WorldWideScience

Sample records for hot dip metal

  1. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    Science.gov (United States)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  2. Hot-Dip Galvanized Sheet Production and Application

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Hot-dip galvanized sheet is wildly used in construction, household appliances, ship, vehicle and vessel building and machinery, etc. In last ten years, with the development of automobile industry, the anti-corrosion requirements for car body are increasingly strict, by which the rapid development in technology has been promoted. The application of hot-dip galvanized sheet, technological progress in production and some Chinese large units were introduced.

  3. Processing hot-dip galvanized AHSS grades: a challenging task

    Energy Technology Data Exchange (ETDEWEB)

    Pichler, A.; Hebesberger, T.; Tragl, E.; Traint, S.; Faderl, J.; Angeli, G.; Koesters, K. [voestalpine Stahl GmbH, Linz (Austria)

    2005-07-01

    High-strength thin sheet steel grades have gained a considerable market share. At present a very strong demand has been observed for DP (dual-phase), CP (complex phase) and TRIP grades, which are often summarized as advanced high-strength steel grades (AHSS). The potential benefits of applying AHSS grades were impressively demonstrated in the ULSAC-AVC project, in which a remarkable reduction in mass and an increase in stiffness and crash safety were achieved by using a very high share of AHSS steel grades. The present contribution concentrates on hot-dip galvanized AHSS thin sheet grades. The hot-dip galvanizeability of such grades is critically discussed after an overview is provided of the metallurgy of AHSS grades, including microstructure, mechanical properties, phase transformations and required alloy design. Based on these fundamentals, the processing of AHSS grades in the hot-dip galvanizing line is discussed and the resulting properties presented. (orig.)

  4. The adhesion of epoxy cataphoretic coating on phosphatized hot-dip galvanized steel

    Directory of Open Access Journals (Sweden)

    Bajat Jelena B.

    2006-01-01

    Full Text Available The influence of hot-dip galvanized steel surface pretreatment on the adhesion of epoxy cataphoretic coating was investigated. Phosphate coatings were deposited on hot-dip galvanized steel and the influence of fluoride ions in the phosphating plating bath, as well as the deposition temperature of the plating bath, were investigated. The dry and wet adhesion of epoxy coating were measured by a standard pull-off method. The surface roughness of phosphatized galvanized steel was determined, as well as the wettability of the metal surface by emulsion of the epoxy resin in water. The adhesion of epoxy coatings on phosphatized hot-dip galvanized steel was investigated in 3wt.%NaCI.

  5. Microstructure of hot dip coated Fe-Si steels

    Energy Technology Data Exchange (ETDEWEB)

    Danzo, I. Infante, E-mail: ivonneeugenia.infantedanzo@ugent.be; Verbeken, K., E-mail: Kim.Verbeken@UGent.be; Houbaert, Y., E-mail: Yvan.Houbaert@UGent.be

    2011-12-30

    Hot dipping is a coating technique pre-eminently used in industry to galvanize machine parts or steel sheets for constructional applications. However, other hot dipping applications have been developed in order to have a positive effect on specific material properties. For instance, in Fe-Si electrical steels, a Si/Al rich top layer is applied and followed by diffusion annealing to increase the electrical resistivity of the material and consequently, lower the power losses. Hot dipped aluminised mild steels have been developed with increased corrosion resistance for high temperature applications by the development of a dense Al{sub 2}O{sub 3} layer. Regardless of the type of steel coated and the intended application, after the interaction between the molten Al and the solid material, three constituents are formed: Fe{sub 2}Al{sub 5}, FeAl{sub 3} and an Al-rich alloy. The structural morphology, which can negatively affect the wear resistance and the thermal stability, also appears to be highly dependent on the chemical composition of the base material. To study thermo-mechanical and compositional effects on the coating behavior after hot dipping, cold rolling with different reductions was performed on different Fe-Si materials. It was demonstrated that hardness differences between the layers caused crack formation inside the Fe{sub 2}Al{sub 5} layer during subsequent deformation. The present work reports the results obtained on materials that were hot dipped in a hypo-eutectic Al + 1 wt.% Si bath. The bath was used to coat Fe-Si steel substrates with variable silicon content with dipping times ranging from 1 to 20 s. Before dipping, the samples were heated to 700 Degree-Sign C and subsequently immersed in the liquid bath at temperatures of 710 Degree-Sign C, 720 Degree-Sign C and 740 Degree-Sign C. To further evaluate the interactions between Al, Si and Fe, a diffusion annealing treatment at 1000 Degree-Sign C was performed. The main diffusing elements during this

  6. 7 CFR 305.21 - Hot water dip treatment schedule for mangoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water dip treatment schedule for mangoes. 305.21 Section 305.21 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.21 Hot water dip treatment schedule for mangoes....

  7. HOT DIPPING ALUMINIZED COATING AS HYDROGEN PERMEATION BARRIER

    Institute of Scientific and Technical Information of China (English)

    Z.Y. Yao; M. Chini; A. Aiello; Benamati

    2001-01-01

    The hydrogen permeation experiment of MANET II with hot dipping aluminized 1oat-ing was performed in temperature range of 573 to 623K, in gas phase and in liquiaPb-17Li phase. The hydrogen permeation reduction factor (PRF) evaluated in gasphase is 620 at 573K and 260 at 623K, and in liquid Pb-17Li phase is 24 45 at 573Kand 12-30 at 623K. The self-healing of coating is obvious and effective above 673K.The pressure dependence of permeation flux indicates strong surface contribution. Theway of filling hydrogen by continuous flow and/or bubble can increase permeation flux.The result of SEM-EDS shows that the microcrack is on the surface of the wetted part,but not on the not wetted part. The crack is superficial and affects only thin outsidelayer not penetrate aluminized layer. The surface elemental analysis shows that Al/Oatomic ratio changes from 2/3 of not wetted part to about 1 of wetted part. Thedamage of coating surface seems to be related to the interaction of outside layer withliquid Pb-17Li and thermal stress during heating sample.

  8. Development of Hot Dip Galvanized Steel Strip and Its Application in Automobile Industry

    Institute of Scientific and Technical Information of China (English)

    BIAN Jun; ZHU Yun; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    Hot dip galvanized product is widely used in architecture, household electric appliance, ship vehicle, vessel, mechano-electronic device and other fields including clothing, food, housing, and travel. The history, development, market need, and technological advancement of hot dip galvanized strip, production situation, and development tendency in China are briefly introduced. The fact that it is necessary to build new and auto galvanized strip line with the development of the iron and steel industry in China.

  9. The Microstructure and Hardness of Hot Dip Galvanized Steel During Wire Drawing

    Science.gov (United States)

    Klinaku, Shukri; Dilo, Teuta; Syla, Naim

    2010-01-01

    The steel wire samples are hot-dip-galvanized. The zinc coating is preformed using the standard method. To recognize the behavior of the zinc coated steel wire during the submission to deformation, the wire samples are drawn on a machine designed for this aim and then investigated. In this research is represented the phase structure of the zinc coated samples. Afterwards the thickness of the layer and the hardness of the hot-dip galvanized steel depending on the drawing is represented.

  10. The morphology of coating/substrate interface in hot-dip-aluminized steels

    Energy Technology Data Exchange (ETDEWEB)

    Awan, Gul Hameed [Metallurgical and Materials Engineering Department, University of Engineering and Technology, Lahore 54890 (Pakistan); Hasan, Faiz ul [Metallurgical and Materials Engineering Department, University of Engineering and Technology, Lahore 54890 (Pakistan)], E-mail: drfaiz@uet.edu.pk

    2008-01-15

    In hot-dip-aluminized (HAD) steels, the morphology and the profile of the interface between the aluminum coating and the substrate steel, are affected both by the composition of the molten aluminum as well as by the composition, and even the microstructure, of the substrate steel. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The reaction between the steel and the molten aluminum leads to the formation of Fe-Al inter-metallic compounds on the steel surface. The thickness of the inter-metallic compound layer as well as the morphology of the interface between the steel and the interlayer varies with the silicon content of the molten aluminum. In hot-dip-aluminizing with pure aluminum, the interlayer is 'thick' and exhibits a finger-like growth into the steel. With a gradually increasing addition of silicon into the aluminum melt, the thickness of the interlayer decreases while the interface between the interlayer and the substrate gradually becomes 'smoother'. With an increase in the carbon content of the substrate steel the growth of the interlayer into the steel is impeded by the pearlite phase, whereas the ferrite phase appears to dissolve more readily. X-ray diffraction and electron microscopic studies showed that the interlayer formed in samples aluminized in pure aluminum, essentially consisted of orthorhombic Fe{sub 2}Al{sub 5}. It was further observed that the finger-like grains of Fe{sub 2}Al{sub 5} phase exhibited a preferred lattice orientation. With a gradual addition of silicon into the aluminum melt, a cubic phase based on Fe{sub 3}Al also started to form in the interlayer and replaced most of the Fe{sub 2}Al{sub 5}.

  11. Wear Resistance and Wear Mechanism of a Hot Dip Aluminized Steel in Sliding Wear Test

    Science.gov (United States)

    Xue, Zhiyong; Hao, Xiaoyang; Huang, Yao; Gu, Lingyun; Ren, Yu; Zheng, Ruipeng

    2016-12-01

    Sliding wear experiments were conducted on a hot dip aluminized steel to investigate its wear resistance and wear mechanism. The wear tests were also carried out on a hot dip galvanized steel and the base material (steel Q345) as a comparison. Results show that the wear resistance and hardness of the hot dip aluminized steel are significantly higher than that of the hot dip galvanized steel and the steel Q345 at room temperature. The better wear resistance of the hot dip aluminized steel attributes mainly to the formation of a transition layer containing abundant Fe-Al intermetallic compounds and the transformation of wear-resisting oxides during the friction process. The main phase in the transition layer is Fe2Al5. The thickness of the transition layer is about 90-120 μm. When the wear load increases from 3 N to 19 N, the wear type of the aluminized layer transform from adhesive wear (3 N) into abrasive wear (7 N) and finally into slight wear mixed with oxidation (higher than 11 N).

  12. CORROSION RESISTANCE OF HOT DIP GALVANIZED STEEL PRETREATED WITH BIS-FUNCTIONAL SILANES MODIFIED WITH NANOALUMINA

    Institute of Scientific and Technical Information of China (English)

    F.J.Shan; C.S.Liu; S.H.Wang; G.C.Qi

    2008-01-01

    The corrosion behavior of hot dip galvanized steel pretreated with bis-[triethoxy-silylpropyl]tetrasulfide (BTESPT) modified with alumina particles was studied.The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy.The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry.The surface morphology of the treated hot dip galva-nized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretreatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities,and increased total impedance in the measured frequency,consequently,improving cor-rosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films.

  13. MICROSTRUCTURE AND PROPERTIES OF DEEP CROGENIC TREATMENT ELECTRODES FOR SPOT WELDING HOT DIP GALVANIZED STEEL

    Institute of Scientific and Technical Information of China (English)

    Wu Zhisheng; Liu Cuirong; Wang Jiuhai; Shan Ping; Hu Shengsun; Lian Jinrui

    2005-01-01

    The microstructure and elements distribution of the deep cryogenic treatment electrodes and non-cryogenic treatment electrodes for spot welding hot dip galvanized steel are observed by a scanning electrical microscope. The grain sizes, the resistivity and the hardness of the electrodes before and after deep cryogenic treatment are measured by X-ray diffraction, the DC double arms bridge and the Brinell hardness testing unit respectively. The spot welding process performance of hot dip galvanized steel plate is tested and the relationship between microstructure and physical properties of deep cryogenic treatment electrodes is analyzed. The experimental results show that deep cryogenic treatment makes Cr, Zr in deep cryogenic treatment electrodes emanate dispersedly and makes the grain of deep cryogenic treatment electrodes smaller than non-cryogenic treatment ones so that the electrical conductivity and the thermal conductivity of deep cryogenic treatment electrodes are improved very much, which make spot welding process performance of the hot dip galvanized steel be improved.

  14. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel

    NARCIS (Netherlands)

    Song, G. M.; Vystavel, T.; De Hosson, J. Th M.; Sloof, W. G.; van der Pers, N.M.

    The microstructure of hot dip galvanized zinc coatings on dual phase steel was investigated by electron microscopy and the coating adhesion characterized by tensile testing. The zinc coating consists of a zinc layer and columnar zeta-FeZn13 particles on top of a thin inhibition layer adjacent to the

  15. Effect of hot dip galvanized coating on the corrosion resistance of the external surface of reinforcement steel

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Oezlem; Topuz, Polat [Gedik University Vocational School, Istanbul (Turkey)

    2016-02-01

    Studies have been carried out to investigate the performance of hot dip galvanized coating on reinforcement corrosion. The coated and uncoated concrete specimens were subjected to accelerated corrosion to determine the time to corrosion initiation. The accelerated corrosion test results clearly showed that the specimens with hot dip galvanized coatings performed very well against reinforcement corrosion and were better than uncoated specimens.

  16. Effects of Copper and Titanium Elements on the Coating's Properties of Hot-Dipping-Aluminum Steel

    Institute of Scientific and Technical Information of China (English)

    JIA Wei-ping; MA Yun-long; HU Lin; KE Wei

    2004-01-01

    The steel plates for testing obtained a clean and fresh surface after degreasing by alkali and acidity and to be protested from reoxidation by being dipped into liquid wax. The results after hot dipping experiments in lab. showed that a complete aluminized coat with a good property could be obtained under a condition of hot-dipping temperature at about 730 ℃, hot -dipping time at about 2 minutes. It was found that the transition layer was mainly composed of Fe2 Al5 intermetallic compound by SEM (Scanning Electronic Microscope) observation. Effects of elements copper and titanium in aluminum coating on adherence quality, corrosion resistance performance and thickness of the transition layer were investigated, the following results were drawn: The adherence quality is strongly enhancedby copper element and gives the best performance at the 2% mass percent content of copper, while it is almost indifferent with titanium content. The corrosion resistance property is enhanced by titanium and is deteriorated by copper, when the mass percent content of titaniumis 0.3% , the coating exhibits the best anti-corrosion performance. At present condition, both copper and titanium make transition layer thinner.

  17. COMPARATIVE STUDY OF THE CORROSION BEHAVIOR OF HOT DIP GALVANIZED, GALVANNEAL AND GALVALUME COATED STEELS

    Directory of Open Access Journals (Sweden)

    Álvaro Pritzel dos Santos

    2013-10-01

    Full Text Available Corrosion attack of Hot Dip Zn coatings on steels is comparatively studied. For this, the electrochemical behavior of the coatings hot dip galvanized (GI, galvanneal (GA and galvalume (Zn55Al are analyzed in chloride solutions by cyclic voltammetry and by Scanning Vibrating Electrode Technique, with and without the incidence of white light. Coatings were characterized by Scanning Electronic Microscopy and Energy Dispersive X-Ray Spectrometry. The results show that the incidence of white UV-VIS light has a minor influence on the corrosive process, although the coatings contain intermetallic phases with semiconductor nature. The tests show that among the three coatings, GA has the slowest dissolution rate, when in contact with the steel for high exposed areas of steel.

  18. Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Trung, Trinh Van [School of Materials Science and Engineering, Hanoi University of Science and Technology, Hanoi (Viet Nam); Kim, Min Jung; Park, Soon Yong; Vadav, Poonam; Abro, Muhammad Ali; Lee, Dong Bok [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-02-15

    A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as Al{sub 5}Fe{sub 2} and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

  19. Hot-Dip Aluminizing of Low Carbon Steel Using Al-7Si-2Cu Alloy Baths

    Directory of Open Access Journals (Sweden)

    Prashanth Huilgol

    2013-01-01

    Full Text Available Hot-dip aluminizing of low carbon steel was done in molten Al-7Si-2Cu bath at 690°C for dipping time ranging from 300 to 2400 seconds. Characterization of the intermetallics layer was done by using scanning electron microscope with energy dispersive spectroscopy. Four intermetallic phases, τ5-Al7Fe2Si, θ-FeAl3, η-Fe2Al5, and τ1-Al2Fe3Si3, were identified in the reaction layer. τ5- Al7Fe2Si phase was observed adjacent to aluminum-silicon topcoat, θ-FeAl3 between τ5 and η-Fe2Al5, η-Fe2Al5 adjacent to base material, and τ1-Al2Fe3Si3 precipitates within Fe2Al5 layer. The average thickness of Fe2Al5 layer increased linearly with square root of dipping time, while for the rest of the layers such relationship was not observed. The tongue-like morphology of Fe2Al5 layer was more pronounced at higher dipping time. Overall intermetallic layer thickness was following parabolic relationship with dipping time.

  20. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  1. Corrosion behaviour of hot dip zinc and zinc-aluminium coatings on steel in seawater

    Indian Academy of Sciences (India)

    Yan Li

    2001-08-01

    A comparative investigation of hot dip Zn–25Al alloy, Zn–55Al–Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn–25Al alloy coating is several times more durable than zinc coating of double thickness. At long exposure times, corrosion rate for the Zn–25Al alloy coating remains indistinguishable from that for the Zn–55Al–Si coating of similar thickness in tidal zone, and is two to three times lower than the latter in immersion zone. The decrease in tensile strength suggested that galvanized and Zn–55Al–Si coated steel suffer intense pitting corrosion in immersion zone. The electrochemical tests showed that all these coatings provide cathodic protection to the substrate metal; the galvanic potentials are equal to – 1,050, – 1,025 and – 880 mV (SCE) for zinc, Zn–25Al alloy and Zn–55Al–Si coating, respectively, which are adequate to keep the steel inside the immunity region. It is believed that the superior performance of the Zn–25Al alloy coating is due to its optimal combination of the uniform corrosion resistance and pitting corrosion resistance. The inferior corrosion performance by comparison of the Zn coating mainly results from its larger dissolution rate, while the failure of the Zn–55Al–Si coating is probably related to its higher susceptibility to pitting corrosion in seawater.

  2. The Effect of La on the Microstructure and Corrosion-resistance of Hot-dipped Aluminizing Steel

    Institute of Scientific and Technical Information of China (English)

    WENJiu-ba; ZHANGWei; LIXiao-yuan; LIQuan-an

    2004-01-01

    The effect of the content of rare-earth La on the microstructure and corrosion-resistance of hot-dipped aluminum was investigated in this paper. The results show that, under the same technology conditions, the thickness of hot-dipped aluminizing layer by adding the appropriate content of rare-earth La is about 2-3 times as much as that without rare-earth La, and the microstructure of hot-dipped aluminizing layer has also greatly changed ,and a great deal of phase Fe3A1 waspreci pitated along the boundary of a phase. The corrosion resistance of the hot-dipped layer with rare-earth is greatly increased.

  3. The Effect of La on the Microstructure and Corrosion-resistance of Hot-dipped Aluminizing Steel

    Institute of Scientific and Technical Information of China (English)

    WEN Jiu-ba; ZHANG Wei; LI Xiao-yuan; LI Quan-an

    2004-01-01

    The effect of the content of rare-earth La on the microstructure and corrosion-resistance of hot-dipped aluminum was investigated in this paper. The results show that, under the same technology conditions, the thickness of hot-dipped aluminizing layer by adding the appropriate content of rare-earth La is about 2~3 times as much as that without rare-earth La, and the microstructure of hot-dipped aluminizing layer has also greatly changed ,and a great deal of phase Fe3Al was precipitated along the boundary of α phase. The corrosion resistance of the hot-dipped layer with rare-earth is greatly increased.

  4. Hot-Dip Aluminizing of Low Carbon Steel Using Al-7Si-2Cu Alloy Baths

    OpenAIRE

    Prashanth Huilgol; Suma Bhat; K. Udaya Bhat

    2013-01-01

    Hot-dip aluminizing of low carbon steel was done in molten Al-7Si-2Cu bath at 690°C for dipping time ranging from 300 to 2400 seconds. Characterization of the intermetallics layer was done by using scanning electron microscope with energy dispersive spectroscopy. Four intermetallic phases, τ5-Al7Fe2Si, θ-FeAl3, η-Fe2Al5, and τ1-Al2Fe3Si3, were identified in the reaction layer. τ5- Al7Fe2Si phase was observed adjacent to aluminum-silicon topcoat, θ-FeAl3 between τ5 and η-Fe2Al5, η-Fe2Al5 adjac...

  5. Effect of chemical composition of steel on the structure of hotdip galvanized coating

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-01-01

    Full Text Available This article describes the effect of the content of conventional steel impurity elements on the thickness and composition of the zinc layer. This article is focused primarily on low-temperature, batch hot-dip galvanizing; however, the continuous coating process is also mentioned. The main discussion covers galvanizing from pure zinc melt, and only touches on galvanizing from melts with the usual amounts of aluminium (0,2 wt. %. Silicon, phosphorus, aluminium and sulfur may have an especially negative effect on the mechanical properties of the coating and its final appearance. The content of ballast carbon and manganese has a rather limited effect on composition and coating thickness.

  6. Berberine as an Environmental-Friendly Inhibitor for Hot-Dip Coated Steels in Diluted Hydrochloric Acid

    Institute of Scientific and Technical Information of China (English)

    Hong Ju; Yulin Ju; Yan Li

    2012-01-01

    The inhibition effect of an excellent environmental-friendly corrosion inhibitor--berberine on hot-dip coated steels in the diluted HCI has been investigated by using quantum chemistry analysis, mass-loss tests, elec- trochemical measurements and scanning electron microscopy (SEM) observation. Calculation results show that berberine has a nearly planar structure with a number of active centers. The value of Mulliken charge, and the distribution of the highest occupied molecular orbital (HOMO) and the lower unoccupied molecular orbital (LUMO) imply that berberine has a good ability of electron exchange with metal surface. The test results indicate that inhibition efficiency (IE%) increases with the inhibitor concentration and the highest IE can reach 99%. Adsorption of berberine on the coating surface follows Langmuir adsorption isotherm with a single molecular layer by chemisorption.

  7. Preparation of tetrapod-like ZnO whiskers from waste hot dipping zinc

    Institute of Scientific and Technical Information of China (English)

    陈艺锋; 唐谟堂; 杨声海; 张保平; 杨建广

    2004-01-01

    Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope.The products are pure hexagonal wurtzite crystals with tetrapod shape and edge size of center body 5 - 6μm and needle length of 100 - 130 μm. The size and shape of ZnO particles are fully controlled by the growth conditions and TZnO can be obtained only at 850 - 1 000 ℃ and total gas flow rate ranging from 40 to 250 L @ h-1 in which the size of the T-ZnO particles varies slightly with temperature. The process of the formation of T-ZnO is that T-ZnO may nucleate at the initial stage with a complete tetrapod shape and develop to the large size, but not the process of preferential growth of octahedral nuclei and subsequent growth of the needles. The experiment presents a new method to prepare T-ZnO economically by using the waste hot dipping zinc.

  8. Part I. Thermodynamic and Kinetic Aspects of the Hot Dip (Zn - Coating Formation

    Directory of Open Access Journals (Sweden)

    Wołczyński W.

    2014-10-01

    Full Text Available A hot dip (Zn – coating formation is carried out in the industry conditions. Two types of the steel substrate are applied to the experiment. Two morphologically different coatings are obtained, accordingly. A hot dip (Zn – coating formation is also carried out in the laboratory conditions for making some additional explanations of the revealed phenomena. The thickening of the - phase sub-layer is observed in details to determine time of the transition from stable into meta-stable solidification. The Fe-Zn phase diagrams for stable and meta-stable equilibrium are calculated, respectively. The phase diagram for dissolution is also determined. The criterion of the higher temperature of the solid/liquid (s/l interface is successfully applied to the Fe-Zn system to justify the competition between stable and meta-stable solidification. The mass balance verification is performed for the (Zn - coating in order to define the nominal Zn–solute concentration required by dissolution and next by solidification. The Zn – solute concentration in the dissolution, super-saturation and saturation zones are determined thermodynamically. The growth kinetics is described for all the sub-layers in the (Zn – coating.

  9. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    Science.gov (United States)

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  10. Characterization of solid wastes from two different hot-dip galvanizing processes; Caracterizacion de residuos solidos procedentes de dos procesos distintos de galvanizado en caliente por inmersion

    Energy Technology Data Exchange (ETDEWEB)

    Delvasto, P.; Casal-Ramos, J. a.; Gonzalez-Jordan, O.; Duran-Rodriguez, N. C.; Dominguez, J. R.; Moncada, P.

    2012-11-01

    Zinc dust and zinc ash from hot-dip galvanizing industries located in Venezuela were characterized using atomic spectroscopy, scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Dust was formed during the high-pressure drying process of the galvanized pieces, in a plant that uses a steel kettle to hold the molten zinc. Ash identified as A came from the same plant as the dust, while ash identified as B came from a hot-dip galvanizing plant which use a ceramic lined galvanizing furnace. Dust contained 98 wt % Zn, in metallic form. Both ash samples contained: Zn and ZnO, while Zn{sub 5}(OH){sub 8}Cl{sub 2}×H{sub 2}O and ZnCl{sub 2} were only found in ash B. Globally, ash “A” and ash “B” contain 71 and 75 wt % Zn, respectively. (Author)

  11. Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Zhang Yonglan; X Holly

    2002-12-01

    The fine structure in the Fe–Al alloy layer of a new hot dip aluminized steel (HDA) was examined by means of X-ray diffractometry (XRD), electron diffraction technique, etc. The test results indicated that the Fe–Al alloy layer of the new aluminized steel mainly composed of Fe3Al, FeAl and -Fe (Al) solid solution. There was no brittle phase containing higher aluminum content, such as FeAl3 (59.18% Al) and Fe2Al7 (62.93% Al). The tiny cracks and embrittlement, formerly caused by these brittle phases in the conventional aluminum-coated steel, were effectively eliminated. There was no microscopic defect (such as tiny cracks, pores or loose layer) in the coating. This is favourable to resist high temperature oxidation and corrosion of the aluminized steel.

  12. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Aaretti Kaleva

    2017-07-01

    Full Text Available In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  13. Effects of lanthanum addition on corrosion resistance of hot-dipped galvalume coating

    Institute of Scientific and Technical Information of China (English)

    YANG Dong; CHEN Jianshe; HAN Qing; LIU Kuiren

    2009-01-01

    Effects of La addition on corrosion resistance of hot-dipped galvalume coating steel wire were investigated. The corrosion resistance of Zn-Al-Si-La alloy coatings containing 0, 0.02wt.%, 0.05wt.%, 0.1wt.% and 0.2wt.% La were evaluated by various tests such as copper-accelerated acetic acid salt spray testing (CASS), immersion test in 3.5% NaCl solution, electrochemical tests including weak polarization curves and electrochemical impedance spectroscopy (EIS) tests, scanning electron microscope (SEM) test and X-ray diffraction (XRD) test. It was found that the corrosion resistance of galvalume coating could be improved by adding proper amounts of La. Meanwhile, the mechanism of the improvement of corrosion resistance by La addition was discussed.

  14. Influence of Air-Knife Wiping on Coating Thickness in Hot-Dip Galvanizing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; CUI Qi-peng; SHAO Fu-qun; WANG Jun-sheng; ZHAO Hong-yang

    2012-01-01

    In hot-dip galvanizing process, air jet wiping control is so crucial to decide the coating thickness and uni- formity of the zinc layer on the steel strip. The mathematical models developed predict the zinc coating thickness as a function of pressure and shear stress. The required pressure and shear stress profile on the strip surface were calcu- lated using regression analysis, and carried out using numerical simulation as FLUENT, a finite element analysis software. The influences of the outlet pressure, the nozzle to strip distance, the slot opening, the edge baffle plate, as well as the tilting angle of air knife were discussed. Combining with these results and regression analysis on the practical data, four first-order polynomial multi-parameter models were established for different targeted coating thicknesses with better regression coefficients. The validated model was used to carry out sensitivity analysis to de- termine the favorable controlling regime for the air jet wiping process.

  15. Mössbauer and XRD study of hot dip galvanized alloy

    Science.gov (United States)

    Kuzmann, E.; Speakman, R.; El-Sharif, M.; Stichleutner, S.; Homonnay, Z.; Klencsár, Z.; Sziráki, L.; Chisholm, C. U.; Lak, Gy. B.

    2016-12-01

    Mössbauer spectroscopy has been used to investigate the nature of the Zinc-Iron alloys present within the Hot Dip Galvanized (HDG) layers of steel with a silicon content of 0.35 %. The investigation also studied the impact of the powder coating pretreatment on the nature of the alloy layers. The acid etching process within the pretreatment process in particular would be expected to have a significant impact on the HDG layer. This study utilized 57Fe Mössbauer spectroscopy to examine identically processed samples prior to and post pre treatment. XRD and 57Fe CEMS measurements were performed on hot galvanized S355J2 + N samples, forming sandwiched structure. Both XRD and CEMS reveal the presence of dominant steel phase in accordance with its estimated occurrence on the surface of the sandwiched samples. Minor Γ-Fe3Zn10, ζ-FeZn15 and solid solution Fe-Zn as well as minor Fe-Si phases could also be identified.

  16. Investigation on hot-dip aluminised and subsequent HIP'ped steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Glasbrenner, H.; Konys, J. E-mail: juergen.konys@imf.fzk.de

    2001-11-01

    Tritium permeation can be reduced significantly by a suitable coating on the structural material. Since alumina has the capability of tritium permeation reduction the development of such coatings on ferritic martensitic steels by hot-dip aluminising of F82H-mod. steel sheets was already performed successfully. An improvement of these coatings were achieved by subsequent HIP'ping at 1040 deg. C for 0.5 h at 250, 500 and 750 bar and subsequently tempered at 750 deg. C for 1 h at 1 bar. All samples were investigated by means of metallographical examination, EDX line scan analysis and Vickers micro hardness measurements. The high pressure produced two observed changes: firstly, with increasing pressure the thickness of the FeAl phase increases and the thickness of the {alpha}-Fe(Al) phase decreases, and secondly the formation of pores could be suppressed successfully. The Vickers micro hardness of the base material F82H-mod. is not influenced by the heat-treatment under pressure and is about 215 HV.

  17. Complex Boronized Layer on the Hot-dip Aluminized Steels and Its Surface Performances

    Institute of Scientific and Technical Information of China (English)

    LUOXin-min; LIDian-kai; WANGLan; CHENKang-min

    2004-01-01

    Plain carbon steels were dipped in molten aluminum bath at 720℃±5℃ and diffused for 1.2.5 and 6 hours respectively and then horonized at 950℃ for 6 hours. The oxidation, hot-corrosion and abrasion resistance behavior were examined. The experimental results showed the compounds of the aluminized layer, from the surface to the matrix, were composed of Fe2Al5(η-phase/.Fe3Al(β1-phase)and α phase. The microstructure of aluminized plus complex boronized were similar to that simplex boronized. The XRD analysis results indicated that there existed Fe.B. Fe2AlB2 and Fe2Al5 in this kind of layer, The simplex aluminized layers still remained bright gray appearance when oxidized at 950℃, but complex horonized layer was not able to resist oxidization at the temperature. Both the layers of complex botanized and aluminized had the same anti-oxidizatian level in the circulative oxidization tesfs, and also good anti-corrosion abilily in molten salt medium. Under dry abrasive conditions, wear resistance of complex botanized layer was superior to the aluminized layer.

  18. Identification and preliminary evaluation of polychlorinated naphthalene emissions from hot dip galvanizing plants.

    Science.gov (United States)

    Liu, Guorui; Lv, Pu; Jiang, Xiaoxu; Nie, Zhiqiang; Liu, Wenbin; Zheng, Minghui

    2015-01-01

    Hot dip galvanizing (HDG) processes are sources of polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs). Close correlations have been found between the concentration of PCDD/Fs and polychlorinated naphthalenes (PCNs) that are produced and released during industrial thermal processes. We speculated, therefore, that HDG plants are potential PCN sources. In this preliminary study, PCNs were analyzed in solid residues, ash and precipitate from three HDG plants of different sizes. The total PCN concentrations (∑2-8PCNs) in the residue samples ranged from 60.3 to 226pgg(-1). The PCN emission factors for the combined ash and precipitate residues from the HDG plants ranged from 75 to 178ngt(-1) for the dichlorinated and octachlorinated naphthalenes. The preliminary results suggested that the HDG industry might not currently be a significant source of PCN emissions. The trichloronaphthalenes were the dominant homologs followed by the dichloronaphthalenes and the tetrachloronaphthalenes. The PCN congeners CN37/33/34, CN52/60, CN66/67, and CN73 dominated the tetrachlorinated, pentachlorinated, hexachlorinated, and heptachlorinated naphthalene homologs, respectively. The PCNs emitted from the HDG plants had similar homolog distributions and congener profiles to the PCNs emitted from combustion plants and other metallurgical processes. The identification and preliminary evaluation of PCN emissions from HDG plants presented here will help in the prioritization of measures for controlling PCN emissions from industrial sources.

  19. Study on the cluster of floating dross before nucleating during hot-dipping process

    Institute of Scientific and Technical Information of China (English)

    WEI; Yunhe; ZHANG; Changqiao; QIN; Jingyu; LIU; Chengbu

    2005-01-01

    During hot-dipping in molten Zn-55Al, the forming of "floating" dross is closely related with the interaction between the Al and the Fe atoms. Utilizing the thita-thita X-ray diffraction and the Percus-Yevick hard sphere model, this paper investigates the structure of molten Al3Fe that is an approximant of partial melt in practical Zn-55Al alloy melt. It is found that in the melt there exist clusters that resemble the structure of intermetallic compound Al3Fe. The strong interaction between Al and Fe atoms is also indicated by the deficiency of the coordination number from 12 and the shrinkage of averaged atomic diameter. Based on such information, it is speculated that in the molten Zn-55Al, with the accumulation of Fe, Al3Fe-like clusters form with priority, then grow into dross. On the other hand, after deflating of the effective hard sphere diameter of pure Al atom and enlarging that of the pure Fe atom, the modified model can achieve reasonable fit to the experimental structure factor. Hard sphere modeling also gave a good estimation of the mass density 3.65 g/cm3 of liquid Al3Fe alloy at 1550℃. Compared with the density of 3.7 g/cm3 of Zn-55Al, the reason for dross floating is satisfactorily understood.

  20. Growth and corrosion behavior of molybdate passivation film on hot dip galvanized steel

    Institute of Scientific and Technical Information of China (English)

    卢锦堂; 孔纲; 陈锦虹; 许乔瑜; 眭润舟

    2003-01-01

    Hot dip galvanized steel sheets were passivated by molybdate aqueous solution containing 10 g/LNa2 MoO4 @ 2H2O, and the growth behavior and corrosion resistance of the passivation film were investigated. Inthe initial stage of passivation, the mass gain of film increases with passivation time proportionally. The film growsup more quickly and is apt to cracking at grain boundaries of zinc, then the cracks spread gradually on the whole sur-face of the film, and eventually the film will flake off with the increasing of film thickness. XPS results indicate thatMo compounds are present in Mo(Ⅵ) state on the surface of the film, and Mo(Ⅵ) and Mo(Ⅳ ) states inside thefilm. NSS test shows that, the corrosion resistance of the passivation film decreases as the cracks occur, but inAASS test, the thicker the film is, the better the corrosion resistance is, the cracks of film have little effect on thecorrosion resistance.

  1. Complex Boronized Layer on the Hot-dip Aluminized Steels and Its Surface Performances

    Institute of Scientific and Technical Information of China (English)

    LUO Xin-min; LI Dian-kai; WANG Lan; CHEN Kang-min

    2004-01-01

    Plain carbon steels were dipped in molten aluminum bath at 720℃±5℃ and diffused for 1, 2.5 and 6 hours respectively and then boronized at 950℃ for 6 hours. The oxidation, hot-corrosion and abrasion resistance behavior were examined. The experimental results showed the compounds of the aluminized layer, from the surface to the matrix, were composed of Fe2Al5 ( η -phase )、 Fe3Al ( β 1-phase ) and α phase. The microstructure of aluminized plus complex boronized were similar to that simplex boronized. The XRD analysis results indicated that there existed Fe2B、 Fe2AlB2 and Fe2Al5 in this kind of layer. The simplex aluminized layers still remained bright gray appearance when oxidized at 950℃, but complex boronized layer was not able to resist oxidization at the temperature. Both the layers of complex boronized and aluminized had the same anti-oxidization level in the circulative oxidization tests, and also good anti-corrosion ability in molten salt medium. Under dry abrasive conditions, wear resistance of complex boronized layer was superior to the aluminized layer.

  2. High temperature corrosion of hot-dip aluminized steel in Ar/1%SO2 gas

    Science.gov (United States)

    Abro, Muhammad Ali; Lee, Dong Bok

    2017-01-01

    Carbon steels were hot-dip aluminized in Al or Al-1at%Si baths, and corroded in Ar/1%SO2 gas at 700-800 °C for up to 50 h. The aluminized layers consisted of not only an outer Al(Fe) topcoat that had interdispersed needle-like Al3Fe particles but also an inner Al-Fe alloy layer that consisted of an outer Al3Fe layer and an inner Al5Fe2 layer. The Si addition in the bath made the Al(Fe) topcoat thin and nonuniform, smoothened the tongue-like interface between the Al-Fe alloy layer and the substrate, and increased the microhardness of the aluminized layer. The aluminized steels exhibited good corrosion resistance by forming thin α-Al2O3 scales, along with a minor amount of iron oxides on the surface. The interdiffusion that occurred during heating made the aluminized layer thick and diffuse, resulting in the formation of Al5Fe2, AlFe and AlFe3 layers. It also smoothened the tongue-like interface, and decreased the microhardness of the aluminized layer. The non-aluminized steel formed thick, nonadherent, nonprotective (Fe3O4, FeS)-mixed scales.

  3. Performance and Application of Hot Dip Aluminized Steel%热浸镀铝钢的性能及用途

    Institute of Scientific and Technical Information of China (English)

    李华飞; 俞敦义; 等

    2001-01-01

    为了便于研究人员和用户了解、掌握热浸镀铝钢的性能及其用途,进一步推动我国在这方面的大力发展,作者综述了热浸镀铝钢镀层的机械性能、耐腐蚀性能、抗高温氧化性能和其他性能及其在各工程领域上的应用情况,列出了部分性能指标。%The mechanical performance,corrosion resistance and high temperature oxidation resistance of hot dip aluminized steel were summarized.The hot- dip aluminized steel could extensively be used in various engineering fields.

  4. Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath

    Science.gov (United States)

    Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia

    2017-04-01

    Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.

  5. Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath

    Science.gov (United States)

    Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia

    2016-12-01

    Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.

  6. Outbursts formation on low carbon and trip steel grades during hot-dip galvanisation

    Science.gov (United States)

    Petit, E. J.; Lamm, L.; Gilles, M.

    2004-12-01

    Low carbon and TRIP grade steels have been hot dip galvanised in order to study outbursts formation. Microstructure and texture of intermetallic phases have been observed after selective electrochemical etching by scanning electron microscopy. Potential versus time (chronopotentiometric) characteristics were recorded in order to monitor surface modifications. This combination of techniques enable to quantify and observe intermetallic phase one by one. The overall thickness of coating on both substrates are similar. However, microstructures of Fe-Zn intermetallic phases are very different on both grades. In particular, the V phase is dense on standard steel but develops a highly branched filament structure on TRIP steel. The transformation of V phase to d and G1 are limited on TRIP steel. Differences of texture provide clues for understanding mechanisms of formation of outbursts. They can account for the differences of mechanical properties and corrosion resistance. Silicon from the substrate influences the reactivity of TRIP steels due to capping and local reactions. La formation des outbursts a été étudiée sur un acier bas carbone et sur un acier TRIP galvanisés. Les épaisseurs des revêtements sont similaires. Néanmoins, les observations microscopiques et les érosions électrochimiques montrent que la répartition des phases intermétalliques et leurs microstructures diffèrent sensiblement en fonction de la nature du substrat. Ces différences expliquent les propriétés mécaniques et anticorrosions. L’encapsulation de la surface par les oxydes de silicium freine la transformation de la phase dzêta en delta et gamma sur l’acier TRIP.

  7. Microstructural Changes of Al Hot-Dipped P91 Steel during High-Temperature Oxidation

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Abro

    2017-02-01

    Full Text Available The 9Cr-1Mo steel (ASTM P91 was hot-dip aluminized, and its microstructural changes during oxidation were studied. Before oxidation, the coating consisted of (Al-rich topcoat containing a small amount of Al5Fe2 and Al13Fe4/(Al13Fe4-rich, Al13Fe4-containing alloy layer/(Al5Fe2 alloy layer containing a small amount of Al9Cr4 precipitates, from the surface. During oxidation at 700–900 °C for 20–100 h, Al diffused inward and the substrate elements migrated outward to broaden and soften the coating, and also to transform (high Al-Fe intermetallics to (low Al-Fe intermetallics. The phases in the coating progressively transformed during oxidation as follows; (Al-rich topcoat/(Al5Fe2–rich, Al13Fe4-containing alloy layer/(Al5Fe2 alloy layer→(α-Al2O3 scale/(Al13Fe4–rich, Al5Fe2-containing layer/(Al5Fe2 layer/(AlFe interlayer→(α-Al2O3 scale/(AlFe–rich, Al5Fe2-containing layer/(AlFe layer/(AlFe3 layer→((α-Al2O3, Fe2O3-mixed scale/(AlFe3 layer/(Fe(Al layer from the surface. As the oxidation progressed, the scale changed from α-Al2O3 to the (α-Al2O3, Fe2O3-mixture, which provided the necessary oxidation resistance.

  8. Experimental analysis and theoretical predictions of the limit strains of a hot-dip galvanized interstitial-free steel sheet

    Directory of Open Access Journals (Sweden)

    Maria Carolina dos Santos Freitas

    2013-04-01

    Full Text Available In this work, the formability of a hot-dip galvanized interstitial-free (IF steel sheet was evaluated by means of uniaxial tensile and Forming Limit Curve (FLC tests. The FLC was defined using the flat-bottomed Marciniak's punch technique, where the strain analysis was made using a digital image correlation software. A plastic localization model was also proposed wherein the governing equations are solved with the help of the Newton's method. The investigated hot-dip galvanized IF steel sheet presented a very good formability level in the deep-drawing range consistent with the measured Lankford values. The predicted limit strains were found to be in good agreement with the experimental data of the hot-dip galvanized IF steel sheet owing to the definition of the localization model geometrical imperfection as a function of the experimental surface roughness evolution and, in particular, to the yield surface flattening near to the plane-strain stress state authorized by the adopted yield criterion.

  9. Life Improvement of Pot Hardware in Continuous Hot Dipping Processes Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Xingbo Liu

    2006-01-18

    The process of continuous galvanizing of rolled sheet steel includes immersion into a bath of molten zinc/aluminum alloy. The steel strip is dipped in the molten bath through a series of driving motors and rollers which control the speed and tension of the strip, with the ability to modify both the amount of coating applied to the steel as well as the thickness and width of the sheet being galvanized. There are three rolls used to guide the steel strip through the molten metal bath. The rolls that operate in the molten Zn/Al are subject to a severely corrosive environment and require frequent changing. The performance of this equipment, the metallic hardware submerged in the molten Zn/Al bath, is the focus of this research. The primary objective of this research is to extend the performance life of the metallic hardware components of molten Zn/Al pot hardware by an order of magnitude. Typical galvanizing operations experience downtimes on the order of every two weeks to change the metallic hardware submerged in the molten metal bath. This is an expensive process for industry which takes upwards of 3 days for a complete turn around to resume normal operation. Each roll bridle consists of a sink, stabilizer, and corrector roll with accompanying bearing components. The cost of the bridle rig with all components is as much as $25,000 dollars just for materials. These inefficiencies are of concern to the steel coating companies and serve as a potential market for many materials suppliers. This research effort served as a bridge between the market potential and industry need to provide an objective analytical and mechanistic approach to the problem of wear and corrosion of molten metal bath hardware in a continuous sheet galvanizing line. The approach of the investigators was to provide a means of testing and analysis that was both expeditious and cost effective. The consortium of researchers from West Virginia University and Oak Ridge National Laboratory developed

  10. Problems with reliability and safety of hot dip galvanized steel structures Problemas com a confiabilidade e segurança de estruturas de aço galvanizadas a quente

    Directory of Open Access Journals (Sweden)

    L. Mraz

    2009-06-01

    Full Text Available Hot dip galvanizing is very effective means of protection against corrosion. Some recommendation concerning the steel quality are generally known and accepted. The process consists of cleaning (pickling or sand blasting and dipping the structures or pieces into liquid zinc bath. The case study of hot dip galvanized steels is presented. Some recent failures of hot dip galvanized welded structures and hot dip galvanized high strength steel screws are presented. Structures were made of S355 grade steel and MIG/MAG process was applied for welding. Large cracks were observed in the vicinity of welds after hot dip galvanizing process. The presence of both hydrogen and liquid metal embrittlement was identified and associated mainly with higher hardness of HAZ or the quenched and tempered steels. Possible cracking mechanisms are discussed. The influence of chemical composition and production process (welding, heat treatment was analyzed according to data published in literature. The solutions and recommendations for avoiding the failure in hot dip galvanized structures are proposed.Galvanização a quente é um meio muito efetivo de proteção contra a corrosão. Recomendações relativas a qualidade do aço são geralmente conhecidas e aceitas. O processo consiste de limpar (decapagem ou jateamento e mergulhar as estruturas ou partes destas em um banho de zinco líquido. O presente trabalho apresenta casos de falhas recentes em estruturas soldadas e em parafusos de aços de alta resistência galvanizados a quente. As estruturas foram fabricadas com aço do grau S355 e o processo MIG/MAG foi usado para a soldagem. Os parafusos foram fabricados com aço de alto carbono. Grandes trincas foram observadas nas proximidades das soldas após o processo de galvanização a quente. A ocorrência de fragilização tanto por hidrogênio como por metal líquido foi identificada e associada com a dureza elevada tanto da ZTA como dos aços temperados e revenidos. Os

  11. Orientation Dependence of Cracking in Hot-Dip Zn-Al-Mg Alloy Coatings on a Sheet Steel

    Science.gov (United States)

    Park, Y. B.; Kim, I. G.; Kim, S. G.; Kim, W. T.; Kim, T. C.; Oh, M. S.; Kim, J. S.

    2017-03-01

    The present study was aimed at investigating a basic cause of cracking in hot-dip Zn-Al-Mg alloy coatings on an extra deep drawing quality sheet steel. The electron backscattering diffraction technique was employed to examine the crystallographic planes of the cracks generated before and after bending deformation of the coated steel sheets. It was clarified that the occurrence of cracking in the Zn-Al-Mg alloy coatings absolutely depends on the orientation of the primary Zn and eutectic Zn alloy phases. Finally, a cracking mechanism was proposed on the basis of the anisotropy of thermal expansion and the Young's modulus in the phases constituting the coatings.

  12. Effect of Al Hot-Dipping on High-Temperature Corrosion of Carbon Steel in N2/0.1% H2S Gas

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Abro

    2016-02-01

    Full Text Available High-temperature corrosion of carbon steel in N2/0.1% H2S mixed gas at 600–800 °C for 50–100 h was studied after hot-dipping in the aluminum molten bath. Hot-dipping resulted in the formation of the Al topcoat and the Al-Fe alloy layer firmly adhered on the substrate. The Al-Fe alloy layer consisted primarily of a wide, tongue-like Al5Fe2 layer and narrow Al3Fe layer. When corroded at 800 °C for 100 h, the Al topcoat partially oxidized to the protective but non-adherent α-Al2O3 layer, and the interdiffusion converted the Al-Fe alloy layer to an (Al13Fe4, AlFe3-mixed layer. The interdiffusion also lowered the microhardness of the hot-dipped steel. The α-Al2O3 layer formed on the hot-dipped steel protected the carbon steel against corrosion. Without the Al hot-dipping, the carbon steel failed by forming a thick, fragile, and non-protective FeS scale.

  13. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  14. Thickness measurement of Sn-Ag hot dip coatings on Large Hadron Collider Superconducting strands by coulometry

    CERN Document Server

    Arnau-Izquierdo, G; Oberli, L R; Scheuerlein, C; Taborelli, M; 10.1149/1.1715094

    2004-01-01

    Amperostatic coulometry is applied for the thickness measurement of Sn-Ag hot dip coatings, which comprise an extended Sn-Cu interdiffusion layer. Complementary measurements, notably weight loss, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence (XRF) and dynamic secondary ion mass spectroscopy (DSIMS) have been performed in order to obtain a better interpretation of the coulometry results. Based on the experimental results presented in this article the three potential changes that are observed during coulometry measurements are ascribed to (1) the entire dissolution of pure Sn, (2) the formation of a CuCl salt layer and (3) the surface passivation. The measurement of the pure Sn mass is well reproducible despite of strong coating thickness variations that are detected by XRF. Several experimental problems, in particular a coating undercutting, hamper the determination of the Sn mass in the intermetallic Sn-Cu layer.

  15. Thickness measurement of Sn-Ag hot dip coatings on Large Hadron Collider Superconducting strands by coulometry

    CERN Document Server

    Scheuerlein, C; Arnau-Izquierdo, G; Oberli, L R; Taborelli, M; 10.1149/1.1715094

    2004-01-01

    Amperostatic coulometry was applied for the thickness measurement of Sn-Ag hot dip coatings, which comprise an extended Sn-Cu interdiffusion layer. Complementary measurements, notably weight loss, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, X-ray fluorescence (XRF), and dynamic secondary ion mass spectroscopy were performed in order to obtain a better interpretation of the coulometry results. Based on the experimental results presented in this article, the three potential changes observed during coulometry measurements are ascribed to (i) the entire dissolution of pure Sn, (ii) the formation of a CuCl salt layer, and (iii) the surface passivation. The measurement of the pure Sn mass is well reproducible despite strong coating thickness variations detected by XRF. Several experimental problems, in particular, a coating undercutting, hamper the determination of the Sn mass in the intermetallic Sn-Cu layer. (19 refs).

  16. Growth and corrosion resistance of molybdate modified zinc phosphate conversion coatings on hot-dip galvanized steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The modified zinc phosphate conversion coatings(ZPC) were formed on hot-dip galvanized(HDG) steel when 1.0 g/L sodium molybdate were added in a traditional zinc phosphate solution. The growth performance and corrosion resistance of the modified ZPC were investigated by SEM, open circuit potential(OCP), mass gain, potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) measurements and compared with those of the traditional ZPC. The results show that if sodium molybdate is added in a traditional zinc phosphate solution, the nucleation of zinc phosphate crystals is increased obviously; zinc phosphate crystals are changed from bulky acicular to fine flake and a more compact ZPC is obtained. Moreover, the mass gain and coverage of the modified ZPC are also boosted. The corrosion resistance of ZPI is increased with an increase in coverage, and thus the corrosion protection ability of the modified ZPC for HDG steel is more outstanding than that of the traditional ZPC.

  17. Effect of Mg content on microstructure and corrosion behavior of hot dipped Zn–Al–Mg coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Caizhen; Lv, Haibing [Research Centre of Laser Fusion, CAEP, P.O.Box 919-988-5, Mianyang, Sichuan 621900 (China); Zhu, Tianping [Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Zheng, Wanguo [Research Centre of Laser Fusion, CAEP, P.O.Box 919-988-5, Mianyang, Sichuan 621900 (China); Yuan, Xiaodong, E-mail: xdyuan@caep.cn [Research Centre of Laser Fusion, CAEP, P.O.Box 919-988-5, Mianyang, Sichuan 621900 (China); Gao, Wei, E-mail: w.gao@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand)

    2016-06-15

    In this article, Zn–Al–Mg coatings were prepared by hot dipping method. The surface morphology, cross–section microstructure, microhardness, composition, corrosion behaviour of ZAM coatings were investigated by using X–ray diffraction (XRD), Optical microscope, Environmental scanning electron microscopy equipped with EDS (FESEM–EDS), Microhardness tester and Electrochemical analysis respectively. Corrosion test was also performed in a standard salt fog spray chamber. Microstructure studies indicates that Zn grain size was refined and eutectic areas at Zn grain boundary areas increased with increasing Mg content. ZA5M1.5 and ZA5M2 coatings have two distinct layers. Mg tends to exist in the outer layer while Al is in the inner layer. The inner layer is composed of Al{sub 5}Fe{sub 2}Zn{sub 0.4} intermetallic, which may to contribute to the microhardness. The outer layer is Zn grains surrounded by Zn–Mg etutectics, which may improve the corrosion resistance. The microhardness is more than 700 HV{sub 50g} for Al-rich layer and around 151 HV{sub 25g} for Mg-rich layer. The improved corrosion resistance of Zn–5%Al-1.5%Mg coating comes from the corrosion product of flocculent type simonkolleite, which prolongs the micro-path and impedes the movement of O{sub 2} and H{sub 2}O, ultimately retards the overall corrosion process. - Highlights: • Two-layer structured Zn–Al–Mg coatings were prepared by hot dipping method. • Mg exists in the outer layer while Al exists in the inner layer of Zn–Al–Mg coating. • Zn–Al–Mg coating has better protective ability than Zn and Zn–Al coatings. • The Mg-modified simonkolleite is the reason of the enhanced corrosion resistance.

  18. Electrochemical Behavior and Microstructure of Recyclable Aluminium-magmesium Alloy Hot-dip Coating Deposited on Low Carbon Steel Substrates

    Institute of Scientific and Technical Information of China (English)

    Panomkorn KWAKHONG; Apichart ARTNASEAW; Chaiyaput KRUEHONG

    2015-01-01

    With the abundance and good corrosion resistance of aluminium, hot-dip technique was used to prepare the recycled Al with 8.2 mass% Mg alloy coating on low carbon steel substrates. Electrochemical behavior of this coating was investigated by an-odic polarization and open circuit potential measurement. Its microstructure and composition were observed by scanning electron microscope and energy-dispersive X-ray spectrometry, respectively. The long lasting corrosion performance of coated steels was in-vestigated under the salt fog spray test. From anodic polarization curves and open circuit potential, recycled Al with 8.2 mass% Mg coating performed adequate sacriifcial ability. At 0.40 V, current density of recycled Al with 8.2 mass% Mg alloy coating was about 200 000 times higher than that of pure recycled Al coating, and was about 0.5 times lower than that of Zn coating. The microstruc-ture of recycled Al with 8.2 mass% Mg alloy coating on the steel substrate consisted of Al3Mg2, Al-Fe intermetallic compound and Al matrix. The results from salt fog spray test showed that recycled Al with 8.2 mass% Mg alloy coated steel had similar corrosion resistance ability to Zn coated steel.

  19. Effect of Chromium on Microstructure and Mechanical Properties of Cold Rolled Hot-dip Galvanizing DP450 Steel

    Institute of Scientific and Technical Information of China (English)

    Yun HAN; Shuang KUANG; Hua-sai LIU; Ying-hua JIANG; Guang-hui LIU

    2015-01-01

    Two cold rolled hot-dip galvanizing dual phase (DP) 450 steels with different amounts of chromium were designed and the effects of the chromium concentration and galvanizing processes on the microstructure and mechanical properties were also investigated. The results show that the experimental steels exhibit typical dual phase microstructure character. However, the ferrite phase of steel with higher chromium is more regular and its boundaries are clearer. Meanwhile, martensite austenite (MA) island in steel No. 2 is diffused and no longer distributes along the grain boundary as net or chain shape. More MA islands enriched with Cr element can be found in the ferrite grains, and the increment of Cr element improves the stablity of the austenite so that the austenite has been reserved in MA islands. In addition, the experimental steel with higher chromium exhibits better elongation, lower yield ratio and better formability. The mean hole expanding ratio of steels No. 1 and No. 2 is 161.70% and 192.70%, respectively.

  20. Influence of silicon on hot-dip aluminizing process and subsequent oxidation for preparing hydrogen/tritium permeation barrier

    Energy Technology Data Exchange (ETDEWEB)

    Han, Shilei; Li, Hualing; Wang, Shumao; Jiang, Lijun; Liu, Xiaopeng [Energy Materials and Technology Research Institute, General Research Institute for Nonferrous Metals, Beijing 100088 (China)

    2010-04-15

    The development of the International Thermonuclear Experimental Reactor (ITER) requires the production of a material capable of acting as a hydrogen/tritium permeation barrier on low activation steel. It is well known that thin alumina layer can reduce the hydrogen permeation rate by several orders of magnitude. A technology is introduced here to form a ductile Fe/Al intermetallic layer on the steel with an alumina over-layer. This technology, consisting of two main steps, hot-dip aluminizing (HDA) and subsequent oxidation behavior, seems to be a promising coating method to fulfill the required goals. According to the experiments that have been done in pure Al, the coatings were inhomogeneous and too thick. Additionally, a large number of cracks and porous band could be observed. In order to solve these problems, the element silicon was added to the aluminum melt with a nominal composition. The influence of silicon on the aluminizing and following oxidation process was investigated. With the addition of silicon into the aluminum melt, the coating became thinner and more homogeneous. The effort of the silicon on the oxidation behavior was observed as well concerning the suppression of porous band and cracks. (author)

  1. Effect of Process Variables on the Grain Size and Crystallographic Texture of Hot-Dip Galvanized Coatings

    Science.gov (United States)

    Kaboli, Shirin; McDermid, Joseph R.

    2014-08-01

    A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid-liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the "poisoning" theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall

  2. Emission of Visible Light by Hot Dense Metals

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.; Goto, M.; Graziani, F.; Ni, P.A.; Yoneda, H.

    2009-12-01

    We consider the emission of visible light by hot metal surfaces having uniform and non-uniform temperature distributions and by small droplets of liquid metal. The calculations employ a nonlocal transport theory for light emission, using the Kubo formula to relate microscopic current fluctuations to the dielectric function of the material. We describe a related algorithm for calculating radiation emission in particle simulation of hot fusion plasmas.

  3. Effect of Immersion Time and Cooling Mode on the Electrochemical Behavior of Hot-Dip Galvanized Steel in Sulfuric Acid Medium

    Science.gov (United States)

    Lekbir, Choukri; Dahoun, Nessrine; Guetitech, Asma; Hacid, Abdenour; Ziouche, Aicha; Ouaad, Kamel; Djadoun, Amar

    2017-04-01

    In this work, we investigated the influence of galvanizing immersion time and cooling modes environments on the electrochemical corrosion behavior of hot-dip galvanized steel, in 1 M sulfuric acid electrolyte at room temperature using potentiodynamic polarization technique. In addition, the evolution of thickness, structure and microstructure of zinc coatings for different immersion times and two cooling modes (air and water) is characterized, respectively, by using of Elcometer scan probe, x-ray diffraction and metallography analysis. The analysis of the behavior of steel and galvanized steel, vis-a-vis corrosion, by means of corrosion characteristic parameters as anodic (β a) and cathodic (β c) Tafel slopes, corrosion potential (E corr), corrosion current density (i corr), corrosion rate (CR) and polarization resistance (R p), reveals that the galvanized steel has anticorrosion properties much better than that of steel. More the immersion time increases, more the zinc coatings thickness increases, and more these properties become better. The comparison between the two cooling modes shows that the coatings of zinc produced by hot-dip galvanization and air-cooled provides a much better protection to steel against corrosion than those cooled by quenching in water which exhibit a brittle corrosive behavior due to the presence of cracks.

  4. The effect of zinc bath temperature on the morphology, texture and corrosion behaviour of industrially produced hot-dip galvanized coatings

    Directory of Open Access Journals (Sweden)

    A. Bakhtiari

    2014-03-01

    Full Text Available The purpose of this work is to identify the influence of zinc bath temperature on the morphology, texture and corrosion behavior of hot-dip galvanized coatings. Hot-dip galvanized samples were prepared at temperature in the range of 450-480 °C in steps of 10 °C, which is the conventional galvanizing temperature range in the galvanizing industries. The morphology of coatings was examined with optical microscopy and scanning electron microscopy (SEM. The composition of the coating layers was determined using energy dispersive spectroscopy (EDS analysis. The texture of the coatings was evaluated using X-ray diffraction. Corrosion behavior was performed using salt spray cabinet test and Tafel extrapolation test. From the experimental results, it was found that increasing the zinc bath temperature affects the morphology of the galvanized coatings provoking the appearance of cracks in the coating structure. These cracks prevent formation of a compact structure. In addition, it was concluded that (00.2 basal plane texture component was weakened by increasing the zinc bath temperature and, conversely, appearance of (10.1 prism component, (20.1 high angle pyramidal component and low angle component prevailed. Besides, coatings with strong (00.2 texture component and weaker (20.1 components have better corrosion resistance than the coatings with weak (00.2 and strong (20.1 texture components. Furthermore, corrosion resistance of the galvanized coatings was decreased by increasing the zinc bath temperature.

  5. 钢板连续热浸镀铝生产工艺技术%Production technology for continuous hot-dip aluminized steel sheet

    Institute of Scientific and Technical Information of China (English)

    刘灿楼; 李远鹏; 俞钢强; 张启富

    2016-01-01

    Hot-dip aluminized steel sheets are widely used for automotives,appliances and new-energy fields due to its excellent corrosion resistance,high temperature heat resistance,and light and heat reflectivity.The production flow of continuous hot-dip aluminized steel sheet is similar with CGL,but its continuous and stable industrialized production face challenges from the higher bath temperature,poor coating active and strong corrosivity on steel plate and immersion pieces of Al melt.Furnace atmosphere,Aluminum pool management,coating control and cooling af-ter coating are the key techniques for the production of hot dip aluminized steel sheet.Technical difficulties and countermeasures of those key techniques were discussed in detail.%镀铝钢板以其优异的耐蚀性、良好的耐热性(耐高温氧化性)和对光、热的反射性,被广泛应用于汽车、家电和新能源等各个领域。钢板连续热镀铝的生产工艺流程与传统的连续热镀锌基本一样。但由于铝的熔点高、可镀性差以及对钢板和浸入件腐蚀性强等特点,使得钢板连续热镀铝的连续稳定生产面临诸多挑战。还原退火炉气氛控制、镀锅管理技术、镀层控制以及镀后冷却控制技术等是钢板连续热镀铝的关键生产工艺技术,对上述各关键工艺点的技术难点和对策进行详细分析。

  6. Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel during Hot Dip Galvanizing

    Science.gov (United States)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2014-09-01

    The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.

  7. The Effect of the Thickness of Fe2 Al5 Phase Layer at Fe/Al Interface on the Mechanics Behavior of Hot Dip Aluminizing Coating

    Institute of Scientific and Technical Information of China (English)

    XIA Yuan; YU Sheng-xue; CHEN Ling; CUI Rui-yi; YAO Mei

    2004-01-01

    Hot Dip Aluminized Coatings with different thickness were prepared on Q235 steel in aluminum solutions with different temperature for certain time. Through tensile tests and in-situ SEM observations, the effect of the coating's microstructure on the tensile strength of the samples was studied. It was disclosed at certain aluminum solution temperature,transaction layers mainly composed of Fe2 Al5 phase got thicker with time prolonging, and this changed initial crack's extending direction from parallel with to vertical with stretching direction. The change in crack direction decreased tensile strength of samples, thus made the coating easy to break. It was concluded that the existence of thick Fe2 Al5 phase layer was the basic reason for the lowering of tensile strength of the coating.

  8. High-performance varistors simply by hot-dipping zinc oxide thin films in Pr6O11: Influence of temperature

    Science.gov (United States)

    Wang, Yang; Peng, Zhijian; Wang, Qi; Wang, Chengbiao; Fu, Xiuli

    2017-01-01

    High-performance ZnO-Pr6O11 thin-film varistors were fabricated simply by hot-dipping oxygen-deficient zinc oxide thin films in Pr6O11 powder. The films had a composition of ZnO0.81 and a thickness of about 200 nm, which were deposited by radio frequency magnetron sputtering a sintered zinc oxide ceramic target. Special attention was paid on the temperature dependence of the varistors. In 50 min with hot-dipping temperature increased from 300–700 °C, the nonlinear coefficient (α) of the varistors increased, but with higher temperature it decreased again. Correspondingly, the leakage current (IL) decreased first and then increased, owing mainly to the formation and destroying of complete zinc oxide/Pr6O11 grain boundaries. The breakdown field (E1mA) decreased monotonously from 0.02217 to 0.01623 V/nm with increasing temperature (300–800 °C), due to the decreased number of effective grain boundaries in the varistors. The varistors prepared at 700 °C exhibited the optimum nonlinear properties with the highest α = 39.29, lowest IL = 0.02736 mA/cm2, and E1mA = 0.01757 V/nm. And after charge-discharge at room temperature for 1000 times, heating at 100 or 250 °C for up to 100 h, or applying at up to 250 °C, the varistors still performed well. Such nanoscaled thin-film varistors will be very promising in electrical/electronic devices working at low voltage. PMID:28155890

  9. ADDITION OF ELECTRIC ARC FURNACE DUST IN HOT METAL

    Directory of Open Access Journals (Sweden)

    Felipe Fardin Grillo

    2013-03-01

    Full Text Available This research aims to study the process of incorporation of the mass in final hot metal and volatilization mass contained in the electric arc furnace dust (EAFD, by addition in hot metal at a temperature of 1,400°C; 1,450°C and 1,500°C altering experimental conditions such as the percentage of EAFD to be added and the percentage of silicon in hot metal. Previously, the EAFD was characterized using techniques of chemical analysis and size analysis. After characterization, the EAFD to be added to the hot metal was agglomerated in the form of briquettes. The achievement of fusion experiments in laboratory scale was placed in a vertical tubular furnace with temperature control. A flow of inert gas (argon was maintained inside the furnace during the experiments. The result of the sample EAFD volatilized shows that there is an increase in the zinc concentration when compared with the concentration of zinc present in EAFD “as received”.

  10. Effects of ultraviolet irradiation, pulsed electric field, hot water dip and ethanol vapours treatment on keeping and sensory quality of mung bean (Vigna radiata L. Wilczek) sprouts.

    Science.gov (United States)

    Goyal, Ankit; Siddiqui, Saleem

    2014-10-01

    The objective of this research work was to evaluate the effects of UV- irradiation, pulsed electric field (PEF), hot water dip (HWD) and ethanol vapours on the quality and storage life of mung bean sprouts (Vigna radiata L. Wilczek). The sprouts were subjected to various treatments viz., UV-Irradiation (10 kJm(-2) in laminar flow chamber for 1 h), PEF (10,000 V for 10s), HWD (50 °C for 2 min) and ethanol vapours (1 h); and then stored in thermocol cups wrapped with perforated cling films at room (25 ± 1 °C) and low (7 ± 1 °C) temperature conditions. The sprouts were analyzed regularly at 24 h interval for sprout length, sprout weight, total soluble solids (TSS), titratable acidity, non-enzymatic browning, total plate count and overall acceptability. Sprout length and weight increased during storage. There was no significant effect of various treatments on sprout length and weight, except in ethanol treatment, where suppression was observed. HWD showed higher TSS and acidity than that of control. The least browning was observed in ethanol treatment. The total plate count was not significantly affected by various treatments. Overall acceptability under various treatments decreased during storage period both at room and low temperature. Hot water and ethanol vapour treated sprouts showed higher acceptability than other treatments. However, the acceptability scores for sprouts remained within the acceptable range (≥6) up to 72 h at room temperature and 120 h at low temperature conditions.

  11. EXPLORATION STRATEGY FOR HOT-SPRING PRECIOUS-METAL DEPOSITS.

    Science.gov (United States)

    Berger, Byron R.; Adams, Samuel S.

    1984-01-01

    The discovery of economic precious-metal deposits related to physical-chemical processes in the near-surface portions of high-temperature hot-spring systems has led to intensive exploration efforts for this deposit type. To increase the probability of success, these exploration programs should (1) be based on the most important visually recognizable or readily measurable deposit-model criteria; (2) be able to identify specific targets within the best search areas; and (3) be able to rank the order of priority among the targets. We propose a process-recognition exploration strategy for hot-spring deposits that has been developed from data from precious-metal occurrences at several localities in the western United States. The exploration model is based on the degree to which recognizable geologic and geochemical criteria are favorable or unfavorable to the occurrence of an economic deposit, either through their presence or absence.

  12. The metal content of hot DA white dwarf spectra

    CERN Document Server

    Dickinson, Nathan

    2012-01-01

    A study of high ion metal absorption features present in the spectra of hot DA white dwarfs is presented. An analysis of three DAs is performed, where previous studies came to conflicting conclusions as to the stars' nitrogen configurations. The nitrogen abundances were found to be in keeping with DAs of higher Teff, with a homogeneous distribution. A search for circumstellar gas discs was performed on eight stars, where circumstellar pollution may explain the differences between predicted and observed metal abundances. No positive detections were made. Already the subject of previous studies, the circumstellar absorption features seen at many hot DAs were again analysed, using a more advanced technique than those implemented in previous studies. This allowed, for the first time, column density measurements for all non-photospheric absorbing material. The derived column density measurements are consistent with those predicted to exist in white dwarf Stromgren Spheres, and the velocities of the absorbing mater...

  13. Mathematical Model of Hot Metal Desulfurization by Powder Injection

    Directory of Open Access Journals (Sweden)

    Yolanda Cepeda Rodríguez

    2012-01-01

    Full Text Available Although there have been a numerous number of studies on mathematical model of hot metal desulfurization by deep injection of calcium carbide, the research field as a whole is not well integrated. This paper presents a model that takes into account the kinetics, thermodynamics, and transport processes to predict the sulfur levels in the hot metal throughout a blow. The model could be utilized to assess the influence of the treatment temperature, rate of injection, gas flow rate, and initial concentration of sulfur on the desulfurization kinetics. In the second part of this paper an analysis of the industrial data for injection of calcium carbide using this model is described. From a mathematical model that describes the characteristics of a system, it is possible to predict the behavior of the variables involved in the process, resulting in savings of time and money. Discretization is realized through the finite difference method combined with interpolation in the border domain by Taylor series.

  14. Fuzzy Prediction of Silicon Content for BF Hot Metal

    Institute of Scientific and Technical Information of China (English)

    LI Qi-hui; LIU Xiang-guan

    2005-01-01

    Some key operation variables influencing hotmetal silicon content were selected, and time lag of each of them was obtained. A standardized fuzzy system model was developed to approach the random nonlinear dynamic system of the change of silicon content, forecast the change of silicon content and calculate silicon content. The prediction of hot metal silicon content is very successful with the data collected online from BF No. 1 at Laiwu Iron and Steel Group Co.

  15. 带钢连续热镀锌层厚度控制技术的研究%A Research on Thickness Control Technology for Continuous Hot Dip Galvanized Zinc Layer on Strip Steel

    Institute of Scientific and Technical Information of China (English)

    郑永春; 岑耀东; 田荣彬

    2012-01-01

    Control of zinc layer thickness has been the key and difficulty in continuous hot dip galvanizing production for strip steel. According to the characteristics of DAK air knife, the effects of hot dip galvanizing production process and equipment on zinc layer thickness are analyzed, the main methods for controlling the thickness of zinc layer summarized, and the measures for improving the control precision of zinc layer proposed.%镀锌层厚度控制一直是带钢连续热镀锌生产的重点和难点.针对DAK气刀的特点,分析了热镀锌生产工艺和设备对镀锌层厚度的影响,总结了镀锌层厚度控制的主要方法,提出了提高镀锌层厚度控制精度的措施.

  16. Quality Control system for a hot-rolled metal surface

    Directory of Open Access Journals (Sweden)

    I. Mazur

    2016-07-01

    Full Text Available The modern ideas about of quality of products are based on the principle of the absolute satisfaction of requirements of recommendations of the buyer. A presence of surface defects of steel-smelting and rolling origin is peculiar to the production of hot-rolling mill. The automatic surface inspection system (ASIS includes two digital line video cameras for the filming of the upper and lower surfaces of the flat bar, block of illumination of the upper and lower surfaces of the flat bar, computer equipment. A system that secures 100 % control of the surface of rolled metal (of the upper and lower side detects automatically and classifies the sheet defects in the real time mode was mounted in the domestic practice in the first time in 2003 on hot rolling mill 2000 JSC «Novolipetsk Iron & Steel Corporation» (NISC. The whole assortment of the mill 2000 was divided for the five groups by the outward appearance of the surface. The works on the identification of defects of hot-rolled metal and widening of data base of knowledge of ASIS were continued after the carrying out of guarantee tests. More than 10 thousand images of defects were added to the data base during the year.

  17. Inhibition of hot salt corrosion by metallic additives

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1978-01-01

    The effectiveness of several potential fuel additives in reducing the effects of sodium sulfate-induced hot corrosion was evaluated in a cyclic Mach 0.3 burner rig. The potential inhibitors examined were salts of Al, Si, Cr, Fe, Zn, Mg, Ca, and Ba. The alloys tested were IN-100, U-700, IN-738, IN-792, Mar M-509, and 304 stainless steel. Each alloy was exposed for 100 cycles of 1 hour each at 900 C in combustion gases doped with the corrodant and inhibitor salts and the extent of attack was determined by measuring maximum metal thickness loss. The most effective and consistent inhibitor additive was Ba (NO3)2 which reduced the hot corrosion attack to nearly that of simple oxidation.

  18. The distribution of metals in hot DA white dwarfs

    CERN Document Server

    Dickinson, N J; Hubeny, I

    2012-01-01

    The importance to stellar evolution of understanding the metal abundances in hot white dwarfs is well known. Previous work has found the hot DA white dwarfs REJ 1032+532, REJ 1614-085 and GD 659 to have highly abundant, stratified photospheric nitrogen, due to the narrow absorption line profiles of the FUV N V doublet and the lack of EUV continuum absorption. A preliminary analysis of the extremely narrow, deep line profiles of the photospheric metal absorption features of PG 0948+534 suggested a similar photospheric metal configuration. However, other studies have found REJ 1032+532, REJ 1614-085 and GD 659 can be well described by homogeneous models, with nitrogen abundances more in keeping with those of white dwarfs with higher effective temperatures. Here, a re-analysis of the nitrogen absorption features seen in REJ 1032+532, REJ 1614-085 and GD 659 is presented, with the aim of better understanding the structure of these stars, to test which models better represent the observed data and apply the result...

  19. A Transiting Hot Jupiter Orbiting a Metal-Rich Star

    CERN Document Server

    Dunham, Edward W; Koch, David G; Batalha, Natalie M; Buchhave, Lars A; Brown, Timothy M; Caldwell, Douglas A; Cochran, William D; Endl, Michael; Fischer, Debra; Furesz, Gabor; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kjeldsen, Hans; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Meibom, Soren; Monet, David G; Rowe, Jason F; Sasselov, Dimitar D

    2010-01-01

    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.

  20. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Science and Research Department, Chinese People' s Armed Police Academy, Langfang 065000 (China); Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu Lailei; Jiang Guirong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li Liang [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. Black-Right-Pointing-Pointer The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al{sub 2}O{sub 3} oxides. Black-Right-Pointing-Pointer The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. Black-Right-Pointing-Pointer The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. The grain size of the {kappa}-Al{sub 2}O{sub 3} crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic

  1. Developments in hot-filament metal oxide deposition (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco, 511, Alto de Boa Vista, 18087-180 Sorocaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Trasferetti, Benedito C. [Departamento de Policia Federal, Superintendencia Regional no Piaui, Setor Tecnico-Cientifico, Avenida Maranhao, 1022/N, 64.000-010, Teresina, PI (Brazil); Scarminio, Jair [Departamento de Fisica, Universidade Estadual de Londrina (UEL), 86051-990, Londrina, PR (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP (Brazil); Rouxinol, Francisco P.M.; Gelamo, Rogerio V.; Bica de Moraes, Mario A. [Laboratorio de Processos de Plasma, Departamento de Fisica Aplicada, Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Hot-filament metal oxide deposition (HFMOD) is a variant of conventional hot-filament chemical vapor deposition (HFCVD) recently developed in our laboratory and successfully used to obtain high-quality, uniform films of MO{sub x}, WO{sub x} and VO{sub x}. The method employs the controlled oxidation of a filament of a transition metal heated to 1000 deg. C or more in a rarefied oxygen atmosphere (typically, of about 1 Pa). Metal oxide vapor formed on the surface of the filament is transported a few centimetres to deposit on a suitable substrate. Key system parameters include the choice of filament material and diameter, the applied current and the partial pressures of oxygen in the chamber. Relatively high film deposition rates, such as 31 nm min{sup -1} for MoO{sub x}, are obtained. The film stoichiometry depends on the exact deposition conditions. MoO{sub x} films, for example, present a mixture of MoO{sub 2} and MoO{sub 3} phases, as revealed by XPS. As determined by Li{sup +} intercalation using an electrochemical cell, these films also show a colouration efficiency of 19.5 cm{sup 2} C{sup -1} at a wavelength of 700 nm. MO{sub x} and WO{sub x} films are promising in applications involving electrochromism and characteristics of their colouring/bleaching cycles are presented. The chemical composition and structure of VO{sub x} films examined using IRRAS (infrared reflection-absorption spectroscopy), RBS (Rutherford backscattering spectrometry) and XPS (X-ray photoelectron spectrometry) are also presented.

  2. Numerical modeling of thermal evolution in hot metal coiling

    Directory of Open Access Journals (Sweden)

    Troyani, N.

    2005-12-01

    Full Text Available The use of coiling and uncoiling in the transfer table stage has important effects on the downstream temperature evolution throughout the hot bar in hot rolling, consequently, it has significant effects on both the uniformity of final mechanical properties and uniformity of final metallurgical properties. Consideration is given herein to the evolution of bar distribution of temperature in the transfer table, when coiling is present, in order to establish possible causes for the lack of the stated uniformity for eventual possible solutions. To address these issues, the mathematical equation of heat diffusion in a shape changing domain, is solved using a novel numerical strategy that uses both Finite Elements and Finite Differences. Numerical results are presented.

    El uso de estrategias para el bobinado y enderezado en la etapa de la mesa de transporte tiene repercusiones importantes en la evolución de la temperatura, aguas abajo, en el planchón de metal caliente; en consecuencia, tiene efectos significativos sobre la uniformidad de las propiedades mecánicas y metalúrgicas finales una vez concluido el proceso. Este trabajo estudia la evolución de la distribución de temperatura en la etapa de la mesa de transporte, en procesos de bobinado, con el fin de establecer causas que puedan originar la ausencia de la citada uniformidad. Para el estudio se resuelve la ecuación de difusión del calor en un dominio que cambia con el tiempo en una novedosa estrategia numérica que integra Elementos Finitos y Diferencias Finitas. Se presentan resultados numéricos de la simulación.

  3. Overall model of the dynamic behaviour of the steel strip in an annealing heating furnace on a hot-dip galvanizing line

    Directory of Open Access Journals (Sweden)

    Fernández, R.

    2010-10-01

    Full Text Available Predicting the temperature of the steel strip in the annealing process in a hot-dip galvanizing line (HDGL is important to ensure the physical properties of the processed material. The development of an accurate model that is capable of predicting the temperature the strip will reach according to the furnace’s variations in temperature and speed, its dimensions and the steel’s chemical properties, is a requirement that is being increasingly called for by industrial plants of this nature. This paper presents a comparative study made between several types of algorithms of Data Mining and Artificial Intelligence for the design of an efficient and overall prediction model that will allow determining the strip’s variation in temperature according to the physico-chemical specifications of the coils to be processed, and fluctuations in temperature and speed that are recorded within the annealing process. The ultimate goal is to find a model that is effectively applicable to coils of new types of steel or sizes that are being processed for the first time. This model renders it possible to fine-tune the control model in order to standardise the treatment in areas of the strip in which there is a transition between coils of different sizes or types of steel.La predicción de la temperatura de la banda de acero dentro del proceso de recocido de una planta de galvanizado continuo en caliente es importante para garantizar las propiedades físicas del material procesado. El desarrollo de un modelo preciso que sea capaz de predecir la temperatura que va a alcanzar la banda según las variaciones de temperaturas y velocidades del horno, y sus dimensiones y propiedades químicas del acero, es una necesidad cada vez más demandada por este tipo de plantas industriales. En el presente estudio se muestra una comparativa realizada entre diversos tipos de algoritmos deMinería de Datos e Inteligencia Artificial para el desarrollo de un modelo de predicci

  4. Discussion of Carbon Emissions for Charging Hot Metal in EAF Steelmaking Process

    Science.gov (United States)

    Yang, Ling-zhi; Jiang, Tao; Li, Guang-hui; Guo, Yu-feng

    2017-07-01

    As the cost of hot metal is reduced for iron ore prices are falling in the international market, more and more electric arc furnace (EAF) steelmaking enterprises use partial hot metal instead of scrap as raw materials to reduce costs and the power consumption. In this paper, carbon emissions based on 1,000 kg molten steel by charging hot metal in EAF steelmaking is studied. Based on the analysis of material and energy balance calculation in EAF, the results show that 146.9, 142.2, 137.0, and 130.8 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 %, while 143.4, 98.5, 65.81, and 31.5 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 % by using gas waste heat utilization (coal gas production) for EAF steelmaking unit process. However, carbon emissions are increased by charging hot metal for the whole blast furnace-electric arc furnace (BF-EAF) steelmaking process. In the condition that the hot metal produced by BF is surplus, as carbon monoxide in gas increased by charging hot metal, the way of coal gas production can be used for waste heat utilization, which reduces carbon emissions in EAF steelmaking unit process.

  5. Hot isostatic pressing of direct selective laser sintered metal components

    Science.gov (United States)

    Wohlert, Martin Steven

    2000-10-01

    A new manufacturing process combining the benefits of Selective Laser Sintering (SLS) and Hot Isostatic Pressing (HIP) has been developed to permit Rapid Prototyping of high performance metal components. The new process uses Direct Metal SLS to produce a gas impermeable HIP container from the same powdered material that will eventually compose the bulk of the part. The SLS generated capsule performs the functions of the sheet metal container in traditional HIP, but unlike a sheet metal container, the SLSed capsule becomes an integral part of the final component. Additionally, SLS can produce a capsule of far greater geometric complexity than can be achieved by sheet metal forming. Two high performance alloys, Ti-6Al-4V and Inconel 625, were selected for use in the development of the new process. HIP maps were constructed to predict the densification rate of the two materials during HIP processing. Comparison to experimentally determined densification behavior indicated that the maps provide a useful qualitative description of densification rates; however, the accuracy of quantitative predictions was greatly enhanced by tuning key material parameters based on a limited number of experimental HIP cycles. Microstructural characterization of SLS + HIP samples revealed two distinct regions within the components. The outer SLS processed capsule material exhibited a relatively coarse microstructure comparable to a cast, or multi-layer welded structure. No layer boundaries were discernible in the SLS material, with grains observed to grow epitaxially from previously deposited material. The microstructure of the HIP consolidated core material was similar to conventionally HIP processed powder materials, featuring a fine grain structure and preserved prior particle boundaries. The large variation in grain size between the capsule and core materials was reflected in hardness measurements conducted on the Alloy 625 material; however, the variation in hardness was less

  6. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    Science.gov (United States)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while

  7. Metal Hydrides as hot carrier cell absorber materials

    Science.gov (United States)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  8. Research on High Temperature Oxidation Resistance of Hot-dip Aluminized Steel%热浸镀铝钢抗高温氧化腐蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    吴笛

    2012-01-01

    Considering high temperature oxidation resistance of hot-dip aluminized steel, the experimental study on it at 900℃ and for 100h and through weight gain was discontinuously implemented. The results show that the oxidation by weight per unit area of hot-dip aluminized steel is a quarter of general carbon steel, and the oxide film which making up this deposit together with matrix and diffusion zone has excellent high temperature oxidation resistance.%在实验室条件下通过900C、100h的不连续氧化增重试验研究了热浸镀铝钢的抗高温氧化腐蚀性能,结果表明,热浸镀铝钢单位面积氧化增重量为普通碳钢的1/4,其中浸镀层由表面的氧化膜、母体和扩散区组成,氧化膜具有优良的抗高温氧化性能.

  9. Effect of Bi on Microstructure and Thickness of Hot-dip Aluminizing Coating on Magnesium Alloy%Bi对镁合金热浸镀铝镀层组织和厚度的影响

    Institute of Scientific and Technical Information of China (English)

    薛寒松; 陈祖权; 向军军

    2013-01-01

    采用热浸镀方法在AZ31镁合金表面镀覆一层铝合金层.利用光学显微镜和配有能谱分析的扫描电镜等对镀层微观组织、元素分布等进行了研究;测定了试样在不同浸镀条件下的镀层厚度.结果表明:镀液添加Bi后,在浸镀温度不变情况下,镀层厚度增加速度加快,过渡层厚度变大,镀层中粗大的树枝晶增多,但是Bi在镀层中含量极少.通过对试验结果分析得出:Bi元素对Mg、Al液态互扩散具有显著的促进作用,使得镀层形成速度加快,但是也造成镀层组织粗大.%The aluminum coating on AZ31 Mg alloy surface was prepared by hot dipping process. The microstructure of coating, distribution of element were studied by OM and SEM. The thickness of the coating was measured. The results show that after adding Bi into the hot-dipping solution, with the dipping temperature being constant, the increasing rate of the thickness of the coating becomes higher, the thickness of intermediate layer and the amount of coarse dendrite increases, but the amount of Bi in coating is extremely low. An analysis on the result of experiment shows that Bi can promote liquid mutual diffusion between Mg and Al, speed up the formation of coating, but also causes the formation of coarse structure.

  10. Hot-rolled Process of Multilayered Composite Metal Plate

    Directory of Open Access Journals (Sweden)

    YU Wei

    2017-02-01

    Full Text Available For multi-layer plate, it is a difficult problem to increase product yield rate and improve bonding interface quality. A high yield hot-rolled method of multilayered plate was proposed. The raw strips and plate were fixed by argon arc welding. The combined billet was put into a metal box and vacuum pumped, and then heated and rolled by multi passes at the temperature of 1000-1200℃. The 67 layered plate with the thickness of 2.5mm was successfully produced. The interfacial microstructures and diffusion behavior were investigated and analyzed by optical microscopy and scan electronic microscopy. The tensile and shear strength were tested,and the shear fractures were analyzed. The results show that the multilayered plate yield rate is more than 90% by two steps billet combination method and rolling process optimization. The good bonding interface quality is obtained, the shear strength of multilayered plate reaches 241 MPa. Nickel interlayer between 9Cr18 and 1Cr17 can not only prevent the diffusion of carbon, but also improve the microstructure characteristics.

  11. Desulphurization of hot metal and nickel pig iron using waste materials from the aluminum industry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.D.; McLean, A. [Toronto Univ., ON (Canada). Dept. of Materials Science and Engineering; Hasegawa, M.; Iwase, M. [Kyoto Univ., Kyoto (Japan). Dept. of Energy Science and Technology, Ferrous Metallurgy Research Group; Ren, M.L.; Zhang, D.F. [China Aluminum Co. Ltd., Shandong (China)

    2009-07-01

    The aluminium and steel industries are both energy-intensive and have significant impacts on the environment. The desulphurization of hot metal and nickel pig iron using waste materials from the aluminium industry was evaluated in this study. A simple processing technique using dross and white mud was developed to desulphurize hot metals. Waste materials with a high oxide content were combined with an aluminium instant reduction method and then used for hot metal desulphurization. The presence of nickel in the hot metals showed a negative effect on the desulphurization process as the nickel reduced carbon solubility in an iron-based metal solution. It was concluded that the use of waste slags and solids residuals from the aluminium industry within the steel industry will reduce the disposal of waste and provide significant economic benefits to both industries. 6 refs., 2 tabs., 12 figs.

  12. Development of Zn-Al-Cu coatings by hot dip coated technology: preparation and characterization; Obtencion y caracterizacion de recubrimientos Zn-Al-Cu por inmersion en caliente sobre aceros de bajo carbono

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, J.; Barba, A.; Hernandez, M. A.; Salas, J.; Espinoza, J. L.; Denova, C.; Torres-Villasenor, G.; Conde, A.; Covelo, A.; Valdez, R.

    2013-07-01

    In the present study, research concerning Zn-Al-Cu coatings on low carbon steels has been conducted in order to characterize different properties obtained by a hot-dip coated process. The results include preparation procedure as well as the processing parameters of the coatings. The obtained coatings were subjected to a cold rolling process followed by an anneal heat treatment at different temperatures and under different time conditions. The structural characteristics of coatings have been investigated by optical and electron microscopy. The mechanical properties were obtained by using micro-hardness testing, deep drawing and wear tests whereas chemical analyses were carried out using the SEM/EDAX microprobe. The corrosion properties were achieved by using a salt spray fog chamber and potentiodynamic tests in a saline solution. The coatings are resistant to corrosion and wear in the presence of sodium chloride, therefore, the coatings could be an attractive alternative for application in coastal areas, and adequate wear adhesive resistance. (Author)

  13. 低碳钢热浸镀铝微弧氧化陶瓷层厚度研究%Thickness of Micro- Arc Oxided Ceramic Layer on Hot Dip Aluminized Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    高殿奎; 沈德久; 王玉林

    2001-01-01

    研究了影响低碳钢热浸镀铝微弧氧化陶瓷层生长厚度的因素,指出了获得最大厚度的氧化时间并对其原因进行了分析。结果表明,影响陶瓷层厚度的主要因素是氧化时间,热浸镀最佳温度为720~730 ℃。%The factors affecting the thickness of micro- arc oxided ceramic layer on hot dip aluminized low carbon steel were discussed.The experimental results showed that the predominant affecting factor was time for oxidation.

  14. Coat Structure Analysis and Formation Mechanismof Deformation 12CrMoV Steel Hot-Dip Aluminizing%形变12CrMOV钢热浸铝的镀层组织及形成机制

    Institute of Scientific and Technical Information of China (English)

    高聿为

    2000-01-01

    The coat microstructures of deformation 12CrMoV steel hot-dip aluminizing were analyzed by optical mi-croscope, TEM and X-ray diffraction, and the formation mechanism was discussed in the paper%用金相显微镜、透射电子显微镜及X射线衍射仪对形变热浸镀铝的镀层微观组织进行了分析,并探讨了其形成机制。所得结果对完善形变钢热浸镀铝的镀层组织及形成机制提供一定的参考依据,对制定形变件的浸镀工艺也有一定的指导意义。

  15. Development and characterization of polymers-metallic hot embossing process for manufacturing metallic micro-parts

    Science.gov (United States)

    Sahli, M.; Millot, C.; Gelin, J.-C.; Barrière, T.

    2011-01-01

    In the recent years, hot embossing process becomes a promising process for the replication of polymer micro-structures associated to its manufacturing capability related to a relatively low component cost. This rising demand has prompted the development of various micro-manufacturing techniques in an attempt to get micro-parts in large batch. The paper investigates the way to get metallic micro-parts through the hot embossing process. The micro-manufacturing process consists in three stages. In the first one, the different metallic feedstocks with 50 to 60% powder loading in volume have been prepared with adapted polymers/powders formulations. In a second stage, an elastomeric master has been used to obtain micro-parts on a plastic loaded substrate with developed mixture based on polypropylene, paraffin wax and stearic acid. Finally, a thermal debinding stage in nitrogen atmosphere followed by a solid state pre-sintering stage has been applied, in order to eliminate the pores between powder particles in the debinded components. Then the porous components are agglomerated by solid state diffusion after heating to a temperature slightly lower than the melting temperature related to the material used in the process, to form an homogenous structure when full densification is achieved. The advantages of this approach include: rapid manufacturing of injection tools with high-quality, easy demoulding of metallic parts from the elastomeric moulds and great flexibility related to the choices of material. The paper describes all the processing stages and the way to characterize the geometrical, physical and mechanical properties of the resulting micro-parts.

  16. Controlling Surface-plasmon-polariton Launching with Hot Spot Cylindrical Waves in a Metallic Slit Structure

    CERN Document Server

    Yao, Wenjie; Chen, Jianjun; Gong, Qihuang

    2015-01-01

    Plasmonic nanostructures, which are used to generate surface plasmon polaritions (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits.

  17. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming Analysis, Simulation and Engineering Applications

    CERN Document Server

    Hu, Ping; Liu, Li-zhong; Zhu, Yi-guo

    2013-01-01

    Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: • the forming process, • constitutive equations, • hot boundary constraint treatment, and • hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software f...

  18. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  19. Producing metal parts with selective laser sintering/hot isostatic pressing

    Science.gov (United States)

    Das, Suman; Wohlert, Martin; Beaman, Joseph J.; Bourell, David L.

    1998-12-01

    Selective laser sintering/hot isostatic pressing is a hybrid direct laser fabrication method that combines the strengths of both processes. Selective laser sintering can produce complexly shaped metal components with an integral, gas-impermeable skin. These components can then be directly post-processed to full density by containerless hot isostatic pressing. The use of the hybrid fabrication method, envisioned as a rapid, low-cost replacement for conventional metal-can hot isostatic pressing, is currently being studied for alloy 625 and Ti-6Al-4V alloys. The micro-structure and mechanical properties of selective-laser-sintering processed and hot isostatically pressed post-processed material compare well with those of conventionally processed material.

  20. Origin of Power Laws for Reactions at Metal Surfaces Mediated by Hot Electrons

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2009-01-01

    A wide range of experiments have established that certain chemical reactions at metal surfaces can be driven by multiple hot-electron-mediated excitations of adsorbates. A high transient density of hot electrons is obtained by means of femtosecond laser pulses and a characteristic feature...... of such experiments is the emergence of a power law dependence of the reaction yield on the laser fluence Y similar to F-n. We propose a model of multiple inelastic scattering by hot electrons which reproduces this power law and the observed exponents of several experiments. All parameters are calculated within...

  1. Vacuum Treatment for Simultaneous Desulphurization and Dephosphorization of Hot Metal and Molten Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-chuan; WANG Shi-jun; ZHOU Yun; WU Bao-guo; DONG Yuan-chi

    2004-01-01

    The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre-melted CaO-based slag was carried out. For pre-treatment of hot metal, both desulphurization and dephosphorization are improved with the increase of CaO in slag, but deteriorated with the increase of CaF2 in slag. The average desulphurization and dephosphorization rate is 68.83 % and 78.46 %, respectively. For molten steel, the substitution of BaO for CaO in slag has minor effect on simultaneous desulphurization and dephosphorization. The desulphurization and dephosphorization rate is higher than 90 % and 50 % respectively with the lowest final sulfur and phosphorus mass percent being 0.001 2 % and 0.010 %, respectively. The overall effect of simultaneous desulphurization and dephosphorization of molten steel is better than that of hot metal.

  2. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    CERN Document Server

    Brown, Ana M; Narang, Prineha; Goddard, William A; Atwater, Harry A

    2016-01-01

    Ultrafast laser measurements probe the non-equilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semi-empirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously-neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phon...

  3. 连续退火热镀锌板镀层表面黑点缺陷研究%Study of dark dot defect on coating surface of continuously annealed hot-dip galvanized steel sheet

    Institute of Scientific and Technical Information of China (English)

    刘李斌; 蒋光锐; 马兵智; 李蔚然; 刘华赛; 齐春雨

    2014-01-01

    研究了热镀锌板镀层表面黑点的产生机理,分析了该缺陷对热镀锌板涂镀质量的影响,提出了相应的改进措施。结果表明,基板表面存在微小凹坑,镀锌后表面形成黑色圆形氧化膜,即黑点缺陷,对热镀锌板涂镀后的磷化膜质量产生不利影响。实际生产中,通过降低热轧卷的卷曲温度、清洗槽电解电流密度及提高退火炉的密封性,可有效减轻该缺陷。%Generation mechanism of dark dot defect and effect on painting surface quality of hot -dip galvanized steel sheet were studied , and some relative improvement measures were proposed .The results show that little pits exist on the substrate , which form dark dot defect is composed of oxide film after galvanized .The dark dot defect markedly influences crystal structure of phosphate coating .Moreover , during practical production , it could be effectively reduced by decreasing coiling temperature , reducing current density in rinse tank and improving sealing of the annealing furnace .

  4. 热镀锌张力辊电机气动抱闸系统的改造%Reformation of Pneumatic Brake System in Tension Roller Motor of Hot Dip Galvanized Steel

    Institute of Scientific and Technical Information of China (English)

    岑耀东; 陈林

    2012-01-01

    Against the problem of the tension roller brake system motor's frequent abnormal braking in the production line of hot dip galvanizing, the brake system s working principle and structural characteristics were analyzed. It is found that the main reasons causing this fault is failure of closing switches induction position, which result from the brake head bushings seal leakage. By improving the design and transformation of brake system's structure, the problem of the brake sensor is solved, and the resulting problem of abnormal downtime is avoided as well.%针对热镀锌生产线中张力辊电机抱闸系统频繁出现非正常制动故障的问题,从抱闸系统的工作原理和结构特点方面进行分析,发现抱闸头轴套密封处漏气造成接近开关感应位置失效是此故障的主要原因,采用铁片在外端固定接近开关来代替原来的密封盖后,解决了该故障问题.

  5. Research Progress of Hot-dip Zn-Al-X Alloy Coatings and Processes%热浸Zn-Al-X合金镀层及工艺研究进展

    Institute of Scientific and Technical Information of China (English)

    刘继拓; 贺志荣; 何应; 解凯

    2013-01-01

    The effects of the alloy element Mg, Bi, Sn, RE, etc. on the microstructure and properties of Zn-Al alloy coatings are discussed. The microstructure, properties, application fields and process development of Zn-Al-RE, Zn-Al-Mg, Zn-Al-Si, Zn-Al-Mg-Si and Zn-Al-Sn-Bi alloy coatings are introduced. The existing problems at present and research directions in the future of the technology for the hot-dip Zn-Al based alloy coatings are pointed out.%论述了合金元素Mg、Bi、Sn、RE等对Zn-Al合金镀层组织性能的影响,介绍了Zn-Al-RE、Zn-Al-Mg、Zn-Al-Si、Zn-Al-Mg-Si和Zn-Al-Sn-Bi等合金镀层的组织结构、性能特点、应用场合和工艺发展,指出了热浸Zn-Al基合金镀层技术目前存在的问题和研究方向.

  6. 锌浴中镍含量对热浸锌镀层厚度的影响%Effect of Ni Content in Zn Bath on Thickness of Hot Dip Galva-nized Coating

    Institute of Scientific and Technical Information of China (English)

    卢锦堂; 许乔瑜; 陈锦虹; 孔纲; 刘丽霞

    2001-01-01

    The effect of Ni content in Zn bath on thickness of hot dip galvanized coating was studied using SEM. It showed thatwith the Ni content increasingthe coating thickness increased when the nickel content 0.12%. The industrial practice showed that the Ni content can be chosen in a range of 0.04%~0.10%which results in satisfactory coating thickness and saves zinc because of reducing the excess coating thickness.%应用SEM、EPMA等方法研究了锌浴中镍含量对热浸锌镀层厚度的影响,试验结果表明:当锌浴中镍含量小于0.12% (wt)时,镀层随镍含量增加而减薄;当镍含量大于0.12%时,镀层则随镍含量增加而增厚。在热镀锌生产线上对0.10%以下的不同镍含量锌浴的应用结果表明:为了兼顾不同产品对最低镀层厚度的要求,镍含量可在0.04%~0.10%间选择,这时由于减少了镀层超厚,节锌效果明显。

  7. A Super-Solar Metallicity For Stars With Hot Rocky Exoplanets

    CERN Document Server

    Mulders, Gijs D; Apai, Daniel; Frasca, Antonio; Molenda-Zakowicz, Joanna

    2016-01-01

    The host star metallicity provide a measure of the conditions in protoplanetary disks at the time of planet formation. Using a sample of over 20,000 Kepler stars with spectroscopic metallicities from the LAMOST survey, we explore how the exoplanet population depends on host star metallicity as a function of orbital period and planet size. We find that exoplanets with orbital periods less than 10 days are preferentially found around metal-rich stars ([Fe/H]~ 0.15 +- 0.05 dex). The occurrence rates of these hot exoplanets increases to ~30% for super-solar metallicity stars from ~10% for stars with a sub-solar metallicity. Cooler exoplanets, that resides at longer orbital periods and constitute the bulk of the exoplanet population with an occurrence rate of >~ 90%, have host-star metallicities consistent with solar. At short orbital periods, P<10 days, the difference in host star metallicity is largest for hot rocky planets (<1.7 R_Earth), where the metallicity difference is [Fe/H] =~ 0.25 +- 0.07 dex. The...

  8. High Efficient Technology of Steelmaking With Low Silicon Hot Metal on Large Converter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To resolve the difficulty in slag formation during steelmaking with low silicon hot metal and to increase productivity, a new 5-hole lance was developed by increasing oxygen flow from 50 000 m3/h to 60 000 m3/h. Synthetic slag was added to adjust the slag composition. The problems such as difficulty in dephosphorization and slag adhesion to oxygen lance and hood were settled. Steel production and metal yield were increased and the nozzle life was prolonged through these techniques.

  9. Al2O3-SiC-C Bricks for Hot Metal Pretreatment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 1 Scope This standard specifies the classification,techni-cal requirements,test methods,inspection rules,packing,marking,transportation,storage and quality certificate of Al2O3-SiC-C bricks for hot metal pre-treatment.

  10. Al2O3 SiC-C Bricks for Hot Metal Pretreatment

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan; Peng Xigao

    2010-01-01

    @@ 1 Scope This standard specifies the classification,shape and dimensions,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of Al2O3SiC-C bricks for hot metal pretreatment.

  11. Thermodynamic Analysis and Experimental Study on Reaction of CO2 Gas with Hot Metal

    Institute of Scientific and Technical Information of China (English)

    Guo WEI; Zhi-tao LI; Zi-liang LI; Qiang-jian GAO; Feng-man SHEN

    2016-01-01

    The reaction of CO2 gas with hot metal was investigated based on the thermodynamic analysis and experi-mental results.It shows that both silicon and carbon in hot metal can be oxidized by CO2 gas in the temperature range of 1 300-1 500 ℃.When using graphite crucible,temperature has little influence on final mass percent of car-bon w[C] because of the carburization effect.Decarburization degree rises significantly with increasing gas inj ection rate and w[C] can be reduced to 3�2% at most when using MgO crucible.Lower temperature or higher gas inj ection rate is propitious to promote desilication reaction,but only 5%-10% of desilication ratio could be obtained in 20 min. The final mass percent of silicon w[Si] when using MgO crucible is lower than that when using graphite crucible.Ex-perimental results also demonstrate that CO2 injection has no effect on the concentration of manganese,sulfur and phosphorus in hot metal.In view of the weak oxidation ability and temperature drop of hot metal,CO2 gas is sugges-ted to be used as carrier gas in desilication process rather than oxidizing agent.

  12. Hot hydrogen testing of metallic turbo pump materials

    Science.gov (United States)

    Zee, Ralph; Chin, Bryan; Inamdar, Rohit

    1993-01-01

    The objectives of this investigation are to expose heat resistant alloys to hydrogen at elevated temperatures and to use various microstructural and analytical techniques to determine the chemical and rate process involved in degradation of these materials due to hydrogen environment. Inconel 718 and NASA-23 (wrought and cast) are candidate materials. The degradation of these materials in the presence of 1 to 5 atmospheric pressure of hydrogen from 450 C to 1100 C was examined. The hydrogen facility at Auburn University was used for this purpose. Control experiments were also conducted wherein the samples were exposed to vacuum so that a direct comparison of the results would separate the thermal contribution from the hydrogen effects. The samples were analyzed prior to and after exposure. A residual gas collection system was used to determine the gaseous species produced by any chemical reaction that may have occurred during the exposure. Analysis of this gas sample shows only the presence of H2 as expected. Analyses of the samples were conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. There appears to be no change in weight of the samples as a result of hydrogen exposure. In addition no visible change on the surface structure was detected. This indicates that the materials of interest do not have strong interaction with hot hydrogen. This is consistent with the microstructure results.

  13. Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication

    Science.gov (United States)

    Smashey, Russell W. (Inventor)

    2001-01-01

    An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.

  14. Development of dissimilar metal transition joint by hot roll bonding technique

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa (Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works); Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki

    1994-12-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author).

  15. Development of dissimilar metal transition joint by hot roll bonding technique

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko

    1995-12-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called `rotary reduction mill`. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author).

  16. Hot-carrier photocurrent effects at graphene-metal interfaces.

    Science.gov (United States)

    Tielrooij, K J; Massicotte, M; Piatkowski, L; Woessner, A; Ma, Q; Jarillo-Herrero, P; van Hulst, N F; Koppens, F H L

    2015-04-29

    Photoexcitation of graphene leads to an interesting sequence of phenomena, some of which can be exploited in optoelectronic devices based on graphene. In particular, the efficient and ultrafast generation of an electron distribution with an elevated electron temperature and the concomitant generation of a photo-thermoelectric voltage at symmetry-breaking interfaces is of interest for photosensing and light harvesting. Here, we experimentally study the generated photocurrent at the graphene-metal interface, focusing on the time-resolved photocurrent, the effects of photon energy, Fermi energy and light polarization. We show that a single framework based on photo-thermoelectric photocurrent generation explains all experimental results.

  17. 钢丝热镀锌-10%铝-混合稀土合金镀层工艺%Process for hot-dip galvanizing zinc-10%aluminum-mixed rare earth alloy on steel wires

    Institute of Scientific and Technical Information of China (English)

    裘海锋; 王英民; 苗立贤; 侯志娇; 苗瀛; 杨冰

    2013-01-01

    A process for hot-dip galvanizing Zn-10%Al-mixed rare earth alloy coating on steel wires based on the principle of electrodeposition (i.e. electroplating a Zn coating prior to galvanizing) was developed as a substitute to common double-dip galvanizing method. The bath composition and operation conditions of individual procedure were presented. It is stressed that the pretreatment of steel wire is the key point. Electrolytic degreasing twice, quartz sand rubbing, and overflow rinsing are employed to produce clean steel wire surface and ensure the quality of coating. The temperature range of molten alloy (455-460 °C) and other technical key points such as the nitrogen wiping temperature were given. The process has advantages of energy saving and low cost as compared with the double-dip method. The causes for the formation of floating aluminum-rich product which influences the coating quality and its treatment method for making the coating smooth and free of defects such as lumps and bumps were discussed. The surface quality of steel wires obtained by the process is stable, and the technical and physicochemical indexes meet the requirements of the standard YB/T 4221-2010 Coated Steel Wire for Machine Woven Steel Wire Mesh.%利用电沉积原理,提出了一种在钢丝表面热浸镀锌-10%铝-稀土合金镀层的工艺,在热浸镀合金之前电沉积一层锌镀层,以代替普通的“双镀法”。给出了各工序的溶液配方及工艺条件。指出重点应放在钢丝的预处理上。采用2道电解脱脂以及石英砂擦拭、水溢流漂洗工艺,得到非常清洁的钢丝表面,才能保证镀层质量。给出了合金液温度范围(455~460°C)、氮气抹拭温度参数等技术要点。该工艺较“双镀法”节约能源,生产成本低。探讨了影响镀层质量的富集铝漂浮物的产生原因及处理办法,使镀层光滑,无“疙瘩”等缺陷。该工艺所得钢丝的表面质量

  18. Preparation and Corrosion Resistance Evaluation of Cerium Salt/Silane Composite Coating on Hot-Dip Galvanized Steel%热镀锌钢铈盐/硅烷复合膜的制备及其耐蚀性能

    Institute of Scientific and Technical Information of China (English)

    吴海江; 徐国荣; 许剑光; 徐红梅; 吴玉蓉; 颜焕元

    2013-01-01

    热镀锌钢板上单一的铈盐、硅烷钝化膜有一些缺点,对提高其耐蚀性作用不大.为此,将热镀锌钢板先经铈盐溶液处理,再用乙烯基三甲氧基硅烷溶液浸渍,获得了铈盐/硅烷复合钝化膜.采用扫描电镜(SEM)、俄歇电子能谱(AES)、盐水全浸试验和电化学交流阻抗谱(EIS)研究了复合膜层的表面形貌、结构特性和耐蚀性能.结果表明:硅烷膜能较好地填充铈盐转化膜中的裂纹,铈盐/硅烷复合膜层连续、完整、致密,厚400~450 nm,与基体结合较好,复合膜中硅烷膜/铈盐转化膜/锌基体的化学成分呈连续的梯度变化;与热镀锌钢相比,单一铈盐转化膜、硅烷膜的交流阻抗值增加了1个多数量级,复合膜的则增加了约2个数量级,复合膜层的耐蚀性较单一膜层显著增强,且优于常规铬酸盐钝化膜.%Hot-dip galvanized steel was firstly treated in the solution of cerium nitrate and then immersed in vinyltrimethoxysilane solution to obtain composite coating consisting of cerium salt coating and silane coating. The morphology and microstructure of as - obtained composite coating were analyzed by scanning electron microscopy and Auger elec tron spectroscopy, and its corrosion resistance was evaluated based on immersion test in salt water and electrochemical imped ance spectroscopic analysis as well. Results showed that the mi- crocracks in the cerium conversion coating could be well filled up with the silane coating. As-obtained cerium salt/silane composite coating with a thickness of 400 ~ 450 nm was continuous, com plete and compact, and had good adhesion to the steel substrate as well as gradient chemical composition. In the meantime, the electrochemical impedance values of the cerium conversion coat ing and silane coating were increased by more than one order of magnitude as compared with that of hot-dip galvanized steel sub strate, and the electrochemical impedance value of the cerium salt

  19. Hot dip aluminizing on 17-4PH stainless steel and its high-temperature oxidation resistance%17-4PH不锈钢热浸镀铝及其高温耐氧化性能

    Institute of Scientific and Technical Information of China (English)

    王院生; 熊计; 王均; 李海丰; 张太平; 石树坤

    2011-01-01

    Hot-dip aluminizing and diffusion annealing were carried out on 17-4PH stainless steel. The microstructure and microhardness of the coating and its high-temperature oxidation resistance were studied. The results showed that the coating consists of three layers including rich aluminum layer, alloy layer and substrate layer.The major phase of the alloy layer is Fe2Al5. After diffusion annealing treatment at 950 ℃ for 1 h, the rich aluminum layer transforms into the alloy layer completely with a thickness of ca. 100 μm. The alloy layer can divide into an inner diffusion layer and an outer diffusion layer. The inner diffusion layer is ca.40 μm thick and its main phase is Fe3Al.The outer diffusion layer is mainly composed of FeAl. The microhardness of alloy layer reduces gradually from the surface to the substrate and the maximum value is 714 HV. After hot dip aluminizing, the high-temperature oxidation resistance of 17-4PH stainless steel is greatly improved. The high-temperature oxidation resistance of 17-4PH stainless steel is approximately seven times that of the common one at 1 000 ℃. During the oxidation process, r-A12O3 in the surface layer and intermetallic compounds FeAl and Fe3Al play a role in the high-temperature oxidation resistance.%在17-4PH不锈钢上热浸镀铝,然后进行扩散退火处理.研究了热浸镀铝层的显微组织和显微硬度的变化,并考察了其高温耐氧化性能.结果表明:17-4PH不锈钢热浸镀铝后表面分为富铝层、合金层、基体层等3层,合金层主要相为Fe2Al5.经950℃.1 h的扩散处理后,富铝层全部转变为合金层,厚度约为100 μM,且分为内扩散层与外扩散层.内扩散层厚度约为40 μm,主要相为Fe3Al;外扩散层主要相为FeAl.合金层的显微硬度从表面到基体逐渐降低,表面显微硬度最高达到714 HV.17-4PH不锈钢经热浸镀铝后,其高温耐氧化性能显著提高.在1000℃,热浸镀铝件的高温耐氧化性能约是未镀铝件的7倍.

  20. Corrosion resistance of silane/silicate composite films on hot-dip galvanized steel%热镀锌钢表面硅烷/硅酸盐复合膜的耐蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    吴海江; 卢锦堂

    2009-01-01

    To improve the corrosion resistance of silane films further, the silane/silicate composite films were prepared by immersion hot-dip galvanized (HDG) steel samples in silane solution firstly and then in sodium silicate solution. The corrosion resistance of the composite films were investigated by neutral salt spray (NSS)test, humid thermic test, salt water test and electrochemical impedance spectroscopy (EIS). The results revealed that the corrosion resistance of the composite films was significantly enhanced, which was superior to the single silane film, even better than some chromate passivation film. Furthermore, the low frequency inductive loop in EIS was disappeared and the low frequency impedance values for the composite films in 5% NaCl solution were firstly increased then decreased with the increasing of the immersion time, which demonstrated the self-healing activity of the composite films.%为了改善硅烷膜的耐蚀性,将硅烷化热镀锌钢板用硅酸钠溶液封闭后处理,获得了硅烷/硅酸盐复合膜.采用中性盐雾试验(NSS)、湿热试验、盐水全浸试验和电化学交流阻抗谱(EIS)评价了膜层的耐蚀性能.结果表明,与单一硅烷膜相比,复合膜的耐蚀性能明显提高,超过了常规铬酸盐钝化膜.尤其是在5%NaCl溶液中,复合膜的低频阻抗数值随浸泡时间的增加先增大后减小,表明其具有一定的"自修复"能力.

  1. 热浸镀铝锌硅镀层云纹缺陷的分析及抑制%Analysis and Control of Coating Ripple on the Hot-Dip Galvalume Coating

    Institute of Scientific and Technical Information of China (English)

    常崇民; 陈立章

    2012-01-01

    The defects of transverse coating ripple and longitude coating ripple on the hot-dip galvalume coating produced by thin slab continous casting-rolling process were analyzed by using OM and SEM-EDS. Comprehensively, air knife-pressure, gap of air knife, angle of air knife, the temperature of zinc liquid, the temperature of steel strip in zinc pot are the main reasons of coating ripple on the galvalume coating. Longitude coating ripple is caused by lower air knife pressure and higher temperature of zinc liquid. Higher air knife pressure and wider gap of air knife lead to transverse coating ripple. The homogeneity coating thickness, spangles and shine can be achieved by means of controlling the process parameters to ensure the shake of strip steel under 3 mm at certain temperatre.%对采用薄板坯连铸连轧工艺生产的热浸镀铝锌硅产品镀层横向云纹缺陷和纵向云纹缺陷进行了表面和截面结构的分析。结果表明,产生的云纹缺陷与气刀工作压力、气刀工作距离、气刀喷吹角度、锌液温度和钢板入锌锅温度有关;气刀工作压力过低及锌液温度过高时,易形成纵向云纹缺陷。气刀工作压力过大,气刀间距相应变大,形成镀层横向云纹缺陷;在一定温度下,调整各项参数将钢带抖动控制在3mm以下时,可以获得均匀的镀层厚度、表面锌花尺寸和色泽。

  2. Mass transfer of phosphorus in high-phosphorus hot-metal refining

    Institute of Scientific and Technical Information of China (English)

    Jiang Diao; Xuan Liu,; Tao Zhang; Bing Xie

    2015-01-01

    Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO−FetO−SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall mass transfer coefficient, which includes the effects of mass transfer in both the slag phase and metal phase, is in the range of 0.0047 to 0.0240 cm/s. With the addition of a small amount of fluxing agents Al2O3 or Na2O into the slag, the overall mass transfer coefficient has an obvious increase. Silicon content in the hot metal also influences the overall mass transfer coefficient. The overall mass transfer coefficient in the lower [Si] heat is much higher than that in the higher [Si] heat. It is concluded that both fluxing agents and lower [Si] hot metal facilitate mass transfer of phosphorus in liquid phases. Fur-thermore, the addition of Na2O could also prevent rephosphorization at the end of the experiment.

  3. Hot Hydrogen Testing of Refractory Metals and Ceramics

    Science.gov (United States)

    Zee, Ralph; Chin, Bryan; Cohron, Jon

    1993-01-01

    The objective of this investigation is to develop a technique with which refractory metal carbide samples can be exposed to hydrogen containing gases at high temperatures, and to use various microstructural and analytical techniques to determine the chemical and rate processes involved in hydrogen degradation in these materials. Five types of carbides were examined including WC, NbC, HfC, ZrC, and TaC. The ceramics were purchased and were all monolithic in nature. The temperature range investigated was from 850 to 1600 C with a hydrogen pressure of one atmosphere. Control experiments, in vacuum, were also conducted for comparison so that the net effects due to hydrogen could be isolated. The samples were analyzed prior to and after exposure. Gas samples were collected in selected experiments and analyzed using gas chromography. Characterization of the resulting microstructure after exposure to hydrogen was conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. The ceramics were purchased and were all monolithic in nature. It was found that all samples lost weight after exposure, both in hydrogen and vacuum. Results from the microstructure analyses show that the degradation processes are different among the five types of ceramics involved. In addition, the apparent activation energy for the degradation process is a function of temperature even within the same material. This indicates that there are more than one mechanism involved in each material, and that the mechanisms are temperature dependent.

  4. Spin dependent transport of hot electrons through ultrathin epitaxial metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel

    2010-06-23

    In this work relaxation and transport of hot electrons in thin single crystalline metallic films is investigated by Ballistic Electron Emission Microscopy. The electron mean free paths are determined in an energy interval of 1 to 2 eV above the Fermi level. While fcc Au-films appear to be quite transmissive for hot electrons, the scattering lengths are much shorter for the ferromagnetic alloy FeCo revealing, furthermore, a strong spin asymmetry in hot electron transport. Additional information is gained from temperature dependent studies in combination with golden rule approaches in order to disentangle the impact of several relaxation and transport properties. It is found that bcc Fe-films are much less effective in spin filtering than films made of the FeCo-alloy. (orig.)

  5. Wavelength modulated SERS hot spot distribution in 1D nanostructures on metal film

    Science.gov (United States)

    Wang, Lili; Zeng, Xiping; Liu, Ting; Zhang, Xuemei; Wei, Hua; Huang, Yingzhou; Liu, Anping; Wang, Shuxia; Wen, Weijia

    2016-10-01

    Surface plasmons confining strong electromagnetic fields near metal surfaces, well-known as hot spots, provide an extremely efficient platform for surface-enhanced Raman scattering (SERS). In this work, SERS spectra of probing molecules in a silver particle-wire 1D nanostructure on a thin gold film are investigated. The Raman features of SERS spectra collected at the particle-wire joints exhibit an obvious wavelength dependence phenomenon. This result is confirmed electromagnetic field simulation, revealing that hot spot distribution is sensitively influenced by the wavelength of incident light at the joints. Further studies indicate this wavelength dependence of hot spot distribution is immune to influence from the geometric shape of the particle or the angle between wire and particle, which improves fabrication tolerance. This technology may have promising applications in surface plasmon related fields, such as ultrasensors, solar energy and selective surface catalysis.

  6. Kepler-6b: A transiting Hot Jupitere Orbiting a Metal-rich Star

    DEFF Research Database (Denmark)

    Dunham, E.W.; Borucki, W.J.; Koch, D.G.

    2010-01-01

    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, . The planet's mass is about 2/3 that of Jupiter, M P = 0.67 M J, and the radius is 30% larger than that of Jupiter, R P = 1.32 R J, resulting in a density of ¿P = 0.35 g cm–3, a fairly...

  7. Creep of metal-type organic compounds. 4: Application to hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Davies, G.C.; Jones, D.R.H. [Univ. of Cambridge (United Kingdom). Engineering Dept.

    1997-02-01

    Hot isostatic pressing (HIP) experiments using the metal analogue materials camphene and succinonitrile are described. Data obtained previously from uniaxial creep experiments are used in densification rate equations for HIP taken from the literature, and the predicted densification behavior is compared with experimental data. The HIP equations are then modified to include two different representations of the friction stress arising from a dispersed phase of fine, hard particles. In each case the modified theory adequately describes the experimental data.

  8. A New Process for Hot Metal Production at Low Fuel Rate - Phase 1 Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wei-Kao Lu

    2006-02-01

    The project is part of the continuing effort by the North American steel industry to develop a coal-based, cokeless process for hot metal production. The objective of Phase 1 is to determine the feasibility of designing and constructing a pilot scale facility with the capacity of 42,000 mtpy of direct reduced iron (DRI) with 95% metallization. The primary effort is performed by Bricmont, Inc., an international engineering firm, under the supervision of McMaster University. The study focused on the Paired Straight Hearth furnace concept developed previously by McMaster University, The American Iron and Steel Institute and the US Department of Energy.

  9. Model of Hot Metal Silicon Content in Blast Furnace Based on Principal Component Analysis Application and Partial Least Square

    Institute of Scientific and Technical Information of China (English)

    SHI Lin; LI Zhi-ling; YU Tao; LI Jiang-peng

    2011-01-01

    In blast furnace (BF) iron-making process, the hot metal silicon content was usually used to measure the quality of hot metal and to reflect the thermal state of BF. Principal component analysis (PCA) and partial least- square (PLS) regression methods were used to predict the hot metal silicon content. Under the conditions of BF rela- tively stable situation, PCA and PLS regression models of hot metal silicon content utilizing data from Baotou Steel No. 6 BF were established, which provided the accuracy of 88.4% and 89.2%. PLS model used less variables and time than principal component analysis model, and it was simple to calculate. It is shown that the model gives good results and is helpful for practical production.

  10. Factors Affecting MoO4(2-) Inhibitor Release from Zn2Al Based Layered Double Hydroxide and Their Implication in Protecting Hot Dip Galvanized Steel by Means of Organic Coatings.

    Science.gov (United States)

    Shkirskiy, V; Keil, P; Hintze-Bruening, H; Leroux, F; Vialat, P; Lefèvre, G; Ogle, K; Volovitch, P

    2015-11-18

    Zn2Al/-layered double hydroxide (LDH) with intercalated MoO4(2-) was investigated as a potential source of soluble molybdate inhibitor in anticorrosion coatings for hot dip galvanized steel (HDG). The effect of solution pH, soluble chlorides, and carbonates on the release kinetics of the interleaved MoO4(2-) ions from the LDH powder immersed in solutions containing different anions was studied by X-ray diffraction, in situ attenuated total reflectance infrared (ATR-IR) spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The effect of the solution composition on the total release and the release kinetics was demonstrated. Less than 30% of the total amount of the intercalated MoO4(2-) was released after 24 h of the immersion in neutral 0.005-0.5 M NaCl and 0.1 M NaNO3 solutions whereas the complete release of MoO4(2-) was observed after 1 h in 0.1 M NaHCO3 or Na2SO4 and in alkaline solutions. The in situ ATR-IR experiments and quantification of the released soluble species by ICP-AES demonstrated the release by an anion exchange in neutral solutions and by the dissolution of Zn2Al/-LDH in alkaline solutions. The anion exchange kinetics with monovalent anions was described by the reaction order n = 0.35 ± 0.05 suggesting the diffusion control; for divalent anions, n = 0.70 ± 0.06 suggested the control by a surface reaction. Dissolution of Zn from coated HDG with and without Zn2Al/-MoO4(2-) fillers, leaching of MoO4(2-) from the coating, and the electrochemical impedance spectroscopy response of the coated systems were measured during the immersion in 0.5 M NaCl solutions with and without 0.1 M NaHCO3. Without carbonates, the release of soluble MoO4(2-) was delayed for 24 h with no inhibiting effect whereas with 0.1 M NaHCO3 the immediate release was accompanied by the immediate and strong inhibiting effect on Zn dissolution. The concept of controlling the inhibition performance of LDH hybrid coatings by means of the environment

  11. 热镀锌过程挡板对镀层均匀性影响的模拟研究%Computational studies on coating uniformity influenced by baffle in hot dip galvanizing process

    Institute of Scientific and Technical Information of China (English)

    富聿晶; 张红梅; 李培兴; 赵红阳

    2015-01-01

    为解决热镀锌过程中常出现的边部过镀锌缺陷,利用数值模拟方法对热镀锌气刀射流喷吹过程进行仿真研究,分析了挡板厚度对带钢边部压力场的影响;并借助镀层厚度计算模型,计算挡板厚度和边部角度对镀层厚度的作用关系;同时通过不同拉钢速度、气刀狭缝总压等工况,对挡板的厚度及边部角度进行优化。结果表明:随挡板厚度减小,带钢边部作用力增大并逐渐接近中心处;带钢边部镀层厚度随挡板厚度的减小而变薄,随挡板边部角度的增加而先减小后增大;挡板厚度2 mm、边部角度90°时,能有效提高带钢横向作用力和镀层分布的均匀性。%Numerical simulation of the gas⁃jet wiping in hot dip galvanizing process was conducted, aiming to reduce the possible of edge over coating ( EOC) . The effects of baffle thickness and edge angle on pressure fields of strip edge were studied. By using the analytic model of film thickness, the correlation betweent the coating thickness and baffle thickness and edge angle was revealed. Considering different conditions of steel moving speed and total gas knife pressure, the baffle thickness and edge angle were optimized .The results show that the coating thickness of strip edge increases with the decrease of baffle thickness. In addition, with the increase of baffle edge angle, the coating thickness decreases firstly and then increases. When the baffle thickness is 2 mm and the angle is 90°, uniformity distribution of the pressure and coating on the strip is achieved.

  12. 热镀锌钢板表面硅烷膜的制备工艺与耐蚀性能%Preparation and Corrosion Resistance of Silane Film on Hot-dip Galvanized Steel

    Institute of Scientific and Technical Information of China (English)

    吴海江; 卢锦堂

    2009-01-01

    采用正交试验结合中性盐雾试验和极化曲线测定等方法,研究了热镀锌钢板表面的硅烷膜在制备过程中的硅烷体积分数、水解溶剂中甲醇体积分数、水解时间、水解温度、溶液PH值、浸涂时间等因素对硅烷膜耐蚀性能的影响,并确定了最佳成膜工艺,讨论了硅烷膜作用机理.结果表明:最佳成膜工艺为硅烷体积分数7%、溶液pH值4、水解溶剂中甲醇体积分数10%、水解温度40℃、水解时间6 h、浸涂时间120 s,采用该工艺制备硅烷膜可明显推迟热镀锌钢板出现白锈的时间;硅烷膜同时也抑制了热镀锌钢板在腐蚀过程中阳极和阴极的反应,显著改善了热镀锌钢板的耐蚀性能.%A nontoxic silanized treatment process for hot-dip galvanized steel was investigated by the orthogonal experiment. The protection of silane films on galvanized steel surface was evaluated by neutral salt spray test and polarization test. The factors affecting the corrosion resistance of silane films were discussed, including concentration of silane solution, concentration of methanol, hydrolysis time, hydrolysis temperature, pH of silane solution and immersion time. The optimum technological parameters were obtained, and the mechanism was analyzed. The results show that the silane films had the optimum anti-corrosion properties under the conditions of concentration of the silane solution 7%, concentration of methanol in hydrolysis solvents 10%, hydrolysis time 6 h, hydrolysis temperature 40 ℃, pH of the silane solution 4 and immersion time 120 s acted as a physical barrier of galvanized steel and suppressed both cathodic and anodic reactions of corrosion simultaneously. The time of white rust occurence on galvanized coating was delayed. The silane films obtained excellent corrosion resistance under the optimum technological conditions.

  13. 热镀锌板上γ-APT硅烷自组装膜的制备及相容性%Synthesis and Compatibility Evaluation of Self-assembled Monolayers of γ-APT Silane on Hot-Dip Galvanized Steel

    Institute of Scientific and Technical Information of China (English)

    王雷; 刘常升; 石磊

    2011-01-01

    采用交流阻抗谱和接触角的方法研究了γ-APT硅烷的单分子自组装膜在热镀锌钢板表面的成膜过程,以及γ-APT硅烷自组装膜和γ-GPT硅烷的相容性.实验成功制备硅烷单分子自组装膜.组装开始时硅烷分子水解生成硅醇键的一端快速吸附在锌的表面并形成了Si—O—Zn键,硅烷分子之间的硅醇键随即脱水形成Si—O—Si键,从而自组装成为有序、规律排布的单分子自组装膜,组装10 h后膜的完整性最好,随后形成连续性较差的混杂膜.经过10 h组装后的γ-APT硅烷自组装膜与γ-GPT硅烷具有良好的相容性.%The synthesis of γ-APT silane self-assembled monolayers(SAMs) on hot-dip galvanized steel(HDG) and the SAMs compatibility with γ-GPT silane were investigated by electrochemical impedance spectroscopy(EIS) and contact angles analysis.The results showed that the SAMs of the γ-APT silane are deposited on HDG surfaces.First,the SiOH groups of γ-APT are absorbed quickly onto the HDG surfaces to form Si—O—Zn.Then Si—O—Si covalent bonds are formed between the γ-APT silane molecules and the zinc surface,releasing water as a byproduct.The SAMs become stable and the compatibility between the SAMs and γ-GPT silane is good when HDG sheet is immersed in the silane for 10 hours.After that the SAMs is no continuity as a mishmash.

  14. Effects of tin and nickel on growth of hot-dip galvanized coating on high-silicon steel surface%锡、镍对高硅钢表面热浸镀锌层生长的影响

    Institute of Scientific and Technical Information of China (English)

    孔纲; 王世卫; 车淳山; 卢锦堂

    2012-01-01

    研究了Zn-Sn和Zn-Sn-Ni浴中高硅钢(含Si 0.36%)表面镀锌层的生长和微观组织变化,探讨了Sn和Ni抑制高硅钢镀层快速生长的原因.结果表明,含Sn锌浴能抑制高硅钢表面镀锌层的快速生长,抑制效果随锌浴中Sn含量的增加而增强.当锌浴中的Sn含量达5%时,高硅钢镀锌层的生长方式发生了改变,由反应扩散控制变为扩散控制.高硅钢在Zn-Sn或Zn-Sn-Ni浴中镀锌时,镀锌层的ζ/η界面形成了Sn或Sn和Ni富集区,在一定程度上阻滞了Fe-Zn扩散.锌浴中添加微量的Ni能显著减少Sn用量,当锌浴中Ni的添加量为0.06%时,Sn的用量可从3%降到1.5%.%The growth and microstructure changes of hot-dip galvanized coating on the surface of high-silicon (0.36% Si) steel were studied in Zn-Sn and Zn-Sn-Ni baths, respectively. The reason why Sn and Ni in zinc bath can inhibit the rapid growth of coating on high-silicon steel was discussed. The results showed that Sn in zinc bath can decrease the rapid growth of zinc coating on surface of high-silicon steel, and the inhibiting effect is reinforced with increasing Sn content in zinc bath. The growth mechanism of coating changes from reaction diffusion control to diffusion control when the Sn content in zinc bath is up to 5%. The Sn-rich or Sn and Ni-rich zone is formed at the interface of ζ/η in the galvanized coating obtained from Zn-Sn or Zn-Sn-Ni bath, suppressing Fe-Zn interdiffusion to some extent. The amount of Sn added can be remarkably reduced by adding a tiny amount of Ni to zinc bath, which is reduced from 3% to 1.5% by 0.06% Ni addition to the zinc bath.

  15. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    Science.gov (United States)

    Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.

    2016-08-01

    Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.

  16. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS2 and Metal/WSe2 Heterojunctions

    Science.gov (United States)

    Li, Zhen; Ezhilarasu, Goutham; Chatzakis, Ioannis; Dhall, Rohan; Chen, Chun-Chung; Cronin, Stephen

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds, therefore make more `ideal' Schottky junctions than bulk semiconductors, which produce recombination centers at the interface with metals, inhibiting charge transfer. Here, we observe a more than 10X enhancement in the indirect band gap PL of TMDCs deposited on various metals, while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2, and subsequently recombine radiatively with minority holes. Since the conduction band at the K-point is 0.5eV higher than at the Σ-point, a lower Schottky barrier of the Σ-point band makes electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wavefunctions in the metal. This enhancement only occurs for thick flakes, and is absent in monolayer and few-layer flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures. Reference: DOI: 10.1021/acs.nanolett.5b00885

  17. 热镀锌钢表面铈转化膜的表征与腐蚀电化学行为%Characterization and electrochemical corrosion behavior of cerium conversion coating on hot-dip galvanized steel

    Institute of Scientific and Technical Information of China (English)

    吴海江; 卢锦堂

    2011-01-01

    The cerium conversion coatings were prepared on hot-dip galvanized (HDG) steel sheets treated in 20 g/L Ce(NO3)3·6H2O solution (pH = 4, 25 ℃). The corrosion electrochemical behavior of the cerium conversion coatings was compared with that of blank hot-dip galvanized sample in 5% NaCl solution using polarization curves and electrochemical impedance spectra (EIS). The morphology and composition of the coatings were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion current density of the HDG decreases and the polarization resistance increases after cerium nitrate conversion treatment.While the cerium conversion coatings can markedly restrain the anodic and cathodic reaction during the zinc corrosion process, thereby its corrosion protective efficiency remarkably increases. It is also found that the low-frequency impedance initially increases and then decreases with the treatment time increasing, which demonstrates clearly that the resistance to the migration of electrolyte through the conversion coatings initially increases and subsequently decreases with the treatment time increasing. When the treatment time is prolonged from 30 min to 1 h, the maximal impedance of the conversion coating is up to 8-9 kΩ·cm2 and its corrosion resistance is optimal. The cerium conversion coating is apt to crack in the vicinity of zinc grain boundaries, and the dry riverbed morphology gradually forms with the treatment time increasing. The cerium conversion coating is composed of Ce, Zn and O elements, which mainly consists of CeO2,Ce(OH)4 (or CeO2·2H2O), ZnO and a small quantity of Ce2O3, Ce(OH)3 (or Ce2O3·2H2O).%将热镀锌钢在20 g/L Ce(NO3)·6H2O溶液(pH=4,25℃)中处理10s~24 h,获得铈转化膜试样.应用极化曲线和电化学交流阻抗谱(EIS)研究铈转化膜试样和空白热镀锌试样在5%NaCl溶液中的耐蚀性能.利用扫描电镜(SEM)和X射线光电子能谱(XPS)研

  18. Research on the Corrosion Resistance of Hot Dip Galvanized Coating in Simulated Hot and Humid Acidic Atmospheric Environment%热镀锌层在模拟湿热酸性大气环境中的耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    刘胜林; 孙亮; 袁毅; 卢才

    2015-01-01

    目的:研究Q420钢表面热镀锌工艺中,Zn和Zn-Al-Ni-RE合金镀层在酸性铜离子加速盐雾试验条件下的耐蚀性能。方法 Q420钢表面预处理后进行热镀锌,根据GB6460—1986进行铜加速醋酸盐雾腐蚀试验,对比纯Zn镀层与Zn-Al-Ni-RE合金镀层的耐蚀性。结果 Ni,RE等元素的加入使镀层表面光亮,组织更加细密。在酸性铜离子加速实验进行到192 h时,纯锌镀层的腐蚀质量损失是合金镀层的2.7倍;72 h后纯锌镀层出现红锈,120 h后合金镀层出现红锈,说明Zn-Al-Ni-RE合金镀层比纯Zn镀层更耐腐蚀。结论通过适量添加Al,Ni与稀土元素,能使Q420钢合金镀层的耐蚀性能大幅度提高。%Objective To study the corrosion resistance of hot dip galvanized pure Zn and Zn-Al-Ni-RE alloy coatings of high-strength steel Q420 under the acidic and copper accelerated salt spray corrosion condition. Methods On the basis of surface pre-treatment, the Q420 steel was treated by hot dip galvanizing. Copper accelerated acetic acid salt spray corrosion test was carried out according to GB 6460—1986, and the corrosion resistance of the pure Zn coating and Zn-Al-Ni-RE coating was compared. Results With the addition of Ni, RE and other elements, the coating surface was bright and the microstructure became finer. After 192 h, the corrosion weight loss of pure zinc coating was 2. 7 times higher than the corrosion weight loss of Zn-Al-Ni-RE alloy coatings un-der the acidic and copper accelerated salt spray corrosion condition. Pure zinc coating showed red rust after 72 h, while Zn-Al-Ni-RE alloy coating showed red rust after 120 h, so Zn-Al-Ni-RE alloy coating was more corrosion resistant than the pure Zn coating. Conclusion By means of adding nickel aluminum elements and rare earth elements, the corrosion resistance of alloy coating was greatly improved.

  19. An analytical model of Faraday rotation in hot alkali metal vapours

    CERN Document Server

    Kemp, Stefan L; Cornish, Simon L

    2011-01-01

    We report a thorough investigation into the absorptive and dispersive properties of hot caesium vapour, culminating in the development of a simple analytical model for off-resonant Faraday rotation. The model, applicable to all hot alkali metal vapours, is seen to predict the rotation observed in caesium, at temperatures as high as 115 $^{\\circ}$C, to within 1% accuracy for probe light detuned by greater than 2 GHz from the $D_{2}$ lines. We also demonstrate the existence of a weak probe intensity limit, below which the effect of hyperfine pumping is negligible. Following the identification of this regime we validate a more comprehensive model for the absorption and dispersion in the vicinity of the $D_{2}$ lines, implemented in the form of a computer code. We demonstrate the ability of this model to predict Doppler-broadened spectra to within 0.5% rms deviation for temperatures up to 50 $^{\\circ}$C.

  20. Magnetotransport of multiple-band nearly antiferromagnetic metals due to hot-spot scattering

    Science.gov (United States)

    Koshelev, A. E.

    2016-09-01

    Multiple-band electronic structure and proximity to antiferromagnetic (AF) instability are the key properties of iron-based superconductors. We explore the influence of scattering by the AF spin fluctuations on transport of multiple-band metals above the magnetic transition. A salient feature of scattering on the AF fluctuations is that it is strongly enhanced at the Fermi surface locations where the nesting is perfect ("hot spots" or "hot lines"). We review derivation of the collision integral for the Boltzmann equation due to AF-fluctuations scattering. In the paramagnetic state, the enhanced scattering rate near the hot lines leads to anomalous behavior of electronic transport in magnetic field. We explore this behavior by analytically solving the Boltzmann transport equation with approximate transition rates. This approach accounts for return scattering events and is more accurate than the relaxation-time approximation. The magnetic-field dependences are characterized by two very different field scales: the lower scale is set by the hot-spot width and the higher scale is set by the total scattering amplitude. A conventional magnetotransport behavior is limited to magnetic fields below the lower scale. In the wide range in-between these two scales, the longitudinal conductivity has linear dependence on the magnetic field and the Hall conductivity has quadratic dependence. The linear dependence of the diagonal component reflects growth of the Fermi-surface area affected by the hot spots proportional to the magnetic field. We discuss applicability of this theoretical framework for describing of anomalous magnetotransport properties in different iron pnictides and chalcogenides in the paramagnetic state.

  1. Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

    1995-12-31

    There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

  2. Microstructure and properties of hot roll bonding layer of dissimilar metals. 2. Bonding interface microstructure of Zr/stainless steel by hot roll bonding and its controlling

    Energy Technology Data Exchange (ETDEWEB)

    Yasuyama, Masanori; Ogawa, Kazuhiro; Taka, Takao; Nakasuji, Kazuyuki [Sumitomo Metal Industries Ltd., Osaka (Japan); Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1996-07-01

    The hot roll bonding of zirconium and stainless steel inserted with tantalium was investigated using the newly developed rolling mill. The effect of hot rolling temperatures of zirconium/stainless steel joints on bonding interface structure was evaluated. Intermetallic compound layer containing cracks was observed at the bonding interface between stainless steel and tantalium when the rolling temperature was above 1373K. The hardness of the bonding layer of zirconium and tantalium bonded above 1273K was higher than tantalium or zirconium base metal in spite of absence of intermetallic compound. The growth of reaction layer at the stainless steel and tantalium interface and at the tantalium and zirconium interface was conforming a parabolic low when that was isothermally heated after hot roll bonding, and the growth rate was almost same as that of static diffusion bonding without using hot roll bonding process. It is estimated that the strain caused by hot roll bonding gives no effect on the growth of reaction layer. It was confirmed that the dissimilar joint of zirconium and stainless steel with insert of tantalium having the sound bonding interface were obtained at the suitable bonding temperature of 1173K by the usage of the newly developed hot roll bonding process. (author)

  3. Processes of conversion of a hot metal particle into aerogel through clusters

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  4. E-Cigs, Menthol & Dip

    Science.gov (United States)

    ... Smoke Quiz: How Bad is Secondhand Smoke? E-Cigs, Menthol & Dip What We Know About E-Cigarettes ... Smoke Quiz: How Bad is Secondhand Smoke? E-Cigs, Menthol & Dip What We Know About E-Cigarettes ...

  5. Metal-line emission from the warm-hot intergalactic medium: II. Ultraviolet

    CERN Document Server

    Bertone, Serena; Booth, C M; Vecchia, Claudio Dalla; Theuns, Tom; Wiersma, Robert P C

    2010-01-01

    Approximately half the baryons in the local Universe are thought to reside in the warm-hot intergalactic medium (WHIM). Emission lines from metals in the UV band are excellent tracers of the cooler fraction of this gas. We present predictions for the surface brightness of a sample of UV lines that could potentially be observed by the next generation of UV telescopes at z10^3 photon/s/cm^2/sr), comes from relatively dense (rho>10^2 rho_mean) and metal rich (Z>0.1 Z_sun) gas. As such, emission lines are highly biased tracers of the missing baryons and are not an optimal tool to close the baryon budget. However, they do provide a powerful means to detect the gas cooling onto or flowing out of galaxies and groups. (Abridged)

  6. A Solvent-Free Hot-Pressing Method for Preparing Metal-Organic-Framework Coatings.

    Science.gov (United States)

    Chen, Yifa; Li, Siqing; Pei, Xiaokun; Zhou, Junwen; Feng, Xiao; Zhang, Shenghan; Cheng, Yuanyuan; Li, Haiwei; Han, Ruodan; Wang, Bo

    2016-03-01

    Metal-organic frameworks (MOFs), with their well-defined pores and rich structural diversity and functionality, have drawn a great deal of attention from across the scientific community. However, industrial applications are hampered by their intrinsic fragility and poor processability. Stable and resilient MOF devices with tunable flexibility are highly desirable. Herein, we present a solvent- and binder-free approach for producing stable MOF coatings by a unique hot-pressing (HoP) method, in which temperature and pressure are applied simultaneously to facilitate the rapid growth of MOF nanocrystals onto desired substrates. This strategy was proven to be applicable to carboxylate-based, imidazolate-based, and mixed-metal MOFs. We further successfully obtained superhydrophobic and "Janus" MOF films through layer-by-layer pressing. This HoP method can be scaled up in the form of roll-to-roll production and may push MOFs into unexplored industrial applications.

  7. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Slimane, R.B. [Gas Processing Research Group, Gas Technology Institute, 1700 S. Mount Prospect Road, 60018-1804 Des Plaines, IL (United States); Abbasian, J. [Department of Chemical and Environmental Engineering, Illinois Institute of Technology, 10 West, 33rd Street, 60616 Chicago, IL (United States)

    2001-05-01

    Four metal oxide waste materials from metal processing operations and one coal bottom ash sample were procured and their reactivities toward hydrogen sulfide (H{sub 2}S) were evaluated in the temperature range of 400C to 600C. A low-cost sorbent pelletization/granulation technique was applied to produce preliminary sorbent formulations in the form of attrition-resistant granules that were also evaluated. The results indicate that sorbents based on an iron oxide waste material, in the as-received as well as processed form, were the most reactive and exhibited the highest effective capacities for sulfur. The regeneration of these sorbents could be carried out over a relatively moderate temperature range, suggesting that the iron oxide waste material might be a viable candidate for the development of low-cost regenerable sorbents for H{sub 2}S removal from hot coal gases under conditions of current practical interest.

  8. Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process

    Science.gov (United States)

    Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong

    2017-02-01

    The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity ( R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.

  9. Improving the Tensile Strength of B82 MnQL Materials by Hot Dip Galvanizing%热镀锌法提高B82 MnQL材料的抗拉强度研究

    Institute of Scientific and Technical Information of China (English)

    曾凡勇; 李养良; 张德勤; 李海洲; 潘东; 倪晓峰

    2016-01-01

    目的:增强B82 MnQL材料的抗拉强度。方法以B82 MnQL盘条作为热镀锌的试验材料,利用拉伸试验机、反复弯曲试验机对其力学性能进行测试,借助金相显微镜、扫描电镜分析几种镀锌工艺下的横截面和轴向截面以及拉拔断口的组织形貌,同时测试显微硬度。结果 B82 MnQL盘条拉拔后钢丝的抗拉强度由原来的1250 MPa提高至1670 MPa。断面收缩率由32.5%下降至7%。采用新镀锌工艺和助镀配方,B82MnQL钢丝镀锌后抗拉强度下降幅度为8%,低于传统的10%~15%。稳定化后B82MnQL的扭转次数为20次左右,反复弯曲次数为6次左右,强度由1650 MPa提高至1710 MPa,硬度值比镀锌后有较大提高,由镀锌后的430HV升高至450HV,而且分布均匀。结论通过优化镀锌工艺,能大幅提高B82 MnQL盘条的抗拉强度。%ABSTRACT:Objective To enhance the tensile strength of the B82MnQL material. Methods The B82MnQL wire rod was used as the material for hot dip galvanizing experiment, and its mechanical properties were tested using tensile testing machine and repeated bending testing machine. The microstructures of the cross section, the axial section and the drawing fracture were analyzed by means of optical microscopy and scanning electron microscopy. Results The tensile strength of the B82MnQL wire rod after drawing was increased from 1250 MPa to 1670 MPa. The shrinkage rate of the cross section was decreased from 32. 5% to 7%. Using the new galvanizing technology and the formula of the assistant plating, the tensile strength of the galvanized B82MnQL steel wire was decreased by 8%, lower than traditional 10% ~15%. After stabilization, the B82MnQL′s torsion value was about 20 times, with about 6 times of repeated bending. The strength was increased from 1650 MPa to 1710 MPa. The hardness value was higher than that of the galvanized material, raised from 430HV to 450HV, and uniformly dispersed. Conclusion Through optimization of the

  10. Effect of SRB on hydrogen permeation of hot-dip galvanized steel%硫酸盐还原菌对热镀锌钢材氢渗透行为的影响

    Institute of Scientific and Technical Information of China (English)

    张玉志; 张大磊; 李焰

    2011-01-01

    Hydrogen permeation testing with Devanathan-Stachurski cell and SEM analytical method were used to study the hydrogen permeation behavior of hot-dip galvanized steel in sterilized seawater, sterilized medium and medium inoculated with SRB. The results showed hydrogen permeation behavior of galvanized steel was promoted by some components of the medium. The average hydrogen permeation current density of the sample in sterilized medium was 6 times higher than which in sterilized seawater. The compact film formed by SRB, metabolites of SRB and corrosion products decreased the hydrogen adsorption of the sample although S2- and HS- produced by active SRB could promote the hydrogen peameation behavior, which resulted in the average hydrogen permeation current density of galvanized steel in medium inoculated with SRB 77% lower than which in sterilized medium.SEM results showed few products adhered on the sample immersed in sterilized medium, but a film of corrosion products was formed on the sample immersed in sterilized seawater, and a biofilm of SRB and its metabolites together with the film of corrosion products was formed on the the sample immersed in medium inoculated with SRB,indicating a obvious relation between the biofilm and hydrogen permeation of galvanized steel.%采用Devanatlaan-stachurski 双面电解池检测氢渗透电流技术和扫描电镜分析,研究了热镀锌钢材在灭菌海水、灭菌培养基和接种了硫酸盐还原菌(SRB)的培养基等 3 种介质中的氢渗透行为.氢渗透电流检测结果表明,培养基的部分组分对热镀锌钢材的氢渗透行为有促进作用,试样在灭菌培养基中的氢渗透电流密度的平均值比在灭菌海水中提高了约6倍.尽管活性SRB代谢产生的S和HS能够促进热镀锌钢材的氢渗透行为,但是,由SRB及其代谢产物和它们所黏附的腐蚀产物所形成的致密微生物膜减少了氢的析出和试样对氢的吸收量,导致热镀锌

  11. Al-5Ti-B-RE细化剂对热浸渗铝层的组织与性能的影响%The effect of Al-5Ti-B-RE refiner on the microstructure and property of the hot dip aluminized coatings

    Institute of Scientific and Technical Information of China (English)

    李安敏; 胡武; 王海超; 李松浩

    2013-01-01

    In order to study the effects of refiner on the microstructure and the high temperature oxi-dation resistance of the hot dip aluminized coatings , the hot dip aluminized coatings on the surface of Q235 steel were prepared by flux method , and Al-5Ti-B-RE refiner was added in the aluminum melt.The microstructure of aluminized coating was analyzed by X-ray diffractometer and scanning e-lectron microscope , and the resistance to high temperature oxidation of aluminized coating was tested by the oxidation weight increase method .The results showed that all the hot dip aluminized coatings were formed by surface layer and alloy layer;the thickness of the coating decreased when refiner was added , and the needles ( FeAl3 ) in the surface layer were refined and the dentate alloy layer became thiner, close and less bifurcation;with the increase of refiner , the high temperature oxidation resist-ance of the aluminized steel increased mitially and then decreased , and the hot dip aluminizing with 0.3%Al-5Ti-B-RE refiner was the best.%采用熔剂法在Q235钢表面热浸渗铝,并在铝熔体中添加Al-5Ti-B-RE中间合金细化剂,利用金相显微镜、X射线衍射仪、扫描电子显微镜等研究渗铝层的显微组织,运用氧化增重法测试渗铝钢的抗高温氧化性能,以研究细化剂对热浸渗铝层的显微组织和抗高温氧化性能的影响。结果表明:渗铝层都是由表面层和合金层组成;铝液中加入细化剂后,表面层和合金层的厚度都降低,表面层的针状物( FeAl3)细化,合金层的齿状整齐,齿峰分叉减少;随着细化剂含量的增加,渗铝钢的抗高温氧化性能先增加后降低,添加0.3%(质量百分比)细化剂的渗铝钢的抗高温氧化性能最好。

  12. Effect of Nickel Content in Hot - Dip Galvanizing Solution on Morphology as well as Hardness and Wear Resistance of Zinc - Aluminum - Nickel Coating%Zn-Al-Ni热浸镀液中Ni含量对镀层形貌、硬度及耐磨性的影响

    Institute of Scientific and Technical Information of China (English)

    邵大伟; 贺志荣; 张永宏

    2013-01-01

    为了提高热浸镀锌层表面的光洁度、硬度和耐磨性,在Zn-0.01%Al镀液中添加少量Ni,制备了Zn-0.01%Al-(0.02~ 0.12) %Ni镀层.利用金相显微镜、维氏硬度计和摩擦磨损试验机对镀层的表面形貌和性能进行了表征.结果表明,随Ni含量增加,Zn-0.01%Al-xNi镀层的晶粒先减小后增大,硬度先增大后减小;当Ni含量为0.05%时镀层的晶粒最小,硬度最大,摩擦系数最小,耐磨时间较长;Ni含量为0.12%的镀层的耐磨时间虽然最长,但摩擦系数较大.%A small amount of Ni was introduced into hot-dip galvanizing solution (Zn-0. 01%Al bath) to prepare Zn-Al-Ni coating [Al content 0.01% (mass fraction; the same hereafter) ; Ni content 0. 02% ~ 0. 12%] so as to reduce the surface roughness and increase the hardness and wear resistance of hot - dip galvanizing coating. The morphology of as - prepared Zn-Al-Ni coating was observed with a metallurgical microscope, while the hardness and wear resistance of the coating were evaluated with a Vickers hardness meter and a friction and wear tester as well. It was found that, with increasing Ni content in the hot-dip galvanizing solution, the grain size of Zn - Al - Ni coating initially tended to decline but later to rise; and the hardness initially tended to rise but later to decline therewith. The Zn-Al-Ni coating prepared from the hot - dip galvanizing solution containing 0.05% Ni had the smallest grain size, the highest hardness and extended antiwear lifetime. Moreover, though the Zn-Al-Ni obtained from the galvanizing bath containing 0. 12% Ni had the longest antiwear lifetime, it possessed a relatively high friction coefficient.

  13. Hot Embossing of Zr-Based Bulk Metallic Glass Micropart Using Stacked Silicon Dies

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2015-01-01

    Full Text Available We demonstrated hot embossing of Zr65Cu17.5Ni10Al7.5 bulk metallic glass micropart using stacked silicon dies. Finite element simulation was carried out, suggesting that it could reduce the stress below 400 MPa in the silicon dies and enhance the durability of the brittle silicon dies when using varying load mode (100 N for 60 s and then 400 N for 60 s compared with using constant load mode (200 N for 120 s. A micropart with good appearance was fabricated under the varying load, and no silicon die failure was observed, in agreement with the simulation. The amorphous state of the micropart was confirmed by differential scanning calorimeter and X-ray diffraction, and the nanohardness and Young’s modulus were validated close to those of the as-cast BMG rods by nanoindentation tests. The results proved that it was feasible to adopt the varying load mode to fabricate three-dimensional Zr-based bulk metallic glass microparts by hot embossing process.

  14. Metal-line emission from the warm-hot intergalactic medium: I. Soft X-rays

    CERN Document Server

    Bertone, Serena; Vecchia, Claudio Dalla; Booth, C M; Theuns, Tom; Wiersma, Robert P C

    2009-01-01

    Emission lines from metals offer one of the most promising ways to detect the elusive warm-hot intergalactic medium (WHIM; 10^5 K 10^6 K). We find that the OVIII 18.97 A is the strongest emission line, with a predicted maximum surface brightness of ~10^2 photon/s/cm^2/sr, but a number of other lines are only slightly weaker. All lines show a strong correlation between the intensity of the observed flux and the density and metallicity of the gas responsible for the emission. On the other hand, the potentially detectable emission consistently corresponds to the temperature at which the emissivity of the electronic transition peaks. The emission traces neither the baryonic nor the metal mass. In particular, the emission that is potentially detectable with proposed missions, traces highly overdense (rho > 10^3 rho_mean) and metal-rich (Z>Z_sun) gas in and around galaxies and groups. While soft X-ray line emission is therefore not a promising route to close the baryon budget, it does offer the exciting possibility...

  15. Laboratory evaluation of hot metal de siliconizing process in ladle; Avaliacao laboratorial do processo de dessiliciacao do gusa na panela

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Sergio R.M.; Furtado, Henrique S.; Bentes, Miguel A.G.; Almeida, Pedro S. de [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil). Centro de Pesquisas

    1996-12-31

    The attractiveness of hot metal de siliconizing in ladle, relative to the process in blast furnace runner, is the previous knowledge of silicon content of hot metal, without the constraints of slag removing by skimmer met in torpedo car, and the better efficiency in low range silicon content, making easier the process controllability. Meanwhile, the main question about this technology is the extent of the resulfurization of hot metal that may occur due to process be performed after the desulfurization. This work simulates de de siliconizing process in ladle by experiments in induction furnace to compare the efficiencies of various de siliconizing agents available at CSN iron and steel making plant, and to evaluate the resulfurization intensity able to occur during the process, as well as, unexpected increasing of refractory wear. (author) 4 refs., 8 figs., 6 tabs.

  16. Normal Metal Hot-Electron Nanobolometer with Johnson Noise Thermometry Readout

    CERN Document Server

    Karasik, Boris S; Reck, Theodore J; Prober, Daniel E

    2014-01-01

    The sensitivity of a THz hot-electron nanobolometer (nano-HEB) made from a normal metal is analyzed. Johnson Noise Thermometry (JNT) is employed as a readout technique. In contrast to its superconducting TES counterpart, the normal-metal nano-HEB can operate at any cryogenic temperature depending on the required radiation background limited Noise Equivalent Power (NEP). It does not require bias lines; 100s of nano-HEBs can be read by a single low-noise X-band amplifier via a filter bank channelizer. The modeling predicts that even with the sensitivity penalty due to the amplifier noise, an NEP ~ 10$^{-20}$ - 10$^{-19}$ W/Hz$^{1/2}$ can be expected at 50-100 mK in 10-20 nm thin titanium (Ti) normal metal HEBs with niobium (Nb) contacts. This NEP is fairly constant over a range of readout frequencies ~ 10 GHz. Although materials with weaker electron-phonon coupling (bismuth, graphene) do not improve the minimum achievable NEP, they can be considered if a larger than 10 GHz readout bandwidth is required.

  17. Hot subdwarf stars in close-up view - III. Metal abundances of subdwarf B stars

    CERN Document Server

    Geier, S

    2012-01-01

    Context: Hot subdwarf B stars (sdBs) are considered to be core helium-burning stars with very thin hydrogen envelopes situated on or near the extreme horizontal branch (EHB). The formation of sdBs is still unclear as well as the chemical composition of their atmospheres. The observed helium depletion is attributed to atmospheric diffusion. Metal abundances have been determined for about a dozen sdBs only resulting in puzzling patterns with enrichment of heavy metals and depletion of lighter ones. Aims: In this paper we present a detailed metal abundance analysis of 106 sdBs. Methods: From high resolution spectra we measured elemental abundances of up to 24 different ions per star. A semi-automatic analysis pipeline was developed to calculate and fit LTE models to a standard set of spectral lines. Results: A general trend of enrichment was found with increasing temperature for most of the heavier elements. The lighter elements like carbon, oxygen and nitrogen are depleted and less affected by temperature. Alth...

  18. Effect of deformation temperature on the hot compressive behavior of metal matrix composites with misaligned whiskers

    Institute of Scientific and Technical Information of China (English)

    LI Aibin; MENG Qingyuan; GENG Lin; DENG Chunfeng; YAN Yiwu

    2007-01-01

    A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results show that deformation temperature influences the work-hardening behavior of the matrix and the rotation behavior of the whiskers. With increasing temperature, the work hardening rate of the matrix decreases, but the whisker rotation angle increases. Both whisker rotation and the increase of deformation temperature can induce reductions in the load supported by whisker and the load transferred from matrix to whisker. Additionally, it is found that during large strain deformation at higher temperatures, the enhancing of deformation temperature can reduce the effect of whisker rotation. Meanwhile, the stress-strain behavior of the composite is rather sensitive to deformation temperature. At a relatively lower temperature (150℃), the composite exhibits work hardening due to the matrix work hardening, but at relatively higher temperatures (300℃ and above),the composite shows strain softening due to whisker rotation. It is also found that during hot compression at higher temperatures, the softening rate of the composite decreases with increasing temperature. The predicted stress-strain behavior of the composite is approximately in agreement with the experimental results.

  19. Prediction of inhomogeneous texture in clad sheet metals by hot roll bond method

    Science.gov (United States)

    Choi, Shi-Hoon; Kwon, Jae Wook; Oh, Kyu Hwan

    1996-06-01

    A finite element analysis was applied to analyze the evolution of an inhomogeneity of rolling texture in hot rolled clad metal with Taylor-Bishop-Hill model and Renourd-Winterberger method. The shear texture has been developed in the surface layer of the aluminum and plane strain texture has been developed in the center layer. The calculated texture variations through thickness direction could simulate experimental texture using deformation gradient from FEM. The ratio of shear strain to rolling strain, x, which represents the degree of rotation about transverse direction could give the degree of development of shear texture. The larger value of x gives the larger crystal rotation about transverse direction and subsequently the development of shear texture. The calculated (111) pole figures were in good agreement with experimentally measured pole figures.

  20. Eco-Friendly Smokeless Al2O3-SiC-C Brick for Hot Metal Ladle

    Institute of Scientific and Technical Information of China (English)

    Santanu MUKHOPADHYAY; Shankha CHATYERJEE; Manoj K NANDA

    2008-01-01

    Hot metal transfer ladles were historically lined with high alumina refractories because of compatibility of high alumina refractories with the highly acidic slag, which is transferred from the iron making plant along with hot metal. With the introduction of higher capacity ladles, technological advancement in the process and increased productivity, calls for a higher campaign life of hot metal ladles, which could not be performed by ordinary high alumina refractories. Resin bonded Al2O3-SiC-C(hereinafter ASC)bricks gradually developed which at present taking place replacing the conventional refractories. Considerable work has been carried out in developing the ASC refractory to reach the present state. However, for higher capacity ladles still there is a lot of scope for improvement The present paper deals with the newly developed ASC bricks, which was used in 165 ton capacity hot metal ladles in one European plant and has given a substantial increase in performance. But, the customer was not fully satisfied since the brick was reported to produce smokes during preheating of the ladle. In the subsequent supply the smoke generation problem was taken care by adjusting the binders and additives and eco-friendly bricks were re-engineered and supplied to the same plant, which also performed splendidly and created all time record in their plant history.

  1. X-ray Spectroscopy of Dips of Cir X-1

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We present X-ray spectral analyses of the low-mass X-ray binary Cir X-1 during X-ray dips, using the Rossi X-ray Timing Explorer (RXTE) data. Each dip was divided into several segments, and the spectrum of each segment was fitted with a three-component blackbody model, in which the first two components are affected by partial covering and the third one is unaffected. A Gaussian emission line is also included in the spectral model to represent the Fe Kα line at ~ 6.4 keV. The fitted temperatures of the two partially covered components are about 2keV and 1 keV, while the uncovered component has a temperature of ~0.5-0.6keV. The equivalent blackbody emission radius of the hottest component is the smallest and that of the coolest component is the largest. During the dips the fluxes of the two hot components are linearly correlated, while that of the third component does not show any significant variation. The Fe line flux remains constant, within the errors, during the short dips. However, during the long dips the line flux varies significantly and is positively correlated with the fluxes of the two hot components. These results suggest: (1) that the temperature of the X-ray emitting region decreases with radius, (2) that the Fe Kα line emitting region is close to the hot continuum emitting region, and (3) that the size of the Fe line emitting region is larger than that of the obscuring matter causing the short dips but smaller than the region of that causing the long dips.

  2. Wettability between TiN,TiC Containing Carbon Composite Refractory and Molten Slag or Hot Metal

    Institute of Scientific and Technical Information of China (English)

    SHIYue-xun; LIYingand; 等

    1994-01-01

    In order to develop a new-type TiC-TiN containing carbon composite refractory so as to improve the service life of blast furnace hearth,the wettability between the carbon refractory and molten slag or metal has been mea-sured.It was indicated that the carbon refractory is wet-ted by slag(θ≤90°) when(TiC+TiN)>33.52%,The effects of TiN or TiC on wetting behavior are basi-cally identical.When the amount of TiC in the carbon com-posite refractory is greater than 60% it will be wetted by hot metal;therefore,the carbon composite refractory will be wetted by slag but not permeated by hot metal when the amount of TiC is restricted.

  3. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  4. Antenna induced hot restrike of a ceramic metal halide lamp recorded by high-speed photography

    Science.gov (United States)

    Hermanns, P.; Hoebing, T.; Bergner, A.; Ruhrmann, C.; Awakowicz, P.; Mentel, J.

    2016-03-01

    The hot restrike is one of the biggest challenges in operating ceramic metal halide lamps with mercury as buffer gas. Compared to a cold lamp, the pressure within a ceramic burner is two orders of magnitude higher during steady state operation due to the high temperature of the ceramic tube and the resulting high mercury vapour pressure. Room temperature conditions are achieved after 300 s of cooling down in a commercial burner, enclosed in an evacuated outer bulb. At the beginning of the cooling down, ignition voltage rises up to more than 14 kV. A significant reduction of the hot-restrike voltage can be achieved by using a so called active antenna. It is realized by a conductive sleeve surrounding the burner at the capillary of the upper electrode. The antenna is connected to the lower electrode of the lamp, so that its potential is extended to the vicinity of the upper electrode. An increased electric field in front of the upper electrode is induced, when an ignition pulse is applied to the lamp electrodes. A symmetrically shaped ignition pulse is applied with an amplitude, which is just sufficient to re-ignite the hot lamp. The re-ignition, 60 s after switching off the lamp, when the mercury pressure starts to be saturated, is recorded for both polarities of the ignition pulse with a high-speed camera, which records four pictures within the symmetrically shaped ignition pulse with exposure times of 100 ns and throws of 100 ns. The pictures show that the high electric field and its temporal variation establish a local dielectric barrier discharge in front of the upper electrode inside the burner, which covers the inner wall of the burner with a surface charge. It forms a starting point of streamers, which may induce the lamp ignition predominantly within the second half cycle of the ignition pulse. It is found out that an active antenna is more effective when the starting point of the surface streamer in front of the sleeve is a negative surface charge on the

  5. Direct laser interference patterning of metallic sleeves for roll-to-roll hot embossing

    Science.gov (United States)

    Lang, Valentin; Rank, Andreas; Lasagni, Andrés. F.

    2017-03-01

    Surfaces equipped with periodic patterns with feature sizes in the micrometer, submicrometer and nanometer range present outstanding surface properties. Many of these surfaces can be found on different plants and animals. However, there are few methods capable to produce such patterns in a one-step process on relevant technological materials. Direct laser interference patterning (DLIP) provides both high resolution as well as high throughput. Recently, fabrication rates up to 1 m2·min-1 could be achieved. However, resolution was limited to a few micrometers due to typical thermal effects that arise when nanosecond pulsed laser systems are used. Therefore, this study introduces an alternative to ns-DLIP for the fabrication of multi-scaled micrometer and submicrometer structures on nickel surfaces using picosecond pulses (10 ps at a wavelength of 1064 nm). Due to the nature of the interaction process of the metallic surfaces with the ultrashort laser pulses, it was not only possible to directly transfer the shape of the interference pattern intensity distribution to the material (with spatial periods ranging from 1.5 μm to 5.7 μm), but also to selectively obtain laser induce periodic surface structures with feature sizes in the submicrometer and nanometer range. Finally, the structured nickel sleeves are utilized in a roll-to-roll hot embossing unit for structuring of polymer foils. Processing speeds up to 25 m·min-1 are reported.

  6. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    Science.gov (United States)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  7. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    Science.gov (United States)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (<0.02%) were experimentally obtained when the RM:CaO ratio was between 1.2:1 and 2.4:1. The pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  8. Database of Interacting Proteins (DIP)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent...

  9. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52

    Science.gov (United States)

    Qin, Renyao; Duan, Zhaoling; He, Guo

    2013-10-01

    The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.

  10. KIC 8462852 optical dipping event

    Science.gov (United States)

    Waagen, Elizabeth O.

    2017-05-01

    T. Boyajian (Louisiana State University) et al. reported in ATel #10405 that an optical dip is underway in KIC 8462852 (Boyajian's Star, Tabby's Star) beginning on 2017 May 18 UT. Tentative signs of small dips had been seen beginning April 24, and enhanced monitoring had begun at once at Fairborn Observatory (Tennessee State University). Photometry and spectroscopy from there on May 18 and 19 UT showed a dip underway. Cousins V photometry showed a drop of 0.02 magnitude, the largest dip (and the first clear one) seen in more than a year of monitoring. AAVSO observer Bruce Gary (GBL, Hereford, AZ) carried out V photometry which showed a fading from 11.906 V ± 0.004 to 11.9244 V ± 0.0033 between UT 2017 May 14 and May 19, a drop of 1.7%. Swift/UVOT observations obtained May 18 15:19 did not show a statistically significant drop in v, but Gary's photometry is given more weight. r'-band observations from Las Cumbres Observatory obtained 2017 May 17 to May 19 showed a 2% dip. Spectra by I. Steele (Liverpool JMU) et al. taken on 2017 May 20 with the 2.0 meter Liverpool Telescope, La Palma, showed no differences in the source compared to a reference spectrum taken 2016 July 4 when the system was not undergoing a dip (ATel #10406).Dips typically last for a few days, and larger dips can last over a week. It is not clear that this dip is over. Precision time-series V photometry is urgently requested from AAVSO observers, although all photometry is welcome. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). See full Alert Notice for more details. KIC 8462852 was the subject of AAVSO Alert Notices 532 and 542. See also Boyajian et al. 2016, also available as a preprint (http://arxiv.org/abs/1509.03622). General information about KIC 8462852 may be found at http://www.wherestheflux.com/.

  11. 连续热镀锌过程带钢边部气流特性的研究%Research on airflow characteristic of the strip edge in hot-dip galvanizing process

    Institute of Scientific and Technical Information of China (English)

    李培兴; 张红梅; 赵红阳; 富聿晶; 孙成钱; 张岩

    2014-01-01

    To explore the strip edge pressure decreases as gas⁃jet wiping in hot⁃dip galvanizing process, a gas impact plate experiment was carried out, and the process of gas jet wiping was also simulated using the measured results. The added edge baffle near the edge of strip which is used to prevent the wall pressure decreases in strip edge was optimized with the help of the analytic model of film thickness. The results show that the airflow of strip edge occurs lateral deflection and the wall pressure in the strip edge is lower than those in center, in addition, the edge air pressure attenuation increases with the rising distance between the air knife and the strip. The edge pressure decreases and the edge over coating problem can be reduced effectively by adding edge baffle, and the best result happens when the thickness of baffle is 2 mm.%为探究连续热镀锌气刀射流拭锌过程中发生的带钢边部压力衰减问题,设计了气流冲击平板实验,对带钢表面气流流向及压力进行测定。基于测量的参数,对该气刀射流喷吹过程进行数值模拟,并结合所推导的镀层厚度计算模型,对为减少带钢边部压力衰减所增设的边部挡板进行了厚度优化。研究结果表明:气刀喷吹时带钢边部气流发生横向偏转,使得带钢边部压力较中心处低,气压衰减率随气刀与带钢的间隔距离增加而增加,增设边部挡板能有效阻碍带钢边部压力衰减和降低边部过镀锌缺陷发生,且挡板厚度为2 mm时的作用效果最佳。

  12. Transition duct system with metal liners for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-04-11

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) and an arcuate connecting segment (36). A respective straight metal liner (92) and an arcuate metal liner (94) may be each inwardly disposed onto a metal outer shell (38) along the straight path segment and the arcuate connecting segment (36) of the exit piece. Structural arrangements are provided to securely attach the respective liners in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liners can be readily removed and replaced as needed.

  13. Effect of soaking temperature on microstructure and properties of 590 MPa grade hot-dip galvanized dual phase steel%均热温度对590 MPa级热镀锌双相钢组织与性能的影响

    Institute of Scientific and Technical Information of China (English)

    邝春福; 郑之旺; 王礞

    2016-01-01

    C-Mn steel were respectively soaked at 760 ℃, 800 ℃ and 850 ℃ for 120 s, and then rapidly cooled to 460 ℃ to simulate the hot-dip galvanizing. The pre-straining (2%) and baking treatment (170 ℃ for 20 min) were carried out to measure the BH values after annealing cycle. The influences of the soaking temperature on microstructure, mechanical properties and bake-hardening behavior of the 590 MPa grade hot-dip galvanized dual phase steel were investigated by means of microscope, SEM, tensile test machine and so on. The results show that the microstructure is composed of ferrite and martensite when annealed at 760-850 ℃, and no bainite is observed. Therefore, the tensile strength of the hot-dip galvanized dual phase steel reaches more than 590 MPa. The steel with excellent comprehensive properties (Rp0.2 =295 MPa, Rm =606 MPa, A=32. 1%, Rm × A=19 450 MPa·%) are obtained by annealing at 800 ℃. The BH value increases first and then decreases with increasing the soaking temperature from 760 ℃ to 850 ℃. And the BH value reaches maximum value (81 MPa) at the soaking temperature of 800 ℃.%将C-Mn钢分别加热至760、800和850℃均热120 s后,快速冷却至460℃以模拟热镀锌工艺。退火后对试验钢进行预应变(2%)和烘烤处理(170℃×20 min)以测量其烘烤硬化( BH)值。通过金相显微镜、扫描电镜、拉伸等技术,研究了均热温度对590 MPa级热镀锌双相钢微观组织、力学性能和烘烤硬化性能的影响。结果表明,在760~850℃范围内退火时,试验钢中未观察到贝氏体组织,微观组织由铁素体和马氏体组成,抗拉强度均达到590 MPa以上。热镀锌双相钢在800℃退火时,具有优良的综合力学性能,其屈服强度为295 MPa,抗拉强度为606 MPa,伸长率为32.1%,强塑积为19450 MPa·%。随着均热温度提高,BH值呈先增加后降低趋势;均热温度为800℃时,BH达最大值81 MPa。

  14. HATS-11b AND HATS-12b: Two Transiting Hot Jupiters Orbiting Subsolar Metallicity Stars Selected for the K2 Campaign 7

    Science.gov (United States)

    Rabus, M.; Jordán, A.; Hartman, J. D.; Bakos, G. Á.; Espinoza, N.; Brahm, R.; Penev, K.; Ciceri, S.; Zhou, G.; Bayliss, D.; Mancini, L.; Bhatti, W.; de Val-Borro, M.; Csbury, Z.; Sato, B.; Tan, T.-G.; Henning, T.; Schmidt, B.; Bento, J.; Suc, V.; Noyes, R.; Lázár, J.; Papp, I.; Sári, P.

    2016-10-01

    We report the discovery of two transiting extrasolar planets from the HATSouth survey. HATS-11, a V = 14.1 G0-star shows a periodic 12.9 mmag dip in its light curve every 3.6192 days and a radial velocity variation consistent with a Keplerian orbit. HATS-11 has a mass of 1.000+/- 0.060 {M}⊙ , a radius of 1.444+/- 0.057 {R}⊙ and an effective temperature of 6060+/- 150 K, while its companion is a 0.85+/- 0.12 {M}{{J}}, 1.510+/- 0.078 {R}{{J}} planet in a circular orbit. HATS-12 shows a periodic 5.1 mmag flux decrease every 3.1428 days and Keplerian RV variations around a V = 12.8 F-star. HATS-12 has a mass of 1.489+/- 0.071 {M}⊙ , a radius of 2.21+/- 0.21 {R}⊙ , and an effective temperature of 6408+/- 75 K. For HATS-12b, our measurements indicate that this is a 2.38+/- 0.11 {M}{{J}}, 1.35+/- 0.17 {R}{{J}} planet in a circular orbit. Both host stars show subsolar metallicities of -0.390+/- 0.060 dex and -0.100+/- 0.040 dex, respectively, and are (slightly) evolved stars. In fact, HATS-11 is among the most metal-poor and, HATS-12, with a {log}{g}\\star of 3.923+/- 0.065, is among the most evolved stars hosting a hot-Jupiter planet. Importantly, HATS-11 and HATS-12 have been observed in long cadence by Kepler as part of K2 campaign 7 (EPIC216414930 and EPIC218131080 respectively). The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on

  15. Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive

    Science.gov (United States)

    Chakravarthy, Sunada; Gonthier, Keith A.

    2016-07-01

    Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.

  16. Imaging challenges in 20nm and 14nm logic nodes: hot spots performance in Metal1 layer

    Science.gov (United States)

    Timoshkov, V.; Rio, D.; Liu, H.; Gillijns, W.; Wang, J.; Wong, P.; Van Den Heuvel, D.; Wiaux, V.; Nikolsky, P.; Finders, J.

    2013-10-01

    The 20nm Metal1 layer, based on ARM standard cells, has a 2D design with minimum pitch of 64nm. This 2D design requires a Litho-Etch-Litho-Etch (LELE) double patterning. The whole design is divided in 2 splits: Me1A and Me1B. But solution of splitting conflicts needs stitching at some locations, what requires good Critical Dimension (CD) and overlay control to provide reliable contact between 2 stitched line ends. ASML Immersion NXT tools are aimed at 20 and 14nm logic production nodes. Focus control requirements become tighter, as existing 20nm production logic layouts, based on ARM, have about 50-60nm focus latitude and tight CD Uniformity (CDU) specifications, especially for line ends. IMEC inspected 20nm production Metal1 ARM standard cells with a Negative Tone Development (NTD) process using the Process Window Qualification-like technique experimentally and by Brion Tachyon LMC by simulations. Stronger defects were found thru process variations. A calibrated Tachyon model proved a good overall predictability capability for this process. Selected defects are likely to be transferred to hard mask during etch. Further, CDU inspection was performed for these critical features. Hot spots showed worse CD uniformity than specifications. Intra-field CDU contribution is significant in overall CDU budget, where reticle has major impact due to high MEEF of hot spots. Tip-to-Tip and tip-to-line hot spots have high MEEF and its variation over the field. Best focus variation range was determined by best focus offsets between hot spots and its variation within the field.

  17. Influence of temperature, chlorine residual and heavy metals on the presence of Legionella pneumophila in hot water distribution systems.

    Science.gov (United States)

    Rakić, Anita; Perić, Jelena; Foglar, Lucija

    2012-01-01

    The microbiological colonisation of buildings and man-made structures often occurs on the walls of plumbing systems; therefore, monitoring of opportunistic pathogens such as Legionella pneumophila (L. pneumophila), both in water distribution mains and in consumers' plumbing systems, is an important issue according to the international and national guidelines that regulate the quality of drinking water. This paper investigates the presence of L. pneumophila in the Dalmatian County of Croatia and the relationship between L. pneumophila presence and heavy metals concentrations, free residual chlorine and water temperature in hot water distribution systems (WDS). Investigations were performed on a large number of hot water samples taken from taps in kitchens and bathrooms in hotels and homes for the elderly and disabled in the Split region. Of the 127 hot water samples examined, 12 (9.4%) were positive for Legionella spp. with median values concentration of 450 cfu × L(-1). Among positive isolates, 10 (83.3%) were L. pneumophila sg 1, and two of them (16.6%) belonged to the genera L. pneumophila sg 2-14. The positive correlation between the water temperature, iron and manganese concentrations, and L. pneumophila contamination was proved by statistical analysis of the experimental data. On the contrary, zinc and free residual chlorine had no observed influence on the presence of L. pneumophila. The presence of heavy metals in water samples confirms the corrosion of distribution system pipes and fittings, and suggests that metal plumbing components and associated corrosion products are important factors in the survival and growth of L. pneumophila in WDS.

  18. Development of a method for determination of metallic iron content within hot briquette iron (HBI for steelmaking

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2016-01-01

    Full Text Available The growing use of metallic iron in metallurgy and industrial chemical applications requires a fast, easy and cheap method for the determination of metallic iron, not merely in recyclable materials, such as iron pellets, reduced iron mill scale dust, electric arc furnace dust and pig iron, but from hot briquette iron (HBI as well. This study investigates a new method for determination of metallic iron within HBI used for steel-making materials. The effects of reaction time, temperature, and stirring rate were studied. The concentration of iron was determined via Atomic Absorption Spectroscopy (AAS. After the optimization study, high-purity metallic iron powder (Sigma-Aldrich, PubChem Substance ID 24855469 was used to compare efficiencies and identify the optimum conditions; The present study was matched with international standard methods (BS ISO 5416:2006, IS 15774:2007. Results were consistent with certified values and metallic iron content could be determined within the 95% confidence level. The purposed method is easy, straightforward, and cheap.

  19. A Thermodynamic Model for Predicting Phosphorus Partition between CaO-based Slags and Hot Metal during Hot Metal Dephosphorization Pretreatment Process Based on the Ion and Molecule Coexistence Theory

    Science.gov (United States)

    Yang, Xue-min; Li, Jin-yan; Chai, Guo-ming; Duan, Dong-ping; Zhang, Jian

    2016-08-01

    A thermodynamic model for predicting phosphorus partition L P between a CaO-based slags and hot metal during hot metal dephosphorization pretreatment process has been developed based on the ion and molecule coexistence theory (IMCT), i.e., the IMCT- L P model. The reaction abilities of structural units or ion couples in the CaO-based slags have been represented by the calculated mass action concentrations N i through the developed IMCT- N i model based on the IMCT. The developed IMCT- L P model has been verified to be valid through comparing with the measured L P as well as the predicted L P by two reported L P models from the literature. Besides the total phosphorus partition L P between the CaO-based slag and hot metal, the respective phosphorus partitions L P, i of nine dephosphorization products as P2O5, 3FeO·P2O5, 4FeO·P2O5, 2CaO·P2O5, 3CaO·P2O5, 4CaO·P2O5, 2MgO·P2O5, 3MgO·P2O5, and 3MnO·P2O5 can also be accurately predicted by the developed IMCT- L P model. The formed 3CaO·P2O5 accounts for 99.20 pct of dephosphorization products comparing with the generated 4CaO·P2O5 for 0.08 pct. The comprehensive effect of CaO+Fe t O, which can be described by the mass percentage ratio (pct Fe t O)/(pct CaO) or the mass action concentration ratio N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}} as well as the mass percentage product (pct Fe t O) × (pct CaO) or the mass action concentration product N_{{{{Fe}}t {{O}}}}5 × N_{{CaO}}3 , controls dephosphorization ability of the CaO-based slags. A linear relationship of L P against (pct Fe t O)/(pct CaO) can be correlated compared with a parabolic relationship of L P against N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}, while the linear relationship of L P against (pct Fe t O) × (pct CaO) or N_{Fe}t O5 × N_{CaO}3 can be established. Thus, the mass percentage product (pct Fe t O) × (pct CaO) and the mass action concentration product N_{Fe}t O5 × N_{CaO}3 are recommended to represent the comprehensive effect of CaO+Fe t O on

  20. Efficient, Broadband and Wide-Angle Hot-Electron Transduction using Metal-Semiconductor Hyperbolic Metamaterials

    KAUST Repository

    Sakhdari, Maryam

    2016-05-20

    Hot-electron devices are emerging as promising candidates for the transduction of optical radiation into electrical current, as they enable photodetection and solar/infrared energy harvesting at sub-bandgap wavelengths. Nevertheless, poor photoconversion quantum yields and low bandwidth pose fundamental challenge to fascinating applications of hot-electron optoelectronics. Based on a novel hyperbolic metamaterial (HMM) structure, we theoretically propose a vertically-integrated hot-electron device that can efficiently couple plasmonic excitations into electron flows, with an external quantum efficiency approaching the physical limit. Further, this metamaterial-based device can have a broadband and omnidirectional response at infrared and visible wavelengths. We believe that these findings may shed some light on designing practical devices for energy-efficient photodetection and energy harvesting beyond the bandgap spectral limit.

  1. 热镀锌生产线中浴装机器气刀精度调整的研究%RESEARCH ON PRECISION ADJUSTMENT OF THE AIR KNIFE IN THE BATH MOUNTED MACHINE IN THE HOT-DIP GALVANIZING LINE

    Institute of Scientific and Technical Information of China (English)

    任川东

    2014-01-01

    One of the key factors , which decide the galvanized products quality produced by the galvani-zing process , is the air knife precision in the bath mounted machine ( YG Equipment ) in the hot-dip gal-vanizing line .The paper studies the methods of adjusting the air knife precision .Through control optimiza-tion, air knife nozzle openness optimization , air knife parallel control optimization and life position optimiza-tion, the traces of air knife on galvanized sheets are reduced considerably and products quality is enhanced .%热镀锌生产线中浴装机器( YG设备)的气刀装置精度是决定镀锌工序的关键因素,对整个镀锌板材产品质量具有重要意义。本文研究了气刀装置精度调整的方法,通过解体控制优化、气刀喷嘴开口度优化、气刀平行度控制优化以及气刀升降位置优化,使镀锌板上气刀痕迹显著减少,从而提高镀锌板产品的质量。

  2. Fending Off Hot Money

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Amid uncertainties about the amount of hot money,the government strives to curb the harmful capital The benchmark Shanghai Composite Index was plagued by dips, climbs and dives as the stock market slumped from 3,186 to 2,838 points

  3. Efficient and Robust Thermoelectric Power Generation Device Using Hot-Pressed Metal Contacts on Nanostructured Half-Heusler Alloys

    Science.gov (United States)

    Joshi, Giri; Poudel, Bed

    2016-12-01

    We report an efficient thermoelectric device with power density of 8.9 W/cm2 and efficiency of 8.9% at 678°C temperature difference using hot-pressed titanium metal contact layers on nanostructured half-Heusler materials. The high power density and efficiency are due to the efficient nanostructured materials and very low contact resistance of 1 μΩ cm2 between the titanium layer and half-Heusler material. Moreover, the bonding strength between the titanium and half-Heusler is more than 50 MPa, significantly higher compared with conventional contact metallization methods. The low contact resistance and high bonding strength are due to thin-layer diffusion of titanium (600°C). The low contact resistance and high bonding strength result in a stable and efficient power generation device with great potential for use in recovery of waste heat, e.g., in automotive and industrial applications.

  4. Thermal Characteristics of Air-Water Spray Impingement Cooling of Hot Metallic Surface under Controlled Parametric Conditions

    Institute of Scientific and Technical Information of China (English)

    Santosh Kumar Nayak; Purna Chandra Mishra

    2016-01-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8 mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates 670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.

  5. Studies of plasmonic hot-spot translation by a metal-dielectric layered superlens

    DEFF Research Database (Denmark)

    Thoreson, Mark D.; Nielsen, Rasmus Bundgaard; West, Paul R.;

    2011-01-01

    We have studied the ability of a lamellar near-field superlens to transfer an enhanced electromagnetic field to the far side of the lens. In this work, we have experimentally and numerically investigated superlensing in the visible range. By using the resonant hot-spot field enhancements from opt...

  6. ICE-DIP kicks off

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Last month, Marie Curie Actions* added a new member to its ranks: ICE-DIP (the Intel-CERN European Doctorate Industrial Program). The programme held its kick-off meeting on 18-19 February in Leixlip near Dublin, Ireland, at Intel’s premises.   Building on CERN’s long-standing relationship with Intel in the CERN openlab project, ICE-DIP brings together CERN and industrial partners, Intel and Xena Networks, to train five Early Stage ICT Researchers. These researchers will be funded by the European Commission and granted a CERN Fellow contract while enrolled in the doctoral programmes at partner universities Dublin City University and National University of Ireland Maynooth. The researchers will go on extended secondments to Intel Labs Europe locations across Europe during their three-year training programme. The primary focus of the ICE-DIP researchers will be the development of techniques for acquiring and processing data that are relevant for the trigger a...

  7. Night time blood pressure dip

    Institute of Scientific and Technical Information of China (English)

    Dennis; Bloomfield; Alex; Park

    2015-01-01

    The advent of ambulatory blood pressure monitoring permitted examination of blood pressures during sleep and recognition of the associated circadian fall in pressure during this period. The fall in pressure,called the "dip",is defined as the difference between daytime mean systolic pressure and nighttime mean systolic pressure expressed as a percentage of the day value. Ten percent to 20% is considered normal. Dips less than 10%,referred to as blunted or absent,have been considered as predicting an adverse cardiovascular event. This view and the broader concept that white coat hypertension itself is a forerunner of essential hypertension is disputable. This editorial questions whether mean arterial pressures over many hours accurately represent the systolic load,whether nighttime dipping varies from measure to measure or is a fixed phenomenon,whether the abrupt morning pressure rise is a risk factor or whether none of these issues are as important as the actual night time systolic blood pressure itself. The paper discusses the difference between medicated and nonmedicated white coat hypertensives in regard to the cardiovascular risk and suggests that further work is necessary to consider whether the quality and duration of sleep are important factors.

  8. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    Science.gov (United States)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  9. A HOT URANUS ORBITING THE SUPER METAL-RICH STAR HD 77338 AND THE METALLICITY-MASS CONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, J. S.; Hoyer, S.; Jones, M. I.; Rojo, P.; Day-Jones, A. C.; Ruiz, M. T. [Departamento de Astronomia, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago, Casilla 36-D (Chile); Jones, H. R. A.; Tuomi, M.; Barnes, J. R.; Pavlenko, Y. V.; Pinfield, D. J. [Center for Astrophysics, University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire, AL10 9AB (United Kingdom); Murgas, F. [Instituto de Astrofisica de Canarias, Via Lactea, E-38205 La Laguna, Tenerife (Spain); Ivanyuk, O. [Main Astronomical Observatory of National Academy of Sciences of Ukraine, 27 Zabolotnoho, Kyiv 127, 03680 (Ukraine); Jordan, A., E-mail: jjenkins@das.uchile.cl [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, 7820436 Macul, Santiago (Chile)

    2013-04-01

    We announce the discovery of a low-mass planet orbiting the super metal-rich K0V star HD 77338 as part of our ongoing Calan-Hertfordshire Extrasolar Planet Search. The best-fit planet solution has an orbital period of 5.7361 {+-} 0.0015 days and with a radial velocity semi-amplitude of only 5.96 {+-} 1.74 ms{sup -1}, we find a minimum mass of 15.9{sup +4.7}{sub -5.3} M{sub Circled-Plus }. The best-fit eccentricity from this solution is 0.09{sup +0.25}{sub -0.09}, and we find agreement for this data set using a Bayesian analysis and a periodogram analysis. We measure a metallicity for the star of +0.35 {+-} 0.06 dex, whereas another recent work finds +0.47 {+-} 0.05 dex. Thus HD 77338b is one of the most metal-rich planet-host stars known and the most metal-rich star hosting a sub-Neptune-mass planet. We searched for a transit signature of HD 77338b but none was detected. We also highlight an emerging trend where metallicity and mass seem to correlate at very low masses, a discovery that would be in agreement with the core accretion model of planet formation. The trend appears to show that for Neptune-mass planets and below, higher masses are preferred when the host star is more metal-rich. Also a lower boundary is apparent in the super metal-rich regime where there are no very low mass planets yet discovered in comparison to the sub-solar metallicity regime. A Monte Carlo analysis shows that this low-mass planet desert is statistically significant with the current sample of 36 planets at the {approx}4.5{sigma} level. In addition, results from Kepler strengthen the claim for this paucity of the lowest-mass planets in super metal-rich systems. Finally, this discovery adds to the growing population of low-mass planets around low-mass and metal-rich stars and shows that very low mass planets can now be discovered with a relatively small number of data points using stable instrumentation.

  10. Structure and properties of composite ceramic coatings on H13 steel by hot dipping aluminum and plasma electrolytic oxidation%H13热作模具钢微弧氧化复合陶瓷层的组织和性能

    Institute of Scientific and Technical Information of China (English)

    赵建华; 赵国华; 李涛; 刘鑫; 李佳丽; 韩二静

    2012-01-01

    通过热浸镀铝/微弧氧化复合工艺对H13模具钢进行表面改性以提高模具表面质量。在热浸镀铝过程中,将H13钢基体浸入710℃纯铝液6 min,得到了以Fe2Al5为主中间合金层,使得镀层与基体紧密结合。经过微弧氧化处理后,镀铝试样表面铝层转化为氧化铝陶瓷,主要由α-Al2O3和γ-Al2O3相组成。用带有能谱分析装置(EDX)的扫描电镜(SEM)、X射线衍射(XRD)分析了膜层的形貌、成分和相组成。微弧氧化陶瓷层主要由Al、O、Si元素组成,其中O、Si主要来源于硅酸盐电解液。%Hot dipping pure aluminum on a H13 steel followed by plasma electrolytic oxidation(PEO) was performed to prepare composite ceramic coating on the H13 steel surface.H13 steel bars were first dipped in pure aluminum melts(710 ℃) for 6 min,and a Fe2Al5 intermetallic layer was obtained at the interface between the melt and the steel substrate.The intermetallic layer significantly improved the adhesion strength between Al layer and substrate.After PEO processing,uniform Al2O3 ceramic coatings were deposited on the surface of aluminized steel.The composition,phases and morphology of the aluminized layer and the ceramic coatings were characterized by SEM/EDX and XRD.The PEO layers mainly consist of α-Al2O3 and γ-Al2O3.The element O and Si in the ceramic layers came from the alkaline electrolytle.

  11. Hot-Electron Degradation of Gallium Arsenide Metal-Semiconductor Field-Effect Transistors.

    Science.gov (United States)

    Tkachenko, Yevgeniy A.

    1995-01-01

    The physical mechanism of gradual degradation of GaAs MESFETs during RF overdrive is investigated in detail. A hot-electron effect was found responsible for this so-called "power slump" problem. Hot electrons produced by a large drain-gate voltage swing, tunnel from the MESFET channel and get trapped in SiN. These trapped electrons (i) increase surface depletion, hence reduce maximum channel current, transconductance and transistor gain, (ii) increase knee voltage through an increase in series channel resistance, (iii) relax gate-drain field distribution, thereby suppressing avalanche breakdown, (iv) decrease gate-drain capacitance, hence rm S_{22} under open-channel condition, and (v) increase surface leakage through trap hopping in SiN. The damage to SiN can only be partially recovered by deep UV illumination or 200^circrm C anneal. The evidence supports that trapping occurs in the bulk SiN, instead of at the GaAs/SiN interface. The possible chemical reaction responsible for this trap formation is breaking of the Si-H bond in SiN. An analytical theory of hot-electron effects, which combines hot-electron trapping with gate-drain breakdown and pinched-channel electro-luminescence, was developed and verified using experimental data and numerical simulations. Based on this theory, the rate of hot electron trapping was obtained and the threshold energy for trap formation was determined. The square-root time dependence given by the theory and the threshold energy of 1.9 eV were found consistent with gate current and electro-luminescence measurements. Numerical analysis was consistent with a trap density of the order of 5times10^{12}/rm cm^2 over a distance of approximately 0.1 murm m from the gate toward the drain, and it predicted the experimentally observed open-channel current reduction and gate-drain field relaxation. The spatial distribution of trapped electrons was directly observed by a novel high-voltage electron-beam-induced -current imaging technique. It

  12. Finite Element Analysis for Effect of Roll Radius on Metal Deformation of Hot Rolling Plate

    Institute of Scientific and Technical Information of China (English)

    LUO De-xing; CHEN Qi-an; LIU Li-wen

    2005-01-01

    The deformation of rolling piece in hot rolling by flat roll with different radii is analyzed with three-dimensional large deformation thermo-mechanical coupling finite element method. The distribution laws of stress, strain and strain energy density in deformation zone with rolls of different radii were studied. The result indicated that under the same condition, the larger the roll radius is, the more vigorous the deformation in deformation zone is.

  13. 9 CFR 72.25 - Dipping methods.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Dipping methods. 72.25 Section 72.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CATTLE § 72.25 Dipping methods. Dipping is accomplished by thoroughly wetting the entire skin by...

  14. Densification during hot-pressing of carbon nanotube-metal-magnesium aluminate spinel nanocomposites

    OpenAIRE

    Peigney, Alain; Rul, Sébastien; Lefèvre-Schlick, Florent; Laurent, Christophe

    2007-01-01

    International audience; The densification by hot-pressing of ceramic-matrix composites containing a dispersion of carbon nanotubes (CNT), mostly single-walled, is studied for the first time. Fifteen different CNT-Co/Mo-MgAl2O4 composite powders containing between 1.2 and 16.7 vol.% CNT were prepared by catalytic chemical vapour deposition. The in situ growth of CNT within the oxide powder made it possible to obtain a highly homogeneous distribution of CNT. Low contents of CNT (up to 5 vol.%) ...

  15. "Atomic Force Masking" Induced Formation of Effective Hot Spots along Grain Boundaries of Metal Thin Films.

    Science.gov (United States)

    Kim, Kwang Hyun; Chae, Soo Sang; Jang, Seunghun; Choi, Won Jin; Chang, Hyunju; Lee, Jeong-O; Lee, Tae Il

    2016-11-30

    We present an interesting phenomenon, "atomic force masking", which is the deposition of a few-nanometer-thick gold film on ultrathin low-molecular-weight (LMW) polydimethylsiloxane (PDMS) engineered on a polycrystalline gold thin film, and demonstrated the formation of hot spot based on SERS. The essential principle of this atomic force masking phenomenon is that an LMW PDMS layer on a single crystalline grain of gold thin film would repel gold atoms approaching this region during a second cycle of evaporation, whereas new nucleation and growth of gold atoms would occur on LMW PDMS deposited on grain boundary regions. The nanostructure formed by the atomic force masking, denoted here as "hot spots on grain boundaries" (HOGs), which is consistent with finite-difference time-domain (FDTD) simulation, and the mechanism of atomic force masking were investigated by carrying out systematic experiments, and density functional theory (DFT) calculations were made to carefully explain the related fundamental physics. Also, to highlight the manufacturing advantages of the proposed method, we demonstrated the simple synthesis of a flexible HOG SERS, and we used this substrate in a swabbing test to detect a common pesticide placed on the surface of an apple.

  16. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    Science.gov (United States)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The carbon-enhanced metal-poor galaxy, I Zw 18, is the Rosetta Stone for understanding galaxies in the early universe by providing constraints on the IMF of massive stars, the role of galaxies in reionization of the universe, mixing of newly synthesized material in the ISM, and gamma-ray bursts at low metallicity, and on the earliest generations of stars producing the observed abundance pattern. We describe these constraints as derived from analyses of HST/COS spectra of I Zw 18 including stellar atmosphere analysis and photo-ionization modeling of both the emission and absorption spectra of the nebular material and interstellar medium.

  17. Identifying Hot-Spots of Metal Contamination in Campus Dust of Xi’an, China

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2016-06-01

    Full Text Available The concentrations of heavy metals (As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in campus dust from kindergartens, elementary schools, middle schools, and universities in the city of Xi’an, China, were determined by X-ray fluorescence spectrometry. The pollution levels and hotspots of metals were analyzed using a geoaccumulation index and Local Moran’s I, an indicator of spatial association, respectively. The dust samples from the campuses had metal concentrations higher than background levels, especially for Pb, Zn, Co, Cu, Cr, and Ba. The pollution assessment indicated that the campus dusts were not contaminated with As, Mn, Ni, or V, were moderately or not contaminated with Ba and Cr and were moderately to strongly contaminated with Co, Cu, Pb, and Zn. Local Moran’s I analysis detected the locations of spatial clusters and outliers and indicated that the pollution with these 10 metals occurred in significant high-high spatial clusters, low-high, or even high-low spatial outliers. As, Cu, Mn, Ni, Pb, V, and Zn had important high-high patterns in the center of Xi’an. The western and southwestern regions of the study area, i.e., areas of old and high-tech industries, have strongly contributed to the Co content in the campus dust.

  18. Technology development for metallic hot structures in aerodynamic control surfaces of reusable launchers

    NARCIS (Netherlands)

    Sudmeijer, K.J.; Wentzel, C.; Lefeber, B.M.; Kloosterman, A.

    2002-01-01

    In this paper a summary is presented of the technology development in the Netherlands focussed on the design and development of a metallic aerodynamic control surface for the future European reusable launcher. The applied materials are mainly Oxide Dispersion Strengthened (ODS) alloys produced by

  19. Metal PCP field trial pushes up pumping window for heavy oil hot production : Joslyn field case

    Energy Technology Data Exchange (ETDEWEB)

    Beauquin, J.L.; Ndinemenu, F. [Total SA, Paris (France); Chalier, G. [Total E and P Canada Ltd., Calgary, AB (Canada); Lemay, L.; Seince, L. [PCM, Verves (France); Jahn, S. [Kudu Industries Inc., Calgary, AB (Canada)

    2008-07-01

    This paper presented details of field trials conducted for a novel all-metal progressive cavity pump (PCP) system at a steam assisted gravity drainage (SAGD) facility in Canada's Joslyn field. The fully metallic helical profile was produced by hydro-forming processes. The pump's stator was comprised of 3 elements welded together and coated for high temperature and wear resistance. During the field trials, the well pads were equipped with metal PCPs as well as topside and down hole instrumentation in order to obtain real time well data and pump performance data. Results of the study showed that initial volumetric efficiencies were 55 per cent. When pressure communication between injector and producer wells increased, pump intake pressure and speed also increased. Performance data from the field trial were then compared with results from high temperature electric submersible pumps (ESPs). It was concluded that the metal PCP is a promising artificial lift technology for SAGD processes. The pump design is now being modified to minimize vibrations and improve run life. 1 ref., 11 figs.

  20. Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling

    Indian Academy of Sciences (India)

    X P Zhang; M J Tan; T H Yang; X J Xu; J T Wang

    2011-07-01

    One of major drawbacks of magnesium alloy is its low corrosion resistance, which can be improved by using an aluminized coating. In this paper, 7075 Al/Mg–12Gd–3Y–0.5Zr/7075 Al laminated composites were produced by a hot roll bonding method. The rolling temperature was determined based on the flow stresses of Mg–12Gd–3Y–0.5Zr magnesium alloy and 7075 Al alloy at elevated temperature. The bonding strength of the laminate composites and their mechanism were studied. The effects of the reduction ratio (single pass), the rolling temperature, and the subsequent annealing on the bonding strength were also investigated. It was observed that the bonding strength increased rapidly with the reduction ratio and slightly with the rolling temperature. The bonding strength increases with the annealing time until the annealing time reaches 2 h and then decreases. The mechanical bond plays a major role in the bonding strength.

  1. Light and heavy metal abundances in hot central stars of planetary nebulae

    CERN Document Server

    Werner, K; Jahn, D; Rauch, T; Reiff, E; Traulsen, I; Kruk, J W; Dreizler, S

    2005-01-01

    We present new results from our spectral analyses of very hot central stars achieved since the last IAU Symposium on planetary nebulae held in Canberra 2001. The analyses are mainly based on UV and far-UV spectroscopy performed with the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer but also on ground-based observations performed at the Very Large Telescope and other observatories. We report on temperature, gravity, and abundance determinations for the CNO elements of hydrogen-rich central stars. In many hydrogen-deficient central stars (spectral type PG1159) we discovered particular neon and fluorine lines, which are observed for the very first time in any astrophysical object. Their analysis strongly confirms the idea that these stars exhibit intershell matter as a consequence of a late helium-shell flash.

  2. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.

    Science.gov (United States)

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi

    2008-04-01

    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  3. The origin of the hot metal-poor gas in NGC 1291 - Testing the hypothesis of gas dynamics as the cause of the gas heating

    NARCIS (Netherlands)

    Perez, [No Value; Freeman, K

    2006-01-01

    In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the

  4. Hot metal temperature prediction by neural networks in the blast furnace; Prediccion mediante redes neuronales de la temperatura de arrabio de un horno alto. Temperatura subyacente de arrabio

    Energy Technology Data Exchange (ETDEWEB)

    Cantera, C.; Jimenez, J.; Varela, I.; Formoso, A.

    2002-07-01

    Based on a simplified model, the underlying temperature criteria is proposed as a method to study the temperature trends in a blast furnace. As an application, a neural network able to forecast hot metal temperatures from 2 to 16 h in advance (with decreasing precision) has been built. This neural network has been designed to work at real time in a production plant. (Author)

  5. The origin of the hot metal-poor gas in NGC 1291 - Testing the hypothesis of gas dynamics as the cause of the gas heating

    NARCIS (Netherlands)

    Perez, [No Value; Freeman, K

    In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the

  6. Effect of the Metallicity on the X-ray Emission from the Warm-Hot Intergalactic Medium

    CERN Document Server

    Ursino, Eugenio; Roncarelli, Mauro

    2010-01-01

    Hydrodynamic simulations predict that a significant fraction of the gas in the current Universe is in the form of high temperature, highly ionized plasma emitting and absorbing primarily in the soft X-ray and UV bands, dubbed the Warm-Hot Intergalactic Medium (WHIM). Its signature should be observable in red-shifted emission and absorption lines from highly ionized elements. To determine the expected WHIM emission in the soft X-ray band we used the output of a large scale hydrodynamic SPH simulation to generate images and spectra with angular resolution of 14'' and energy resolution of 1 eV. The current biggest limit of any hydrodynamic simulation in predicting the X-ray emission comes from metal diffusion. In our investigation, by using four different models for the WHIM metallicity we have found a strong dependence of the emission on the model used, with differences up to almost an order of magnitude. For each model we have investigated the redshift distribution and angular scale of the emission, confirming...

  7. An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP-98 planetary system

    CERN Document Server

    Mancini, L; Molliere, P; Southworth, J; Brahm, R; Ciceri, S; Henning, Th

    2016-01-01

    The WASP-98 planetary system represents a rare case of a hot Jupiter hosted by a metal-poor main-sequence star. We present a follow-up study of this system based on multi-band photometry and high-resolution spectroscopy. Two new transit events of WASP-98b were simultaneously observed in four passbands (g,r,i,z), using the telescope-defocussing technique, yielding eight high-precision light curves with point-to-point scatters of less than 1 mmag. We also collected three spectra of the parent star with a high-resolution spectrograph, which we used to remeasure its spectral characteristics, in particular its metallicity. We found this to be very low, Fe/H]=-0.49, but larger than was previously reported, [Fe/H]=-0.60. We used these new photometric and spectroscopic data to refine the orbital and physical properties of this planetary system, finding that the stellar and planetary mass measurements are significantly larger than those in the discovery paper. In addition, the multi-band light curves were used to cons...

  8. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  9. Hot-electron dynamics and thermalization in small metallic nanoparticles (Conference Presentation)

    Science.gov (United States)

    Garcia de Abajo, Javier F.

    2016-09-01

    Recent experimental and theoretical advances in the study of graphene plasmons have triggered the search for similar phenomena in other materials that are structured down to the atomic scale, and in particular, alternative 2D crystals, noble-metal monolayers, and polycyclic aromatic hydrocarbons, which can be regarded as molecular versions of graphene. The number of valence electrons that are engaged in the plasmon excitations of these materials is small compared with those of conventional 3D metallic nanostructures, and consequently, the addition or removal of a comparatively small number of electrons produces sizeable changes in their frequencies and near-field distributions. Graphene in particular has been shown to exhibit a large degree of electrical modulation due to its peculiar electronic band structure, which is characterized by a linear dispersion relation and vanishing of the electron density of states at the Fermi level; few electrons are needed to considerably change the Fermi energy. However, plasmons in graphene have only been observed at mid-infrared and lower frequencies, and therefore, small molecular structures and atomically thin metals constitute attractive alternatives to achieve fast electro-optical modulation in the visible and near-infrared (vis-NIR) parts of the spectrum. In this presentation, we review different strategies and recent advances in the achievement of strong optical tunability in the vis-NIR using plasmons of atomic-scale materials, as well as their potential application for quantum optics, light manipulation, and sensing.

  10. Effect of rotational mixing and metallicity on the hot star wind mass-loss rates

    CERN Document Server

    Krticka, Jiri

    2014-01-01

    Hot star wind mass-loss rates depend on the abundance of individual elements. This dependence is usually accounted for assuming scaled solar chemical composition. However, this approach may not be justified in evolved rotating stars. The rotational mixing brings CNO-processed material to the stellar surface, increasing the abundance of nitrogen at the expense of carbon and oxygen, which potentially influences the mass-loss rates. We study the influence of the modified chemical composition resulting from the rotational mixing on the wind parameters, particularly the wind mass-loss rates. We use our NLTE wind code to predict the wind structure and compare the calculated wind mass-loss rate for the case of scaled solar chemical composition and the composition affected by the CNO cycle. We show that for a higher mass-fraction of heavier elements $Z/Z_\\odot\\gtrsim0.1$ the change of chemical composition from the scaled solar to the CNO-processed scaled solar composition does not significantly affect the wind mass-l...

  11. An Analysis of the Retention of a Diamond Particle in a Metallic Matrix after Hot Pressing

    Directory of Open Access Journals (Sweden)

    Borowiecka-Jamrozek J.

    2017-03-01

    Full Text Available This paper deals with computer modelling of the retention of a synthetic diamond particle in a metallic matrix produced by powder metallurgy. The analyzed sintered powders can be used as matrices for diamond impregnated tools. First, the behaviour of sintered cobalt powder was analyzed. The model of a diamond particle embedded in a metallic matrix was created using Abaqus software. The preliminary analysis was performed to determine the mechanical parameters that are independent of the shape of the crystal. The calculation results were compared with the experimental data. Next, sintered specimens obtained from two commercially available powder mixtures were studied. The aim of the investigations was to determine the influence of the mechanical and thermal parameters of the matrix materials on their retentive properties. The analysis indicated the mechanical parameters that are responsible for the retention of diamond particles in a matrix. These mechanical variables have been: the elastic energy of particle, the elastic energy of matrix and the radius of plastic zone around particle.

  12. 78 FR 21159 - Additional Requirements for Special Dipping and Coating Operations (Dip Tanks); Extension of the...

    Science.gov (United States)

    2013-04-09

    ... Operations (Dip Tanks); Extension of the Office of Management and Budget's Approval of the Information... Coating Operations (Dip Tanks) (29 CFR 1910.126(g)(4)). DATES: Comments must be submitted (postmarked... Operations (Dip Tanks) (29 CFR 1910.126(g)(4)). The Agency is requesting to retain its previous burden...

  13. Screening tests for new teat dips.

    Science.gov (United States)

    Farnsworth, R J; Johnson, D W; Dewey, L

    1976-11-01

    Increased use of after-milking teat dips has resulted in the appearance of many new teat dips and a need for methods of evaluation of efficacy. A method was developed for determining the ability of a disinfectant to kill bacteria on the teat ends. Results from several known efficacious products indicated an approximate 95% reduction in bacterial flora. Additional data are presented on some experimental products. This method will provide a measure of effectiveness of a producton teat-skin disinfection. The effect of some changes in the testing procedure on bacterial reduction is demonstrated: 1) Increased times between inoculation and dipping and between dipping and swabbing tended to decrease recoveries on control teats. 2) Saline dips on controls teats provided increased recoveries of test organisms.

  14. HATS-4b: A Dense Hot-Jupiter Transiting a Super Metal-Rich G Star

    CERN Document Server

    Jordán, A; Bakos, G Á; Bayliss, D; Penev, K; Hartman, J D; Zhou, G; Mancini, L; Mohler-Fischer, M; Ciceri, S; Sato, B; Csubry, Z; Rabus, M; Suc, V; Espinoza, N; Bhatti, W; Borro, M de Val; Buchhave, L; Csák, B; Henning, T; Schmidt, B; Tan, T G; Noyes, R W; Béky, B; Butler, R P; Shectman, S; Crane, J; Thompson, I; Williams, A; Martin, R; Contreras, C; Lázár, J; Papp, I; Sári, P

    2014-01-01

    We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V=13.46 mag G star. HATS-4b has a period of P = 2.5167 d, mass of Mp = 1.32 Mj, radius of Rp = 1.02 Rj and density of rho_p = 1.55 +- 0.16 g/cm^3 ~ 1.24 rhoj. The host star has a mass of 1.00 Msun, a radius of 0.92 Rsun and a very high metallicity [Fe/H]= 0.43 +- 0.08. HATS-4b is among the densest known planets with masses between 1-2 Mj and is thus likely to have a significant content of heavy elements of the order of 75 Mearth. In this paper we present the data reduction, radial velocity measurement and stellar classification techniques adopted by the HATSouth survey for the CORALIE spectrograph. We also detail a technique to estimate simultaneously vsini and macroturbulence using high resolution spectra.

  15. Broad HI Absorbers as Metallicity-Independent Tracers of the Warm-Hot Intergalactic Medium

    CERN Document Server

    Danforth, Charles W; Shull, J Michael

    2009-01-01

    Thermally broadened Ly alpha absorbers (BLAs) offer an alternative method to highly-ionized metal lines for tracing the WHIM. We compile a catalog of reliable BLA candidates along seven AGN sight lines from a larger set of Lya absorbers observed by HST/STIS. We compare our measurements based on independent reduction and analysis of the data to those published by other research groups. Purported BLAs are grouped into probable (15), possible (48) and non-BLA (56) categories. We infer a line frequency (dN/dz)_BLA=18+-11, comparable to observed OVI absorbers. There is significant overlap between BLA and OVI absorbers (20-40%) and we find that OVI detections in BLAs are found closer to galaxies than OVI non-detections. Based on 164 measured COG HI line measurements, we statistically correct the observed line widths via a Monte- Carlo simulation. Gas temperature and neutral fraction f(HI) are inferred from these statistically-corrected line widths and lead to a distribution of total hydrogen columns. We find Omega_...

  16. Development of ultrasonic testing method of dissimilar metal transition joints by hot roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Ikuji; Fujisawa, Kazuo; Yamaguchi, Hisao [Sumitomo Metal Industries Ltd., Osaka (Japan); Nagai, Takayuki; Takeda, Seiichiro

    1996-03-01

    An ultrasonic inspection method for detection of debonding in a clad pipe was investigated. The clad pipe is composed of outer side stainless steel (SUS), inner side titanium alloy (Ti) and intermediate tantalum foil (Ta) 0.05 to 0.2mm in thickness. The clad pipe is machined to dissimilar metal transition tubular joints which are used in a nuclear fuel reprocessing plant. The ultrasonic echoes from sound bonding and debonding areas were calculated by combining echoes from SUS-Ta and Ti-Ta interfaces, and multiple reflection echoes in Ta foil, considering the reflection coefficient at each interface. The influence of multiple reflection echoes in Ta foil was also evaluated. The effects of center frequency and band width of ultrasonic pulse and inspection direction were analysed from the calculation results. The effect of inspection direction considering the pipe shift was also evaluated from the experiment. The determinations showed that inspection from the inner side of a pipe with a broad frequency band probe of 12 to 20 MHz is optimum. A test specimen with artificial defects 1 mm in diameter and specimens with a debonding area made by rolling oxidized material were inspected by the determined test condition. Findings allowed discrimination of the echoes from debonding boundaries from those from sound bonding boundaries. (author).

  17. HATS-4b: A dense hot Jupiter transiting a super metal-rich G star

    Energy Technology Data Exchange (ETDEWEB)

    Jordán, Andrés; Brahm, Rafael; Rabus, M.; Suc, V.; Espinoza, N. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Bakos, G. Á.; Penev, K.; Hartman, J. D.; Csubry, Z.; Bhatti, W.; De Val Borro, M. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Bayliss, D.; Zhou, G. [The Australian National University, Canberra (Australia); Mancini, L.; Mohler-Fischer, M.; Ciceri, S.; Csák, B.; Henning, T. [Max Planck Institute for Astronomy, Heidelberg (Germany); Sato, B. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Buchhave, L. [Niels Bohr Institute, Copenhagen University (Denmark); and others

    2014-08-01

    We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V = 13.46 mag G star. HATS-4b has a period of P ≈ 2.5167 days, mass of M{sub p} ≈ 1.32 M {sub Jup}, radius of R{sub p} ≈ 1.02 R {sub Jup}, and density of ρ {sub p} = 1.55 ± 0.16 g cm{sup –3} ≈1.24 ρ{sub Jup}. The host star has a mass of 1.00 M {sub ☉}, a radius of 0.92 R {sub ☉}, and a very high metallicity [Fe/H]=0.43 ± 0.08. HATS-4b is among the densest known planets with masses between 1 and 2 M {sub J} and is thus likely to have a significant content of heavy elements of the order of 75 M {sub ⊕}. In this paper we present the data reduction, radial velocity measurements, and stellar classification techniques adopted by the HATSouth survey for the CORALIE spectrograph. We also detail a technique for simultaneously estimating vsin i and macroturbulence using high resolution spectra.

  18. Engineering functionality gradients by dip coating process in acceleration mode.

    Science.gov (United States)

    Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David

    2014-10-08

    In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

  19. Structural properties of WO{sub 3} dependent of the annealing temperature deposited by hot-filament metal oxide deposition

    Energy Technology Data Exchange (ETDEWEB)

    Flores M, J. E. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de San Manuel, 72570 Puebla (Mexico); Diaz R, J. [IPN, Centro de Investigacion en Biotecnologia Aplicada, Ex-Hacienda de San Molino Km 1.5 Tepetitla, 90700 Tlaxcala (Mexico); Balderas L, J. A., E-mail: eflores@ece.buap.mx [IPN, Unidad Profesional Interdisciplinaria de Biotecnologia, Av. Acueducto s/n, Col. Barrio la Laguna, 07340 Mexico D. F. (Mexico)

    2012-07-01

    In this work presents a study of the effect of the annealing temperature on structural and optical properties of WO{sub 3} that has been grown by hot-filament metal oxide deposition. The chemical stoichiometry was determined by X-ray photoelectron spectroscopy. By X-ray diffraction obtained that the as-deposited WO{sub 3} films present mainly monoclinic crystalline phase. WO{sub 3} optical band gap energy can be varied from 2.92 to 3.15 eV obtained by transmittance measurements by annealing WO{sub 3} from 100 to 500 C. The Raman spectrum of the as-deposited WO{sub 3} film shows four intense peaks that are typical Raman peaks of crystalline WO{sub 3} (m-phase) that corresponds to the stretching vibrations of the bridging oxygen that are assigned to W-O stretching ({upsilon}) and W-O bending ({delta}) modes, respectively, which enhanced and increased their intensity with the annealing temperature. (Author)

  20. Physical properties characterization of WO{sub 3} films grown by hot-filament metal oxide deposition

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Reyes, J., E-mail: jdiazr2001@yahoo.com [Centro de Investigacion en Biotecnologia Aplicada del Instituto Politecnico Nacional, Ex-Hacienda de San Juan Molino, Km. 1.5, Tepetitla, Tlaxcala, 90700 (Mexico); Delgado-Macuil, R.J. [Centro de Investigacion en Biotecnologia Aplicada del Instituto Politecnico Nacional, Ex-Hacienda de San Juan Molino, Km. 1.5, Tepetitla, Tlaxcala, 90700 (Mexico); Dorantes-Garcia, V. [Preparatoria ' Simon Bolivar' de la Benemerita Universidad Autonoma de Puebla, 4 Oriente 408, Col. Centro, Atlixco, Puebla, C. P. 74200 (Mexico); Perez-Benitez, A. [Facultad de Ciencias Quimicas de la Benemerita Universidad Autonoma Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, Puebla, Puebla, C. P. 72570 (Mexico); Balderas-Lopez, J.A. [Unidad Profesional Interdisciplinaria de Biotecnologia del Instituto Politecnico Nacional, Avenida Acueducto S/N, Col. Barrio la Laguna, Ticoman, Del. Gustavo A. Madero, Mexico, D.F. 07340 (Mexico); Ariza-Ortega, J.A. [Centro de Investigacion en Biotecnologia Aplicada del Instituto Politecnico Nacional, Ex-Hacienda de San Juan Molino, Km. 1.5, Tepetitla, Tlaxcala, 90700 (Mexico)

    2010-10-25

    WO{sub 3} is grown by hot-filament metal oxide deposition (HFMOD) technique under atmospheric pressure and an oxygen atmosphere. By X-ray diffraction obtains that WO{sub 3} presents mainly monoclinic crystalline phase. The chemical stoichiometry is obtained by X-ray Photoelectron Spectroscopy (XPS). The IR spectrum of the as-grown WO{sub 3} presents broad peaks in the range of 1100 to 3600 cm{sup -1}. A broad band in the 2200 to 3600 cm{sup -1} region and the peaks sited at 1645 and 1432 cm{sup -1} are well resolved, which are originated from moisture and are assigned to {nu}(OH) and {delta}(OH) modes of adsorbed water and the corresponding tungsten oxide vibrations are in infrared region from 400 to 1453 cm{sup -1} and around 3492 cm{sup -1}, which correspond to tungsten-oxygen (W-O) stretching, bending and lattice modes. The Raman spectrum shows intense peaks at 801, 710, 262 and 61 cm{sup -1} that are typical Raman peaks of crystalline WO{sub 3} (m-phase) that correspond to stretching vibrations of the bridging oxygen, which are assigned to W-O stretching ({nu}) and W-O bending ({delta}) modes, respectively. By transmittance measurements obtains that the WO{sub 3} band gap can be varied from 2.92 to 3.13 eV in the investigated annealing temperature range.

  1. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; DeVan, H.J.; Judkins, R.R. [and others

    1995-06-01

    The product gas resulting from the partial oxidation of carboniferous materials in a gasifier consists predominantly of CO, CO{sub 2}, H{sub 2}, H{sub 2}O, CH{sub 4}, and, for air-blown units, N{sub 2} in various proportions at temperatures ranging from about 400 to 1000{degree}C. Depending on the source of the fuel, smaller concentrations of H{sub 2}S, COS, and NH{sub 3} can also be present. The gas phase is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials used in the gasifier can occur. Therefore, there are numerous concerns about materials performance in coal gasification systems, particularly at the present time when demonstration-scale projects are in or nearing the construction and operation phases. This study focused on the subset of materials degradation phenomena resulting from carbon formation and carburization processes, which are related to potential operating problems in certain gasification components and subsystems. More specifically, it examined the current state of knowledge regarding carbon deposition and a carbon-related degradation phemonenon known as metal dusting as they affect the long-term operation of the gas clean-up equipment downstream of the gasifier and addressed possible means to mitigate the degradation processes. These effects would be primarily associated with the filtering and cooling of coal-derived fuel gases from the gasifier exit temperature to as low as 400{degree}C. However, some of the consideratins are sufficiently general to cover conditions relevant to other parts of gasification systems.

  2. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  3. Strength Proofread of Saddle Support on Blast Furnace Hot Metal Ladle Car%高炉铁水罐车支座的强度校核

    Institute of Scientific and Technical Information of China (English)

    郝晓静

    2013-01-01

    In this paper , the strength caculation of saddle support of the hot metal ladle car on BF is intro-duced.It will be helpful to the new transfer car designing of the saddle support .%对高炉铁水罐车罐支座的强度进行了计算,为新规格铁水车的支座设计提供了理论依据。

  4. Study of the influence between the strength of antibending of working rolls on the widening during hot rolling of thin sheet metal

    Directory of Open Access Journals (Sweden)

    U. Muhin

    2016-07-01

    Full Text Available Based on the variation principle of Jourdan was developed a mathematical model of the process of widening freely in hot rolling of thin sheet metal. The principle applies to rigid-plastic materials and for the cinematically admissible area of speeds. The developed model allows to study the distribution of the widening on the length of the deformation zone depending on the parameters of the rolling process and sheet metal. Results are obtained, characterizing the size of the widening and effectiveness of the process control on tension at the entrance and exit from the stand. The widening is dependent on the strength of anti bending.

  5. The metallicity distribution and hot Jupiter rate of the Kepler field: Hectochelle High-resolution spectroscopy for 776 Kepler target stars

    Science.gov (United States)

    Guo, Xueying; Johnson, John A.; Mann, Andrew W.; Kraus, Adam L.; Curtis, Jason L.; Latham, David W.

    2017-01-01

    The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with log(g) > 3.5, we measure a metallicity distribution characterized by a mean of [M/H]_{mean} = -0.045 +/- 0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of [M/H]_{CPS, mean} = -0.005 +\\- 0.006, and the samples come from different parent populations according to a Kolmogorov-Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant Hot Jupiter occurrence rates; the metallicity difference would need to be 0.2-0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.

  6. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    Science.gov (United States)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  7. An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP-98 planetary system

    Science.gov (United States)

    Mancini, L.; Giordano, M.; Mollière, P.; Southworth, J.; Brahm, R.; Ciceri, S.; Henning, Th.

    2016-09-01

    The WASP-98 planetary system represents a rare case of a hot Jupiter hosted by a metal-poor main-sequence star. We present a follow-up study of this system based on multiband photometry and high-resolution spectroscopy. Two new transit events of WASP-98 b were simultaneously observed in four passbands (g', r', i', z'), using the telescope-defocusing technique, yielding eight high-precision light curves with point-to-point scatters of less than 1 mmag. We also collected three spectra of the parent star with a high-resolution spectrograph, which we used to remeasure its spectral characteristics, in particular its metallicity. We found this to be very low, [Fe/H] = -0.49 ± 0.10, but larger than was previously reported, [Fe/H] = -0.60 ± 0.19. We used these new photometric and spectroscopic data to refine the orbital and physical properties of this planetary system, finding that the stellar and planetary mass measurements are significantly larger than those in the discovery paper. In addition, the multiband light curves were used to construct an optical transmission spectrum of WASP-98 b and probe the characteristics of its atmosphere at the terminator. We measured a lower radius at z' compared with the other three passbands. The maximum variation is between the r' and z' bands, has a confidence level of roughly 6σ and equates to 5.5 pressure scale heights. We compared this spectrum to theoretical models, investigating several possible types of atmospheres, including hazy, cloudy, cloud-free, and clear atmospheres with titanium and vanadium oxide opacities. We could not find a good fit to the observations, except in the extreme case of a clear atmosphere with TiO and VO opacities, in which the condensation of Ti and V was suppressed. As this case is unrealistic, our results suggest the presence of an additional optical-absorbing species in the atmosphere of WASP-98 b, of unknown chemical nature.

  8. Large Capacity SMES for Voltage Dip Compensation

    Science.gov (United States)

    Iwatani, Yu; Saito, Fusao; Ito, Toshinobu; Shimada, Mamoru; Ishida, Satoshi; Shimanuki, Yoshio

    Voltage dips of power grids due to thunderbolts, snow damage, and so on, cause serious damage to production lines of precision instruments, for example, semiconductors. In recent years, in order to solve this problem, uninterruptible power supply systems (UPS) are used. UPS, however, has small capacity, so a great number of UPS are needed in large factories. Therefore, we have manufactured the superconducting magnetic energy storage (SMES) system for voltage dip compensation able to protect loads with large capacity collectively. SMES has advantages such as space conservation, long lifetime and others. In field tests, cooperating with CHUBU Electric Power Co., Inc. we proved that SMES is valuable for compensating voltage dips. Since 2007, 10MVA SMES improved from field test machines has been running in a domestic liquid crystal display plant, and in 2008, it protected plant loads from a number of voltage dips. In this paper, we report the action principle and components of the improved SMES for voltage dip compensation, and examples of waveforms when 10MVA SMES compensated voltage dips.

  9. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated......The increasing use of high strength steels in a variety of mechanical engineering applications has illuminated problems associated with galling in sheet metal forming operations. Galling is a tribological phenomenon associated with transfer of material from the steel sheet to the tool surface...

  10. Study on Desiliconization and Niobium Conservation in Nb-Containing Hot Metal Pretreatment%含铌铁水预处理脱硅保铌的研究

    Institute of Scientific and Technical Information of China (English)

    徐掌印; 赵增武; 李保卫; 李楠; 路建法

    2013-01-01

    To prevent niobium from extracting from the hot metal during desiliconization of hot metal pretreatment, the behavior of desiliconization and niobium-conservation as well as variations of elements in hot metal with time was studied in Nb-bearing hot metal pretreatment in an intermediate frequency induction electric furnace with bottom-blowing oxygen device. The experimental results show that Nb begins to oxidize and removes from the molten iron when the content of silicon decreases to 0. 012% , the content of phosphorus is not changed and the desulfurization ratio is up to 83% under the conditions of the molten iron smelted at 1 623 K, blown oxygen at 0. 5m3/(t·min) and covered with a CaO-SiO2-CaF2 slag system in which the basicaty indux of the slag is 4. 0; However, in the non-slag experiments with the same factor of oxygen supply intensity [0. 5m3/(t·min)] and the smelted temperature (1623K), the content of niobium of the hot molten don't begin to decrease until the silicon in hot metal reduce to 0. 16% , and the sulfur and phosphorus of the hot molten don't change with the other elements with time in the bottom-blowing oxygen process. So the content of silicon in hot iron in blowing end in the slag smelted process is about 10% of the content of silicon with no slag condition and the desulfurization in the process with the slag is more significant than that with no-slag smelted method.%为防止铁水预处理脱硅过程中脱铌,通过中频感应电炉底吹氧气冶炼含铌铁水,研究了铁水预处理吹氧过程中不加渣和加入造渣剂吹炼过程中脱硅保铌的行为及铁水中各元素含量的变化规律.试验结果表明:在铁水温度1623K加入碱度为4的CaO-SiO2-CaF2的造渣剂、供氧强度为0.5 m3/(t·min)时吹氧冶炼,铁水中的硅含量降低到0.012%(质量分数,下同)时,铌才开始氧化,脱硫率为83%,磷含量不变;在相同的温度和供氧强度,不加造渣剂吹炼时,铁水中的硅降低至0.16

  11. Surface fatigue and failure characteristics of hot forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    Science.gov (United States)

    Townsend, D. P.

    1986-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  12. Surface fatigue and failure characteristics of hot-forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    Science.gov (United States)

    Townsend, Dennis P.

    1987-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground AISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  13. Hot Money, Hot Potato

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    International hot money flowing into Chinese capital markets has caught the attention of Chinese watchdogs The Chinese are not the only ones feasting on the thriving property and stock markets. Apparently, these markets are the targets of international h

  14. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  15. Desulfurization technology by using Mg+CaO powder injection in hot metal ladle%铁水包喷吹Mg+CaO粉剂脱硫技术

    Institute of Scientific and Technical Information of China (English)

    刘勇; 龙川江; 战东平; 张慧书; 姜周华

    2009-01-01

    分析了宝山钢铁股份有限公司采用TDS(Torpedo Car Desulphurization)、PTC(Hot Metal Pretreatment center)和铁水包单枪、双枪喷Mg+CaO脱硫模式的生产情况.结果表明,采用铁水包喷吹Mg+CaO脱硫在喷吹时间、脱硫效果、粉剂消耗、生产组织及经济效益等方面明显优于混铁车喷吹脱硫.

  16. 75 FR 17162 - Dipping and Coating Operations (Dip Tanks) Standard; Extension of the Office of Management and...

    Science.gov (United States)

    2010-04-05

    ... Occupational Safety and Health Administration Dipping and Coating Operations (Dip Tanks) Standard; Extension of the Office of Management and Budget's Approval of the Information Collection (Paperwork) Requirement... collection requirement specified in its Standard on Dipping and Coating Operations (Dip Tanks) (29 CFR...

  17. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data

    Directory of Open Access Journals (Sweden)

    Sung-Min Kim

    2017-06-01

    Full Text Available To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH, high content with a low z-score (HL, low content with a high z-score (LH, and low content with a low z-score (LL. The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1–4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  18. Expression Patterns and Potential Biological Roles of Dip2a.

    Directory of Open Access Journals (Sweden)

    Luqing Zhang

    Full Text Available Disconnected (disco-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.

  19. HAT-P-24b: An inflated hot-Jupiter on a 3.36d period transiting a hot, metal-poor star

    CERN Document Server

    Kipping, D M; Hartman, J; Torres, G; Shporer, A; Latham, D W; Kovacs, Geza; Noyes, R W; Howard, A W; Fischer, D A; Johnson, J A; Marcy, G W; Beky, B; Perumpilly, G; Esquerdo, G A; Sasselov, D D; Stefanik, R P; Lazar, J; Papp, I; Sari, P

    2010-01-01

    We report the discovery of HAT-P-24b, a transiting extrasolar planet orbiting the moderately bright V=11.818 F8 dwarf star GSC 0774-01441, with a period P = 3.3552464 +/- 0.0000071 d, transit epoch Tc = 2455216.97669 +/- 0.00024 (BJD_UTC), and transit duration 3.653 +/- 0.025 hours. The host star has a mass of 1.186 +/- 0.042 Msun , radius of 1.294 +/- 0.071 Rsun , effective temperature 6373 +/- 80 K, and a low metallicity of [Fe/H] = -0.16 +/- 0.08. The planetary companion has a mass of 0.681 +/- 0.031 MJ , and radius of 1.243 +/- 0.072 RJ yielding a mean density of 0.439 +/- 0.069 g cm-3 . By repeating our global fits with different parameter sets, we have performed a critical investigation of the fitting techniques used for previous HAT planetary discoveries. We find that the system properties are robust against the choice of priors. The effects of fixed versus fitted limb darkening are also examined. HAT-P-24b probably maintains a small eccentricity of e = 0.052 +0.022 -0.017, which is accepted over the c...

  20. Localization of Temperature Using Plasmonic Hot Spots in Metal Nanostructures: The Nano-Optical Antenna Approach and Fano Effect

    CERN Document Server

    Khorashad, Larousse Khosravi; Valentine, Jason; Govorov, Alexander O

    2016-01-01

    It is challenging to strongly localize temperature in small volumes because heat transfer is a diffusive process. Here we show how to overcome this limitation using electrodynamic hot spots and interference effects in the regime of continuous-wave (CW) excitation. We introduce a set of figures of merit for the localization of temperature and for the efficiency of the plasmonic photo-thermal effect. Our calculations show that the temperature localization in a trimer nanoparticle assembly is a complex function of the geometry and sizes. Large nanoparticles in the trimer play the role of the nano-optical antenna whereas the small nanoparticle in the plasmonic hot spot acts as a nano-heater. Under the peculiar conditions, the temperature increase inside a nanoparticle trimer can be localized in a hot spot region at the small heater nanoparticle and, in this way, a thermal hot spot can be realized. However, the overall power efficiency of temperature generation in this trimer is much smaller than that of a single ...

  1. Integration of the blast furnace route and the FINEX {sup registered} -Process for low CO{sub 2} hot metal production

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Christoph; Schenk, Johannes L. [Montanuniversitaet Leoben, Chair of Metallurgy, Leoben (Austria); Tappeiner, Tamara; Kepplinger, Werner L. [Montanuniversitaet Leoben, Institute of Process Engineering and Environmental Protection, Leoben (Austria); Plaul, Jan Friedemann [Siemens VAI Metals Technologies GmbH, Linz (Austria); Schuster, Stefan [Voestalpine Stahl GmbH, Linz (Austria)

    2012-02-15

    The blast furnace is the most important process for the production of hot metal. An integral part of this process route is the coking of coal and sintering of fine ore. The FINEX {sup registered} -process is a new technology for hot metal production which uses untreated fine ores and coal instead of sinter and coke. This paper deals with the investigation of integration concepts of the blast furnace and FINEX {sup registered}. Low reduced iron (LRI) and/or reducing gas are/is produced in FINEX {sup registered} and are/is considered as substitute/s of burden and fuel in the blast furnace, respectively. In the article the overall fuel demand and CO{sub 2} emissions for the integration of the blast furnace and FINEX {sup registered} are shown. For that reason two case studies for the integration are carried out and compared with the base case, that is, the two-independent processes. The CO{sub 2} emissions are calculated considering the fuel and electric power consumption of the different cases. (Copyright copyright 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. CONTROL OF HIGH CONTENT OF ZINC IN HOT METAL%金鼎3#高炉铁水锌含量高的控制

    Institute of Scientific and Technical Information of China (English)

    肖为站; 石俊杰

    2015-01-01

    金鼎公司3#高炉铁水的含锌量在2015年7月份持续偏高,高炉技术指标大幅下滑。通过控制锌源、调整高炉操作制度、改善烧结矿粒度、加强槽下筛分等措施,有效改善了高炉的排锌能力,使铁水含锌量趋于正常,恢复了高炉的稳定顺行。%In July, 2015 , the Zinc content in hot metal of blast furnace 3#of Jinding Company was kept high, and caused the technique indexes of blast furnace drop down to a great extent.With measures: controlling Zinc source, adjusting blast furnace operation system, improving sinter particle size, strengthening sieving under BF trough, the Zinc discharge ability of blast furnace is effectively improved, the Zinc content in hot metal comes normal, the steady operation of blast furnace recovered.

  3. HAT-P-24b: An Inflated Hot Jupiter on a 3.36 Day Period Transiting a Hot, Metal-poor Star

    Science.gov (United States)

    Kipping, D. M.; Bakos, G. Á.; Hartman, J.; Torres, G.; Shporer, A.; Latham, D. W.; Kovács, Géza; Noyes, R. W.; Howard, A. W.; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Béky, B.; Perumpilly, G.; Esquerdo, G. A.; Sasselov, D. D.; Stefanik, R. P.; Lázár, J.; Papp, I.; Sári, P.

    2010-12-01

    We report the discovery of HAT-P-24b, a transiting extrasolar planet orbiting the moderately bright V = 11.818 F8 dwarf star GSC 0774-01441, with a period P = 3.3552464 ± 0.0000071 days, transit epoch Tc = 2455216.97669 ± 0.00024 (BJD)11, and transit duration 3.653 ± 0.025 hr. The host star has a mass of 1.191 ± 0.042 M sun, radius of 1.317 ± 0.068 R sun, effective temperature 6373 ± 80 K, and a low metallicity of [Fe/H] = -0.16 ± 0.08. The planetary companion has a mass of 0.681 ± 0.031 M J and radius of 1.243 ± 0.072 R J yielding a mean density of 0.439 ± 0.069 g cm-3. By repeating our global fits with different parameter sets, we have performed a critical investigation of the fitting techniques used for previous Hungarian-made Automated Telescope planetary discoveries. We find that the system properties are robust against the choice of priors. The effects of fixed versus fitted limb darkening are also examined. HAT-P-24b probably maintains a small eccentricity of e = 0.052+0.022 -0.017, which is accepted over the circular orbit model with false alarm probability 5.8%. In the absence of eccentricity pumping, this result suggests that HAT-P-24b experiences less tidal dissipation than Jupiter. Due to relatively rapid stellar rotation, we estimate that HAT-P-24b should exhibit one of the largest known Rossiter-McLaughlin effect amplitudes for an exoplanet (ΔV RM ~= 95 m s-1) and thus a precise measurement of the sky-projected spin-orbit alignment should be possible. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NOAO and NASA.

  4. HATS-11b and HATS-12b: Two transiting Hot Jupiters orbiting sub-solar metallicity stars selected for the K2 Campaign 7

    CERN Document Server

    Rabus, M; Hartman, J D; Bakos, G Á; Espinoza, N; Brahm, R; Penev, K; Ciceri, S; Zhou, G; Bayliss, D; Mancini, L; Bhatti, W; de Val-Borro, M; Csbury, Z; Sato, B; Tan, T -G; Henning, T; Schmidt, B; Bento, J; Suc, V; Noyes, R; Lázár, J; Papp, I; Sári, P

    2016-01-01

    We report the discovery of two transiting extrasolar planets from the HATSouth survey. HATS-11, a V=14.1 G0-star shows a periodic 12.9 mmag dip in its light curve every 3.6192 days and a radial velocity variation consistent with a Keplerian orbit. HATS-11 has a mass of 1.000 $\\pm$ 0.060 M$_{\\odot}$, a radius of 1.444 $\\pm$ 0.057 M$_{\\odot}$ and an effective temperature of 6060 $\\pm$ 150 K, while its companion is a 0.85 $\\pm$ 0.12 M$_J$, 1.510 $\\pm$ 0.078 R$_J$ planet in a circular orbit. HATS-12 shows a periodic 5.1 mmag flux decrease every 3.1428 days and Keplerian RV variations around a V=12.8 F-star. HATS-12 has a mass of 1.489 $\\pm$ 0.071 M$_{\\odot}$, a radius of 2.21 $\\pm$ 0.21 R$_{\\odot}$, and an effective temperature of 6408 $\\pm$ 75 K. For HATS-12, our measurements indicate that this is a 2.38 $\\pm$ 0.11 M$_J$, 1.35 $\\pm$ 0.17 R$_J$ planet in a circular orbit. Both host stars show sub-solar metallicity of -0.390 $\\pm$ 0.060 dex and -0.100 $\\pm$ 0.040 dex, respectively and are (slightly) evolved stars....

  5. 几种浸涂液对橡胶/金属复合制品性能的影响%Effects of Several Dip Liquids on Properties of Rubber-Metal combined Products

    Institute of Scientific and Technical Information of China (English)

    何海军; 廖勇; 张俊荣; 邓建青; 朱闰平; 张亚新

    2015-01-01

    Effects of several rust‐resistant oils and sealant on the rubber properties w ere studied , and the anticorrosion performance on the coated phosphorization layer was compared and analyzed . The results showed that both BW‐1 water based varnish and SL‐386 oil sealant could be used on the ensemble‐coating anticrousion of the rubber‐metal combined product ,and the effective reference was provided on the select of the dip‐coated materials after phosphorization .%研究了几种防锈油和封闭剂对橡胶性能的影响,并对其涂刷在磷化层上的防腐性能进行了对比与分析。结果表明,BW -1水性清漆和SL -386油性封闭剂均适用于橡胶/金属复合制品的整体浸涂防腐,为橡胶/金属复合制品磷化后浸涂材料的选择提供了有效参考。

  6. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    Energy Technology Data Exchange (ETDEWEB)

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  7. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    Science.gov (United States)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  8. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure.

    Science.gov (United States)

    Caldas, Paulo; Jorge, Pedro A S; Rego, Gaspar; Frazão, Orlando; Santos, José Luís; Ferreira, Luís Alberto; Araújo, Francisco

    2011-06-10

    In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480  nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08  m/s is achieved using this new configuration.

  9. Formation of High Aspect Ratio Microcoil Using Dipping Method

    Science.gov (United States)

    Noda, Daiji; Yamashita, Shuhei; Matsumoto, Yoshifumi; Setomoto, Masaru; Hattori, Tadashi

    Coils are used in many electronic devices as inductors in mobile units such as mobile phone, digital cameras, etc. Inductance and quality factor of coils are very important value of the performance. Therefore, the requests for coils are small size, high inductance, low power consumption, etc. However, coils are unsuitable for miniaturization because of its structure. Therefore, we have proposed and developed the microcoils of high aspect ratio with the dipping method and an X-ray lithography technique. In dipping method, centrifugal force and highly viscous photoresist solution were key points to evenly apply resist in the form of thick film on metal bar. The film thickness of resist on bar was achieved about 50 μm after single coating. Using these techniques, we succeeded in creating threaded groove structure with 10 μm lines and spaces on 1 mm brass bar. In this case, the aspect ratio was achieved five. It is very expected the high performance microcoil with high aspect ratio lines could be manufactured in spite of the miniature size.

  10. Hydrodynamically driven colloidal assembly in dip coating.

    Science.gov (United States)

    Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A

    2013-05-01

    We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.

  11. Three cases of desquamative interstitial pneumonia (DIP

    Directory of Open Access Journals (Sweden)

    Tabatabaie P

    1997-04-01

    Full Text Available D.I.P is a rare disease. The etiology is unknown. It is characterized pathologically by massive proliferation and desquamation of alveolar cells and thickening of the alveolar walls. In our studies from 1368-73 we have three patients hospitalized earlier the prognosis would be much better. Corticosteroid and other effective drugs would be helpfull in treatment of these patients.

  12. Temperature distribution of boron-manganese sheet metal blank by induction heating in application for hot stamping

    Institute of Scientific and Technical Information of China (English)

    Xu Ya; Liu Peixing; Wang Zijian; Zhang Yisheng

    2014-01-01

    In order to speed up the production and save more energy in hot stamping process,the induction heating technology as a new effective heating method is considerable. Finite element (FE)-simulation and a se-ries of experiments are carried out to research the temperature homogenization of induction heating with the face inductor. It is found the edge effect has a notable influence on the temperature distribution. Results concer-ning the mechanical properties of the stamped part as well as surface characteristics will be presented and dis-cussed.

  13. Effect of pass schedule and groove design on the metal deformation of 38MnVS6 in the initial passes of hot rolling

    Indian Academy of Sciences (India)

    R S Nalawade; V R Marje; G Balachandran; V Balasubramanian

    2016-01-01

    The deformation behaviour of a hot rolled micro-alloyed steel bar of grade 38MnVS6 was examined using an FEM model during the initial passes in a blooming mill, as a function of three different pass schedules,roll groove depth, collar taper angle and corner radius. The simulations predicted the effective strain penetration,load, torque, fish tail billet end shapes, and metal flow behaviour at a chosen temperature, mill rpm and draft. The model predictions were validated for typical groove geometry and a typical pass schedule. Lower collar taper angle, lower corner radius and higher depth of groove in hot rolling enabled achievement of higher strain penetration, higher mill load and lower fish tail formation. The present study establishes the capability of the model to improve the internal quality of the rolled billet as measured by effective strain which was corroborated to the rolled bar macrostructure and microstructure. The model enables yield improvement by the choice of draft to minimise fish tail losses. The surface quality is improved by the ability to avoid fin formation that occurs at certain conditions of rolling. Thus, the groove geometry, roll pass schedule and rolling mill parameters and temperature can be optimised for best product quality and yield.

  14. Efficiency of Pumping of the Active Medium of Metal Vapor Lasers: Gas-Discharge Tubes with Electrodes in the Hot Zone of the Discharge Channel

    Science.gov (United States)

    Yudin, N. A.; Yudin, N. N.

    2016-10-01

    The electrophysical approach is used to estimate conditions for effective pumping of the active medium of lasers on self-terminating metal atom transitions in gas-discharge tubes (GDT) with electrodes located in the hot zone of the discharge channel. It is demonstrated that in the laser discharge contour there are processes limiting the frequency and energy characteristics (FEC) of radiation. The mechanism of influence of these processes on the FEC of radiation, and technical methods of their neutralization are considered. It is demonstrated that the practical efficiency of a copper vapor laser can reach 10% under conditions of neutralization of these processes. Conditions for forming the distributed GDT impedance when the active medium is pumped on the front of the fast ionization wave are determined.

  15. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices

    Science.gov (United States)

    Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav

    2017-01-01

    Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging. PMID:28358022

  16. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices.

    Science.gov (United States)

    Caridad, José M; Winters, Sinéad; McCloskey, David; Duesberg, Georg S; Donegan, John F; Krstić, Vojislav

    2017-03-30

    Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone ("hot-volume"). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~10(7) and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.

  17. Dip filters; Filtros de echado recursivos

    Energy Technology Data Exchange (ETDEWEB)

    Cabrales Vargas, A.; Chavez Perez, S. [Facultad de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2002-09-01

    In exploration seismology, dip filters are used to enhance subsoil images by attenuating coherent noise and other signals. They can be applied in frequency-wavenumber (f-k), frequency-distance (f-x), time-wavenumber (t-k) or time distance (t-k) domains. Fourier domain assumes constant dips. Recursive dip filters are applied in t-x domain, as they do not have this limitation. However, we have to determine their optimal parameters by trial and error. Recursive dip filters are based on single order Butterworth filters, by adding the wavenumber. Their amplitude spectrum is a surface. We perform a bilinear transform to digitize the filter and pass from the f-k to the t-k domain. We obtain the t-x domain filter by inverse transforming through wavenumber and by using a three-coefficient approximation (leading to a tridiagonal matrix). For the sake of illustration in geophysical engineering, we apply these filters to a shallow field record, to attenuate the air wave and random noise, and to a marine seismic section to enhance a fault zone. Both examples show that these filters are useful and practical to enhance seismic data. Their use is easier and more economical than median filters, utilized nowadays in commercial software for the oil industry. [Spanish] En sismologia de exploracion, los filtros de echado se utilizan para enfatizar imagenes del subsuelo, atenuado ruido coherente y otras senales. Pueden aplicarse en los dominios de frecuencia y numero de onda (f-k), frecuencia y distancia (f-x), tiempo y numero de onda (t-k) o tiempo y distancia (t-x). En el dominio de Fourier suponemos echados constantes. Los filtros de echado recursivos se aplican en el dominio t-x, careciendo de esta limitante. Sin embargo, tenemos que recurrir al ensayo y error para determinar sus parametros optimos. Los filtros de hecho recursivos se basan en filtros de Butterworth de orden uno, anadiendo el numero de onda. Su espectro de amplitud es una superficie. Utilizamos la trasformada

  18. Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast during 2008-2010.

    Science.gov (United States)

    Shams El-Din, N G; Mohamedein, L I; El-Moselhy, Kh M

    2014-09-01

    Concentrations of Cu, Zn, Cd, Pb, Ni, Co, Fe, Mn, and Hg were measured successively in water, sediments, and six macroalgal species belonging to three algal classes during 3 years (2008-2010) from Abu Qir Bay, Alexandria, Egypt: Chlorophyceae (Enteromorpha compressa, Ulva fasciata), Phaeophyceae (Padina boryana), and Rhodophyceae (Jania rubens, Hypnea musciformis, Pterocladia capillacea). The study aimed to assess the bioaccumulation potential of the seaweeds, as well as to evaluate the extent of heavy metal contamination in the selected study site. Metals were analyzed using atomic absorption spectrophotometry coupled with MH-10 hydride system. The obtained data showed that the highest mean concentrations of Cu, Zn, Fe, and Mn were recorded in E. compressa; Cd, Ni, and Hg exhibited their highest mean concentrations in P. boryana, while Pb and Co were found in J. rubens. Abundance of the heavy metals in the algal species was as follow: Fe > Mn > Zn > Pb > Ni > Co > Cu > Cd > Hg. E. compressa showed the maximum metal pollution index (MPI) which was 11.55. Bioconcentration factor (BCF) for the metals in algae was relatively high with a maximum value for Mn. The Tomlinson pollution load index (PLI) values for the recorded algal species were low, which ranged between 1.00 in P. boryana and 2.72 in E. compressa. Enrichment factors for sediments were low fluctuating between 0.43 for Hg to 2.33 for Mn. Accordingly, the green alga E. compressa, brown alga P. boryana, and red alga J. rubens can be nominated as bioindicators. Based on MPI and PLI indices, Abu Qir Bay in the present study is considered as low-contaminated area.

  19. Hot microswimmers

    Science.gov (United States)

    Kroy, Klaus; Chakraborty, Dipanjan; Cichos, Frank

    2016-11-01

    Hot microswimmers are self-propelled Brownian particles that exploit local heating for their directed self-thermophoretic motion. We provide a pedagogical overview of the key physical mechanisms underlying this promising new technology. It covers the hydrodynamics of swimming, thermophoresis and -osmosis, hot Brownian motion, force-free steering, and dedicated experimental and simulation tools to analyze hot Brownian swimmers.

  20. Comb-locked Lamb-dip spectrometer

    Science.gov (United States)

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-06-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10-11 cm-1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10-23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

  1. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  2. PROPER RAIL STRUCTURE FOR TRAVELLING OF 320 t HOT METAL MIXING CAR%320 t混铁车走行线合理轨道结构

    Institute of Scientific and Technical Information of China (English)

    熊学政

    2001-01-01

    In light of the problems existing in the travelling line of 320 thot metal mixing car the present paper analyzes and discusses the proper structure of rail and advances certain proposals for the proper structural composition of the rail for travelling of the 320 t hot metal mixing car.The content in the discussion of the present paper is expecially suitable for design of proper structure of extra heavy metallurgical load carrying rail.%针对320t混铁车起行线出现的问题,开展合理轨道结构的分析与探讨。根据轮轨关系及其原理,进行轨道动态参数测试、钢轨试验及分析,以及路基承载力试验后,提出320t混铁车走行线合理轨道结构组成和建议。探讨的内容为特大型冶金运载轨道合理结构。

  3. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process

    Science.gov (United States)

    Ahmad, Azlan; Lajis, Mohd Amri

    2017-01-01

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future. PMID:28925963

  4. Diploma in Hospital Infection Control (Dip HIC)

    Science.gov (United States)

    Emmerson, A M; Spencer, R C; Cookson, B D; Roberts, C; Drasar, B S

    1997-11-01

    The London School of Hygiene and Tropical Medicine (LSHTM) has established a Diploma in Hospital Infection Control (Dip-HIC). The course for this new Diploma is run under the auspices of the Hospital Infection Society (HIS) and the Public Health Laboratory Service (PHLS) and will commence in October 1997. The aim of this course is to provide infection control staff with systematic training in the sciences relevant to hospital infection control which will allow them to provide, and to take responsibility for, a broad-based infection control service. Topics will include the epidemiology of infectious diseases, clinical microbiology, health care economics, statistics, surveillance methods and patient management. The course will be multi-disciplinary and open to UK and overseas students, both medical and non-medical.

  5. Disinfection properties of some bovine teat dips.

    Science.gov (United States)

    King, J S; Neave, F K; Westgarth, D R

    1977-02-01

    The efficacy of 18 disinfectant teat dips was tested on teats artificially contaminated with a milk suspension of Staphylococcus aureus. A solution of Na hypochlorite with 40 g/l available chlorine was significantly more bactericidal than one containing 1 g/1 available chlorine and than most other disinfectants tested. The method was not able to distinguish differences in efficacy between solution containing 40g/1 and 10g/1 available chlorine nor between these and some of the iodophors containing 5 g/1 available iodine. The additon of 190-416 g/1 (15-33% v/v) glycerol significantly reduced the bactericidal properties of 3 iodophors (5 g/1 available iodine), but soluble lanolin at approximately 20 g/1 did not appear to lower the efficiency of NaOC1 (45 g/1 available chlorine) or of an iodophor (5 g/1 available iodine).

  6. Kinetic model of hot-metal desulfurization by deep injection of synthetic powder mixtures - Part II; Modelo cinetico da dessulfuracao do gusa na panela atraves de injecao de misturas sinteticas - parte II

    Energy Technology Data Exchange (ETDEWEB)

    Sesshadri, V. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Metalurgia; Silva, C.A. da; Silva, I.A. da [Ouro Preto Univ., MG (Brazil). Dept. de Metalurgia

    1995-12-31

    The model developed in Part I of this study was used to analyze a series of industrial trials of hot metal hot desulfurization by deep injection of Ca O base synthetic mixtures, using N{sub 2} as carrier gas. The model allows the simulation of the industrial practice and, under the examined conditions it was observed that the major contribution for the process desulfurization come from the top slag. However, since the values range covered by some other parameters were not extensive enough to affect the desulfurization, further experiments are required to fully assess the the influence of these variables 28 refs., 10 figs., 7 tabs.

  7. Practice and analysis on hot metal desulfurization method by scouring pot with soda ash%碳酸钠冲罐法铁水脱硫试验与分析

    Institute of Scientific and Technical Information of China (English)

    张建良; 姜喆; 代兵; 闫炳基; 胡正文; 曹明明

    2012-01-01

    The present paper introduces tests on the hot metal desulfurization by scou- ring the pot with hot metal using the soda ash as the desulfurization agent. The effects of hot metal temperature, consumption of soda and oxygen blow on the desulphurization are investigated and at the same time the desulphurization effect between Na2CO3 and Na20 are compared with each other. Experiment results show that temperature range of (1 350±20) ℃and soda ash consumption of 15 kg/t are proper processing parameters for hot metal desulphurization. In comparison with Na20 in possession of higher desul- phurization ability and lower dephosphorization ability Na2 CO~ strikes a good balance between dephosporization ability and desulphurization ability. Although oxygen blow on the surface of the hot metal can prevent against temperature drop of the hot metal, yet the desulphurization ability is prominently reduced because of increase of oxygen poten- tial in the hot metal and slag. Changes of chromium, vanadium and carbon contents in the hot metal in the process of dephosphorization by Na2CO3 are also studied. Results show that change of chromium in the hot metal can hardly be seen and almost all vanadi- um is oxidized and solved in the slag and w(C) is probably reduced by 0.2 %.%介绍了以碳酸钠为脱硫剂,采用铁水冲罐法进行脱硫的试验。考察了铁水温度、碳酸钠消耗量和喷吹氧气对脱硫效果的影响,并比较了碳酸钠与氧化钠的脱硫和脱磷效果。试验结果表明铁水温度为(1350±20)℃,碳酸钠消耗量为15kg/t时有助于脱硫;与氧化钠具有较高的脱硫和较低的脱磷能力相比,碳酸钠有适中的脱磷和脱硫能力;向铁水表面喷吹氧气可以减少铁水温降,由于增加了铁水和渣中的氧势,脱硫能力显著降低。还考察了碳酸钠脱磷过程中铁水的铬、钒和碳含量的变化情况,铬含量几乎不变,钒几乎全部被氧化进入渣中

  8. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

    Science.gov (United States)

    Kim, H. H.; Babu, J. S. S.; Kang, C. G.

    2014-05-01

    Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

  9. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  10. Research on drawing coal effects in the dipping and steep--dipping coal seams

    Institute of Scientific and Technical Information of China (English)

    胡伟; 王窈惠

    2002-01-01

    Controllable drawing roof coal mining method is applied either to rently inclined seam or to big dipping seam. This paper sums up four corresponding methods according to conditions of our country, and analyses the coal-recovering effects and proves applicated conditions and measures for improving by "drawing coal theory of the ellipsoid". Its conclusion basically consists with practice. This work is of guiding meaning for designing drawing coal technology.

  11. Electrical resistivity dip in Sb x V y Mo z O t phases

    Science.gov (United States)

    Groń, T.; Filipek, E.; Mazur, S.; Duda, H.; Pacyna, A. W.; Mydlarz, T.; Bärner, K.

    2010-07-01

    Electrical resistivity dips have been discovered in the temperature range 100-500 K both in the SbVO4.96 matrix and the Sb x V y Mo z O t phases for 10 mol% solubility of MoO3 in SbVO5. As the Sb content increases and simultaneously the V content decreases, the value of the resistivity at the dip, ρ d, decreases and shifts the dip to higher temperatures. The magnetic measurements showed a spontaneous magnetization and parasitic magnetism of the solid solutions under study. Characteristic for parasitic magnetism is a small value of the magnetic moment, here 0.014 μ B/f.u. at 4.2 K and at a magnetic field of 14 T as well as a small value of the mass susceptibility, here 10-5 cm3/g. The value of the Néel temperature, T N ≤ 8 K, and the Curie-Weiss temperature, θ CW ≤ -208 K, indicate a collinear antiferromagnetic (AFM) order. We suggest that neither the magnetism nor the Mo-content can be correlated with the resistivity anomalies. Therefore, these effects may rather be interpreted in terms of a small-polaron gas in the resistivity dip area. Alternatively, they could mark a lattice/electronic entropy-driven incomplete metal-insulator transition.

  12. 眼部热金属烧伤的临床特点分析%Clinical characteristics of ocular thermal burns by hot metal liquid

    Institute of Scientific and Technical Information of China (English)

    王玉亭; 史伟云; 韩莎莎; 李素霞

    2014-01-01

    Objective To investigate the clinical characteristics and treatment methods for ocular thermal burns by hot metal liquid .Results There were 47 patients ( 54 eyes ) with ocular thermal burns by hot metal liquid admitted to Shandong Eye Hospital between September 2004 and December 2012.Histories of these patients were analyzed retrospec-tively.The clinical characteristics of the burns , types of the metal , degree of injuries to the eye , relationship between burn-ed areas and long Pterm complications and treatment outcomes were analyzed .Results Eye metal thermal burns has the fol-lowing clinical features:(1)Burns were mainly limited to the area of hot metal direct contact: focal conjunctival ischemic necrosis were less than a quarter in 25 eyes (56.8%), and in 21 eyes, it located in lower part of the conjunctiva .(2) Se-vere tissue autolysis were found at the part of the cornea that had direct metal contact :in 20 out of 26 eyes which had the cornea autolysis, it located near the limbus, and was small, deep, and fast resolved.(3) Eyelid burns were more com-mon:in 48 eyes damaged corneal or conjunctival accompanied with eyelid injuries (88.9%), and in 29 eyes the eyelid plate progressed to local erosive necrosis and scar formation .(4) There was no significant difference in the degree of corne-al injury caused by burns with metals of different temperatures ( e.g., molten iron or molten aluminum , chi-square =0.926;P >0.05).(5) The stability of ocular surface at 6 weeks after burns was related to the injury size in conjunctiva (chipsquare=4.456, P <0.05) and cornea (chi-square=8.145, P <0.01).(6) There was a higher incidence of sym-blepharon (25 eyes, 55.6%).Regarding the therapeutic outcome: (1) 18 eyes (37.5%) received permanent tarsor-rhaphy because of damaged eyelid and consequently eyeball exposure .( 2 ) Whether corneal autolysis would occur was linked to whether early (within 3 days) amniotic membrane transplantation was performed (chi -square =5.035, P <0

  13. Hot metal temperature prediction and simulation by fuzzy logic in a blast furnace; Prediccion y simulacion, mediante logica difusa, de la temperatura de salida del arrabio en un horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M. A.; Jimenez, J.; Mochon, J.; Formoso, A.; Bueno, F. [Centro Nacional de Investigaciones Metalurgicas CENIM. Madrid (Spain); Menendez, J. L. [ACERALIA. Gijon Asturias (Spain)

    2000-07-01

    This work describes the development and further validation of a model devoted to blast furnace hot metal temperature forecast, based on Fuzzy logic principles. The model employs as input variables, the control variables of an actual blast furnace: Blast volume, moisture, coal injection, oxygen addition, etc. and it yields as a result the hot metal temperature with a forecast horizon of forty minutes. As far as the variables used to develop the model have been obtained from data supplied by an actual blast furnaces sensors, it is necessary to properly analyse and handle such data. Especial attention was paid to data temporal correlation, fitting by interpolation the different sampling rates. In the training stage of the model the ANFIS (Adaptive Neuro-Fuzzy Inference System) and the Subtractive Clustering algorithms have been used. (Author) 9 refs.

  14. Characterization of titanium–hydroxyapatite biocomposites processed by dip coating

    Indian Academy of Sciences (India)

    R Baptista; D Gadelha; M Bandeira; D Arteiro; M I Delgado; A C Ferro; M Guedes

    2016-02-01

    Ti orthopaedic implants are commonly coated with hydroxyapatite (HA) to achieve increased biocompatibility and osseointegration with natural bone. In this work the dip-coating technique was used to apply HA films on Ti foil. A gel was used as the support vehicle for commercial HA particles. The experimental parameters like surface roughness of the metallic substrate and immersion time were studied. All coated substrates were heat treated and sintered under vacuum atmosphere. The produced coatings were characterized by field-emission gun scanning electron microscopy coupled with energy-dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, microhardness, scratch test and profilometry. Additionally, the apatite-forming ability of the produced material was tested by exposure to a simulated body fluid. Higher substrate surface roughness and longer immersion time produce thicker, denser films, with higher surface roughness. Lower film porosity is accompanied by higher hardness values. However, thicker coating promotes differential shrinkage and crack formation during sintering. Both coating thickness and coating roughness increase with coating time. HA films $\\sim$30–40 $\\mu$m thick with 45–50% HA theoretical density produced on Ti substrates with surface roughness of $R_z\\sim 1.0–1.7$ $\\mu$m, display an attractive combination of high hardness and resistance to spallation. Attained results are encouraging regarding the possibility of straightforward production of biocompatible and bioactive prosthetic coatings for orthopaedic applications using commercial HA.

  15. Practice and exploration of hot metal scheduling for two types of ladle car%大小罐混配的铁水调度实践与探索

    Institute of Scientific and Technical Information of China (English)

    王平; 陈凯恩

    2014-01-01

    为了实现钢铁生产中铁水调度作业的规范化、智能化,推进高炉—转炉—铸机长流程生产的一体化,针对炉群环境中大小2种罐车组合受铁的复杂约束,分析了铁水调度实践中出现的问题,提出了优化铁水调度的思路.将铁水调度作业分为3个层面,设计了工作流活动图,强调以罐车调度为研究重点构建相关数学模型,探索建立基于物联网技术的铁水调度决策支持系统.%To realize intellectualization and standardization of hot metal scheduling in steel plant and promote long process production of blast furnace,converter and continuous caster all in one,ideas to optimize hot metal scheduling are put forward considering complex tapping constraint conditions with two types of ladle car surrounding furnace group.Suggested hot metal scheduling can be classified as three levels and corresponding diagram of workflow is designed.The importance to develop related models on ladle cars scheduling is emphasized,and the hot metal sheduling decision support system based on the internet of things is explored.

  16. THE STRUCTURAL DESIGN AND IMPROVEMENT OF THE HOT METAL LADLE AND TILTING TRANSFER CAR%铁水罐倾翻车的结构设计与改进

    Institute of Scientific and Technical Information of China (English)

    郝晓静

    2011-01-01

    The structures of hot metal ladle and tilting transfer car used for desulfurization are simply introduced in this paper. The problems found in service and the improving methods are also discussed here.%简单介绍了铁水罐倾翻车的几种结构形式和使用中出现过的问题及改进方法。

  17. 高炉渣铁排放在线监测系统的开发与应用%Development and application about on-line monitoring system of hot metal drainage of blast furnace

    Institute of Scientific and Technical Information of China (English)

    黄培正; 董亚峰; 侯全师; 沙永志

    2015-01-01

    To achieve the detection of the hot metal and slag flow,three parameters must be detected which includes the metal flow velocity,the tap hole diameter and the mass increase rate of the hot metal ladle. According to physicochemical property of the high temperature liquid metal and slag,it is difficult to achieve accurate direct measurement. A non-con-tact measuring method for hot metal and slag flow is proposed after research and field trip. Based on the Doppler effect, the metal and slag drainage rate of Shougang Jingtang 5 500 m³ blast furnace was measured on-line,and at the same time video camera monitors the section of tapping hole,and the change of tap hole diameter was recorded and observed in real time. Combining the mass increase rate of hot metal in the weighing system of iron ladle,analyzing and calculating the metal and slag drainage rate and slag ratio of blast furnace,verifying the reliability of detection system in contrast with the actual theoretical value.%要实现渣铁流量的检测,必须分别对渣铁流速、流股直径变化和铁水罐增重速率3个参数进行监测,由于高温液态渣铁理化特性,对其直接准确测量是非常困难的,经过研究和生产现场实地考察,提出一种非接触式测量渣铁流量的方法。依据多普勒效应在线测量首钢京唐5500 m³高炉出铁时渣铁排放的速率,并同步视屏摄像仪监测铁口截面,利用图像处理技术,实时观测记录铁口直径的变化,结合铁水罐称重系统中的铁水增重速率,分析计算高炉出渣出铁速率及高炉渣比,对比实际理论值验证了监测系统的可靠性。

  18. 炼钢车间采用电动铁水罐车垂直运入的设计探讨%DISCUSSION ABOUT DESIGN FOR PERPENDICULAR TRANSPORTING-IN OF ELECTRIC HOT METAL LADLE CAR IN STEELWORKS

    Institute of Scientific and Technical Information of China (English)

    李雪兆; 韩晓威; 于永川

    2015-01-01

    目前运往炼钢车间铁水罐车的常规方式采用内燃机车拖动,铁路线平行炼钢车间的柱轴线进入加料跨。提出了铁水罐采用电动铁水罐车运输,铁路线垂直炼钢车间柱轴线进入加料跨的设计构想,对该构想的可行性进行了探讨,以期实现对炼铁、炼钢之间铁水运输系统的衔接方式有所改进。%Present normal way to transport hot metal ladle car into the steel making workshop is adopting in-ternal-combustion locomotive to drive with the railway lines parallel to the column axis of the workshop.It is proposed a design idea to use electric hot metal ladle car to transport and the railway lines is perpendicular to the column axis of the workshop, its feasibility discussed, to realize an improvement in connection way between hot metal transportation systems of iron making and steel making.

  19. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    OpenAIRE

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong,Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’

    2015-01-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thi...

  20. Bonding property of Cu/Mo/Cu cladding metal materials by hot rolling%Cu/Mo/Cu轧制复合界面的结合特性

    Institute of Scientific and Technical Information of China (English)

    张兵; 王快社; 孙院军; 王莎

    2011-01-01

    The Cu/Mo/Cu cladding metal materials were made by hot rolling. The interface structure, fracture characteristic and the effect of rolling process parameters on bond strength were studied by optical microscope, scanning electron microscope and electron-tensile tester. The results show that the bonding interface of composite materials is tight when deformation rate is 55% for a pass with heat-treatment at 750 ℃ for 8 min, the maximum value of shearing strength is 77 Mpa. The micro-structure of Mo layer is compressed fibrous and uniform distribution. The micro-structure of Cu layer is isometric crystal. The grain size is increased from the interface to the surface, and unevenly distributed. The mechanism of bonding is typically split bonding and mechanical interlocking.%采用轧制方法制备Cu/Mo/Cu复合材料,利用金相显微镜、扫描电镜和电子拉伸机等研究Cu/Mo/Cu复合材料的界面结构、断裂特点和工艺参数对结合强度的影响.结果表明:轧制前经(750℃,8 min)热处理,道次变形量为55%,复合材料的界面结合紧密,最大剪切强度为77 MPa;钼层金属显微组织呈扁平纤维状,组织较为均匀,铜层金属的晶粒呈等轴状,由界面至表面晶粒逐渐增大,且分布很不均匀;复合机制为典型的裂口结合和机械啮合.

  1. SAS 3 observations of Cygnus X-1 - The intensity dips

    Science.gov (United States)

    Remillard, R. A.; Canizares, C. R.

    1984-01-01

    In general, the dips are observed to occur near superior conjunctions of the X-ray source, but one pair of 2-minute dips occurs when the X-ray source is closer to the observer than is the supergiant companion. The dips are analyzed spectrally with the aid of seven energy channels in the range 1.2-50 keV. Essentially, there is no change in the spectral index during the dips. Reductions in the count rates are observed at energies exceeding 6 keV for some of the dips, but the dip amplitude is always significantly greater in the 1.2-3 keV band. It is believed that absorption by partially ionized gas may best explain these results, since the observations of Pravdo et al. (1980) rule out absorption by unionized material. Estimates for the intervening gas density, extent, and distance from the X-ray source are presented. Attention is also given to the problems confronting the models for the injection of gas through the line of sight, believed to be inclined by approximately 30 deg from the binary pole.

  2. New phenomenological and differential model for hot working of metallic polycrystalline materials; Un nuevo modelo fenomenologico y diferencial para predecir la respuesta mecanica de materiales metalicos policristalinos sometidos a deformacion en caliente

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, J.; Munoz, J.; Gutierrez, V.; Rieiro, I.; Ruano, O. A.; Carsi, M.

    2012-11-01

    This paper presents a new phenomenological and differential model (that use differential equations) to predict the flow stress of a metallic polycrystalline material under hot working. The model, called MCC, depends on six parameters and uses two internal variables to consider the strain hardening, dynamic recovery and dynamic recrystallization processes that occur under hot working. The experimental validation of the MCC model has been carried out by means of stress-strain curves from torsion tests at high temperature (900 degree centigrade a 1200 degree centigrade) and moderate high strain rate (0.005 s-1 to 5 s-1) in a high nitrogen steel. The results reveal the very good agreement between experimental and predicted stresses. Furthermore, the Garofalo a-parameter and the strain to reach 50 % of recrystallized volume fraction have been employed as a control check being a first step to the physical interpretation of variables and parameters of the MCC model. (Author) 26 refs.

  3. Zr52.5Al10Ni10Cu15Be12.5大块金属玻璃的高温宏观硬度%Hot macro-hardness of Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    李钧; 田瑞; 肖学山

    2007-01-01

    The hot hardness behavior of Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glass is studied from ambient temperature to the temperature over Tx (the onset crystallization temperature) using a hot macro-hardness tester and scanning electron microscopy (SEM). The results show that the hot hardness behavior of Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glass can be classified into 4 zones: the glassy zone in which the hardness almost linearly decreases with the increase of temperature, the viscoelastic zone in which the hardness is nearly unchanged, the viscous flow zone in which the hardness quickly tends towards near zero with temperature, and the crystallization zone in which the hardness sharply increases. The high temperature deformation behavior and the easy processable deformation region for bulk metallic glasses are also discussed on the basis of the hot marco-hardness.

  4. An Experimental Insight into the ZnO Thin Films Properties Prepared by Dip Coating Technique

    Directory of Open Access Journals (Sweden)

    M. Benhaliliba

    2016-03-01

    Full Text Available The physical properties of the pure and metal doped ZnO films are investigated using a low cost dip coating technique. The films have grown slowly onto a glass substrate at room temperature. Based on X-ray pattern parameters are extracted such as grain size, lattice parameters. Optical measurements within the UV-Vis band give us the transmittance of films ( 80 % and optical band gap. Using the Hall Effect measurement (HMS in room temperature, we determine the bulk density of charge carriers, mobility and their electrical resistivity.

  5. Hot Tickets

    Science.gov (United States)

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  6. A numerical study on the use of liquid metals (gallium and mercury) as agents to enhance heat transfer from hot water in a co-flow mini-channel system

    Energy Technology Data Exchange (ETDEWEB)

    Al Omari, S.A.B. [UAE University, Mechanical Engineering Department, Al Ain (United Arab Emirates)

    2012-10-15

    Enhancement in the heat removal from hot water co-flowing in a mini-channel in a direct contact manner with two liquid metals, gallium and mercury, is investigated numerically. Results show that the liquid metals lead to superior heat removal from hot water co-flowing in the channel as compared to the case when only water flows in the channel. Moreover, it is found that gallium yields higher heat removal from water than mercury by about 15 %. This percentage, representing the superiority of gallium over mercury increases to about 20 % under conditions when the mass flow rate of both the liquid metal and the co-flowing water are doubled. The results reported showed numerical mesh independence. However, the results show much dependence on the spatial discretization scheme adopted where it is found that first order upwind scheme yields somewhat over predicted heat exchange rates in the channel, as compared with the case when a second order scheme is used. It is found further that the channel efficiency in removing heat from the water is remarkable in the first half of the overall channel length where in general the heat removed in the first 10 mm of the channel length is found to be about 70 % of the total heat removed. This percentage is a bit less than that when only water flows in the channel. (orig.)

  7. Understanding the nature of the manganese hot dip phosphatizing process of steel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado M, G.; Fuentes A, J. C.; Salinas R, A.; Rodriguez V, F. J., E-mail: juan.fuentes@cinvestav.edu.mx [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Av. Industria Metalurgica No. 1062, Parque Industrial Ramos Arizpe, 25900 Saltillo, Coahuila (Mexico)

    2013-07-01

    In this work, the phosphatizing process of steel is investigated using open circuit potential and Tafel curves as well as scanning electron microscopy and energy dispersive X-ray spectroscopy. The results reveal that a ph of 2.57 in the phosphatizing solution promotes the dissociation of phosphoric acid which assist the formation of the manganese tertiary salt (Mn{sub 3}(PO{sub 4}){sub 2}), which is deposited on the substrate. It was also observed that an increase in the temperature from 25 to 90 C and the presence of HNO{sub 3} as catalysts enhances the manganese phosphatizing kinetics. On the other hand, the generation of iron phosphates and oxides is predominant at a ph of 1 and 90 C. These observations are supported by species distribution and Pourbaix thermodynamic diagrams. (Author)

  8. Organic acid formulation and dip to control listeria monocytogenes in hot dogs.

    Science.gov (United States)

    Processed meat products such as frankfurters, smoked sausage, and deli meat have gained popularity because consumers have less time for food preparation and demand more convenient meat items. Because these products are handled post processing and may not be reheated before consumption, the presence...

  9. Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts

    Science.gov (United States)

    Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura

    2016-07-01

    Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.

  10. Micro-roughness improvement of slumped glass foils for x-ray telescopes via dip coating

    Science.gov (United States)

    Salmaso, B.; Bianco, A.; Citterio, O.; Pareschi, G.; Pariani, G.; Preserpio, L.; Spiga, D.; Mandelli, D.; Negri, M.

    2013-09-01

    The large effective area requirement for future X-ray telescopes demands the production of thousands of segments made of a light material, shaped and integrated into the final optics. At INAF/Osservatorio Astronomico di Brera we developed a direct hot slumping technique assisted by pressure, to replicate the shape of a mould onto the optical surface of a glass mirror segment. To date, the best results were achieved with a mould in Zerodur K20 and glass foils made of aluminumborosilicate glass type AF32 by Schott. Nevertheless, several factors in the fabrication process trigger deviations from the desired surface micro-roughness. A dip-coating technique is investigated to improve the surface smoothness and consequently the imaging properties of the mirror. In this paper we describe the coating technique, the different implemented processes and the results obtained.

  11. Fabrication of Luminescent Nanostructures by Dip-Pen Nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Noy, A; Miller, A E; Klare, J E; Weeks, B L; Woods, B W; DeYoreo, J J

    2002-06-25

    We used a combination of dip-pen nanolithography and scanning optical confocal microscopy to fabricate and visualize luminescent nanoscale patterns of various materials on glass substrates. We show that this method can be used successfully to push the limits of dip-pen nanolithography down to controlled deposition of single molecules. We also demonstrate that this method is able to create and visualize protein patterns on surfaces. Finally, we show that our method can be used to fabricate polymer nanowires of controlled size using conductive polymers. We also present a kinetic model that accurately describes the deposition process.

  12. Hot Money,Hot Problems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    After emerging from the economic doldrums, developing economies are now confronted with a new danger-a flood of international hot money. But how has the speculative capital circumvented regulatory controls and what are the consequences concerning the stability of the developing world? Zhao Zhongwei, a senior researcher with the Institute of World Politics and Economics at the Chinese Academy of Social Sciences, discussed these issues in an article recently published in the China Securities Journal. Edited excerpts follow

  13. Are 'hot spots' hot spots?

    Science.gov (United States)

    Foulger, Gillian R.

    2012-07-01

    The term 'hot spot' emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a 'normal' mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ˜200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40-50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200-300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been

  14. Hot subluminous stars

    CERN Document Server

    Heber, Ulrich

    2016-01-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich vs. He-poor hot subdwarf stars of the globular clusters omega Cen and NGC~2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope phase of evolution.They provide a clean-cut laboratory to study this important but yet purely understood phase of stellar evolution. Substellar companions to sdB stars have also been found. For HW~Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the pulsator V391 ...

  15. Enhanced Lamb dip for absolute laser frequency stabilization

    Science.gov (United States)

    Siegman, A. E.; Byer, R. L.; Wang, S. C.

    1972-01-01

    Enhanced Lamb dip width is 5 MHz and total depth is 10 percent of peak power. Present configuration is useful as frequency standard in near infrared. Technique extends to other lasers, for which low pressure narrow linewidth gain tubes can be constructed.

  16. Novel dip-pen nanolithography strategies for nanopatterning

    NARCIS (Netherlands)

    Wu, Chien-Ching

    2010-01-01

    Dip-pen nanolithography (DPN) is an atomic force microscopy (AFM)-based lithography technique offering the possibility of fabricating patterns with feature sizes ranging from micrometers to tens of nanometers, utilizing either top-down or bottom-up strategies. Although during its early development s

  17. Fabrication of ZrO2/Mo-Si/Ni Functionally Graded Material by Dip-Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A slurry dip-coating technique was developed for fabrication of ZrO2/Mo-Si/Ni functionally graded material (FGM)on the stainless steel substrate. The rheological behavior of ZrO2-Ni-ethanol slurry was characterized by viscositytest. The amount of polyvinyl butyral (PVB) additives, which served as the dispersant and binder in ZrO2-Ni-ethanolslurry, was optimized. The results showed that the characters of mixed slurries with added 9 vol. pct (relativelyto total powders) MoSi2 powders prepared by mechanical alloying changed little. The stainless steel substrate wascoated several times by dipping in the slurries, and followed by drying in air every dipping. After debinding in Arin graphite die, the coated FGM plate was finally hot pressed at 1300℃ for 1 h under the pressure of 5 MPa in Arin the same die. Microstructural observations of the sintered FGM specimens revealed that the graded layers wereformed on the stainless steel substrate, in which no cracks were observed.

  18. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals

    Energy Technology Data Exchange (ETDEWEB)

    Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

    2009-02-06

    The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project

  19. Microstructure and properties of hot roll bonding layer of dissimilar metals. 1. Effect of oxide layer on titanium surface on bonding strength of titanium clad steel by hot roll bonding; Ishu kinzoku no atsuen setsugo kaimen soshiki to shotokusei ni kansuru kenkyu. 1. Atsuen chitan clad ko no kaimen kyodo ni oyobosu chitan hyomen sankabutsuso no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Komizo, Y.; Yasuyama, M. [Sumitomo Metal Industries, Ltd., Osaka (Japan); Ikezaki, H.; Murayama, J.

    1996-01-25

    The effect of surface oxide layer on the titanium before bonding on the bonding strength of titanium clad steel by hot roll bonding was investigated from a view point of microstructure of the bonding interface. The bonding test of iron and titanium by hot roll bonding at 850{degree}C was conducted under the various surface conditions of titanium plate such as as-relieved, oxidized or machined. The mechanical properties of clad steel was evaluated in terms of tensile test in the rectangular direction to the bonding interface and observation of micro structures of bonding layer. As results, the bonding strength deteriorated remarkably in the clad steel produced using the titanium having oxide layer on the surface comparing with that using the machined surface of titanium. In the clad steel produced using the titanium with surface oxide, uncontinuous intermetallic compound was observed at the interface of {beta}-Ti and Fe, while in the clad steel produced by the titanium without surface oxide, no remarkable intermetallic compound was observed. Oxide layer on the titanium surface promotes the formation of inter metallic compound of titanium and iron at the bonding interface and deterioration of bonding strength. Such oxide layer, however, was found to be not an obstacle to the accomplishment of metallurgical bonding. 6 refs., 13 figs.

  20. Major ions anomalies and contamination status by trace metals in sediments from two hot spots along the Mediterranean Coast of Egypt.

    Science.gov (United States)

    Shreadah, Mohamed A; Shobier, Aida H; Ghani, Safaa A Abdel; El Zokm, Gehan M; Said, Tarek O

    2015-05-01

    The major constituents and trace metals in the surface sediments collected from the Western Harbor and El-Mex Bay along the Egyptian Mediterranean Coast were studied. The concentrations of major constituents decreased in the following order: Ca > Si > Mg > Na > K for the Western Harbor and El-Mex Bay. Additionally, the ranking order of trace metals was Fe > Al > Pb > Zn > Mn > Cu > Sn > V > As > Cd > Se for the Western Harbor. For El-Mex Bay, the decreasing order was Fe > Al > Mn > Sn > Pb > Zn > Cu > V > As > Cd > Se. Fe, Al, Zn, Pb, Cu, V, Cd and Sn in the Western Harbor occurred in higher concentrations than in El-Mex Bay. A higher concentration of Mn was observed in El-Mex Bay. Two pollution indicators, enrichment factor (EF) and metal pollution index (MPI), and several sediment quality guidelines (SQGs) were used to evaluate the status of metal pollution. Based on the mean EF values of the studied metals, surface sediments of the Western Harbor and El-Mex Bay revealed that they are enriched with metals from anthropogenic sources. An analysis of variance (ANOVA) test showed that the mean measurements for all metals across the Western Harbor and El-Mex Bay are significantly different at a 0.05 significance level. Principal components analysis (PCA) was applied in result interpretation. The spatial distribution of the different parameters was illustrated.

  1. The Peak/Dip Picture of the Cosmic Web

    Science.gov (United States)

    Rossi, Graziano

    2016-10-01

    The initial shear field plays a central role in the formation of large-scale structures, and in shaping the geometry, morphology, and topology of the cosmic web. We discuss a recent theoretical framework for the shear tensor, termed the `peak/dip picture', which accounts for the fact that halos/voids may form from local extrema of the density field - rather than from random spatial positions; the standard Doroshkevich's formalism is generalized, to include correlations between the density Hessian and shear field at special points in space around which halos/voids may form. We then present the `peak/dip excursion-set-based' algorithm, along with its most recent applications - merging peaks theory with the standard excursion set approach.

  2. Latex Dipping Machine PLC Control and Its Programming

    Directory of Open Access Journals (Sweden)

    Yimin Zhang

    2012-10-01

    Full Text Available Latex dipping machine is based on a latex patent products new-production condom and the development of the machine. The latex dipping agencies combined with production condom mechanism. First it realized a 3-dimensional accurate localization system using stepping motors. SIMATIC S7-200 series programmable controller, motion module EM253 and stepping motor are tied in wedlock to realize allocation of 3-dimension of X axis and Y axis and Z axis. Through the PTO pulse of Siemens S7-200 PLC controller and combined with the use of EM253 module, through the mould precise control programming soak glue and roll edge to achieve the control mold of rotation and swinging the uniform distributed latex. And the system has applied successfully in foreign-funded enterprise of Singapore.

  3. Voltage dips generated by user`s equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ruest, D. [Hydro-Quebec, Varennes, PQ (Canada)

    1997-12-01

    A three year project was conducted by the Canadian Electricity Association (CEA) and Hydro-Quebec to measure voltage dips and short interruptions at 36 industrial sites across Canada (26 in Quebec, 3 in Nova Scotia, 2 in Ontario, and 3 in Manitoba). These disturbances are among the most harmful for power supply networks. This project was initiated in response to a request by the Union Internationale d`Electrothermie`s (UIE). The UIE is an international standards organizations which has set limits for voltage dips and short interruptions for utilities. In this study, an equivalent of 6.45 site-years of data was acquired and the results were compared against other surveys. Although the results could not be compared against other measurements because of different isokeraunic zones and network designs, they were, nevertheless, comparable. Other disturbances that were also measured included phase variation, frequency variation, and voltage swells. tabs., figs.

  4. Hot Subluminous Stars

    Science.gov (United States)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  5. Transiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star

    CERN Document Server

    Fridlund, M; Alonso, R; Deleuil, M; Gandolfi, D; Gillon, M; Bruntt, H; Alapini, A; Csizmadia, Sz; Guillot, T; Lammer, H; Aigrain, S; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Borde, P; Bouchy, F; Cabrera, J; Carone, L; Carpano, S; Deeg, H J; De la Reza, R; Dvorak, R; Erikson, A; Ferraz-Mello, S; Guenther, E; Gondoin, P; Hartog, R den; Hatzes, A; Jorda, L; Leger, A; Llebaria, A; Magain, P; Mazeh, T; Moutou, C; Ollivier, M; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Shporer, A; Stecklum, B; Tingley, B; Weingrill, J; Wuchterl, G

    2010-01-01

    The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines.

  6. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Suriano, Raffaella [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Biella, Serena, E-mail: serena.biella@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Cesura, Federico; Levi, Marinella; Turri, Stefano [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-05-15

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  7. Ceramic films produced by a gel-dipping process

    Energy Technology Data Exchange (ETDEWEB)

    Santacruz, I.; Ferrari, B.; Nieto, M.I.; Moreno, R. [Instituto de Ceramica y Vidrio, CSIC, Camino de Valdelatas s/n, E-28049 Madrid (Spain)

    2003-09-01

    A novel method for manufacturing self-supporting ceramic films is based on the use of aqueous suspensions containing low concentrations of a biopolymer (carrageenan) and the formation of the film by immersion of a graphite substrate into the ceramic suspension heated at 60 C. A film is obtained by dipping after cooling at RT; burning out graphite during sintering leaves homogeneous, dense, and self-supported films (see Figure for an SEM image). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  8. Anti-double dipping rules for federal tax incentives

    Energy Technology Data Exchange (ETDEWEB)

    Ing, E.T.C. [Law Office of Edwin T.C. Ing, Washington, DC (United States)

    1997-12-31

    Political as well as technological changes are now reshaping the electric utility industry. While accommodating these changes, state legislative and regulatory agencies have the opportunity to promote public policies. In this regard, various state entities are evaluating appropriate incentives for renewable energy development so as to introduce greater competition in electric generation. For example, the California legislature is considering a supplemental production payment and the State of Iowa has instituted a low-interest loan program for wind and other alternative energy generation. By complementing the existing federal tax incentives, state incentives can spur the wind industry`s growth. If structured in the wrong way, however, state assistance programs will undercut the value of the federal tax incentives. The federal anti-double dipping rules apply to certain state programs. If a developer utilizes the wrong type of state assistance for a wind project, the anti-double dipping rules will reduce the federal tax incentives and this in turn will decrease the project`s profitability. Rather than suffer these results, very few if any developer will use the state program. Despite the time and effort a state may expend to enact a program for alternative energy development, the state assistance will be ineffectual. This paper reviews the counterproductive results which state assistance can have on a wind project because of the federal anti-double dipping rules.

  9. Promethus Hot Leg Piping Concept

    Energy Technology Data Exchange (ETDEWEB)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  10. 100 t铁水罐热-结构耦合分析与实测验证%Thermal-structural coupling analysis and measurement verification of the 100 ton hot-metal ladle

    Institute of Scientific and Technical Information of China (English)

    但斌斌; 曹亮; 肖林伟; 姜本熹; 吴瑞; 耿会良

    2016-01-01

    The temperature field of the 100 t hot-metal ladle with full load in a certain iron-making plant was analyzed by finite element method,and the distribution of temperature,deformation and stress was investigated by thermal-structural coupling method.The real values of the ladle under working conditions were gathered by infrared thermal imaging instrument and electricity measure with resistance strain gauge.The results show that the simulation results agree well with the real values. The strength of the ladle is found to be able to satisfy the actual requirements though there is relative-ly large local deformation which may produce cracks on the lining,resulting in hot metal leakage.%应用有限元法分析了某炼铁厂100 t铁水罐在满载铁水工况下的温度场,在此基础上采用热-结构耦合法分析了其中所受的热应力及变形情况,并在实际工作中采用红外热像仪测量法和电阻应变片电测法进行验证。结果表明,有限元分析结果与现场测试数据的误差在合理范围内,验证了有限元分析中材料属性、边界条件的合理性及计算结果的正确性;铁水罐整体强度满足要求,但罐壁局部存在较大变形,容易使内衬产生裂缝导致铁水渗漏。

  11. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    Digital Repository Service at National Institute of Oceanography (India)

    Ajay, K.K.; Chaubey, A.K.; Krishna, K.S.; Rao, D.G.; Sar, D.

    of the Chagos-Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors (SDRs...

  12. Metallic Tungsten Nanostructures and Highly Nanostructured Thin Films by Deposition of Tungsten Oxide and Subsequent Reduction in a Single Hot-Wire CVD Process

    NARCIS (Netherlands)

    Harks, P.P.R.M.L.; Houweling, Z.S.; de Jong, M.M.; Kuang, Y; Geus, J.W.; Schropp, R.E.I.

    2012-01-01

    The synthesis of metallic tungsten nanostructures and highly nanostructured thin films is presented. Crystalline tungsten oxide nanostructures are deposited on glassy carbon substrates kept at 700 100 8C by oxidizing resistively heated tungsten filaments in an air flow under subatmospheric pressures

  13. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting

    Science.gov (United States)

    Uenishi, K.

    2010-12-01

    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland

  14. Surface topography evolvement of galvanized steels in sheet metal forming

    Institute of Scientific and Technical Information of China (English)

    HOU Ying-ke; YU Zhong-qi; ZHANG Wei-gang; JIANG Hao-min; LIN Zhong-qin

    2009-01-01

    U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental results indicate that the surface roughness values of the two galvanized steels increase with the number of forming, i.e., the surface topographies of galvanized steels are roughened in SMF. Moreover, GI steel has a better ability of damage-resistance than GA steel. The mechanisms of topography evolvement are different in the forming of GI and GA steels. Scratch is the main form of surface damage in the forming of GI steels. The severity of scratch can be decreased by increasing die hardness. GA steel results in exfoliating of the coating firstly and then severe scratching. The surface topography of galvannealed steels can be improved by increasing die hardness. However, the hardness should not be too high.

  15. Assessment of Automotive Coatings Used on Different Metallic Substrates

    Directory of Open Access Journals (Sweden)

    W. Bensalah

    2014-01-01

    Full Text Available Four epoxy primers commonly used in the automotive industry were applied by gravity pneumatic spray gun over metallic substrates, specifically, steel, electrogalvanized steel, hot-dip galvanized steel, and aluminum. A two-component polyurethane resin was used as topcoat. To evaluate the performance of the different coating systems, the treated panels were submitted to mechanical testing using Persoz hardness, impact resistance, cupping, lattice method, and bending. Tribological properties of different coating systems were conducted using pin on disc machine. Immersion tests were carried out in 5% NaCl and immersion tests in 3% NaOH solutions. Results showed which of the coating systems is more suitable for each substrate in terms of mechanical, tribological, and anticorrosive performance.

  16. 29 CFR 1910.124 - General requirements for dipping and coating operations.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false General requirements for dipping and coating operations... Dipping and Coating Operations § 1910.124 General requirements for dipping and coating operations. (a...) Chemical reaction. (c) What requirements must I follow to recirculate exhaust air into the workplace?...

  17. Acoustic interaction between the right and left piriform fossae in generating spectral dips.

    Science.gov (United States)

    Takemoto, Hironori; Adachi, Seiji; Mokhtari, Parham; Kitamura, Tatsuya

    2013-10-01

    It is known that the right and left piriform fossae generate two deep dips on speech spectra and that acoustic interaction exists in generating the dips: if only one piriform fossa is modified, both the dips change in frequency and amplitude. In the present study, using a simple geometrical model and measured vocal tract shapes, the acoustic interaction was examined by the finite-difference time-domain method. As a result, one of the two dips was lower in frequency than the two independent dips that appeared when either of the piriform fossae was occluded, and the other dip was higher in frequency than the two dips. At the lower dip frequency, the piriform fossae resonated almost in opposite phase, while at the higher dip frequency, they resonated almost in phase. These facts indicate that the piriform fossae and the lower part of the pharynx can be modeled as a coupled two-oscillator system whose two normal vibration modes generate the two spectral dips. When the piriform fossae were identical, only the higher dip appeared. This is because the lower mode is not acoustically coupled to the main vocal tract enough to generate an absorption dip.

  18. OPTIMIZATION OF CONVERTER SMELTING PROCESS FOR HIGH-SILICON HIGH-TITANIUM HOT METAL%转炉高硅高钛铁水冶炼工艺优化

    Institute of Scientific and Technical Information of China (English)

    张锦兴; 田宝义

    2015-01-01

    To solve the problems of converter of Medium and Heavy Plate Company of Tang Steel in smelting with high-silicon high-titanium hot metal:difficult operation, converter spitting occurring some time and causing low receive efficiency of metals, the smelting process is optimized in aspects of charging system, ox-ygen feeding system and slag making system.After that the converter spitting rate is reduced from 4.3 to 1 percent, the iron and steel materials consumption lowered by 2.15 kg/t, excellent economic and environment profit got.%针对唐钢中厚板公司转炉入炉铁水硅高钛高、转炉操作难度较大、易发生转炉喷溅导致金属收得率低的问题,从装入制度、供氧制度和造渣制度等方面对高硅高钛铁水冶炼工艺进行了优化. 改进后,转炉喷溅率由4.3%降至1%,钢铁料消耗降低了2.15 kg/t,取得了显著的经济效益和环境效益.

  19. ELODIE metallicity-biased search for transiting Hot Jupiters. IV. Intermediate period planets orbiting the stars HD 43691 and HD 132406

    Science.gov (United States)

    da Silva, R.; Udry, S.; Bouchy, F.; Moutou, C.; Mayor, M.; Beuzit, J.-L.; Bonfils, X.; Delfosse, X.; Desort, M.; Forveille, T.; Galland, F.; Hébrard, G.; Lagrange, A.-M.; Loeillet, B.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Sivan, J.-P.; Vidal-Madjar, A.; Zucker, S.

    2007-10-01

    We report here the discovery of two planet candidates as a result of our planet-search programme biased in favour of high-metallicity stars, using the ELODIE spectrograph at the Observatoire de Haute Provence. One candidate has a minimum mass m_2 sin i = 2.5 M_Jup and is orbiting the metal-rich star HD 43691 with period P = 40 days and eccentricity e=0.14. The other planet has a minimum mass m_2 sin{i} = 5.6 M_Jup and orbits the slightly metal-rich star HD 132406 with period P=974 days and eccentricity e = 0.34. Additional observations for both stars were performed using the new SOPHIE spectrograph that replaces the ELODIE instrument, allowing an improved orbital solution for the systems. Based on radial velocities collected with the ELODIE spectrograph mounted on the 193-cm telescope at the Observatoire de Haute Provence, France. Additional observations were made using the new SOPHIE spectrograph (run 06B.PNP.CONS) that replaces ELODIE.

  20. Prestack traveltimes for dip-constrained TI media

    KAUST Repository

    Golikov, Pavel

    2012-11-04

    The double-square-root (DSR) formula is an integral part of many wavefield based imaging tools. A transversely isotropic medium with a titled symmetry axis (TI) version of the DSR formula is nearly impossible to obtain analytically. As a result, we develop an approximate version of the DSR formula valid for media with the symmetry axis normal to the dip of the reflector (DTI). The accuracy of this approximate solution is enhanced using Shanks transform to a point where the errors are extremely small for practical anisotropic values. Under this assumption, we also do not need to compute the symmetry axis field as it is inherently included in the formulation.

  1. Impedance of the PEP-II DIP screen

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.-K. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Weiland, T.

    1996-08-01

    The vacuum chamber of a storage ring normally consists of periodically spaced pumping slots. The longitudinal impedance of slots are analyzed in this paper. It is found that although the broad-band impedance is tolerable, the narrow-band impedance, as a consequence of the periodicity of the slots, may exceed the stability limit given by natural damping with no feedback system on. Based on this analysis, the PEP-II distributed-ion-pump (DIP) screen uses long grooves with hidden holes cut halfway to reduce both the broad-band and narrow-band impedances. (author)

  2. Mechanism of force mode dip-pen nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haijun, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn [Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Interfacial Water Division and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Xie, Hui; Rong, Weibin; Sun, Lining [State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080 (China); Wu, Haixia; Guo, Shouwu, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn [Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Huabin, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn [Centre for Tetrahertz Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

    2014-05-07

    In this work, the underlying mechanism of the force mode dip-pen nanolithography (FMDPN) is investigated in depth by analyzing force curves, tapping mode deflection signals, and “Z-scan” voltage variations during the FMDPN. The operation parameters including the relative “trigger threshold” and “surface delay” parameters are vital to control the loading force and dwell time for ink deposition during FMDPN. A model is also developed to simulate the interactions between the atomic force microscope tip and soft substrate during FMDPN, and verified by its good performance in fitting our experimental data.

  3. Dip-coated hydrotungstite thin films as humidity sensors

    OpenAIRE

    2005-01-01

    Thin films of a hydrated phase of tungsten oxide, viz. hydrotungstite,have been prepared on glass substrates by dip-coating method using ammonium tungstate precursor solution. X-ray diffraction shows the films to have a strong b-axis orientation. The resistance of the films is observed to be sensitive to the humidity content of the ambient,indicating possible applications of these films for humidity sensing. Ahome made apparatus designed to measure the d.c. electrical resistance in response t...

  4. Dip-coated hydrotungstite thin films as humidity sensors

    Indian Academy of Sciences (India)

    G V Kunte; Ujwala Ail; S A Shivashankar; A M Umarji

    2005-06-01

    Thin films of a hydrated phase of tungsten oxide, viz. hydrotungstite, have been prepared on glass substrates by dip-coating method using ammonium tungstate precursor solution. X-ray diffraction shows the films to have a strong -axis orientation. The resistance of the films is observed to be sensitive to the humidity content of the ambient, indicating possible applications of these films for humidity sensing. A homemade apparatus designed to measure the d.c. electrical resistance in response to exposure to controlled pulses of a sensing gas has been employed to evaluate the sensitivity of the hydrotungstite films towards humidity.

  5. A Dipping Duration Study for Optimization of Anodized-Aluminum Pressure-Sensitive Paint

    Directory of Open Access Journals (Sweden)

    Keiko Ishii

    2010-11-01

    Full Text Available Anodized-aluminum pressure-sensitive paint (AA-PSP uses the dipping deposition method to apply a luminophore on a porous anodized-aluminum surface. We study the dipping duration, one of the parameters of the dipping deposition related to the characterization of AA-PSP. The dipping duration was varied from 1 to 100,000 s. The properties characterized are the pressure sensitivity, temperature dependency, and signal level. The maximum pressure sensitivity of 65% is obtained at the dipping duration of 100 s, the minimum temperature dependency is obtained at the duration of 1 s, and the maximum signal level is obtained at the duration of 1,000 s, respectively. Among the characteristics, the dipping duration most influences the signal level. The change in the signal level is a factor of 8.4. By introducing a weight coefficient, an optimum dipping duration can be determined. Among all the dipping parameters, such as the dipping duration, dipping solvent, and luminophore concentration, the pressure sensitivity and signal level are most influenced by the dipping solvent.

  6. Freezing hot electrons. Electron transfer and solvation dynamics at D{sub 2}O and NH{sub 3}-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Staehler, A.J.

    2007-05-15

    The present work investigates the electron transfer and solvation dynamics at the D{sub 2}O/Cu(111), D{sub 2}O/Ru(001), and NH{sub 3}/Cu(111) interfaces using femtosecond time-resolved two-photon photoelectron spectroscopy. Within this framework, the influence of the substrate, adsorbate structure and morphology, solvation site, coverage, temperature, and solvent on the electron dynamics are studied, yielding microscopic insight into the underlying fundamental processes. Transitions between different regimes of ET, substrate-dominated, barrier-determined, strong, and weak coupling are observed by systematic variation of the interfacial properties and development of empirical model descriptions. It is shown that the fundamental steps of the interfacial electron dynamics are similar for all investigated systems: Metal electrons are photoexcited to unoccupied metal states and transferred into the adlayer via the adsorbate's conduction band. The electrons localize at favorable sites and are stabilized by reorientations of the surrounding polar solvent molecules. Concurrently, they decay back two the metal substrate, as it offers a continuum of unoccupied states. However, the detailed characteristics vary for the different investigated interfaces: For amorphous ice-metal interfaces, the electron transfer is initially, right after photoinjection, dominated by the substrate's electronic surface band structure. With increasing solvation, a transient barrier evolves at the interface that increasingly screens the electrons from the substrate. Tunneling through this barrier becomes the rate-limiting step for ET. The competition of electron decay and solvation leads to lifetimes of the solvated electrons in the order of 100 fs. Furthermore, it is shown that the electrons bind in the bulk of the ice layers, but on the edges of adsorbed D{sub 2}O clusters and that the ice morphology strongly influences the electron dynamics. For the amorphous NH{sub 3}/Cu(111

  7. A Case Study Of Turkish Transmission System For VoltageDips

    DEFF Research Database (Denmark)

    Inan, E.; Alboyaci, B.; Bak, Claus Leth

    2009-01-01

    Power quality problems usually appear in the form of voltage sags, transients and harmonics. From these three broad categories of power quality problems, voltage dips account the most disturbances experienced by industrial customers. Voltage dips generally refer to instantaneous short...... analysis of voltage dip performance of the whole transmission system, is used to compare with results constructed fault statics from SIMPOW DIPS analysis program real data. SIMPOW DIPS software enables to calculate dip frequency for all busses and lines.......-duration voltage variations. The aim of this paper is to have an idea about voltage dip performance of Turkey Transmission System. Turkey's transmission system has 21 regions. For simulations, 2nd region, which includes Istanbul city's area is heavy loaded, is selected. For purposes of early warning and later...

  8. Sediment DSi and DIP fluxes under simulated redox conditions

    Science.gov (United States)

    Nteziryayo, Love-Raoul; Danielsson, Åsa

    2017-04-01

    The Baltic Sea is one of the most eutrophic water bodies in the world. This eutrophication of the Baltic Sea has resulted in the expansion of areas of hypoxic bottom waters. Hypoxia is known to cause the release of dissolved inorganic phosphorus (DIP) from sediment. It is largely assumed that dissolved silica (DSi) reacts in an analogous way in hypoxic conditions. From sediment incubation experiments, we found that P reacts faster to oxygen changes than Si. Here we show that DSi and DIP behave differently to changing oxygen concentrations in the bottom waters, and that the adsorption and de-sorption on Fe oxihydroxides may control the release of P more efficiently than of Si. The results showed that DSi fluxes were higher under oxic conditions (2.21±0.28 mmol Si m-2d-1) than under hypoxic conditions (1.36±0.29 mmol Si m-2d-1). The opposite was observed for P fluxes (0.06 ±0.01 and 0.10±0.09 mmol P m-2d-1) under oxic respective hypoxic conditions). Our results indicate that the increase of hypoxic conditions in coastal areas may directly cause the decrease of Si fluxes from sediment and thereby contribute to the diminishing Si concentrations observed in the Baltic Sea waters.

  9. ICE-DIP closing workshop - Public session | 14 September

    CERN Multimedia

    2016-01-01

    ICE-DIP, the Intel-CERN European Doctorate Industrial Program (see here), is a European Industrial Doctorate scheme (see here) led by CERN. The focus of the project, which launched in 2013, has been the development of techniques for acquiring and processing data that are relevant for the trigger and data-acquisition systems of the LHC experiments.   The results will be publicly presented in an open session on the afternoon of 14th September. Building on CERN’s long-standing relationship with Intel through CERN openlab, ICE-DIP brings together CERN, Intel and research universities to offer training to five PhD students in advanced information and communication technologies (ICT). These young researchers have been funded by the European Commission as fellows at CERN and enrolled in doctoral programmes at the National University of Ireland Maynooth and Dublin City University. They have each completed 18 month secondments at Intel locations around the world gaining in-depth experience of the v...

  10. Cosmogenic Neutrinos Challenge the Cosmic-ray Proton Dip Model

    Science.gov (United States)

    Heinze, Jonas; Boncioli, Denise; Bustamante, Mauricio; Winter, Walter

    2016-07-01

    The origin and composition of ultra-high-energy cosmic rays (UHECRs) remain a mystery. The proton dip model describes their spectral shape in the energy range above 109 GeV by pair production and photohadronic interactions with the cosmic microwave background. The photohadronic interactions also produce cosmogenic neutrinos peaking around 109 GeV. We test whether this model is still viable in light of recent UHECR spectrum measurements from the Telescope Array experiment and upper limits on the cosmogenic neutrino flux from IceCube. While two-parameter fits have been already presented, we perform a full scan of the three main physical model parameters: source redshift evolution, injected proton maximal energy, and spectral index. We find qualitatively different conclusions compared to earlier two-parameter fits in the literature: a mild preference for a maximal energy cutoff at the sources instead of the Greisen-Zatsepin-Kuzmin cutoff, hard injection spectra, and strong source evolution. The predicted cosmogenic neutrino flux exceeds the IceCube limit for any parameter combination. As a result, the proton dip model is challenged at more than 95% C.L. This is strong evidence against this model independent of mass composition measurements.

  11. Cosmogenic Neutrinos Challenge the Cosmic Ray Proton Dip Model

    CERN Document Server

    Heinze, Jonas; Bustamante, Mauricio; Winter, Walter

    2015-01-01

    We perform a three-parameter scan of the cosmic-ray proton flux to the latest (7-year) combined data of the Telescope Array experiment, which are consistent with a pure proton composition. That is, we include at the same time the source evolution, maximal energy and spectral index. We demonstrate that the full three-parameter fit leads to different qualitative conclusions compared to two-parameter scans of the parameter space frequently shown in the literature: it slightly favors a maximal energy cutoff coming from the sources over the GZK cutoff, together with hard injection spectra and a strong source evolution. We then derive the range of allowed cosmogenic neutrino fluxes corresponding to the region allowed by TA data. We find that the latest IceCube cosmogenic neutrino analysis challenges the cosmic ray proton dip model at more than the 95\\% confidence level including any considered parameter combination. This is the first independent evidence against the proton dip model after the composition results me...

  12. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Uegaki, Takanori; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan)

    2016-08-30

    The coupling of a hot tensile test with a novel in situ observation technique using a high-speed camera was investigated as a high-accuracy quantitative evaluation method for ductility-dip cracking (DDC) susceptibility. Several types of Alloy 690 filler wire were tested in this study owing to its susceptibility to DDC. The developed test method was used to directly measure the critical strain for DDC and high temperature ductility curves with a gauge length of 0.5 mm. Minimum critical strains of 1.3%, 4.0%, and 3.9% were obtained for ERNiCrFe-7, ERNiCrFe-13, and ERNiCrFe-15, respectively. The DDC susceptibilities of ERNiCrFe-13 and ERNiCrFe-15 were nearly the same and quite low compared with that of ERNiCrFe-7. This was likely caused by the tortuosity of the grain boundaries arising from the niobium content of around 2.5% in the former samples. Besides, ERNiCrFe-13 and ERNiCrFe-15 indicated higher minimum critical strains even though these specimens include higher content of sulfur and phosphorus than ERNiCrFe-7. Thus, containing niobium must be more effective to improve the susceptibility compared to sulfur and phosphorous in the alloy system.

  13. One step 'dip' and 'use' Ag nanostructured thin films for ultrahigh sensitive SERS Detection.

    Science.gov (United States)

    Rajkumar, Kanakaraj; Jayram, Naidu Dhanpal; Mangalaraj, Devanesan; Rajendra Kumar, Ramasamy Thangavelu

    2016-11-01

    A simple one step galvanic displacement method which involves dipping of the silicon substrate in the AgNO3/HF solution and using it for SERS application without any further process is demonstrated. The size and shape of the Ag nanoparticles changes as the deposition time is increased. Initially the shape of the particles was nearly spherical and as it grows, becomes oblong and then coalesce to form a discontinuous film with vertically grown hierarchical Ag nanostructures. The sizes of the deposited particles were in the ranges from 30nm to a discontinuous film. It also demonstrated a highly sensitive chemical detection by surface-enhanced Raman scattering of rhodamine 6G dye, down to 10(-16)M concentration. Prepared samples were able to detect lower concentrations of Melamine. Discontinuous thin films with hierarchical Ag nanostructures were obtained for 5min Ag deposition. The formation of Hot spots between the discontinuous islands and also along the hierarchical structures is responsible for the high SERS enhancement. This simple one step, fast, non-lithographic and cost effective method can be applied for various label free detection of analytes of importance.

  14. 粉末冶金难变形材料热静液挤压技术进展%Progress in Hot Hydrostatic Extrusion of Powder Metallurgy Hard Metallic Materials

    Institute of Scientific and Technical Information of China (English)

    胡连喜; 王尔德

    2011-01-01

    Recent research progress in hot hydrostatic extrusion of both sintered powder metallurgy hard metallic materials and powder compacts is reviewed. Both the fundamentals and the technical features and application potentials of the technique are introduced, and the factors affecting the formation and stability of the lubricant layer during extrusion are an- alyzed. In particular, examples for the development of the lubricant for hot hydrostatic extrusion are presented and the applications of the hot hydrostatic extrusion process to the forming of sintered P/M heavy tungsten alloy, γ-TiAl based alloy products and the full densification and consolidation of nanocrystalline powders of aluminum alloys, dispersion strengthened copper alloys, and NdFeB magnetic alloys are addressed. Based on this, summary remarks arc presented on the advantageous aspects and the prospects of the technique.%综述了热静液挤压技术在烧结态粉末冶金难变形材料挤压成形与粉末体高致密化固结方面的研究进展。简述了热静液挤压工艺原理、工艺特点与适用范围,分析了热静液挤压润滑层形成的影响因素,介绍了热静液挤压润滑介质研制和热静液挤压技术在粉末冶金高比重钨合金、γ-TiAl基合金材料的挤压成形以及纳米晶铝合金、弥散强化铜合金、NdFeB永磁合金等金属粉末体材料的高致密化固结成形方面的应用,指出了热静液挤压工艺的技术优势与发展前景。

  15. 低成本铁水罐罐沿浇注料的研制与应用%Development and application of low cost castables for hot metal ladle edge

    Institute of Scientific and Technical Information of China (English)

    欧阳德刚; 蒋扬虎; 李明晖; 朱善合; 王清方; 罗巍

    2011-01-01

    The castables for hot metal ladle edge were prepared using recycled bauxite castables( w( Al2O3 ) ≥65% ) used in desulphurization lance and grade three bauxite clinker powder as main starting materials,recycled steel fiber as reinforcement and flexibilizer, bauxite cement, SiO2 micropowder, and α-Al2O3 micropowder as complex binders, disthene as high temperature expanding agent, recycled aluminium silicate fiber (length 3-8 mm) as anti-explosion agent. Formulations with 70% recycled castables and different particle size compositions were designed and optimized according to the anti-explosion ability of castables after rapid demoulding and drying. The results of physical properties and petrographic analysis show that the prepared castables has the moderate density, relatively high strength, and proper microstructure,strengthening the compatibility of castables to rapid drying,enhancing the insulating properties and anti-failure ability. The production application shows the castables can not only decrease the repairing cost of the desulphurization hot metal ladle, but also prolong the average one-time-casting-service life of working lining for bauxite brick hot metal ladle edge from 300 to 845 times.%采用w(Al2O3)≥65%的铁水脱硫喷枪用高铝质浇注料的再生料和三级高铝矾土熟料粉为主要原料,再生钢纤维为增强增韧材料,矾土水泥、SiO2微粉和α-Al2O3微粉为复合结合剂,蓝晶石为高温膨胀剂,用后硅酸铝纤维再生料(纤维长度3~8 mm)为防爆剂,设计了再生料加入质量分数约70%,粒度级配不同的铁水罐罐沿浇注料配方,并根据浇注料试样脱模后快速烘烤的抗爆裂性对配方进行了优化,然后进行了实际应用试验.理化性能检测和岩相分析结果表明:所研制的浇注料致密度适中,强度较高,微观结构合理,增强了浇注料对快速烘烤的适应性,提高了工作衬的保温隔热性能和抗破损能力;实际生产应用表明,该

  16. Method for producing metal oxide nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  17. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-01-15

    Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.

  18. Pulse Profiles, Accretion Column Dips and a Flare in GX 1+4 During a Faint State

    CERN Document Server

    Giles, A B; Greenhill, J; Storey, M C; Wilson, C A

    1999-01-01

    The Rossi X-ray Timing Explorer (RXTE) spacecraft observed the X-ray pulsar GX 1+4 for a period of 34 hours on July 19/20 1996. The source faded from an intensity of ~20 mCrab to a minimum of <~0.7 mCrab and then partially recovered towards the end of the observation. This extended minimum lasted ~40,000 seconds. Phase folded light curves at a barycentric rotation period of 124.36568 +/- 0.00020 seconds show that near the center of the extended minimum the source stopped pulsing in the traditional sense but retained a weak dip feature at the rotation period. Away from the extended minimum the dips are progressively narrower at higher energies and may be interpreted as obscurations or eclipses of the hot spot by the accretion column. The pulse profile changed from leading-edge bright before the extended minimum to trailing-edge bright after it. Data from the Burst and Transient Source Experiment (BATSE) show that a torque reversal occurred <10 days after our observation. Our data indicate that the observ...

  19. Pulse Profiles, Accretion Column Dips and a Flare in GX 1+4 During a Faint State

    Science.gov (United States)

    Giles, A. B.; Galloway, D. K.; Greenhill, J. G.; Storey, M. C.; Wilson, C. A.

    1999-01-01

    The Rossi X-ray Timing Explorer (RXTE) spacecraft observed the X-ray GX 1+4 for it period of 34 hours on July 19/20 1996. The source faded front an intensity of approximately 20 mcrab to a minimum of <= 0.7 mcrab and then partially recovered towards the end of the observation. This extended minimum lasted approximately 40,000 seconds. Phase folded light curves at a barycentric rotation period of 124.36568 +/- 0.00020 seconds show that near the center of the extended minimum the source stopped pulsing in the traditional sense but retained a weak dip feature at the rotation period. Away from the extended minimum the dips are progressively narrower at higher energies and may be interpreted as obscurations or eclipses of the hot spot by the accretion column. The pulse profile changed from leading-edge bright before the extended minimum to trailing-edge bright after it. Data from the Burst and Transient Source Experiment (BATSE) show that a torque reversal occurred < 10 days after our observation. Our data indicate that the observed rotation departs from a constant period with a P/P value of approximately -1.5% per year at a 4.5sigma significance. We infer that we may have serendipitously obtained data, with high sensitivity and temporal resolution about the time of an accretion disk spin reversal. We also observed a rapid flare which had some precursor activity close to the center of the extended minimum.

  20. Characteristics of seismoelectric interface responses at dipping boundaries

    Science.gov (United States)

    Kröger, B.; Kemna, A.

    2012-04-01

    When crossing an interface between two layers with different petrophysical properties, a seismic wave generates a time-varying charge separation which acts as a dipole radiating electromagnetic energy independently of the seismic wave. If we consider a monochromatic seismic source located above a horizontal interface between such media, the seismic wave traverses the interface and causes relative displacement of ions at the matrix-fluid interface in the pore space. The resulting electric field is due to the streaming current imbalance at the interface. This is equivalent to the case of an electrical dipole oscillating in phase with the seismic wave along such boundary. As a consequence, electromagnetic disturbances are radiated away from the dipole source and can be recorded at various receiver lines. This seismic-to-electromagnetic field conversion at petrophysical boundaries in the 1st Fresnel zone is the so-called seismoelectric interface response. Conceptual field models and theoretical modelling indicate that the interface response should be a multipole electrical source. Higher-order terms will diminish more rapidly with distance and therefore will leave the dipole term to dominate. Thus, a seismoelectric interface response emanating from a horizontal boundary in a homogeneous half-space is expected to exhibit symmetry and amplitude characteristics similar to those of a vertical electric dipole (VED) centred on the interface directly below the shot point. However, no general theoretical predictions concerning the characteristics, the shape and the morphology of the VED induced by seismic waves at dipping interfaces can be found in the literature. To gain insight into the spatio-temporal occurrence and evolution of the seismoelectric interface response for dipping interfaces we run several numerical simulations using different petrophysical parameter set-ups. For the modelling, we make use of a simplified time-domain formulation of the coupled physical problem

  1. KELT-6b: A P~7.9 d Hot Saturn Transiting a Metal-Poor Star with a Long-Period Companion

    CERN Document Server

    Collins, Karen A; Beatty, Thomas G; Siverd, Robert J; Gaudi, B Scott; Pepper, Joshua; Kielkopf, John F; Johnson, John Asher; Howard, Andrew W; Fischer, Debra A; Manner, Mark; Bieryla, Allyson; Latham, David W; Fulton, Benjamin J; Gregorio, Joao; Buchhave, Lars A; Jensen, Eric L N; Stassun, Keivan G; Penev, Kaloyan; Crepp, Justin R; Hinkley, Sasha; Street, Rachel A; Cargile, Phillip; Mack, Claude E; Oberst, Thomas E; Avril, Ryan L; Mellon, Samuel N; McLeod, Kim K; Penny, Matthew T; Stefanik, Robert P; Berlind, Perry; Calkins, Michael L; Mao, Qingqing; Richert, Alexander J W; DePoy, Darren L; Esquerdo, Gilbert A; Gould, Andrew; Marshall, Jennifer L; Oelkers, Ryan J; Pogge, Richard W; Trueblood, Mark; Trueblood, Patricia

    2013-01-01

    We report the discovery of KELT-6b, a mildly-inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was confirmed using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V=10.38 host star (TYC 2532-556-1) is a mildly evolved, late-F star with T_eff=6102 \\pm 43 K, log(g_*)=4.07_{-0.07}^{+0.04} and [Fe/H]=-0.28 \\pm 0.04, with an inferred mass M_*=1.09 \\pm 0.04 M_sun and radius R_*=1.58_{-0.09}^{+0.16} R_sun. The planetary companion has mass M_p=0.43 \\pm 0.05 M_Jup, radius R_p=1.19_{-0.08}^{+0.13} R_Jup, surface gravity log(g_p)=2.86_{-0.08}^{+0.06}, and density rho_p=0.31_{-0.08}^{+0.07} g cm^{-3}. The planet is on an orbit with semimajor axis a=0.079 \\pm 0.001 AU and eccentricity e=0.22_{-0.10}^{+0.12}, which is rough...

  2. Detection of hot, metal-enriched outflowing gas around $z\\approx\\,$2.3 star-forming galaxies in the Keck Baryonic Structure Survey

    CERN Document Server

    Turner, Monica L; Steidel, Charles C; Rudie, Gwen C; Strom, Allison L

    2014-01-01

    We use quasar absorption lines to study the physical conditions in the circumgalactic medium of redshift $z\\approx 2.3$ star-forming galaxies taken from the Keck Baryonic Structure Survey (KBSS). In Turner et al. 2014 we used the pixel optical depth technique to show that absorption by HI and the metal ions OVI, NV, CIV, CIII and SiIV is strongly enhanced within $|\\Delta v|\\lesssim170$ km/s and projected distances $|d|\\lesssim180$ proper kpc from sightlines to the background quasars. Here we demonstrate that the OVI absorption is also strongly enhanced at fixed HI, CIV, and SiIV optical depths, and that this enhancement extends out to $\\sim350$ km/s. At fixed HI the increase in the median OVI optical depth near galaxies is 0.3-0.7 dex and is detected at 2--3-$\\sigma$ confidence for all seven HI bins that have $\\log_{10}\\tau_{\\rm HI}\\ge-1.5$. We use ionisation models to show that the observed strength of OVI as a function of HI is consistent with enriched, photoionised gas for pixels with $\\tau_{\\rm HI}\\gtrsim...

  3. Dip-pen nanolithography-assisted protein crystallization.

    Science.gov (United States)

    Ielasi, Francesco S; Hirtz, Michael; Sekula-Neuner, Sylwia; Laue, Thomas; Fuchs, Harald; Willaert, Ronnie G

    2015-01-14

    We demonstrate the use of dip-pen nanolithography (DPN) to crystallize proteins on surface-localized functionalized lipid layer arrays. DOPC lipid layers, containing small amounts of biotin-DOPE lipid molecules, were printed on glass substrates and evaluated in vapor diffusion and batch crystallization screening setups, where streptavidin was used as a model protein for crystallization. Independently of the crystallization system used and the geometry of the lipid layers, nucleation of streptavidin crystals occurred specifically on the DPN-printed biotinylated structures. Protein crystallization on lipid array patches is also demonstrated in a microfluidic chip, which opens the way toward high-throughput screening to find suitable nucleation and crystal growth conditions. The results demonstrate the use of DPN in directing and inducing protein crystallization on specific surface locations.

  4. SÜTÇÜ İNEKLERDE TEAT DIPPING

    OpenAIRE

    2013-01-01

    ÖZETSütçü ineklerde meme başının antiseptikli solusyonlara batırılması (teat dipping- TD) ile meme derisi üzerindeki bakteri sayısı önemli ölçüde azalmaktadır. Bu nedenle TD mastitis kontrol programlarının önemli basamaklarından birini oluşturmaktadır. Çevresel ve bulaşıcı mastitis etkenleri üzerinde etkili olan bu işlem tüm dünyada yaygın olarak kullanılan etkili, ucuz ve kolay bir uygulamadır. Bu derlemede meme başı dezenfeksiyonunun önemi ve özellikleri son yıllarda yürütülen çalışmaların ...

  5. Transiting exoplanets from the CoRoT space mission. XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content

    CERN Document Server

    Cabrera, J; Ollivier, M; Diaz, R F; Csizmadia, Sz; Aigrain, S; Alonso, R; Almenara, J -M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Carone, L; Carpano, S; Deleuil, M; Deeg, H J; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Gandolfi, D; Gazzano, J -C; Gillon, M; Guenther, E W; Guillot, T; Hatzes, A; Havel, M; Hebrard, G; Jorda, L; Leger, A; Llebaria, A; Lammer, H; Lovis, C; Mazeh, T; Moutou, C; Ofir, A; von Paris, P; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Tingley, B; Titz-Weider, R; Wuchterl, G

    2010-01-01

    We announce the discovery of the transiting planet CoRoT-13b. Ground based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm-3. It orbits a G0V star with Teff=5945K, M*=1.09 Msun, R*=1.01 Rsun, solar metallicity, a lithium content of +1.45 dex, and an estimated age between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass. It implies the existence of an amount of heavy elements with a mass between about 140 and 300 Mearth.

  6. Thermometric Soots on Hot Jupiters?

    CERN Document Server

    Zahnle, K; Fortney, J J

    2009-01-01

    We use a 1D thermochemical and photochemical kinetics model to predict that the stratospheric chemistry of hot Jupiters should change dramatically as temperature drops from 1200 to 1000 K. At 1200 K methane is too unstable to reach the stratosphere in significant quantities, while thermal decomposition of water is a strong source of OH radicals that oxidize any hydrocarbons that do form to CO and CO$_2$. At 1000 K methane, although very reactive, survives long enough to reach the lower stratosphere, and the greater stability of water coupled with efficient scavenging of OH by H$_2$ raise the effective C/O ratio in the reacting gases above unity. Reduced products such as ethylene, acetylene, and hydrogen cyanide become abundant; such conditions favor polymerization and possible formation of PAHs and soots. Although low temperature is the most important factor favoring hydrocarbons in hot Jupiters, higher rates of vertical mixing and generally lower metallicities also favor organic synthesis. The peculiar prope...

  7. Structural analysis of CdS thin films obtained by multiple dips of oscillating chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Lazos, C.D. [Seccion de Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Rosendo, E., E-mail: erosendo@siu.buap.m [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico); Ortega, M. [Seccion de Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Oliva, A.I. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico); Tapia, O.; Diaz, T.; Juarez, H.; Garcia, G. [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico); Rubin, M. [Facultad de Ciencias de la Computacion, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico)

    2009-11-25

    Highly oriented CdS thin films with thicknesses greater than 1 mum were deposited by multiple dips, using oscillating chemical bath deposition (OCBD) at the bath temperature of 75 deg. C, and deposition time ranging from 15 to 75 min for a single dip. Samples with different thickness were prepared by repeating the deposition process for two and three times. The films deposited by a single dip have the alpha-greenockite structure showing the (0 0 2) as preferred orientation, as indicated by the X-ray diffraction measurements. This notable characteristic is preserved in the samples obtained from two or three dips. The crystallite size for the samples deposited by a single dip depends on the deposition time, because it varied from 23 to 37 nm as the deposition time increased. Nevertheless for samples deposited by two and three dips, the grain size shows no noticeable change, being about 22 nm.

  8. Pseudomonas aeruginosa mastitis in two goats associated with an essential oil-based teat dip.

    Science.gov (United States)

    Kelly, E Jane; Wilson, David J

    2016-11-01

    Pseudomonas aeruginosa is an opportunistic pathogen that has been associated with mastitis in dairy animals, including goats. Often, the environmental sources of the bacteria are water-related (such as hoses and muddy pastures). Mastitis attributable to P. aeruginosa was identified in 2 goats in a small herd. Efforts were made to identify environmental sources of the pathogen. Multiple samples from the goats' environment were cultured, including water from the trough, bedding, the hose used to wash udders, and the teat dip and teat dip containers. The bacterium was isolated from the teat dip and the teat dip container. The teat dip consisted of water, liquid soap, and several drops of essential oils (including tea tree, lavender, and peppermint). This case illustrates a potential problem that may arise as a result of the use of unconventional ingredients in teat dips. The use of alternative products by goat producers is likely to increase in the future. © 2016 The Author(s).

  9. [DIP (desquamative interstitial pneumonia): as a tobacco-associated disease -- case report].

    Science.gov (United States)

    Sousa, Vitor; Carvalho, Lina

    2004-01-01

    DIP (desquamative interstitial pneumonia) is an interstitial lung disease with diffuse and uniform accumulation of alveolar macrophages. There is a strong association with tobacco since 90% of the patients are smokers. The interstitial lung diseases related to tobacco are diverse and include tumours, emphysema, chronic bronchitis, RBILD (Respiratory Bronchilites associated Interstitial Lung Disease), DIP and Langerhans Cell Histiocitosis. The authors present a case of DIP. A brief theorycal revision and discussion of a case is made facing the association with tobacco.

  10. Secondary precious metal enrichment by steam-heated fluids in the Crofoot-Lewis hot spring gold-silver deposit and relation to paleoclimate

    Science.gov (United States)

    Ebert, S.W.; Rye, R.O.

    1997-01-01

    controlled largely by basin and range fractures and a high geothermal gradient with H2S for Au complexing derived from organic matter in basin sediments. A wet climate resulted in the formation of a large inland lake which provided abundant recharge water for the hydrothermal system. A fluctuating water table controlled by changing climatic conditions enabled steam-heated acid sulfate fluids to overprint lower grade mineralization resulting in ore-grade precious metal enrichment.

  11. Hot-dome anemometry

    Science.gov (United States)

    Thompson, Brian E.

    1998-05-01

    Hot-dome anemometry obtains three components of flow velocity using an array of sensors, specifically five hot films in the present contribution, which are mounted around the hemispherical tip of a cylindrical support. Calibration for speed and angle resembles that of hot wires and split films except that the procedures accommodate heat transfer dominated by forced convection from the surface of a sphere rather than single or multiple cylinders. Measurements are obtained with hot domes, conventional hot wires, and impact probes in the wake of a wing to quantify measurement uncertainties.

  12. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  13. P-wave seismic imaging through dipping transversely isotropic media

    Science.gov (United States)

    Leslie, Jennifer Meryl

    2000-10-01

    P-wave seismic anisotropy is of growing concern to the exploration industry. The transmissional effects through dipping anisotropic strata, such as shales, cause substantial depth and lateral positioning errors when imaging subsurface targets. Using anisotropic physical models the limitations of conventional isotropic migration routines were determined to be significant. In addition, these models were used to validate both anisotropic depth migration routines and an anisotropic, numerical raytracer. In order to include anisotropy in these processes, one must be able to quantify the anisotropy using two parameters, epsilon and delta. These parameters were determined from headwave velocity measurements on anisotropic strata, in the parallel-, perpendicular- and 45°-to-bedding directions. This new method was developed using refraction seismic techniques to measure the necessary velocities in the Wapiabi Formation shales, the Brazeau Group interbedded sandstones and shales, the Cardium Formation sandstones and the Palliser Formation limestones. The Wapiabi Formation and Brazeau Group rocks were determined to be anisotropic with epsilon = 0.23 +/- 0.05, delta = --0.05 +/- 0.07 and epsilon = 0.11 +/- 0.04, delta = 0.42 +/- 0.06, respectively. The sandstones and limestones of the Cardium and Palliser formations were both determined to be isotropic, in these studies. In a complementary experiment, a new procedure using vertical seismic profiling (VSP) techniques was developed to measure the anisotropic headwave velocities. Using a multi-offset source configuration on an appropriately dipping, uniform panel of anisotropic strata, the required velocities were measured directly and modelled. In this study, the geologic model was modelled using an anisotropic raytracer, developed for the experiment. The anisotropy was successfully modelled using anisotropic parameters based on the refraction seismic results. With a firm idea of the anisotropic parameters from the

  14. Germicidal activity of a chlorous acid-chlorine dioxide teat dip and a sodium chlorite teat dip during experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    Science.gov (United States)

    Boddie, R L; Nickerson, S C; Adkinson, R W

    1998-08-01

    Three postmilking teat dips were tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae in two separate studies using experimental challenge procedures that were recommended by the National Mastitis Council. The first study evaluated a barrier teat dip product containing chlorous acid-chlorine dioxide as the germicidal agent, and the second study evaluated a sodium chlorite product with a barrier component as well as a sodium chlorite product without a barrier component. The chlorous acid-chlorine dioxide teat dip reduced new intramammary infections (IMI) caused by Staph. aureus by 91.5% and reduced new IMI caused by Strep. agalactiae by 71.7%. The barrier dip containing sodium chlorite reduced new IMI caused by Staph. aureus and Strep. agalactiae by 41.0 and 0%, respectively. The nonbarrier dip containing sodium chlorite reduced new IMI caused by Staph. aureus by 65.6% and reduced new IMI caused by Strep. agalactiae by 39.1%. Teat skin and teat end conditions were evaluated before and after the second study; no deleterious effects among dipped quarters compared with control quarters were noted for the two sodium chlorite products.

  15. Influence of Experimental Parameters Using the Dip-Coating Method on the Barrier Performance of Hybrid Sol-Gel Coatings in Strong Alkaline Environments

    Directory of Open Access Journals (Sweden)

    Rita B. Figueira

    2015-04-01

    Full Text Available Previous studies have shown that the barrier effect and the performance of organic-inorganic hybrid (OIH sol-gel coatings are highly dependent on the coating deposition method as well as on the processing conditions. However, studies on how the coating deposition method influences the barrier properties in alkaline environments are scarce. The aim of this experimental research was to study the influence of experimental parameters using the dip-coating method on the barrier performance of an OIH sol-gel coating in contact with simulated concrete pore solutions (SCPS. The influence of residence time (Rt, a curing step between each dip step and the number of layers of sol-gel OIH films deposited on hot-dip galvanized steel to prevent corrosion in highly alkaline environments was studied. The barrier performance of these OIH sol-gel coatings, named U(400, was assessed in the first instants of contact with SCPS, using electrochemical impedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings in SCPS was monitored during eight days by macrocell current density. The morphological characterization of the surface was performed by Scanning Electronic Microscopy before and after exposure to SCPS. Glow Discharge Optical Emission Spectroscopy was used to investigate the thickness of the U(400 sol-gel coatings as a function of the number of layers deposited with and without Rt in the coatings thickness.

  16. Multiplexed Dip Pen Nanolithography patterning by simple desktop nanolithography platform

    Science.gov (United States)

    Jang, Jae-Won; Smetana, Alexander; Stiles, Paul

    2010-02-01

    Multiplexed patterning in the micro-scale has been required in order to accomplish functional bio-materials templating on the subcellular length scale. Multiplexed bio-material patterns can be used in several fields: high sensitivity DNA/protein chip development, cell adhesion/differentiation studies, and biological sensor applications. Especially, two or more materials' patterning in subcellular length scale is highly demanding to develop a multi-functional and highintegrated chip device. The multiplexing patterning of two or more materials is a challenge because of difficulty in an alignment and a precision of patterning. In this work, we demonstrate that multiplexed dip pen nanolithography® (DPN®) patterning up to four different material inks by means of using recently developed new generation nanolithography platform (NLP 2000™, NanoInk, Inc., Skokie, IL). Ink materials were prepared by adding different colored fluorescent dyes to matrix carrier materials, such as poly(ethylene glycol) dimethacrylate (PEG-DMA) and lipid material (1,2- dioleoyl-sn-glycero-3-phosphocholine, DOPC). Finally, dot-array patterns of four different inks were obtained in 50 × 50 μm2 area. This lithography platform is capable of patterning 12 separate materials within micrometer areas by efficient use of the available MEMS accessories. This number can be scaled up further with development of new accessories.

  17. A novel trilayer antireflection coating using dip-coating technique

    Institute of Scientific and Technical Information of China (English)

    Jian Xu; Yi Yin; Haiming Ma; Hui Ye; Xu Liu

    2011-01-01

    We report a new structure for broadband antireflection coating by dip-coating technique,which has minimal cost and is compatible with large-scale manufacturing.The coatings are prepared by depositing SiO2 sol-gel film on a glass substrate,subsequently depositing SiO2 single-layer particle coating through electrostatic attraction,and depositing a final very thin Si02 sol-gel film to improve the mechanical strength of the whole coating structure.The refractive index of the structure changes gradually from the top to the substrate.The transmittance of a glass substrate has been experimentally found to be improved in the spectral range of 400-1400 nn and in the incidence angle range from 0° to at least 45°.The mechanical strength is immensely improved because of the additional thin Si02 sol-gel layer.The surface texture can be applied to the substrates of different materials and shapes as an add-on coating.

  18. Electrochemical properties of dip-coated vanadium pentaoxide thin films

    Indian Academy of Sciences (India)

    R S INGOLE; B J LOKHANDE

    2016-10-01

    Vanadium oxide (V$_2$O$_5$) thin films have been deposited on to the stainless-steel substrates by simple dip-coating technique using vanadium pentaoxide as an initial ingredient. Deposited samples were annealed at773 K for 3 h in air. X-ray diffraction analysis of the sample shows crystalline with orthorhombic crystal structure. Scanning electron microscopy study depicts the homogeneous and dense surface morphology. Optical study provesthe direct bandgap transition with energy $\\sim$2.25 eV. Electrochemical performance of the deposited electrode was studied in 1 M NaNO$_3$ electrolyte using cyclic voltammetery, electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Prepared V$_2$O$_5$ electrode shows 207.50 F g$^{−1}$ specific capacitance at the scan rate 5 mV s$^{−1}$, specific energy, specific power and efficiency are 41.33 Whkg$^{−1}$, 21 kW kg$^{−1}$ and 96.72%, respectively. The internal resistance observed from impedance spectroscopy is $\\sim$8.77 ohm. Electrode exhibits excellent chemicalstability up to 1000 cycles.

  19. The estimation of pre- and postpromotion dips with store-level scanner data

    NARCIS (Netherlands)

    Heerde, Harald J. van; Leeflang, Peter S.H.; Wittink, Dick R.

    1999-01-01

    One of the mysteries of store-level scanner data modeling is the lack of a dip in sales in the week(s) following a promotion. Researchers expect to find a postpromotion dip because analyses of household scanner panel data indicate that consumers tend to accelerate their purchases in response to a pr

  20. The estimation of pre- and postpromotion dips with store-level scanner data

    NARCIS (Netherlands)

    Van Heerde, HJ; Leeflang, PSH; Wittink, DR

    2000-01-01

    One of the mysteries of store-level scanner data modeling is the lack of a dip in sales in the weeks following a promotion. Researchers expect to find a postpromotion dip because analyses of household scanner panel data indicate that consumers tend to accelerate their purchases in response to a prom

  1. Intermittent dipping in a low-mass X-ray Binary

    CERN Document Server

    Galloway, Duncan K; Upjohn, James; Stuart, Matthew

    2016-01-01

    Periodic dips observed in approx. 20% of low-mass X-ray binaries are thought to arise from obscuration of the neutron star by the outer edge of the accretion disk. We report the detection with the Rossi X-ray Timing Explorer of two dipping episodes in Aql X-1, not previously a known dipper. The X-ray spectrum during the dips exhibited an elevated neutral column density, by a factor between 1 and almost two orders of magnitude. Dips were not observed in every cycle of the 18.95-hr orbit, so that the estimated frequency for these events is 0.10 (+0.07,-0.05)/cycle. This is the first confirmed example of intermittent dipping in such a system. Assuming that the dips in Aql X-1 occur because the system inclination is intermediate between the non-dipping and dipping sources, implies a range of 72-79 deg. for the source. This result lends support for the presence of a massive (> 2 M_sun) neutron star in Aql X-1, and further implies that approx. 30 additional LMXBs may have inclinations within this range, raising the...

  2. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating

    Science.gov (United States)

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G.; Mullins, John J.; Davies, Jamie A.; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells). PMID:28286747

  3. Dip Pen Nanolithography: a maturing technology for high-throughput flexible nanopatterning

    Science.gov (United States)

    Haaheim, J. R.; Tevaarwerk, E. R.; Fragala, J.; Shile, R.

    2007-04-01

    Precision nanoscale deposition is a fundamental requirement for much of current nanoscience research. Further, depositing a wide range of materials as nanoscale features onto diverse surfaces is a challenging requirement for nanoscale processing systems. As a high resolution scanning probe-based direct-write technology, Dip Pen Nanolithography® (DPN®) satisfies and exceeds these fundamental requirements. Herein we specifically describe the massive scalability of DPN with two dimensional probe arrays (the 2D nano PrintArray). In collaboration with researchers at Northwestern University, we have demonstrated massively parallel nanoscale deposition with this 2D array of 55,000 pens on a centimeter square probe chip. (To date, this is the highest cantilever density ever reported.) This enables direct-writing flexible patterns with a variety of molecules, simultaneously generating 55,000 duplicates at the resolution of single-pen DPN. To date, there is no other way to accomplish this kind of patterning at this unprecedented resolution. These advances in high-throughput, flexible nanopatterning point to several compelling applications. The 2D nano PrintArray can cover a square centimeter with nanoscale features and pattern 10 7 μm2 per hour. These features can be solid state nanostructures, metals, or using established templating techniques, these advances enable screening for biological interactions at the level of a few molecules, or even single molecules; this in turn can enable engineering the cell-substrate interface at sub-cellular resolution.

  4. Arsenic residues in soil at cattle dip tanks in the Vhembe district, Limpopo Province, South Africa

    Directory of Open Access Journals (Sweden)

    Marubini R. Ramudzuli

    2014-07-01

    Full Text Available Arsenic-based compounds have been used for cattle dipping for about half a century to combat East Coast Fever in cattle in South Africa. The government introduced a compulsory dipping programme in communal areas to eradicate the disease in 1911. Concern has been raised regarding the ecological legacy of the use of arsenic-based compounds in these areas. We investigated the incidence of arsenic residue in soil at 10 dip sites in the Vhembe district of Limpopo Province, South Africa. We found high levels of arsenic contamination at a depth of 300 mm at some sites. Control samples indicated that these high arsenic levels are the result of the application of inorganic arsenic. Variation of arsenic concentrations is attributed to duration of exposure to the chemical, soil properties and distance from the dip tank. Concerns are raised regarding the structural condition of the dip tanks, encroaching villages and possible health threats to the human population in the area.

  5. Hot Outflows in Galaxy Clusters

    CERN Document Server

    Kirkpatrick, C C

    2015-01-01

    The gas-phase metallicity distribution has been analyzed for the hot atmospheres of 29 galaxy clusters using {\\it Chandra X-ray Observatory} observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the "iron radius") and jet power is found with the form $R_{\\rm Fe} \\propto P_{\\rm jet}^{0.45}$. The estimated outflow rates are typically tens of solar masses per year but exceed $100 ~\\rm M_\\odot ~yr^{-1}$ in the most powerful AGN. The outflow rates are 10% to 20% of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at ...

  6. Dip Spectroscopy of the Low Mass X-Ray Binary XB 1254-690

    Science.gov (United States)

    Smale, Alan P.; Church, M. J.; BalucinskaChurch, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We observed the low mass X-ray binary XB 1254-690 with the Rossi X-ray Timing Explorer in 2001 May and December. During the first observation strong dipping on the 3.9-hr orbital period and a high degree of variability were observed, along with "shoulders" approx. 15% deep during extended intervals on each side of the main dips. The first observation also included pronounced flaring activity. The non-dip spectrum obtained using the PCA instrument was well-described by a two-component model consisting of a blackbody with kT = 1.30 +/- 0.10 keV plus a cut-off power law representation of Comptonized emission with power law photon index 1.10 +/- 0.46 and a cut-off energy of 5.9(sup +3.0, sub -1.4) keV. The intensity decrease in the shoulders of dipping is energy-independent, consistent with electron scattering in the outer ionized regions of the absorber. In deep dipping the depth of dipping reached 100%, in the energy band below 5 keV, indicating that all emitting regions were covered by absorber. Intensity-selected dip spectra were well-fit by a model in which the point-like blackbody is rapidly covered, while the extended Comptonized emission is progressively overlapped by the absorber, with the, covering fraction rising to 95% in the deepest portion of the dip. The intensity of this component in the dip spectra could be modeled by a combination of electron scattering and photoelectric absorption. Dipping did not occur during the 2001 December observation, but remarkably, both bursting and flaring were observed contemporaneously.

  7. Comparison of piracetam measured with HPLC-DAD, HPLC-ESI-MS, DIP-APCI-MS, and a newly developed and optimized DIP-ESI-MS.

    Science.gov (United States)

    Lenzen, Claudia; Winterfeld, Gottfried A; Schmitz, Oliver J

    2016-06-01

    The direct inlet probe-electrospray ionization (DIP-ESI) presented here was based on the direct inlet probe-atmospheric pressure chemical ionization (DIP-APCI) developed by our group. It was coupled to an ion trap mass spectrometer (MS) for the detection of more polar compounds such as degradation products from pharmaceuticals. First, the position of the ESI tip, the gas and solvent flow rates, as well as the gas temperature were optimized with the help of the statistic program Minitab® 17 and a caffeine standard. The ability to perform quantitative analyses was also tested by using different concentrations of caffeine and camphor. Calibration curves with a quadratic calibration regression of R (2) = 0.9997 and 0.9998 for caffeine and camphor, respectively, were obtained. The limit of detection of 2.5 and 1.7 ng per injection for caffeine and camphor were determined, respectively. Furthermore, a solution of piracetam was used to compare established analytical methods for this drug and its impurities such as HPLC-diode array detector (DAD) and HPLC-ESI-MS with the DIP-APCI and the developed DIP-ESI. With HPLC-DAD and 10 μg piracetam on column, no impurity could be detected. With HPLC-ESI-MS, two impurities (A and B) were identified with only 4.6 μg piracetam on column, while with DIP-ESI, an amount of 1.6 μg piracetam was sufficient. In the case of the DIP-ESI measurements, all detected impurities could be identified by MS/MS studies. Graphical Abstract Scheme of the DIP-ESI principle.

  8. Directed assembly of nanomaterials for miniaturized sensors by dip-pen nanolithography using precursor inks

    Science.gov (United States)

    Su, Ming

    The advent of nanomaterials with enhanced properties and the means to pattern them in a controlled fashion have paved the way to construct miniaturized sensors for improved detection. However it remains a challenge for the traditional methods to create such sensors and sensor arrays. Dip pen nanolithography (DPN) can form nanostructures on a substrate by controlling the transfer of molecule inks. However, previous DPN can not pattern solid materials on insulating surfaces, which are necessary to form functional electronic devices. In the dissertation, the concept of reactive precursor inks for DPN is developed for the generation of solid functional nanostructures of the following materials: organic molecule, sol-gel material, and conducting polymer. First, the covalent bonding is unnecessary for DPN as shown in the colored ink DPN; therefore the numbers of molecules that can be patterned is extended beyond thiol or thiolated molecules. Subsequently, a reactive precursor strategy (sol) is developed to pattern inorganic or organic/inorganic composite nanostructures on silicon based substrates. The method works by hydrolysis of metal precursors in the water meniscus and allows the preparation of solid structures with controlled geometry beyond the individual molecule level. Then the SnO 2 nanostructures patterned between the gaps of electrodes are tested as gas sensors. Proof-of-concept experiments are demonstrated on miniaturized sensors that show fast response and recovery to certain gases. Furthermore, an eight-unit sensor array is fabricated on a chip using SnO2 sols that are doped with different metals. The multiplexed device can recognize different gases by comparing the response patterns with the reference patterns of known gases generated on the same array. At last, the idea of precursor ink for DPN is extended to construct conducting polymer based devices. By using an acid promoted polymerization approach, conducting polymers are patterned on silicon dioxide

  9. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    Science.gov (United States)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  10. Dip-dependent variations in LFE duration during ETS events

    Science.gov (United States)

    Chestler, S.; Creager, K.; Ghosh, A.

    2015-12-01

    Using data from the Array of Arrays experiment, we create a new, more spatially complete catalog of LFEs beneath the Olympic Peninsula, WA. Using stacked waveforms produced by stacking 1-minute windows of data from each array over the slowness with the greatest power [Ghosh et al., 2012], we pick out peaks in tremor activity that are consistent over multiple arrays. These peaks are potential LFE detections. Fifteen-second windows of raw data centered on each peak are scanned through time. If the waveform repeats, the detection is used as a new LFE family. Template waveforms for each family are created by stacking all windows that correlate with the initial detection. During an ETS event, activity at a given point on the plate interface (i.e. the activity of an LFE family) typically lasts for 3.5 (downdip) to 5 days (updip). Activity generally begins with a flurry of LFEs lasting 8 hours (downdip) to 20 hours (updip) followed by many short bursts of activity separated by 5 hours or more. Updip families have more bursts (5-10) than downdip families (2-5 bursts). The later bursts often occur during times of encouraging tidal shear stress, while the initial flurries have no significant correlation with tides. While updip LFE families are more active during ETS events than downdip families, they seldom light up between ETS events, which only occur every 12-14 months. On the other hand, downdip LFE families are active much more frequently during the year; the most down-dip families exhibit activity every week or so. Because updip families are rarely active between ETS events, it is possible that little stress is released updip during inter-ETS time periods. Hence during ETS events more stress needs to be released updip than downdip, consistent with the longer-duration activity of updip LFE families.

  11. Neuropsychiatric symptoms in past users of sheep dip and other pesticides

    Science.gov (United States)

    Solomon, Christine; Poole, Jason; Palmer, Keith T; Peveler, Robert; Coggon, David

    2007-01-01

    Objectives To explore the prevalence and pattern of neuropsychiatric symptoms in past users of sheep dip and other pesticides. Methods From a postal survey of men born between 1933 and 1977 and resident in three rural areas of England and Wales (response rate 31%), data were obtained on lifetime history of work with pesticides, neurological symptoms in the past month, current mental health and tendency to be troubled by non‐neurological somatic symptoms (summarised as a somatising tendency score). Risk factors for current neuropsychiatric symptoms were assessed by modified Cox regression. Results Data were available for 9844 men, including 1913 who had worked with sheep dip, 832 with other insecticides but not sheep dip and 990 with other pesticides but never with sheep dip or insecticides. Neurological symptoms were consistently 20–60% more common in past users of sheep dip than in men who had never worked with pesticides, but their prevalence was also higher in men who had worked only with pesticides other than sheep dip or insecticides. They clustered strongly within individuals, but this clustering was not specific to men who had worked with sheep dip. Reporting of three or more neurological symptoms was associated with somatising tendency (prevalence ratio (PR) 15.0, 95% CI 11.4 to 19.5, for the highest vs the lowest category of somatisation) and was more common in users of sheep dip (PR 1.3, 95% CI 1.0 to 1.6), other insecticides (PR 1.4, 95% CI 1.0 to 1.8) and other pesticides (PR 1.3, 95% CI 1.0 to 1.7) than in non‐users. Among users of sheep dip, prevalence was higher in men who had dipped most often, but not in those who had worked with sheep dip concentrate. Past use of pesticides was not associated with current anxiety or depression. Conclusion Neurological symptoms are more common in men who have worked with sheep dip, but the association is not specific to sheep dip or insecticides. A toxic cause for the excess cannot be ruled out, but several

  12. Alternative Metal Hot Cutting Operations for Opacity

    Science.gov (United States)

    2014-11-01

    testing was conducted on 9/32” ordinary strength steel bulkhead section from the ex-CGN-9 and, if possible, 2” high yield strength steel ( HY80 ...recorded for both the alternative fuel and propane. Test cuts were on 9/32” steel surface ship sections with additional demonstration cuts performed on...thicker surface ship sections and 2” high yield strength steel submarine pressure hull as the pieces became available. The results from the

  13. Evaluation of interface adhesion of hot-dipped zinc coating on TRIP steel with tensile testing and finite element calculation

    NARCIS (Netherlands)

    Song, G.M.; De Hosson, J.T.M.; Sloof, W.G.; Pei, Y.T.

    In this work, a methodology for the determination of the interface adhesion strength of zinc coating on TRIP steel is present. This method consists of a conventional tensile test in combination with finite element calculation. The relation between the average interface crack length and the applied

  14. The impact of synthetic pyrethroid and organophosphate sheep dip formulations on microbial activity in soil

    Energy Technology Data Exchange (ETDEWEB)

    Boucard, Tatiana K.; McNeill, Charles [Department of Environmental Science, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Bardgett, Richard D. [Department of Biological Sciences, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Paynter, Christopher D. [Department of Environmental Science, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T. [Department of Environmental Science, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YQ (United Kingdom)], E-mail: k.semple@lancaster.ac.uk

    2008-05-15

    Sheep dip formulations containing organophosphates (OPs) or synthetic pyrethroids (SPs) have been widely used in UK, and their spreading onto land has been identified as the most practical disposal method. In this study, the impact of two sheep dip formulations on the microbial activity of a soil was investigated over a 35-d incubation. Microbial utilisation of [1-{sup 14}C] glucose, uptake of {sup 14}C-activity into the microbial biomass and microbial numbers (CFUs g{sup -1} soil) were investigated. In control soils and soils amended with 0.01% sheep dip, after 7 d a larger proportion of added glucose was allocated to microbial biomass rather than respired to CO{sub 2}. No clear temporal trends were found in soils amended with 0.1% and 1% sheep dips. Both sheep dip formulations at 0.1% and 1% concentrations resulted in a significant increase in CFUs g{sup -1} soil and [1-{sup 14}C] glucose mineralisation rates, as well as a decline in microbial uptake of [1-{sup 14}C] glucose, compared to control and 0.01% SP- or OP-amended soils. This study suggests that the growth, activity, physiological status and/or structure of soil microbial community may be affected by sheep dips. - The application of sheep dip formulations can have a profound impact upon microbial activity and substrate utilisation in soil.

  15. Hot stamping advanced manufacturing technology of lightweight car body

    CERN Document Server

    Hu, Ping; He, Bin

    2017-01-01

    This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers...

  16. Trapping dynamics of diindenoperylene (DIP) in self-assembled monolayers using molecular simulation

    KAUST Repository

    Kaushik, Ananth P.

    2011-07-01

    All-atom Molecular Dynamics simulation methods employing a well-tested intermolecular potential model, MM3 (Molecular Mechanics 3), demonstrate the propensity for diindenoperylene (DIP) molecules to insert between molecules of a self-assembled monolayer (SAM) during a deposition process intended to grow a thin film of this organic semiconductor molecule onto the surface of self-assembled monolayers. The tendency to insert between SAM molecules is fairly prevalent at normal growth temperatures and conditions, but is most strongly dependent on the density and the nature of the SAM. We posit the existence of an optimal density to favor surface adsorption over insertion for this system. DIP is less likely to insert in fluorinated SAMs, like FOTS (fluorooctatrichlorosilane), than its unfluorinated analog, OTS (octatrichlorosilane). It is also less likely to insert between shorter SAMs (e.g., less insertion in OTS than ODTS (octadecyltrichlorosilane)). Very short length, surface-coating molecules, like HDMS (hexamethyldisilazane), are more likely to scatter energetic incoming DIP molecules with little insertion on first impact (depending on the incident energy of the DIP molecule). Grazing angles of incidence of the depositing molecules generally favor surface adsorption, at least in the limit of low coverage, but are shown to be dependent on the nature of the SAM. The validity of these predictions is confirmed by comparison of the predicted sticking coefficients of DIP at a variety of incident energies on OTS, ODTS, and FOTS SAMs with results obtained experimentally by Desai et al. (2010) [23]. The simulation predictions of the tendency of DIP to insert can be explained, in large part, in terms of binding energies between SAM and DIP molecules. However, we note that entropic and stochastic events play a role in the deposition outcomes. Preliminary studies of multiple deposition events, emulating growth, show an unexpected diffusion of DIP molecules inserted within the

  17. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene

    Science.gov (United States)

    Sierra, Juan F.; Neumann, Ingmar; Costache, Marius V.; Valenzuela, Sergio O.

    2015-06-01

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage VNL across the remaining (detector) leads. Due to the nonlocal character of the measurement, VNL is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and VNL, VNL ~ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying VNL as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  18. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Costache, Marius V; Valenzuela, Sergio O

    2015-06-10

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.

  19. Theoretical Calculation for the Dip Feature in Tunnelling Experiment on Bi2212

    Institute of Scientific and Technical Information of China (English)

    谢刚; 韩汝珊

    2001-01-01

    We generalize a model, which was presented by Norman [Phys. Rev. Lett. 79 (1997) 3506], to calculate the Bi2Sr2CaCu2Os+δ (Bi2212) single-electron tunnelling conductance. In our calculation result, the dip feature appears which has been widely observed in tunnelling experiments. It is found that this dip feature in tunnelling experiments and the dip/hump feature in angle-resolved photoemission experiments have a common physics. Moreover, it is shown from our numerical calculation method that if the spectral function A(κ, ω) is known, the tunnelling conductance can be obtained.

  20. Elimination of the beam effect on channeling dips of bismuth implanted in silicon

    Science.gov (United States)

    Wagh, A. G.; Radhakrishnan, S.; Gaonkar, S. G.; Kansara, M. J.

    1980-01-01

    The effect of the analysing He + ion beam has been eliminated from channeling measurements on Si(Bi) by extrapolating the plot of normalised yield against He + dose to zero ion dose. The magnitude of the beam effect varies with the angle of incidence, being minimum for beam incidence along the crystallographic axis. The axial channeling dips thus obtained exhibit similar minimum yields for bismuth and silicon. The bismuth dips are, however, narrower than for silicon. The planar channeling experiments, on the other hand, yield nearly identical bismuth and silicon dips. The results indicate that the bismuth atom occupies the substitutional site in silicon, but the lattice is strained in its vicinity.

  1. Ion beam interaction with a potential dip formed in front of an electron-absorbing boundary

    Energy Technology Data Exchange (ETDEWEB)

    Bailung, H; Pal, A R; Adhikary, N C; Gogoi, H K; Chutia, Joyanti [Plasma Physics Laboratory, Materials Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam (India)

    2006-02-15

    Evolution of a potential dip in front of an electron absorbing plate has been experimentally investigated. A potential drop of the order of T{sub e}/2 exists between the bulk plasma and the boundary of the electron space charge region where the potential minimum occurs. The dip parameters are found to obey Child's law. Necessary ion pumping is provided by the floating teflon sheet covering the back of the plate. An ion beam launched towards the plate is found to be effective to modify the dip and subsequently suppress it.

  2. Efficiency dip observed with InGaN-based multiple quantum well solar cells

    KAUST Repository

    Lai, Kunyu

    2014-01-01

    The dip of external quantum efficiency (EQE) is observed on In0.15Ga0.85N/GaN multiple quantum well (MQW) solar cells upon the increase of incident optical power density. With indium composition increased to 25%, the EQE dip becomes much less noticeable. The composition dependence of EQE dip is ascribed to the competition between radiative recombination and photocurrent generation in the active region, which are dictated by quantum-confined Stark effect (QCSE) and composition fluctuation in the MQWs.

  3. Spin-orbit interaction induced current dip in a single quantum dot coupled to a spin

    Science.gov (United States)

    Giavaras, G.

    2017-03-01

    Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet-triplet anticrossing point which appears due to the spin-orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin-orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.

  4. Plateaus, Dips, and Leaps: Where to Look for Inventions and Discoveries During Skilled Performance.

    Science.gov (United States)

    Gray, Wayne D; Lindstedt, John K

    2016-10-20

    The framework of plateaus, dips, and leaps shines light on periods when individuals may be inventing new methods of skilled performance. We begin with a review of the role performance plateaus have played in (a) experimental psychology, (b) human-computer interaction, and (c) cognitive science. We then reanalyze two classic studies of individual performance to show plateaus and dips which resulted in performance leaps. For a third study, we show how the statistical methods of Changepoint Analysis plus a few simple heuristics may direct our focus to periods of performance change for individuals. For the researcher, dips become the marker of exploration where performance suffers as new methods are invented and tested. Leaps mark the implementation of a successful new method and an incremental jump above the path plotted by smooth and steady log-log performance increments. The methods developed during these dips and leaps are the key to surpassing one's teachers and acquiring extreme expertise.

  5. AB-stacked multilayer graphene synthesized via chemical vapor deposition: a characterization by hot carrier transport.

    Science.gov (United States)

    Diaz-Pinto, Carlos; De, Debtanu; Hadjiev, Viktor G; Peng, Haibing

    2012-02-28

    We report the synthesis of AB-stacked multilayer graphene via ambient pressure chemical vapor deposition on Cu foils and demonstrate a method to construct suspended multilayer graphene devices. In four-terminal geometry, such devices were characterized by hot carrier transport at temperatures down to 240 mK and in magnetic fields up to 14 T. The differential conductance (dI/dV) shows a characteristic dip at longitudinal voltage bias V = 0 at low temperatures, indicating the presence of hot electron effect due to a weak electron-phonon coupling. Under magnetic fields, the magnitude of the dI/dV dip diminishes through the enhanced intra-Landau level cyclotron phonon scattering. Our results provide new perspectives in obtaining and understanding AB-stacked multilayer graphene, important for future graphene-based applications.

  6. DISMISS: detection of stranded methylation in MeDIP-Seq data.

    Science.gov (United States)

    Niazi, Umar; Geyer, Kathrin K; Vickers, Martin J; Hoffmann, Karl F; Swain, Martin T

    2016-07-29

    DNA methylation is an important regulator of gene expression and chromatin structure. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is commonly used to identify regions of DNA methylation in eukaryotic genomes. Within MeDIP-Seq libraries, methylated cytosines can be found in both double-stranded (symmetric) and single-stranded (asymmetric) genomic contexts. While symmetric CG methylation has been relatively well-studied, asymmetric methylation in any dinucleotide context has received less attention. Importantly, no currently available software for processing MeDIP-Seq reads is able to resolve these strand-specific DNA methylation signals. Here we introduce DISMISS, a new software package that detects strand-associated DNA methylation from existing MeDIP-Seq analyses. Using MeDIP-Seq datasets derived from Apis mellifera (honeybee), an invertebrate species that contains more asymmetric- than symmetric- DNA methylation, we demonstrate that DISMISS can identify strand-specific DNA methylation signals with similar accuracy as bisulfite sequencing (BS-Seq; single nucleotide resolution methodology). Specifically, DISMISS is able to confidently predict where DNA methylation predominates (plus or minus DNA strands - asymmetric DNA methylation; plus and minus DNA stands - symmetric DNA methylation) in MeDIP-Seq datasets derived from A. mellifera samples. When compared to DNA methylation data derived from BS-Seq analysis of A. mellifera worker larva, DISMISS-mediated identification of strand-specific methylated cytosines is 80 % accurate. Furthermore, DISMISS can correctly (p <0.0001) detect the origin (sense vs antisense DNA strands) of DNA methylation at splice site junctions in A. mellifera MeDIP-Seq datasets with a precision close to BS-Seq analysis. Finally, DISMISS-mediated identification of DNA methylation signals associated with upstream, exonic, intronic and downstream genomic loci from A. mellifera MeDIP-Seq datasets outperforms MACS2 (Model

  7. The Phosphodiesterase DipA (PA5017) Is Essential for Pseudomonas aeruginosa Biofilm Dispersion

    Science.gov (United States)

    Roy, Ankita Basu; Petrova, Olga E.

    2012-01-01

    Although little is known regarding the mechanism of biofilm dispersion, it is becoming clear that this process coincides with alteration of cyclic di-GMP (c-di-GMP) levels. Here, we demonstrate that dispersion by Pseudomonas aeruginosa in response to sudden changes in nutrient concentrations resulted in increased phosphodiesterase activity and reduction of c-di-GMP levels compared to biofilm and planktonic cells. By screening mutants inactivated in genes encoding EAL domains for nutrient-induced dispersion, we identified in addition to the previously reported ΔrbdA mutant a second mutant, the ΔdipA strain (PA5017 [dispersion-induced phosphodiesterase A]), to be dispersion deficient in response to glutamate, nitric oxide, ammonium chloride, and mercury chloride. Using biochemical and in vivo studies, we show that DipA associates with the membrane and exhibits phosphodiesterase activity but no detectable diguanylate cyclase activity. Consistent with these data, a ΔdipA mutant exhibited reduced swarming motility, increased initial attachment, and polysaccharide production but only somewhat increased biofilm formation and c-di-GMP levels. DipA harbors an N-terminal GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) domain and two EAL motifs within or near the C-terminal EAL domain. Mutational analyses of the two EAL motifs of DipA suggest that both are important for the observed phosphodiesterase activity and dispersion, while the GAF domain modulated DipA function both in vivo and in vitro without being required for phosphodiesterase activity. Dispersion was found to require protein synthesis and resulted in increased dipA expression and reduction of c-di-GMP levels. We propose a role of DipA in enabling dispersion in P. aeruginosa biofilms. PMID:22493016

  8. Hot Carrier Extraction from Multilayer Graphene.

    Science.gov (United States)

    Urcuyo, Roberto; Duong, Dinh Loc; Sailer, Patrick; Burghard, Marko; Kern, Klaus

    2016-11-09

    Hot carriers in semiconductor or metal nanostructures are relevant, for instance, to enhance the activity of oxide-supported metal catalysts or to achieve efficient photodetection using ultrathin semiconductor layers. Moreover, rapid collection of photoexcited hot carriers can improve the efficiency of solar cells, with a theoretical maximum of 85%. Because of the long lifetime of secondary excited electrons, graphene is an especially promising two-dimensional material to harness hot carriers for solar-to-electricity conversion. However, the photoresponse of thus far realized graphene photoelectric devices is mainly governed by thermal effects, which yield only a very small photovoltage. Here, we report a Gr-TiOx-Ti heterostructure wherein the photovoltaic effect is predominant. By doping the graphene, the open circuit voltage reaches values up to 0.30 V, 2 orders of magnitude larger than for devices relying upon the thermoelectric effect. The photocurrent turned out to be limited by trap states in the few-nanometer-thick TiOx layer. Our findings represent a first valuable step toward the integration of graphene into third-generation solar cells based upon hot carrier extraction.

  9. Hot plasma dielectric tensor

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    The hot plasma dielectric tensor is discussed in its various approximations. Collisionless cyclotron resonant damping and ion/electron Bernstein waves are discussed to exemplify the significance of a kinetic description of plasma waves.

  10. From X-ray dips to eclipse: Witnessing disk reformation in the recurrent nova USco

    CERN Document Server

    Ness, J -U; Dobrotka, A; Sadowski, A; Drake, J J; Barnard, R; Talavera, A; Gonzalez-Riestra, R; Page, K L; Hernanz, M; Sala, G; Starrfield, S

    2011-01-01

    The recurrent eclipsing nova USco was observed with XMM-Newton, following its 10th recorded outburst. Simultaneous X-ray, ultraviolet (UV), and optical observations were carried out with XMM-Newton on days 22.9 and 34.9 after outburst, viewing two full passages of the companion in front of the nova ejecta and the reforming accretion disk during different stages of the evolution. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve. The X-ray dips disappeared by day 34.9, then yielding clean eclipses in all bands. We interpret the change from X-ray dips to eclipse as part of the formation process of an accretion disk while the nova was still active. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highly elliptical trajectories. Low-ionization material expelled from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant prog...

  11. New Joining Technology for Optimized Metal/Composite Assemblies

    Directory of Open Access Journals (Sweden)

    Holger Seidlitz

    2014-01-01

    Full Text Available The development of a new joining technology, which is used to manufacture high strength hybrid constructions with thermoplastic composites (FRP and metals, is introduced. Similar to natural regulation effects at trees, fibers around the FRP joint become aligned along the lines of force and will not be destroyed by the joining process. This is achieved by the local utilization of the specific plastic flow properties of the FRT and metal component. Compared with usual joining methods—such as flow drill screws, blind and self-piercing rivets—noticeably higher tensile properties can be realized through the novel process management. The load-bearing capability increasing effect could be proved on hybrid joints with hot-dip galvanized steel HX420LAD and orthotropic glass—as well as carbon—fiber reinforced plastics. The results, which were determined in tensile-shear and cross-shear tests according to DIN EN ISO 14273 and DIN EN ISO 14272, are compared with holding loads of established joining techniques with similar joining point diameter and material combinations.

  12. 机械搅拌法与镁喷吹法铁水搅拌能和混匀时间的关系%Relationship Between Stirring Power and Mixing Time of Hot Metal by Mechanical Stirring Method and Magnesium Injection Method

    Institute of Scientific and Technical Information of China (English)

    倪冰; 刘浏; 姚同路

    2014-01-01

    采用永田进治公式和全浮力模型计算了机械搅拌法和喷吹法的铁水搅拌能,研究了搅拌能和混匀时间的关系,并和水模型的结果进行了比较,分析了两种搅拌能影响混匀时间的原因。结果表明,机械搅拌法的搅拌能力比喷吹法大数倍,在同一搅拌能下机械搅拌方式的混匀时间比喷吹法短。搅拌优势使得机械搅拌法比喷吹法的脱硫率比喷吹法平均高18.61%,带来的副作用是铁水温降要高于喷吹法15℃,以及对耐火材料的侵蚀速度为喷吹法的3倍。%The stirring power of hot metal by mechanical stirring method and magnesium injection method were cal-culated with empirical formula and plume model .The relationship between mixing time and stirring power of hot metal was determined according to the calculated results and compared with that of liquid in water model .The results show that mechanical stirring method stirring power is several times of the injection method stirring power .The me-chanical stirring method mixing time is shorter than that of injection method at the same level of stirring power .The desulfurization rate of hot metal by mechanical stirring method is 18 .61% higher than that by injection method . Meanwhile ,it brings some negative effects which the temperature drop of hot metal caused by mechanical stirring method are 15 ℃ higher than that caused by injection method for strong mixing ,and the refractory erosion rate of mechanical stirring method is 3 times of that of injection method .

  13. Hot Extrusion of Aluminum Chips

    Science.gov (United States)

    Tekkaya, A. Erman; Güley, Volkan; Haase, Matthias; Jäger, Andreas

    The process of hot extrusion is a promising approach for the direct recycling of aluminum machining chips to aluminum profiles. The presented technology is capable of saving energy, as remelting of aluminum chips can be avoided. Depending on the deformation route and process parameters, the chip-based aluminum extradates showed mechanical properties comparable or superior to cast aluminum billets extruded under the same conditions. Using different metal flow schemes utilizing different extrusion dies the mechanical properties of the profiles extruded from chips can be improved. The energy absorption capacity of the profiles the rectangular hollow profiles extruded from chips and as-cast billets were analyzed using the drop hammer test set-up. The formability of the profiles extruded from chips and as-cast material were compared using tube bending tests in a three-roller-bending machine.

  14. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    Science.gov (United States)

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O.'

    2015-06-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness.

  15. Corrosion and protection of metals in the rural atmosphere of "El Pardo" Spain (PATINA / CYTED project

    Directory of Open Access Journals (Sweden)

    Simancas, J.

    2003-12-01

    Full Text Available Atmospheric corrosion tests of metallic and organic coatings on steel, zinc and aluminium have been conducted in "El Pardo" (Spain as part of the PATINA/CYTED project "Anticorrosive Protection of Metals in the Atmosphere". This is a rural atmosphere with the following ISO corrosivity categories: C2 (Fe, C2 (Zn, C3 (Cu and Cl (Al. Its average temperature and relative humidity is 13 °C and 62.8 %, respectively, and it has low SO2 and Cl- contents. Results of 42 months exposure are discussed. Atmospheric exposure tests were carried out for the following types of coatings: conventional paint coatings for steel and hot-dip galvanized steel (group 1, new painting technologies for steel and galvanized steel (group 2, zinc-base metallic coatings (group 3, aluminium-base metallic coatings (group 4, coatings on aluminium (group 5 and coil-coatings on steel, hot-dip galvanized steel and 55 % Al-Zn coated steel (group 6.

    Como parte del proyecto PATINA/CYTED "Protección anticorrosiva de metales en la atmósfera" se han llevado a cabo en la estación de ensayo de "El Pardo" (España, ensayos de corrosión atmosférica de recubrimientos metálicos y orgánicos sobre acero, zinc y aluminio. Se trata de una atmósfera rural según la clasificación ISO de grado de corrosividad: C2 (Fe, C2 (Zn, C3 (Cu y Cl (Al. La temperatura y humedad relativa media es de 13 °C y 62,8 %, respectivamente, y tiene bajos contenidos de SO2 y Cl-. Se discuten los resultados obtenidos después de 42 meses de exposición. Los ensayos de corrosión atmosférica se llevaron a cabo para tres tipos de recubrimientos: recubrimientos de pintura convencional sobre acero y acero zincado (grupo 1, nuevas tecnologías en pinturas para acero y acero galvanizado (grupo 2, recubrimientos metálicos base zinc (grupo 3, recubrimientos metálicos base aluminio (grupo 4, recubrimientos sobre aluminio (grupo 5 y recubrimientos de banda en continuo

  16. Theory of hot electron photoemission from graphene

    Science.gov (United States)

    Ang, Lay Kee; Liang, Shijun

    Motivated by the development of Schottky-type photodetectors, some theories have been proposed to describe how the hot carriers generated by the incident photon are transported over the Schottky barrier through the internal photoelectric effect. One of them is Fowler's law proposed as early as 1931, which studied the temperature dependence of photoelectric curves of clean metals. This law is very successful in accounting for mechanism of detecting photons of energy lower than the band gap of semiconductor based on conventional metal/semiconductor Schottky diode. With the goal of achieving better performance, graphene/silicon contact-based- graphene/WSe2 heterostructure-based photodetectors have been fabricated to demonstrate superior photodetection efficiency. However, the theory of how hot electrons is photo-excited from graphene into semiconductor remains unknown. In the current work, we first examine the photoemission process from suspended graphene and it is found that traditional Einstein photoelectric effect may break down for suspended graphene due to the unique linear band structure. Furthermore, we find that the same conclusion applies for 3D graphene analog (e.g. 3D topological Dirac semi-metal). These findings are very useful to further improve the performance of graphene-based photodetector, hot-carrier solar cell and other kinds of sensor.

  17. Fending Off Hot Money

    Institute of Scientific and Technical Information of China (English)

    LAN XINZHEN

    2010-01-01

    @@ The benchmark Shanghai Composite Index was plagued by dips, climbs and dives as the stock market slumped from 3,186 to 2,838 points in four days, beginning November 12.Sharp fluctuations occurred on the index in the following days. Figures from Wind Information Co. Ltd.said 250 billion yuan ($37.61 billion) vacated the Chinese stock market in November,while a substantial amount of money invested in the market under the qualified foreign institutional investor (QFII) scheme also pulled out.

  18. Sensitive DIP-STR markers for the analysis of unbalanced mixtures from "touch" DNA samples.

    Science.gov (United States)

    Oldoni, Fabio; Castella, Vincent; Grosjean, Frederic; Hall, Diana

    2017-05-01

    Casework samples collected for forensic DNA analysis can produce genomic mixtures in which the DNA of the alleged offender is masked by high quantities of DNA coming from the victim. DIP-STRs are novel genetic markers specifically developed to enable the target analysis of a DNA of interest in the presence of exceeding quantities of a second DNA (up to 1000-fold). The genotyping system, which is based on allele-specific amplifications of haplotypes formed by a deletion/insertion polymorphism (DIP) and a short tandem repeat (STR), combines the capacity of targeting the DNA of an individual with a strong identification power. Finally, DIP-STRs are autosomal markers therefore they can be applied to any combination of major and minor DNA. In this study we aimed to assess the ability of DIP-STRs to detect the minor contributor on challenging "touch" DNA samples simulated with representative crime-associated substrates and to compare their performance to commonly used male-specific markers (Y-STRs). As part of a comprehensive study on the relative DNA contribution of two persons handling the same object, we selected 71 unbalanced contact traces of which 14 comprised a male minor DNA contributor mixed to a female major DNA contributor. Using a set of six DIP-STRs, one to four markers were found to be informative for the minor DNA detection across traces. When compared to Y-STRs (14 traces), the DIP-STRs showed similar sensitivity in detecting the minor DNA across substrate materials with a similar occurrence of allele drop-out. Conversely, because of the sex combination of the two users of the object, 57 remaining traces could only be investigated by DIP-STRs. Of these, 30 minor DNA contributors could be detected by all informative markers while 12 traces showed events of allele drop-out. Finally, 15 traces showed no amplification of the minor DNA. These last 15 samples were mostly characterized by a combination of short handling time of the object, low DNA recovery and

  19. Fluid dipping technology of chimpanzees in Comoé National Park, Ivory Coast.

    Science.gov (United States)

    Lapuente, Juan; Hicks, Thurston C; Linsenmair, K Eduard

    2017-05-01

    Over a 6 month period during the dry season, from the end of October 2014 to the beginning of May 2015, we studied tool use behavior of previously unstudied and non-habituated savanna chimpanzees (Pan troglodytes verus) living in the Comoé National Park, Ivory Coast (CI). We analyzed all the stick tools and leaf-sponges found that the chimpanzees used to forage for ants, termites, honey, and water. We found a particular behavior to be widespread across different chimpanzee communities in the park, namely, dipping for water from tree holes using sticks with especially long brush-tip modifications, using camera traps, we recorded adults, juveniles, and infants of three communities displaying this behavior. We compared water dipping and honey dipping tools used by Comoé chimpanzees and found significant differences in the total length, diameter, and brush length of the different types of fluid-dipping tools used. We found that water dipping tools had consistently longer and thicker brush-tips than honey dipping tools. Although this behavior was observed only during the late dry season, the chimpanzees always had alternative water sources available, like pools and rivers, in which they drank without the use of a tool. It remains unclear whether the use of a tool increases efficient access to water. This is the first time that water dipping behavior with sticks has been found as a widespread and well-established behavior across different age and sex classes and communities, suggesting the possibility of cultural transmission. It is crucial that we conserve this population of chimpanzees, not only because they may represent the second largest population in the country, but also because of their unique behavioral repertoire. © 2016 Wiley Periodicals, Inc.

  20. DipTest: A litmus test for E. coli detection in water.

    Science.gov (United States)

    Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb; Mitra, Sushanta K

    2017-01-01

    We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source.

  1. Model-based Corrections to Observed Azimuth and Slowness Deviations from a Dipping Mohorovicic Discontinuity

    Science.gov (United States)

    Flanagan, M. P.; Myers, S.; Simmons, N. A.

    2012-12-01

    Back azimuth and slowness anomalies observed at seismic arrays can be used to constrain local and distant structural and propagation effects in the Earth. Observations of large systematic deviations in both azimuth and slowness measured for several P phases (i.e., Pg, Pn, P, PKP) recorded at several IMS arrays show a characteristic sinusoidal pattern when plotted as a function of theoretical back azimuth. These deviations are often interpreted as the affect of the wavefield being systematically bent by refraction from a dipping velocity structure beneath the array, most likely a dipping Moho. We develop a model-based technique that simultaneously fits back azimuth and slowness observations with a ray-based prediction that incorporates a dipping layer defined by its strike and dip. Because the azimuth and slowness deviations both vary as a function of true azimuth, fitting both residuals jointly will give a more consistent calibration for the array. The technique is used to fit over 9900 observations at CMAR from a global distribution of well-located seismic events. Under the assumption that the dipping layer is the Moho with mantle velocity 8.04 km/sec and crustal velocity 6.2 km/sec, we estimate that Moho strike and dip under the CMAR array are 192.6° and 18.3°, respectively. When the trend of the Moho is removed from the back azimuth and slowness residuals, both the sinuous trend and variations with predicted slowness are mitigated. While a dipping interface model does not account for all of the discrepancy between observed and predicted back azimuth and slowness anomalies, and additional calibration whether empirical or model based should be pursued, this technique is a good first step in the calibration procedure for arrays exhibiting sinusoidal residual trends.

  2. Development of iron-aluminide hot-gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Wright, I.G.; Judkins, R.R.

    1996-06-01

    Removal of particles from hot synthesis gas produced by coal gasification is vital to the success of these systems. In Integrated [Coal] Gasification Combined Cycle systems, the synthesis gas is the fuel for gas turbines. To avoid damage to turbine components, it is necessary that particles be removed from the fuel gas prior to combustion and introduction into the turbine. Reliability and durability of the hot-gas filtering devices used to remove the particles is, of course, of special importance. Hot-gas filter materials include both ceramics and metals. Numerous considerations must be made in selecting materials for these filters. Constituents in the hot gases may potentially degrade the properties and performance of the filters to the point that they are ineffective in removing the particles. Very significant efforts have been made by DOE and others to develop effective hot-particle filters and, although improvements have been made, alternative materials and structures are still needed.

  3. Hot-carrier-induced linear drain current and threshold voltage degradation for thin layer silicon-on-insulator field P-channel lateral double-diffused metal-oxide-semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin; Qiao, Ming; He, Yitao; Li, Zhaoji; Zhang, Bo, E-mail: bozhang@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China)

    2015-11-16

    Hot-carrier-induced linear drain current (I{sub dlin}) and threshold voltage (V{sub th}) degradations for the thin layer SOI field p-channel lateral double-diffused MOS (pLDMOS) are investigated. Two competition degradation mechanisms are revealed and the hot-carrier conductance modulation model is proposed. In the channel, hot-hole injection induced positive oxide trapped charge and interface trap gives rise to the V{sub th} increasing and the channel conductance (G{sub ch}) decreasing, then reduces I{sub dlin}. In the p-drift region, hot-electron injection induced negative oxide trapped charge enhances the conductance of drift doping resistance (G{sub d}), and then increases I{sub dlin}. Consequently, the eventual I{sub dlin} degradation is controlled by the competition of the two mechanisms due to conductance modulation in the both regions. Based on the model, it is explained that the measured I{sub dlin} anomalously increases while the V{sub th} is increasing with power law. The thin layer field pLDMOS exhibits more severe V{sub th} instability compared with thick SOI layer structure; as a result, it should be seriously evaluated in actual application in switching circuit.

  4. Hot Air Engines

    Directory of Open Access Journals (Sweden)

    P. Stouffs

    2011-01-01

    Full Text Available Invented in 1816, the hot-air engines have known significant commercial success in the nineteenth century, before falling into disuse. Nowadays they enjoy a renewed interest for some specific applications. The "hot-air engines" family is made up of two groups: Stirling engines and Ericsson engines. The operating principle of Stirling and Ericsson engines, their troubled history, their advantages and their niche applications are briefly presented, especially in the field of micro-combined heat and power, solar energy conversion and biomass energy conversion. The design of an open cycle Ericsson engine for solar application is proposed. A first prototype of the hot part of the engine has been built and tested. Experimental results are presented.

  5. Recognition of group B streptococci in dip-slide cultures of urine.

    Science.gov (United States)

    Jokipii, A M; Jokipii, L

    1979-08-01

    One hundred strains of group B streptococci isolated from human infections were tested for growth on dip-slides available for the culture of urine. All grew on CLED agar, and none grew on MacConkey agar. The colonies were barely or not at all visible to the naked eye after overnight incubation (diameter, around 0.1 mm). The colony size increased eith prolonged incubation, but not if the inoculum density exceeded 10(6)/ml. Differences were found between lots of dip-slides. Poor growth on dip-slides may explain why group B streptococci have received little attention as pathogens of the urinary tract. The dip-slide screening personnel of one laboratory were informed of the experimental findings, and they started the practice of frequent subculture and prolonged incubation. The proportion of group B streptococci in significant bacteriuria increased from 0 to about 2% of positive cultures, whereas there was no conmitant increase of group B streptococci in dip-slides screened in several other laboratories serving as controls.

  6. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus.

    Science.gov (United States)

    Möll, Andrea; Schlimpert, Susan; Briegel, Ariane; Jensen, Grant J; Thanbichler, Martin

    2010-07-01

    In bacteria, cytokinesis is dependent on lytic enzymes that facilitate remodelling of the cell wall during constriction. In this work, we identify a thus far uncharacterized periplasmic protein, DipM, that is required for cell division and polarity in Caulobacter crescentus. DipM is composed of four peptidoglycan binding (LysM) domains and a C-terminal lysostaphin-like (LytM) peptidase domain. It binds to isolated murein sacculi in vitro, and is recruited to the site of constriction through interaction with the cell division protein FtsN. Mutational analyses showed that the LysM domains are necessary and sufficient for localization of DipM, while its peptidase domain is essential for function. Consistent with a role in cell wall hydrolysis, DipM was found to interact with purified murein sacculi in vitro and to induce cell lysis upon overproduction. Its inactivation causes severe defects in outer membrane invagination, resulting in a significant delay between cytoplasmic compartmentalization and final separation of the daughter cells. Overall, these findings indicate that DipM is a periplasmic component of the C. crescentus divisome that facilitates remodelling of the peptidoglycan layer and, thus, coordinated constriction of the cell envelope during the division process.

  7. Migration velocity analysis using a transversely isotropic medium with tilt normal to the reflector dip

    KAUST Repository

    Alkhalifah, T.

    2010-06-13

    A transversely isotropic model in which the tilt is constrained to be normal to the dip (DTI model) allows for simplifications in the imaging and velocity model building efforts as compared to a general TTI model. Though this model, in some cases, can not be represented physically like in the case of conflicting dips, it handles all dips with the assumption of symmetry axis normal to the dip. It provides a process in which areas that meet this feature is handled properly. We use efficient downward continuation algorithms that utilizes the reflection features of such a model. For lateral inhomogeneity, phase shift migration can be easily extended to approximately handle lateral inhomogeneity, because unlike the general TTI case the DTI model reduces to VTI for zero dip. We also equip these continuation algorithms with tools that expose inaccuracies in the velocity. We test this model on synthetic data of general TTI nature and show its resilience even couping with complex models like the recently released anisotropic BP model.

  8. Characterization of DIP0733, a multi-functional virulence factor of Corynebacterium diphtheriae.

    Science.gov (United States)

    Antunes, Camila Azevedo; Sanches dos Santos, Louisy; Hacker, Elena; Köhler, Stefanie; Bösl, Korbinian; Ott, Lisa; de Luna, Maria das Graças; Hirata, Raphael; Azevedo, Vasco Ariston de Carvalho; Mattos-Guaraldi, Ana-Luíza; Burkovski, Andreas

    2015-03-01

    Corynebacterium diphtheriae is typically recognized as an extracellular pathogen. However, a number of studies revealed its ability to invade epithelial cells, indicating a more complex pathogen-host interaction. The molecular mechanisms controlling and facilitating internalization of Cor. diphtheriae are poorly understood. In this study, we investigated the role of DIP0733 as virulence factor to elucidate how it contributes to the process of pathogen-host cell interaction. Based on in vitro experiments, it was suggested recently that the DIP0733 protein might be involved in adhesion, invasion of epithelial cells and induction of apoptosis. A corresponding Cor. diphtheriae mutant strain generated in this study was attenuated in its ability to colonize and kill the host in a Caenorhabditis elegans infection model system. Furthermore, the mutant showed an altered adhesion pattern and a drastically reduced ability to adhere and invade epithelial cells. Subsequent experiments showed an influence of DIP0733 on binding of Cor. diphtheriae to extracellular matrix proteins such as collagen and fibronectin. Furthermore, based on its fibrinogen-binding activity, DIP0733 may play a role in avoiding recognition of Cor. diphtheriae by the immune system. In summary, our findings support the idea that DIP0733 is a multi-functional virulence factor of Cor. diphtheriae.

  9. Dip coating process. Annual report No. 1, October 21, 1975--September 17, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Heaps, J.D.; Maciolek, R.B.; Zook, J.D.; Harrison, W.B.; Scott, M.W.; Hendrickson, G.; Wolner, H.A.; Nelson, L.D.; Schuller, T.L.; Peterson, A.A.

    1976-09-28

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon. The dip-coating methods studied were directed toward a minimum-cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10 percent or greater. The technique shows excellent promise for low-cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, and, using this facility, several substrates have been successfully dip-coated with areas as large as 25 cm/sup 2/ and thicknesses of 12 ..mu..m to 250 ..mu..m. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated this reporting period, mullite appears, at this time, to best satisfy the requirement of this research program. An inexpensive process has been developed for producing mullite in the desired geometry, thus satisfying the cost objectives of the program.

  10. Prediction of Velocity-Dip-Position at the Central Section of Open Channels using Entropy Theory

    Directory of Open Access Journals (Sweden)

    Snehasis Kundu

    2017-01-01

    Full Text Available An analytical model to predict the velocity-dip-position at the central section of open channels is presented in this study. Unlike the previous studies where empirical or semi-empirical models were suggested, in this study the model is derived by using entropy theory. Using the principle of maximum entropy, the model for dip-position is derived by maximizing the Shannon entropy function after assuming dimensionless dip-position at the central section as a random variable. No estimation of empirical parameter is required for calculating dip-position from the proposed model. The model is able to predict the location of maximum velocity at the central section of an open channel with any aspect ratio. The developed model of velocity-dip-position is tested with experimental data from twenty-two researchers reported in literature for a wide range of aspect ratio. The model is also compared with other existing empirical models. The present model shows good agreement with the observed data and provides least prediction error compared to other models.

  11. Setaria viridis floral-dip: A simple and rapid Agrobacterium-mediated transformation method

    Directory of Open Access Journals (Sweden)

    Polyana Kelly Martins

    2015-06-01

    Full Text Available Setaria viridis was recently described as a new monocotyledonous model species for C4 photosynthesis research and genetic transformation. It has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements that make it suitable for use as a model plant. We report an alternative method of S. viridis transformation using floral dip to circumvent the necessity of tissue culture phase for transgenic plant regeneration. S. viridis spikes at boot stage were selected to be immersed in Agrobacterium suspension. T1 seeds could be identified in 1.5–2 months after floral dipping. We demonstrated through molecular analysis and RFP expression that seeds and resulting plants from dipped inflorescences were transformed. Our results suggest the feasibility of S. viridis floral dip transformation as a time-saving and cost-effective compared with traditional methods. To our knowledge, this is the first report using floral dip in S. viridis as an Agrobacterium-mediated transformation method.

  12. Glassy metallic plastics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature (Tg~25oC to 150oC) and low Young’s modulus (~20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  13. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal......-clad waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  14. Heavy Metal Factory

    Science.gov (United States)

    Löbling, Lisa

    2017-07-01

    The metal enrichment in the cosmic circuit of matter is dominated by the yields of asymptotic giant branch (AGB) nucleosynthesis, that are blown back into the interstellar medium just before these stars die as white dwarfs. To establish constraints on AGB processes, spectral analyses of hot post-AGB stars are mandatory. These show that such stars are heavy metal factories due to the AGB s-process. The Virtual Observatory service TheoSSA offers access to synthetic stellar spectra calculated with our Tübingen non-local thermodynamic equilibrium model-atmosphere package that are suitable for the analysis of hot post-AGB stars.

  15. Influence of dipping cycles on physical, optical, and electrical properties of Cu 2 NiSnS 4 : Direct solution dip coating for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Mokurala, Krishnaiah; Mallick, Sudhanshu; Bhargava, Parag; Siol, Sebastian; Klein, Talysa R.; van Hest, Maikel F. A. M.

    2017-11-01

    Direct solution coating technique has emerged as a promising economically viable process for earth abundant chalcogenide absorber materials for photovoltaic applications. Here, direct ethanol based dip coating of earth abundant Cu2NiSnS4 (CNTS) films on soda lime glass (SLG), molybdenum coated glass (Mo), and fluorine doped tin oxide coated glass (FTO) substrates is investigated. The structural and morphological properties of pre-annealed and sulfurized CNTS films coated on SLG, FTO, and Mo substrates are reported. The influence of dipping cycles on composition and optoelectronic properties of pre-annealed and sulfurized CNTS films deposited on SLG substrate is presented. Energy dispersive spectroscopy (EDS) and X-ray fluorescence (XRF) analysis reveal how changes in thickness and elemental composition affect morphology and optoelectronic properties. The obtained absorption coefficient, optical bandgap, resistivity and mobility of pre - annealed and sulfurized films are found to be 104 cm-1, 1.5 eV, 0.48 Ocm, 3.4 cm2/Vs and 104 cm-1, 1.29 eV, 0.14 Ocm, 11.0 cm2/Vs, respectively. These properties are well suited for photovoltaic applications and lead to the conclusion that the direct ethanol based dip coating can be an alternative economically viable process for the fabrication of earth abundant CNTS absorber layers for thin film solar cells.

  16. Drinking with a hairy tongue: viscous entrainment by dipping hairy surfaces

    Science.gov (United States)

    Nasto, Alice; Brun, Pierre-Thomas; Alvarado, José; Bush, John; Hosoi, Anette

    2016-11-01

    Nectar-drinking bats have tongues covered with hair-like papillae, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory reminiscent of Landau-Levich-Derjaguin dip coating, we rationalize this mechanism of viscous entrainment in a hairy texture. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS elastomer. Modeling the liquid trapped within the texture using a Darcy-Brinkman like approach, we derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the dipping speed. We find that there is an optimal hair density to maximize fluid uptake.

  17. Study of formation boundary and dip attribute extraction based on edge detection technology

    Institute of Scientific and Technical Information of China (English)

    WANG Yanbo; SUN Jianguoand SONG Chao

    2016-01-01

    In the seismic profile interpretation process,as the seismic data are big and the small geological fea-tures are difficult to identify,improvement of the efficiency is needed.In this study,structure tensor method in computer image edge detection processing is applied into the 2D seismic profile.Coherent attribute is used to extract formation edge.At the same time,extracting the eigenvalues and eigenvectors to calculate the seismic geometric properties which include dip and apparent dip,automatic identification is achieved.Testing the Gaussian kernel function with synthetic models and comparing the coherent attribute and dip attribute extraction results before and after,the conclusion that Gaussian filter can remove the random noise is obtained.

  18. Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer

    CERN Document Server

    Gao, Fei; Luo, Yu; Zhang, Baile

    2016-01-01

    Invisibility dips, minima in scattering spectrum associated with asymmetric Fano-like line-shapes, have been predicted with transformation optics in studying strong coupling between two plasmonic nanoparticles. This feature of strongly coupled plasmonic nanoparticles holds promise for sensor cloaking. It requires an extremely narrow gap between the two nanoparticles, though, preventing its experimental observation at optical frequencies. Here, the concept of spoof surface plasmons is utilized to facilitate the strong coupling between two spoof-localized-surface-plasmon (SLSP) resonators. Instead of observing in far field, the near-field energy transport is probed through the two SLSP resonators. By virtue of enhanced coupling between the two resonators stacked vertically, a spectral transmission dip with asymmetric Fano-like line-shape, similar to the far-field invisibility dips predicted by transformation optics, is observed. The underlying mode interference mechanism is further demonstrated by directly imag...

  19. Detecting Power Voltage Dips using Tracking Filters - A Comparison against Kalman

    Directory of Open Access Journals (Sweden)

    STANCIU, I.-R.

    2012-11-01

    Full Text Available Due of its significant economical impact, Power-Quality (PQ analysis is an important domain today. Severe voltage distortions affect the consumers and disturb their activity. They may be caused by short circuits (in this case the voltage drops significantly or by varying loads (with a smaller drop. These two types are the PQ currently issues. Monitoring these phenomena (called dips or sags require powerful techniques. Digital Signal Processing (DSP algorithms are currently employed to fulfill this task. Discrete Wavelet Transforms, (and variants, Kalman filters, and S-Transform are currently proposed by researchers to detect voltage dips. This paper introduces and examines a new tool to detect voltage dips: the so-called tracking filters. Discovered and tested during the cold war, they can estimate a parameter of interest one-step-ahead based on the previously observed values. Two filters are implemented. Their performance is assessed by comparison against the Kalman filter?s results.

  20. Decreased orthostatic adrenergic reactivity in non-dipping postural tachycardia syndrome.

    Science.gov (United States)

    Figueroa, Juan J; Bott-Kitslaar, Darlene M; Mercado, Joaquin A; Basford, Jeffrey R; Sandroni, Paola; Shen, Win-Kuang; Sletten, David M; Gehrking, Tonette L; Gehrking, Jade A; Low, Phillip A; Singer, Wolfgang

    2014-10-01

    Whether non-dipping - the loss of the physiologic nocturnal drop in blood pressure - among patients with postural tachycardia syndrome (POTS) is secondary to autonomic neuropathy, a hyperadrenergic state, or other factors remains to be determined. In 51 patients with POTS (44 females), we retrospectively analyzed 24-hour ambulatory blood pressure recordings, laboratory indices of autonomic function, orthostatic norepinephrine response, 24-hour natriuresis and peak exercise oxygen consumption. Non-dipping (orthostatic heart rate increment (43±16bpm vs. 35±10bpm, P=0.007) and significantly greater orthostatic plasma norepinephrine increase (293±136.6pg/ml vs. 209±91.1pg/ml, P=0.028). Our data indicate that in patients with POTS, a non-dipping blood pressure profile is associated with a reduced orthostatic sympathetic reactivity not accounted for by autonomic neuropathy.

  1. Observation of intermolecular double-quantum coherence signal dips in nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    Shen Gui-Ping; Cai Cong-Bo; Cai Shu-Hui; Chen Zhong

    2011-01-01

    The correlated spectroscopy revamped by asymmetric Z-gradient echo detection (CRAZED) sequence is modified to investigate intermolecular double-quantum coherence nuclear magnetic resonance signal dips in highly polarized spin systems.It is found that the occurrence of intermolecular double-quantum coherence signal dips is related to sample geometry,field inhomogeneity and dipolar correlation distance.If the field inhomogeneity is refocused,the signal dip occurs at a fixed position whenever the dipolar correlation distance approaches the sample dimension.However,the position is shifted when the field inhomogeneity exists.Experiments and simulations are performed to validate our theoretic analysis.These signal features may offer a unique way to investigate porous structures and may find applications in biomedicine and material science.

  2. Dip coating process. Quarterly report No. 3, March 19, 1976--June 18, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Heaps, J.D.; Maciolek, R.B.; Scott, M.W.; Wolner, H.A.; Nelson, L.D.

    1976-06-28

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon. Of the various substrate materials dip-coated this reporting period, mullite appears, at this time, to best satisfy the requirements of this research program. Dip-coating experiments continue to demonstrate that layer thickness and grain size are dependent on and can be controlled by pulling rate and melt temperature. Crystalline grains as large as 1 mm wide and 2 cm or more long can consistently be grown in layers 35 to 50 ..mu.. meters thick. (WDM)

  3. Effect of an automated dipping and backflushing system on somatic cell counts.

    Science.gov (United States)

    Olde Riekerink, R G M; Ohnstad, I; van Santen, B; Barkema, H W

    2012-09-01

    Postmilking teat disinfection is an effective management practice to prevent transmission of contagious mastitis pathogens from cow to cow. With farms increasing in size and an increase in the number of rotary milking parlors, the need for automation of postmilking teat disinfection is mounting. Automated teat dipping and backflushing (ADB) systems have existed for some years, but their effect on udder health was never examined in a field study on commercial dairy farms. The objectives of this study were, therefore, to evaluate the effect of introducing an ADB system in a herd on (1) bulk milk somatic cell count (SCC), (2) individual cow SCC, and (3) the proportion of newly elevated SCC. Dairy herd improvement data were collected over a 30-mo period on 25 sets of 3 farms. Each set of 3 farms contained a farm that installed an ADB system, one that disinfected teats using dipping after milking, and one that sprayed teats after milking. Data were analyzed using linear mixed models. Bulk milk SCC on farms that sprayed or dipped before installing an ADB system were 16,000 and 30,000 cells/mL lower in the period 6 to 18 mo after installation, respectively, than on farms that continued spraying or dipping the teats after milking. In the same period after installing an ADB system, proportions of cows with elevated SCC were 4.3 and 1.2% lower, respectively, compared with spraying and with dipping. Similarly, proportions of cows that had newly elevated SCC were 1.5% lower and 0.3% higher, respectively, compared with farms that sprayed or dipped. Installing an ADB system had a beneficial effect on bulk milk SCC, individual cow SCC, and the proportion of newly elevated SCC. The effect was most prominent in the period 6 to 18 mo after installation of an ADB system.

  4. The Role of Magmatic and Volcanic Loads in Generating Seaward Dipping Reflector Structures on Volcanic Rifted Margins

    Science.gov (United States)

    Tian, X.; Buck, W. R.

    2016-12-01

    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including a large portion that border the Atlantic Ocean. There is considerable controversy over whether their formation requires large offset (i.e. 10s of km) normal faults or not. Although there is some evidence for faulting in association with SDRs, we here show that a wide range of SDRs structures can be produced solely by volcanic loading. To do this we first derive a simple analytic description of a particular type of volcanic construct. We assume that the increase in density when fluid magma in a dike solidifies provides load at the rift center onto the end of a lithospheric plate. Extrusives are assumed to form flat-topped layers that fill in the flexural depression produced by the load of the solidified dike. The thin-plate flexure approximation is used to calculate the deflections due to the vertical load. This simple model produces structures similar to the observed SDRs. Expressions for the maximum thickness of the volcanic pile and the dip of an individual SDR are derived in terms of the flexure parameter and material densities. Asymmetry of SDR units seen across some conjugate margins can be explained with this model if periodic offsets, or jumps of the center of magmatism are included. In addition, we developed a numerical model of lithospheric extension, magma intrusion and volcanism with a temperature dependent elasto-viscous and brittle-plastic rheology. Results of these 2D cross-sectional models with fixed thermal structure confirm the qualitative predictions of the analytic model without the simplified uniform plate assumption. Preliminary results suggest that the rapid subsidence of SDRs, inferred for some rifted margins, can occur if magma is supplied only to the brittle upper layer and the hot weak lower crust is thinned by stretching. This numerical approach may also allow us to test

  5. Ultrasonic Hot Embossing

    Directory of Open Access Journals (Sweden)

    Werner Karl Schomburg

    2011-05-01

    Full Text Available Ultrasonic hot embossing is a new process for fast and low-cost production of micro systems from polymer. Investment costs are on the order of 20.000 € and cycle times are a few seconds. Microstructures are fabricated on polymer foils and can be combined to three-dimensional systems by ultrasonic welding.

  6. What's Hot? What's Not?

    Science.gov (United States)

    Buczynski, Sandy

    2006-01-01

    When Goldilocks finds three bowls of porridge at different temperatures in the three bears' house, she accurately assesses the situation and comes up with one of the most recognizable lines in children's literature," This porridge is too hot; this porridge is too cold; aahh, this porridge is just right!" Goldilocks' famous line is a perfect…

  7. Hot house bad house

    OpenAIRE

    Azzopardi, Shaun

    2014-01-01

    Shaun Azzopardi met up with a team of researchers led by Eur. Ing. Charles Yousif to take the concrete block to the next level. It is more exciting than it sounds. Photography by Dr Edward Duca. http://www.um.edu.mt/think/hot-house-bad-house/

  8. Blue InGaN light-emitting diodes with dip-shaped quantum wells

    Institute of Scientific and Technical Information of China (English)

    Lu Tai-Ping; Wang Hai-Long; Yang Xiao-Dong; LiShu-Ti; Zhang Kang; Liu Chao; Xiao Guo-Wei; Zhou Yu-Gang; ZhengShu-Wen; Yin Yi-An; Wu Le-Juan

    2011-01-01

    InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum wells are numerically investigated by using the APSYS simulation software.It is found that the structure with dipshaped quantum wells shows improved light output power,lower current leakage and less efficiency droop.Based on numerical simulation and analysis,these improvements on the electrical and the optical characteristics are attributed mainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).

  9. Analysis of Mechanical Stresses Due to Voltage Dips in Fixed-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Santos-Martin, David; Jensen, Henrik Myhre

    2011-01-01

    drivetrain components. An electro-mechanical model is built to simulate the grid disturbances that easily excite the asynchronous generator poorly damped stator flux oscillations, which cause high transients of the generator electromagnetic torque. This article focuses in estimating the resulting significant...... stresses transients that may have a detrimental effect on the fatigue life of drivetrain system due to voltage dips. A rainflow cycle counting method for the stress history during the voltage dip event, analyses mean and amplitudes of the counted cycles, their occurrence moment and time of duration....

  10. Mitigation of Voltage Dip and Voltage Flickering by Multilevel D-STATCOM

    Directory of Open Access Journals (Sweden)

    M. S. Ballal

    2012-01-01

    Full Text Available The basic power quality problems in the distribution network are voltage sag (dip, voltage flickering, and the service interruptions. STATCOM is a Flexible AC Transmission Systems (FACTS technology device which can independently control the flow of reactive power. This paper presents the simulation and analysis of a STATCOM for voltage dip and voltage flickering mitigation. Simulations are carried out in MATLAB/Simulink to validate the performance of the STATCOM. A comparison between the six-pulse inverter and the five-level diode-clamped inverter is carried out for the performance of 66/11 KV distribution system.

  11. Relatório de Estágio Curricular – DIP – Discover Inland Portugal

    OpenAIRE

    Estevães, Pedro; Simões, Philip

    2011-01-01

    A DIP – Discover Inland Portugal consiste na criação de uma agência de viagens e turismo de outgoing, que promove e comercializa produtos turísticos diversificados, inovadores e singulares para a região da Beira Interior Centro, através de uma plataforma online. A necessidade e oportunidade existente na região por canais de distribuição agregadores, torna o projecto DIP numa forte aposta e investimento para o turismo praticado na região Interior Centro. A utilização da tecnologia do comérc...

  12. The effect of post-milking teat dipping on teat canal infections.

    Science.gov (United States)

    Du Preez, J H

    1987-09-01

    Teat canal infection (TCI) or colonization, subclinical mastitis (SCM) cases and other forms of intramammary infections (IMI) may persist despite regular post-milking teat disinfection. Spontaneous healing of TCI can occur and this points to the dynamic state of the reactions of TCI etc. Disinfecting teat dipping does not necessarily prevent new TCI and IMI. Teat dipping may, however, be applied with good effect in the prevention of new udder and teat canal infections. Several factors predispose to TCI e.g. poor management, hygiene and animal husbandry.

  13. Performance of Doubly-Fed Wind Power Generators During Voltage Dips

    DEFF Research Database (Denmark)

    Aparicio, N.; Chen, Zhe; Beltran, H.

    ) can regulate easily the reactive power generated in steady state. However, difficulties appear when reactive power has to be generated during voltage dips. Simulations have been carried out in order to check whether DFIG wind turbines can fulfill the reactive power requirements. Protection system......The growing of wind generation in Spain has forced its Transmission System Operator (TSO) to release new requirements that establish the amount of reactive power that a wind turbine has to supply to the grid during a voltage dip. Wind turbines equipped with doubly-fed induction generators (DFIG...... acting as STATCOM helps to improve the voltage profile sufficiently to permit rotor-side converter reconnection....

  14. 2-D deformation of two welded half-spaces due to a blind dip-slip fault

    Indian Academy of Sciences (India)

    Sunita Rani; Neeru Bala

    2006-06-01

    The solution of two-dimensional problem of an interface breaking long inclined dip-slip fault in two welded half-spaces is well known.The purpose of this note is to obtain the corresponding solution for a blind fault.The solution is valid for arbitrary values of the fault-depth and the dip angle.Graphs showing the variation of the displacement field with the distance from the fault, for different values of fault depth and dip angle are presented.Contour maps showing the stress field around a long dip-slip fault are also obtained.

  15. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  16. Enabling Technologies for Ceramic Hot Section Components

    Energy Technology Data Exchange (ETDEWEB)

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section

  17. What Is Hot Yoga (Bikram)?

    Science.gov (United States)

    Healthy Lifestyle Consumer health What is hot yoga? Answers from Edward R. Laskowski, M.D. Hot yoga is a vigorous form of yoga performed in a studio ... you check with your doctor before trying hot yoga if you have any health concerns. If you have heart disease, problems with ...

  18. 应用遗传算法求解AOD全铁水冶炼和电炉钢水冶炼不锈钢混合流程的最优调度问题%Applying Genetic Algorithm for Solving the Scheduling Problem of Stainless Steel Smelting Hybrid Process Combined All Hot Metal in AOD With Molten Steel in EAF

    Institute of Scientific and Technical Information of China (English)

    冯凯; 汪红兵; 田乃媛; 贺东风; 徐安军

    2012-01-01

    The optimized scheduling about both all hot metal in AOD and molten steel in EAF stainless steel smel ting process was investigated. The results show that the deficiency of the longer tap to tap time of EAF in the flow with molten steel in EAF can be solved by introducing the flow with all hot metal in AOD. The stainless steel smelting hybrid flow combined all hot metal in AOD with molten steel in EAF was provided. The optimized sched uling aiming at the longest ladle track time between production processes minimizing was proposed. The longest ladle track time between production processes for a minimum of 60 min was calculated by using the genetic algo-rithm and less than the time of the production scheduling as the center of continuous casting. The conventional ladle track time was ensured and regulated with enough time. The Gantt chart of optimized scheduling about the hy- brid flow was proposed. The temperature schedule was given based on the temperature decrease empirical formula.%研究了AOD全铁水冶炼和电炉钢水冶炼两种不锈钢冶炼流程,结果表明,AOD全铁水冶炼不锈钢可以弥补电炉钢水冶炼流程中电炉产能小于连铸产能的缺陷。提出了一种结合AOD全铁水冶炼和电炉钢水冶炼的混合流程。提出了各个工序间钢包最长传搁时间最短为调度目标是更加合理的调度方式,应用遗传算法求解混合流程最长钢包传搁时间最小为60min,小于单纯以连铸机为中心的组织生产调度,既保证了钢包正常的运输,又有足够的时间进行必要的调度和调整。最后,给出混合流程最优调度的甘特图,并基于最优调度并采用统计分析的方法得出:亡序问传搁过程温降的经验公式,由此给出混合流程最优调度的温度制度。

  19. Migration using a transversely isotropic medium with symmetry normal to the reflector dip

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    A transversely isotropic (TI) model in which the tilt is constrained to be normal to the dip (DTI model) allows for simplifications in the imaging and velocity model building efforts as compared to a general TI (TTI) model. Although this model cannot be represented physically in all situations, for example, in the case of conflicting dips, it handles arbitrary reflector orientations under the assumption of symmetry axis normal to the dip. Using this assumption, we obtain efficient downward continuation algorithms compared to the general TTI ones, by utilizing the reflection features of such a model. Phase-shift migration can be easily extended to approximately handle lateral inhomogeneity using, for example, the split-step approach. This is possible because, unlike the general TTI case, the DTI model reduces to VTI for zero dip. These features enable a process in which we can extract velocity information by including tools that expose inaccuracies in the velocity model in the downward continuation process. We test this model on synthetic data corresponding to a general TTI medium and show its resilience. 2011 Tariq Alkhalifah and Paul Sava.

  20. Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices

    Science.gov (United States)

    Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong

    2017-06-01

    Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.

  1. Simulation of Voltage Dip Event in Fixed-Speed Wind Turbines: Fatigue Evaluation

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Santos-Martin, David; Jensen, Henrik Myhre

    2012-01-01

    transients affecting the fatigue life of drivetrain system due to voltage dips. A rainflow cycle counting method was developed to evaluate the fatigue life of the mechanical system. The methodology analyses the stress history and estimates the mean and amplitudes of the counted cycles, and time of duration...

  2. Nanostructure Study of TiO2 Films Prepared by Dip Coating Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM).The films were prepared by dip coating process. The optical properties of the films were explained on the basis ofthe microstructure of the films.

  3. From lifting to planting: Root dip treatments affect survival of loblolly pine (Pinus taeda)

    Science.gov (United States)

    Tom E. Starkey; David B. South

    2009-01-01

    Hydrogels and clay slurries are the materials most commonly applied to roots of pines in the southern United States. Most nursery managers believe such applications offer a form of "insurance" against excessive exposure during planting. The objective of this study was to examine the ability of root dip treatments to: (1) support fungal growth; and (2) protect...

  4. Dynamic isotope power system (DIPS) applications study. Volume I. Summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prickett, W. Z.

    1979-11-01

    The Nuclear Integrated Multimission Spacecraft (NIMS) is designed for communications, surveillance, navigation and meteorelogical missions. This study assesses th attributes of the Dynamic Isotope Power System (DIPS) for this spacecraft. These attributes include cost, system and mission compatibility, and survivability. (LCL)

  5. Comparison of control strategies for DFIG under symmetrical grid voltage dips

    DEFF Research Database (Denmark)

    Chen, Wenjie; Xu, Dehong; Chen, Min;

    2013-01-01

    This paper presents a series of current control strategies for the DFIG under symmetrical grid voltage dips. The controllable range, the damping time constant of the stator natural flux and the torque fluctuations of six control strategies are analyzed and compared. The control strategies which...

  6. G20 Finance Ministers Meeting Vows to Fight Against A Double-dip Recession

    Institute of Scientific and Technical Information of China (English)

    21 Century Business Herald

    2010-01-01

    @@ When the finance ministers and central bank governors of the Group of 20 began their first meeting on June 4 in Busan,South Korea,they expressed their concern about the recovery of the global economy and promised action taken to prevent the global economy from falling into the pit of a double-dip recession.

  7. Nocturnal antihypertensive treatment in patients with type 1 diabetes with autonomic neuropathy and non-dipping

    DEFF Research Database (Denmark)

    Hjortkjær, Henrik Øder; Jensen, Tonny; Kofoed, Klaus F

    2016-01-01

    treated for 12 weeks with either MD (20 mg enalapril in the morning and placebo at bedtime) or BD (placebo in the morning and 20 mg enalapril at bedtime), followed by 12 weeks of switched treatment regimen. PRIMARY AND SECONDARY OUTCOME MEASURES: Primary outcome was altered dipping of nocturnal BP...

  8. [The clinical effectiveness of a post milking teat disinfection method with a foaming iodophor teat dip].

    Science.gov (United States)

    Falkenberg, U; Tenhagen, B A; Heuwieser, W; Kalbe, P; Klünder, G; Baumgärtner, B

    2003-02-01

    The effect of postmilking teat dipping with a foaming iodophor agent on incidence of intramammary infections (IMI), incidence of clinical mastitis, somatic cell count and the characteristics of udder tissue and teat was investigated in a positively controlled field study. Two groups of animals were compared. Teats were dipped with a foaming iodophor in the treatment group (TG, 122 animals) while teats in the control group (CG, 121 animals) were dipped with a conventional iodophor teat dip with the same iodine content. A bacteriological examination of quarter milk samples divided the study period in two parts. The incidence of new IMI did not differ between the groups (1st part of trial: TG vs. CG: 6.84% vs. 9.16%, 2nd part of trial: 7.78% vs. 7.82%). There were no differences between the treatment groups regarding incidence of clinical mastitis. We detected 0.64 clinical cases per 100 days in the treatment group vs. 0.50 in the control group. The development of SCC was comparable in both groups. Teat skin and teat duct conditions showed variation during the study period. Clinical efficacy of postmilking teat disinfection with a foaming iodophor was comparable to the treatment with a conventional iodophor product.

  9. The hot Hagedorn Universe

    CERN Document Server

    Rafelski, Johann

    2016-01-01

    In the context of the half-centenary of Hagedorn temperature and the statistical bootstrap model (SBM) we present a short account of how these insights coincided with the establishment of the hot big-bang model (BBM) and helped resolve some of the early philosophical difficulties. We then turn attention to the present day context and show the dominance of strong interaction quark and gluon degrees of freedom in the early stage, helping to characterize the properties of the hot Universe. We focus attention on the current experimental insights about cosmic microwave background (CMB) temperature fluctuation, and develop a much improved understanding of the neutrino freeze-out, in this way paving the path to the opening of a direct connection of quark-gluon plasma (QGP) physics in the early Universe with the QCD-lattice, and the study of the properties of QGP formed in the laboratory.

  10. The hot chocolate effect

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Frank S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    1982-05-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.

  11. Hot chocolate effect

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, F.S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  12. Hot Spring Metagenomics

    Directory of Open Access Journals (Sweden)

    Olalla López-López

    2013-04-01

    Full Text Available Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats.

  13. Peppery Hot Bean Curd

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Peppery Hot Bean Curd is a famous dish that originated in Chengdu,Sichuan Province.Dating back to the year under the reign of Emperor Tongzhi during the Qing Dynasty(1862-1875),a woman chef named Chen created this dish.In Chinese it is called Mapo Bean Curd. Ingredients:Three pieces of bean curd,100 grams lean pork,25 grams green soy beans or garlic

  14. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  15. Jupiter's Hot, Mushy Moon

    Science.gov (United States)

    Taylor, G. Jeffrey

    2003-01-01

    Jupiter's moon Io is the most volcanically active body in the Solar System. Observations by instruments on the Galileo spacecraft and on telescopes atop Mauna Kea in Hawai'i indicate that lava flows on Io are surprisingly hot, over 1200 oC and possibly as much as 1300 oC; a few areas might have lava flows as hot as 1500 oC. Such high temperatures imply that the lava flows are composed of rock that formed by a very large amount of melting of Io's mantle. This has led Laszlo Keszthelyi and Alfred S. McEwen of the University of Arizona and me to reawaken an old hypothesis that suggests that the interior of Io is a partially-molten mush of crystals and magma. The idea, which had fallen out of favor for a decade or two, explains high-temperature hot spots, mountains, calderas, and volcanic plains on Io. If correct, Io gives us an opportunity to study processes that operate in huge, global magma systems, which scientists believe were important during the early history of the Moon and Earth, and possibly other planetary bodies as well. Though far from proven, the idea that Io has a ocean of mushy magma beneath its crust can be tested with measurements by future spacecraft.

  16. Effect of gamma irradiation combined with hot water treatment on the texture, pulp color and sensory quality of ''Nahng Glahng Wahn'' mangoes

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, M.; Jobin, M.; Beliveau, M.; Gagnon, M. (Canadian Irradiation Centre, Laval, PQ (Canada))

    1992-01-01

    Mangoes (Mangifera indica L.) from Thailand of the 'Nahng Glahng Wahn' variety were irradiated with a [sup 60] Co source at a dose of 0.63 kGy and a dose rate of 9.23 kGy/hr, with or without a hot water treatment prior to irradiation. The irradiation treatment had little effect on the texture and preserved the yellow color in the pulp. Test of sensory evaluation revealed that irradiated mango pulp was preferred for overall appearance, taste, texture and palatability. The appearance of whole irradiated mangoes was also preferred over that of the control mangoes. However, no significant differences were observed between irradiated and hot water dipped irradiated mangoes for all characteristics studied in mangoes pulp. The results showed that these treatments (hot water dip plus irradiation or irradiation alone) are useful and non-destructive methods to preserve consumer acceptability.

  17. Blood pressure variability and pedigree analysis of nocturnal SBP dipping in Kumbas from rural Chhattisgarh, India.

    Science.gov (United States)

    Sultana, Razia; Pati, Atanu Kumar

    2014-05-01

    Family is the smallest unit of people to share most of the lifestyle, environmental and genetic factors. They are likely to have similarity in many physiological and behavioural aspects. Therefore, we designed a protocol to test the effect of large rural Indian families living together (Kumbas), on blood pressure variability. We also investigated the hypothesis that 'nocturnal dipping' in systolic blood pressure (SBP) is not heritable. Members of two families (1 and 2) consisting of 3-4 generations willingly participated in the study. Both families (natives of Chhattisgarh) belong to reasonably peaceful rural area and are financially stable. Farming is the main occupation of the members of both families. Few members of the families had jobs or small business. The null hypothesis regarding heritability of nocturnal dipping trait was accepted based on data emanating from either of the studied families. Hourly-averaged values depicted less variation in males and females of family 1 from midnight to early morning at around 06:00, as compared to that in males and females of family 2. The 24 h averages of BP in family 2 were significantly higher as compared to that in family 1. Further, in family 2 the peaks of SBP, diastolic blood pressure (DBP) and mean arterial pressure (MAP) occurred significantly earlier as compared to that in family 1. The peak spread of SBP, DBP, heart rate (HR), MAP and pulse pressure (PP) among the members of family 1 was narrower than that for the members of family 2. Arbitrary cut-off values for classification of dipping, small sample size, and age dependency of nocturnal dipping might have marred outcome of the pedigree analysis of nocturnal dipping trait in this study. We have a hunch that the family shares typical temporal ups and downs in 24 h BP and HR. The above hypothesis needs confirmation based on studies with large data set involving subjective and objective assessment of the effects of psychosocial factors on BP and HR variability.

  18. Up-dip directivity in near-source during the 2009 L'Aquila main shock

    Science.gov (United States)

    Tinti, Elisa; Scognamiglio, Laura; Cirella, Antonella; Cocco, Massimo

    2014-09-01

    In this study we have investigated the directivity associated with the initial up-dip rupture propagation during the 2009 April 6 (Mw 6.1) L'Aquila normal-faulting earthquake. The objective is the understanding of how the peculiar initial behaviour of rupture history during the main shock has affected the near-source recorded ground motions in the L'Aquila town and surrounding areas. We have modelled the observed ground velocities at the closest near-source recording sites by computing synthetic seismograms using a discrete wavenumbers and finite difference approach in the low frequency bandwidth (0.02-0.4 Hz) to avoid site effects contaminations. We use both the rupture model retrieved by inverting ground motion waveforms and continuous high sampling-rate GPS time-series as well as uniform-slip constant-rupture speed models. Our results demonstrate that the initial up-dip rupture propagation, characterizing the first 3 s of the rupture history during the L'Aquila main shock and releasing only ˜25 per cent of total seismic moment, controls the observed ground motions in the near-source. This initial stage of the rupture is characterized by the generation of ground velocity pulses, which we interpret as a forward directivity effect. Our modelling results confirm a heterogeneous distribution of rupture velocity during the initial up-dip rupture propagation, since uniform rupture speed models overestimate up-dip directivity effects in the footwall of the causative fault. The up-dip directivity observed in the near field during the 2009 L'Aquila main shock is that expected for a normal faulting earthquake, but it differs from that inferred from far-field observations that conversely provide evidence of along-strike directivity. This calls for a careful analysis as well as for the realistic inclusion of rupture directivity to predict ground motions in the near source.

  19. Control of Listeria monocytogenes on frankfurters by dipping in hops beta acids solutions.

    Science.gov (United States)

    Shen, Cangliang; Geornaras, Ifigenia; Kendall, Patricia A; Sofos, John N

    2009-04-01

    Hops beta acids (HBA) are parts of hops flowers used in beer brewing and have shown antilisterial activity in bacteriological broth. The U.S. Department of Agriculture, Food Safety and Inspection Service has approved HBA for use to control Listeria monocytogenes on ready-to-eat meat products. This study evaluated the effects of HBA as dipping solutions to control L. monocytogenes during storage of frankfurters. Frankfurters (two replicates and three samples each) were inoculated (1.9 +/- 0.1 log CFU/cm2) with L. monocytogenes (10-strain mixture), dipped (2 min, 25 +/- 2 degrees C) in HBA solutions (0.03, 0.06, and 0.10%) or distilled water, and then vacuum packaged and stored at 4 or 10 degrees C for up to 90 and 48 days, respectively. Samples were periodically analyzed for microbial survival and growth on tryptic soy agar plus 0.6% yeast extract and PALCAM agar. Dipping in HBA solutions caused immediate L. monocytogenes reductions (P < 0.05) of 1.3 to 1.6 log CFU/cm2, whereas distilled water reduced counts by 1.0 log CFU/cm2. Pathogen growth was completely suppressed (P < 0.05) for 30 to 50 (4 degrees C) or 20 to 28 (10 degrees C) days on frankfurters dipped in HBA solutions, with antilisterial effects increasing with higher concentrations (0.03 to 0.10%). Fitting the data with the Baranyi model confirmed that the lag-phase duration of the pathogen was extended, and the growth rate was decreased on samples dipped in HBA solutions. Therefore, HBA may be considered for use to improve the microbial safety of ready-to-eat meat products, provided that future studies show no adverse effects on sensory qualities and that their use is economically feasible.

  20. Direct hot embossing of microelements by means of photostructurable polyimide

    Science.gov (United States)

    Akin, Meriem; Rezem, Maher; Rahlves, Maik; Cromwell, Kevin; Roth, Bernhard; Reithmeier, Eduard; Wurz, Marc Christopher; Rissing, Lutz; Maier, Hans Juergen

    2016-07-01

    While automatic hot embossing systems are available for large- and small-scale productions of polymeric devices, one of the process challenges remains to be the manufacturing of precise, durable, and yet inexpensive hot embossing stamps. The use of metallic stamps manufactured by electroplating a photoresist pattern or by precision milling and their replication into silicone molds with UV-lithography, electroplating, and molding techniques is state of the art. Yet, there have been few, if any, thriving attempts to directly emboss polymers by means of bare photoresists, and in particular polyimide-based photoresists, without transferring the photoresist patterns into a different stamp material. We conduct a proof-of-concept by developing hot embossing stamps based on photosensitive polyimide. We focus primarily on the reliability of the aforementioned stamps throughout the hot embossing cycle and the fidelity of pattern transfer onto polymeric films for different microstructural patterns.

  1. Probing momentum distributions in magnetic tunnel junctions via hot-electron decay

    NARCIS (Netherlands)

    Jansen, R.; Banerjee, T.; Park, B.G.; Lodder, J.C.

    2007-01-01

    The tunnel momentum distribution in a (magnetic) tunnel junction is probed by analyzing the decay of the hot electrons in the Co metal anode after tunneling, using a three-terminal transistor structure in which the hot-electron attenuation is sensitive to the tunnel momentum distribution. Solid stat

  2. Subsurface excitations in a metal

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Sosolik, C. E.;

    2009-01-01

    We investigate internal hot carrier excitations in a Au thin film bombarded by hyperthermal and low energy alkali and noble gas ions. Excitations within the thin film of a metal-oxide-semiconductor device are measured revealing that ions whose velocities fall below the classical threshold given...... by the free-electron model of a metal still excite hot carriers. Excellent agreement between these results and a nonadiabatic model that accounts for the time-varying ion-surface interaction indicates that the measured excitations are due to semilocalized electrons near the metal surface....

  3. PREFACE: Hot Quarks 2004

    Science.gov (United States)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or

  4. Ultrafast Hot Electron Induced Phase Transitions in Vanadium Dioxide

    Directory of Open Access Journals (Sweden)

    Haglund R. F.

    2013-03-01

    Full Text Available The Au/Cr/VO2/Si system was investigated in pump–probe experiments. Hot-electrons generated in the Au were found to penetrate into the underlying VO2 and couple with its lattice inducing a semiconductor-to-metal phase transition in ~2 picoseconds.

  5. An X-ray study of the dipping low mass X-ray binary XB 1323-619

    CERN Document Server

    Balucinska-Church, M; Oosterbroek, T; Segreto, A; Morley, R E; Parmar, A N

    1999-01-01

    During a BeppoSAX observation of the low-mass X-ray binary dip source XB 1323-619 a total of 10 type I X-ray bursts and parts of 12 intensity dips were observed. During non-bursting, non-dipping intervals, the 1-150 keV BeppoSAX spectrum can be modelled by a cutoff power-law with a photon index of 1.48 +/- 0.01, a cutoff energy of 44.1 +5.1/-4.4 keV together with a blackbody with kT of 1.77 +/- 0.25 keV contributing ~15% of the 2-10 keV flux. Absorption equivalent to 3.88 +/- 0.16x10^22 H atom cm^(-2) is required. The dips repeat with a period of 2.938 +/- 0.020 hr and span 40% of the orbital cycle. During dips the maximum reduction in 2-10 keV intensity is ~65%. The spectral changes during dips are complex and cannot be modelled by a simple absorber because of the clear presence of part of the non-dip spectrum which is not absorbed. Spectral evolution in dipping can be well modelled by progressive covering of the cutoff power-law component which must be extended, plus rapid absorption of the point-source bla...

  6. Enhancement of the capability of hydroxyapatite formation on Zr with anodic ZrO₂ nanotubular arrays via an effective dipping pretreatment.

    Science.gov (United States)

    Wang, Lu-Ning; Adams, Alissa; Luo, Jing-Li

    2011-11-01

    Hydroxyapatite (HA) depositions on metallic biomedical implants are widely applied to generate bioactive surfaces in simulated biological environments. Highly ordered anodic ZrO₂ nanotubes have attracted increasing interest for biomedical applications. However, previous reports showed that at least 14-28 days were required to obtain HA coating on ZrO₂ nanotubular arrays under biomimetic condition, thus capability to grow HA coating on ZrO ₂nanotubular at room temperature needs to be enhanced. In the present work, we demonstrate that ZrO₂ nanotubular arrays are suitable for an effective dipping treatment to induce more rapid HA coating. A series of ZrO₂ nanotubular arrays having different dimensions were fabricated in fluoride containing electrolyte. Then, we used a dipping treatment for biomimetic formation of an adhesive HA coating on the nanotubular arrays. The coatings formed rapidly using this procedure under biomimetic conditions and did not require a high-temperature annealing process. The as-formed ZrO₂ nanotubular arrays were treated using several dip-and-dry steps, through which the nanotubular arrays were filled and covered with calcium phosphate (CaP) nucleation sites. The specimens readily grew HA once immersed in the simulated biological fluid after 2 days immersion. The carbonated HA coating had several micron thickness after 8 days of immersion while only a thin layer of CaP were observed on annealed ZrO₂ nanotubes immersed in the same solution for the same duration. Tensile testing showed that bonding strength between HA coating and substrate was 21.6 ± 1.6 MPa. This treatment dramatically improves efficiency for promoting HA formation on anodic ZrO₂ nanotubes at room temperature. 2011 Wiley Periodicals, Inc.

  7. Electrochemical methods for corrosion testing of Ce-based coating prepared on AA6060 alloy by dip immersion method

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2013-01-01

    Full Text Available Dip-immersion is simple and cost-effective method for the preparation of Ce-based conversion coatings (CeCCs, a promising alternative to the toxic chromate coatings, on the metal substrates. In this work CeCCs were prepared on Al-alloy AA6060 from aqueous solution of cerium chloride at room temperature. Effect of immersion time and post-treatment in phosphate solution on the microstructure and corrosion properties of the coatings was studied. The longer immersion time, the thicker but nonhomogeneous and cracked CeCCs. The post-treatment contributed to the sealing of cracks, as proven by an increase in corrosion resistance compared with as-deposited coatings. CeCCs prepared at longer deposition time and post-treated showed much better corrosion protection than those prepared at short deposition time. A detailed EIS study was undertaken to follow the evolution of corrosion behaviour of CeCCs with time of exposure to aggressive chloride environment (3.5 % NaCl. For the sake of comparison, the EIS properties of bare AA6060 were also investigated. A linear voltammetry was performed to complete the study. Results confirmed a formation of protective CeCCs on AA6060 surface. However, even CeCCs prepared at longer deposition time and post-treated provided a short term protection in aggressive environment, due to the small thickness. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 i br. III 45012

  8. In situ fabricated platinum—poly(vinyl alcohol) nanocomposite thin film: a highly reusable ‘dip catalyst’ for hydrogenation

    Science.gov (United States)

    Divya Madhuri, U.; Kesava Rao, V.; Hariprasad, E.; Radhakrishnan, T. P.

    2016-04-01

    A simple protocol for the in situ generation of platinum nanoparticles in a poly(vinyl alcohol) (PVA) thin film is developed. Chloroplatinic acid as well as potassium platinum(II) chloride are used as precursors and the film is fabricated by spin coating followed by mild thermal annealing. The chemical process occurring inside the film, wherein the polymer itself acts as the reducing agent, is explored through different spectroscopy and microscopy techniques. The Pt-PVA film, <100 nm thick and containing ˜1 nm size Pt nanoparticles, is shown to be a highly efficient catalyst for the reduction of methylene blue using sodium borohydride. The ease of retrieval and reuse of the thin film is highlighted by the term ‘dip catalyst’. The reaction yield, kinetics and rate are reproducible through several reuses of the same catalyst film. Turnover number (TON = number of mols of product/number of mols of catalyst) and turnover frequency (TOF = TON/reaction time) are significantly higher than those reported earlier for this reaction using metal nanocatalysts. Utility of Pt-PVA film as an efficient catalyst for other hydrogenation reactions is demonstrated.

  9. Preparation of CuAlO2 Thin Films by Sol-Gel Method Using Nitrate Solution Dip-Coating

    Directory of Open Access Journals (Sweden)

    Ehara Takashi

    2016-01-01

    Full Text Available CuAlO2 thin films are prepared by sol-gel dip-coating followed by annealing in nitrogen atmosphere using copper nitrate and aluminum nitrate as metal source materials. X-ray diffraction (XRD patterns show (003, (006 and (009 oriented peaks of CuAlO2 at annealing temperature of 800 – 1000°C. This result indicates that the CuAlO2 films prepared in the present work are c-axis oriented. XRD peak intensity increase with annealing temperature and becomes maximum at 850°C. The CuAlO2 XRD peak decreased at annealing temperature of 900°C with appearance of a peak of CuO, and then increased again with annealing temperature until 1000 °C. The films have bandgap of 3.4 eV at annealing temperature of 850°C in which the transparency becomes the highest. At the annealing temperature of 850°C, scanning electron microscope (SEM observation reveals that the films are consist of amorphous fraction and microcrystalline CuAlO2 fraction.

  10. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  11. Surface plasmon polariton-induced hot carrier generation for photocatalysis.

    Science.gov (United States)

    Ahn, Wonmi; Ratchford, Daniel C; Pehrsson, Pehr E; Simpkins, Blake S

    2017-03-02

    Non-radiative plasmon decay in noble metals generates highly energetic carriers under visible light irradiation, which opens new prospects in the fields of photocatalysis, photovoltaics, and photodetection. While localized surface plasmon-induced hot carrier generation occurs in diverse metal nanostructures, inhomogeneities typical of many metal-semiconductor plasmonic nanostructures hinder predictable control of photocarrier generation and therefore reproducible carrier-mediated photochemistry. Here, we generate traveling surface plasmon polaritons (SPPs) at the interface between a noble metal/titanium dioxide (TiO2) heterostructure film and aqueous solution, enabling simultaneous optical and electrochemical interrogation of plasmon-mediated chemistry in a system whose resonance may be continuously tuned via the incident optical excitation angle. To the best of our knowledge, this is the first experimental demonstration of SPP-induced hot carrier generation for photocatalysis. We found electrochemical photovoltage and photocurrent responses as SPP-induced hot carriers drive both solution-based oxidation of methanol and the anodic half-reaction of photoelectrochemical water-splitting in sodium hydroxide solution. A strong excitation angle dependence and linear power dependence in the electrochemical photocurrent confirm that the photoelectrochemical reactions are SPP-driven. SPP-generated hot carrier chemistry was recorded on gold and silver and with two different excitation wavelengths, demonstrating potential for mapping resonant charge transfer processes with this technique. These results will provide the design criteria for a metal-semiconductor hybrid system with enhanced hot carrier generation and transport, which is important for the understanding and application of plasmon-induced photocatalysis.

  12. Dipicolinate complexes of main group metals with hydrazinium cation

    Indian Academy of Sciences (India)

    K Saravanan; S Govindarajan

    2002-02-01

    Some new coordination complexes of hydrazinium main group metal dipicolinate hydrates of formulae (N2H5)2M(dip)2.H2O (where, M =Ca, Sr, Ba or Pb and = 0, 2, 4 and 3 respectively and dip = dipicolinate), N2H5Bi(dip)2.3H2O and (N2H5)3Bi(dip)3.4H2O have been prepared and characterized by physico-chemical techniques. The infrared spectra of the complexes reveal the presence of tridentate dipicolinate dianions and non-coordinating hydrazinium cations. Conductance measurements show that the mono, di and trihydrazinium complexes behave as 1:1, 2:1 and 3:1 electrolytes respectively, in aqueous solution. Thermal decomposition studies show that these compounds lose water followed by endothermic decomposition of hydrazine to give respective metal hydrogendipicolinate intermediates, which further decompose exothermically to the final product of either metal carbonates (Ca, Sr, Ba and Pb) or metal oxycarbonates (Bi). The coordination numbers around the metal ions differ from compound to compound. The various coordination numbers exhibited by these metals are six (Ca), seven (Ba), eight (Sr) and nine (Pb and Bi). In all the complexes the above coordination number is attained by tridentate dipicolinate dianions and water molecules. The X-ray diffraction patterns of these compounds differ from one another suggesting that they are not isomorphous.

  13. Hot bitumen grouting rediscovered

    Energy Technology Data Exchange (ETDEWEB)

    Naudts, A. [ECO Grouting Specialists, Grand Valley, ON (Canada)

    2001-10-01

    The article extols the value of hot bitumen grouting, in conjunction with cement-based grout, as a fast, safe, environmentally-friendly and cost-effective sealant. A major advantage of bitumen grout is that blown bitumen will never wash out. The article discusses the properties and some applications of bitumen grout. A diagram shows an application of bitumen and cement-based grout at a large dam. Examples of preventing water flow in dams, in a coal mine and in a potash mine are also given.

  14. Fast cold gas in hot AGN outflows

    CERN Document Server

    Costa, Tiago; Haehnelt, Martin

    2014-01-01

    Observations of the emission from spatially extended cold gas around bright high-redshift QSOs reveal surprisingly large velocity widths exceeding 2000 km s^(-1), out to projected distances as large as 30 kpc. The high velocity widths have been interpreted as the signature of powerful AGN-driven outflows. Naively, these findings appear in tension with hydrodynamic models in which AGN-driven outflows are energy-driven and thus very hot with typical temperatures T = 10^6-7 K. Using the moving-mesh code Arepo, we perform 'zoom-in' cosmological simulations of a z = 6 QSO and its environment, following black hole growth and feedback via energy-driven outflows. In the simulations, the QSO host galaxy is surrounded by a clumpy circum-galactic medium pre-enriched with metals due to supernovae-driven galactic outflows. As a result, part of the AGN-driven hot outflowing gas can cool radiatively, leading to large amounts (> 10^9 M_sun) of cold gas comoving with the hot bipolar outflow. This results in velocity widths of...

  15. Charge density waves as the origin of dip-hump structures in the differential tunneling conductance of cuprates: The case of d-wave superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gabovich, Alexander M., E-mail: gabovich@iop.kiev.ua; Voitenko, Alexander I., E-mail: voitenko@iop.kiev.ua

    2014-08-15

    Highlights: • d-Wave superconductivity and charge-density waves compete for the Fermi surface. • Charge-density waves induce pseudogaps and peak-dip-hump structures in cuprates. • Tunnel spectra are non-symmetric due to the dielectric order-parameter phase fixation. • Scatter of the dielectric order parameter smears the tunnel spectra peculiarities. - Abstract: Quasiparticle differential current–voltage characteristics (CVCs) G(V) of non-symmetric tunnel junctions between d-wave superconductors with charge-density waves (CDWs) and normal metals were calculated. The dependences G(V) were shown to have a V-like form at small voltages V and low temperatures, and to be asymmetric at larger V owing to the presence of CDW peak in either of the V-branches. The spatial scatter of the dielectric (CDW) order parameter smears the CDW peak into a hump and induces a peak-dip-hump structure (PDHS) typical of CVCs observed for such junctions. At temperatures larger than the superconducting critical one, the PDHS evolves into a pseudogap depression. The results agree well with the scanning tunneling microscopy data for Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} and YBa{sub 2}Cu{sub 3}O{sub 7−δ}. The results differ substantially from those obtained earlier for CDW s-wave superconductors.

  16. Synthesis and Electrochemical Behavior of Ceria Based Bi-Layer Films by Dip Coating Technique.

    Science.gov (United States)

    Chinnu, M Karl; Anand, K Vijai; Kumar, R Mohan; Alagesan, T; Jayavel, R

    2015-01-01

    Ceria based bi-layer films of CeO2-CdS and CeO2-TiO2 were prepared by sol-gel based hydrothermal route combined with dip-coating. The synthesized samples were subjected to various characterizations such as X-ray diffraction, Field emission scanning electron microscopy, thermo-gravimetric analysis, UV-Vis absorption and photoluminescence studies. The prepared materials were dissolved in naffion solution and disposed as a thin film on glassy carbon electrode by dip coating technique. Electrochemical Li+ intercalation/deintercalation was performed by cyclic voltammetry and these results indicate that the CeO2/LiClO4 system is electrochemically reversible. The total intercalation/deintercalation of the CeO2 film, CeO2-CdS and CeO2-TiO2 bi-layer films was determined by cyclic voltammetry, which showed increased charge storage capacity.

  17. Filmes de titânio-silício preparados por "spin" e "dip-coating"

    Directory of Open Access Journals (Sweden)

    Nassar Eduardo J.

    2003-01-01

    Full Text Available The conditions for the preparation of luminescent materials, consisting of Eu3+ ions entrapped in a titanium matrix, in the forma of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hidrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique.

  18. Evolution of twist-shear and dip-shear in Faring active region NOAA 10930

    CERN Document Server

    Gosain, Sanjay

    2010-01-01

    We study the evolution of magnetic shear angle in a flare productive active region NOAA 10930. The magnetic shear angle is defined as the deviation in the orientation of the observed magnetic field vector with respect to the potential field vector. The shear angle is measured in horizontal as well as vertical plane. The former is computed by taking the difference between the azimuth angles of the observed and potential field and is called the twist-shear, while the latter is computed by taking the difference between the inclination angles of the observed and potential field and is called the dip-shear. The evolution of the two shear angles is then tracked over a small region located over the sheared penumbra of the delta sunspot in NOAA 10930. We find that, while the twist-shear shows an increasing trend after the flare the dip-shear shows a significant drop after the flare.

  19. 3-D Finite Element Analysis of Induction Logging in a Dipping Formation

    Energy Technology Data Exchange (ETDEWEB)

    EVERETT,MARK E.; BADEA,EUGENE A.; SHEN,LIANG C.; MERCHANT,GULAMABBAS A.; WEISS,CHESTER J.

    2000-07-20

    Electromagnetic induction by a magnetic dipole located above a dipping interface is of relevance to the petroleum well-logging industry. The problem is fully three-dimensional (3-D) when formulated as above, but reduces to an analytically tractable one-dimensional (1-D) problem when cast as a small tilted coil above a horizontal interface. The two problems are related by a simple coordinate rotation. An examination of the induced eddy currents and the electric charge accumulation at the interface help to explain the inductive and polarization effects commonly observed in induction logs from dipping geological formations. The equivalence between the 1-D and 3-D formulations of the problem enables the validation of a previously published finite element solver for 3-D controlled-source electromagnetic induction.

  20. Employment Assimilation of Immigrants in The Netherlands: Dip and Catchup by Source Country

    Directory of Open Access Journals (Sweden)

    Aslan Zorlu

    2012-01-01

    Full Text Available Using two Dutch labour force surveys, we compare employment assimilation of immigrants by source country, after ranking countries by presumed social-cultural distance to The Netherlands. We test this ranking of human capital transferability on the ranking by initial performance dip at entry as an immigrant and speed of assimilation as measured by the slope on years-since-migration. We also test the predicted association between entry gap and speed of assimilation (faster assimilation if the initial dip is larger. Both hypotheses are largely supported. Most immigrant groups never reach parity with native Dutch, neither in (un-employment probability nor in job quality, and certainly not within 25 years after arrival.

  1. THE MANUFACUTE OF GLOVES USING RVNRL: PARAMETERS OF the COAGULANT DIPPING PROCESS

    Directory of Open Access Journals (Sweden)

    H.D. CHIRINOS

    1998-12-01

    Full Text Available Surgical gloves were manufactured using the RVNRL process. A fractional factorial design at two levels showed that five parameters of the coagulant dipping process which were studied independent. Coagulant concentration and dwell time in the radiovulcanized latex presented major main effects while the temperature of the former before dipping into the radiovulcanized latex and the flow time of the radiovulcanized latex on the former surface presented opposite main effects. The withdrawal rate of the former from the radiovulcanized latex did not change glove thickness. The mathematical correlation between the estimates of thickness and the significant main effects of coded variables was = 0.212 + 0.025x1 + 0.019x2. This optimized equation allowed reproduction of a surgical glove thickness in the range of 0.157 to 0.291mm, which is considered acceptable by international standard specification.

  2. Genome-wide DNA methylation profiling with MeDIP-seq using archived dried blood spots

    DEFF Research Database (Denmark)

    Staunstrup, Nicklas H; Starnawska, Anna; Nyegaard, Mette

    2016-01-01

    . The enrichment profile, sequence quality and distribution of reads across genetic regions were comparable between samples archived 16 years, 4 years and a freshly prepared control sample. CONCLUSIONS: In summary, we show that high-quality MeDIP-seq data is achievable from neonatal screening filter cards stored....... RESULTS: Here we demonstrate, as a proof of principle, that genome-wide interrogation of the methylome based on methylated DNA immunoprecipitation coupled with next-generation sequencing (MeDIP-seq) is feasible using a single 3.2 mm DBS punch (60 ng DNA) from filter cards archived for up to 16 years...... at room temperature, thereby providing information on annotated as well as on non-RefSeq genes and repetitive elements. Moreover, the quantity of DNA from one DBS punch proved sufficient allowing for multiple epigenome studies using one single DBS....

  3. Electron micrography and x-ray study of dip-lacquered LiF (220)

    DEFF Research Database (Denmark)

    Palmari, J.; Rasigni, M.; Rasigni, G.;

    1991-01-01

    It has been proposed to use the 220 reflection of LiF with a multilayer deposited upon the top for simultaneous spectroscopy near Fe-k and O-k and below the C-k absorption edge (284 eV) in x-ray astronomy. We demonstrate that a substantial reduction of surface roughness is obtained by dip...... lacquering state-of-the-art polished LiF(220) surfaces. Using a microdensitometer analysis of electron micrographs of surface replicas and x-ray reflection, we have measured ∼ 10-Å rms roughness of Au-coated dip-lacquered LiF(220) crystals, as opposed to ∼ 60 Å measured on the bare LiF(220) crystal surface....

  4. 薄膜提拉装置研制%Development of dip-coating apparatus

    Institute of Scientific and Technical Information of China (English)

    陈正华; 吕刚; 唐一文

    2011-01-01

    A dip-coating apparatus including three separate parts (hydraulic pressure transfer part, lifting part,and control part) was developed.To solve the problem of vibration and ensure the lifting speed stability, hydraulic pressure transfer system was chosen to transfer and control the power.Insulating technique was adopted to separate vibration source and lifting part by using flexible linkage.The dip-coating apparatus was proved to have many advantages such as ultra-low vibration and low-speed moving stability and uniformity.The SEM images showed that both the surface and thickness of the films prepared by dip-coating were homogeneous.This high performance dip-coating apparatus could be widely used in the field of thin film preparation for teaching and research.%设计并开发了一种薄膜提拉装置.该装置由液压装置、提拉装置、控制装置3个独立分体装置组成.为了实现薄膜制备过程中无振动、匀速提拉运行的"理想"成膜条件,选用液压传动系统以液体静压力进行动力传递和控制,并采用了与振动源保持柔性连接的隔离技术.该装置具有振动极小、低速稳定、匀速运行等优点,制得的薄膜表面平整、厚度均匀.为薄膜制备领域的教学科研和应用技术研究,提供了一种高品质的薄膜制备设备.

  5. Nash Implementation in an Allocation Problem with Single-Dipped Preferences

    Directory of Open Access Journals (Sweden)

    Ahmed Doghmi

    2013-01-01

    Full Text Available In this paper, we study the Nash implementation in an allocation problem with single-dipped preferences. We show that, with at least three agents, Maskin monotonicity is necessary and sufficient for implementation. We examine the implementability of various social choice correspondences (SCCs in this environment, and prove that some well-known SCCs are Maskin monotonic ( but they do not satisfy no-veto power and hence Nash implementable.

  6. Applications of dip angle and coherence attributes to recognition of volcanic edifice in Songliao Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of the shape and inner structure of volcanic edifice, the dip angle and coherence were selected to recognize the buried volcanic edifices in Songliao Basin. Five volcanic edifices were recognized in both two methods in the first volcanic cycle of Yingcheng Formation and the prediction perfectly corresponds to the drilling results in well XS8 area. The results are satisfying when the prediction method were employed in the exploration and development of Qingshen gas field.

  7. Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells.

    Science.gov (United States)

    Huh, Yoon Ho; Bae, In-Gon; Jeon, Hong Goo; Park, Byoungchoo

    2016-10-31

    We herein report a homogeneous [6,6]-phenyl C61 butyric acid methyl ester (PCBM) layer, produced by a solution process of horizontal-dipping (H-dipping) to improve the photovoltaic (PV) effects of bilayer heterojunction organic photovoltaic cells (OPVs) based on a bi-stacked poly(3-hexylthiophene) (P3HT) electron donor layer and a PCBM electron acceptor layer (P3HT/PCBM). It was shown that a homogeneous and uniform coating of PCBM layers in the P3HT/PCBM bilayer OPVs resulted in reliable and reproducible device performance. We recorded a power conversion efficiency (PCE) of 2.89%, which is higher than that (2.00%) of bilayer OPVs with a spin-coated PCBM layer. Moreover, introducing surfactant additives of poly(oxyethylene tridecyl ether) (PTE) into the homogeneous P3HT/PCBM PV layers resulted in the bilayer OPVs showing a PCE value of 3.95%, which is comparable to those of conventional bulk-heterojunction (BHJ) OPVs (3.57-4.13%) fabricated by conventional spin-coating. This improved device performance may be attributed to the selective collection of charge carriers at the interfaces among the active layers and electrodes due to the PTE additives as well as the homogeneous formation of the functional PCBM layer on the P3HT layer. Furthermore, H-dip-coated PCBM layers were deposited onto aligned P3HT layers by a rubbing technique, and the rubbed bilayer OPV exhibited improved in-plane anisotropic PV effects with PCE anisotropy as high as 1.81, which is also higher than that (1.54) of conventional rubbed BHJ OPVs. Our results suggest that the use of the H-dip-coating process in the fabrication of PCBM layers with the PTE interface-engineering additive could be of considerable interest to those seeking to improve PCBM-based opto-electrical organic thin-film devices.

  8. Mesures magnétiques du dipôle BHN 45 pour le projet AD

    CERN Document Server

    Cornuet, D; CERN. Geneva. SPS and LEP Division

    1999-01-01

    La machine AC (Antiproton Collector) transformée en machine de décélérationd'antiprotons est appelée AD (Antiproton Decelerator). Pour vérifierle comportement de la machine à basse énergie et pendant la décélération, des mesures magnétiques ont été entreprises sur l'un des dipôles, le BHN 45.

  9. FROM X-RAY DIPS TO ECLIPSE: WITNESSING DISK REFORMATION IN THE RECURRENT NOVA U Sco

    Energy Technology Data Exchange (ETDEWEB)

    Ness, J.-U.; Talavera, A.; Gonzalez-Riestra, R. [XMM-Newton Science Operations Centre, ESA, P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Schaefer, B. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Dobrotka, A. [Department of Physics, Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, Jana Bottu 25, 91724 Trnava (Slovakia); Sadowski, A. [N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warszawa (Poland); Drake, J. J.; Barnard, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Page, K. L. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Hernanz, M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, C5 parell 2on, 08193 Bellaterra (Barcelona) (Spain); Sala, G. [Departament Fisica i Enginyeria Nuclear, EUETIB (UPC-IEEC), Comte d' Urgell 187, 08036 Barcelona (Spain); Starrfield, S., E-mail: juness@sciops.esa.int [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States)

    2012-01-20

    The tenth recorded outburst of the recurrent eclipsing nova U Sco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after the outburst. Two full passages of the companion in front of the nova ejecta were observed, as was the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve that disappeared by day 34.9, yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highly elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal 87.

  10. Fluid Sensor Based on Transmission Dip Caused by Mini Stop-Band in Photonic Crystal Slab

    Institute of Scientific and Technical Information of China (English)

    CAO Lei; HUANG Yi-Dong; MAO Xiao-Yu; LI Fei; ZHANG Wei; PENG Jiang-De

    2008-01-01

    We propose a fluid sensor based on transmission dip caused by mini stop-band in photonic crystal slabs. Simulation results show that this novel type of sensors has large detective range (more than 1.5) and relative high sensitivity (4.3×10-5 in certain conditions). The central frequency and bandwidth of the mini stop-bands depend on the structure parameters of PC waveguides, which makes it possible to optimize the detective range and detective sensitivity.

  11. Seasonal Variation of Inorganic Nutrients (DSi, DIN and DIP) Concentration in Swedish River

    OpenAIRE

    Ahmed, Rafiq

    2007-01-01

    Rivers have been playing most important role as fresh water source and medium of nutrient transportation from terrestrial to aquatic ecosystem. Inorganic form of nutrients (DSi, DIN and DIP) are plant available mostly control the productivity of aquatic ecosystem. Transfer of these nutrients in higher concentrations cause harmful eutrophication in receiving water body. Study of dissolved inorganic nutrients concentrations in 12 Swedish rivers of different basin characteristics demonstrated bo...

  12. Effect of post - milking teat dipping on hygienic quality of cow's milk

    OpenAIRE

    2013-01-01

    The study aimed to investigate the effects of teat disinfection (dipping treatment) after milking on hygienic quality of row milk. The research was conducted on the farm with 30 Holstein-Friesian dairy cows. Animals were kept in a tied housing system. Milking is done by a bucket milking units using vacuum line. The research was carried out during the period of 2 months from 26.11.2012 till 25.01.2013. Results showed that milk immediately after leaving the u...

  13. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    Science.gov (United States)

    Dushaq, Ghada H.; Alkhatib, Amro; Rasras, Mahmoud S.; Nayfeh, Ammar M.

    2015-09-01

    We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP) the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM) images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.

  14. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    Indian Academy of Sciences (India)

    K K Ajay; A K Chaubey; K S Krishna; D Gopala Rao; D Sar

    2010-12-01

    Multi-channel seismic reflection profiles across the southwest continental margin of India (SWCMI) show presence of westerly dipping seismic reflectors beneath sedimentary strata along the western flank of the Laccadive Ridge –northernmost part of the Chagos –Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors (SDRs). The SDRs; 15 to 27 km wide overlain by ∼1 km thick sediment; are observed at three locations and characterized by stack of laterally continuous, divergent and off-lapping reflectors. Occurrence of SDRs along western flank of the Laccadive Ridge adjacent to oceanic crust of the Arabian Basin and 2D crustal model deduced from free-air gravity anomaly suggest that they are genetically related to incipient volcanism during separation of Madagascar from India. We suggest that (i)SWCMI is a volcanic passive margin developed during India –Madagascar breakup in the Late Cretaceous, and (ii)continent –ocean transition lies at western margin of the Laccadive Ridge, west of feather edge of the SDRs. Occurrence of SDRs on western flank of the Laccadive Ridge and inferred zone of transition from continent to ocean further suggest continental nature of crust of the Laccadive Ridge.

  15. Field Emission Lamps Prepared with Dip-Coated and Nickel Electroless Plated Carbon Nanotube Cathodes.

    Science.gov (United States)

    Pu, N W; Youh, M J; Chung, K J; Liu, Y M; Ger, M D

    2015-07-01

    Fabrication and efficiency enhancement of tubal field emission lamps (FELs) using multi-walled carbon nanotubes (MWNTs) as the cathode field emitters were studied. The cathode filaments were prepared by eletrolessly plating a nickel (Ni) film on the cathode made of a 304 stainless steel wire dip-coated with MWNTs. The 304 wire was dip-coated with MWNTs and nano-sized Pd catalyst in a solution, and then eletrolessly plated with Ni to form an MWNT-embedded composite film. The MWNTs embedded in Ni not only had better adhesion but also exhibited a higher FE threshold voltage, which is beneficial to our FEL system and can increase the luminous efficiency of the anode phosphor. Our results show that the FE cathode prepared by dipping three times in a solution containing 400 ppm Pd nano-catalysts and 0.2 wt.% MWNTs and then eletrolessly plating a Ni film at a deposition temperature of 60 °C, pH value of 5, and deposition time of 7 min has the best FE uniformity and efficiency. Its emission current can stay as low as 2.5 mA at a high applied voltage of 7 kV, which conforms to the high-voltage-and-low-current requirement of the P22 phosphor and can therefore maximize the luminous efficiency of our FEL. We found that the MWNT cathodes prepared by this approach are suitable for making high-efficiency FELs.

  16. Environmental impact assessment for steeply dipping coal beds: North Knobs site

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-08

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantages of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.

  17. Voltage dip generator for testing wind turbines connected to electrical networks

    Energy Technology Data Exchange (ETDEWEB)

    Veganzones, C.; Martinez, S.; Platero, C.A.; Blazquez, F.; Ramirez, D.; Arribas, J.R.; Merino, J.; Gordillo, F. [Department of Electrical Engineering, ETSII, Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Sanchez, J.A.; Herrero, N. [Department of Civil Engineering, Hydraulics and Energy, ETSICCP, Universidad Politecnica de Madrid, Ciudad Universitaria, s/n. 28040 Madrid (Spain)

    2011-05-15

    This paper describes a new voltage dip generator that allows the shape of the time profile of the voltage generated to be configured. The use of this device as a tool to test the fault ride-through capability of wind turbines connected to the electricity grid can provide some remarkable benefits: First, this system offers the possibility of adapting the main features of the time-voltage profile generated (dip depth, dip duration, the ramp slope during the recovery process after clearing fault, etc.) to the specific requirements set forth by the grid operation codes, in accordance with different network electrical systems standards. Second, another remarkable ability of this system is to provide sinusoidal voltage and current wave forms during the overall testing process without the presence of harmonic components. This is made possible by the absence of electronic converters. Finally, the paper includes results and a discussion on the experimental data obtained with the use of a reduced size laboratory prototype that was constructed to validate the operating features of this new device. (author)

  18. Geometry Transition in the Cocos Plate, from Flat-Steep to Constant Dip: Smooth or Abrupt?

    Science.gov (United States)

    Perez-Campos, X.; Clayton, R. W.; Brudzinski, M. R.; Valdés-González, C. M.; Cabral-Cano, E.; Arciniega-Ceballos, A.; Córdoba-Montiel, F.

    2013-05-01

    Subduction of the Cocos Plate beneath North America has a variable and complex behavior along the Middle-American Trench. Initially, its geometry was delineated from regional seismicity. In the last 10 years, seismic experiments have illuminated some details in the geometry. They have reported, from NW to SE an abrupt dip transition, from 50 to 26°, as the result of a tear that splits Cocos North from Cocos South; then there is a smooth transition to a horizontal geometry under central Mexico. Further southeast, under the Isthmus of Tehuantepec, the Cocos plate shows a constant ~26° subduction dip. This last transition has been assumed to be smooth from the sparse seismicity in the region. A first glimpse of the slab geometry under Oaxaca, shows the slab continues to be flat at least until 97.5°W longitude, where the slab suddenly changes to a ~55° dip to the northeast. This occurs at a distance of ~75 km from the Pico de Orizaba volcano, which is a similar distance as the active Popocatepetl volcano from the place where the slab dives into the mantle along the Meso-American Subduction Experiment line, in central Mexico. East of this region, receiver function images show an abrupt change in the geometry and length of the slab.

  19. Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips

    Directory of Open Access Journals (Sweden)

    Fenglin Miao

    2015-10-01

    Full Text Available The impact of converter control strategies on the drive train of wind turbines during voltage dips is investigated in this paper using a full electromechanical model. Aerodynamics and tower vibration are taken into consideration by means of a simulation program, named FAST. Detailed gearbox and electrical subsystems are represented in MATLAB. The dynamic response of electromagnetic torque and its impact on the mechanical variables are the concern in this paper and the response of electrical variables is less discussed. From the mechanical aspects, the effect of rising power recovery speed and unsymmetrical voltage dips are analyzed on the basis of the dynamic response of the high-speed shaft (HSS. A comparison of the impact on the drive train is made for two converter control strategies during small voltage dips. Through the analysis of torque, speed and tower vibration, the results indicate that both power recovery speed and the sudden torque sag have a significant impact on drive trains, and the effects depend on the different control strategies. Moreover, resonance might be excited on the drive train by an unbalanced voltage.

  20. Structural characterization of electric-field assisted dip-coating of gold nanoparticles on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dushaq, Ghada H.; Alkhatib, Amro; Rasras, Mahmoud S.; Nayfeh, Ammar M. [Institute Center for microsystem engineering (iMicro), Department of Electrical Engineering and Computer Science (EECS), Masdar Institute of Science and Technology, PO Box. 54224, Abu Dhabi (United Arab Emirates)

    2015-09-15

    We report the effect of applying an electric field on the surface coverage of 40nm gold colloidal nanoparticles on silicon wafer using dip-coating and electrochemical cell set up. By applying electric field during the dip-coating of silicon wafer in a solution of gold nano particles (GNP) the surface coverage increased by 10% when the electric field varied from 5V/cm to 25V/cm at fixed deposition time of 90s. Ultra High Resolution Scanning Electron Microscopy (HRSEM) images shows that the particle agglomeration becomes more noticeable at higher electric field and as the deposition time increases from 90 s to 20 min a thin film of gold is achieved. Moreover, the results are discussed in terms of chemical bonding, electrostatic force and electrophoretic mobility of Au nano particles during the electric field enhanced deposition on the Si surface. Applied voltage, time of dipping, concentration of the aqueous solution, and particles zeta potential are all can be controlled to enhance the uniformity and particles profile on the silicon surface.