results show that the average estimated potential is 1.5 × 10-2 MWt m-1 of the reservoir thickness, considering temperatures greater than 150 °C located at a depth of approximately 2 km, in a selected area situated outside of the Los Nevados National Natural Park (NNP), to avoid any direct intervention on this protected area. According to a Monte Carlo analysis considering pessimist and optimist scenarios of thermal conductivity, the estimated geothermal power was 1.54 × 10-2 MW m-1 (σ = 2.91 × 10-3 MW m-1) and 1.88 × 10-2 MW/m (σ = 2.91 × 10-3 MW m-1) for the two modeling scenario considered.

  14. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    Science.gov (United States)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  15. Successive hydrothermal events as indicated by oxygen isotope composition and petrography of greywacke basement rocks, Kawerau geothermal field, New Zealand

    International Nuclear Information System (INIS)

    Absar, A.; Blattner, P.

    1985-01-01

    Fifteen drillholes at the Kawerau geothermal field penetrated a sequence of Quaternary volcanic rocks overlying Mesozoic greywackes and argillites in the depth range of 650 to 1220 m below sea level. Maximum temperature in the basement is 250 to 303 deg. C. Twelve greywacke cores were modally analysed in order to determine their intensity of alteration, which in turn was compared with their oxygen isotope composition. It is concluded that Kawerau geothermal field has experienced at least three hydrothermal regimes. The earliest was characterised by fluids with low m CO 2 and δ 18 O, as indicated by the wairakite-prehnite mineral assemblage in greywacke depleted by 5 ppm. This regime was followed by a period of hydraulic fracturing the formation of a mineral assemblage with abundant calcite indicative of fluids with high dissolved CO 2 . Precipitation of minerals during these two early successive hydrothermal regimes resulted in sealing of fractures in the southern part of the field. These two mineral assemblages are indicated to have formed prior to faulting. The latest mineral assemblage comprising quartz-calcite-adularia-calc silicates on the other hand, is related to a series of NE trending faults which enabled geothermal fluids to move northeastward after circulation was precluded in the southern part. This suggests that future exploration for production from the greywacke basement should be in the north where mineralogy and δ 18 O composition of calcite indicate that much better permeability occurs

  16. Combining water-rock interaction experiments with reaction path and reactive transport modelling to predict reservoir rock evolution in an enhanced geothermal system

    Science.gov (United States)

    Kuesters, Tim; Mueller, Thomas; Renner, Joerg

    2016-04-01

    Reliably predicting the evolution of mechanical and chemical properties of reservoir rocks is crucial for efficient exploitation of enhanced geothermal systems (EGS). For example, dissolution and precipitation of individual rock forming minerals often result in significant volume changes, affecting the hydraulic rock properties and chemical composition of fluid and solid phases. Reactive transport models are typically used to evaluate and predict the effect of the internal feedback of these processes. However, a quantitative evaluation of chemo-mechanical interaction in polycrystalline environments is elusive due to poorly constrained kinetic data of complex mineral reactions. In addition, experimentally derived reaction rates are generally faster than reaction rates determined from natural systems, likely a consequence of the experimental design: a) determining the rate of a single process only, e.g. the dissolution of a mineral, and b) using powdered sample materials and thus providing an unrealistically high reaction surface and at the same time eliminating the restrictions on element transport faced in-situ for fairly dense rocks. In reality, multiple reactions are coupled during the alteration of a polymineralic rocks in the presence of a fluid and the rate determining process of the overall reactions is often difficult to identify. We present results of bulk rock-water interaction experiments quantifying alteration reactions between pure water and a granodiorite sample. The rock sample was chosen for its homogenous texture, small and uniform grain size (˜0.5 mm in diameter), and absence of pre-existing alteration features. The primary minerals are plagioclase (plg - 58 vol.%), quartz (qtz - 21 vol.%), K-feldspar (Kfs - 17 vol.%), biotite (bio - 3 vol.%) and white mica (wm - 1 vol.%). Three sets of batch experiments were conducted at 200 ° C to evaluate the effect of reactive surface area and different fluid path ways using (I) powders of the bulk rock with

  17. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  18. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico

    International Nuclear Information System (INIS)

    Gonzalez-Partida, E.; Carrillo-Chavez, A.; Levresse, G.; Tello-Hinojosa, E.; Venegas-Salgado, S.; Ramirez-Silva, G.; Pal-Verma, M.; Tritlla, J.; Camprubi, A.

    2005-01-01

    Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (T mi ) near zero (0 deg C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (T h ) = 325 ± 5 deg C. The boiling zone shows T h = ±300 deg C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO 2 . Positive clathrate melting temperatures (fusion) with T h = 150 deg C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 deg C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO 2 (80-98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir. The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions (δ 18 O-δD) of the geothermal brine indicate mixing between meteoric water and a minor magmatic component. The enrichment in δ 18

  19. The Main Problems in the Development of Geothermal Energy Industry in China

    Science.gov (United States)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  20. Tracking Hydrothermal Fluid Pathways from Surface Alteration Mineralogy: The Case of Licancura Geothermal Field, Northern Chile

    Science.gov (United States)

    Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.

    2017-12-01

    In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid

  1. Design of a novel geothermal heating and cooling system: Energy and economic analysis

    International Nuclear Information System (INIS)

    Angrisani, G.; Diglio, G.; Sasso, M.; Calise, F.; Dentice d’Accadia, M.

    2016-01-01

    Highlights: • A desiccant-based air handling unit is coupled with a geothermal source. • A TRNSYS model is developed to simulate both winter and summer period. • Sensitivity analysis is carried out in order to evaluate the effects of the design parameters. • Pay back period about 1.2 years and Primary Energy Savings higher than 90% were founded. • Economic and energetic performance increase with to the use of Domestic Hot Water. - Abstract: A dynamic simulation study in TRNSYS environment has been carried out to evaluate energy and economic performance of a novel heating and cooling system based on the coupling between a low or medium-enthalpy geothermal source and an Air Handling Unit, including a Desiccant Wheel. During summer season, a Downhole Heat Exchanger supplies heat to regenerate the desiccant material, while a certain amount of geothermal fluid is continuously extracted by the well in order to maintain high operating temperatures. Simultaneously, the extracted geothermal fluid drives an absorption chiller, producing chilled water to the cooling coil of the Air Handling Unit. Conversely, during the winter season, geothermal energy is used to cover a certain amount of the space heating demand. In both summer and winter operation modes, a geothermal energy is also used to supply Domestic Hot Water. A case study was analyzed, in which an existing low-enthalpy geothermal well (96 °C), located in Ischia (an island close to Naples, Southern Italy), is used to drive the geothermal system. Results showed that the performance of the proposed system is significantly affected by the utilization factor of Domestic Hot Water. In fact, considering a range of variation of such parameter between 5% and 100%, Primary Energy Saving increase from 77% to 95% and Pay-Back Period decreases from 14 years to 1.2 years, respectively. The simulations proved the technical and economic viability of the proposed system. In fact, a comparison with similar systems available

  2. Geothermal energy resources of the USSR and their utilization

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, W

    1961-01-01

    In the Soviet Union, the areas with the highest geothermal gradient are found in the region of Kamchatka, in the Kuriles, and in western Turkmenia. Test drilling in Kamchatka has produced hot water at a temperature of 200/sup 0/C from a depth of 100-300 m. If a pressure of 300-400 kPa is maintained, the wells can bring the fluids to the surface as a two-phase mixture of steam and hot water. In 1961, plans were being made for the construction of a 12 MW power plant and several greenhouses. Other heat sources were being developed to heat the city of Petropavlovsk. In the northern Cauacasus, hot water is encountered only at depths greater than about 2.5 km, but the quantity available is sufficient to provide the heating needs of several major cities. In the Republic of Daghestan, test drilling has revealed hot water sources which are pressurized to 1.6 MPa, and which produce at a rate of 100 m/sup 3//h. Enormous geothermal energy resources are located in artesian reservoirs beneath western Siberia, over an extent of 3 million km/sup 2/.

  3. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  4. Rock alteration in some geothermal areas of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Y

    1966-01-01

    Petrological studies were made of stable metamorphic mineral assemblages found in drill cores taken in Japan and New Zealand. These studies showed that the temperature and depth of the point at which zeolite assemblages are transformed into feldspar bearing assemblages can be used as indicators of water pressure or of the ratio of water pressure to total pressure in the deeper part of geothermal areas.

  5. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif; Estudio geoquimico de los procesos de interaccion agua-roca sobre sistemas goetermales de aguas alcalinas en granitoides

    Energy Technology Data Exchange (ETDEWEB)

    Buil gutierrez, B; Garcia Sanz, S; Lago San Jose, M; Arranz Uague, E; Auque Sanz, L [Universidad de Zaragoza (Spain)

    2002-07-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  6. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins

    KAUST Repository

    Avşar, Özgür

    2017-08-07

    In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay, was scanned by measuring temperatures horizontally, 2–3m above the bottom of the lake or sea. After analyzing the temperature data along the grids, the locations with anomalous temperature values were detected, and divers headed here for further verification. Accordingly, among these anomalies, the divers confirmed seven of them as subaqueous hot springs. Three of these hot springs are located in the Köyceğiz Lake, three of them are located in the Dalyan Channel and one hot spring is located in the Fethiye-Göcek Bay. At the locations where temperature anomalies were detected, the divers collected samples directly from the subaqueous hot spring using a syringe-type sampler. We evaluated these water samples together with samples collected from hot and cold springs on land and from local rivers, lakes and the sea, with an aim to generate a conceptual hydrogeochemical model of the geothermal system in the study area. This model predicts that rainwater precipitating in the highlands percolates through fractures and faults into the deeper parts of the Earth\\'s crust, here it is heated and ascends through the sea bottom via buried faults. Pervious carbonate nappes that are underlain and overlain by impervious rocks create a confined aquifer. The southern boundary of the Carbonate-Marmaris nappes is buried under alluvium and/or sea/lake water bodies and this phenomenon determines whether hot springs occur on land or subaqueous. The chemical and isotopic properties of the hot springs point to seawater mixing at deep levels. Thus, the mixing most probably occurs while the water is ascending through the faults and fractures. The gas geochemistry results reveal that the lowest mantle He contributions occur in the samples from K

  7. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins

    Science.gov (United States)

    Avşar, Özgür; Avşar, Ulaş; Arslan, Şebnem; Kurtuluş, Bedri; Niedermann, Samuel; Güleç, Nilgün

    2017-10-01

    In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay, was scanned by measuring temperatures horizontally, 2-3 m above the bottom of the lake or sea. After analyzing the temperature data along the grids, the locations with anomalous temperature values were detected, and divers headed here for further verification. Accordingly, among these anomalies, the divers confirmed seven of them as subaqueous hot springs. Three of these hot springs are located in the Köyceğiz Lake, three of them are located in the Dalyan Channel and one hot spring is located in the Fethiye-Göcek Bay. At the locations where temperature anomalies were detected, the divers collected samples directly from the subaqueous hot spring using a syringe-type sampler. We evaluated these water samples together with samples collected from hot and cold springs on land and from local rivers, lakes and the sea, with an aim to generate a conceptual hydrogeochemical model of the geothermal system in the study area. This model predicts that rainwater precipitating in the highlands percolates through fractures and faults into the deeper parts of the Earth's crust, here it is heated and ascends through the sea bottom via buried faults. Pervious carbonate nappes that are underlain and overlain by impervious rocks create a confined aquifer. The southern boundary of the Carbonate-Marmaris nappes is buried under alluvium and/or sea/lake water bodies and this phenomenon determines whether hot springs occur on land or subaqueous. The chemical and isotopic properties of the hot springs point to seawater mixing at deep levels. Thus, the mixing most probably occurs while the water is ascending through the faults and fractures. The gas geochemistry results reveal that the lowest mantle He contributions occur in the samples from K

  8. Development And Application Of A Hydrothermal Model For The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1984-01-01

    A simple lateral flow model adequately explains many of the features associated with the Salton Sea Geothermal Field. Earthquake swarms, a magnetic anomaly, and aspects of the gravity anomaly are all indirect evidence for the igneous activity which is the ultimate source of heat for the system. Heat is transferred from this area of intrusion by lateral spreading of hot water in a reservoir beneath an impermeable cap rock. A two dimensional analytic model encompassing this transport mechanism matches general features of the thermal anomaly and has been used to estimate the age of the presently observed thermal system. The age is calculated by minimizing the variance between the observed surface heat-flow data and the model. Estimates of the system age for this model range from 3,000 to 20,000 years.

  9. Rare earth element contents of the Lusi mud: An attempt to identify the environmental origin of the hot mudflow in East Java – Indonesia

    Directory of Open Access Journals (Sweden)

    Agustawijaya Didi Supriadi

    2017-12-01

    Full Text Available The Sidoarjo mudflow in East Java, Indonesia, has been erupting since May 29th, 2006. The eruption has been known as the Lusi (lumpur Sidoarjo, which was previously considered as a remote seismic event consequence, but current geyser-like activities show an association with a geothermal phenomenon. A method of characterizing rare earth elements (REE is commonly an effective tool for recognizing a geothermal system, and here it is adapted to particularly indicate the environmental origin of the Lusi mud. Results show that the Lusi hot mud is made of a porous smectite structure of a shale rock type, which becomes an ideal tank for trapping the REE, especially the light REE. Volcanic activities seem to be an important influence in the eruption; however, since there is a lack of significant isotopic evidences in the mobilization of the REE during the eruption, the chloride neutral pH water of the Lusi may hardly contain the REE. The moderate Ce and Eu anomalies found in the REE patterns of the mud strongly indicate a sea-floor basin as the most probable environment for the REE fractionation during the sedimentary rock formation, in which the weathering processes of volcanic rock origin enriched the Lusi shale with the REE.

  10. Bruneau Known Geothermal Resource Area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Bruneau Known Geothermal Resource Area (KGRA) is part of the Bruneau-Grandview thermal anomaly, the largest geothermal area in the western US. This part of Owyhee County is the driest part of Idaho. The KGRA is associated with the southern boundary fault zone of the Snake River Plain. Thermal water, produced from numerous artesian wells in the region, is supplied from two major aquifers. Ecological concerns include the threatened Astragalus mulfordiae and the numerous birds of prey nesting in the Snake River canyon northwest of the KGRA. Extensive geothermal development may strain the limited health care facilities in the county. Ethnographic information suggests that there is a high probability of prehistoric cultural materials being remnant in the Hot Spring locality.

  11. Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Oski Energy, LLC,

    2013-03-28

    A five-line (23 mile) reflection- seismic survey was conducted at the Hot Pot geothermal prospect area in north-central Nevada under the USDOE (United States Department of Energy) Geothermal Technologies Program. The project objective was to utilize innovative seismic data processing, integrated with existing geological, geophysical and geochemical information, to identify high-potential drilling targets and to reduce drilling risk. Data acquisition and interpretation took place between October 2010 and April 2011. The first round of data processing resulted in large areas of relatively poor data, and obvious reflectors known from existing subsurface information either did not appear on the seismic profiles or appeared at the wrong depth. To resolve these issues, the velocity model was adjusted to include geologic input, and the lines were reprocessed. The resulting products were significantly improved, and additional detail was recovered within the high-velocity and in part acoustically isotropic basement. Features visible on the improved seismic images include interpreted low angle thrust faults within the Paleozoic Valmy Formation, which potentially are reactivated in the current stress field. Intermediate-depth wells are currently targeted to test these features. The seismic images also suggest the existence of Paleogene sedimentary and volcanic rocks which potentially may function as a near- surface reservoir, charged by deeper structures in Paleozoic rocks.

  12. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Garry J. [Gradient Geophysics Inc., Missoula, MT (United States); Birkby, Jeff [Birkby Consulting LLC, Missoula, MT (United States)

    2015-05-12

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278 degrees F.

  13. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  14. Geology of the central Mineral Mountains, Beaver County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Sibbett, B.S.; Nielson, D.L.

    1980-03-01

    The Mineral Mountains are located in Beaver and Millard Counties, southwestern Utah. The range is a horst located in the transition zone between the Basin and Range and Colorado Plateau geologic provinces. A multiple-phase Tertiary pluton forms most of the range, with Paleozoic rocks exposed on the north and south and Precambrian metamorphic rocks on the west in the Roosevelt Hot Springs KGRA (Known Geothermal Resource Area). Precambrian banded gneiss and Cambrian carbonate rocks have been intruded by foliated granodioritic to monzonitic rocks of uncertain age. The Tertiary pluton consists of six major phases of quartz monzonitic to leucocratic granitic rocks, two diorite stocks, and several more mafic units that form dikes. During uplift of the mountain block, overlying rocks and the upper part of the pluton were partially removed by denudation faulting to the west. The interplay of these low-angle faults and younger northerly trending Basin and Range faults is responsible for the structural control of the Roosevelt Hot Springs geothermal system. The structural complexity of the Roosevelt Hot Springs KGRA is unique within the range, although the same tectonic style continues throughout the range. During the Quaternary, rhyolite volcanism was active in the central part of the range and basaltic volcanism occurred in the northern portion of the map area. The heat source for the geothermal system is probably related to the Quaternary rhyolite volcanic activity.

  15. Temporary Cementitious Sealers in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

    2011-12-31

    Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper

  16. Synthetic Modeling of A Geothermal System Using Audio-magnetotelluric (AMT) and Magnetotelluric (MT)

    Science.gov (United States)

    Mega Saputra, Rifki; Widodo

    2017-04-01

    Indonesia has 40% of the world’s potential geothermal resources with estimated capacity of 28,910 MW. Generally, the characteristic of the geothermal system in Indonesia is liquid-dominated systems, which driven by volcanic activities. In geothermal exploration, electromagnetic methods are used to map structures that could host potential reservoirs and source rocks. We want to know the responses of a geothermal system using synthetic data of Audio-magnetotelluric (AMT) and Magnetotelluric (MT). Due to frequency range, AMT and MT data can resolve the shallow and deeper structure, respectively. 1-D models have been performed using AMT and MT data. The results indicate that AMT and MT data give detailed conductivity distribution of geothermal structure.

  17. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    Science.gov (United States)

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  18. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  19. Numerical simulations of heat transfer considering hydraulic discontinuity for an enhanced geothermal system development in Seokmo Island, Korea

    Science.gov (United States)

    Shin, J.; Kim, K.; Hyun, Y.; Lee, K.; Lee, T.

    2011-12-01

    The construction of the first geothermal plant in Korea is under planning in Seokmo Island, where a few artesian wells showing relatively high water temperature of around 70 degrees were discovered lately. Geologic structure in this region is characterized by the fractured granite. Numerical simulations for the temperature evolution in a fractured geothermal reservoir in Seokmo Island under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity in Seokmo Island region, which reflected the analysis from several geophysical explorations and drilled rock core, was generated. Supposing the N05°E, NW83° fracture zone containing the pumping range, the numerical simulation results show that temperature of the extracted geothermal water decreases after 15 years of operation, which decreases the overall efficiency of the expected geothermal plant. This is because the colder water from the injection well, which is 400 m apart, begins to flow into the more permeable fracture zone from the 15th year, resulting in a decrease in temperature near the pumping well. Temperature distribution calculated from the simulation also shows a rise of relatively hot geothermal water along the fracture plane. All of the results are different from the non-fracture MINC model, which shows a low temperature contour in concentric circle shape around the injection well and relatively consistent extracting temperature. This demonstrates that the distribution and the structure of fracture system influence the major mass and heat flow mechanisms in geologic medium. Therefore, an intensive geologic investigation for the fractures including their structure, permeability and connecting relation is important. Acknowledgement This study was financially supported by KIGAM, KETEP and BK21.

  20. The Experimental Study of the Temperature Effect on the Interfacial Properties of Fully Grouted Rock Bolt

    Directory of Open Access Journals (Sweden)

    Fuhai Li

    2017-03-01

    Full Text Available This study analyzes the phenomenon of performance deterioration in fully grouted rock bolts in tunnels with a dry, hot environment and high geothermal activity with a focus on temperature effects on interfacial bond performance. Three groups of fully grouted rock bolt specimens were designed based on similar mechanical principles. They were produced and maintained at 20 °C, 35 °C, and 50 °C. Through the indoor gradual loading tensile test of specimens, variations of axial force and shear stress between the rock bolt and mortar adhesive interface were obtained under different environmental temperatures. Distribution of the axial force and shear stress on the anchorage section were found under different tensile forces. Results showed that, with an increase in specimen environmental temperature, maximum shear stress of the rock bolt section became smaller, while shear stress distribution along the rock bolt segment became more uniform. In addition, the axial force value at the same position along the pull end was greater, while axial stress along the anchorage’s length decayed faster. With an increase in tensile force under different temperatures, the axial force and maximum shear stress of rock bolt specimens along the anchorage section has a corresponding increase.

  1. Boise geothermal injection well: Final environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

  2. Boise geothermal injection well: Final environmental assessment

    International Nuclear Information System (INIS)

    1997-01-01

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives

  3. Geothermal development promotion survey report. No. 25. Hishikari region; 1987-1989 chinetsu kaihatsu sokushin chosa hokokusho. No. 22 Hishikari chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The results of surveys conducted in the Hishikari region, Kagoshima Prefecture, in fiscal 1987-1989 are compiled in this report. Conducted were a geological/alteration zone survey, geochemical survey, electric prospecting, electromagnetic surveillance, gravity prospecting, heat flow rate survey, test boring, environmental impact survey, and so forth. The surveys resulted in conclusions mentioned below. According to the underground temperature distribution based on the results of the heat flow rate survey, test boring, and so forth, temperature is low at the western part of the Hishikari region where there is a low gravity anomaly and high in the zone in the ENE-WSW direction where there is a high gravity anomaly. The present ground temperature is lower than the fluid inclusion homogenization temperature by approximately 120-140 degrees C. It is deduced that the geothermal water reservoir lies in the Quatenary volcanic rocks or in a fracture zone that develops in the Shimanto supergroup. It is inferred that the geothermal water producing the hot spring water all originates in meteoric water staying long in the ground. It is also inferred that volcanic gas or the like contributes but a little to the formation of the geothermal system but that the contribution is great of the heat supplied from the magma pool. (NEDO)

  4. Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China.

    Science.gov (United States)

    Pagaling, Eulyn; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2012-07-01

    We investigated the bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong in the Yunnan Province, China, using direct molecular analyses. The Langpu (LP) laminated mat was found by the side of a boiling pool with temperature of 60-65 °C and a pH of 8.5, while the Tengchong (TC) streamer mat consisted of white streamers in a slightly acidic (pH 6.5) hot pool outflow with a temperature of 72 °C. Four 16S rRNA gene clone libraries were constructed and restriction enzyme analysis of the inserts was used to identify unique sequences and clone frequencies. From almost 200 clones screened, 55 unique sequences were retrieved. Phylogenetic analysis showed that the LP mat consisted of a diverse bacterial population [Cyanobacteria, Chloroflexi, Chlorobia, Nitrospirae, 'Deinococcus-Thermus', Proteobacteria (alpha, beta and delta subdivisions), Firmicutes, Bacteroidetes and Actinobacteria], while the archaeal population was dominated by methanogenic Euryarchaeota and Crenarchaeota. In contrast, the TC streamer mat consisted of a bacterial population dominated by Aquificae, while the archaeal population also contained Korarchaeota as well as Crenarchaeota and methanogenic Euryarchaeota. These mats harboured clone sequences affiliated to unidentified lineages, suggesting that they are a potential source for discovering novel bacteria and archaea.

  5. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2017-01-01

    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  6. Comparative Analysis of Power Plant Options for Enhanced Geothermal Systems (EGS

    Directory of Open Access Journals (Sweden)

    Mengying Li

    2014-12-01

    Full Text Available Enhanced geothermal systems (EGS extract heat from underground hot dry rock (HDR by first fracturing the HDR and then circulating a geofluid (typically water into it and bringing the heated geofluid to a power plant to generate electricity. This study focuses on analysis, examination, and comparison of leading geothermal power plant configurations with a geofluid temperature from 200 to 800 °C, and also analyzes the embodied energy of EGS surface power plants. The power generation analysis is focused on flash type cycles for using subcritical geofluid (<374 °C and expansion type cycles for using supercritical geofluid (>374 °C. Key findings of this study include: (i double-flash plants have 24.3%–29.0% higher geofluid effectiveness than single-flash ones, and 3%–10% lower specific embodied energy; (ii the expansion type plants have geofluid effectiveness > 750 kJ/kg, significantly higher than flash type plants (geofluid effectiveness < 300 kJ/kg and the specific embodied energy is lower; (iii to increase the turbine outlet vapor fraction from 0.75 to 0.90, we include superheating by geofluid but that reduces the geofluid effectiveness by 28.3%; (iv for geofluid temperatures above 650 °C, double-expansion plants have a 2% higher geofluid effectiveness and 5%–8% lower specific embodied energy than single-expansion ones.

  7. Geothermal power generation in the United States 1985 through 1989

    International Nuclear Information System (INIS)

    Rannels, J.E.; McLarty, L.

    1990-01-01

    The United States has used geothermal energy for the production of electricity since 1960 and has the largest installed capacity of any country in the world. During the 1980s, expansion at The Geysers and emergence of the hot water segment of the industry fueled explosive growth in generating capacity. In this paper geothermal development in the U.S. during the second half of the decade is reviewed, and development over the next five years is forecast

  8. The Parisian basin, birthplace of geothermics

    International Nuclear Information System (INIS)

    Jeanson, E.

    1995-01-01

    The exploitation of low energy geothermics in France is mainly localized in the Parisian Basin. About 40 geothermal plants are established in urbanized areas for heating and sanitary hot water supplies and also for air conditioning. Each plant can supply about 2500 to 5000 lodgings of collective buildings. Excluding drilling costs, urban investments can reach 70% of the total operating cost. Most of the exploitations draw the geothermal fluids from the Dogger reservoir located at a 1500-2000 m depth using double-well technique. Water temperature is about 60 to 85 C and solutes (salts and sulfides) represent 15 to 35 g/l. The deeper Albian and Neocomian drinking water reservoirs are exceptionally used due to their strategic nature. The corrosion problems and the age of the installations are the principal problems of the existing installations but the operating costs remain competitive with other energy sources. (J.S.). 3 figs., 9 photos

  9. The missing link between submarine volcano and promising geothermal potential in Jinshan, Northern Taiwan

    Science.gov (United States)

    Wang, S. C.; Hutchings, L.; Chang, C. C.; Lee, C. S.

    2017-12-01

    The Tatun volcanic group (TVG) and the Keelung submarine volcano (KSV) are active volcanoes and surrounding three nuclear plant sites in north Taiwan. The famous Jinshan-Wanli hot springs locates between TVG and KSV, moreover, the geochemical anomalies of acidic boiling springs on the seacoast infer that the origin is from magmatic fluids, sea water and meteoric water mixture, strongly implying that mantle fluids ascends into the shallow crust. The evidence for a magma chamber, submarine volcano, and boiling springs have a close spatial relationship. Based on UNECE specifications to Geothermal Energy Resources (2016), the Jinshan-Wanli geothermal area could be classified as Known Geothermal Energy Source for geothermal direct use and Potential Geothermal Energy Source for conventional geothermal system. High resolution reservoir exploration and modeling in Jinshan-Wanli geothermal area is developing for drilling risk mitigation. The geothermal team of National Taiwan Ocean University and local experts are cooperating for further exploration drilling and geothermal source evaluation. Keywords: geothermal resource evaluation, Jinshan-Wanli geothermal area, submarine volcano

  10. On geothermal resources of India. Geotectonic aspects and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M L [National Geophysical Research Inst., Hyderabad (India)

    1988-11-10

    Research programs launched for exploration and development of the geothermal energy in India, since the 1973-1974 oil embargo, have led to the identification of many potential areas for geothermal resources. Resources comprise high/intermediate/low temperature hydrothermal convection and hot water aquifer systems, geopressured geothermal system and conduction-dominated regimes. Location and properties of these geothermal systems are controlled by the geodynamic and tectonic characteristics of the Indian continental lithosphere Main sectors for the utilization of India's proved and identified geothermal resources are the power generation, space heating, green house cultivation, aquaculture, poultry, sheep breeding, mineral processing, mushroom raising, processing of farm and forest produce, refrigeration, tourism, health-resorts and mineral water bottling. The R and D efforts have given some encouraging results. Geothermal resources of India, although primarily are of medium to low grade, could supplement, to a great extent, direct heat energy needs and may also provide electricity to some of the remote hilly areas. Development of geothermal energy sources in India is likely to get some more attention, with the setting up of separate departments and agencies, by various Provincial Governments, for R and D backing toward the alternate sources of energy.

  11. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    Science.gov (United States)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  12. A primary study on finding hot groundwater using infrared remote sensing

    Science.gov (United States)

    Qiao, Y.; Wu, Q.

    Hot groundwater is a kind of valuable natural resources to be explored utilized. Shanxi Province, located in the eastern Loess Plateau of China, is rich in geothermal resources, most of which was found in irrigation well drilling or geological survey. Basic study is weak. Now new developed Remote Sensing technique provides geothermal study with an advanced way. Air-RS information of thermal infrared and dada from thermal channel of Meteorological Landset AVHRR has been used widely. A thermal infrared channel (TM6) was installed in the U. S. second Landset, Its resolving power of space is as high as 120 m, 10 times more t an one ofh AVHRR. A Landset earth recourses launched by China and Brazil (CBERS-1) in 1999, including a spectrum of thermal infrared. It is paid a great interested and attention to survey geothermal resources using thermal infrared. This article is a brief introduction of finding hot groundwater with on the bases of differences of thermal radiation of objects reflected by thermal infrared in the Landset, and treated with HIS colors changes. This study provides an advanced way widely used to exploit hot groundwater and to promote the development of tourism and geothermal medical in China.

  13. Parameters and a magnitude moment relationship from small earthquakes observed during hydraulic fracturing experiments in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, C.

    1982-04-01

    Using source parameters estimated from seismic spectra and magnitudes estimated from coda lengths, we demonstrate that the log-linear relationship between moment and magnitude holds for events with magnitudes as low as -6. Using, as a data set, events induced by hydraulic fracturing experiments at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) geothermal site, we find that the relationship between magnitude M and seismic moment (Mo) is log (Mo) = 17.27+0.77 M Moreover, the linear relationship between seismic moment and source radius (r) holds for the Fenton Hill microearthquakes. Analyses of the Fenton Hill data yield the following relationship. log (r) = 2.28+0.19 log (Mo)

  14. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc

    Science.gov (United States)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.

    2011-12-01

    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  15. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  16. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  17. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  18. Viruses in acidic geothermal environments of the Kamchatka Peninsula

    DEFF Research Database (Denmark)

    Bize, Ariane; Peng, Xu; Prokofeva, Maria

    2008-01-01

    Screening for viruses in samples taken from acidic hot springs of Kamchatka (Russia) revealed a collection of morphotypes, including linear, spherical and complex fusiform shapes, which show partial similarity to those found in acidic geothermal environments in other geographical locations. One...

  19. Numerical modeling of regional stress distributions for geothermal exploration

    Science.gov (United States)

    Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold

    2017-04-01

    Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault

  20. Bibliographical review about Na/Li geo-thermometry and lithium isotopes applied to worldwide geothermal waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, B.; Millot, R.

    2009-09-15

    This study is performed within the framework of the FP6 European project HITI (High Temperature Instruments for supercritical geothermal reservoir characterization and exploitation). This research project, co-funded by EU and the different partners, aims to provide geophysical and geochemical sensors and methods to evaluate deep geothermal wells up to supercritical conditions (T > 370 deg. C), which are more cost-effective than those of the conventional wells. A deep geothermal well is currently being drilled for this purpose into the Krafla area, Iceland, as part of the IDDP ('Iceland Deep Drilling Project') and with joint funding from Icelandic industry and science Institutes. Another deep well will be drilled in the Reykjanes peninsula, Iceland, within the framework of the same project. This study, a bibliographical review about the Na/Li geo-thermometer and lithium isotopes applied on the world geothermal waters, is the first step of the task envisaged by BRGM to use and validate the sodium-lithium (Na-Li) chemical geo-thermometer on Icelandic geothermal waters at temperatures ranging from 25 to 500 deg. C. In this study, more than 120 temperature and chemical data from world geothermal and oil-fields, sedimentary basins, oceanic ridges, emerged rifts and island arcs have been collected and investigated. These additional data have allowed to confirm and refine the three existing Na/Li thermometric relationships. Moreover, a new Na/Li thermometric relationship relative to the processes of seawater or dilute seawater-basalt interaction occurring in the oceanic ridges and emerged rifts is proposed. Even if the running of Na/Li is still poorly understood, the existence of a new thermometric relationship confirms that the Na/Li ratios not only depend on the temperature but also on other parameters such as the fluid salinity and origin, or the nature of the reservoir rocks in contact with the geothermal fluids. For most of the geothermal waters in contact

  1. Sol Duc Hot Springs feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  2. Low enthalpy geothermal for oil sands (LEGO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Geothermal energy is generated by the slow decay of radioactive materials within the Earth. Geothermal energy resources include the water from hot springs used for heating; the withdrawal of high temperature steam from deep wells; and the use of stable ground or water temperatures near the Earth's surface to heat or cool buildings or in industrial processes. Heat pumps are used to transfer heat or water from the ground into buildings in winter. This paper discussed low enthalpy geothermal options for oil sands processes in order to reduce the use of natural gas and emissions from greenhouse gases (GHGs). The study was also conducted to aid in the development of a portfolio of renewable energy options for the oil and gas sector. The study estimated the costs and benefits of operating a shallow geothermal borehole cluster for meeting a portion of process heat demands for the Nexen's Albian mine. The costs and benefits of operating thermo-chillers integrated with a shallow geothermal borehole cluster for waste heat mitigation were also evaluated. The study showed that geothermal designs can be used to meet a portion of oil sands process heat and cooling demands. Mining operators may reduce carbon emissions and energy costs for process heat demands by installing closed loop borehole heat exchangers. Geothermal heat storage capacity can also be used to increase the efficiency of thermal chillers. It was concluded that pilot plant studies would contribute to a better understanding of the technology. tabs., figs.

  3. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  4. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Partida, E. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico)]. E-mail: egp@geociencias.unam.mx; Carrillo-Chavez, A. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico); Levresse, G. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico); Tello-Hinojosa, E. [Comision Federal de Electricidad, A.P. 31-7, C.P. 58090 Morelia, Mich. (Mexico); Venegas-Salgado, S. [Comision Federal de Electricidad, A.P. 31-7, C.P. 58090 Morelia, Mich. (Mexico); Ramirez-Silva, G. [Comision Federal de Electricidad, A.P. 31-7, C.P. 58090 Morelia, Mich. (Mexico); Pal-Verma, M. [Instituto de Investigaciones Electricas, A.P. 1-475, C.P. 62001 Cuernavaca, Morelos (Mexico); Tritlla, J. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico); Camprubi, A. [Centro de Geociencias, UNAM, Campus Juriquilla, A.P. 15, Juriquilla, Qro., 76230 (Mexico)

    2005-01-01

    Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (T{sub mi}) near zero (0 deg C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (T{sub h}) = 325 {+-} 5 deg C. The boiling zone shows T{sub h} = {+-}300 deg C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO{sub 2}. Positive clathrate melting temperatures (fusion) with T{sub h} = 150 deg C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 deg C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO{sub 2} (80-98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir. The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions ({delta}{sup 18}O-{delta}D) of the geothermal brine indicate mixing between meteoric water and a

  5. Geothermal energy: opportunities for California commerce. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories were found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.

  6. Lessons from geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, J. B.; Bergfeld, D.; Evans, W.; Hurwitz, S.

    2015-12-01

    The magma-hydrothermal system of the Yellowstone Plateau Volcanic Field encompasses over ten thousand individual springs, seeps, and fumaroles spread out over >9000 square kilometers, and produces a range of acid, neutral and alkaline waters. A prominent model (Fournier, 1989 and related papers) concludes that many neutral and alkaline fluids found in hot springs and geysers are derived from a uniform, high-enthalpy parent fluid through processes such as deep boiling and mixing with dilute meteoric groundwater. Acid waters are generally condensates of gas-bearing steam that boils off of subsurface geothermal waters. Our recent studies of gases at Yellowstone (Lowenstern et al., 2015 and references therein) are compatible with such a model, but also reveal that gases are largely decoupled from thermal waters due to open-system addition of abundant deep gas to (comparatively) shallow circulating thermal waters. Fumarole emissions at Yellowstone range from gas-rich (up to 15 mol%) composed of deeply derived CO2, He and CH4, to steam-rich emissions (16 RA) and low CH4 and He concentrations and 2) mantle-derived CO2 with much higher CH4 and/or He concentrations and abundant radiogenic He picked up from crustal degassing. Individual thermal areas have distinct CH4/He. It remains unclear whether some gas ratios mainly reflect subsurface geothermal temperatures. Instead, they may simply reflect signatures imparted by local rock types and mixing on timescales too fast for reequilibration. Overall, the gas chemistry reflects a broader view of mantle-crust dynamics than can be appreciated by studies of only dissolved solutes in the neutral and alkaline waters from Yellowstone geysers. Fournier (1989) Ann. Rev. Earth Planet. Sci. v. 17, p. 13-53. Lowenstern et al. (2015) JVGR, v. 302, 87-101.

  7. Potential for enhanced geothermal systems in Alberta, Canada

    International Nuclear Information System (INIS)

    Hofmann, Hannes; Weides, Simon; Babadagli, Tayfun; Zimmermann, Günter; Moeck, Inga; Majorowicz, Jacek; Unsworth, Martyn

    2014-01-01

    The province of Alberta has a high demand of thermal energy for both industrial and residential applications. Currently, the vast majority of the heat used in these applications is obtained by burning natural gas. Geothermal energy production from deep aquifer systems in the sedimentary basin could provide an alternative sustainable source of heat that would significantly reduce greenhouse gas emissions. To date there has been no geothermal field development in Alberta because the average geothermal gradient was considered to be too low for economic geothermal energy generation. However, with new technologies for Enhanced Geothermal Systems (EGS), it may be possible to develop geothermal resources from the sedimentary rocks in the Western Canadian Sedimentary Basin (WCSB). A numerical feasibility study based on a regional geological model and existing and newly gained data was conducted to identify scenarios for geothermal energy production in the region. In central Alberta, three Devonian carbonate formations (Cooking Lake, Nisku, Wabamun) and the Cambrian Basal Sandstone Unit were identified as the highest geothermal potential zones. Thermal-hydraulic reservoir simulations for a 5 km × 5 km site in the city of Edmonton were performed to evaluate reservoir development concepts for these four potential target formations; therefore, hydraulic fracturing treatments were also simulated. Different utilization concepts are presented for possible applications of geothermal energy generation in residential, industrial and agricultural areas. The Cooking Lake formation and the Basal Sandstone Unit are potentially the most promising reservoirs because the most heat can be extracted and the applications for the heat are widespread although the costs are higher than utilizing the shallower formations. Reservoir stimulation considerably improves the economics in all formations

  8. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    Science.gov (United States)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction

  9. Fracture properties from tight reservoir outcrop analogues with application to geothermal exploration

    Science.gov (United States)

    Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John

    2015-04-01

    In geothermal reservoirs, similar to other tight reservoirs, fluid flow may be intensely affected by fracture systems, in particular those associated with fault zones. When active (slipping) the fault core, that is, the inner part of a fault zone, which commonly consists of breccia or gouge, can suddenly develop high permeability. Fault cores of inactive fault zones, however, may have low permeabilities and even act as flow barriers. In the outer part of a fault zone, the damage zone, permeability depends mainly on the fracture properties, that is, the geometry (orientation, aperture, density, connectivity, etc.) of the fault-associated fracture system. Mineral vein networks in damage zones of deeply eroded fault zones in palaeogeothermal fields demonstrate their permeability. In geothermal exploration, particularly for hydrothermal reservoirs, the orientation of fault zones in relation to the current stress field as well as their internal structure, in particular the properties of the associated fracture system, must be known as accurately as possible for wellpath planning and reservoir engineering. Here we present results of detailed field studies and numerical models of fault zones and associated fracture systems in palaeogeo¬thermal fields and host rocks for geothermal reservoirs from various stratigraphies, lithologies and tectonic settings: (1) 74 fault zones in three coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (2) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); and (3) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone and limestone) in the Upper Rhine Graben shoulders. Whereas (1) represent palaeogeothermal fields with mineral veins, (2) and (3) are outcrop analogues of reservoir horizons from geothermal exploration. In the study

  10. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.

    2014-11-01

    Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.

  11. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan.

    Science.gov (United States)

    Amin, Arshia; Ahmed, Iftikhar; Salam, Nimaichand; Kim, Byung-Yong; Singh, Dharmesh; Zhi, Xiao-Yang; Xiao, Min; Li, Wen-Jun

    2017-07-01

    Chilas and Hunza areas, located in the Main Mantle Thrust and Main Karakoram Thrust of the Himalayas, host a range of geochemically diverse hot springs. This Himalayan geothermal region encompassed hot springs ranging in temperature from 60 to 95 °C, in pH from 6.2 to 9.4, and in mineralogy from bicarbonates (Tato Field), sulfates (Tatta Pani) to mixed type (Murtazaabad). Microbial community structures in these geothermal springs remained largely unexplored to date. In this study, we report a comprehensive, culture-independent survey of microbial communities in nine samples from these geothermal fields by employing a bar-coded pyrosequencing technique. The bacterial phyla Proteobacteria and Chloroflexi were dominant in all samples from Tato Field, Tatta Pani, and Murtazaabad. The community structures however depended on temperature, pH, and physicochemical parameters of the geothermal sites. The Murtazaabad hot springs with relatively higher temperature (90-95 °C) favored the growth of phylum Thermotogae, whereas the Tatta Pani thermal spring site TP-H3-b (60 °C) favored the phylum Proteobacteria. At sites with low silica and high temperature, OTUs belonging to phylum Chloroflexi were dominant. Deep water areas of the Murtazaabad hot springs favored the sulfur-reducing bacteria. About 40% of the total OTUs obtained from these samples were unclassified or uncharacterized, suggesting the presence of many undiscovered and unexplored microbiota. This study has provided novel insights into the nature of ecological interactions among important taxa in these communities, which in turn will help in determining future study courses in these sites.

  12. Geothermal energy control system and method

    Science.gov (United States)

    Matthews, Hugh B.

    1977-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

  13. Low Temperature Geothermal Play Fairway Analysis For The Appalachian Basin: Phase 1 Revised Report November 18, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Teresa E. [Cornell Univ., Ithaca, NY (United States); Richards, Maria C. [Southern Methodist Univ., Dallas, TX (United States); Horowitz, Franklin G. [Cornell Univ., Ithaca, NY (United States); Camp, Erin [Cornell Univ., Ithaca, NY (United States); Smith, Jared D. [Cornell Univ., Ithaca, NY (United States); Whealton, Calvin A. [Cornell Univ., Ithaca, NY (United States); Stedinger, Jery R. [Cornell Univ., Ithaca, NY (United States); Hornbach, Matthew J. [Southern Methodist Univ., Dallas, TX (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Tester, Jefferson W. [Cornell Univ., Ithaca, NY (United States); Anderson, Brian [West Virginia Univ., Morgantown, WV (United States); Welcker, Kelydra [West Virginia Univ., Morgantown, WV (United States); Chickering Pace, Catherine [Southern Methodist Univ., Dallas, TX (United States); He, Xiaoning [West Virginia Univ., Morgantown, WV (United States); Magnani, Maria Beatrice [Southern Methodist Univ., Dallas, TX (United States); Bolat, Rahmi [Southern Methodist Univ., Dallas, TX (United States)

    2016-11-18

    Pennsylvania, for which the available geological data are insufficient to fully analyze the geological risks but yet the population is high. First, to assess the spatial variation in the depth to which one would need to drill to obtain geothermal temperatures that are useful to a future project, the project used bottom-hole temperature data from Appalachian Basin oil and gas exploration. These bottom hole temperature data are abundant but of low quality. Second, the project examined the potential for sufficient water flow rates through rocks to harvest heat from a geothermal well field, considering only natural reservoirs. This analysis provides a very incomplete picture of spatial variability of natural reservoirs because the oil and gas reservoir data lack key properties and are spatially biased toward those locations with profitable amounts of hydrocarbons in the rock pore spaces. Third, in light of the fact that earthquake activity has been induced in several states by subsurface work related to the oil and gas industry, this project examined the potential for similar activity in the Appalachian Basin. Acknowledging that data for such a task are insufficient, we utilized what was available: records of seismic activity, regional estimates of the orientations of stress in the rocks, and locations and orientations of zones of lateral change in rock properties at depths down to several kilometers below Earth’s surface. With these data, we created a first approximation of spatially variable risks for induced earthquakes. Because no data existed with which to test the reliability of these methods, the results have a high degree of uncertainty. Fourth, we examined the spatial variability of the above-the-ground factors that contribute to the economical viability of projects to tap low-temperature geothermal resources for direct-use. We worked principally with population density as a regionally known variable that would impact the cost of district heating. The resulting maps

  14. Geothermal technology development program. Annual progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R. (ed.)

    1982-09-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology.

  15. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China.

    Science.gov (United States)

    Song, Zhao-Qi; Wang, Feng-Ping; Zhi, Xiao-Yang; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Tang, Shu-Kun; Jiang, Hong-Chen; Zhang, Chuanlun L; Dong, Hailiang; Li, Wen-Jun

    2013-04-01

    Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Origin, evolution and geothermometry of the thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey)

    Science.gov (United States)

    Alçiçek, Hülya; Bülbül, Ali; Brogi, Andrea; Liotta, Domenico; Ruggieri, Giovanni; Capezzuoli, Enrico; Meccheri, Marco; Yavuzer, İbrahim; Alçiçek, Mehmet Cihat

    2018-01-01

    The Gölemezli Geothermal Field (GGF) is one of the best known geothermal fields in western Anatolia (Turkey). The exploited fluids are of meteoric origin, mixed with deep magmatic fluids, which interacted with the metamorphic rocks of the Menderes Massif. The geothermal fluids are channeled along Quaternary faults belonging to the main normal faults system delimiting the northern side of the Denizli Basin and their associated transfer zones. In this study, hydrochemical and isotopic analyses of the thermal and cold waters allow us to determine water-rock interactions, fluid paths and mixing processes. Two groups of thermal waters have been distinguished: (i) Group 1A, comprising Na-SO4 type and Ca-SO4 type and (ii) Group 1B, only consisting Ca-HCO3 type waters. Differently, two groups were recognized in the cold waters: (i) Group 2A, corresponding to Ca-HCO3 type and (ii) Group 2B, including Mg-HCO3 type. Their geochemical characteristics indicate interactions with the Paleozoic metamorphic rocks of the Menderes Massif and with the Neogene lacustrine sedimentary rocks. Dissolution of host rock and ion-exchange reactions modify thermal water composition in the reservoir of the GGF. High correlation in some ionic ratios and high concentrations of some minor elements suggest an enhanced water-rock interaction. None of the thermal waters has been reached a complete chemical re-equilibrium, possibly as a result of mixing with cold water during their pathways. Geothermal reservoir temperatures are calculated in the range of 130-210°C for the Gölemezli field. Very negative δ18O and δ2H isotopic ratios are respectively between -8.37 and -8.13‰ and -61.09 and -59.34‰ for the SO4-rich thermal waters, and ca. - 8.40 and -8.32‰ and - 57.80 and -57.41‰ for the HCO3-rich thermal waters. Low tritium (link existing between fractures and fluid convection in the extensional settings. In this view, the GGF is a very good example of geothermal field associated to active

  17. Southwest Alaska Regional Geothermal Energy Projec

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  18. The geopressured-geothermal resource

    International Nuclear Information System (INIS)

    Wys, J.N.; Dorfman, M.

    1990-01-01

    This paper reports that the Geopressured-Geothermal resource has an estimated 5,700 recoverable quad of gas and 11,000 recoverable quad of thermal energy in the onshore Texas and Louisiana Gulf Coasts area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured-geothermal wells in Texas and Louisiana. The Pleasant Bayou Well has a 1 MWe hybrid power system converting some gas and the thermal energy to electricity. The Gladys McCall Well produced over 23 MM bbls brine with 23 scf per bbl over 4 1/2 years. It is now shut-in building up pressure. The deep Hulin Well has been cleaned out and short term flow tested. It is on standby awaiting funds for long-term flow testing. In January 1990 an Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource was convened at Rice University, Houston, TX. Sixty-five participants heard industry cost-shared proposals for using the hot geopressured brine. Proposals ranged from thermal enhanced oil recovery to aquaculture, conversion, and environmental clean up processes. By the September meeting at UTA-Balcones Research Center, industry approved charters will have been received, an Advisory Board will be appointed, and election of officers from industry will he held

  19. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone

    Science.gov (United States)

    Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire

    2018-04-01

    Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.

  20. Correlation of geothermal springs with sub-surface fault terminations revealed by high-resolution, UAV-acquired magnetic data

    Science.gov (United States)

    Glen, Jonathan; A.E. Egger,; C. Ippolito,; N.Athens,

    2013-01-01

    There is widespread agreement that geothermal springs in extensional geothermal systems are concentrated at fault tips and in fault interaction zones where porosity and permeability are dynamically maintained (Curewitz and Karson, 1997; Faulds et al., 2010). Making these spatial correlations typically involves geological and geophysical studies in order to map structures and their relationship to springs at the surface. Geophysical studies include gravity and magnetic surveys, which are useful for identifying buried, intra-basin structures, especially in areas where highly magnetic, dense mafic volcanic rocks are interbedded with, and faulted against less magnetic, less dense sedimentary rock. High-resolution magnetic data can also be collected from the air in order to provide continuous coverage. Unmanned aerial systems (UAS) are well-suited for conducting these surveys as they can provide uniform, low-altitude, high-resolution coverage of an area without endangering crew. In addition, they are more easily adaptable to changes in flight plans as data are collected, and improve efficiency. We have developed and tested a new system to collect magnetic data using small-platform UAS. We deployed this new system in Surprise Valley, CA, in September, 2012, on NASA's SIERRA UAS to perform a reconnaissance survey of the entire valley as well as detailed surveys in key transition zones. This survey has enabled us to trace magnetic anomalies seen in ground-based profiles along their length. Most prominent of these is an intra-basin magnetic high that we interpret as a buried, faulted mafic dike that runs a significant length of the valley. Though this feature lacks surface expression, it appears to control the location of geothermal springs. All of the major hot springs on the east side of the valley lie along the edge of the high, and more specifically, at structural transitions where the high undergoes steps, bends, or breaks. The close relationship between the springs

  1. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  2. Mass Dependent Fractionation of Hg Isotopes in Source Rocks, Mineral Deposits and Spring Waters of the California Coast Ranges, USA

    Science.gov (United States)

    Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.

    2007-12-01

    We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that extend to greater depths (200 to 1000 m), as well as active springs and geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a

  3. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, John W. [Leidos, Inc., San Diego, CA (United States)

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal

  4. Geothermal pump down-hole energy regeneration system

    Science.gov (United States)

    Matthews, Hugh B.

    1982-01-01

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  5. Preliminary study of Songa-Wayaua geothermal prospect area using volcanostratigraphy and remote sensing analysis

    Science.gov (United States)

    Asokawaty, Ribka; Nugroho, Indra; Satriana, Joshua; Hafidz, Muhamad; Suryantini

    2017-12-01

    Songa-Wayaua geothermal prospect area is located on Bacan Island, Northern Molluca Province. Geothermal systems in this area associated with three Quartenary volcanoes, such as Mt. Pele-pele, Mt. Lansa, and Mt. Bibinoi. Based on literature study, five surface manifestations such as hot springs and alteration occurred within this area. The active manifestations indicate that Songa-Wayaua area has potential geothermal resource. This study objective is to evaluate Songa-Wayaua geothermal system on preliminary study stage by using volcanostratigraphy and remote sensing analysis to delineate the boundary of geothermal system area. The result of this study showed that Songa-Wayaua prospect area has four heat sources potential (e.g. Pele-pele Hummock, Lansa Hummock, Songa Hummock, and Bibinoi Hummock), controlled by geological structure presented by Pele-pele Normal Fault, and had three places as the recharge and discharge area which are very fulfilling as a geothermal system.

  6. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  7. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    Science.gov (United States)

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  8. Heat-energy storage through semi-opened circulation into low-permeability hard-rock aquifers

    Science.gov (United States)

    Pettenati, Marie; Bour, Olivier; Ausseur, Jean-Yves; de Dreuzy, Jean-Raynald; de la Bernardie, Jérôme; Chatton, Eliot; Lesueur, Hervé; Bethencourt, Lorine; Mougin, Bruno; Aquilina, Luc; Koch, Florian; Dewandel, Benoit; Boisson, Alexandre; Mosser, Jean-François; Pauwels, Hélène

    2016-04-01

    In low-permeability environments, the solutions of heat storage are still limited to the capacities of geothermal borehole heat exchangers. The ANR Stock-en-Socle project explores the possibilities of periodic storage of sensitive heat1 in low-permeability environments that would offer much better performance than that of borehole heat exchangers, especially in terms of unit capacity. This project examines the storage possibilities of using semi-open water circulation in typically a Standing Column Well (SCW), using the strong heterogeneity of hard-rock aquifers in targeting the least favorable areas for water resources. To solve the main scientific issues, which include evaluating the minimum level of permeability required around a well as well as its evolution through time (increase and decrease) due to water-rock interaction processes, the study is based on an experimental program of fieldwork and modelling for studying the thermal, hydraulic and geochemical processes involved. This includes tracer and water-circulation tests by injecting hot water in different wells located in distinct hard-rock settings (i.e. granite and schist) in Brittany, Ploemeur (H+ observatory network) and Naizin. A numerical modelling approach allows studying the effects of permeability structures on the storage and heat-recovery capacities, whereas the modelling of reactive transfers will provide an understanding of how permeability evolves under the influence of dissolution and precipitation. Based on the obtained results, technical solutions will be studied for constructing a well of the SCW type in a low-permeability environment. This work will be completed by a technical and economic feasibility study leading to an investment and operations model. This study aims to describe the suitability of SCW storage for shallow geothermal energy. In order to reach these objectives, Stock-en-Socle is constructed around a public/private partnership between two public research organizations, G

  9. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    Science.gov (United States)

    Elders, W. A.; Cohen, L. H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 3650C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high conentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it.

  10. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas R. [Univ. of Idaho, Idaho Falls, ID (United States); Worthing, Wade [Univ. of Idaho, Idaho Falls, ID (United States); Cannon, Cody [Univ. of Idaho, Idaho Falls, ID (United States); Palmer, Carl [Univ. of Idaho, Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis L [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Mattson, Earl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Dobson, Patric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need

  11. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    Science.gov (United States)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45

  12. Deep Unconventional Geothermal Resources: a major opportunity to harness new sources of sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, G.O.; Albertsson, A.; Stefansson, B.; Gunnlaugsson, E.; Adalsteinsson, H.

    2007-07-01

    The Iceland Deep Drilling Project (IDDP) is a long-term program to improve the efficiency and economics of geothermal energy by harnessing Deep Unconventional Geothermal Resources (DUGR). Its aim is to produce electricity from natural supercritical hydrous fluids from drillable depths. Producing supercritical fluids will require drilling wells and sampling fluids and rocks to depths of 3.5 to 5 km, and at temperatures of 450-600{sup o}C. The long-term plan is to drill and test a series of such deep boreholes in Iceland at the Krafla, the Hengill, and the Reykjanes high temperature geothermal systems. Beneath these three developed drill fields temperatures should exceed 550-650{sup o}C, and the occurrence of frequent seismic activity below 5 km, indicates that the rocks are brittle and therefore likely to be permeable. Modeling indicates that if the wellhead enthalpy is to exceed that of conventionally produced geothermal steam, the reservoir temperature must be higher than 450{sup o}C. A deep well producing 0.67 m3/sec steam ({approx}2400 m3/h) from a reservoir with a temperature significantly above 450{sup o}C could yield enough high-enthalpy steam to generate 40-50 MW of electric power. This exceeds by an order of magnitude the power typically obtained from conventional geothermal wells. (auth)

  13. 17th Symposium of NEDO projects. Geothermal subcommittee; Chinetsu bunkakai. Dai 17 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Described herein are the reports presented to the geothermal subcommittee. The NEDO's Geothermal Research Department is developing the technologies for accurately predicting the reservoir changes in the future by the geothermal development promotion investigations for distributed conditions of geothermal resources and related environmental impacts, and also by clarifying the hydrogic characteristics of the fracture systems which form the reservoirs. The department is also implementing the projects for investigating/ researching possibilities of resources distribution conditions and utilization for eventual commercialization of the deep underground geothermal resources, and also investigating utilization of small- to medium-sized geothermal binary power generation systems for effective utilization of unutilized geothermal energy. The geothermal technology development group is developing the technologies for the binary cycle power generation plants which effectively utilize unutilized medium- to high-temperature geothermal water for power generation, and also the technologies for collecting conditions at the bottom of a geothermal well being excavated in real time to improve efficiency and precision of the excavation. The other technologies being developed include those for excavation and production essential for development of power generation systems using high-temperature rocks and deep underground geothermal resources, the former being expected to contribute to expanded utilization of geothermal resources and the latter to increased geothermal power generation capacity. (NEDO)

  14. 17th Symposium of NEDO projects. Geothermal subcommittee; Chinetsu bunkakai. Dai 17 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Described herein are the reports presented to the geothermal subcommittee. The NEDO's Geothermal Research Department is developing the technologies for accurately predicting the reservoir changes in the future by the geothermal development promotion investigations for distributed conditions of geothermal resources and related environmental impacts, and also by clarifying the hydrogic characteristics of the fracture systems which form the reservoirs. The department is also implementing the projects for investigating/ researching possibilities of resources distribution conditions and utilization for eventual commercialization of the deep underground geothermal resources, and also investigating utilization of small- to medium-sized geothermal binary power generation systems for effective utilization of unutilized geothermal energy. The geothermal technology development group is developing the technologies for the binary cycle power generation plants which effectively utilize unutilized medium- to high-temperature geothermal water for power generation, and also the technologies for collecting conditions at the bottom of a geothermal well being excavated in real time to improve efficiency and precision of the excavation. The other technologies being developed include those for excavation and production essential for development of power generation systems using high-temperature rocks and deep underground geothermal resources, the former being expected to contribute to expanded utilization of geothermal resources and the latter to increased geothermal power generation capacity. (NEDO)

  15. Report on fiscal 1999 survey for geothermal exploration technology verification. Survey of deep-seated geothermal resources; 1999 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. Shinbu chinetsu shigen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    To promote the development of deep-seated geothermal resources in a rationalized way, studies were conducted about deep-seated geothermal resource assessment techniques, development guidelines, and the like. For the development of techniques for estimating deep-seated geothermal reservoir parameters, the Uenotai district, Akita Prefecture, and the Hatchobaru district, Oita Prefecture, were designated as model fields, and a geothermal system conceptual model was fabricated. Data of the two districts were registered in a database. Using these data, verification was performed of the validity of stochastic estimation techniques, large area flow simulation, rock/water equilibrium reaction simulation, and the like. As for the technique of deep-seated resource amount estimation, a simplified reservoir model was experimentally constructed based on parameters determined by the stochastic estimation of deep-seated reservoirs and on the conceptual model, and a method was studied for TOUGH2-based production prediction. Studies were also made about deep-seated geothermal resource development guidelines, such as exploration guidelines, exploration well boring guidelines, and geothermal fluid production guidelines. (NEDO)

  16. Economic impacts of geothermal development in Harney County, Oregon

    International Nuclear Information System (INIS)

    Sifford, A.; Beale, K.

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300 degrees F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant

  17. Economic impacts of geothermal development in Deschutes County, Oregon

    International Nuclear Information System (INIS)

    Sifford, A.; Beale, K.

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300 degrees F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant

  18. Economic Impacts of Geothermal Development in Deschutes County, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  19. Economic Impacts of Geothermal Development in Harney County, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  20. Results of investigation at the Miravalles geothermal field, Costa Rica. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica; Parte 2, Muestreo de fluidos pozo abajo

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, C.O.; Goff, F.; Trujillo, P.E. Jr.; Counce, D.A.; Dennis, B.; Kolar, J.; Corrales, R. (Los Alamos National Lab., NM (USA); Instituto Costarricense de Electricidad, San Jose (Costa Rica))

    1989-10-01

    Samples of the geothermal fluids in the Miravalles, Costa Rica, geothermal system were collected from production wellbores using downhole fluid samplers, from flowing wellheads using miniseparators, and from hot springs that discharge in the area. The reservoir fluid at Miravalles is a neutral-chloride-type water, but fumaroles and acid-sulfate springs are present within the main thermal area, and there are bicarbonate-rich hot springs that are clearly related to the neutral-chloride reservoir fluids. Dissolved gases are primarily a mixture of CO{sub 2} with air, but samples collected in the fumarolic areas also contain H{sub 2}S. Water-stable isotope analyses suggest local meteoric recharge, and the reservoir fluid shows oxygen isotopic shifts of about 2.5% due to high-temperature oxygen exchange between water and rock. Chemical geothermometer temperatures are consistent with the measured downhole temperature of 220{degrees} to 255{degrees}C. This pattern of neutral-chloride reservoir fluids with acid-sulfate springs near the source region and bicarbonate-rich chloride hot springs at the periphery of the system suggests a lateral outflow type of hydrothermal system. In addition to the geochemical evidence, temperature profiles from several of the wells show temperature reversals that are characteristic of lateral outflow plumes. We find no evidence for the underlying, higher temperature (300{degrees}C) system, which has been suggested by other investigators. 24 refs., 14 figs., 6 tabs.