WorldWideScience

Sample records for hot air drying

  1. Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices

    Science.gov (United States)

    Miraei Ashtiani, Seyed-Hassan; Sturm, Barbara; Nasirahmadi, Abozar

    2018-04-01

    Drying and physicochemical characteristics of nectarine slices were investigated using hot-air and hybrid hot air-microwave drying methods under fixed air temperature and air speed (50 °C and 0.5 m/s, respectively). Microwave power levels for the combined hot air-microwave method were 80, 160, 240, and 320 W. Drying kinetics were analyzed and compared using six mathematical models. For both drying methods the model with the best fitness in explaining the drying behavior was the Midilli-Kucuk model. The coefficient of determination ( R 2), root mean square error (RMSE) and reduced chi square ( χ 2) for this model have been obtained greater than 0.999 and less than 0.006 and 0.0001 for hybrid hot air-microwave drying while those values for hot-air drying were more than 0.999 and less than 0.003 and 0.0001, respectively. Results showed that the hybrid method reduced the drying time considerably and produced products with higher quality. The range of effective moisture diffusivity ( D eff ) of hybrid and hot-air drying was between 8.15 × 10-8 and 2.83 × 10-7 m2/s and 1.27 × 10-8 m2/s, respectively. The total color difference (ΔE) has also been obtained from 36.68 to 44.27 for hybrid method; however this value for hot-air drying was found 49.64. Although reduced microwave power output led to a lower drying rate, it reduced changes in product parameters i.e. total color change, surface roughness, shrinkage and microstructural change and increased hardness and water uptake.

  2. Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics

    Science.gov (United States)

    İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen

    2018-02-01

    In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.

  3. Ultrasound-Assisted Hot Air Drying of Foods

    Science.gov (United States)

    Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique

    This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.

  4. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    Science.gov (United States)

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  5. Mathematical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices

    International Nuclear Information System (INIS)

    Taghian Dinani, Somayeh; Hamdami, Nasser; Shahedi, Mohammad; Havet, Michel

    2014-01-01

    Highlights: • Hot air/EHD drying behavior of thin layer mushroom slices was evaluated. • A new empirical model was proposed for drying kinetics modeling of mushroom slices. • The new model presents excellent predictions for hot air/EHD drying of mushroom. - Abstract: Researches about mathematical modeling of electrohydrodynamic (EHD) drying are rare. In this study, hot air combined with electrohydrodynamic (EHD) drying behavior of thin layer mushroom slices was evaluated in a laboratory scale dryer at voltages of 17, 19, and 21 kV and electrode gaps of 5, 6, and 7 cm. The drying curves were fitted to ten different mathematical models (Newton, Page, Modified Page, Henderson and Pabis, Logarithmic, Two-term exponential, Midilli and Kucuk, Wang and Singh, Weibull and Parabolic models) and a proposed new empirical model to select a suitable drying equation for drying mushroom slices in a hot air combined with EHD dryer. Coefficients of the models were determined by non-linear regression analysis and the models were compared based on their coefficient of determination (R 2 ), sum of square errors (SSE) and root mean square error (RMSE) between experimental and predicted moisture ratios. According to the results, the proposed model that contains only three parameters provided the best fit with the experimental data. It was closely followed by the Midilli and Kucuk model that contains four parameters. Therefore, the proposed model can present comfortable usage and excellent predictions for the moisture content changes of mushroom slices in the hot air combined with EHD drying system

  6. Aroma changes in fresh bell peppers (Capsicum annuum) after hot-air drying.

    NARCIS (Netherlands)

    Luning, P.A.; Yuksel, D.; Vuurst de Vries, van R.; Roozen, J.P.

    1995-01-01

    The aroma of fresh and hot-air dried bell peppers (Capsicum annuum) was evaluated by sensory and instrumental methods. Hot-air drying decreased levels of the odor compounds (Z)-3-hexenal, 2-heptanone, (Z)-2-hexenal, (E)-2-hexenal, hexanol, (Z)-3-hexanol, (E)-2-hexenol, and linalool, which have

  7. DEHYDRATION OF CHEESE BY HOT AIR, MICROWAVE AND FREEZE-DRYING

    Directory of Open Access Journals (Sweden)

    ANA RITA C. PINHO

    2017-12-01

    Full Text Available The objective of this work was to study the dehydration of skim cheese through different methods, in particular by hot air, microwave and freeze-drying, in order to assess which of these methods would be more suitable for the development of a new product (cheese snack. For the three processes of dehydration, several temperatures, powers and times were used, respectively. The drying time was optimized to allow the water activity of the final product to be between 0.3 and 0.4. The color and texture of the product obtained by the three processes were evaluated, and the nutritional analysis (protein, lipids, ash of the product dried by hot air at 52 ºC and by microwave at 750 W and 850 W was performed. The sensory analysis of the microwave dehydrated products was also carried out. The results obtained revealed that the temperature played a relevant role in the drying time and the hardness of the product. In the dehydration by microwave, the power of 850 W resulted in a lower drying time and a better color preservation, but in a high hardness of the samples. Among the three processes studied, the microwave drying was the fastest for the water removal from the cheese.

  8. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments

    Directory of Open Access Journals (Sweden)

    Seyed-Hassan Miraei Ashtiani

    2017-06-01

    Full Text Available The drying kinetics of peppermint leaves was studied to determine the best drying method for them. Two drying methods include hot-air and infrared techniques, were employed. Three different temperatures (30, 40, 50 °C and air velocities (0.5, 1, 1.5 m/s were selected for the hot-air drying process. Three levels of infrared intensity (1500, 3000, 4500 W/m2, emitter-sample distance (10, 15, 20 cm and air speed (0.5, 1, 1.5 m/s were used for the infrared drying technique. According to the results, drying had a falling rate over time. Drying kinetics of peppermint leaves was explained and compared using three mathematical models. To determine coefficients of these models, non-linear regression analysis was used. The models were evaluated in terms of reduced chi-square (χ2, root mean square error (RMSE and coefficient of determination (R2 values of experimental and predicted moisture ratios. Statistical analyses indicated that the model with the best fitness in explaining the drying behavior of peppermint samples was the Logarithmic model for hot-air drying and Midilli model for infrared drying. Moisture transfer in peppermint leaves was also described using Fick’s diffusion model. The lowest effective moisture diffusivity (1.096 × 10−11 m2/s occurred during hot-air drying at 30 °C using 0.5 m/s, whereas its highest value (5.928 × 10−11 m2/s belonged to infrared drying using 4500 W/m2 infrared intensity, 0.5 m/s airflow velocity and 10 cm emitter-sample distance. The activation energy for infrared and hot-air drying were ranged from 0.206 to 0.439 W/g, and from 21.476 to 27.784 kJ/mol, respectively.

  9. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.

    Science.gov (United States)

    Fernando, J A K M; Amarasinghe, A D U S

    2016-01-01

    Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).

  10. Influence of 60Co γ irradiation pre-treatment on characteristics of hot air drying sweet potato slices

    International Nuclear Information System (INIS)

    Jiang Ning; Liu Chunquan; Li Dajing; Liu Xia; Yan Qimei

    2012-01-01

    The influences of irradiation, hot air temperature and thicknesses of the slices on the characters of dehydration and surface temperature of 60 Co γ-rays irradiated sweet potato were investigated. Meanwhile, microscopic observation and determination of water activity of irradiated sweet potato were conducted. The results show that the drying rate and the surface temperature rose with the increasing of irradiation dose. When the dry basis moisture content was 150%, the drying rate of the samples were 1.92, 1.97, 2.05, 2.28, 3.12% /min while the irradiation dose were 0, 2, 5, 8, 10 kGy, and the surface temperature were 48.5 ℃, 46.3℃, 44.5 ℃, 42.2 ℃, 41.5 ℃, respectively. With higher air temperature and thinner of the sweet potato slices, the dehydration of the irradiated sweet potato slices were faster. The drying speed of sweet potato slices at 85 ℃ was 170 min faster than that of 65 ℃. The drying speed of 7 mm sweet potato slices was 228 min faster than that of 3 mm sample. The cell wall and the vacuole of the sweet potato slices were broken after irradiation, and its water activity increased with the increase is radiation dose. The water activity of the irradiated samples were 0.92, 0.945, 0.958, 0.969, 0.979 with the irradiation doses of 0, 2, 5, 8, 10 kGy, respectively. The hot air drying rate, surface temperature and water activity of sweet potato are significantly impacted by irradiation. The conclusion provides a theoretical foundation for further processing technology of combined radiation and hot air drying sweet potato. (authors)

  11. Empirical Modeling on Hot Air Drying of Fresh and Pre-treated Pineapples

    Directory of Open Access Journals (Sweden)

    Tanongkankit Yardfon

    2016-01-01

    Full Text Available This research was aimed to study drying kinetics and determine empirical model of fresh pineapple and pre-treated pineapple with sucrose solution at different concentrations during drying. 3 mm thick samples were immersed into 30, 40 and 50 Brix of sucrose solution before hot air drying at temperatures of 60, 70 and 80°C. The empirical models to predict the drying kinetics were investigated. The results showed that the moisture content decreased when increasing the drying temperatures and times. Increase in sucrose concentration led to longer drying time. According to the statistical values of the highest coefficients (R2, the lowest least of chi-square (χ2 and root mean square error (RMSE, Logarithmic model was the best models for describing the drying behavior of soaked samples into 30, 40 and 50 Brix of sucrose solution.

  12. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose.

    Science.gov (United States)

    Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui

    2016-04-01

    Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The effect of osmotic pretreatment on the density of hot-air-dried carrot

    Directory of Open Access Journals (Sweden)

    J Soleimani

    2012-02-01

    Full Text Available Consumption of large amounts of fruits and vegetables throughout the world, have encouraged the development of various methods for their processing. Drying is considers as the most common method for preservation of vegetable and fruits. Although drying extend the shelf-life, it has various side effects on keeping quality of these foods; including decreasing of the color and texture quality as well as missing the flavor and nutritional values. These negative effects have increased the demand for the discovering the alternative drying methods and consequently for the production of fresh-like products. The aim of this study was to introduce and optimize the novel method for the drying of carrot as well as to develop and optimize the quality of osmo-air-dried carrots with special respect to the color, flavor, texture, rehydration properties, density and shriveling of the product. For this, the effect of osmotic pretreatment on the density of carrot slices was investigated, using 50% glucose syrup +5% salt at 40°C with 150 rpm, followed by complementary drying step. The result of treated group was compared with control samples which were dried only by hot-air-drier. The results showed that using osmotic pretreatment could increase the density through inhibition of the product's shrinkage. Meanwhile, in air-dried samples the density was decreased considerably and high shrinkage was also observed.

  14. Effect of hot-air drying on the physicochemical properties of kaffir lime leaves (Citrus hystrix)

    OpenAIRE

    Juhari, Nurul Hanisah Binti; Lasekan, Ola; Muhammad, Kharidah; Karim, Shahrim

    2013-01-01

    The effect of hot-air drying namely drying time (3-15 h), drying temperature (40-80°C) and loading capacity (0.5-2.0 kg/m2 ) on the physicochemical characteristics of kaffir lime leaves was optimized using Response Surface Methodology. Twenty treatments were assigned based on the second- order CCD including 6 center points, 6 axial points and 8 factorial points. The quality of dried kaffir lime leaves was evaluated by determining moisture content, water activity, texture (brittleness) and Hun...

  15. Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Tung, P. [Silpakorn University, Pathom (Thailand). Dept. of Physics

    2005-11-01

    A solar dryer for drying herbs and spices using hot air from roof-integrated solar collectors was developed. The dryer is a bin type with a rectangular perforated floor. The bin has a dimension of 1.0 m x 2.0 m x 0.7 m. Hot air is supplied to the dryer from fiberglass-covered solar collectors, which also function as the roof of a farmhouse. The total area of the solar collectors is 72 m{sup 2}. To investigate its performance, the dryer was used to dry four batches of rosella flowers and three batches of lemon-grasses during the year 2002-2003. The dryer can be used to dry 200 kg of rosella flowers and lemon-grasses within 4 and 3 days, respectively. The products being dried in the dryer were completely protected from rains and insects and the dried products are of high quality. The solar air heater has an average daily efficiency of 35% and it performs well both as a solar collector and a roof of a farmhouse. (author)

  16. Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum

    Science.gov (United States)

    Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.

    2017-06-01

    Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.

  17. The Effect of Temperature and Air Velocity on Drying Kinetics of Pistachio Nuts during Roasting by using Hot Air Flow

    Directory of Open Access Journals (Sweden)

    A Dini

    2017-10-01

    Full Text Available Introduction Pistachio nut is one of the most delicious and nutritious nuts in the world and it is being used as a saltedand roasted product or as an ingredient in snacks, ice cream, desserts, etc. The purpose of roasting is to promote flavour and texture changes in nuts that ultimately increase the overall palatability of the product.Roasting involves a number of physico-chemical changes, including heat exchange, chemical reactions and drying. Knowledge of desorption kinetics is essential to predict the behavior of the material during roasting process and to design roaster equipment.The main aim of this research was to evaluate suitable models for predicting moisture ratio, the effect of air temperature and velocity on the drying kinetics of pistachio nuts and obtain the effective diffusivity coefficient and activation energy in the drying process during the roasting of pistachio nuts. Materials and Methods Dried Ahmadaghaei pistachio nuts were supplied from Kashefan Kavir company (Doraj co. in Rafsanjan. Pistachio nuts were soaked in 17% salt solution for 8 minute and roasting was investigated at air temperatures of 120,130, 145, 160 and 170 °C and air velocities of 0.6, 0.88, 1.3, 1.72 and 2 ms-1. Five semi-theoretical and two empirical kinetic models were fitted to drying experimental data using nonlinear regression analysis techniques in the Curve Expert 2.2 computer program. Results and Discussion Tow-way ANOVA indicated that temperature and hot air velocity significantly affected the drying process during roasting of shelled pistachio nuts. The higher roasting temperatures and air velocities resulted in the higher drying rates. During first 10 min of roasting at constant air velocity of 1.3 ms-1, 64.5%, 70.3%, 77.1%, 83.5%, 89.7% of the moisture were removed at roasting air temperatures of 120 °C, 130 °C, 145 °C, 160 °C, 170 °C, respectively. The high regression coefficients (R2>0.996 and low reduced chi-square (χ2, mean relative

  18. Experimental investigation on influence of porous material properties on drying process by a hot air jet

    International Nuclear Information System (INIS)

    Di Marco, P; Filippeschi, S

    2012-01-01

    The drying process of porous media is a subject of scientific interest, and different mathematical approaches can be found in the literature. A previous paper by the same authors showed that the celebrated Martin correlation for hot air jet heat and mass transfer yields different degrees of accuracy (from 15% to 65%, increasing at high values of input power) if tested on different fabrics, the remaining conditions being the same. In this paper the fabric drying has been experimentally investigated more in depth. A dedicated experimental apparatus for hot jet drying was assembled and operated, in which a hot jet impinges perpendicularly onto a wet fabric. A calibrated orifice was adopted to measure the jet flow rate, with an accuracy better than 3%. The drying power was determined by continuously weighing with a precision scale a moistened patch exposed to the drying jet. The effect of the time of the exposure and the initial amount of water has been evaluated for each sample. During the hot jet exposure, the temperature distribution over the wet patch has been observed by an infrared thermo-camera. A mathematical model of water transport inside and outside the fabric was developed, in order to evidence the governing transport resistances. The theoretical predictions have been compared with the experimental results, and showed the necessity to modify correlations and models accounting for fabric properties.

  19. STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS

    OpenAIRE

    Mojtaba Nouri; Marzieh Vahdani; Shilan Rashidzadeh; Lukáš Hleba; Mohammad Ali Shariati

    2015-01-01

    The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C) and microwave (90, 180, 360, 600 and 900w) in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2), Chi square(X2), root mean square errors(RSME). Results also revealed that temperature and micr...

  20. Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes

    Science.gov (United States)

    Dehghannya, Jalal; Bozorghi, Somayyeh; Heshmati, Maryam Khakbaz

    2018-04-01

    Hot-air drying is a slow energy-extensive process. Use of intermittent microwave (IM) in hot-air (HA) drying of food products is characterized with advantages including reduced process time, energy saving, and improved final quality. In this study, the effect of IM-HA drying following an osmotic dehydration (OD) pretreatment was analyzed on qualitative and quantitative properties of the output (i.e. effective moisture diffusion coefficient (Deff), shrinkage, bulk density, rehydration and energy consumption). Temperature and airflow velocity were fixed at 40°C and 1 m/s, respectively. The process variables included sucrose solution concentration at five levels (0 or control, 10, 30, 50 and 70 w/w%), microwave output power at four levels (0 or control, 360, 600 and 900 W), and pulse ratio at four levels (1, 2, 3 and 4). Use of osmotic dehydration in combination with IM-HA drying reduced the drying time by up to about 54%. Increasing the osmotic solution concentration to 30% and using higher pulse ratios increased the Deff. The lowest shrinkage and bulk density as well as the highest rehydration belonged to the 900 W microwave power and pulse ratio of 4. The lowest energy consumption was observed when using the 900 W power level, showing 63.27% less consumption than the HA drying method.

  1. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  2. STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS

    Directory of Open Access Journals (Sweden)

    Mojtaba Nouri

    2015-06-01

    Full Text Available The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C and microwave (90, 180, 360, 600 and 900w in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2, Chi square(X2, root mean square errors(RSME. Results also revealed that temperature and microwave power effectively reduce the drying time when increase. Drying occurs in degrading stage; moreover the comparison of results exhibited that Page and Two sentences models were fitted appropriately to estimate moisture changing and drying description. Regarding all the results, it is cleared that microwave method is an appropriate method in spinach drying as a result of reducing drying temperature and its high efficiency.

  3. Air dehumidification and drying processes

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, R.

    1988-07-01

    Details are given on the physical principles of air dehumidification and drying as well as on appropriate systems available on the market. Reference is made to dehumidification through condensation (intermittent compressor or electric auxiliary heater defrosting, reversible-circuit hot gas bypass defrosting), air drying through sorption (sorbents, regeneration through heat inputs), the operation of absorptive dryers (schematic sketches), and the change of state of air (Mollier h,x-diagramm). Practical examples refer to the dehumidification of storage rooms, archives, and waterworks as well as to air drying in the pharmaceutical industry, the pastry and candy industry, the food industry, and the drying (preservation) of turbines and generators during long standstill periods. A diagramm shows that while adsorption processes are efficient at temperatures below 80/sup 0/C, low-temperature dehumidification is efficient at temperatures above. (HWJ).

  4. Evaluation of beetroot changes during drying with hot air by digital ...

    African Journals Online (AJOL)

    Foods drying are an important operation in processing and increasing foodstuffs shelf life and many factors effected on products efficiency and quality during drying. Deterioration of texture structure and products color changes depends on drying method and air temperature and air rate. Drying or removing maximum water ...

  5. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    Science.gov (United States)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2018-02-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  6. Drying hot red pepper using solar tunnel drier

    International Nuclear Information System (INIS)

    Hossain, M.A; Bala, B.K.

    2006-01-01

    A solar tunnel drier was used to dry red hot pepper under the tropical weather conditions of Bangladesh in order to investigate its performance and the quality of the drier product. The drier comprises a plastic sheet-covered flat plate collector and a drying tunnel. The drier is arranged to supply hot air to the drying tunnel using two small fans powered by a 40 watt PV module. Fresh red pepper was water blanched before drying. In each drying batch in the solar tunnel drier, 20 kg of dried red pepper with 4 to 6% moisture content (wb) was obtained from 80 kg of fresh red pepper with initial moisture content of 73 to 75% (wb) in 20 to 22 hours of drying while it took 32 to 34 hours to bring down the moisture content of similar sample to 8 to 10% (wb) in sun drying methods. The pepper dried in the solar tunnel drier was completely protected from dust, dirt, rain, insects, birds, rodents and microorganisms and it was a quality-dried product in term of colour and pungency. The solar tunnel drier is recommended for drying of pepper as well as vegetables and fruits in developing countries especially in Bangladesh

  7. EFFECT OF CHEMICAL MODIFICATION AND HOT-PRESS DRYING ON POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Guo-Feng Wu

    2010-11-01

    Full Text Available Urea-formaldehyde prepolymer and hot-press drying were used to improve the properties of poplar wood. The wood was impregnated with the prepolymer using a pulse-dipping machine. The impregnated timbers were compressed and dried by a multilayer hot-press drying kiln. The drying rate was more rapid during the chemical modification and hot-press drying than conventional kiln-drying. In addition, the properties of timber were also enhanced obviously. When the compression rate was 28.6%, the basic density, oven dry density and air-dried density of modified wood improved 22%, 71%, and 70%, respectively. The bending strength and compressive strength parallel to grain increased 60% and 40%. The water uptake of treated wood was significantly decreased compared with the untreated wood. The FTIR analysis successfully showed that the intensity of hydroxyl and carbonyl absorption peaks decreased significantly, which was attributed to a reaction of the NHCH2OH of urea-formaldehyde prepolymer with the wood carboxyl (C=O and hydroxyl (-OH groups. The XRD results indicated that the degree of crystallinity increased from 35.09% to 36.91%. The morphologic models of chemical within wood were discovered by SEM.

  8. Effects of hot air and freeze drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (Arbutus unedo L) fruit.

    Science.gov (United States)

    Orak, H H; Aktas, T; Yagar, H; İsbilir, S Selen; Ekinci, N; Sahin, F Hasturk

    2012-08-01

    Antioxidant activity, colour and some nutritional properties of hot air and freeze-dried strawberry tree (Arbutus unedo L.) fruits were investigated. Additionally, the effects of two pre-treatments, namely ethyl oleate and water blanching, were compared in terms of drying characteristics. For determination of antioxidant activities in ethanol extracts, two different analytical methods were used: 1,1-diphenyl-2-picrylhydrazyl scavenging activity and β-carotene bleaching activity. As a result, the ethyl oleate pre-treatment shortened the drying time by hot air method and gave a higher 1,1-diphenyl-2-picrylhydrazyl scavenging activity (82.16 ± 0.34%), total phenolic content (7.62 ± 1.09 µg GAE/g extract), ascorbic acid content (236.93 ± 20.14 mg/100 g), besides hydromethylfurfural was not observed. Freeze-dried fruits exhibited higher ascorbic acid content (368.63 ± 17.16 mg/100 g) than those fresh fruits (231.33 ± 19.51 mg/100 g) and nearly 1,1-diphenyl-2-picrylhydrazyl activity (93.52 ± 0.41 %) to fresh fruits (94.03 ± 1.18%). Colour characteristics, sugar content and mineral contents of fruits were significantly affected by pre-treatments and drying methods (p drying of strawberry tree fruits should bring a valuable and attractive foodstuff to food industry due to the rich nutritional components, antioxidant activity and colour. Another conclusion from this study is that the freeze-drying is the best drying method to keep the nutritional value, antioxidant activity and sensory properties of fruits.

  9. Modelling of hot air chamber designs of a continuous flow grain dryer

    DEFF Research Database (Denmark)

    Kjær, Lotte Strange; Poulsen, Mathias; Sørensen, Kim

    2018-01-01

    The pressure loss, flow distribution and temperature distribution of a number of designs of the hot air chamber in a continuous flow grain dryer, were investigated using CFD. The flow in the dryer was considered as steady state, compressible and turbulent. It is essential that the grain...... is uniformly dried as uneven drying can result in damage to the end-product during storage. The original commercial design was modified with new guide vanes at the inlets to reduce the pressure loss and to ensure a uniform flow to the line burner in the hot air chamber. The new guide vane design resulted...... in a 10% reduction in pressure loss and a γ-value of 0.804. Various design changes of the hot air chamber were analysed in terms of pressure loss and temperature distribution with the aim of a temperature variation of 5 K at the outlet ducts. An obstruction design was analysed, which improved mixing...

  10. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  11. Secagem de café cereja descascado por ar quente e microondas Drying pulped coffee cherry beans by means of hot air ond microwaves

    Directory of Open Access Journals (Sweden)

    M.L. Cunha

    2003-12-01

    Full Text Available Este trabalho objetivou estudar a viabilidade de produzir café cereja descascado seco pela aplicação de microondas para assistir a secagem convencional a ar quente, a fim de reduzir o tempo de processo, com o aumento do rendimento industrial e da qualidade do produto perante os métodos tradicionais de secagem. Dois ciclos de secagem foram testados: a processo em secador rotativo convencional a ar quente, com umidade do produto reduzida de 45-50 a 11-13% b.u.; b processo subdividido em uma primeira etapa de pré-secagem convencional a ar quente de 45-50 a 30% b.u., seguida de etapa de secagem final por ar quente e microondas, com redução de 30 a 11-13% b.u. de umidade do produto. O tempo global do primeiro para o segundo ciclo de secagem foi reduzido de 15 a 37,5 para pouco mais de 10 horas, respectivamente. A qualidade sensorial do produto foi avaliada pela "prova da xícara", complementada por análises de microscopia eletrônica de varredura (MEV, com resultados satisfatórios. Um estudo preliminar dos aspectos econômicos envolvidos na ampliação de escala para uma linha industrial de processamento de café com a inclusão de um sistema a microondas foi também delineado.This research concerns a process development study focussing the application of microwaves to pulped coffee cherries production, in order to reduce the drying time and increase the industrial yield and product quality when compared to conventional drying processes. Two drying cycles were tested: a a hot air drying process using a conventional batch rotary dryer from 45-50 to 11-13% w.b. product moisture; b a two stage process, whereby the product was pre dried with hot air from 45-50 to 30% w.b., followed by a final microwave and hot air drying stage, to reduce product moisture from 30 to 11-13% w.b. The overall drying time was reduced from 15 to 37.5 hours to about 10 hours, respectively. The sensory quality of the product was evaluated by the "cup test", complemented

  12. Hot dry rock heat mining

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1992-01-01

    Geothermal energy utilizing fluids from natural sources is currently exploited on a commercial scale at sites around the world. A much greater geothermal resource exists, however, in the form of hot rock at depth which is essentially dry. This hot dry rock (HDR) resource is found almost everywhere, but the depth at which usefully high temperatures are reached varies from place to place. The technology to mine the thermal energy from HDR has been under development for a number of years. Using techniques adapted from the petroleum industry, water is pumped at high pressure down an injection well to a region of usefully hot rock. The pressure forces open natural joints to form a reservoir consisting of a small amount of water dispensed in a large volume of hot rock. This reservoir is tapped by second well located at some distance from the first, and the heated water is brought to the surface where its thermal energy is extracted. The same water is then recirculated to mine more heat. Economic studies have indicated that it may be possible to produce electricity at competitive prices today in regions where hot rock is found relatively close to the surface

  13. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    Science.gov (United States)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  14. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells.

    Science.gov (United States)

    Yamamoto, Tamiji; Kondo, Shunsuke; Kim, Kyung-Hoi; Asaoka, Satoshi; Yamamoto, Hironori; Tokuoka, Makoto; Hibino, Tadashi

    2012-11-01

    In order to prove that hot air-dried crushed oyster shells (HACOS) are effective in reducing hydrogen sulfide in muddy tidal flat sediments and increasing the biomass, field experiments were carried out. The concentration of hydrogen sulfide in the interstitial water, which was 16 mg SL(-1) before the application of HACOS, decreased sharply and maintained almost zero in the experimental sites (HACOS application sites) for one year, whereas it was remained at ca. 5 mg SL(-1) in the control sites. The number of macrobenthos individuals increased to 2-4.5 times higher than that in the control site. Using a simple numerical model, the effective periods for suppression of hydrogen sulfide were estimated to be 3.2-7.6 and 6.4-15.2 years for the experimental sites with 4 and 8 tons per 10 × 10 × 0.2m area, respectively. From these results, it is concluded that HACOS is an effective material to remediate muddy tidal flats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The influence of the combined microwave power and hot air ...

    African Journals Online (AJOL)

    User

    University of Kwa-Zulu Natal, Private Bag X0l, Scottsville, Pietermaritzburg, ... required 20.5, 13.1, 9.6, 6.8 h for drying at 40, 50, 70 and 80°C, using hot air ventilation without .... empirical models are more applicable for control technology to.

  16. Influence of drying conditions on the effective diffusivity and activation energy during convective air and vacuum drying of pumpkin

    Directory of Open Access Journals (Sweden)

    Liliana SEREMET (CECLU

    2015-12-01

    Full Text Available The main purpose of the work is to investigate the efficiency of convective air and vacuum processing on pumpkin drying kinetics. The pumpkin samples were of two different geometrical shapes (cylinder and cube and were dried in a laboratory scale hot air dryer using some specific parameters (constant air velocity of 1.0 m/s, three different temperatures 50, 60 and 70ºC suited to relative humidity (RH values of 9.8, 6.5, and 5.4% respectively. The vacuum drying was led at constant pressures of 5 kPa and accordance temperatures of 50, 60 and 70ºC. Moisture transfer from pumpkin slices was described by applying Fick’s diffusion model. Temperature dependence of the effective diffusivity was described by the Arrhenius-type equation. Cylindrical samples have a slightly better behaviour compared to cubic samples, due to the disposition of the tissues, and the mass and thermic transfer possibilities. Analysing the results of both drying methods, it was deduced that the most efficient method is convective air drying at 70ºC.

  17. Inactivation of Salmonella on pecan nutmeats by hot air treatment and oil roasting.

    Science.gov (United States)

    Beuchat, Larry R; Mann, David A

    2011-09-01

    Studies were done to determine the effectiveness of hot air drying, dry roasting, and oil roasting in killing Salmonella on pecan nutmeats. Pecan halves and pieces were inoculated by immersion in a five-serotype suspension of Salmonella or by surface application of powdered chalk containing the pathogen. Hot air treatment of low-moisture (2.8 to 4.1%) and high-moisture (10.5 to 11.2%) immersion-inoculated nutmeats (initial population, 6.18 to 7.16 log CFU/g) at 120°C for 20 min reduced the number of Salmonella by 1.18 to 1.26 and 1.89 to 2.04 log CFU/g, respectively. However, regardless of the moisture content, hot air treatment of pecan halves containing 0.77 log CFU/g at 120°C for 20 min failed to eliminate Salmonella. Reductions were >7 log CFU/g when dry pieces were dry roasted at 160°C for 15 min. Treatment of halves at 140°C for 20 min, 150°C for 15 min, or 170°C for 10 min reduced Salmonella by 5 log CFU/g. The pathogen was slightly more heat resistant in immersion-inoculated nutmeats than on surface-inoculated nutmeats. Exposure of immersion-inoculated pieces to peanut oil at 127°C for 1.5 min or 132°C for 1.0 min reduced the number of Salmonella by 5 log CFU/g. Treatment of halves at 138°C for 2.0 min reduced Salmonella by 5 log CFU/g; treatment at 132°C for 2.5 to 4.0 min did not always achieve this reduction. Hot air treatment cannot be relied upon to reduce Salmonella by 5 log CFU/g of raw pecan nutmeats without changing sensory qualities. Treatment temperatures and times typically used to oil roast nutmeats appear to be sufficient to reduce Salmonella by 5 log CFU/g.

  18. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  19. Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system.

    Science.gov (United States)

    Zhou, Mo; Chen, Qinqin; Bi, Jinfeng; Wang, Yixiu; Wu, Xinye

    2017-08-15

    The aim of this study is to ascertain the degradation kinetic of anthocyanin in dehydration process of solid food system. Mulberry fruit was treated by hot air and vacuum drying at 60 and 75°C. The contents of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined by using high performance liquid chromatography. Kinetic and thermodynamic parameters were calculated for analysing the degradation characteristics. Model fitting results showed monomeric anthocyanin degradations were followed the second-order kinetic. Vacuum drying presented high kinetic rate constants and low t 1/2 values. Thermodynamic parameters including the activation energy, enthalpy change and entropy change appeared significant differences between hot air and vacuum drying. Both heating techniques showed similar effects on polyphenol oxidase activities. These results indicate the anthocyanin degradation kinetic in solid food system is different from that in liquid and the oxygen can be regarded as a catalyst to accelerate the degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices.

    Science.gov (United States)

    Seremet Ceclu, Liliana; Botez, Elisabeta; Nistor, Oana-Viorela; Andronoiu, Doina Georgeta; Mocanu, Gabriel-Danut

    2016-03-15

    This study was carried to determine the influence of hot air drying process and combined methods on physicochemical properties of pumpkin (Cucurbita moschata) samples. The experiments in hot air chamber were lead at 50, 60 and 70 °C. The combined method consists of a triple combination of the main drying techniques. Thus, in first stage the samples were dried in hot air convection at 60 °C followed by hot air ventilation at 40 °C simultaneous with microwave. The time required to reduce the moisture content to any given level was highly dependent on the drying conditions. So, the highest value of drying time in hot air has been 540 min at 50 °C, while the lowest time has been 189 min in hot air combined by microwave at 40 °C and a power of 315 W. The samples dried by hot air shows a higher rehydration capacity than samples dried by combined method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Numerical analysis of the efficiency of earth to air heat exchange systems in cold and hot-arid climates

    International Nuclear Information System (INIS)

    Fazlikhani, Faezeh; Goudarzi, Hossein; Solgi, Ebrahim

    2017-01-01

    Highlights: • A numerical model is developed to evaluate performance of earth to air heat exchanger. • The cooling/heating potential of earth to air heat exchanger is investigated in hot-dry and cold climates. • The more performance of earth to air heat exchanger in hot-dry climates compared to cold climates. • The high efficiency of earth to air heat exchanger for pre-heating in both hot-dry and cold climates. - Abstract: In order to examine and compare the efficiency of earth to air heat exchanger (EAHE) systems in hot-arid (Yazd) and cold (Hamadan) climates in Iran a steady state model was developed to evaluate the impact of various parameters including inlet air temperatures, pipe lengths and ground temperatures on the cooling and heating potential of EAHEs in both climates. The results demonstrated the ability of the system to not only improve the average temperature and decrease the temperature fluctuation of the outlet air temperature of EAHE, but also to trigger considerable energy saving. It was found that in both climates, the system is highly utilized for pre-heating, and its usage is unfeasible in certain periods throughout the year. In winter, EAHEs have the potential of increasing the air temperature in the range of 0.2–11.2 °C and 0.1–17.2 °C for Yazd and Hamadan, respectively. However, in summer, the system decreases the air temperature for the aforementioned cities in the range of 1.3–11.4 °C and 5.7–11.1 °C, respectively. The system ascertains to be more efficient in the hot-arid climate of Yazd, where it can be used on 294 days of the year, leading to 50.1–63.6% energy saving, when compared to the cold climate of Hamadan, where it can be used on 225 days of the year resulting in a reduction of energy consumption by 24.5–47.9%.

  2. Investigation of hot air balloon fatalities.

    Science.gov (United States)

    McConnell, T S; Smialek, J E; Capron, R G

    1985-04-01

    The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.

  3. Reduced heat stress in offices in the tropics using solar powered drying of the supply air

    DEFF Research Database (Denmark)

    Gunnarsen, Lars; Santos, A M B

    2002-01-01

    air may facilitate personal cooling by increased evaporation of sweat. Heat acclimatized people with efficient sweating may in particular benefit from this cooling. A prototype solar powered supply system for dried-only air was made. Air from the system was mixed with room air, heated to six different...... content of room air, temperature of supply air and moisture content of supply air was developed based on the experiments. Reduction of moisture content in the supply air by 1.6 g/kg had the same effect as lowering the operative temperature by 1 degree C. The solar-powered system for supplying dry air...... is a low-cost alternative to traditional air conditioning in hot and humid regions....

  4. Comparison study on biosynthesis of silver nanoparticles using fresh and hot air oven dried IMPERATA CYLINDRICA leaf

    Science.gov (United States)

    Najmi Bonnia, Noor; Fairuzi, Afiza Ahmad; Akhir, Rabiatuladawiyah Md.; Yahya, Sabrina M.; Rani, Mohd Azri Ab; Ratim, Suzana; Rahman, Norafifah A.; Akil, Hazizan Md

    2018-01-01

    The perennial rhizomatous grass; Imperata cylindrica (I. cylindrica) has been reported rich in various phytochemicals. In present study, silver nanoparticles were synthesized from aqueous leaf extract of I. cylindrica at two different leaf conditions; fresh leaves and hot-air oven dried leaves. Biosynthesized silver nanoparticles were characterized by UV-visible spectroscopy, field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). Maximum absorption was recorded between 400 nm to 500 nm. FESEM analysis revealed that the silver nanoparticles predominantly form spherical shapes. The particles sizes were ranging from 22-37 nm. The elemental composition of the synthesized silver nanoparticles was confirmed by using energy dispersive X-ray spectroscopy (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) confirmed the reducing and stabilizing actions came from biomolecules associated with I. cylindrica leaf extract. Thus in this investigation, an environmentally safe method to synthesized silver nanoparticles using local plant extract was successfully established.

  5. Theoretical and experimental drying of a cylindrical sample by applying hot air and infrared radiation in an inert medium fluidized bed

    Directory of Open Access Journals (Sweden)

    B. Honarvar

    2012-06-01

    Full Text Available Drying of a cylindrical sample in a fluidized bed dryer containing inert particles was studied. For this purpose, a pilot-scaled fluidized bed dryer was constructed in which two different heat sources, hot air and infrared radiation were applied, and pieces of carrot were chosen as test samples. The heat transfer coefficient for cylindrical objects in a fluidized bed was also measured. The heat absorption coefficient for carrot was studied. The absorption coefficient can be computed by dividing the absorbed heat by the carrot to the heat absorbed for the water and black ink. In this regard, absorbed heat values by the carrot, water and black ink were used A mathematical model was proposed based on the mass and heat transfer phenomena within the drying sample. The results obtained by the proposed model were in favorable agreement with the experimental data.

  6. Hot Dry Rock Geothermal Energy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  7. Building America Best Practices Series, Volume 9: Builders Challenge Guide to 40% Whole-House Energy Savings in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Williamson, Jennifer L.; Ruiz, Kathleen A.; Bartlett, Rosemarie; Love, Pat M.

    2009-10-23

    This best practices guide is the ninth in a series of guides for builders produced by the U.S. Department of Energy’s Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-dry and mixed-dry climates can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building America’s research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the hot-dry and mixed-dry climates.

  8. Hot-dry-rock geothermal resource 1980

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  9. Study of fine particles (PM2.5) during the dry-hot time in the Toluca city

    International Nuclear Information System (INIS)

    Rosendo G, V.; Aldape U, F.

    2007-01-01

    The first obtained results of the analysis of the fine fraction particulate material (PM 2.5 ) samples collected in the Toluca City are presented. The samples analyzed are part of a more extensive campaign that contemplates the low project the one which one carries out this work and that it integrates three climatic times (dry-hot, of rains and dry-cold time) with the purpose of investigating the events of contamination in one complete year. The obtained results correspond to the dry-hot time and its include mainly the database starting from which the temporal variation graphs were obtained, the correlations among elements and the enrichment factor, as well as a multiple correlation analysis. Additionally the gravimetry was measured. Its are not observed significant episodes, however, it was found an element of the traces order, little common in other atmospheric studies as it is arsenic. From the gravimetry it was deduced that the air quality standard of fine particle, it does not violate. (Author)

  10. Novel hybridized drying methods for processing of apple fruit: Energy conservation approach

    International Nuclear Information System (INIS)

    Hazervazifeh, Amin; Nikbakht, Ali M.; Moghaddam, Parviz A.

    2016-01-01

    Strategic outlook of apple cultivation and its significant post-processing challenges have been the leading factors for energy and time saving research approaches in apple processing. In this research, apple slices were subjected to hot air flow, microwave radiation and combined microwave-hot air flow drying. Drying time, energy consumption and thermal efficiency at different microwave power levels (500 W, 1000 W, 1500 W and 2000 W), hot air temperatures (40 °C, 50 °C, 60 °C and 70 °C) and inlet air velocities (0.5 ms"−"1, 1 ms"−"1, 1.5 ms"−"1 and 2 ms"−"1) were studied and compared. The minimum time of processing was 17 min when integrated hot air flow and microwave radiation was applied with 2000 W power at the temperature of 70 °C and air velocity of 2 ms"−"1. Furthermore, the minimum value of total energy consumption during entire process of apple slices drying was 2684 kJ which belonged to microwave drying with 2000 W power. - Highlights: • Microwave radiation is implemented to reduce the energy demand for drying. • Simultaneous impact of microwave and hot air on energy and time consumption was analyzed. • Minimum drying time occurs with combined utilization of microwave and hot air. • Thermal efficiency was desirable in low air velocities and high temperatures. • Thermal efficiency of microwave radiation increased by 200% compared to single hot air method.

  11. Drying kinetics and quality aspects during heat pump drying of onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan Sahoo

    2012-10-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 A prototype heat pump dryer has been developed for drying of fruits and vegetables at low temperature and relative humidity to maintain the quality of dried product. Onions, of Nasik red variety were peeled, trimmed and sliced to 2 mm thickness. The onion slices were dried in the heat pump dryer at 35ºC (32 % R.H., 40ºC (26 % R.H., 45ºC (19 % R.H. and 50ºC (15 % R.H.. Samples were also dried in a hot air dryer at 50ºC (52 % R.H. for comparison. The drying rate increased with increase in drying air temperature, associated with reduced R.H., in the heat pump dryer. Drying took place mainly under the falling rate period. The Page equation, resulting in a higher coefficient of determination and lower root mean square error, better described the thin-layer drying of onion slices than the Henderson and Pabis equation. Heat pump drying took less drying time of 360 min and yielded better quality dried product, with higher retention of ascorbic acid and pyruvic acid and lower colour change, as compared to a hot air dryer at the same drying air temperature of 50ºC.

  12. Application of microwave to drying and blanching of tomatoes

    International Nuclear Information System (INIS)

    Ando, Y.; Orikasa, T.; Shiina, T.; Sotome, I.; Isobe, S.; Muramatsu, Y.; Tagawa, A.

    2010-01-01

    The applicability of microwave to the drying and blanching of tomatoes was examined. The changes of the drying rate and surface color were first measured and compared between drying by hot air (50degC) or microwave at three radiation powers. The drying rates using a microwave were higher than that using hot air. Both a constant-rate drying period and a falling-rate drying period were observed for each microwave radiation power. Compared to hot air drying, microwave drying resulted in an increase in lightness which is a preferable quality of tomatoes. Next, the changes in temperature, nutrients and surface color were measured and compared between blanching by microwave or boiling water. Microwave blanching required less time, resulted in higher retention of nutrients (ascorbic acid and lycopene) and caused less change in color in comparison with boiling water blanching. These results suggest that a microwave could be applied to drying and blanching tomatoes

  13. Hot-air drying of purslane ( Portulaca oleracea L.)

    Science.gov (United States)

    Doymaz, İbrahim

    2013-06-01

    Drying characteristics of purslane was experimentally studied in a cabinet dryer. The experimental drying data were fitted best to Modified Henderson and Pabis and Midilli et al. models apart from other models to predict the drying kinetics. The effective moisture diffusivity varied from 1.12 × 10-9 to 3.60 × 10-9 m2/s over the temperature range studied and activation energy was 53.65 kJ/mol.

  14. Innovative PCM-desiccant packet to provide dry microclimate and improve performance of cooling vest in hot environment

    International Nuclear Information System (INIS)

    Itani, Mariam; Ghaddar, Nesreen; Ghali, Kamel

    2017-01-01

    Highlights: • A PCM and desiccant packet is proposed for use in personal cooling vest to keep dry air next to skin. • A PCM-Desiccant model for clothed heated wet cylinder is developed and validated experimentally. • The microclimate air temperature was 0.6 °C higher in PCM-Desiccant case compared to PCM-only case. • Microclimate humidity content decreased due to desiccant from 21.23 to 19.74 g/kg dry air. • PCM melted fraction increased due to desiccant from 0.24 to 0.5. - Abstract: A novel combination of phase change material (PCM) and a solid desiccant layer is proposed for the aim of maintaining dry cool microclimate air adjacent to wet warm skin and hence improve PCM performance in cooling vests used in hot humid environment. A fabric-PCM-Desiccant model is developed to predict the temperature and moisture content of the microclimate air layer in the presence of a PCM-Desiccant packet. The developed model is validated through experiments conducted on a wet clothed heated cylinder for the two cases of using (i) a PCM only packet and (ii) a PCM-Desiccant packet. Microclimate air temperatures and humidity content as well as PCM and desiccant temperatures were measured experimentally and were compared with predicted values by the fabric-PCM-Desiccant model. Good agreement was attained with a maximum relative error of 7% in measured temperatures. A decrease is observed in the humidity content of the microclimate air in the presence of the solid desiccant from 21.23 g/kg dry air to 19.74 g/kg dry air and an increase in the melted fraction of the PCM at the end of the experiment from 0.24 to 0.5.

  15. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  16. Carrageenan drying with dehumidified air: drying characteristics and product quality

    NARCIS (Netherlands)

    Djaeni, M.; Sasongko, S.B.; Prasetyaningrum, Aji A A.A.; Jin, X.; Boxtel, van A.J.B.

    2012-01-01

    Applying dehumidified air is considered as an option to retain quality in carrageenan drying. This work concerns the effects of operational temperature, air velocity, and carrageenan thickness on the progress of drying and product quality when using dehumidified air. Final product quality and

  17. Arrangement of furnaces and retorts for the distillation of shale, etc. [injection of hot air

    Energy Technology Data Exchange (ETDEWEB)

    Lahore, M

    1846-01-31

    The patent is concerned with the distillation of dried materials, the distillation being facilitated by injection of hot air into the retorts. Figures show apparatus for heating the air, consisting of a series of pipes, connected together and placed horizontally in the interior of the furnace on bricks arranged in such a way that the flames and smoke circulate, as shown, around each pipe, touching first all the surface of the large one placed in the center. The air enters this tube, and from it passes into the others which it runs through successively, coming finally into the last pipe, being heated in this journey to a very high temperature. The last tube ends in a bell from which different branches start, each supplied with stop-cocks, to lead this hot air into the different sections of the retort. With the stop-cocks the quantity of air can be regulated at will, in the compartment of the retort, for accelerating the operation more or less.

  18. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  19. Effects of superheated steam on the drying of rubberwood

    Directory of Open Access Journals (Sweden)

    Kanokwan Buaphud

    2006-07-01

    Full Text Available Rubberwood drying is the most time and energy consuming step in the processing of wood product. This research studied the effect of superheated steam drying on the drying time required and the physical and mechanical properties of rubberwood after drying. In this study, a cylindrical drying chamber with a length of 1.2 m and a diameter of 0.5 m was constructed and injected with superheated steam. The dimensions of the wood lumber were 1 m × 7.62 cm × 2.54 cm. The wood samples were impinged with alternating cycles of superheated steam and hot air at ratios of 6:1, 4:1 and 1:6 hours until the moisture content was less than 15% dry basis. The conditions inside the chamber were 110ºC and ambient pressure. Continuous superheated steam and continuous hot air were also used for comparisons. The drying rate and the temperature profile for each process were determined.Initial acceptability of the dried wood was conducted using the prong test and visual inspection. Results showed that if the drying rate was too fast, the dried wood did not pass the prong test due to stress buildup. Therefore, an optimum drying condition was developed based on minimizing defects and reducing the drying time. For the optimum condition, the following schedule was carried out: (1 saturated steam at 100ºC was used during the first 4 hours of drying to prevent the wood surface from drying too quickly which would minimize the moisture gradient between the center and wood surface, (2 superheated steam at 105ºC and 110ºC was used in alternating cycle with hot air (80ºC during the main drying stages to rapidly remove the free water and majority of the bound water inside the wood, and (3 hot air was used continuously during the final stages of drying to reduce the relative humidity inside the chamber making it possible for the removal of the residual bound water. This process successfully reduced the drying time to less than 2 days without causing any defects which compared

  20. Effect of the moisture content of forced hot air on the postharvest quality and bioactive compounds of mango fruit (Mangifera indica L. cv. Manila).

    Science.gov (United States)

    Ornelas-Paz, José de Jesús; Yahia, Elhadi M

    2014-04-01

    The effectiveness of hot air treatments in controlling decay and insects in mango fruit has been demonstrated and has usually been assessed as a function of the temperature of the heated air and the duration of the treatment. However, the contribution of the moisture content of the heated air has received little attention, especially with regard to fruit quality. In this study, mango fruits (cv. Manila) at mature-green stage were treated with moist (95% relative humidity (RH)) or dry (50% RH) hot forced air (43 °C, at 2.5 m s(-1) for 220 min) and then held at 20 °C for 9 days and evaluated periodically. The heating rate was higher with moist air. Treatments with moist and dry air did not cause injury to the fruit. Treatment with moist air temporarily slowed down color development, softening, weight loss and β-carotene biosynthesis. This slowing down was clearly observed during the first 4-5 days at 20 °C. However, non-heated fruit and fruit heated with dry air showed similar quality at the end of storage. The moisture content of the heating air differentially modulated the postharvest ripening of 'Manila' mangoes. Moist air temporarily slowed down the ripening process of this mango cultivar. © 2013 Society of Chemical Industry.

  1. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)

    2009-04-15

    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  2. Low-cost personal cooling in hot humid offices. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsen, L [Danish Building Research Inst., (Denmark); Santos, A [Univ. of the Philippines, Diliman (Philippines)

    1997-05-01

    A solution, based on low-cost solar-powered air drying, to heat stress in buildings located in developing countries with a hot and humid climate is presented. The air-drying facilities are described and a validation of the ensuing benefits through comprehensive human exposure studies is given. A prototype of a solar powered supply system for dried air was constructed and supply air was led to six personal units for ventilation and cooling placed in cubicles simulating office workplaces. 123 heat-acclimatized people were exposed for one hour in each of the cubicles. It is concluded that drying indoor air reduces heat stress among heat-adapted people in hot and humid offices and that the low-cost solar powered air drying system functioned satisfactorily , although some improvements are recommended. The drying power of the sun can be stored in recovered silica gel beads and used for other purposes. It is suggested that further research could explore the possibility of desiccant drying of agricultural products during the rainy season. (ARW) 30 refs.

  3. Drying kinetics and characteristics of dried gambir leaves using solar heating and silica gel dessicant

    Science.gov (United States)

    Hasibuan, R.; Hidayati, J.; Sundari, R.; Wicaksono, A. S.

    2018-02-01

    A drying combination of solar heating and silica gel dessicant has been applied to dry gambir leaves. The solar energy is captured by a collector to heat the air and the hot air is used to dry gambir leaves in a drying chamber. An exhaust fan in drying chamber assists to draw water molecules from gambir leaves accelerated by silica gel dessicant. This study has investigated the drying kinetics and drying characteristics of gambir leaves drying. In drying operation the air velocity is tuned by a PWM (pulse width modulation) controller to adjust minimum and maximum level, which is based on the rotation speed of the exhaust fan. The results show that the air velocity influenced the drying kinetics and drying characteristics of gambir leaves using solar-dessicant drying at 40 cm distance between exhaust fan and silica gel dessicant.

  4. Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure drop-assisted hot-air drying (AD-DIC).

    Science.gov (United States)

    Gao, Kun; Zhou, Linyan; Bi, Jinfeng; Yi, Jianyong; Wu, Xinye; Zhou, Mo; Wang, Xueyuan; Liu, Xuan

    2017-06-01

    Computer vision-based image analysis systems are widely used in food processing to evaluate quality changes. They are able to objectively measure the surface colour of various products since, providing some obvious advantages with their objectivity and quantitative capabilities. In this study, a computer vision-based image analysis system was used to investigate the colour changes of apple slices dried by instant controlled pressure drop-assisted hot air drying (AD-DIC). The CIE L* value and polyphenol oxidase activity in apple slices decreased during the entire drying process, whereas other colour indexes, including CIE a*, b*, ΔE and C* values, increased. The browning ratio calculated by image analysis increased during the drying process, and a sharp increment was observed for the DIC process. The change in 5-hydroxymethylfurfural (5-HMF) and fluorescent compounds (FIC) showed the same trend with browning ratio due to Maillard reaction. Moreover, the concentrations of 5-HMF and FIC both had a good quadratic correlation (R 2  > 0.998) with the browning ratio. Browning ratio was a reliable indicator of 5-HMF and FIC changes in apple slices during drying. The image analysis system could be used to monitor colour changes, 5-HMF and FIC in dehydrated apple slices during the AD-DIC process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Thermohydraulic modeling of the dry air passive containment cooling system process in the Westinghouse AP-600 ALWR

    Energy Technology Data Exchange (ETDEWEB)

    Harari, R; Weis, Y; Barnea, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Following postulated events of a LOCA, the passive Containment Cooling System (PCCS) uses dry air to transfer the residual heat by natural circulation. The air flow path, designed between the steel reactor containment hot shell and the concrete shield building, creates an open thermosyphon. The purpose of this inherently safe process is to assure the long term steady-state cooling of the nuclear core after an emergency shutdown (authors).

  6. Low-cost personal cooling in hot humid offices

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Santos, A.

    This report presents a low cost solution to avoid heat stress in a hot and humid environment based on a solar powered drying of supply air. The air drying facilities and a validation of the benefits through comprehensive human exposure studies are described. The study represents an example...... of applied participative research performed in a developing country. The report may be used as a background for the improvement of the indoor climate in poor, hot and humid regions without increased use of electricity....

  7. Comparative Evaluation of Sulfur Compounds Contents and Antiobesity Properties of Allium hookeri Prepared by Different Drying Methods

    Directory of Open Access Journals (Sweden)

    Min Hye Yang

    2017-01-01

    Full Text Available Despite the nutritional and medicinal values of Allium hookeri, its unique flavor (onion or garlic taste and smell coming from sulfur containing compounds limits its usage as functional food. For comparative study, A. hookeri roots were prepared under two different drying conditions, namely, low-temperature drying that minimizes the volatilization of sulfur components and hot-air drying that minimizes the garlic odor and spicy taste of A. hookeri. In GC/MS olfactory system, the odorous chemicals and organosulfur compounds such as diallyl trisulfide, dimethyl trisulfide, and dipropyl trisulfide were significantly decreased in hot-air drying compared to low-temperature drying. The spiciness and saltiness taste were noticeably reduced, while sourness, sweetness, and umami taste were significantly increased in hot-air dried A. hookeri according to electronic tongue. Although the content of volatile sulfur components was present at lower level, the administration of hot-air dried A. hookeri extract (100 mg/kg p.o. apparently prevented the body weight gain and improved insulin resistance in C57BL/6J obese mice receiving high fat diet. Results suggested that the hot-air dried A. hookeri possessing better taste and odor might be available as functional crop and bioactive diet supplement for the prevention and/or treatment of obesity.

  8. 78 FR 18533 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-03-27

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... Hot Air Balloons Ltd female ACME threaded hose connectors, part numbers HS6139 and HS6144, installed... follows: * * * * * (c) Applicability This AD applies to Lindstrand Hot Air Balloons Ltd female ACME...

  9. 77 FR 64763 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2012-10-23

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... propose to adopt a new airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female... identified in this proposed AD, contact Lindstrand Hot Air Balloons Ltd., Maesbury Road, Oswestry, Shropshire...

  10. 78 FR 9785 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-02-12

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female ACME threaded hose connectors...., Washington, DC 20590. For service information identified in this AD, contact Lindstrand Hot Air Balloons Ltd...

  11. Improving Malaysian cocoa quality through the use of dehumidified air under mild drying conditions.

    Science.gov (United States)

    Hii, Ching L; Law, Chung L; Cloke, Michael; Sharif, Suzannah

    2011-01-30

    Various studies have been conducted in the past to improve the quality of Malaysian cocoa beans. However, the processing methods still remain crude and lack technological advancement. In terms of drying, no previous study has attempted to apply advanced drying technology to improve bean quality. This paper presents the first attempt to improve the quality of cocoa beans through heat pump drying using constant air (28.6 and 40.4 °C) and stepwise (step-up 30.7-43.6-56.9 °C and step-down 54.9-43.9 °C) drying profiles. Comparison was made against hot air drying at 55.9 °C. Product quality assessment showed significant improvement in the quality of Malaysian cocoa beans. Quality was found to be better in terms of lower acidity (higher pH) and higher degree of browning (cut test) for cocoa beans dried using the step-up profile. All heat pump-dried samples showed flavour quality comparable to that of Ghanaian and better than that of Malaysian and Indonesian commercial samples. Step-up-dried samples showed the best flavour profile with high level of cocoa flavour, low in sourness and not excessive in bitterness and astringency. Dried cocoa samples from the step-up drying profile showed the best overall quality as compared with commercial samples from Malaysia, Indonesia and Ghana. The improvement of Malaysian cocoa bean quality is thus achievable through heat pump drying. 2010 Society of Chemical Industry.

  12. Performance analysis of proposed hybrid air conditioning and humidification–dehumidification systems for energy saving and water production in hot and dry climatic regions

    International Nuclear Information System (INIS)

    Nada, S.A.; Elattar, H.F.; Fouda, A.

    2015-01-01

    Highlights: • Integrative air-conditioning (A/C) and humidification–dehumidification desalination systems are proposed. • Effects of operating parameters on the proposed systems are investigated. • System configurations that have the highest fresh water production rate, power saving and total cost saving are identified. - Abstract: Performance of integrative air-conditioning (A/C) and humidification–dehumidification desalination systems proposed for hot and dry climatic regions is theoretically investigated. The proposed systems aim to energy saving and systems utilization in fresh water production. Four systems with evaporative cooler and heat recovery units located at different locations are proposed, analyzed and evaluated at different operating parameters (fresh air ratio, supply air temperature and outside air wet bulb temperature). Other two basic systems are used as reference systems in proposed systems assessment. Fresh water production rate, A/C cooling capacity, A/C electrical power consumption, saving in power consumptions and total cost saving (TCS) parameters are used for systems evaluations and comparisons. The results show that (i) the fresh water production rates of the proposed systems increase with increasing fresh air ratio, supply air temperature and outdoor wet bulb temperature, (ii) powers saving of the proposed systems increase with increasing fresh air ratio and supply air temperature and decreasing of the outdoor air wet bulb temperature, (iii) locating the evaporative cooling after the fresh air mixing remarkably increases water production rate, and (vi) incorporating heat recovery in the air conditioning systems with evaporative cooling may adversely affect both of the water production rate and the total cost saving of the system. Comparison study has been presented to identify systems configurations that have the highest fresh water production rate, highest power saving and highest total cost saving. Numerical correlations for

  13. Evaluation of energy consumption in different drying methods

    Energy Technology Data Exchange (ETDEWEB)

    Motevali, Ali; Minaei, Saeid; Khoshtagaza, Mohammad Hadi [Department of Agricultural Machinery Engineering, Agricultural Faculty, Tarbiat Modares University, Tehran 14115-111 (Iran, Islamic Republic of)

    2011-02-15

    This study was conducted to evaluate energy consumption in various drying systems including hot-air convection, use of microwave pretreatment with convection dryer, microwave drying, vacuum drying and infrared drying. Tests were conducted using pomegranate arils under various experimental conditions as follows. In convection dryer at six temperature levels (45, 50, 55, 60, 65 and 70 C) and three air velocity levels (0.5, 1 and 1.5 m/s) at three pretreatments of control, 100 W microwave pretreatment for 20 min and 200 W microwave pretreatment for 10 min. Experiments in the microwave dryer were done at three power levels of 100, 200 and 300 W and in vacuum dryer at five temperature levels (50, 60, 70, 80, and 90 C) under 250 kPa pressure. For infrared drying, there were four air velocity levels (0.3, 0.5, 0.7 and 1 m/s) and three illumination levels (0.22, 0.31 and 0.49 W/cm{sup 2}). Experimental results showed that minimum and maximum energy consumption in pomegranate drying were associated with microwave and vacuum dryers, respectively. The use of microwave pretreatment in drying pomegranate arils in hot air dryer decreased drying time and energy consumption in comparison with pure convection drying. In infrared drying, it was found that drying time increased with air velocity which resulted in increased energy consumption. (author)

  14. Evaluation of energy consumption in different drying methods

    International Nuclear Information System (INIS)

    Motevali, Ali; Minaei, Saeid; Khoshtagaza, Mohammad Hadi

    2011-01-01

    This study was conducted to evaluate energy consumption in various drying systems including hot-air convection, use of microwave pretreatment with convection dryer, microwave drying, vacuum drying and infrared drying. Tests were conducted using pomegranate arils under various experimental conditions as follows. In convection dryer at six temperature levels (45, 50, 55, 60, 65 and 70 o C) and three air velocity levels (0.5, 1 and 1.5 m/s) at three pretreatments of control, 100 W microwave pretreatment for 20 min and 200 W microwave pretreatment for 10 min. Experiments in the microwave dryer were done at three power levels of 100, 200 and 300 W and in vacuum dryer at five temperature levels (50, 60, 70, 80, and 90 o C) under 250 kPa pressure. For infrared drying, there were four air velocity levels (0.3, 0.5, 0.7 and 1 m/s) and three illumination levels (0.22, 0.31 and 0.49 W/cm 2 ). Experimental results showed that minimum and maximum energy consumption in pomegranate drying were associated with microwave and vacuum dryers, respectively. The use of microwave pretreatment in drying pomegranate arils in hot air dryer decreased drying time and energy consumption in comparison with pure convection drying. In infrared drying, it was found that drying time increased with air velocity which resulted in increased energy consumption.

  15. An analytical method for determining the temperature dependent moisture diffusivities of pumpkin seeds during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Can, Ahmet [Department of Mechanical Engineering, University of Trakya, 22030 Edirne (Turkey)

    2007-02-15

    This paper presents an analytical method, which determines the moisture diffusion coefficients for the natural and forced convection hot air drying of pumpkin seeds and their temperature dependence. In order to obtain scientific data, the pumpkin seed drying process was investigated under both natural and forced hot air convection regimes. This paper presents the experimental results in which the drying air was heated by solar energy. (author)

  16. Extracting Vegetation Coverage in Dry-hot Valley Regions Based on Alternating Angle Minimum Algorithm

    Science.gov (United States)

    Y Yang, M.; Wang, J.; Zhang, Q.

    2017-07-01

    Vegetation coverage is one of the most important indicators for ecological environment change, and is also an effective index for the assessment of land degradation and desertification. The dry-hot valley regions have sparse surface vegetation, and the spectral information about the vegetation in such regions usually has a weak representation in remote sensing, so there are considerable limitations for applying the commonly-used vegetation index method to calculate the vegetation coverage in the dry-hot valley regions. Therefore, in this paper, Alternating Angle Minimum (AAM) algorithm of deterministic model is adopted for selective endmember for pixel unmixing of MODIS image in order to extract the vegetation coverage, and accuracy test is carried out by the use of the Landsat TM image over the same period. As shown by the results, in the dry-hot valley regions with sparse vegetation, AAM model has a high unmixing accuracy, and the extracted vegetation coverage is close to the actual situation, so it is promising to apply the AAM model to the extraction of vegetation coverage in the dry-hot valley regions.

  17. Determination of drying characteristics and quality properties of eggplant in different drying conditions

    Directory of Open Access Journals (Sweden)

    Gözde Bayraktaroglu Urun

    2015-12-01

    Full Text Available Drying is the most traditional process used for preserving eggplant a long time. The aim of this study was to determining drying characteristics and quality properties of eggplant dried by sun drying, hot air convective drying and infrared assisted convective drying. Convective drying and infrared assisted convective were carried out in a convective dryer at three different temperatures(40°, 50°, 60°C and air velocity at 5 m/s.The increasing of temperatures during the drying of eggplant led to a significant reduction of the drying time. However loss of nutrition was observed in eggplant samples dried at higher temperature.The biggest change in colour parameters was observed in samples dried with sun drying.So it was thought that sun drying had a negative effect on quality properties of eggplant samples.

  18. Modelling and simulation of wood chip combustion in a hot air generator system.

    Science.gov (United States)

    Rajika, J K A T; Narayana, Mahinsasa

    2016-01-01

    This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.

  19. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries

    Science.gov (United States)

    Fresh blueberries were pretreated with pulsed electric fields (PEF) at 2 kV/cm and then dried at 45, 60 and 75 degrees C by conventional hot air or vacuum drying. Drying characteristics and changes in contents of moisture, anthocyanin, total phenolics, vitamin C, and antioxidant activity in the blu...

  20. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  1. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    during forming resulting in seizure of the tool/steel sheet contact and extensive scratching of the steel sheet surface. As a result, a number of concepts have been developed in order to reduce the tendency to galling in metal forming, including the development of new dry lubricants, new forming tool...... steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...

  2. Comparative study of two drying techniques used in radioactive source preparation: Freeze-drying and evaporation using hot dry nitrogen jets

    International Nuclear Information System (INIS)

    Branger, T.; Bobin, C.; Iroulart, M.-G.; Lepy, M.-C.; Le Garreres, I.; Morelli, S.; Lacour, D.; Plagnard, J.

    2008-01-01

    Quantitative solid sources are used widely in the field of radionuclide metrology. With the aim to improve the detection efficiency for electrons and x-rays, a comparative study between two source drying techniques has been undertaken at LNE-Laboratoire National Henri Becquerel (LNE-LNHB, France). In this paper, freeze-drying using commercial equipment is compared with a system of drying using hot jets of nitrogen developed at Institute for Reference Materials and Measurements (IRMM, Belgium). In order to characterize the influence of self-absorption, the detection efficiencies for 51 Cr sources have been measured by coincidence counting and photon spectrometry

  3. Influence of drying method on steviol glycosides and antioxidants in Stevia rebaudiana leaves.

    Science.gov (United States)

    Periche, Angela; Castelló, María Luisa; Heredia, Ana; Escriche, Isabel

    2015-04-01

    The application of different drying conditions (hot air drying at 100 °C and 180 °C, freeze drying and shade drying) on steviol glycosides (stevioside, dulcoside A, rebaudioside A and rebaudioside C) and antioxidants in Stevia leaves was evaluated. Stevioside, the major glycoside found in fresh leaves (81.2mg/g), suffered an important reduction in all cases, although shade drying was the least aggressive treatment. Considering the antioxidant parameters (total phenols, flavonoids and total antioxidants), the most suitable drying method was hot air at 180 °C, since it substantially increased all of them (76.8 mg gallic acid, 45.1mg catechin and 126 mg Trolox, all equivalent/g Stevia, respectively), with respect to those present in fresh leaves (44.4, 2.5 and 52.9 mg equivalent/g). Therefore, the ideal method for drying Stevia leaves depends on their final use (sweetener or antioxidant), although, hot air at 180 °C is the most recommendable if only one treatment has to be chosen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Recent developments in the hot dry rock geothermal energy program

    Energy Technology Data Exchange (ETDEWEB)

    Franke, P.R.; Nunz, G.J.

    1985-01-01

    In recent years, most of the Hot Dry Rock Programs effort has been focused on the extraction technology development effort at the Fenton Hill test site. The pair of approximately 4000 m wells for the Phase II Engineering System of the Fenton Hill Project have been completed. During the past two years, hydraulic fracture operations have been carried out to develop the geothermal reservoir. Impressive advances have been made in fracture identification techniques and instrumentation. To develop a satisfactory interwellbore flow connection the next step is to redrill the lower section of one of the wells into the fractured region. Chemically reactive tracer techniques are being developed to determine the effective size of the reservoir area. A new estimate has been made of the US hot dry rock resource, based upon the latest geothermal gradiant data. 3 figs.

  5. A hot air driven thermoacoustic-Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-09-15

    Significant energy savings can be obtained by implementing a thermally driven heat pump into industrial or domestic applications. Such a thermally driven heat pump uses heat from a high-temperature source to drive the system which upgrades an abundantly available heat source (industrial waste heat, air, water, geothermal). A way to do this is by coupling a thermoacoustic engine with a thermoacoustic heat pump. The engine is driven by a burner and produces acoustic power and heat at the required temperature. The acoustic power is used to pump heat in the heat pump to the required temperature. This system is attractive since it uses a noble gas as working medium and has no moving mechanical parts. This paper deals with the first part of this system: the engine. In this study, hot air is used to simulate the flue gases originating from a gas burner. This is in contrast with a lot of other studies of thermoacoustic engines that use an electrical heater as heat source. Using hot air resembles to a larger extent the real world application. The engine produces about 300W of acoustic power with a performance of 41% of the Carnot efficiency at a hot air temperature of 620C.

  6. Accelerating oak air drying by presurfacing

    Science.gov (United States)

    W. T. Simpson; R. C. Baltes

    1972-01-01

    A comparison was made between the air-drying rates of rough and presurfaced northern red oak and white oak. In both species, the presurfaced material was about 1/8 inch thinner than the rough material and dried faster than the rough material. The reduction in drying time depends on the method of analyzing the drying curves, but is slightly less than 10 percent.

  7. Solar heating of air used for the drying at medium and large scale, of forestry, fishery, agriculture, cattle and industrial products

    International Nuclear Information System (INIS)

    Gutierrez, F.

    1991-01-01

    The drying process and/or preservation of grains is improved through the previous heating of air. In many cases it is enough to raise the temperature only a few degrees (from 10 to 15 Centigrade), in order to increase their capacity to absorb dampness. This can be done using very simple solar captors. A massive use of solar energy in the drying process of products, by means of hot air, can only be done with very expensive equipment. For this reason, it is recommended the use of lower thermic heaters, which will have a lower cost too. (Author)

  8. Feasibility analysis of heat pump dryer to dry hawthorn cake

    International Nuclear Information System (INIS)

    Wang, D.C.; Zhang, G.; Han, Y.P.; Zhang, J.P.; Tian, X.L.

    2011-01-01

    Highlights: → A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. → Low drying temperature and high COP of heat pump are obtained in drying beginning. → HPD is more effective, economic than a traditional hot air dryer. → Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  9. Feasibility analysis of heat pump dryer to dry hawthorn cake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C., E-mail: wdechang@163.com [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Zhang, G.; Han, Y.P.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2011-08-15

    Highlights: {yields} A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. {yields} Low drying temperature and high COP of heat pump are obtained in drying beginning. {yields} HPD is more effective, economic than a traditional hot air dryer. {yields} Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  10. Mathematical modeling of drying of pretreated and untreated pumpkin

    OpenAIRE

    Tunde-Akintunde, T. Y.; Ogunlakin, G. O.

    2011-01-01

    In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40–80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page...

  11. Loss of essential oil of tarragon (Artemisia dranunculus L.) due to drying

    NARCIS (Netherlands)

    ArabHosseini, A.; Padhye, S.; Beek, van T.A.; Boxtel, van A.J.B.; Huisman, W.; Posthumus, M.A.; Müller, J.

    2006-01-01

    The effect of hot air-drying on the essential oil constituents and yield in French and Russian tarragon (Artemisia dracunculus L.) leaves was studied. The tarragon leaves were dried at air temperatures ranging from 40 to 90 °C. The drying stopped when the moisture content of the samples reached 10%

  12. Description of saturation curves and boiling process of dry air

    Directory of Open Access Journals (Sweden)

    Vestfálová Magda

    2018-01-01

    Full Text Available Air is a mixture of gases forming the gas wrap of Earth. It is formed by dry air, moisture and other pollutants. Dry air is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid air is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation process, resp. boiling process, is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry air is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry air saturation curves as a mixture, i.e. with a description of the process of phase change of dry air (boiling process. The dry air saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling process of dry air.

  13. Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel

    Directory of Open Access Journals (Sweden)

    Mingyue Xu

    2017-01-01

    Full Text Available To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W. from 3.39 mg/g (sun drying. Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels.

  14. Drying characteristics of zucchini and empirical modeling of its drying process

    Directory of Open Access Journals (Sweden)

    Naciye Kutlu

    2017-10-01

    Full Text Available The aim of the study was to dry zucchini (Cucurbita pepo by two different methods (convective hot-air (CHD and microwave-assisted drying (MWD. The effect of air temperature (60, 70 and 80°C, microwave (MW power (180, 360, 540 W and sample thickness (5 and 10 mm on some drying characteristics of zucchini were investigated. Thirteen mathematical models available in the literature were fitted to the experimental moisture ratio data. The coefficients of the models were determined by non-linear regression analysis. It was determined that the model that fits the moisture ratio data the best varies at different drying conditions. Increasing drying temperature and MW power and reducing sample thickness improved the drying rate and drying time. Drying in microwave has reduced the drying time by 52-64% for zucchini. It was found that the effective moisture diffusivities increased with increasing temperature and MW power. MWD samples had better rehydration ratios compared to ones dried only in tray drier for 5 mm thickness.  

  15. Hot air balloons fill gap in atmospheric and sensing platforms

    Science.gov (United States)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  16. Modelling the Thin-Layer Drying Kinetics of Untreated and Blanch-Osmotic Pre-treated Tomato Slices

    OpenAIRE

    Samuel Enahoro Agarry

    2016-01-01

    The objective of this study was to investigate the effect of pre-treatment and drying temperature on the drying kinetics and nutritional quality of tomato (Lycopersicon esculantum L.) under hot air drying. Tomato samples were blanched at 80oC and osmotically dehydrated using 20% w/w sodium chloride solutions at 30oC for 20 min. The blanch-osmotic pre-treated and untreated tomato slices were dried at temperature of 40, 50, 60, 70 and 80oC, respectively in a hot air-dryer. The results showed th...

  17. Heat exchanger design for hot air ericsson-brayton piston engine

    Directory of Open Access Journals (Sweden)

    Ďurčanský P.

    2014-03-01

    Full Text Available One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  18. Heat exchanger design for hot air ericsson-brayton piston engine

    Science.gov (United States)

    Ďurčanský, P.; Lenhard, R.; Jandačka, J.

    2014-03-01

    One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  19. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    International Nuclear Information System (INIS)

    Rupar, K.; Sanati, M.

    2003-01-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  20. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  1. Determination of the most economical drying schedule and air velocity in softwood drying

    Energy Technology Data Exchange (ETDEWEB)

    Salin, J.G.

    2001-12-01

    Simulation models for conventional softwood drying have been available and have also been used by kiln operators for many years. For instance models for Scots pine and Norway spruce, dried at temperatures below about 80 deg C, are in use in Sweden, Finland and Norway. These models predict drying rates as a function of climate (schedule) and air velocity. The models thus give a direct basis for calculation of instantaneous energy demand for moisture evaporation and ventilation. There is further a direct relationship between the air velocity in the space between the board layers in the kiln stack and the electrical power demand by the circulation fans. Finally, the smaller energy consumption associated with heat losses through kiln walls and the accumulated heat in timber etc. can be estimated with sufficient accuracy. Instantaneous energy costs can thus be calculated for each part of a drying schedule. Capital costs associated with kiln investment and maintenance, personnel, insurance etc can be accounted for as an hourly cost, which is basically independent of whether timber is dried fast or slowly. A slow drying process thus accumulates more capital costs per m 3 timber. In this way it is possible to calculate the total instantaneous drying cost (Euro/m{sup 3}/h or Euro/m3/MC%) and the overall total cost (Euro or Euro/m{sup 3}). Some results obtained with a simulation model equipped with such a cost calculation are presented in the paper. A rapidly increasing drying cost is seen when the final MC is lowered. By minimising the instantaneous cost, an optimal drying schedule can be determined for a given fixed air velocity. Finally an optimal air velocity - constant or varying - can be found in the same way.

  2. Severe Sunburn After a Hot Air Balloon Ride: A Case Report and Literature Review.

    Science.gov (United States)

    Ozturk, Sinan; Karagoz, Huseyin

    2015-01-01

    Hot air balloon tours are very popular among travelers worldwide. Preventable burn injuries associated with hot air balloon rides have been reported during crashes into power lines, in propane burner explosions, and following contact with the propane burner tanks. We present a case of severe repeated sunburn, which poses another risk of preventable injury during hot air balloon rides, and briefly discuss the injury epidemiology of hot air balloon rides. © 2015 International Society of Travel Medicine.

  3. Proceedings of the second NATO-CCMS information meeting on dry hot rock geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, J.J. (comp.)

    1977-11-01

    A summary is presented of the second and last NATO-CCMS (North Atlantic Treaty Organization--Committee on Challenges of Modern Society) Geothermal Pilot Study Information Meeting on Dry Hot Rock Geothermal Energy. Only summaries of the formal presentations are included. Overviews of the Energy Research and Development Administration (ERDA) and the U.S. Geological Survey (USGS) geothermal projects are included with emphasis on the Los Alamos Scientific Laboratory (LASL) Hot Dry Rock Geothermal Energy Development Project. Reports of developments in nine foreign countries and on geothermal projects in US universities are also presented.

  4. Effects of drying conditions on the physicochemical and functional ...

    African Journals Online (AJOL)

    This study aimed to investigate ate the effect of drying conditions (freeze dryingng and hot-air oven drying at 40 and 60°C) onon the physicochemical and functional proper perties of red and yellow-fleshed watermelon rind rind flour. In comparison among the drying proceocesses used in this study, freeze drying method re ...

  5. Postharvest monitoring of organic potato (cv. Anuschka) during hot-air drying using visible-NIR hyperspectral imaging.

    Science.gov (United States)

    Moscetti, Roberto; Sturm, Barbara; Crichton, Stuart Oj; Amjad, Waseem; Massantini, Riccardo

    2018-05-01

    The potential of hyperspectral imaging (500-1010 nm) was evaluated for monitoring of the quality of potato slices (var. Anuschka) of 5, 7 and 9 mm thickness subjected to air drying at 50 °C. The study investigated three different feature selection methods for the prediction of dry basis moisture content and colour of potato slices using partial least squares regression (PLS). The feature selection strategies tested include interval PLS regression (iPLS), and differences and ratios between raw reflectance values for each possible pair of wavelengths (R[λ 1 ]-R[λ 2 ] and R[λ 1 ]:R[λ 2 ], respectively). Moreover, the combination of spectral and spatial domains was tested. Excellent results were obtained using the iPLS algorithm. However, features from both datasets of raw reflectance differences and ratios represent suitable alternatives for development of low-complex prediction models. Finally, the dry basis moisture content was high accurately predicted by combining spectral data (i.e. R[511 nm]-R[994 nm]) and spatial domain (i.e. relative area shrinkage of slice). Modelling the data acquired during drying through hyperspectral imaging can provide useful information concerning the chemical and physicochemical changes of the product. With all this information, the proposed approach lays the foundations for a more efficient smart dryer that can be designed and its process optimized for drying of potato slices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves

    OpenAIRE

    Rayaguru, Kalpana; Routray, Winny

    2010-01-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was ...

  7. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    Science.gov (United States)

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  8. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... evaporation. Two outdoor summer climates were simulated in the study, i.e. the design summer climate of Las Vegas and the extreme summer climate of Copenhagen represented hot/dry and warm/dry climates. The results showed that the flash evaporative cooling technology, a simple and green cooling technology......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature....

  9. Dry coolers and air-condensing units (Review)

    Science.gov (United States)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  10. Influence of γ-irradiation on drying of slice potato

    International Nuclear Information System (INIS)

    Wang Jun; Chao Yan; Fu Junjie; Wang Jianping

    2001-01-01

    A new technology is introduced to dry food products by hot-air after pretreated by irradiation. The influence of different dosage of irradiation, temperature of hot air, thickness of the slice potato on the rate of dehydration temperature of irradiated potato were studied. A conclusion is reached that the 3 factors, irradiation dosage, hot-air temperature and thickness of slice potato, affect the rate of dehydration and temperature of slice potato. The higher the dosage is, the greater the rate of dehydration of potato becomes, and the higher the temperature of the slice potato gets. (authors)

  11. Contribution to the study of the exploitation of heat from hot and dry rocks

    International Nuclear Information System (INIS)

    Bernaudat, Francois

    1983-01-01

    In its first part, this research thesis presents the basic concept of geothermal energy in hot and dry rocks, and describes various experiments performed in the USA, Great-Britain and Germany. The ENERGEROC project is then addressed in detail. The second part introduces models of heat transfer. The author proposes a detailed description of the different steps of the preliminary phase of the ENERGEROC project, and of interpretations obtained by using the models. Experimental results of the ENERGEROC project and of other projects are discussed. The last part addresses the extrapolation of the thermal behaviour of a hot-dry rock system

  12. Design data brochure: Solar hot air heater

    Science.gov (United States)

    1978-01-01

    The design, installation, performance, and application of a solar hot air heater for residential, commercial and industrial use is reported. The system has been installed at the Concho Indian School in El Reno, Oklahoma.

  13. Impact of postharvest drying conditions on in vitro starch digestibility and estimated glycemic index of cooked non-waxy long-grain rice (Oryza sativa L.).

    Science.gov (United States)

    Donlao, Natthawuddhi; Ogawa, Yukiharu

    2017-02-01

    Wet paddy needs to be dried to reduce its moisture content after harvesting. In this study, effects of postharvest drying condition on in vitro starch digestibility and estimated glycemic index of cooked rice (Oryza sativa L.) were investigated. Varying drying conditions, i.e. hot-air drying at 40, 65, 90 and 115 °C, and sun drying were applied to raw paddy. After husking and polishing, polished grains were cooked using an electric rice cooker. Cooked samples were analyzed for their moisture content and amount of resistant and total starch. Five samples in both intact grain and slurry were digested under simulated in vitro gastrointestinal digestion process. The in vitro starch digestion rate was measured and the hydrolysis index (HI) and estimated glycemic index (eGI) were calculated. Cooked rice obtained from hot-air drying showed relatively lower HI and eGI than that obtained from sun-drying. Among samples from hot-air drying treatment, eGI of cooked rice decreased with increasing drying temperature, except for the drying temperature of 115 °C. As a result, cooked rice from the hot-air drying at 90 °C showed lowest eGI. The results indicated that cooked rice digestibility was affected by postharvest drying conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Latest Apple Drying Technologies: A Review

    OpenAIRE

    ÖZDEMİR, Yasin; SAYIN, Emir Olcay; KURULTAY, Şefik

    2009-01-01

    Drying is known as one of the oldest preservation methods and can be applicable to many fruits. Sun drying of apple has been known from ancient times. However, this technique is weather-dependent and has contamination problems such as dust, soil, sand particles and insects. Hot air drying of apples has low energy efficiency and requires longer drying period. The desire to eliminate these problems, prevent quality loss, and achieve fast and effective thermal processing has resulted in an incre...

  15. Moisture Distribution in Broccoli: Measurements by MRI Hot Air Drying Experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    ABSTRACT The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments

  16. Moisture distribution in broccoli: measurements by MRI hot air drying experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments with

  17. Evaluation of food drying with air dehumidification system: a short review

    Science.gov (United States)

    Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.

    2018-01-01

    Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.

  18. Phenome data - Air-drying stress - DGBY | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us DGBY Phenome data - Air-drying stress Data detail Data name Phenome data - Air-drying stress... DOI 10.18908/lsdba.nbdc00953-007 Description of data contents Yeasts used in bread making are exposed to air-dryin...g stress during dried yeast production processes. To clarify the genes required for air-drying tolera...tion of diploid Saccharomyces cerevisiae . The screening identified 278 gene deletions responsible for air-dryin...heir gene products. The results showed that the genes required for air-drying tol

  19. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  20. Experimental Investigation of Solar Drying for Orange Peels by Forced convection

    International Nuclear Information System (INIS)

    Ben Slama, Romdhane; Mechlouch, Fethi; Ben Daoud, Houcine

    2009-01-01

    Solar drier does not degrade any more the dried products with the manner of the products dried at the natural sun. The drying unit is composed mainly of a solar air collector and an enclosure of drying. The transformation of the solar radiation into heat is done thanks to the solar collector whose effectiveness is increased by the addition of suitable baffles in the mobile air vein. The efficiency of the collector reaches then 80. The hot air on the outlet side of the collector arrives in the enclosure of drying where the heat transfer with the product to be dried is done by convection. The kinetics drying study shows that in addition to the dependence of the temperature and air velocity of drying, the speed of drying also depends on fragmentation on the product to dry, and mainly, of the product surface in contact with the drying air. Thus, the hygrometry is reduced from 76 to 13 pour cent in one day.. The total efficiency of the drier reached 28 pour cent

  1. Dry-air drying at room temperature - a practical pre-treatment method of tree leaves for quantitative analyses of phenolics?

    Science.gov (United States)

    Tegelberg, Riitta; Virjamo, Virpi; Julkunen-Tiitto, Riitta

    2018-03-09

    In ecological experiments, storage of plant material is often needed between harvesting and laboratory analyses when the number of samples is too large for immediate, fresh analyses. Thus, accuracy and comparability of the results call for pre-treatment methods where the chemical composition remains unaltered and large number of samples can be treated efficiently. To study if a fast dry-air drying provides an efficient pre-treatment method for quantitative analyses of phenolics. Dry-air drying of mature leaves was done in a drying room equipped with dehumifier (10% relative humidity, room temperature) and results were compared to freeze-drying or freeze-drying after pre-freezing in liquid nitrogen. The quantities of methanol-soluble phenolics of Betula pendula Roth, Betula pubescens Ehrh., Salix myrsinifolia Salisb., Picea abies L. Karsten and Pinus sylvestris L. were analysed with HPLC and condensed tannins were analysed using the acid-butanol test. In deciduous tree leaves (Betula, Salix), the yield of most of the phenolic compounds was equal or higher in samples dried in dry-air room than the yield from freeze-dried samples. In Picea abies needles, however, dry-air drying caused severe reductions in picein, stilbenes, condensed tannin and (+)-catechin concentrations compared to freeze-drying. In Pinus sylvestris highest yields of neolignans but lowest yields of acetylated flavonoids were obtained from samples freeze-dried after pre-freezing. Results show that dry-air drying provides effective pre-treatment method for quantifying the soluble phenolics for deciduous tree leaves, but when analysing coniferous species, the different responses between structural classes of phenolics should be taken into account. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Application of Natural Air Drying on Shelled Corn in Timor

    Science.gov (United States)

    Nino, J.; Nelwan, L. O.; Purwanto, Y. A.

    2018-05-01

    A study of the application of natural air drying on shelled corn in Timor using a bed- type dryer has been performed. The study aspects were limited to obtain the suitable air flow rate requirement and duration of the drying operation per day. For each aspect, the treatments were carried out simultaneously. The results showed that at the average ambient air temperature of 30.6°C and relative humidity (RH) of 73.0% the air flow rate of 0.83 L/s-kg provided the highest drying rate. Subsequently, by using the same air flow rate, three scheme of drying operations duration were used, i.e., 8 hours per day (08.00-16.00), 6 hours per day (09.00-15.00) and 4 hours per day (10.00-14.00). The average temperature and RH of ambient air condition at the second experiment were 30.3°C and 73.3% respectively. After 4 days of drying, the 8 hours per day (first scheme) treatment was able to dry the shelled corn from the initial moisture content of 27.24% w.b. to the final moisture content of 14.05% w.b. The specific energy consumption (SEC) of the first scheme was 1.75 MJ/kg. The final moisture content of the second and third schemes were 15.08 % w.b. and 18.45 % w.b. respectively with SEC of 1.41 MJ/kg and 1.21 MJ/kg respectively.

  3. Drying Characteristics and Water-soluble Polysaccharides Evaluation of Kidney Shape Ganoderma lucidum Drying in Air Circulation System

    Science.gov (United States)

    Prasetyo, D. J.; Jatmiko, T. H.; Poeloengasih, C. D.; Kismurtono, M.

    2017-12-01

    In this project, drying kinetic of kidney shape Ganoderma lucidum fruiting body in air circulation system was studied. The drying experiments were conducted at 40, 50 and 60°C with air flow rate of 1.3 ms-1. Samples were weighted periodically until no change in sample weight was recorded, and then the samples were analyzed for its moisture content. Four different thin-layer mathematical models (Newton, Page, Two-term, Midilli) were used and compare to evaluate the drying curves of kidney shape G. lucidum. The water-soluble polysaccharides were evaluated in order to find the best drying temperature condition. The results indicates that Midilli model was the fittest model to describe the characteristic of kidney shape G. lucidum in the air circulation drying system and temperature of 50°C was the best drying condition to get highest value of water-soluble polysaccharides.

  4. Environmental improvement in drying process of plastics part paint; Jushi buhin toso kanso kotei no kankyo kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Horii, H.; Kobayashi, T.; Hayashida, T. [Hino Motors, Ltd., Tokyo (Japan)

    1998-07-01

    A method is developed of applying near infrared rays to the drying of paint coatings on resin-made automobile parts, and its environment improving effects are described. Using the conventional hot-air dryer for the drying of such coatings, the portion near the top surface is hardened prior to the other portions because the heat is absorbed near the top surface. Using an infrared drying system, however, defects in the product surface attributable to the lack of uniformity in the hardening of paint or to the splashing of solvent are remedied because deeper portions are hardened first. Experiment and study are conducted for the purpose of applying a near infrared drying method to an ABS (acrylonitrile butadiene styrene) coating. It is found that the near infrared drying method takes only seven minutes to dry a paint coating for which a hot-air furnace will take 20 minutes, thus shortening the drying time a great deal. Defects of gas hole of coatings are generally dealt with by changing the setting time and drying conditions for example by increasing the amount of the diluting thinner. When an near infrared drying method is used, the amount of the diluting thinner is reduced approximately 50% from the amount required using the hot-air drying method in case of the thickness of 60{mu}m. 2 refs., 9 figs., 2 tabs.

  5. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  6. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.

    Science.gov (United States)

    Zielinska, Magdalena; Michalska, Anna

    2016-12-01

    The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An estimate of the cost of electricity production from hot-dry rock

    International Nuclear Information System (INIS)

    Pierce, K.G.; Livesay, B.J.

    1993-01-01

    This paper gives an estimate of the cost to produce electricity from hot-dry rock (HDR). Employment of the energy in HDR for the production of electricity requires drilling multiple wells from the surface to the hot rock, connecting the wells through hydraulic fracturing, and then circulating water through the fracture system to extract heat from the rock. The basic HDR system modeled in this paper consists of an injection well, two production wells, the fracture system (or HDR reservoir), and a binary power plant. Water is pumped into the reservoir through the injection well where it is heated and then recovered through the production wells. Upon recovery, the hot water is pumped through a heat exchanger transferring heat to the binary, or working, fluid in the power plant. The power plant is a net 5.1-MW e binary plant employing dry cooling. Make-up water is supplied by a local well. In this paper, the cost of producing electricity with the basic system is estimated as the sum of the costs of the individual parts. The effects on cost of variations to certain assumptions, as well as the sensitivity of costs to different aspects of the basic system, are also investigated

  8. The Effect of Body Weight on Heat Strain Indices in Hot and Dry Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Habibi

    2016-03-01

    Full Text Available Background Being overweight is a characteristic that may influence a person’s heat exchange. Objectives The purpose of this study was to assess the effect of body weight on heat strain indices in hot and dry climatic conditions. Materials and Methods This study was completed with a sample of 30 participants with normal weights, as well as 25 participants who were overweight. The participants were physically inactive for a period of 120 minutes in a climatic chamber with hot and dry conditions (22 - 32°C and with 40% relative humidity (RH.The physiological strain index (PSI and heat strain score index (HSSI questionnaires were used. Simultaneous measurements were completed during heat exposure for periods of five minutes. The resting periods acted as the initial measurements for 15 minutes. Results In both groups, oral temperature, heart rate, and thermal perceptual responses increased during heat exposure. The means and standard deviations of heart rate and oral temperature were gathered when participants were in hot and dry climatic conditions and were not physically active. The heart rates and oral temperatures were 79.21 ± 5.93 bpm and 36.70 ± 0.45°C, respectively, for those with normal weights. For overweight individuals, the measurements for heart rate and oral temperature reached 82.21 ± 8.9 bpm and 37.84 ± 0.37°C, respectively. Conclusions The results showed that, compared to participants with normal weights, physiological and thermal perceptual responses were higher in overweight participants. Therefore, overweight individuals should avoid hot/dry weather conditions to decrease the amount of heat strain.

  9. Hot Dry Rock Geothermal Energy Development Project. Annual report, fiscal year 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    The feasibility of extracting geothermal energy from hot dry rock in the earth's crust was investigated. The concept being investigated involves drilling a deep hole, creating an artificial geothermal reservoir at the bottom of the hole by hydraulic fracturing, and then intersecting the fracture with a second borehole. At the beginning of FY77, the downhole system was complete, but the impedance to the flow of fluid was too high to proceed confidently with the planned energy extraction demonstration. Therefore, in FY77 work focused on an intensive investigation of the characteristics of the downhole system and on the development of the necessary tools and techniques for understanding and improving it. Research results are presented under the following section headings: introduction and history; hot dry rock resource assessment and site selection; instrumentation and equipment development; drilling and fracturing; reservoir engineering; energy extraction system; environmental studies; project management and liaison; and, looking back and ahead. (JGB)

  10. Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried.

    Science.gov (United States)

    Ramírez-Rodrigues, M M; Balaban, M O; Marshall, M R; Rouseff, R L

    2011-03-01

    Calyxes from the Roselle plant (Hibiscus sabdariffa L.) were used to prepare cold (22 °C for 4 h) and hot (98 °C for 16 min) infusions/teas from both fresh and dried forms. Aroma volatiles were extracted using static headspace SPME and analyzed using GC-MS and GC-O with 2 different columns (DB-5 and DB-Wax). Totals of 28, 25, 17, and 16 volatiles were identified using GC-MS in the dried hot extract (DHE), dried cold extract (DCE), fresh hot extract (FHE), and fresh cold extract (FCE) samples, respectively. In terms of total GC-MS peak areas DHE ≫ DCE > FHE ≫ FCE. Nonanal, decanal, octanal, and 1-octen-3-ol were among the major volatiles in all 4 beverage types. Thirteen volatiles were common to all 4 teas. Furfural and 5-methyl furfural were detected only in dried hibiscus beverages whereas linalool and 2-ethyl-1-hexanol were detected only in beverages from fresh hibiscus. In terms of aroma active volatiles, 17, 16, 13, and 10 aroma active volatiles were detected for DHE, DCE, FHE, and FCE samples, respectively. The most intense aroma volatiles were 1-octen-3-one and nonanal with a group of 4 aldehydes and 3 ketones common to all samples. Dried samples contained dramatically higher levels of lipid oxidation products such as hexanal, nonanal, and decanal. In fresh hibiscus extracts, linalool (floral, citrus) and octanal (lemon, citrus) were among the highest intensity aroma compounds but linalool was not detected in any of the dried hibiscus extracts. Hibiscus teas/infusions are one of the highest volume specialty botanical products in international commerce. The beverage is consumed for both sensory pleasure and health attributes and is prepared a number of ways throughout the world. Although color and taste attributes have been examined, little information is known about its aroma volatiles and no other study has compared extractions from both fresh and dried as well as extraction temperature differences. This is also, apparently, the first study to identify

  11. Heat and mass transfer models to understand the drying mechanisms of a porous substrate.

    Science.gov (United States)

    Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti

    2016-02-01

    While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

  12. Drier for air-drying coatings

    NARCIS (Netherlands)

    Micciche, F.; Oostveen, E.A.; Linde, van der R.; Haveren, van J.

    2003-01-01

    The invention pertains to a drier composition for air-drying alkyd-based coatings, inks, or floor coverings, comprising a combination of the following components: a) a transition metal salt with the formula: (Me )( X )m in which Me is the transition metal; X represents a coordinating ligand; and k-

  13. Generalization of drying curves in conductive/convective drying of cellulose

    Directory of Open Access Journals (Sweden)

    M. Stenzel

    2003-03-01

    Full Text Available The objective of this work is to analyze the possibility of applying the drying curves generalization methodology to the conductive/convective hot plate drying of cellulose. The experiments were carried out at different heated plate temperatures and air velocities over the surface of the samples. This kind of approach is very interesting because it permits comparison of the results of different experiments by reducing them to only one set, which can be divided into two groups: the generalized drying curves and the generalized drying rate curves. The experimental apparatus is an attempt to reproduce the operational conditions of conventional paper dryers (ratio of paper/air movement and consists of a metallic box heated by a thermostatic bath containing an upper surface on which the cellulose samples are placed. Sample material is short- and long-fiber cellulose sheets, about 1 mm thick, and ambient air was introduced into the system by a adjustable blower under different conditions. Long-fiber cellulose generalized curves were obtained and analyzed first individually and then together with the short-fiber cellulose results from Motta Lima et al. (2000 a,b. Finally, a set of equations to fit the generalized curves obtained was proposed and discussed.

  14. Experimental investigation of wood combustion in a fixed bed with hot air

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit

    2014-01-15

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of

  15. Antioxidant capacity and polyphenolic content of dried wild edible mushrooms from Poland.

    Science.gov (United States)

    Radzki, Wojciech; Sławińska, Aneta; Jabłońska-Ryś, Ewa; Gustaw, Waldemar

    2014-01-01

    In this study 6 species of wild edible mushrooms were evaluated in terms of their total phenolic content and antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl radical and ferric reducing antioxidant power assay methods. The mushrooms, namely Armillaria mellea, Cantharellus cibarius, Lactarius deliciosus, Leccinum aurantiacum, Suillus luteus, and Boletus badius, were dried using both freeze drying and convection drying at 50°C. The amounts of phenolic compounds varied from 3.0 ± 0.1 to 12.8 ± 0.4 mg gallic acid equivalents/g dry weight (for water extracts) and from 2.4 ± 0.1 to 11 ± 0.5 mg gallic acid equivalents/g dry weight (for ethanolic extracts). The species that presented the highest antioxidant potential were B. badius and S. luteus. The impact of hot-air drying on the antioxidant activity of water and ethanolic extracts was evaluated. We demonstrated that hot-air drying may have either a negative or positive influence on phenolics and antioxidant activity, depending on the mushroom species. However, a negative effect was more frequent.

  16. Mathematical Modeling of Microwave-Assisted Convective Heating and Drying of Grapes

    Science.gov (United States)

    This research studied the processing performance and product quality of Thompson seedless grapes dried using microwave-assisted convective hot air drying as well as the effect of blanching and dipping pretreatments. Two pretreatment methods were compared, dipping into 2% ethyl oleate (V/V) and 5% p...

  17. Teaching Earth Science Using Hot Air Balloons

    Science.gov (United States)

    Kuhl, James; Shaffer, Karen

    2008-01-01

    Constructing model hot air balloons is an activity that captures the imaginations of students, enabling teachers to present required content to minds that are open to receive it. Additionally, there are few activities that lend themselves to integrating so much content across subject areas. In this article, the authors describe how they have…

  18. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  19. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  20. Computed tomographic analysis of vegetable during far infrared radiation drying process

    International Nuclear Information System (INIS)

    Maneechot, P.; Tojo, S.; Watanabe, K.

    2006-01-01

    Far Infrared Radiation (FIR) technology is widely used in the automotive industry to cure painted finishes during manufacturing. FIR drying is used not only in manufacturing but also in agricultural processing such as rice drying. At the present time, FIR drying technology has rarely been used for fruits and vegetables except in research laboratories. In this study, FIR drying and hot air convection drying were compared with respect to energy consumption and time requirement. The internal changes of the agricultural product were also observed during the FIR drying process. A Computed Tomographic (CT) scanner was employed for the observation of the tested material, carrot, and was used to analyze the structural deformation and the internal moisture distribution of the test material. CT data and the hardness of the sample were recorded at regular intervals during the drying experiment. For 200, 400 and 600W FIR drying, the maximum drying rates were 173, 459 and 724%d.b./hr respectively, and the required drying times were 26, 12 and 4.5 hours, respectively. The structure of the carrot sample shrank in accordance with the reduction of moisture content in 200W FIR drying as well as in hot air drying, whereas in 400W and 600W FIR drying the sample was dried without so much deformation

  1. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  2. Building America Best Practices Series: Volume 2; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This guidebook is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot-dry and mixed-dry climates.

  3. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    OpenAIRE

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-01-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK “hot dry rock” experimental geothermal...

  4. Dry storage cell for radioactive material

    International Nuclear Information System (INIS)

    Bradley, N.

    1982-01-01

    In a dry storage cell for irradiated nuclear fuel or other highly active waste, cooling air flow is by natural draught in heat exchange with fuel containing canisters housed in channels. To inhibit corrosion by ensuring that the temperature of the air flowing over the canisters does not fall below the dew point when heat generation by decay has fallen, a fraction of the heat energy transferred to the cooling air is recirculated to the air upstream of the canisters. Recirculation of heat energy is effected by recirculation of a fraction of the hot air from downstream of the canisters. (author)

  5. Modelling the Drying Characteristics and Kinetics of Hot Air-Drying of Unblanched Whole Red Pepper and Blanched Bitter Leaf Slices

    OpenAIRE

    Samuel Enahoro Agarry

    2017-01-01

    The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h a...

  6. Mathematical modeling of drying of pretreated and untreated pumpkin.

    Science.gov (United States)

    Tunde-Akintunde, T Y; Ogunlakin, G O

    2013-08-01

    In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40-80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page, Midilli-Kucuk and Parabolic model and the statistical validity of models tested were determined by non-linear regression analysis. The Parabolic model had the highest R(2) and lowest χ(2) and RMSE values. This indicates that the Parabolic model is appropriate to describe the dehydration behavior for the pumpkin.

  7. Drying kinetics of RDF: Experimental investigation and modeling

    Directory of Open Access Journals (Sweden)

    Słomka-Polonis Karolina

    2018-01-01

    Full Text Available An experimental study was performed to determine the drying characteristics of an oversized fraction of RDF alternative fuel using a laboratory scale hot air dryer at a variety air temperatures and a constant air velocity. For this research the industrial RDF was derived from a Regional Municipal Waste Treatment Facility near the city of Kraków, Poland. The samples of RDF were prepared in two forms: ovesized (unmodified condition and shreded in a two-drum crusher. In addition, the RDF was sorted into three groups of samples: paper, plastic, textiles. Each form of RDF and each group of samples were dried in hot air dryer at temperatures of 50, 70 i 90 °C and a constant air velocity of 1,5 [m·s-1]. The loss of the the samples mass were measured in a continues manner until the equilibrum moisture content was reached. The effective moisture diffusivity [m2·s-1] and activation energies [kJ·mol-1] was amounted. The analysis of the course of moisture content change concludes that that the drying of the RDF alternative fuel occured mainly in the II period of the process during which the transport of water content was carried out by diffusion. And, to a lesser extent, with the surface heat transfer in II period. Based on the calculated data there was a model determined which presented the best possible matching of the course of moisture content change.

  8. Effects of open-air sun drying and pre-treatment on drying characteristics of purslane ( Portulaca oleracea L.)

    Science.gov (United States)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2015-06-01

    Effects of open-air sun drying and pre-treatment on drying characteristic of purslanes ( Portulaca oleracea L.) were investigated. Drying times were determined as 31, 24 and 9 h for natural, salted and blanched, respectively. The higher "L" value and lower "-a/b" ratio values were obtained in natural dried purslane. The Aghbashlo et al. model gave a better fit to drying data.

  9. Estimation of cauliflower mass transfer parameters during convective drying

    Science.gov (United States)

    Sahin, Medine; Doymaz, İbrahim

    2017-02-01

    The study was conducted to evaluate the effect of pre-treatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of cauliflower slices. Experiments were carried out at four different drying air temperatures of 50, 60, 70 and 80 °C with the air velocity of 2.0 m/s. It was observed that drying and rehydration characteristics of cauliflower slices were greatly influenced by air temperature and pre-treatment. Six commonly used mathematical models were evaluated to predict the drying kinetics of cauliflower slices. The Midilli et al. model described the drying behaviour of cauliflower slices at all temperatures better than other models. The values of effective moisture diffusivities ( D eff ) were determined using Fick's law of diffusion and were between 4.09 × 10-9 and 1.88 × 10-8 m2/s. Activation energy was estimated by an Arrhenius type equation and was 23.40, 29.09 and 26.39 kJ/mol for citric acid, blanch and control samples, respectively.

  10. Effects of Temperature and Slice Thickness on Drying Kinetics of Pumpkin Slices

    OpenAIRE

    Kongdej LIMPAIBOON

    2011-01-01

    Dried pumpkin slice is an alternative crisp food product. In this study, the effects of temperature and slice thickness on the drying characteristics of pumpkin were studied in a lab-scale tray dryer, using hot air temperatures of 55, 60 and 65 °C and 2, 3 and 4 mm slice thickness at a constant air velocity of 1.5 m/s. The initial moisture content of the pumpkin samples was 900.5 % (wb). The drying process was carried out until the final moisture content of product was 100.5 % (wb). The resul...

  11. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  12. Effect of freezing, hot tumble drying and washing with eucalyptus oil on house dust mites in soft toys.

    Science.gov (United States)

    Chang, Chin-Fu; Wu, Francis Fu-Sheng; Chen, Chi-Ying; Crane, Julian; Siebers, Rob

    2011-09-01

    Soft toys are a major source of house dust mites (HDM) and HDM allergens, and sleeping with soft toys is a significant risk factor for HDM sensitization. We studied three techniques to eliminate HDM from soft toys, namely freezing, hot tumble drying and washing with eucalyptus oil. Thirty-six toys (12 in each treatment group) were enumerated for live HDM by the heat escape method before and after freezing overnight, hot tumble drying for 1 h and washing in 0.2% to 0.4% eucalyptus oil. Freezing, hot tumble drying and washing with eucalyptus oil resulted in significant reductions in live HDM, an average reduction of 95.1%, 89.1% and 95.1%, respectively. Additionally, washing with eucalyptus oil resulted in a significant reduction in HDM allergens as well from a geometric mean of 9.12 μg/g to 0.37 μg/g (p = 0.033). These three HDM elimination techniques give parents of infants effective and acceptable methods of limiting HDM exposure. © 2011 John Wiley & Sons A/S.

  13. Modelling the Drying Characteristics and Kinetics of Hot Air-Drying of Unblanched Whole Red Pepper and Blanched Bitter Leaf Slices

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2017-01-01

    Full Text Available The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h and 1.67-7 h, respectively at temperature ranging from 75 to 35oC. The drying of red pepper and bitter leaf was both in the constant and falling rate period. Four semi-empirical mathematical drying models (Newton, Page, Henderson and Pabis, and Logarithmic models were fitted to the experimental drying curves. The models were compared using the coefficient of determination (R^2 and the root mean square error (RMSE. The Page model has shown a better fit to the experimental drying data of red pepper and bitter leaf, respectively as relatively compared to other tested models. Moisture transport during drying was described by the application of Fick’s diffusion model and the effective moisture diffusivity was estimated. The value ranges from 15.69 to 84.79 × 10-9 m2/s and 0.294 to 1.263 × 10-9 m2/s for red pepper and bitter leaf, respectively. The Arrhenius-type relationship describes the temperature dependence of effective moisture diffusivity and was determined to be 37.11 kJ/mol and 32.86 kJ/mol for red pepper and bitter leaf, respectively. A correlation between the drying time and the heat transfer area was also developed.

  14. Silk cocoon drying in forced convection type solar dryer

    International Nuclear Information System (INIS)

    Singh, Panna Lal

    2011-01-01

    The thin layer silk cocoon drying was studied in a forced convection type solar dryer. The drying chamber was provided with several trays on which the cocoons loaded in thin layer. The hot air generated in the solar air heater was forced into drying chamber to avoid the direct exposure of sunlight and UV radiation on cocoons. The drying air temperature varied from 50 to 75 o C. The cocoon was dried from the initial moisture content of about 60-12% (wb). The drying data was fitted to thin layer drying models. Drying behaviour of the silk cocoon was best fitted with the Wang and Singh drying model. Good agreement was obtained between predicted and experimental values. Quality of the cocoons dried in the solar dryer was at par with the cocoons dried in the conventional electrical oven dryer in term of the silk yield and strength of the silk. Saving of electrical energy was about 0.75 kWh/kg cocoons dried. Economic analysis indicated that the NPV of the solar dryer was higher and more stable (against escalation rate of electricity) as compare to the same for electrical oven dryer. Due to simplicity in design and construction and significant saving of operational electrical energy, solar cocoon dryer seems to be a viable option.

  15. Dry cross-flow cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Fordyce, H E

    1975-01-23

    The invention deals with dry cooling towers in particular a circular cooling tower of the mechanical-draught construction whose operating characteristics should be independent of the wind direction. The recycling of the hot air should be as low as possible without necessitating high fan or natural-draught shafts, so that the costs of the tower can be brought down to a minimum.

  16. Drying characteristics of garlic ( Allium sativum L) slices in a convective hot air dryer

    Science.gov (United States)

    Demiray, Engin; Tulek, Yahya

    2014-06-01

    The effects of drying temperatures on the drying kinetics of garlic slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 4.214 × 10-10 to 2.221 × 10-10 m2 s-1 over the temperature range studied, and activation energy was 30.582 kJ mol-1.

  17. The Effect of Drying Conditions on the Antidiabetic Activity of the ...

    African Journals Online (AJOL)

    Ethanolic extracts of the leaves of Vernonia amygdalina were obtained by maceration from the freshly -harvested leaves, leaves dried in the shade, and leaves dried at 40 °C in the hot air oven. Solvent removal was achieved with the aid of a rotary evaporator. White albino rats of both sexes weighing 90-145 g were used.

  18. Regeneration characteristics of desiccant rotor with microwave and hot-air heating

    International Nuclear Information System (INIS)

    Kubota, Mitsuhiro; Hanada, Takuya; Yabe, Satoshi; Matsuda, Hitoki

    2013-01-01

    Microwave heating, because of its advantages of direct and rapid heating of materials, has the potential to be employed as a novel regeneration method of desiccant rotors in humidity conditioners. We proposed a combined regeneration process, which combines microwave heating and conventional hot-air heating. The system is expected to achieve high heating rate during an initial regeneration period by assisting water desorption using the additional energy of the microwave. In this study, the regeneration characteristics of a desiccant rotor were experimentally investigated under conditions of microwave heating, hot-air heating, and combined heating at various microwave powers and hot-air temperatures. The effectiveness of the combined regeneration was evaluated in terms of the regeneration ratio, the initial regeneration rate, the temperature distribution in the rotor, and finally in terms of the energy consumption. It was demonstrated that combined heating was effective at leveling non-uniform temperature distribution in the rotor. Combined heating achieved higher ratios and initial rates in regeneration compared to just microwave and hot-air heating. This result was obviously attributed to the additional input of microwave energy, resulting that average rotor temperature increased by microwave absorption of rotor. Moreover, it was also effective for enhancement of regeneration to level the temperature distribution in the rotor by combination of two heating methods with different heating mechanisms. Both the initial regeneration rate and the equilibrium regeneration ratio for combined heating were found to increase as the microwave power increased. A linear relationship was observed with respect to microwave power. From the viewpoint of energy consumption, it may be possible to apply combined and microwave heating to humidity control systems that switch between adsorption and regeneration in short cycle times, if the conversion and absorption efficiencies of the

  19. Candidate sites for future hot-dry-rock development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Decker, E.R.

    1982-12-01

    Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is cateogrized accoridng to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are described: The Geysers-Clear lake region in California, the Roosevelt Hot Springs area in Utah, and the White Mountains region in New Hampshire. These areas are singled out to illustrate the roles of significantly different geology and geophysics, reservoir rocks, and reservoir heat contents in possible HDR developments.

  20. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.).

    Science.gov (United States)

    Zielinska, Magdalena; Markowski, Marek

    2016-04-01

    The aim of this study was to determine the effect of: (a) different drying methods, (b) hot air temperature in a convection oven, and (c) the moisture content of fruits dehydrated by multi-stage drying which involves a transition between different stages of drying, on the rehydration kinetics of dry blueberries. Models describing rehydration kinetics were also studied. Blueberries dehydrated by multi-stage microwave-assisted drying, which involved a hot air pre-drying step at 80 °C until the achievement of a moisture content of 1.95 kg H2O kg(-1)DM, were characterized by significantly higher rates of initial and successive rehydration as well as smaller initial loss of soluble solids in comparison with the samples dried by other methods. The highest initial rehydration rate and the smallest loss of soluble solids after 30 min of soaking were determined at 0.46 min(-1) and 0.29 kg DM kg(-1)DM, respectively. The Peleg model and the first-order-kinetic model fit the experimental data well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Drying characteristics of bay laurel (Laurus nobilis L.) fruits in a ...

    African Journals Online (AJOL)

    In this study, drying characteristics of bay laurel (Laurus nobilis L.) fruits were investigated in a laboratory scale hot-air dryer at air temperature in a range of 70 to 100°C. Moisture transfer from the test samples was described by applying the Fick's diffusion model and the effective diffusivity was calculated. Temperature ...

  2. Performance of a Hot-Dry Climate Whole-House Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); German, A. [Alliance for Residential Building Innovation, Davis, CA (United States); Porse, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-06-01

    The Stockton house retrofit is a two-story Tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  3. Performance of a Hot-Dry Climate Whole-House Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; German, A.; Porse, E.

    2014-06-01

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  4. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  5. Optimization and application of spray-drying process on oyster cooking soup byproduct

    Directory of Open Access Journals (Sweden)

    Huibin CHEN

    Full Text Available Abstract Oyster drying processes have produced a large amount of cooking soup byproducts. In this study, oyster cooking soup byproduct was concentrated and spray-dried after enzymatic hydrolysis to produce seasoning powder. Response surface methodology (RSM was performed on the basis of single-factor studies to optimize the feeding temperature, hot air temperature, atomization pressure, and total solid content of oyster drying. Results revealed the following optimized parameters of this process: feeding temperature of 60 °C, total solid content of 30%, hot air temperature of 197 °C, and atomization pressure of 92 MPa. Under these conditions, the oyster powder yield was 63.7% ± 0.7% and the moisture content was 4.1% ± 0.1%. Our pilot trial also obtained 63.1% yield and 4.0% moisture content. The enzyme hydrolysis of cooking soup byproduct further enhanced the antioxidant activity of the produced oyster seasoning powder to some extent. Spray drying process optimized by RSM can provide a reference for high-valued applications of oyster cooking soup byproducts.

  6. Water loss at normal enamel histological points during air drying at room temperature.

    Science.gov (United States)

    De Medeiros, R C G; De Lima, T A S; Gouveia, C R; De Sousa, F B

    2013-06-01

    This in vitro study aimed to quantify water loss at histological points in ground sections of normal enamel during air drying at room temperature (25°C) and relative humidity of 50%. From each of 10 ground sections of erupted permanent human normal enamel, three histological points (n = 30) located at 100, 300 and 500 μm from enamel surface and along a transversal following prisms paths were characterized regarding the mineral, organic and water volumes. Water loss during air drying was from 0 to 48 h. Drying occurred with both falling and constant-drying rates, and drying stabilization times (Teq ) ranged from 0.5 to 11 h with a mean 0.26 (±0.12)% weight loss. In some samples (n = 5; 15 points), Teq increased as a function of the distance from the enamel surface, and drying occurred at an apparent diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹. Our data provide evidence of air drying resulting in air replacing enamel's loosely bound water in prisms sheaths following a unidirectional water diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹ (from the original enamel surface inward), not necessarily resulting in water evaporating directly into air, with important implications for transport processes and optical and mechanical properties. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  7. Thermodynamics of energy extraction from fractured hot dry rock

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J S; Bejan, A [Duke Univ., Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science; Kim, J H [Electric Power Research Inst., Palo Alto, CA (United States)

    1992-03-01

    It has been proposed to extract energy from the subterranean hot dry rock bed (HDR) by creating one or more narrow fractures in the rock and circulating cold water through the fractures. In time, the temperature of the rock region surrounding the crack drops under the influence of time-dependent conduction. This study presents the most basic thermodynamic aspects (first law and second law) of the HDR energy extraction process. It shows which parameters most influence the amount of useful energy (exergy) extracted from the HDR reservoir over a fixed time interval. For example, the water flow rate can be selected optimally in order to maximize the delivery of exergy over the lifetime of the HDR system. (author).

  8. Generation by heated rock. Technology for hot dry rock geothermal power; Yakeishi ni mizu de hatsuden. Koon gantai hatsuden no gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1995-06-15

    Japan is one of the most distinguished volcanic country in the world and about 8% of the active volcanos of the world are distributed in Japan. This kind of a large quantity and natural energy resource near us are used as hot springs in the whole country and as for electricity in 10 geothermal power stations. In future, if this enormous underground geothermal energy could be utilized safely and economically by using new power generation system like hot dry rock geothermal power generation (HDR), it may contribute a little to the 21st century`s energy problem of Japan. Central Research Inst. of Electric Power Industry has installed `Okachi HDR testing ground` in Okachi-machi of Akita Ken, and is carrying out experiments since 1989. Hot dry rock geothermal power generation is a method in which water is injected to the hot dry rock and the thermal energy is recovered that the natural rock bed is used as a boiler. However, development of many new technologies is necessary to bring this system in practical use. 9 refs., 5 figs., 1 tab.

  9. Airflow mixing augmentation device for hot-air heating systems in modular boilers

    Directory of Open Access Journals (Sweden)

    Kurilenko Nikolay I.

    2017-01-01

    Full Text Available The article demonstrates the results of the theoretical research devoted to the study of air flow interaction in hot-air heating systems of automatic modular boilers involving the use of fan heaters. The work quotes the results of mathematic simulation of various density air flows that are vertical to each other.

  10. Qualitative Indices of Istamaran Date Variety Affected by Various Drying Methods

    Directory of Open Access Journals (Sweden)

    E. Mehryar

    2015-09-01

    Full Text Available Drying of fruits and vegetables is one of the oldest methods for preserving foods. Drying not only affects the moisture content of the product, but also changes other physical, chemical and biological properties of the product including enzymatic activity, microbial spoilage, viscosity, hardness, taste and aroma. In order to study the occurring changes in dried product, qualitative characteristics including shrinkage, color and water rehydration are commonly evaluated. The purpose of this research was to study the effect of drying methods on qualitative indices for dried Istamaran dates. The drying methods were hot air, microwave and vacuum drying. The photos of the final product were taken using a digital camera. Then, color parameters (L*, a* and b* of the samples were measured using Photoshop software. The amount of shrinkage for dried product was determined by liquid displacement method. For evaluating rehydration ability, water absorption capacity (WAC, dry matter holding capacity (DHC, and rehydration ability (RA were also estimated. Results showed that the effect of drying method on WAC, DHC, and RA was significant (p<0.01. Means comparison revealed that the structural damage into the final dried product occurred by microwave method was higher than that for hot air and vacuum drying methods. Drying method did not lead to any significant difference among shrinkage values. Drying temperature influenced shrinkage more than drying time. Analysis of variance showed that the effect of drying method on L*, a* and b* parameters was not significant. Since the temperature of drying in microwave method is very high, it is possible that caramelization occurs during this method. This phenomenon can be considered as the reason of color darkness caused by microwave method.

  11. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    International Nuclear Information System (INIS)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O.

    2011-01-01

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10 -9 m 2 /s for untreated pumpkin samples dried at 40 o C to a maximum value of 4.27 x 10 -9 m 2 /s for steam blanched samples dried at 80 o C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 o C to 80 o C with a drying air velocity of 1.5 m/s respectively.

  12. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin

    Energy Technology Data Exchange (ETDEWEB)

    Tunde-Akintunde, Toyosi Y.; Ogunlakin, Grace O. [Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State (Nigeria)

    2011-02-15

    Pumpkin as a fruit is consumed by both animals and humans. Its high moisture content makes it perishable and thus there is a need for drying as a means of preservation. Thin-layer drying characteristics for the samples dried using a hot-air dryer were obtained from the experiment data. The drying was observed to take place in the falling rate drying period. Ficks law was used to determine the moisture diffusivity which varied from a minimum of 1.19 x 10{sup -9} m{sup 2}/s for untreated pumpkin samples dried at 40 C to a maximum value of 4.27 x 10{sup -9} m{sup 2}/s for steam blanched samples dried at 80 C. The value of the energy of activation varied from 21.44 to 28.67 kJ/mol. The input energy values and specific energy requirement for thin-drying of pumpkin samples were found to be in the range of 317.8-458.1 kW h and 1588.8-2290.3 kW h/kg from 40 C to 80 C with a drying air velocity of 1.5 m/s respectively. (author)

  13. Changes in duration of dry and wet spells associated with air temperatures in Russia

    Science.gov (United States)

    Ye, Hengchun

    2018-03-01

    This study uses daily precipitation records from 517 Russian stations (1966-2010) to examine the relationships between continuous dry and wet day duration and surface air temperature for all four seasons. The study found that both mean and extreme durations of dry periods increase with air temperature at about 7.0% (0.24 day/°C) and 7.7% (0.86 day/°C) respectively, while those of wet periods decrease at about 1.3% (-0.02 day/°C) and 2.2% (-0.10 day/°C) respectively averaged over the entire study region during summer. An increase in the duration of dry periods with higher air temperature is also found in other seasons at locations with a mean seasonal air temperature of about -5 °C or higher. Opposite relationships of shorter durations of dry periods and longer wet periods associated with higher air temperature are observed over the northern part of the study region in winter. The changes in durations of both dry and wet periods have significant correlations with the changes in total dry and wet days but are about 2.5 times higher for dry periods and 0.5 times lower for wet periods. The study also found that locations with longer durations of dry periods experience faster rates of increase in air temperature, suggesting the likelihood of exacerbating drought severity in drier and/or warmer locations for all seasons.

  14. Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China

    OpenAIRE

    Guangzheng Jiang; Yi Wang; Yizuo Shi; Chao Zhang; Xiaoyin Tang; Shengbiao Hu

    2016-01-01

    Development and utilization of deep geothermal resources, especially a hot dry rock (HDR) geothermal resource, is beneficial for both economic and environmental consideration in oilfields. This study used data from multiple sources to assess the geothermal energy resource in the Daqing Oilfield. The temperature logs in boreholes (both shallow water wells and deep boreholes) and the drilling stem test temperature were used to create isothermal maps in depths. Upon the temperature field and the...

  15. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  16. Hot dry rock geothermal energy for U.S. electric utilities. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

  17. Effect of air-drying time of single-application self-etch adhesives on dentin bond strength.

    Science.gov (United States)

    Chiba, Yasushi; Yamaguchi, Kanako; Miyazaki, Masashi; Tsubota, Keishi; Takamizawa, Toshiki; Moore, B Keith

    2006-01-01

    This study examined the effect of air-drying time of adhesives on the dentin bond strength of several single-application self-etch adhesive systems. The adhesive/resin composite combinations used were: Adper Prompt L-Pop/Filtek Z250 (AP), Clearfil Tri-S Bond/Clearfil AP-X (CT), Fluoro Bond Shake One/Beautifil (FB), G-Bond/Gradia Direct (GB) and One-Up Bond F Plus/Palfique Estelite (OF). Bovine mandibular incisors were mounted in self-curing resin and wet ground with #600 SiC to expose labial dentin. Adhesives were applied according to each manufacturer's instructions followed by air-drying time for 0 (without air-drying), 5 and 10 seconds. After light irradiation of the adhesives, the resin composites were condensed into a mold (phi4x2 mm) and polymerized. Ten samples per test group were stored in 37 degrees C distilled water for 24 hours; they were then shear tested at a crosshead speed of 1.0 mm/minute. One-way ANOVA followed by Tukey's HSD tests (alpha = 0.05) were done. FE-SEM observations of the resin/dentin interface were also conducted. Dentin bond strength varied with the different air drying times and ranged from 5.8 +/- 2.4 to 13.9 +/- 2.8 MPa for AP, 4.9 +/- 1.5 to 17.1 +/- 2.3 MPa for CT, 7.9 +/- 2.8 to 13.8 +/- 2.4 MPa for FB, 3.7 +/- 1.4 to 13.4 +/- 1.2 MPa for GB and 4.6 +/- 2.1 to 13.7 +/- 2.6 MPa for OF. With longer air drying of adhesives, no significant changes in bond strengths were found for the systems used except for OF. Significantly lower bond strengths were obtained for the 10-second air-drying group for OF. From FE-SEM observations, gaps between the cured adhesive and resin composites were observed for the specimens without the air drying of adhesives except for OF. The data suggests that, with four of the single-application self-etch adhesive systems, air drying is essential to obtain adequate dentin bond strengths, but increased drying time does not significantly influence bond strength. For the other system studied, the bond strength

  18. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    Science.gov (United States)

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  19. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders.

    Science.gov (United States)

    Si, Xu; Chen, Qinqin; Bi, Jinfeng; Wu, Xinye; Yi, Jianyong; Zhou, Linyan; Li, Zhaolu

    2016-04-01

    Dehydration has been considered as one of the traditional but most effective techniques for perishable fruits. Raspberry powders obtained after dehydration can be added as ingredients into food formulations such as bakery and dairy products. In this study, raspberry powders obtained by hot air drying (HAD), infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD), infrared radiation and microwave vacuum drying (IR-MVD) and freeze drying (FD) were compared on physical properties, bioactive compounds and antioxidant activity. Drying techniques affected the physical properties, bioactive compounds and antioxidant activity of raspberry powders greatly. FD led to significantly higher (P drying methods. However, thermal drying techniques, especially combined drying methods, were superior to FD in final total polyphenol content, total flavonoid content and antioxidant activity. The combined drying methods, especially IR-MVD, showed the highest total polyphenol content (123.22 g GAE kg(-1) dw) and total flavonoid content (0.30 g CAE kg(-1) dw). Additionally, IR-MVD performed better in antioxidant activity retention. Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention. © 2015 Society of Chemical Industry.

  20. Study of fine particles (PM{sub 2.5}) during the dry-hot time in the Toluca city; Estudio de las particulas finas (PM{sub 2.5}) durante la epoca seca-caliente en la ciudad de Toluca

    Energy Technology Data Exchange (ETDEWEB)

    Rosendo G, V. [ITT, 50000 Toluca (Mexico); Aldape U, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: vero_rosen2108@yahoo.com.mx

    2007-07-01

    The first obtained results of the analysis of the fine fraction particulate material (PM{sub 2.5}) samples collected in the Toluca City are presented. The samples analyzed are part of a more extensive campaign that contemplates the low project the one which one carries out this work and that it integrates three climatic times (dry-hot, of rains and dry-cold time) with the purpose of investigating the events of contamination in one complete year. The obtained results correspond to the dry-hot time and its include mainly the database starting from which the temporal variation graphs were obtained, the correlations among elements and the enrichment factor, as well as a multiple correlation analysis. Additionally the gravimetry was measured. Its are not observed significant episodes, however, it was found an element of the traces order, little common in other atmospheric studies as it is arsenic. From the gravimetry it was deduced that the air quality standard of fine particle, it does not violate. (Author)

  1. Drilling fluids and lost circulation in hot-dry-rock geothermal wells at Fenton Hill

    Energy Technology Data Exchange (ETDEWEB)

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.

    1981-01-01

    Geothermal hot dry rock drilling at Fenton Hill in northern New Mexico encountered problems of catastrophic lost circulation in cavernous areas of limestones in the Sandia Formation, severe corrosion due to temperatures of up to 320/sup 0/C, and torque problems caused by 35/sup 0/ hole angle and the abrasiveness of Precambrian crystalline rock. The use of polymeric flocculated bentonite fluid, clear water, fibrous material, dry drilling, oxygen scavengers, a biodegradable lubricant mixture of modified triglicerides and alcohol, and maintenance of a high pH, were some of the approaches taken toward solving these problems.

  2. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Trading Hot-Air. The Influence of Permit Allocation Rules, Market Power and the US Withdrawal from the Kyoto Protocol

    International Nuclear Information System (INIS)

    Klepper, G.; Peterson, S.

    2005-01-01

    After the conferences in Bonn and Marrakech, it is likely that international emissions trading will be realized in the near future. Major influences on the permit market are the institutional detail, the participation structure and the treatment of hot-air. Different scenarios not only differ in their implications for the demand and supply of permits and thus the permit price, but also in their allocative effects. In this paper we discuss likely the institutional designs for permit allocation in the hot-air economies and the use of market power and quantify the resulting effects by using the computable general equilibrium model DART. It turns out that the amount of hot-air supplied will be small if hot-air economies cooperate in their decisions. Under welfare maximization, more hot-air is supplied than in the case where governments try to maximize revenues from permit sales

  4. An experimental study of solar desalination using free jets and an auxiliary hot air stream

    Science.gov (United States)

    Eid, Eldesouki I.; Khalaf-Allah, Reda A.; Dahab, Mohamed A.

    2018-04-01

    An experimental study for a solar desalination system based on jet-humidification with an auxiliary perpendicular hot air stream was carried out at Suez city, Egypt 29.9668°N, 32.5498°E. The tests were done from May to October 2016. The effects of nozzles situations and nozzle diameter with and without hot air stream on fresh water productivity were monitored. The results show that; the lateral and downward jets from narrow nozzles have more productivities than other situations. The hot air stream has to be adapted at a certain flow rate to get high values of productivity. The system productivity is (5.6 L/m 2 ), the estimated cost is (0.030063 / L) and the efficiency is 32.8%.

  5. A comparative study between hot-melt extrusion and spray-drying for the manufacture of anti-hypertension compatible monolithic fixed-dose combination products.

    Science.gov (United States)

    Kelleher, J F; Gilvary, G C; Madi, A M; Jones, D S; Li, S; Tian, Y; Almajaan, A; Senta-Loys, Z; Andrews, G P; Healy, A M

    2018-07-10

    The purpose of this work was to investigate the application of different advanced continuous processing techniques (hot melt extrusion and spray drying) to the production of fixed-dose combination (FDC) monolithic systems comprising of hydrochlorothiazide and ramipril for the treatment of hypertension. Identical FDC formulations were manufactured by the two different methods and were characterised using powder X-ray diffraction (PXRD) and modulated differential scanning calorimetry (mDSC). Drug dissolution rates were investigated using a Wood's apparatus, while physical stability was assessed on storage under controlled temperature and humidity conditions. Interestingly both drugs were transformed into their amorphous forms when spray dried, however, hydrochlorothiazide was determined, by PXRD, to be partially crystalline when hot melt extruded with either polymer carrier (Kollidon® VA 64 or Soluplus®). Hot melt extrusion was found to result in significant degradation of ramipril, however, this could be mitigated by the inclusion of the plasticizer, polyethylene glycol 3350, in the formulation and appropriate adjustment of processing temperature. The results of intrinsic dissolution rate studies showed that hot-melt extruded samples were found to release both drugs faster than identical formulations produced via spray drying. However, the differences were attributable to the surface roughness of the compressed discs in the Wood's apparatus, rather than solid state differences between samples. After a 60-day stability study spray dried samples exhibited a greater physical stability than the equivalent hot melt extruded samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effect of Hot-Water Blanching Pretreatment on Drying Characteristics and Product Qualities for the Novel Integrated Freeze-Drying of Apple Slices

    Directory of Open Access Journals (Sweden)

    Hai-ou Wang

    2018-01-01

    Full Text Available The effect of hot-water blanching (HWB on drying characteristics and product qualities of dried apple slices with the novel integrated freeze-drying (NIFD process was investigated by comparing with 3 different FD methods. Compared with the NIFD process without HWB pretreatment (VF-FD, the NIFD process with HWB pretreatment (HWB-VF-FD resulted in a significantly higher mass loss and more sufficient freezing in vacuum-frozen samples, significantly higher rehydration ratio (RR, higher shrinkage ratio (SR, smaller Vitamin C (VC content and lower hardness and better apparent shape in freeze-dried samples, and fewer change to the color of the dried or rehydrated samples (p<0.05. Compared with the conventional FD process with HWB pretreatment (HWB-PF-FD, HWB-VF-FD cost significantly less processing time and FD time and obtained significantly higher RR (p<0.05, almost the equivalent SR, VC content, and hardness, and similar appearance in dried samples. The microstructure of apple cell tissues was analyzed by transmission electron microscopy and scanning electron microscopy to interpret the above differences in drying characteristics and product qualities. The results suggested that the NIFD process of apple slices with HWB pretreatment was a promising alternative method to decrease drying time, achieve similar product quality, and simplify the process steps of the conventional FD technology.

  7. Pulsed Streamer Discharge Characteristics of Ozone Production in Dry Air

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Sakugawa, T.; Hackam, R.; Akiyama, H.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 波平, 隆男; 勝木, 淳; 秋山, 秀典

    2000-01-01

    Experimental investigation of HV short pulsed streamer discharges in dry air-fed ozonizers under various operating conditions are reported. Ozone concentration, energy input and ozone production yield (efficiency) were measured at various voltages (14 to 37 kV), pulse repetition rates (25 to 400 pulses per second, pps), flow rates (1.5 to 3.0 1/min) and different gap spacings (10 to 20 mm) at a pressure of 1.01×105 Pa in dry air. A spiral copper wire (1 mm in diameter) made to a cylindrical c...

  8. Effect of drying techniques on the retention of antioxidant activities of Saskatoon berries

    Directory of Open Access Journals (Sweden)

    Pranabendu Mitra

    2013-10-01

    Full Text Available The main objective of this research was to compare the retention of antioxidant activity and total anthocyanin content of Saskatoon berries dried by freeze drying, microwave-vacuum drying, thin layer hot air drying and vacuum drying. Antioxidant activity of berry samples was determined by DPPH radical scavenging and ABTS radical scavenging, and the pH differential method was used to determine total anthocyanin content of the berry samples. The results showed that the freeze dried Saskatoon berries exhibited the highest retention of anthocyanin and antioxidant activity among the dried samples, followed by microwave-vacuum dried berries, thin layer hot air dried berries and vacuum dried berries. There were significant differences between the berry samples at P<0.05.  DPPH radical scavenging and ABTS radical scavenging were correlated linearly with an R2 value of 0.99 at P<0.05 showing their effectiveness for the determination of the antioxidant activity of the Saskatoon berries. However, the DPPH radical scavenging assay was more effective than the ABTS radical scavenging assay. The results also showed that antioxidant activity of the berries was highly correlated with the total anthocyanin content of the fruit. The reduction of anthocyanin in dried berry samples was linearly correlated with the reduction of DPPH radical scavenging with an R2 value of 0.97 at P<0.05 and, also, linearly correlated with the reduction of ABTS radical scavenging with an R2 value of 0.88 at P<0.05.

  9. Hot Dry Rock energy annual report fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Duchane, D.V.; Winchester, W.W.

    1993-04-01

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  10. Hot Dry Rock energy annual report fiscal year 1992

    International Nuclear Information System (INIS)

    Winchester, W.W.; Duchane, D.V.

    1993-04-01

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180 degrees C (356 degrees F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site

  11. Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Franz; Nagle, Marcus; Leis, Hermann; Mueller, Joachim [Institute of Agricultural Engineering 440e, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart (Germany); Janjai, Serm [Department of Physics, Silpakorn University, Nakhon Pathom (Thailand); Mahayothee, Busarakorn [Department of Food Technology, Silpakorn University, Nakhon Pathom (Thailand); Haewsungcharoen, Methinee [Department of Food Engineering, Chiang Mai University, Chiang Mai (Thailand)

    2009-07-15

    Longan is one of the most widely cropped fruits in Northern Thailand, where a significant amount of the annual harvest is commercially dried and exported as a commodity. Liquefied petroleum gas is generally used as the energy source for heating the drying air, but concern is growing as fuel prices are expected to increase for the foreseeable future. Meanwhile, with the ample solar radiation in Thailand, the roofs of drying facilities could be adapted to serve as solar collectors to preheat the drying air, thus reducing the energy requirement from fossil fuels. In this study, a simulation program for a flat-plate solar air heater was used to estimate the potential to preheat drying air given the conditions of several longan drying facilities. Results showed that solar collectors can replace up to 19.6% of the thermal energy demand during the drying season. Bigger collectors and smaller air channels result in more useful heat, but attention has to be paid to costs and pressure drop, respectively. Annual monetary savings can reach up to THB 56,000 ({approx}US$ 1800 at US$ 1 THB 31). (author)

  12. Hot dry rock geothermal energy: status of exploration and assessment. Report No. 1 of the hot dry rock assessment panel

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The status of knowledge of attempts to utilize hot dry rock (HDR) geothermal energy is summarized. It contains (1) descriptions or case histories of the ERDA-funded projects at Marysville, MT, Fenton Hill, NM, and Coso Hot Springs, CA; (2) a review of the status of existing techniques available for exploration and delineation of HDR; (3) descriptions of other potential HDR sites; (4) definitions of the probable types of HDR resource localities; and (5) an estimate of the magnitude of the HDR resource base in the conterminous United States. The scope is limited to that part of HDR resource assessment related to the determination of the extent and character of HDR, with emphasis on the igneous-related type. It is estimated that approximately 74 Q (1 Q = 1,000 Quads) of heat is stored in these sites within the conterminous U.S. at depths less than 10 km and temperatures above 150/sup 0/C, the minimum for power generation. (Q = 10/sup 18/ BTU = 10/sup 21/J; the total U.S. consumption for 1972 was approximately 0.07 Q). Approximately 6300 Q are stored in the conduction-dominated parts of the crust in the western U.S. (23% of the total surface area), again at depths less than 10 km and temperatures above 150/sup 0/C. Nearly 10,000 Q are believed to be contained in crustal rocks underlying the entire conterminous U.S., at temperatures above 150/sup 0/C. The resource base is significantly larger for lower grade heat. (JGB)

  13. Etudes comparatives de différents processus de séchage de fraise par air chaud, lyophilisation et autovaporisation instantanée : application à la préservation des contenus biologiques

    OpenAIRE

    Alonzo Macias , Maritza

    2013-01-01

    The aim of this study was to evaluate the effect of hot air drying (HAD), freeze-drying (FD) and swell drying (SD), which is a coupling of hot air drying to instant controlled pressure drop, (DIC) on the strawberry (Fragaria var. Camarosa) to compare and to contrast its quality in terms of drying and rehydration kinetics, bioactive compounds and its antioxidant activity, and texture parameters as crunchy and crispy features. The obtained results shown that SD method helped to reduce the dryin...

  14. Effect of additives and steaming on quality of air dried noodles.

    Science.gov (United States)

    Gatade, Abhijeet Arun; Sahoo, Akshaya Kumar

    2015-12-01

    Texture is the most important property for consumer acceptance in cooked noodles. The air dried noodles are known to have higher cooking loss and cooking time, to that of instant fried noodles. But the fat content of instant fried noodles is more. In the present work attempts were made to optimize the moisture content so as to obtain a smooth dough for extruded noodle preparation and develop air dried noodles of low fat content with lesser cooking loss and cooking time. To meet the objectives, the effect of various additives and steaming treatment on cooking quality, sensory attributes, textural properties and microstructure of noodles were studied. Dough prepared by addition of 40 ml water to 100 g flour resulted into formation of a soft dough, leading to production of noodles of improved surface smoothness and maximum yield. The use of additives (5 g oil, 0.2 g guar gum, 2 g gluten and 1 ml of 1 % kansui solution for 100 g of flour) and steaming treatment showed significant effect on noodles quality, with respect to cooking characteristics, sensory attributes and textural properties. The microstructure images justified the positive correlation between the effects of ingredients with steaming and quality parameters of noodles. Air dried noodles with reduced cooking loss (~50 % reduction) with marginal reduction in cooking time was developed, which were having similar characteristics to that of instant fried noodles. Compared to the instant fried noodle, the prepared air dried noodle was having substantially reduced fat content (~70 % reduction). Thus the present study will be useful for guiding extrusion processes for production of air dried noodles having less cooking time and low fat content.

  15. Development of a distributed air pollutant dry deposition modeling framework

    International Nuclear Information System (INIS)

    Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J.

    2012-01-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. - Highlights: ► A distributed air pollutant dry deposition modeling system was developed. ► The developed system enhances the functionality of i-Tree Eco. ► The developed system employs nationally available input datasets. ► The developed system is transferable to any U.S. city. ► Future planting and protection spots were visually identified in a case study. - Employing nationally available datasets and a GIS, this study will provide urban forest managers in U.S. cities a framework to quantify and visualize urban forest structure and its air pollution removal effect.

  16. Heat Transfer Model for Hot Air Balloons

    OpenAIRE

    Lladó Gambín, Adriana

    2016-01-01

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the mod...

  17. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    Science.gov (United States)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  18. OPTIMIZATION OF MICROWAVE AND AIR DRYING CONDITIONS OF QUINCE (CYDONIA OBLONGA, MILLER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu

    2015-03-01

    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  19. Criticality Analysis of SFP Region I under Dry Air Condition

    International Nuclear Information System (INIS)

    Kim, Ki Yong; Kim, Min Chul

    2016-01-01

    This paper is to provide a result of the criticality evaluation under the condition that new fuel assemblies for initial fuel loading are storing in Region 1 of SFP in the dry air. The objective of this analysis is to ensure the effective neutron multiplication factor(k_e_f_f) of SFP is less than 0.95 under that condition. This analysis ensured the effective neutron multiplication factor(k_e_f_f) of Region 1 of SFP is less than 0.95 under the condition in the air. The keff in Region I of SFP under the condition of the dry air is 0.5865. The increased k_c_a_l_c of the Region 1 after the mislocated fuel assembly accident is 0.0444 at the pool flooded with un-borated water

  20. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    Science.gov (United States)

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.

  1. 324 and 325 Building Hot Cell Cleanout Program: Air lock cover block refurbishment

    International Nuclear Information System (INIS)

    Katayama, Y.B.; Holton, L.K. Jr.; Gale, R.M.

    1989-05-01

    The high-density concrete cover blocks shielding the pipe trench in the hot-cell air lock of the 324 Building Radiochemical Engineering Cells had accumulated fixed radioactivity ranging from 1100 to 22, 000 mrad/hr. A corresponding increase in the radiation exposure to personnel entering the air lock, together with ALARA concerns, led to the removal of the contaminated concrete surface with a hydraulic spaller and the emplacement of a stainless steel covering over a layer of grout. The resultant saving in radiation exposure is estimated to be 7200 mrad for personnel completing burial box runs for the 324 and 325 Building Hot Cell Cleanout Program. Radiation exposure to all staff members entering the air lock is now at least 50% lower. 3 refs., 22 figs., 1 tab

  2. The Drying of Foods and its Effect on the Physical-Chemical, Sensorial and Nutritional Properties

    OpenAIRE

    Guiné, Raquel

    2017-01-01

    Drying of foods is an ancient practice that has been adopted to preserve foods beyond their natural shelf life. The process started with the exposure of foods to the sun, to extract from them a great proportion of the water, thus contributing for their conservation. The traditional solar dying with direct exposure to the sun had many disadvantages and presently more modern methods are used, such as hot air drying, spray drying, lyophilization, infrared, microwave or radiofrequency drying, osm...

  3. Effect of additives and steaming on quality of air dried noodles

    OpenAIRE

    Gatade, Abhijeet Arun; Sahoo, Akshaya Kumar

    2015-01-01

    Texture is the most important property for consumer acceptance in cooked noodles. The air dried noodles are known to have higher cooking loss and cooking time, to that of instant fried noodles. But the fat content of instant fried noodles is more. In the present work attempts were made to optimize the moisture content so as to obtain a smooth dough for extruded noodle preparation and develop air dried noodles of low fat content with lesser cooking loss and cooking time. To meet the objectives...

  4. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  5. Preparation of Natural Zeolite for Air Dehumidification in Food Drying

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2015-03-01

    Full Text Available Drying with air dehumidification with solid adsorbent improves the quality of food product as well as energy efficiency. The natural zeolite is one of adsorbent having potential to adsorb the water.  Normally, the material was activated to open the pore, remove the organic impurities, and increase Si/Al rate. Hence, it can enhance the adsorbing capacity. This research studied the activation of natural zeolite mined from Klaten, Indonesia as air dehumidification for food drying. Two different methods were used involving activation by heat and NaOH introduction.  As indicators, the porosity and water loaded were evaluated. Results showed both methods improved the adsorbing capacity significantly. With NaOH, the adsorbing capacity was higher. The simple test in onion and corn drying showed the presence of activated natural zeolite can speed up water evaporation positively. This performance was also comparable with Zeolite 3A

  6. Design of Solar Heat Sheet for Air Heaters

    Science.gov (United States)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  7. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  8. Materials as inherent ignition sources for dust explosions during spray drying

    NARCIS (Netherlands)

    Hoogenband, V. van den; Maaijer, M. de; Versloot, N.H.A.

    2010-01-01

    During spray drying where a solution is dispersed in small droplets through a nozzle the liquid evaporates by means of hot air. In a large number of these processes organic materials are processed so three out of four factors for dust explosions to occur are already present. The only thing missing

  9. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae)

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Kianmehr, Mohammad H.; Samimi-Akhijahani, Hadi

    2008-01-01

    Berberis is known as a medicinal and ornamental plant in the world. Berberis fruit is used in medicine to cure liver, neck and stomach cancer, blood purification and mouth scent. Dried berberis fruit using new technology was preserved for relatively long time. Thin-layer drying simulation was used to obtain experiment data, using laboratory scale hot-air dryer of the static tray. Fick's second law was used as a major equation to calculate the moisture diffusivity with some simplification. The calculated value of moisture diffusivity varied from a minimum of 3.320 x 10 -10 to a maximum of 9 x 10 -9 m 2 /s and the value of energy activation from a minimum of 110.837 to a maximum of 130.61 kJ/mol of from 50 deg. C to 70 deg. C with drying air velocities of 0.5-2 m/s. The high value of the energy of activation for berberis fruit probably related to the tissue of berberis fruit and high moisture content (about 74.28%w.b), and intensive changes in D eff values for a different air temperature at constant air velocity. The input energy values and specific energy requirement for thin-drying of berberis fruit were found to be in the range of 0.643348-35.20032 (kWh) and 20.9355-1110.0700 (kWh/kg) from 50 deg. C to 70 deg. C with drying air velocities of 0.5-2 m/s, respectively

  10. Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during a dry season in the tropics

    Science.gov (United States)

    Laban, S.; Oue, H.; Rampisela, D. A.

    2018-05-01

    Evapotranspiration and water balance in a hot pepper (Capsicum frutescens L.) field during the 2nd dry season were analyzed in this study. Actual evapotranspiration (ET) was estimated by Bowen Ratio Energy Budget (BREB) method, potential evaporation (EP) was calculated by Penman method, and irrigation volume of water was measured manually. Meteorological instruments were installed in the experimental field during hot pepper cultivation. Leaf area index increased during the growing stages where the highest LAI of 1.65 in the generative stage. The daily average of ET was 1.94 and EP was 6.71 mm resulting in low Kc. The Kc values were significantly different between stage to stage under T-test analysis (α = 0.05). Moreover, Kc in every stage could be related to soil water content (SWC) in logarithmic function. Totally, ET during hot pepper cultivation was 179.19 mm, while rainfall was 180.0 mm and irrigation water was 27.42 mm. However, there was a water shortages during vegetative and generative stages. This study suggested that consumptive water of hot pepper was complimented by soil and groundwater under the condition of water shortages in the vegetative and generative stages during the 2nd dry season.

  11. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Horieh Moosavi

    2013-05-01

    Full Text Available Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO, Clearfil S3 Bond (CSB, Bond Force (BF. Each main group divided into three subgroups regarding the air-drying time: without application of air stream, following the manufacturer's instruction, for 10 sec more than manufacturer's instruction. After completion of restorations, specimens were thermocycled and then connected to a fluid filtration system to evaluate microleakage. The data were statistically analyzed using two-way ANOVA and Tukey-test (α = 0.05. Results The microleakage of all adhesives decreased when the air-drying time increased from 0 sec to manufacturer's instruction (p < 0.001. The microleakage of BF reached its lowest values after increasing the drying time to 10 sec more than the manufacturer's instruction (p < 0.001. Microleakage of OBAO and CSB was significantly lower compared to BF in all three drying time (p < 0.001. Conclusions Increasing in air-drying time of adhesive layer in one-step self-etch adhesives caused reduction of microleakage, but the amount of this reduction may be dependent on the adhesive components of self-etch adhesives.

  12. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO{sub 2} as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m{sup 2} and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase.

  13. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    Science.gov (United States)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  14. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    Science.gov (United States)

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment.

  15. Biomimicry as an approach for sustainable architecture case of arid regions with hot and dry climate

    Science.gov (United States)

    Bouabdallah, Nabila; M'sellem, Houda; Alkama, Djamel

    2016-07-01

    This paper aims to study the problem of thermal comfort inside buildings located in hot and arid climates. The principal idea behind this research is using concepts based on the potential of nature as an instrument that helps creating appropriate facades with the environment "building skin". The biomimetic architecture imitates nature through the study of form, function, behaviour and ecosystems of biological organisms. This research aims to clarify the possibilities that can be offered by biomimicry architecture to develop architectural bio-inspired building's design that can help to enhance indoor thermal ambiance in buildings located in hot and dry climate which helps to achieve thermal comfort for users.

  16. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    International Nuclear Information System (INIS)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial

  17. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves.

    Science.gov (United States)

    Rayaguru, Kalpana; Routray, Winny

    2010-12-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was determined using the coefficient of determination, reduced chi square, and root mean square error. Aroma, colour, and overall acceptability determination of fresh and dried leaves were made using sensory evaluation. Drying of leaves took place mainly under the falling-rate period. The Page equation was found to be best among the proposed models to describe the thin-layer drying of Pandanus leaves with higher coefficient of determination. The effective moisture diffusivity values were also determined. The effect of low RH was prominent during the initial drying when the product was moist. The effect of temperature was prominent in the later part of drying, which acted as a driving force for moisture diffusion and hence the total drying time was reduced. Retention of aromatic compound 2-acetyl-1-pyrroline content was more in low temperature dried samples with higher sensory scores.

  18. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality

    OpenAIRE

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2014-01-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant f...

  19. NEW APPROACHES: A hot air balloon from dustbin liners

    Science.gov (United States)

    Weaver, Nicholas

    1998-07-01

    This article describes how a simple hot air balloon, inflated by a hair dryer, can be made out of household bin liners and Sellotape. It can be used at sixth-form level as an application of the ideal gas equation, = constant, and is rather more exciting than heated pistons. It gives a taste of a simple engineering design process, although the students do have to be reasonably adept at geometry and algebra.

  20. Hot-film anemometry in air-water flow

    International Nuclear Information System (INIS)

    Delahaye, J.M.; Galaup, J.P.

    1975-01-01

    Local measurements of void fraction and liquid velocity in a steady-state air-water bubbly flow at atmospheric pressure are presented. Use was made of a constant temperature anemometer and of a conical hot-film probe. The signal was processed with a multi-channel analyzer. Void fraction and liquid velocities are determined from the amplitude histogram of the signal. The integrated void fraction over a diameter is compared with the average void fraction along the same diameter obtained with a γ-ray absorption method. The liquid volumetric flow-rate is calculated from the void fraction and liquid velocity profiles and compared with the indication given by a turbine flowmeter [fr

  1. Modelling the Thin-Layer Drying Kinetics of Untreated and Blanch-Osmotic Pre-treated Tomato Slices

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2016-10-01

    Full Text Available The objective of this study was to investigate the effect of pre-treatment and drying temperature on the drying kinetics and nutritional quality of tomato (Lycopersicon esculantum L. under hot air drying. Tomato samples were blanched at 80oC and osmotically dehydrated using 20% w/w sodium chloride solutions at 30oC for 20 min. The blanch-osmotic pre-treated and untreated tomato slices were dried at temperature of 40, 50, 60, 70 and 80oC, respectively in a hot air-dryer. The results showed that blanch-osmotic pre-treatment offered a higher drying rate and lower or faster drying time than untreated condition. The tomato drying regime was characteristically in the constant and falling rate period. The tomato drying rate curve showed characteristics of porous hygroscopic solids. The optimum drying temperature for tomato was found to be 60oC. Four semi-empirical drying models of Newton, Page, Henderson and Pabis, and Logarithmic were fitted to the drying data using non-linear regression analysis. The most appropriate model was selected using the coefficient of determination (R2 and root mean square error (RMSE. The Page model has shown a better fit to the drying kinetics data of tomato in comparison with other tested models. Transport of moisture during drying was described by Fick’s diffusion model application and the effective moisture diffusivity (Deff thus estimated. The Deff at 60oC was 4.43 × 10-11m2/s and 6.33 × 10-11m2/s for blanch-osmotic pre-treated and untreated tomato slices, respectively.

  2. Performance of Heat Pump Dryer for Kaffir Lime Leaves and Quality of Dried Products under Different Temperatures and Media

    OpenAIRE

    N. Poomsa-ad; K. Deejing; L. Wiset

    2011-01-01

    This research is to study the performance of heat pump dryer for drying of kaffir lime leaves under different media and to compare the color values and essential oil content of final products after drying. In the experiments, kaffir lime leaves were dried in the closed-loop system at drying temperatures of 40, 50 and 60 oC. The drying media used in this study were hot air, CO2 and N2 gases. The velocity of drying media in the drying chamber was 0.4 m/s with bypass ratio o...

  3. Influence of drying air parameters on mass transfer characteristics of apple slices

    Science.gov (United States)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  4. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    Science.gov (United States)

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2018-06-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  5. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    Science.gov (United States)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  7. Investigation on the influence of pre-treatments on drying behaviour of broccoli by MRI experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Straten, van G.; Boom, R.M.; Boxtel, van A.J.B.

    2011-01-01

    Abstract: Magnetic Resonance Imaging (MRI) allows the monitoring of internal moisture content of food products during drying non-destructively. In an experimental set-up with continuous and controlled hot air supply, the internal moisture distribution of broccoli with different pre-treatments are

  8. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Aghbashlo, Mortaza; Kianmehr, Mohammad H.; Samimi-Akhijahani, Hadi [Department of Agriculture Machinery, University of Tehran, Aboreyhan Campus (Iran)

    2008-10-15

    Berberis is known as a medicinal and ornamental plant in the world. Berberis fruit is used in medicine to cure liver, neck and stomach cancer, blood purification and mouth scent. Dried berberis fruit using new technology was preserved for relatively long time. Thin-layer drying simulation was used to obtain experiment data, using laboratory scale hot-air dryer of the static tray. Fick's second law was used as a major equation to calculate the moisture diffusivity with some simplification. The calculated value of moisture diffusivity varied from a minimum of 3.320 x 10{sup -10} to a maximum of 9 x 10{sup -9} m{sup 2}/s and the value of energy activation from a minimum of 110.837 to a maximum of 130.61 kJ/mol of from 50 C to 70 C with drying air velocities of 0.5-2 m/s. The high value of the energy of activation for berberis fruit probably related to the tissue of berberis fruit and high moisture content (about 74.28%w.b), and intensive changes in D{sub eff} values for a different air temperature at constant air velocity. The input energy values and specific energy requirement for thin-drying of berberis fruit were found to be in the range of 0.643348-35.20032 (kWh) and 20.9355-1110.0700 (kWh/kg) from 50 C to 70 C with drying air velocities of 0.5-2 m/s, respectively. (author)

  9. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

    Science.gov (United States)

    Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh

    2016-01-01

    Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (Pstress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

  10. Forced Hot Air to Dry Feces and Kill Bacteria on Transport Cage Flooring

    Science.gov (United States)

    Due to fecal shedding from positive birds, broiler transport cages can be contaminated with human bacterial pathogens leading to cross contamination of previously negative broilers during live haul. Earlier work has shown that drying soiled or washed cages for 24 to 48 hours can lower or even elimi...

  11. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    OpenAIRE

    Moosavi, Horieh; Forghani, Maryam; Managhebi, Esmatsadat

    2013-01-01

    Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO), Clearfil S3 Bond (CSB), Bond Force (BF). Each main group divided into three subgroups regarding the air-drying time: without application of air stream...

  12. Possibilities of employing saliferous raw brown coal for technical fodder drying

    Energy Technology Data Exchange (ETDEWEB)

    Koerdel, P; Haeusler, W

    1978-09-01

    The successful utilization of saliferous brown coal is demonstrated with a sodium oxide content greater than 0.5% in dry substance, but with high calorific value (2300 to 3000 kcal/kg) for fodder drying (sugar beets and green fodder). Details of the fodder dryer and its performance, and combustion and drying parameters of 11 dryers using saliferous coal are presented. Hot air enters the dryer with temperatures between 300 and 800 C depending on the operation, and dries the fodder to 88-92% dry substance. Chemical analysis showed no significant increase in sulfur dioxide, hydrogen sulfide, chlorine, or sodium content in the dry fodder, which is recognized as safe to feed to ruminants. The substitution of ordinary brown coal by saliferous coal led to a savings of 4.000 Marks/kt coal in drying. (8 refs.) (In German)

  13. Production of dried shrimp mixed with turmeric and salt by Spouted Bed technique enter the rectangular chamber.

    Science.gov (United States)

    Thanthong, P.; Mustafa, Y.; Ngamrungroj, D.

    2017-09-01

    Today, dried shrimp in the market were refused food colour and drying until shrimp are colourful and tasty. Meanwhile, Community groups, women’s health trying to produce food products come from herbs. As an alternative to consumers. The production process is also a traditional way to dry. In order to extend the shelf life longer. Sometimes, potential risks, both in quality and quantity of products. As a result, consumers are enormous. Thus, this research aims to study the possibility to produce shrimp dried mixed with turmeric and salt. Then dried shrimp mixed with turmeric and salt to keep up the quality criteria of the Food and Drug Administration-FDA It can reduce the risk of the consumer and can keep up in a kitchen Thailand. When buying shrimp from the fisherman’s boat Will be made clear, clean impurities and shaking the sand to dry. Prepare a mixture of turmeric and salt. The shrimp were dipped into a beef with stirrer for 3 minutes. And scoop up centrifugal shrimp with dried. Measurement of initial moisture content averaging 78%wb. Then drying technique Spouted enter the rectangular chamber a continuous manner. Until average moisture content to 17%wb. The air temperature in the drying chamber at 180 °C and hot air speed 4.5 m/s, a state heat transfer Mass and moisture within the shrimp. In chamber when drying, the shrimp have moved freely behaviour can spit water out faster does not burn. Shaving legs of shrimp shell fragments lightweight is sorting out the top of drying chamber. Private shrimp were dried out to the front of the quad drying chamber. Power consumption 27.5 MJ/kg, divided into electrical energy 12.3 MJ/kg and thermal energy is 15.2 MJ/kg. The hot air comes from burning LPG gas burner with dual automatic. And can adjustable to room temperature drying characteristics modulation setting.

  14. Defining a procedure for predicting the duration of the approximately isothermal segments within the proposed drying regime as a function of the drying air parameters

    Science.gov (United States)

    Vasić, M.; Radojević, Z.

    2017-08-01

    One of the main disadvantages of the recently reported method, for setting up the drying regime based on the theory of moisture migration during drying, lies in a fact that it is based on a large number of isothermal experiments. In addition each isothermal experiment requires the use of different drying air parameters. The main goal of this paper was to find a way how to reduce the number of isothermal experiments without affecting the quality of the previously proposed calculation method. The first task was to define the lower and upper inputs as well as the output of the “black box” which will be used in the Box-Wilkinson’s orthogonal multi-factorial experimental design. Three inputs (drying air temperature, humidity and velocity) were used within the experimental design. The output parameter of the model represents the time interval between any two chosen characteristic points presented on the Deff - t. The second task was to calculate the output parameter for each planed experiments. The final output of the model is the equation which can predict the time interval between any two chosen characteristic points as a function of the drying air parameters. This equation is valid for any value of the drying air parameters which are within the defined area designated with lower and upper limiting values.

  15. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  16. Combined facial heating and inhalation of hot air do not alter thermoeffector responses in humans

    Science.gov (United States)

    Wingo, Jonathan E.; Low, David A.; Keller, David M.; Kimura, Kenichi

    2015-01-01

    The influence of thermoreceptors in human facial skin on thermoeffector responses is equivocal; furthermore, the presence of thermoreceptors in the respiratory tract and their involvement in thermal homeostasis has not been elucidated. This study tested the hypothesis that hot air directed on the face and inhaled during whole body passive heat stress elicits an earlier onset and greater sensitivity of cutaneous vasodilation and sweating than that directed on an equal skin surface area away from the face. Six men and two women completed two trials separated by ∼1 wk. Participants were passively heated (water-perfused suit; core temperature increase ∼0.9°C) while hot air was directed on either the face or on the lower leg (counterbalanced). Skin blood flux (laser-Doppler flowmetry) and local sweat rate (capacitance hygrometry) were measured at the chest and one forearm. During hot-air heating, local temperatures of the cheek and leg were 38.4 ± 0.8°C and 38.8 ± 0.6°C, respectively (P = 0.18). Breathing hot air combined with facial heating did not affect mean body temperature onsets (P = 0.97 and 0.27 for arm and chest sites, respectively) or slopes of cutaneous vasodilation (P = 0.49 and 0.43 for arm and chest sites, respectively), or the onsets (P = 0.89 and 0.94 for arm and chest sites, respectively), or slopes of sweating (P = 0.48 and 0.65 for arm and chest sites, respectively). Based on these findings, respiratory tract thermoreceptors, if present in humans, and selective facial skin heating do not modulate thermoeffector responses during passive heat stress. PMID:26157054

  17. Drying characteristic, enzyme inactivation and browning pigmentation kinetics of controlled humidity-convective drying of banana slices

    Science.gov (United States)

    Sarpong, Frederick; Yu, Xiaojie; Zhou, Cunshan; Oteng-Darko, Patricia; Amenorfe, Leticia Peace; Wu, Bengang; Bai, Junwen; Ma, Haile

    2018-04-01

    Investigating the kinetics of enzyme activities and browning indexes in food are very essential in understanding the enzyme inactivation and browning pigmentation reaction during drying processing. In order to understand and predict accurately the enzyme inactivation and browning pigmentation of banana slices using Relative Humidity (RH)-convective hot air dryer aided by ultrasound (US) pretreatment, this study was conducted. Drying was carried out with 20 kHz frequency of US-pretreatment using three durations (10 20 and 30 min) and RH (10 20 and 30%) conditions at 70 °C and 2.0 m/s air velocity. The kinetic study of both enzyme inactivation and browning pigmentation results were compared to their relevance of fit in terms of coefficient of correlation (R2), the root mean square error (RMSE) and the reduced chi-square (χ 2). First order and second-order polynomial kinetic model fitted well for enzyme inactivation and browning indexes respectively. Both enzymes inactivation kinetics and enzymatic browning index (EBI) declined significantly (p drying time in all drying conditions and rate of decrease intensified in longer US-pretreatment duration and lower RH conditions. However, shorter US-pretreatment duration and higher RH conditions reduced the non- enzymatic browning index (NBI) significantly. Again, longer US-pretreatment duration and lower RH shortened the drying time but adversely created more microspores from the micrograph study. Longer US pretreatment and lower RH decrease significantly (p < 0.05) the L* and b* values whereas the a* values was increased.

  18. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.

    Science.gov (United States)

    Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang

    2016-02-17

    New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of microwave and air drying of parboiled rice on stabilization of rice bran oil

    Directory of Open Access Journals (Sweden)

    Rizk, Laila F.

    1995-06-01

    Full Text Available Two rice varieties, Giza 175 (short grain and Giza 181 (long grain were partDoiled by soaking the grains at room temperature for 20 hours and steaming for 15 min then dried either at room temperature or by microwave. The results indicated that air and microwave drying significantly increased oil extraction in both rice bran varieties. Parboiling followed by air or microwave drying produced a slight change on protein, fiber and ash content of rice bran and reduced the development of free fatty acids (F.F.A. In oil bran. Microwave samples have less F.F.A. content than the corresponding samples air dried. Oils from the cold stored rice bran presented lower F.F.A. than the corresponding oil bran stored at room temperature. The ratio between total unsaturated fatty acids and total saturated ones (Tu/Ts decreased after air and microwave drying. Results also show that air drying increased the ratio of total hydrocarbons and total sterols (Tu/Ts in both varieties while microwave decreased it.

    Dos variedades de arroz, Giza 175 (grano corto y Giza 181 (grano largo se precocieron mediante la puesta en remojo de los granos a temperatura ambiente durante 20 horas y cocimiento al vapor durante 15 minutos, luego se secaron a temperatura ambiente o por microondas. Los resultados indicaron que el secado al aire y en microondas aumentó significativamente la extracción del aceite en ambas variedades de salvado de arroz. El precocido seguido del secado al aire o en microondas produjo un cambio pequeño en el contenido en proteína, fibra y ceniza y redujo el desarrollo de ácidos grasos libres (F.F.A. en el aceite de salvado. Las muestras secadas en microondas tuvieron un menor contenido en F.F.A. que las muestras correspondientes al secado en aire. Aceites de salvado de arroz almacenado en frió presentaron menor F.F.A. que los almacenados a temperatura ambiente. La relación entre ácidos grasos insaturados totales y los saturados totales (Tu/Ts disminuy

  20. Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change

    Directory of Open Access Journals (Sweden)

    Wutthithanyawat Chananchai

    2016-01-01

    Full Text Available This paper proposes a temperature control technique to adjust air temperature in a heating zone for drying process. The controller design is achieved by using an internal model control (IMC approach. When the IMC controller parameters were designed by calculating from an actual process transfer function estimated through an open-loop step response with input step change from 50% to 60% at a reference condition at air velocity of 1.20 m/s, the performance of temperature controller was experimentally tested by varying an air velocity between 1.32 m/s and 1.57 m/s, respectively. The experimental results showed that IMC controller had a high competency for controlling the drying temperature.

  1. Mercury fluxes from air/surface interfaces in paddy field and dry land

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jinshan [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China); Wang Dingyong, E-mail: dywang@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)] [Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716 (China); Liu Xiao; Zhang Yutong [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)

    2011-02-15

    Research highlights: {yields} It was found that agricultural fields are important local atmospheric Hg sources in the region. {yields} The Hg emissions from dry cornfield were higher than those from the flooded rice paddy, higher mercury emissions in the warm season than the cold season, and during daytime than at night. {yields} Mercury evasion is strongly related to solar radiation which is important in the emission of Hg at both sites. - Abstract: In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex (registered) multifunctional Hg analyzer RA-915{sup +} (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 {+-} 22.8 ng m{sup -2} h{sup -1} in the warm season, 15.5 {+-} 18.8 ng m{sup -2} h{sup -1} in the cold season for dry land, and 23.8 {+-} 15.6 ng m{sup -2} h{sup -1} in the warm season, 6.3 {+-} 11.9 ng m{sup -2} h{sup -1} in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower

  2. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  3. Hyperventilation with cold versus dry air in 2- to 5-year-old children with asthma

    DEFF Research Database (Denmark)

    Nielsen, Kim G; Bisgaard, Hans

    2005-01-01

    UNLABELLED: Cold air challenge (CACh) has been shown to discriminate between children with asthma and healthy young children. Hyperventilation with dry room-temperature air is a simplified alternative. We compared responsiveness in young children with asthma between two standardized, single......-subject SDs (SDw). The challenge sequence was randomly assigned. A comparator challenge was performed 1 hour later if the first challenge gave a change of 3 SDw or more. Forty 2- to 5-year-old children with asthma were included. Responsiveness to cold versus dry air showed significant, but weak, correlation...

  4. Wood drying project with solar energy and absorption plant; Proyecto de un secador de madera con energia solar termica y una planta de absorcion

    Energy Technology Data Exchange (ETDEWEB)

    Corretger, J. M.; Lara, J.; Arnau, J.; Marquez, A.

    2004-07-01

    Wood drying processes currently are developed in tunnel dryers using an air hot flow through the wood to remove the water. These processes are interesting to dry current wood that does not require special control of the drying velocity. However, could be necessary to control drying velocity at any moment of the process in order to dry some high quality wood. This implies to combine heating processes, cooling and dehumidification processes and humidification processes. The aim of this project is to dry noble woods with a drying complex process, in order to improve the quality of the products and to increase the energy saving by free-cooling operations and advanced control strategies, increased by using solar energy to get cold and hot water. The saving of energy will produce a bill reduction and an important minimization of environmental impact. (Author)

  5. Modeling and simulation of milk emulsion drying in spray dryers

    Directory of Open Access Journals (Sweden)

    V. S. Birchal

    2005-06-01

    Full Text Available This work aims at modeling and simulating the drying of whole milk emulsion in spray dryers. Drops and particles make up the discrete phase and are distributed into temporal compartments following their residence time in the dryer. Air is the continuous and well-mixed phase. Mass and energy balances are developed for each phase, taking into account their interactions. Constitutive equations for describing the drop swelling and drying mechanisms as well as the heat and mass transfer between particles and hot air are proposed and analyzed. A set of algebraic-differential equations is obtained and solved by specific numerical codes. Results from experiments carried out in a pilot spray dryer are used to validate the model developed and the numerical algorithm. Comparing the simulated and experimental data, it is shown that the model predicts well the individual drop-particle history inside the dryer as well as the overall outlet air-particle temperature and humidity.

  6. Coffee husk associated with firewood as fuel for indirect heating of drying air

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    The objective of this work was the performance analysis of a furnace, burning coffee husk associated with firewood to heat the drying air passing through a heat exchanger. For the analysis the temperature variation, the combustion quality, the heat losses and the furnace thermal efficiency were all monitored. Results showed that the furnace average efficiency was 58.3% and the heat losses in the exhaust were 24.3%. The presence of carbon monoxide in the exhaust gases (average 2982.8 ppm) had proven incomplete combustion, and suggesting that the combustion gases can not be used to directly drying of foods. Despite of indirect heating, the presented thermal efficiency indicates that the burning of coffee husks is one economic alternative for air heating in grain drying or in other agricultural processes. (author)

  7. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    Science.gov (United States)

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  8. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes - a comprehensive review.

    Science.gov (United States)

    Deng, Li-Zhen; Mujumdar, Arun S; Zhang, Qian; Yang, Xu-Hai; Wang, Jun; Zheng, Zhi-An; Gao, Zhen-Jiang; Xiao, Hong-Wei

    2017-12-20

    Pretreatment is widely used before drying of agro-products to inactivate enzymes, enhance drying process and improve quality of dried products. In current work, the influence of various pretreatments on drying characteristics and quality attributes of fruits and vegetables is summarized. They include chemical solution (hyperosmotic, alkali, sulfite and acid, etc.) and gas (sulfur dioxide, carbon dioxide and ozone) treatments, thermal blanching (hot water, steam, super heated steam impingement, ohmic and microwave heating, etc), and non-thermal process (ultrasound, freezing, pulsed electric field, and high hydrostatic pressure, etc). Chemical pretreatments effectively enhance drying kinetics, meanwhile, it causes soluble nutrients losing, trigger food safety issues by chemical residual. Conventional hot water blanching has significant effect on inactivating various undesirable enzymatic reactions, destroying microorganisms, and softening the texture, as well as facilitating drying rate. However, it induces undesirable quality of products, e.g., loss of texture, soluble nutrients, pigment and aroma. Novel blanching treatments, such as high-humidity hot air impingement blanching, microwave and ohmic heat blanching can reduce the nutrition loss and are more efficient. Non-thermal technologies can be a better alternative to thermal blanching to overcome these drawbacks, and more fundamental researches are needed for better design and scale up.

  9. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Tae-In, E-mail: tiohm1@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Chae, Jong-Seong; Lim, Kwang-Soo [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Moon, Seung-Hyun [Waste Energy Research Center, Korea Institute of Energy Research, Jang-dong Yusung-gu, Daejeon 305-343 (Korea, Republic of)

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  10. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    International Nuclear Information System (INIS)

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-01-01

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  11. Effect of water activity and protective solutes on growth and subsequent survival to air-drying of Lactobacillus and Bifidobacterium cultures.

    Science.gov (United States)

    Champagne, Claude P; Raymond, Yves; Simon, Jean-Paul

    2012-08-01

    Probiotic cultures of Lactobacillus plantarum, Lactobacillus rhamnosus, Bifidobacterium longum, Lactobacillus casei and Lactobacillus acidophilus were grown in media having water activities (a (w)) adjusted between 0.99 and 0.94 with NaCl or with a mixture of glycerol and sucrose in order to find conditions of osmotic stress which would still allow for good growth. Cultures grown at a (w) = 0.96 or 0.99 were then recovered by centrifugation, added to a sucrose-phosphate medium and air-dried. In some assays, a 2-h osmotic stress was applied to the cell concentrate prior to air-drying. Assays were also carried out where betaine, glutamate and proline (BGP) supplements were added as protective compounds to the growth or drying media. For most strains, evidence of osmotic stress and benefits of BGP supplementation on growth occurred at a (w) = 0.96. Growing the cells in complex media adjusted at a (w) = 0.96 did not enhance their subsequent survival to air-drying, but applying the 2-h osmotic stress did. Addition of the BGP supplements to the growth medium or in the 2-h stress medium did not enhance survival to air-drying. Furthermore, addition of BGP to a sucrose-phosphate drying medium reduced survival of the cultures to air-drying. This study provides preliminary data for producers of probiotics who wish to use air-drying in replacement of freeze-drying for the stabilization of cultures.

  12. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  13. A study of the drying effect on lemon slices using a closed-type solar dryer

    Energy Technology Data Exchange (ETDEWEB)

    Ho-Hsien Chen; Hernandez, C.E.; Tzou-Chi Huang [National Pingtung University of Science and Technology (China). Dept. of Food Science

    2005-01-01

    An experimental closed-type dryer associated with a photovoltaic system (PV) was developed. The transparent drying cabinet was designed with high transmittance glass to decrease the reflection of direct sunlight and to offer extra direct solar heating on the raw material during drying. Parallel wiring with a local electrical grid was necessary for switching purposes if there is insufficient battery backup during peak operation. Lemon slices were dried using the closed-type solar dryer and results were compared with hot air drying at 60{sup o}C. The results indicate that the dried lemon slices using a closed-type solar dryer has better general levels of quality in terms of sensory parameters. (author)

  14. The effect of air dried conditions on mechanical and physical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... small dimension wooden material is used and this affects the cost of ... The first serious application of laminating technique ... buildings, stock hangar, farms and stables constructions ... resistant lamine elements to air dried condition were easy .... the other was organic solvent water repellent protim WR230.

  15. Effects of production methods and protective ingredients on the viability of probiotic Lactobacillus rhamnosus R0011 in air-dried alginate beads.

    Science.gov (United States)

    Champagne, Claude P; Raymond, Yves; Arcand, Yves

    2017-01-01

    The goal of this study was to use a microencapsulation technology to prepare air-dried concentrated cultures of Lactobacillus rhamnosus R0011. The cultures were microencapsulated in alginate beads, which were added to a growth medium to allow cell multiplication inside the matrix; the beads were recovered, dipped in protective solutions, and air-dried. The effects of fermentation technology and of the composition of the protective solutions on subsequent survival during air-drying were examined. The cells prepared under a constant pH of 6.2 had only 2.5% survival to air-drying at 25 °C when the protective solution was composed of sucrose and phosphate. Allowing the pH to drop to 4.2 during the biomass production step and using a protective medium composed of glycerol, maltodextrin, yeast extract, and ascorbate increased survival to 20%. If the ingredients of the protective medium at the beginning of drying were concentrated at a water activity of 0.96 rather than 0.98, survival during air-drying increased further to 56%. This rate was similar to that of a traditional freeze-drying process. These data suggest that applying a combination of acid and osmotic stresses to L. rhamnosus R0011 cells improves their subsequent stability during the air-drying process. Dried microencapsulated cultures having 2.6 × 10 11 CFU·g -1 were obtained.

  16. Generalized drying curves in conductive/convective paper drying

    Directory of Open Access Journals (Sweden)

    O.C. Motta Lima

    2000-12-01

    Full Text Available This work presents a study related to conductive/convective drying of paper (cellulose sheets over heated surfaces, under natural and forced air conditions. The experimental apparatus consists in a metallic box heated by a thermostatic bath containing an upper surface on which the paper samples (about 1 mm thick are placed. The system is submitted to ambient air under two different conditions: natural convection and forced convection provide by an adjustable blower. The influence of initial paper moisture content, drying (heated surface temperature and air velocity on drying curves behavior is observed under different drying conditions. Hence, these influence is studied through the proposal of generalized drying curves. Those curves are analyzed individually for each air condition exposed above and for both together. A set of equations to fit them is proposed and discussed.

  17. Quality, energy requirement and costs of drying tarragon (Artemisia dracunculus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.A.A.

    2005-11-07

    Tarragon (Artemisia dracunculus L.) is a favorite herbal and medicinal plant. Drying is necessary to achieve longer shelf life with high quality, preserving the original flavor. Essential oil content and color are the most important parameters that define the quality of herbal and medicinal plants. Hot air batch drying is the most common drying method for these plants but affects the essential oil content and color. The drying conditions affect essential oil content and color as well as the energy consumption and costs. Process engineers and farmers need to know how they have to dry to obtain the best quality. The objective of this work is to investigate the conditions for optimal drying in terms of quality, energy consumption and costs. Adsorption and desorption experiments were done to find the equilibrium moisture content and water exchange between the material and surrounding air during drying and storage at temperatures of 25C to 70C and relative humidities of 5% to 90%. Drying of tarragon leaves and chopped plants was investigated separately and the best model was selected from the drying equations in literature. The effect of drying temperature and relative humidity on the essential oil content and color change was studied. Experiments were done at temperatures of 40C to 90C and the optimal conditions were. Long-term effects of the drying conditions were also investigated during the storage time. Material dried at 45, 60 and 90C was stored and the essential oil content and color of the material was measured after 15, 30, 60 and 120 days of storage. Drying at 45C was found as the best condition based on the changes of essential oil and color during drying and storage. Optimization of drying of tarragon was studied based on the results of the sorption isotherms, drying equations and the changes of essential oil content and color during drying and storage. Models were made for the drying process, energy consumption and cost calculation. The current conditions

  18. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    Directory of Open Access Journals (Sweden)

    Takuma Shiratake

    Full Text Available Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w, relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w, relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the

  19. Parametric analysis of a combined dew point evaporative-vapour compression based air conditioning system

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2016-09-01

    Full Text Available A dew point evaporative-vapour compression based combined air conditioning system for providing good human comfort conditions at a low cost has been proposed in this paper. The proposed system has been parametrically analysed for a wide range of ambient temperatures and specific humidity under some reasonable assumptions. The proposed system has also been compared from the conventional vapour compression air conditioner on the basis of cooling load on the cooling coil working on 100% fresh air assumption. The saving of cooling load on the coil was found to be maximum with a value of 60.93% at 46 °C and 6 g/kg specific humidity, while it was negative for very high humidity of ambient air, which indicates that proposed system is applicable for dry and moderate humid conditions but not for very humid conditions. The system is working well with an average net monthly power saving of 192.31 kW h for hot and dry conditions and 124.38 kW h for hot and moderate humid conditions. Therefore it could be a better alternative for dry and moderate humid climate with a payback period of 7.2 years.

  20. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms.

    Science.gov (United States)

    Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong

    2016-04-15

    Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (pdried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Feasibility study of a novel dew point air conditioning system for China building application

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xudong; Yang, Shuang; Duan, Zhiyin; Riffat, Saffa B. [School of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2009-09-15

    The paper investigated the feasibility of a novel dew point evaporative cooling for air conditioning of buildings in China regions. The issues involved include analyses of China weather conditions, investigation of availability of water for dew point cooling, and assessment of cooling capacity of the system within various regions of China. It is concluded that the dew point system is suitable for most regions of China, particularly northern and west regions of China where the climate is hot and dry during the summer season. It is less suitable for Guangzhou and Shanghai where climates are hot and humid. However, an air pre-treatment process involving a silica-gel dehumidification will enable the technology to be used for these humid areas. Lower humidity results in a higher difference between the dry bulb and dew point of the air, which benefits the system in terms of enhancing its cooling performance. Tap water has adequate temperature to feed the system for cooling and its consumption rate is in the range 2.6-3 litres per kWh cooling output. The cooling output of the system ranges from 1.1 to 4.3 W per m{sup 3}/h air flow rate in China, depending on the region where the system applies. For a unit with 2 kW of cooling output, the required air volume flow rate varies with its application location and is in the range 570-1800 m{sup 3}/h. For a 50 m{sup 2} building with 60 W/m{sup 2} cooling load, if the system operates at working hours, i.e., 09:00 to 17:00 h, its daily water consumption would be in the range of 60-70 litres. Compared with mild or humid climates, the dry and hot climates need less air volume flow rate and less water. (author)

  2. Heat and mass transfer through a thick bed of cocoa beans during drying

    Energy Technology Data Exchange (ETDEWEB)

    Nganhou, J. [Laboratoire d' Energetique, B P 8390, ENSP Yaounde (Cameroon)

    2004-07-01

    This article relates to the establishment of macroscopic equations of thick and fixed hygroscopical porous medium allowing an analysis of couply phenomena of heat and mass transfers in drying operation. The drying is done through forced convection by imposing a circulation of hot air across the layer. The authors then make their study particular to the case of thick layer of cocoa beans grown in the region of Yaounde in cameroon. A study realized on a prototype constructed and tested in the laboratory enables the validation of the proposed model. (orig.)

  3. Effects of L-glutamine on rectal temperature and some markers of oxidative stress in Red Sokoto goats during the hot-dry season.

    Science.gov (United States)

    Ocheja, Ohiemi Benjamin; Ayo, Joseph Olusegun; Aluwong, Tagang; Minka, Ndazo Salka

    2017-08-01

    The experiment investigated the ameliorative effects of L-glutamine administration on rectal temperature (RT), erythrocyte osmotic fragility (EOF), serum antioxidant enzyme activities and malondialdehyde (MDA) concentration in Red Sokoto goats during the hot-dry season. Twenty eight healthy Red Sokoto goats, comprising 14 experimental (administered 0.2 g/kg of L-glutamine dissolved in 10 mL of distilled water, once daily for 21 days) and 14 control (administered equivalent of distilled water) goats served as subjects. Rectal temperature (measured at 6:00, 13:00 and 18:00 h) and blood samples (taken at 8:00 h) were obtained from all subjects weekly, before, during and after L-glutamine administration. Data obtained were compared using one-way repeated-measures ANOVA, followed by Tukey's post-hoc test. The dry-bulb temperature, relative humidity and temperature-humidity index for the study period ranged between 24.0 and 37.5 °C, 26.0 and 84.0% and 73.0 and 86.3, respectively. L-glutamine administration decreased (P heat-stressed goats during the hot-dry season.

  4. Thin-layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer

    Energy Technology Data Exchange (ETDEWEB)

    Demiray, Engin; Tulek, Yahya [Pamukkale University, Engineering Faculty, Department of Food Engineering, Kinikli, Denizli (Turkey)

    2012-05-15

    The effects of different drying temperatures on the drying kinetics of tomato slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 1.015 x 10{sup -9} to 2.650 x 10{sup -9} m {sup 2} s {sup -1}over the temperature range studied, and activation energy was 22.981 kJ mol {sup -1}. (orig.)

  5. Effects of Hot Water Immersion on Storage Quality of Fresh Broccoli Heads

    Directory of Open Access Journals (Sweden)

    Huaqiang Dong

    2004-01-01

    Full Text Available Freshly harvested broccoli heads were immersed for 0, 1, 4 or 8 min into hot water at 45 °C, and then were hydrocooled rapidly for 10 min at 10 °C. Following these treatments, the broccoli were air-dried for 30 min, then packed in commercial polymeric film bags, and, finally, stored for 16 days at –1, 1, and 12 °C. The samples treated with hot water maintained high contents of chlorophyll concentrations, their yellowing rate was delayed, and fungal infection and chilling or freezing injury were inhibited markedly. Compared to non-heat-treated broccoli, a lower level of peroxidase activity with a relatively higher chlorophyll concentration was observed when broccoli were treated with hot water. Among these heat treatments, immersion in hot water for 4 min at 45 °C was the most effective for maintaining the quality of harvested broccoli heads.

  6. Effects of oral rehydration and external cooling on physiology, perception, and performance in hot, dry climates.

    Science.gov (United States)

    Muñoz, C X; Carney, K R; Schick, M K; Coburn, J W; Becker, A J; Judelson, D A

    2012-12-01

    Only limited research evaluates possible benefits of combined drinking and external cooling (by pouring cold water over the body) during exercise. Therefore, this study examined cold water drinking and external cooling on physiological, perceptual, and performance variables in hot, dry environments. Ten male runners completed four trials of walking 90 min at 30% VO(2max) followed by running a 5-km time trial in 33 ± 1 °C and 30 ± 4% relative humidity. Trials examined no intervention (CON), oral rehydration (OR), external cooling (EC), and oral rehydration plus external cooling (OR + EC). Investigators measured rectal temperature, skin temperatures, heart rate, thirst, thermal sensation, and ratings of perceived exertion (RPE). Oral rehydration (OR and OR + EC) significantly lowered heart rate (P External cooling (EC and OR + EC) significantly reduced chest and thigh temperature (P external cooling (CON and OR) during low-intensity exercise. Performance exhibited no differences (CON = 23.86 ± 4.57 min, OR = 22.74 ± 3.20 min, EC = 22.96 ± 3.11 min, OR + EC = 22.64 ± 3.73 min, P = 0.379). Independent of OR, pouring cold water on the body benefited skin temperature, thermal sensation, and RPE during low-intensity exercise in hot, dry conditions but failed to influence high-intensity performance. © 2012 John Wiley & Sons A/S.

  7. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  8. Solar Hot Air Balloons: A Low Cost, Multi-hour Flight System for Lightweight Scientific Instrumentation Packages

    Science.gov (United States)

    Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.

    2017-12-01

    Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.

  9. Building America Best Practices Series: Volume 2. Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Z. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, P. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-09-01

    This best practices guide is part of a series produced by Building America. The guidebook is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot-dry and mixed-dry climates. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team—from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

  10. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Fabio E.; Araujo, Elaine B., E-mail: fecampos@ipen.b, E-mail: ebaraujo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  11. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    International Nuclear Information System (INIS)

    Campos, Fabio E.; Araujo, Elaine B.

    2009-01-01

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  12. Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Houda Hachem

    2015-10-01

    Full Text Available In this paper, a comparison of exergetic models between two hot air engines (a Gamma type Stirling prototype having a maximum output mechanical power of 500 W and an Ericsson hot air engine with a maximum power of 300 W is made. Referring to previous energetic analyses, exergetic models are set up in order to quantify the exergy destruction and efficiencies in each type of engine. The repartition of the exergy fluxes in each part of the two engines are determined and represented in Sankey diagrams, using dimensionless exergy fluxes. The results show a similar proportion in both engines of destroyed exergy compared to the exergy flux from the hot source. The compression cylinders generate the highest exergy destruction, whereas the expansion cylinders generate the lowest one. The regenerator of the Stirling engine increases the exergy resource at the inlet of the expansion cylinder, which might be also set up in the Ericsson engine, using a preheater between the exhaust air and the compressed air transferred to the hot heat exchanger.

  13. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  14. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, Antonio; Romano, Matteo C.; Lozza, Giovanni

    2013-01-01

    Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H 2 S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO 2 -laden stream, which is successively treated in a wet scrubber. A thermodynamic analysis of two air-blown IGCC systems, the first with cold fuel gas clean-up and the second with hot fuel gas clean-up, both with a state-of-the-art combustion turbine as topping cycle, shows that it is possible to obtain a really attractive net efficiency (more than 51%) for the second system, with significant improvements in comparison with the first system. Nevertheless, higher efficiency is accomplished with a small reduction in the power output and no sensible efficiency improvements seem to be appreciated when the desulfurization temperature increases. Other IGCC systems, with an advanced 1500 °C-class combustion turbine as the result of technology improvements, are investigated as well, with efficiency as high as 53%. - Highlights: ► Hot fuel gas clean-up is a highly favorable technology for IGCC concepts. ► Significant IGCC efficiency improvements are possible with hot fuel gas clean-up. ► Size reductions of several IGCC components are possible. ► Higher desulfurization temperatures do not sensibly affect IGCC efficiency. ► IGCC efficiency as high as 53% is possible with a 1500°C-class combustion turbine

  15. The influence of surface type on the absorbed radiation by a human under hot, dry conditions

    Science.gov (United States)

    Hardin, A. W.; Vanos, J. K.

    2018-01-01

    Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.

  16. Vacuum-assisted microwave drying characteristics of green bell pepper

    Directory of Open Access Journals (Sweden)

    Vivek Kumar

    2017-04-01

    Full Text Available Chopped green bell pepper pieces were blanched (95 °C, 5 min and chemically pretreated (1% potassium metabisulphite solution, 25 min at room temperature before drying in hot air dryer (HAD at various temperature ranges (60 – 80 °C. Three vacuum levels (200, 400, 600 mm Hg and microwave power levels (100, 200, 300 W were also used to dry green bell pepper samples in a vacuum assisted microwave (VAM (2.45 GHz, 0.8 kW dryer. VAM drying methods offered a maximum reduction by four to five times in drying time as compared to that in HAD. The logarithmic model was found to have the best fit based on high R2 and small values of reduced χ2 and RMSE.  VAM method has higher values for effective moisture diffusivity (Deff and lower values for activation energy (Ea, in comparison to the HAD method. 

  17. Solar air heaters for industrial drying; Aquecedor solar de ar para secagem industrial

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Everaldo Mendes [Governo do Estado da Paraiba, Joao Pessoa, PB (Brazil). Secretaria de Planejamento e Gestao

    2008-07-01

    The objective of this study is to encourage the use of solar energy in industrial drying of fruits, with the producers poles, at the same time, promote the rational use of energy for heat, or replacing the hydroelectric and oil derivatives for this purpose. This study is presented in the following chapters: availability of solar energy; details of constructive solar heated air; drying fruit; market. (author)

  18. The volatile oil composition of fresh and air-dried buds of Cannabis sativa.

    Science.gov (United States)

    Ross, S A; ElSohly, M A

    1996-01-01

    The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.

  19. The effects of drying on physical properties of bilimbi slices (Averrhoa bilimbi l.)

    Science.gov (United States)

    Shahari, N.; Nursabrina, M.; Suhairah, A. Zai

    2015-05-01

    Physical appearance analyses of fruits are used to maintain food quality throughout and at the end of processing. However, control variables have to be designed to obtained the desired food quality. In the present study, the effects of pretreatment and drying air temperatures of 50°C, 60°C and 70°C on the drying kinetics of belimbi slices were investigated using a hot-air dryer. In order to investigate and select the appropriate drying model, seven experiment based mathematical drying models were fitted to the experimental data. According to the statistical criteria (R2, SSE and RMSE), a Logarithmic model was found to be the best model to describe the drying behaviour of belimbi slices at 40°C for control; The Page/modified Page model was the best model to describe drying behaviour at 40°C, 60°C pre-treatment and 50°C for the control and the Wang and Singh model fitted well for 50°C pre-treatment and 60°C for the control. Comparison between experiment based mathematical modelling with a single phase mathematical model shows that close agreement was produced. The qualities of belimbi slices in terms of colour, texture and shrinkage with different air temperature and pre-treatment were also investigated. Higher drying temperatures gives less drying time, a lighter colour but greater product shrinkage, whilst pre-treatment can reduce product shrinkage and drying time and can also give good texture properties. The results show that pre-treatment and the drying temperature are important to improve mass and heat transfer as well as the product characteristics such as colour, shrinkage and texture.

  20. Improvement in greenhouse solar drying using inclined north wall reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India); Arora, Sadhna [Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India)

    2009-09-15

    A conventional greenhouse solar dryer of 6 m{sup 2} x 4 m{sup 2} floor area (east-west orientation) was improved for faster drying using inclined north wall reflection (INWR) under natural as well as forced convection mode. To increase the solar radiation availability onto the product (to be dried) during extreme summer months, a temporary inclined wall covered with aluminized reflector sheet (of 50 {mu}m thickness and reflectance 0.93) was raised inside the greenhouse just in front of the vertical transparent north wall. By doing so, product fully received the reflected beam radiation (which otherwise leaves through the north wall) in addition to the direct total solar radiation available on the horizontal surface during different hours of drying. The increment in total solar radiation input enhanced the drying rate of the product by increasing the inside air and crop temperature of the dryer. Inclination angle of the reflective north wall with vertical ({beta}) was optimized for various selective widths of the tray W (1.5, 2, 2.5 and 3 m) and for different realistic heights of existing vertical north wall (h) at 25 N, 30 N and 35 N latitudes (hot climatic zones). Experimental performance of the improved dryer was tested during the month of May 2008 at Ludhiana (30.56 N) climatic conditions, India by drying bitter gourd (Momordica charantia Linn) slices. Results showed that by using INWR under natural convection mode of drying, greenhouse air and crop temperature increased by 1-6.7 C and 1-4 C, respectively, during different drying hours as compared to, when INWR was not used and saved 13.13% of the total drying time. By using INWR under forced convection mode of drying, greenhouse air and crop temperature increased by 1-4.5 C and 1-3 C, respectively, during different drying hours as compared to, when INWR was not used and saved 16.67% of the total drying time. (author)

  1. A Numerical Assessment of the Air Flow Behaviour in a Conventional Compact Dry Kiln

    OpenAIRE

    Paulo Zdanski; Daniel Possamai; Miguel Vaz Jr.

    2015-01-01

    Convective drying is the most common drying strategy used in timber manufacturing industries in the developing world. In convective drying, the reduction rate of the moisture content is directly affected by the flow topology in the inlet and exit plenums and the air flow velocity in the channels formed by timber layers.Turbulence, boundary layer separation, vortex formation and recirculation regions are flow features that are intrinsically associated with the kiln geometry, which in turn dict...

  2. Air-Lubricated Thermal Processor For Dry Silver Film

    Science.gov (United States)

    Siryj, B. W.

    1980-09-01

    Since dry silver film is processed by heat, it may be viewed on a light table only seconds after exposure. On the other hand, wet films require both bulky chemicals and substantial time before an image can be analyzed. Processing of dry silver film, although simple in concept, is not so simple when reduced to practice. The main concern is the effect of film temperature gradients on uniformity of optical film density. RCA has developed two thermal processors, different in implementation but based on the same philosophy. Pressurized air is directed to both sides of the film to support the film and to conduct the heat to the film. Porous graphite is used as the medium through which heat and air are introduced. The initial thermal processor was designed to process 9.5-inch-wide film moving at speeds ranging from 0.0034 to 0.008 inch per second. The processor configuration was curved to match the plane generated by the laser recording beam. The second thermal processor was configured to process 5-inch-wide film moving at a continuously variable rate ranging from 0.15 to 3.5 inches per second. Due to field flattening optics used in this laser recorder, the required film processing area was plane. In addition, this processor was sectioned in the direction of film motion, giving the processor the capability of varying both temperature and effective processing area.

  3. Economical analysis of the spray drying process by pre-dehumidification of the inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Madeira, A.N.; Camargo, J.R. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    Spray drying is a dehumidification process by atomization in a closed chamber that aims to remove moisture of a product by heat and mass transfer from the product's contained water to the air that, in this process is previously heated. This paper presents a case study for an industry that produces food ingredients. The current process applied in the product to heat the air can uses one of these two systems: a direct heating process that burns liquid petroleum gas in contact with the inlet air or indirect heating that uses a heat exchanger which heat the air. This heating system consumes 90% of the total process energy. However, this inlet air can reach the dehumidifier with high moisture from the atmosphere condition requesting, in this case, more energy consumption according to the year's seasons. This paper promotes a utilization study of the current process through the installation of a pre-dehumidification device of the inlet air and shows a study to three different dehumidification systems that means by refrigeration, adsorption and actual comparing their performance in an energetic and economical point of view. The goals of this study are to analyze the capacity of moisture removing of each removing device, the influence of moisture variation of the inlet air in the process as well as the economic impact of each device in the global system. It concludes that the utilization of dehumidification devices can eliminate the heating system reducing this way the energy consumption. Moreover it promotes the increasing of moisture gradient between the inlet air and the product optimizing the drying process and increasing the global energy efficiency in the global system. Choosing the most appropriate system for the pre-dehumidification device depends on the desired initial and final moisture content of the product, but applying pre-dehumidifiers at the inlet air promotes an energetic optimization in the spray drying process. (author)

  4. Relationship between alpine tourism demand and hot summer air temperatures associated with climate change

    Science.gov (United States)

    Rebetez, M.; Serquet, G.

    2010-09-01

    We quantified the impacts of hot summer air temperatures on tourism in the Swiss Alps by analyzing the relationship between temperature and overnight stays in 40 Alpine resorts. Several temperature and insolation thresholds were tested to detect their relationship to summer tourism. Our results reveal significant correlations between the number of nights spent in mountain resorts and hot temperatures at lower elevations. Alpine resorts nearest to cities are most sensitive to hot temperatures. This is probably because reactions to hot episodes take place on a short-term basis as heat waves remain relatively rare. The correlation in June is stronger compared to the other months, probably because school holidays and the peak domestic tourist demand in summer usually takes place in July and August. Our results suggest that alpine tourist resorts could benefit from hotter temperatures at lower elevations under future climates. Tourists already react on a short-term basis to hot days and spend more nights in hotels in mountain resorts. If heat waves become more regular, it seems likely that tourists choose to stay at alpine resorts more frequently and for longer periods.

  5. Evolution of thermo-physical properties of Akuama (picralima nitida) seed and antioxidants retention capacity during hot air drying

    Science.gov (United States)

    Ndukwu, M. C.; Bennamoun, L.; Anozie, O.

    2018-05-01

    Interest in picralima nitida is growing over the years because of its therapeutic application in human and animal medicine. In many countries the dried seed is compounded and sold as drugs but there is limited information on the process variables associated with its thermal processing. The study therefore, is focused on the evolution of physical properties, heat and mass transfer coefficient, specific heat capacity, energy utilization and quality characteristics of the seed during oven and microwave drying. The goal is to generate data using theoretical and empirical steps for process model development that can be applied in dryer design. The results obtained showed that the coefficient of heat and mass transfer varied from 0.0421-1.326 W/m2 K and 1.49 × 10-7 - 8.47 × 10-6 m/s respectively while the specific heat capacity ranged between 1189 and 2531 J/ kg K. The volume of the seed shrank gradually with a non-linear exponential shape for all drying treatments. The intrinsic particle and bulk densities decreased while the porosity of the seed increased with drying period, indicating an increase in internal voids of the seeds. The energy and specific energy utilized for drying peaked after 14 h, 12 h and 7 h of continuous drying at 50, 60 and 70 °C for oven drying treatment. Effective moisture diffusivities for all treatments ranged from 5.37 × 10-10 - 1.45 × 10-7 m/s2 with activation energy of 27.82 kJ/mol and 20 W/g for oven and microwave respectively. Flavonoide was the least stable at high temperature among the screend compound.

  6. Gas Dispersion in Granular Porous Media under Air-Dry and Wet Conditions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Hamamoto, S; Kawamoto, K

    2012-01-01

    Subsurface gaseous-phase transport is governed by three gas transport parameters: the air permeability coefficient (ka), gas diffusion coefficient (DP), and gas dispersion coefficient (DH). Among these, DH is the least understood due to hitherto limited research into the relationship between gas...... dispersion and soil physical characteristics. In this study, a series of advection–dispersion experiments was performed on granular porous media to identify the effects of soil column dimensions (length and diameter), particle size and shape, dry bulk density, and moisture content on the magnitude of gas...... dispersion. Glass beads and various sands of different shapes (angular and rounded) with mean particle diameters (d50) ranging from 0.19 to 1.51 mm at both air-dry and variable moisture contents were used as granular porous media. Gas dispersion coefficients and gas dispersivities (a = DH/v, where v...

  7. Properties of metallocene complexes during the oxidative crosslinking of air drying coatings

    Science.gov (United States)

    Stava, Vit; Erben, Milan; Vesely, David; Kalenda, Petr

    2007-05-01

    Driers are added to air drying paints to accelerate the hardening of spread coating. For decades cobalt octoate has been the most widely used drier because of its good performance at ambient temperature. Recently, several reports describing possible carcinogenity and genotoxicity of cobalt and cobalt salts, such as cobalt sulfate in aerosols, have appeared. It is necessary to reduce the amount of cobalt compounds in coatings industry. Present study deals with the possibility of using ferrocene and its derivatives as driers for air drying coatings. We concentrated particularly on the synergic effect between these metallocene complexes and the cobalt drier. In the first step the kinetics of autooxidation by FTIR spectroscopy in model systems was investigated. Then the metallocene complexes were applied together with cobalt drier to alkyd resin, where their influence on hardness of spread coatings was examined.

  8. Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L. at different ripeness stages

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Narváez-Cuenca

    2014-08-01

    Full Text Available Because the use of drying at high temperatures might negatively affect the functional properties of fruits, the effect of air-drying at 60°C on the total phenolic content (TPC and antioxidant capacity (AOC of cape gooseberry fruit was evaluated at three ripeness stages. The AOC was evaluated with 2,2'-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid (ABTS , ferric reducing ability of plasma (FRAP, 1,1-diphenyl-2-picrylhydrazyl (DPPH, and beta-carotene-linoleate assays. The TPC and AOC increased in the fresh fruit as the ripeness stage increased. The TPC increased from 401.8±19.8 to 569.3±22.3 mg GA E/100 g dry weight (DW. The AOC values obtained with ABTS in the fresh fruit (ranging from 79.4±4.5 to 132.7±12.9 mumol trolox/g fruit DW were comparable to those obtained with FRAP (ranging from 82.9±16.3 to 153.9±31.7 mumol trolox/g fruit DW. The values assessed with DPPH ranged from 21.0±3.2 to 34.1±5.1 mumol trolox/g fruit DW. The beta-carotene-linoleate assay gave values ranging from 5.8±1.1 to 12.7±2.0 mumol a-tocoferol/g fruit DW. Air-drying the cape gooseberry fruit had a small influence on the TPC. The air-dried fruit had AOC values ranging from 27 to 164% of the value of the fresh fruit. While the ABTS assay produced higher values in the air-dried fruit than in the fresh fruit, the FRAP, DPPH, and beta-carotene-linoleate assays resulted in lower values in the air-dried fruit.

  9. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    International Nuclear Information System (INIS)

    Labidi, A.; Bejaoui, A.; Ouali, H.; Akkari, F. Chaffar; Hajjaji, A.; Gaidi, M.; Kanzari, M.; Bessais, B.; Maaref, M.

    2011-01-01

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  10. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  11. Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.).

    Science.gov (United States)

    Vega-Gálvez, Antonio; Zura-Bravo, Liliana; Lemus-Mondaca, Roberto; Martinez-Monzó, Javier; Quispe-Fuentes, Issis; Puente, Luis; Di Scala, Karina

    2015-04-01

    The effects of air drying temperature on dietary fibre, texture and microstructure of the Cape gooseberry fruits during convective dehydration in the range of 50-90 ºC were investigated. The ratio of insoluble dietary fibre to soluble dietary fibre was higher than 7:1 for all dehydrated samples. At 50 ºC tissue structure damage was evidenced leading to the maximum water holding capacity (47.4 ± 2.8 g retained water/100 g water) and the lowest rehydration ratio (1.15 ± 0.06 g absorbed water/g d.m.). Texture analysis showed effects of drying temperatures on TPA parameters. Changes in microstructure tissue were also observed at the studied drying temperatures. Hot air drying technology leads not only to fruit preservation but also increases and adds value to Cape gooseberry, an asset to develop new functional products.

  12. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  13. How the negotiators tackled the 'hot air' issue for the second commitment period of the Kyoto Protocol

    International Nuclear Information System (INIS)

    2013-02-01

    In 1997, when the Kyoto Protocol was approved, developed countries set their greenhouse gas (GHG) reduction commitments in relation to a 'base year' level. For the Kyoto Protocol, the year 1990 was chosen in most cases. However, irrespective of GHG mitigation action, the countries of the former Soviet Union have seen their emissions of greenhouse gases significantly decreasing after the collapse of the USSR. Given that their emissions were and still are today far below the commitments they established in 1997, these countries have a significant surplus of allowances referred to as 'hot air'. Before the COP 18 that took place in Doha (Qatar) late 2012, many countries and observers raised concern about this 'hot air'. Typically, there were two separate questions: What should we do with the accumulated surplus from the first commitment period of the Kyoto Protocol (CP1)? And will a new 'hot air' be created during the second commitment period (CP2)? This analysis explores the implications of the decisions made in Doha, using the case of Ukraine to illustrate responses to the questions raised. Indeed, as the European Union regulation forbids European countries to use CP1 units to achieve CP2 targets, Ukraine is the principal country committing to CP2 with a substantial reserve of CP1 units

  14. Effect of various drying bed on thermodynamic characteristics

    Directory of Open Access Journals (Sweden)

    Ali Motevali

    2017-09-01

    Full Text Available In this study thermodynamic parameter and energy consumption in drying of two plant dill and mint in three bed drying including fix, semi fix and fluid with using a hot air drying was investigated. Experimental was conducted in three bed drying including fix, semi fix and fluid and four levels temperature (30, 40, 50 and 60 °C. Maximum energy consumption in dill drying at 40 °C and fluid bed to be 16.41 MJ and minimum energy consumption at 30 °C and fix bed to be 2.77 MJ. Also minimum energy consumption in mint drying at 60 °C and fix bed to be 3.64 MJ and maximum energy consumption at 40 °C and fluid bed to be 28.65 MJ. The highest energy, drying and thermal efficiency for both mint and dill was achieved at 60 °C on the fixed bed, whereas the lowest efficiency was at 40 °C and on the fluidized bed. Also the highest power and specific heat consumption for both mint and dill was achieved at 40 °C on the fluid bed, whereas the lowest efficiency was at 30 °C and on the fluidized bed.

  15. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    Science.gov (United States)

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  16. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Iftikhar [Lambda Technologies, Inc., Morrisville, NC (United States); Zhang, Pu [Lambda Technologies, Inc., Morrisville, NC (United States)

    2016-11-30

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much faster than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying of

  17. Natural draft dry-type cooling tower for steam power plants

    International Nuclear Information System (INIS)

    Nasser, G.

    1976-01-01

    The task to build natural-draught dry cooling towers for large steam power plants as simple, compact, and economical as possible may be achieved by a combination of known features with the aid of the present application: the condenser elements built as piles of corrugated plates are arranged in the form of a truncated pyramid widened towards the top. For the cooling-air flow inlet openings for hot gas supplied from the lower part of the dome are provided. (UWI) [de

  18. Mathematical models and qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying

    Science.gov (United States)

    Nachaisin, Mali; Teeta, Suminya; Deejing, Konlayut; Pharanat, Wanida

    2017-09-01

    Instant food is a product produced for convenience for consumer. Qualities are an important attribute of food materials reflecting consumer acceptance. The most problem of instant rice is casehardening during drying process resulted in the longer rehydration time. The objective of this research was to study the qualities of shredded Thai-style instant rice under a combined gas-fired infrared and air convection drying. Additionally, the mathematical models for gas-fired infrared assisted thin-layer drying of shredded Thai-style rice for traditional was investigated. The thin-layer drying of shredded Thai-style rice was carried out under gas-fired infrared intensities of 1000W/m2, air temperatures of 70°C and air velocities of 1 m/s. The drying occurred in the falling rate of drying period. The Page model was found to satisfactorily describe the drying behavior of shredded Thai-style rice, providing the highest R2 (0.997) and the lowest MBE and RMSE (0.01 and 0.18) respectively. A 9 point hedonic test showed in softness and color, but odor and overall acceptance were very similar.

  19. Study on heat transfer from hot water to air with evaporation. 2nd report

    International Nuclear Information System (INIS)

    Yamaji, Tatsuya; Hirota, Tatsuya; Koizumi, Yasuo; Murase, Michio

    2013-01-01

    Heat transfer from hot water flow to cold air flow was examined. In the present study, the air flow was in turbulent flow condition. When the heat flux from the water flow to the air flow is divides into two terms of an evaporation term and a convection term, the evaporation term is much higher than the convection term; approximately 80 ∼ 60% of the total heat flux since latent heat is taken into the air flow by evaporating vapor. The convection term was approximately two times of the single-phase heat transfer rate with no evaporation. By making use of the analogy between the mass transfer and the heat transfer, and the single-phase heat transfer correlation, the predicting method of the heat transfer rate with the evaporation was developed. (author)

  20. Oxidation mechanism of Fe–16Cr alloy as SOFC interconnect in dry/wet air

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Wang, Li-Jun; Li, Fu-Shen; Chou, Kuo-Chih

    2013-01-01

    Highlights: •A special thermodynamic description corresponding to the kinetics was applied. •We reported the relationships of degradation time with temperature and moisture. •”Turning time” in the Fe–16Cr alloy oxidation kinetic model was given. •The oxidation mechanism of Fe–16Cr alloy in the wet air was discussed. -- Abstract: Experimental study on the oxidation corrosions of Fe–16Cr alloy was carried out at 800–1100 °C under dry/wet air conditions. Faster oxidation rate was observed at higher temperature and water vapor content. The degradation time t d between two stages in oxidation process showed an exponential relationship with elevating corrosion temperature in dry air, and a linear relationship with the water content in the case of water vapor introduced to the system. The mechanism of oxidation corrosions of Fe–16Cr alloy was suggested by the Real Physical Picture (RPP) model. It was found that the break-away oxidation in stage II was controlled by diffusion at initial both in dry and wet air, then became linear with the exposure time, which implied that the oxidation rate was then controlled by chemical reaction of the interface between the metal and the oxidized scale. Moreover, the effect of water in the oxidation process is not only to supply more oxygen into system, but also to modify the structures of oxide scale due to the existence of hydrogen atom, which results in the accelerated corrosions

  1. EFFECT OF PRE-TREATMENT ON THE DRYING KINETICS AND PRODUCT QUALITY OF STAR FRUIT SLICES

    Directory of Open Access Journals (Sweden)

    CHING LIK HII

    2014-02-01

    Full Text Available Start fruit (Avverhoa carambola is rich in nutrients and contains dietary antioxidants which are beneficial to human health. Currently, the commercial potential of this fruit has not been fully explored especially in its dried form. The objectives of this research were to investigate the effect of pre-treatment on the drying kinetics and product quality of star fruit slices. The various pre-treatment methods investigated were hot water blanching and dipping in sugar solution. The star fruit was cut into thin slices (5 mm for drying (60°C-80°C using a hot air ventilated oven. Mathematical modelling showed that the Page model was able to describe the moisture diffusion process during drying. Effective diffusivity values were found within the order reported for most food materials (10-8-10-12 m2/s. A decreasing trend in shrinkage ratios was observed with decreasing moisture ratios which corresponds to the greater rate of moisture removal especially at the falling rate period. Overall colour changes were more significant in the blanched samples which could be due to the non-enzymatic browning.

  2. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  3. Microwave assisted air drying of osmotically treated pineapple with variable power programmes

    CSIR Research Space (South Africa)

    Botha, GE

    2012-01-01

    Full Text Available Variable power programmes for microwave assisted air drying of pineapple were studied. The pineapple pieces were pre-treated by osmotic dehydration in a 55º Brix sucrose solution at 40ºC for 90 minutes. Variable power output programmes were designed...

  4. Experimental studies on the coolability of packed beds. Flooding of hot dry packed beds

    International Nuclear Information System (INIS)

    Leininger, S.; Kulenovic, R.; Laurien, E.

    2013-01-01

    In case of a severe accident in a nuclear power plant meltdown of the reactor core can occur and form a packed bed in the lower plenum of the reactor pressure vessel (RPV) after solidification due to contact with water. The removal of after-heat and the long-term coolability is of essential interest. The efficient injection of cooling water into the packed bed has to be assured without endangering the structural integrity of the reactor pressure vessel. The experiments performed aimed to study the dry-out and the quenching (flooding) of hot dry packed beds. Two different inflow variants, bottom- and top-flooding including the variation of the starting temperature of the packed bed and the injection rate were studied. In case of bottom flooding the quenching time increases with increasing packed bed temperature and decreasing injection rate. In case of top flooding the flow pattern is more complex, in a first phase the water flows preferentially toward the RPV wall, the flow paths conduct the water downwards. The flow resistance of the packed bed increases with increasing bed temperatures. The quenching temperatures increase significantly above average.

  5. Sustainable Energy - Without the hot air

    Science.gov (United States)

    MacIsaac, Dan

    2009-11-01

    Reader John Roeder writes about a website associated with David MacKay's book Sustainable Energy-Without the hot air. The book is a freely downloadable PDF (or purchasable) book describing an analysis detailing a low-carbon renewable energy transformation route for a large, modern first world industrial country (the United Kingdom). Written for the layman, the work uses vernacular language, e.g., energy consumption and production in a series of bar charts detailing the impacts of necessary strategies such as population reduction, lifestyle changes, and technology changes. MacKay notes that most reasonable plans have large nuclear and ``clean coal'' or other carbon capture components, lots of pumped heat, wind, and much efficiency improvement. He debunks some sacred cows (roof-mounted micro-turbines; hydrogen-powered cars) while pointing out simple effective technologies such as roof-mounted solar water heaters. Similar modest changes in the U.S. (painting roofs white in the southern half of the country) have strong impacts. MacKay claims that he ``doesn't advocate any particular plan or technology,'' but ``tells you how many bricks are in the lego box, and how big each brick is'' so readers can start making planning decisions.

  6. Assessment of the bacterial contamination of hand air dryer in washrooms.

    Science.gov (United States)

    Alharbi, Sulaiman Ali; Salmen, Saleh Hussein; Chinnathambi, Arunachalam; Alharbi, Naiyf S; Zayed, M E; Al-Johny, Bassam O; Wainwright, Milton

    2016-03-01

    The present study was carried out, using standard techniques, to identify and count the bacterial contamination of hand air dryers, used in washrooms. Bacteria were isolated from the air flow, outlet nozzle of warm air dryers in fifteen air dryers used in these washrooms. Bacteria were found to be relatively numerous in the air flows. Bacterially contaminated air was found to be emitted whenever a warm air dryer was running, even when not being used for hand drying. Our investigation shows that Staphylococcus haemolyticus, Micrococcus luteus, Pseudomonas alcaligenes, Bacillus cereus and Brevundimonad diminuta/vesicularis were emitted from all of the dryers sampled, with 95% showing evidence of the presence of the potential pathogen S. haemolyticus. It is concluded that hot air dryers can deposit pathogenic bacteria onto the hands and body of users. Bacteria are distributed into the general environment whenever dryers are running and could be inhaled by users and none-users alike. The results provide an evidence base for the development and enhancement of hygienic hand drying practices.

  7. Drying properties and quality parameters of dill dried with intermittent and continuous microwave

    OpenAIRE

    Eştürk, Okan

    2012-01-01

    In this study, influence of various microwave-convective air drying applications on drying kinetics, color and sensory quality of dill leaves (Anethum graveolens L.) were investigated. In general, increasing the drying air temperature decreased the drying time, and increased the drying rate. Increasing microwave pulse ratio increased the drying time. Page, Logarithmic, Midilli et al, Wang & Singh and Logistic models were fitted to drying data and the Page model was found to satisfactorily...

  8. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  9. PADDY DRYING IN MIXED ADSORPTION DRYER WITH ZEOLITE: DRYING RATE AND TIME ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mochammad Djaeni

    2013-11-01

    Full Text Available Recently, the main problem of the rice stock and distribution in Indonesia is the quality degradation as indicated in unpleasant odor (smelly, stained, yellowness, and high percentage of broken rice. This is due to the low of paddy quality dried by from either direct sunlight or conventional fluidized bed dryer. As a result, the paddy cracks and breaks easily during milling in which causes the storage life being shorter as the enzymatic degradation by germ or fungi occurs. Air dehumidified with zeolite at drying medium temperature is potential to improve the quality of paddy. Zeolite is a material having high affinity to water vapor. In this case, the paddy and zeolite was mixed and fluidized with the air. The air will evaporate water from paddy, and at same time, the zeolite will adsorb water from air. Hence, the humidity of dryer can be kept low in which improves the driving force for drying. This work discusses the effect of presence of zeolite in the dryer, operational drying temperature, air velocity and relative humidity on drying rate of paddy. The results showed that increasing of zeolite as well as operational temperature increased the drying rate. In addition, using the model, the air dehumidification with zeolite and increase of air velocity can speed up drying time significantly at operational temperature below 80oC. This condition is very suitable for paddy drying since the quality degradation can be avoided.

  10. Air-drying Models for New-built Offshore Gas Pipelines%新建海底天然气管道干空气干燥模型研究

    Institute of Scientific and Technical Information of China (English)

    曹学文; 王立洋; 林宗虎

    2005-01-01

    Drying (conditioning) is an important procedure to prevent hydrate formation during gas pipeline gas-up and to protect pipelines against corrosion. The air-drying method is preferred in offshore gas pipelines pre-commissioning. The air-drying process of gas pipelines commonly includes two steps, air purging and soak test. The mass conservation and the phase equilibrium theory are applied to setting up the mathematical models of air purging, which can be used to simulate dry airflow rate and drying time. Fick diffusion law is applied to setting up the mathematical model of soak test, which can predict the water vapor concentration distribution. The results calculated from the purging model and the soak test model are in good agreement with the experimental data in the DF1-1 offshore production pipeline conditioning. The models are verified to be available for the air-drying project design of offshore gas pipelines. Some proposals for air-drying engineering and operational procedures are put forward by analyzing the air-drying process of DF1-1 gas-exporting pipelines.

  11. Study of chemical and physical properties of apples dried in a convective drier.

    OpenAIRE

    Cruz, AC; Guiné, Raquel; Gonçalves, JC; Correia, AC

    2012-01-01

    The present study evaluates the effects of drying on apple slices from two varieties, Golden Delicious and Granny Smith, which were analyzed in terms of physical and chemical properties. The tests involved the determination of moisture, acidity, soluble solids, colour and texture. Trials were performed in a convective hot air dryer for different temperatures of 30, 40, 50 and 60 ° C. The results showed that the final moisture of the two varieties of...

  12. The furnace in the basement: Part 1, The early days of the Hot Dry Rock Geothermal Energy Program, 1970--1973

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.

    1995-09-01

    This report presents the descriptions of the background information and formation of the Los Alamos Scientific Laboratory Geothermal Energy Group. It discusses the organizational, financial, political, public-relations,geologic, hydrologic, physical, and mechanical problems encountered by the group during the period 1970--1973. It reports the failures as well as the successes of this essential first stage in the development of hot dry rock geothermal energy systems.

  13. Effect of dried solids of nejayote on broiler growth.

    Science.gov (United States)

    Velasco-Martinez, M; Angulo, O; Vazquez-Couturier, D L; Arroyo-Lara, A; Monroy-Rivera, J A

    1997-11-01

    The purpose of the present study was to test the suitability of the solids of nejayote (a waste product from the tortilla industry) in diets for broilers. The nejayote was obtained from two different tortilla-making factories and the solids were obtained by centrifuge then dried in a hot-air drier. Diets were formulated to be isocaloric and isonitrogenous according to the NRC dietary requirements (1994). Nejayote solids were supplemented at 2, 4, and 6% of the diet. Results show that the content of protein and calcium in the dried solids of nejayote were 5 and 13%, respectively. The performance of broilers fed diets supplemented with dried nejayote did not differ from that of those fed the control diet. Therefore, it is concluded that nejayote solids are suitable for broiler feed and do not affect growth performance. Utilization of nejayote solids at higher levels is a possibility provided that no adverse effects on body weight, feed utilization, and feed:gain ratios are observed.

  14. An Overt Chemical Protective Garment Reduces Thermal Strain Compared with a Covert Garment in Warm-Wet but Not Hot-Dry Environments

    Directory of Open Access Journals (Sweden)

    Matthew J. Maley

    2017-11-01

    Full Text Available Objectives: A commercial chemical, biological, radiological and nuclear (CBRN protective covert garment has recently been developed with the aim of reducing thermal strain. A covert CBRN protective layer can be worn under other clothing, with equipment added for full chemical protection when needed. However, it is unknown whether the covert garment offers any alleviation to thermal strain during work compared with a traditional overt ensemble. Therefore, the aim of this study was to compare thermal strain and work tolerance times during work in an overt and covert ensemble offering the same level of CBRN protection.Methods: Eleven male participants wore an overt (OVERT or covert (COVERT CBRN ensemble and walked (4 km·h−1, 1% grade for a maximum of 120 min in either a wet bulb globe temperature [WBGT] of 21, 30, or 37°C (Neutral, WarmWet and HotDry, respectively. The trials were ceased if the participants' gastrointestinal temperature reached 39°C, heart rate reached 90% of maximum, walking time reached 120 min or due to self-termination.Results: All participants completed 120 min of walking in Neutral. Work tolerance time was greater in OVERT compared with COVERT in WarmWet (P < 0.001, 116.5[9.9] vs. 88.9[12.2] min, respectively, though this order was reversed in HotDry (P = 0.003, 37.3[5.3] vs. 48.4[4.6] min, respectively. The rate of change in mean body temperature and mean skin temperature was greater in COVERT (0.025[0.004] and 0.045[0.010]°C·min−1, respectively compared with OVERT (0.014[0.004] and 0.027[0.007]°C·min−1, respectively in WarmWet (P < 0.001 and P = 0.028, respectively. However, the rate of change in mean body temperature and mean skin temperature was greater in OVERT (0.068[0.010] and 0.170[0.026]°C·min−1, respectively compared with COVERT (0.059[0.004] and 0.120[0.017]°C·min−1, respectively in HotDry (P = 0.002 and P < 0.001, respectively. Thermal sensation, thermal comfort, and ratings of perceived

  15. An operations research and simulation based study on improving the efficiency of a slurry drying tower

    Directory of Open Access Journals (Sweden)

    De Jongh, E.

    2013-08-01

    Full Text Available This paper relates to a company that produces washing powders. The focus is on improving the efficiency of gas usage (per unit of powder produced in the furnace that produces hot air. This hot air is an integral part of washing powder production: it dries the viscous slurry and transforms it into the base powder used in all washing powders. The cost of gas is the factorys largest expense. This paper attempts to increase the productivity and profitability of the operations by applying operations research using MATLAB and the non-linear optimiser called SNOPT (sparse non-linear optimiser. Using these techniques, a proposed solution that aims to balance the amount of open space between spraying slurry, as well as the overlap of spraying slurry within the furnace, is obtained. This is achieved by optimising the positioning of the top layer of 24 lances. The placement of the bottom layer of lances is done by positioning them in the areas of biggest overlap. These improvements result in a positive impact on the amount of gas burnt within the furnace to dry slurry to powder.

  16. Effect of gamma irradiation on pre-treatment on the drying characteristics and qualities of wheat

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yong; Wang, Jun [Zhejiang University (China). Dept. of Biosystems Engineering

    2008-07-01

    Wheat, pretreated by {sup 60}Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 deg C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied. (author)

  17. Effect of gamma irradiation on pre-treatment on the drying characteristics and qualities of wheat

    International Nuclear Information System (INIS)

    Yu, Yong; Wang, Jun

    2008-01-01

    Wheat, pretreated by 60 Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 deg C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied. (author)

  18. Study by electronic microscopy of corrosion features of graphite after hot oxidation (air, 620 C)

    International Nuclear Information System (INIS)

    Jodon de Villeroche, Suzanne

    1968-01-01

    The author reports the study of corrosion features of graphite after hot oxidation in the air at 620 C. It is based on observations made by electronic microscopy. This study comes after another one dedicated to oxidation features obtained by hot corrosion of natural graphite, and aims at comparing pyrolytic graphite before and after irradiation in an atomic pile, and at performing tests on a graphite processed with ozone. After a recall of generalities about natural graphite and of some issues related to hot corrosion of natural graphite, the author presents some characteristics and features of irradiated and non-irradiated pyrolytic graphite. He reports the study of the oxidation of samples of pyrolytic graphite: production of thin lamellae, production of glaze-carbon replicates, oxidation of irradiated and of non-irradiated graphite, healing of irradiation defects, and oxidation of ozone-processed natural graphite [fr

  19. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    Science.gov (United States)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  20. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    Science.gov (United States)

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  2. Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan

    Science.gov (United States)

    Arufe, Santiago; Torres, Maria D.; Chenlo, Francisco; Moreira, Ramon

    2018-01-01

    Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10-3 min-n at 35 °C up to 28.4 ± 0.8 10-3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)-1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.

  3. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  4. Study of hot corrosion of flakes of non purified graphite and of purified graphite

    International Nuclear Information System (INIS)

    Boule, Michel

    1967-01-01

    The author reports the study of hot corrosion of the Ticonderoga graphite. He reports the study of the defects of graphite flakes (structure defects due to impurities), the dosing of these impurities, and then their removal by purification. Flakes have then been oxidised by means of a specially designed apparatus. Based on photographs taken by optical and electronic microscopy, the author compares the oxidation features obtained in dry air and in humid air, between purified and non purified flakes. He also reports the study of the evolution of oxidation with respect to the initial rate of impurities, and the study of the evolution of oxidation features in humid air during oxidation. All these comparisons are made while taking the oxidation rate into account [fr

  5. Solar water heating and its prospect for timber drying application

    Energy Technology Data Exchange (ETDEWEB)

    Yin, B T

    1982-01-01

    The technical requirements for timber drying are discussed, and the possibility of using a solar water heating system to substitute for conventional fuel in a modern kiln is looked into from heat transfer considerations. At the moment, conventional fuel is used to generate steam for the heating of air in a kiln. If hot water is to be substitued for steam as the heating medium, the heating coil size required is larger. This size is determined relative to that of a steam coil for similar kiln operating temperatures. 5 references.

  6. Daily rhythms of cloacal temperature in broiler chickens of different age groups administered with zinc gluconate and probiotic during the hot-dry season.

    Science.gov (United States)

    Aluwong, Tagang; Sumanu, Victory O; Ayo, Joseph O; Ocheja, Benjamin O; Zakari, Friday O; Minka, Ndazo S

    2017-06-01

    The aim of the experiment was to evaluate effects of zinc gluconate (ZnGlu) and probiotic administration on the daily rhythm of cloacal temperature ( t cloacal ) in broiler chickens of different age groups during the hot-dry season. One-day-old broiler chicks ( n  = 60) were divided into groups I-IV of 15 chicks per group, and treated for 35 days: Group I (control) was given deionized water; Group II, ZnGlu (50 mg/kg); Group III, probiotic (4.125 × 10 6  cfu/100 mL), and Group IV, ZnGlu (50 mg/kg) + probiotic (4.125 × 10 6  cfu/100 mL). Air dry-bulb temperature ( t db ), relative humidity (RH), and temperature-humidity index (THI) inside the pen, and t cloacal of each broiler chick were obtained bihourly over a 24-h period; on days 21, 28, and 35 of the study. Values of t db (32.10 ± 0.49°C), RH (49.94 ± 1.91%), and THI (38.85 ± 0.42) obtained were outside the thermoneutral zone for broiler chickens, and suggested that the birds were subjected to heat stress. Application of the periodic model showed disruption of daily rhythm of t cloacal in broilers on day 21, which was synchronized by probiotic administration. The administration of probiotics or ZnGlu + probiotics to a greater extent decreased the mesor and amplitude, delayed the acrophases of t cloacal in broilers, especially at day 35, as compared to the controls. Overall, the t cloacal values in broiler chickens administered with probiotic alone (41.25 ± 0.05°C) and ZnGlu + probiotic (41.52 ± 0.05°C) were lower ( P  probiotic alone synchronized t cloacal of the birds at day 21, and, in addition, decreased t cloacal response most, followed by its coadministration with ZnGlu, the antioxidants may be beneficial in modulating daily rhythmicity of t cloacal and alleviating adverse effects of heat stress on broiler chickens during the hot-dry season. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the

  7. Effect of Infrared Blanching on Enzyme Activity and Retention of β-Carotene and Vitamin C in Dried Mango.

    Science.gov (United States)

    Guiamba, Isabel R F; Svanberg, Ulf; Ahrné, Lilia

    2015-06-01

    The objectives of this work were to evaluate infrared (IR) dry blanching in comparison with conventional water blanching prior to hot air drying of mango to inactivate polyphenol oxidase (PPO) and ascorbic acid oxidase (AAO) enzymes, and to study its effect on color change and retention of vitamin C and β-carotene. Mango cylinders were blanched under similar temperature-time conditions either by IR heating or by immersion in a water bath during 2 min at 90 °C (high-temperature-short-time-HTST) or for 10 min at 65 °C (low-temperature-long-time-LTLT). After blanching mango was hot air dried at 70 °C. PPO was completely inactivated during the blanching treatments, but AAO had a moderate remaining activity after LTLT treatment (∼30%) and a low remaining activity after HTST treatment (9% to 15%). A higher retention of vitamin C was observed in mango subjected to IR dry blanching, 88.3 ± 1.0% (HTST) and 69.2 ± 2.9% (LTLT), compared with water blanching, 61.4 ± 5.3% (HTST) and 50.7 ± 9.6% (LTLT). All-trans-β-carotene retention was significantly higher in water blanched dried mango, 93.2 ± 5.2% (LTLT) and 91.4 ± 5.1% (HTST), compared with IR dry blanched, 73.6 ± 3.6% (LTLT) and 76.9 ± 2.9% (HTST). Increased levels of 13-cis-β-carotene isomer were detected only in IR dry blanched mango, and the corresponding dried mango also had a slightly darker color. IR blanching of mango prior to drying can improve the retention of vitamin C, but not the retention of carotenoids, which showed to be more dependent on the temperature than the blanching process. A reduction of drying time was observed in LTLT IR-blanching mango. © 2015 Institute of Food Technologists®

  8. Contribution of 222Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China

    International Nuclear Information System (INIS)

    Song Gang; Wang Xinming; Chen Diyun; Chen Yongheng

    2011-01-01

    This study investigates the contribution of radon ( 222 Rn)-bearing water to indoor 222 Rn in thermal baths. The 222 Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM 10 and PM 2.5 ) and carbon dioxide (CO 2 ) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m -3 of 222 Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which 222 Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average 222 Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor 222 Rn levels were influenced by the 222 Rn concentrations in the hot spring water and the bathing times. The average 222 Rn transfer coefficients from water to air were 6.2 x 10 -4 -4.1 x 10 -3 . The 24-h average levels of CO 2 and PM 10 in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM 2.5 . Radon and PM 10 levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. - Highlights: → 222 Rn-bearing water is the main contributor to indoor radon in hot spring hotel. → The PM 2.5 and CO 2 are also the main indoor pollutants in the hotel rooms. → Higher radon and PM levels might have significant negative health effects to human. → The radon transfer coefficients are consistent with the published data.

  9. A greenhouse type solar dryer for small-scale dried food industries: Development and dissemination

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, Serm [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2012-07-01

    In this study, a greenhouse type solar dryer for small-scale dried food industries was developed and disseminated. The dryer consists of a parabolic roof structure covered with polycarbonate sheets on a concrete floor. The system is 8.0m in width, 20.0m in length and 3.5m in height, with a loading capacity about 1,000kg of fruits or vegetables. To ensure continuous drying operation, a 100kW-LPG gas burner was incorporated to supply hot air to the dryer during cloudy or rainy days. Nine 15-W DC fans powered by three 50-W PV modules were used to ventilate the dryer. This dryer was installed for a small-scale food industry at Nakhon Pathom in Thailand to produce osmotically dehydrated tomato. To investigate its performance, the dryer was used to dry 3 batches of osmotically dehydrated tomato. Results obtained from these experiments showed that drying air temperatures in the dryer varied from 35 C to 65 C. In addition, the drying time for these products was 2-3 days shorter than that of the natural sun drying and good quality dried products were obtained. A system of differential equations describing heat and moisture transfers during drying of osmotically dehydrated tomato was also developed. The simulated results agreed well with the experimental data. For dissemination purpose, other two units of this type of dryer were constructed and tested at two locations in Thailand and satisfactory results were obtained.

  10. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  11. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties.

    Science.gov (United States)

    Tao, Yang; Wang, Ping; Wang, Yilin; Kadam, Shekhar U; Han, Yongbin; Wang, Jiandong; Zhou, Jianzhong

    2016-07-01

    The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2-117.6 W/L for 5-15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Assessment of the environmental microbiological cross contamination following hand drying with paper hand towels or an air blade dryer.

    Science.gov (United States)

    Margas, E; Maguire, E; Berland, C R; Welander, F; Holah, J T

    2013-08-01

    This study compared the potential for cross contamination of the surrounding environment resulting from two different hand-drying methods: paper towels and the use of an air blade dryer. One hundred volunteers for each method washed their hands and dried them using one of the two methods. Bacterial contamination of the surrounding environment was measured using settle plates placed on the floor in a grid pattern, air sampling and surface swabs. Both drying methods produced ballistic droplets in the immediate vicinity of the hand-drying process. The air blade dryer produced a larger number of droplets which were dispersed over a larger area. Settle plates showed increased microbial contamination in the grid squares which were affected by ballistic droplets. Using the settle plates counts, it was estimated that approx. 1.7 × 10(5) cfu more micro-organisms were left on the laboratory floor (total area approx. 17.15 m(2)) after 100 volunteers used an air blade dryer compared to when paper towels were used. The two drying methods led to different patterns of ballistic droplets and levels of microbial contamination under heavy use conditions. Whilst the increase in microbial levels in the environment is not significant if only nonpathogenic micro-organisms are spread, it may increase the risk of pathogen contamination of the environment when pathogens are occasionally present on people's hands. The study suggests that the risk of cross contamination from the washroom users to the environment and subsequent users should be considered when choosing a hand-drying method. The data could potentially give guidance following the selection of drying methods on implementing measures to minimise the risk of cross contamination. © 2013 The Society for Applied Microbiology.

  13. Hot dry rock: What does it take to make it happen

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1993-01-01

    The ubiquitous heat in hot dry rock (HDR) is an abundant, widely distributed form of geothermal energy. Until recently, development of this energy source has been largely focused on understanding the scientific and engineering principles involved in forming and operating HDR reservoirs. During the past year, however, a pilot facility at Fenton Hill, NM has been run under steady-state conditions simulating the operation of a commercial HDR energy plant. Issues important to commercialization such as sustainability of thermal production, water loss, operating costs, and others have been addressed to the extent possible. The results, while not always definitive, have been encouraging. The stage is now set for the formation of an initiative led by private industry to take HDR technology from its current state of scientific and engineering demonstration to the production and marketing of energy in commercial quantities. Because of the technology risks involved, this can probably only be accomplished through a cost-shared industry/government effort. The potential rewards are great, since HDR represents the best, and perhaps the only, opportunity for geothermal energy to take its rightful place as a major energy source for the 21st century

  14. Research on Formation Mechanisms of Hot Dry Rock Resources in China

    Science.gov (United States)

    Wang, G.; Xi, Y.

    2017-12-01

    As an important geothermal resource, hot dry rock(HDR) reserves have been studied in many countries. HDR resources in China have huge capacity and have become one of the most important resources for the potential replacement of fossil fuels. However, HDR resources are difficult to develop and utilise. Technologies for use with HDR, such as high-temperature drilling, reservoir characterisation, reservoir fracturing, microseismic monitoring and high-temperature power stations, originate from the field of oil and drilling. Addressing how to take advantage of these developed technologies is a key factor in the development of HDR reserves. Based on the thermal crustal structure in China, HDR resources can be divided into four types: high radioactive heat production, sedimentary basin, modern volcano and the inner-plate active tectonic belt. The prospective regions of HDR resources are located in South Tibet, West Yunnan, the southeast coast of China, Bohai Rim, Songliao Basin and Guanzhong Basin. The related essential technologies are relatively mature, and the prospect of HDR power generation is promising. Therefore, analysing the formation mechanisms of HDR resources and promoting the transformation of technological achievements, large-scale development and the utilisation of HDR resources can be achieved in China.

  15. Color development and acrylamide content of pre-dried potato chips

    DEFF Research Database (Denmark)

    Pedreschi, Franco; León, Jorge; Mery, Domingo

    2007-01-01

    The objective of this work was to study the development of color formation in pre-dried potato slices during frying and acrylamide formation in the final potato chips. Color measurement was done by using an inexpensive computer vision technique which allowed quantifying representatively...... and precisely the color of complex surfaces such as those of potato chips in L*a*b* units from RGB images. Prior to frying, potato slices (Desiree variety, diameter: 37 mm, width: 2.2 mm) were blanched in hot water at 85 degrees C for 3.5 min. Unblanched slices were considered as the control. Slices of the same...... dimensions were blanched as in the previous step, and then air-dried until reaching a moisture content of 60% (wet basis). These samples were called pre-dried potato slices. Potato slices were fried at 120 degrees C, 140 degrees C, 160 degrees C and 180 degrees C until reaching moisture contents of similar...

  16. Development and demonstration of calculation tool for industrial drying processes ''DryPack''; Udvikling og demonstration af beregningsvaerktoej til industrielle toerreprocesser ''DryPack''

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Weinkauff Kristoffersen, J.; Blazniak Andreasen, M. [Teknologisk Institut, Aarhus (Denmark); Elmegaard, B.; Kaern, M. [Danmarks Tekniske Univ.. DTU Mekanik, Kgs. Lyngby (Denmark); Monrad Andersen, C. [Lokal Energi, Viby J. (Denmark); Grony, K. [SE Big Blue, Kolding (Denmark); Stihoej, A. [Enervision, Kolding (Denmark)

    2013-03-15

    In this project we have developed a calculation tool for calculating energy consumption in different drying processes - primarily drying processes with air. The program can be used to determine the energy consumption of a current drying process, after which it can be calculated how much energy can be saved by various measures. There is also developed a tool for the simulation of a batch drier, which calculates the drying of a batch depending on the time. The programs have demonstrated their usefulness in connection with three cases that are reviewed in the report. In the project measurements on four different dryers have been carried out, and energy consumption is calculated using ''DryPack''. With ''DryPack'' it is possible to find potential savings by optimizing the drying processes. The program package includes utilities for the calculation of moist air: 1) Calculation of the thermodynamic properties of moist air; 2) Device operation with moist air (mixing, heating, cooling and humidification); 3) Calculation of the relative change of the drying time by changing the process parameters; 4) IX-diagram at a temperature above 100 deg. C. (LN)

  17. Architectural approach to the energy performance of buildings in a hot-dry climate with special reference to Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Hamdy, I F

    1986-01-01

    A thesis is presented on the changing approach to architectural design of buildings in a hot, dry climate in view of the increased recognition of the importance of energy efficiency. The thermal performance of buildings in Egypt is used as an example and the nature of the local climate and human requirements are also studied. Other effects on the thermal performance considered include building form, orientation and surrounding conditions. An evaluative computer model is constructed and its applications allow the prediction on the energy performance of changing design parameters.

  18. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    Science.gov (United States)

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Detection of PAX8/PPARG and RET/PTC Rearrangements Is Feasible in Routine Air-Dried Fine Needle Aspiration Smears

    DEFF Research Database (Denmark)

    Ferraz, Carolina; Rehfeld, Christian; Krogdahl, Annelise

    2012-01-01

    Background: The diagnostic limitations of fine needle aspiration (FNA), like the indeterminate category, can be partially overcome by molecular analysis. As PAX8/PPARG and RET/PTC rearrangements have been detected in follicular thyroid carcinomas (FTCs) and papillary thyroid carcinomas (PTCs......), their detection in FNA smears could improve the FNA diagnosis. To date, these rearrangements have never been analyzed in routine air-dried FNA smears, but only in frozen tissue, formalin-fixed paraffin-embedded (FFPE) tissue, and in fresh FNA material. Fixed routine air-dried FNA samples have hitherto been judged...... as generally not suitable for testing these rearrangements in a clinical setting. Therefore, the objective of the present study was to investigate the feasibility of extracting RNA from routine air-dried FNA smears for the detection of these rearrangements with real-time polymerase chain reaction (RT...

  20. International Workshop on Hot Dry Rock. Creation and evaluation of geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-11-04

    At the above-named event which met on November 4 and 5, 1988, a number of essays were presented concerning the fracture system, exploration, evaluation, geophysical measurement application, etc., as developed in the U.S., France, Sweden, Italy, Japan, England, etc. Novel technologies are necessary for a breakthrough in HDR (hot dry rock) exploitation. In the designing of an HDR system, the orientation and dimensions of a fracture to be hydraulically produced have to be appropriately predicted, for which knowledge of rock physical properties and geological structures and the technology of simulating them will be useful. Drilling and geophysical probing of rock mass are some means for fracture observation. Seismometer-aided mapping by AE (acoustic emission) observation is performed while hydraulic fracturing is under way. Upon completion of an HDR circulation system, evaluation of the reservoir by experiment or theory becomes necessary. The heat exchanging area and deposition are estimated using the geochemical data, temperature fall, etc., of the liquid in circulation. If fracture impedance or water loss is out of the designed level, the fracture needs improvement. (NEDO)

  1. Gamma-spectrometric examination of hot particles emitted during the Chernobyl accident

    International Nuclear Information System (INIS)

    Balashazy, I.; Szabadine-Szende, G.; Loerinc, M.; Zombori, P.

    1987-05-01

    Ge(Li) gamma-spectrometric examination of hot particles prepared from air filtered dust of Budapest air after the Chernobyl accident is presented. The method of separating hot particles is described and their concentration in the air is determined. The radioactive isotope composition of hot particles is discussed and compared with that of dust samples. Finally, the inhalation probability and radiation burden of hot particles are evaluated. (author)

  2. Thermal comfort requirements in hot dry regions with special reference to Riyadh Part 2: for Friday prayer

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, S.A.R. [King Saud University, Riyadh (Saudi Arabia). Dept. of Architecture and Building Science

    1996-01-01

    This study is an attempt to define thermal comfort requirements for Friday prayer during the hot season of Riyadh, Saudi Arabia. According to Islam, a Muslim should perform his prayers five times a day. The obligatory five prayers are Subuh prayer immediately before dawn, Thohor prayer in the afternoon, Assor prayer in late afternoon, Maghreb prayer immediately after sunset, and Ishaa prayer early evening. Generally, Muslims are encouraged to perform all five prayers in a mosque. Friday prayer that replaces Thohor prayer once a week, should take place in one of the main mosques of the neighbourhood. The mosque where Friday prayer could be performed is known as Friday mosque. Usually Friday prayer is attended by hundreds of worshippers and takes place in the afternoon. Since the summer of Riyadh is characterised by a very high temperature and a very low relative humidity, the indoor climate of the Friday mosque (Al-Masjed Al-Gamae) need a special study. This is the second part of a series of field investigations dealing with thermal comfort requirements in the hot-dry region of Saudi Arabia. (author)

  3. Glass bead sterilizer comprehensively defeats hot air oven in orthodontic clinic

    Directory of Open Access Journals (Sweden)

    Sanjeev Vasudev Jakati

    2015-01-01

    Full Text Available Background: It is necessary to ′try in′ several bands before the correct one is selected. A possible concern with re-using such bands is the lack of cross-infection control. Aim and Objectives: To determine whether such bands could be successfully decontaminated with Glass bead sterilization so that they could be re-used without a cross-infection risk. Materials: Custom made molar bands were taken and buccal tubes,lingual sheath and lingual cleat were welded under strict aseptic conditions. Methods: Samples were divided into 2 groups i.e. A and B, based on mode for sterilization. Sterilized attachments were placed in each of 2 conical flask. The bacteria spores were inoculated into both flask under strict aseptic conditions. Bacteria Bacillus subtillis and Staphylococcus albus species were allowed to multiply in individual flasks filled with BHI broth for 24 hours. Bands from 1st group were placed in a glass bead sterilizer. For the 2 nd group i.e. hot air oven group, all bands were placed together. After sterilization bands were removed and placed in freshly sterilized 500ml conical flask containing BHI broth for 24 hours in the incubator. The following day randomly 4 attachments were selected from each group and streaked on blood agar culture plates. Results: After sterilization and on further incubation in BHI broth for 24 and 48 hrs. Respectively no growth was seen. Conclusion: 1 hr. of Hot Air Oven sterilization (excluding pre sterilization heat up time and post sterilization cooling time at 190°C is as effective as 3 min of Chair side Glass Bead sterilization.

  4. Laser-light backscattering response to water content and proteolysis in dry-cured ham

    DEFF Research Database (Denmark)

    Fulladosa, E.; Rubio-Celorio, M.; Skytte, Jacob Lercke

    2017-01-01

    on the acquisition conditions used. Laser backscattering was influenced by both dryness and proteolysis intensity showing an average light intensity decrease of 0.2 when decreasing water content (1% weight loss) and increasing proteolysis (equivalent to one-hour enzyme action). However, a decrease of scattering area...... was only detected when the water content was decreased (618 mm(2) per 1% weight loss). Changes on scattering of light profiles were only observed when the water content changed. Although there is a good correlation between water content and LBI parameters when analysing commercial samples, proteolysis...... of laser incidence) and to analyse the laser-light backscattering changes caused by additional hot air drying and proteolysis of dry-cured ham slices. The feasibility of the technology to determine water content and proteolysis (which is related to textural characteristics) of commercial sliced dry...

  5. Modeling of convective drying kinetics of Pistachio kernels in a fixed bed drying system

    Directory of Open Access Journals (Sweden)

    Balbay Asım

    2013-01-01

    Full Text Available Drying kinetics of Pistachio kernels (PKs with initial moisture content of 32.4% (w.b was investigated as a function of drying conditions in a fixed bed drying system. The drying experiments were carried out at different temperatures of drying air (40, 60 and 80°C and air velocities (0.05, 0.075 and 0.1 m/s. Several experiments were performed in terms of mass of PKs (15g and 30g using a constant air velocity of 0.075 m/s. The fit quality of models was evaluated using the determination coefficient (R2, sum square error (SSE and root mean square error (RMSE. Among the selected models, the Midilli et al model was found to be the best models for describing the drying behavior of PKs. The activation energies were calculated as 29.2 kJ/mol and effective diffusivity values were calculated between 1.38 and 4.94x10-10 m2/s depending on air temperatures.

  6. Solar Drying in Hot and Dry Climate of Jaipur

    OpenAIRE

    Parikh, Darshit; Agrawal, G. D.

    2016-01-01

    Objective of the present study was to design, develop and to carry out detail experimentation and then analyze solar cabinet dryer. For these various types of solar dryer, their principles and design methods, modeling, drying temperature, efficiency, utilization of dryer and payback period were reviewed. In the present study, solar cabinet dryer is constructed at Mechanical Engineering Department, M.N.I.T, Jaipur, latitude (26.01° N). The measurement of solar intensity, temperatures, relative...

  7. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves

    Directory of Open Access Journals (Sweden)

    Toong Long Jeng

    2015-12-01

    Full Text Available Caffeoylquinic acid (CQA derivatives are known to possess antioxidative potential and have many beneficial effects on human health. The present study compared the CQA contents and antioxidant activities of aerial parts of sweet potato plants. The effects of drying methods (freeze drying, and drying at 30°C, 70°C, and 100°C on these two parameters of the first fully expanded leaves were also assessed. The results indicated that the CQA derivatives were detectable in leaves, stem, and flowers of sweet potato plants (varied from 39.34 mg/g dry weight to 154.05 mg/g dry weight, with the leaves (particularly expanding and first fully expanded leaves containing more CQA derivatives than other aerial plant parts. The expanding and first fully expanded leaves also exhibited greater antioxidant activities than other aerial plant parts, possibly due to their higher contents of CQA derivatives. Drying method significantly affected the content of CQA derivatives in dried sweet potato leaf tissues. Drying treatments at both 70°C and 100°C significantly reduced the CQA derivative content and antioxidant activity in the first fully expanded leaves. Among the tested drying methods, the freeze-drying method demonstrated the preservation of the highest amount of CQA derivatives (147.84 mg/g and antioxidant property. However, 30°C cool air drying was also a desirable choice (total CQA derivative content was reduced to only 129.52 mg/g, compared to 70°C and 100°C hot air drying, for commercial-scale processing of sweet potato leaves, if the higher operation cost of freeze drying was a major concern.

  8. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    Science.gov (United States)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2013-07-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2-3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

  9. Evaluation of the quality of hot air dehydrated onion coming from gamma radiated bulbs

    International Nuclear Information System (INIS)

    Elman, L.; Pezzutti, A.; Croci, C.A.

    2003-01-01

    The purpose of this work was to evaluate the quality of hot air dehydrated onion, as regards physical and chemical characteristics, coming from the regional product that was gamma irradiated for sprout inhibition. We worked with the onion variety Valenciana Sintetica 14. Radio inhibition was made 30 days post harvest with gamma radiation from a 60 Co source at the Centro Atomico Ezeiza-CNEA, using a dose of 60 Gy. The skin of the bulbs was manually removed and the bulbs were cut in pieces 3 mm thick and between 1 and 3 cm long. The material was dehydrated in a rotating dryer with forced air circulation at 60 C degrees, between 0.8 and 1.7 m/s air speed and at ambient relative humidity. Dehydration was made 80 days after post-irradiation. The quality of the dehydrated onion was evaluated by the following physical- chemical analysis: total solids content, pungency (indirectly measured by pyruvic acid content assessment), color, pH, carbon hydrates and sensorial analysis. All analytical determinations were made in triplicate. The results obtained showed there are no significant changes between the averages of the physical-chemical properties of the control dehydrated samples and those coming from the radio-inhibited raw matter. According to the sensorial analysis, only the color of dehydrated onion was affected by the radio inhibition process. However, and according to the panel members comment, the greatest browning degree observed in ionizing radiation treated onion seemed to result more attractive to them. It may be concluded that radio inhibited regional onion can be useful as raw matter for hot air dehydrated product. It must be remarked that its use would extend the product use by dehydration plants, thus implying an increase of their processing capacity with the corresponding financial benefit. (author)

  10. Development of an Inline Dry Power Inhaler That Requires Low Air Volume.

    Science.gov (United States)

    Farkas, Dale; Hindle, Michael; Longest, P Worth

    2017-12-20

    Inline dry powder inhalers (DPIs) are actuated by an external air source and have distinct advantages for delivering aerosols to infants and children, and to individuals with compromised lung function or who require ventilator support. However, current inline DPIs either perform poorly, are difficult to operate, and/or require large volumes (∼1 L) of air. The objective of this study was to develop and characterize a new inline DPI for aerosolizing spray-dried formulations with powder masses of 10 mg and higher using a dispersion air volume of 10 mL per actuation that is easy to load (capsule-based) and operate. Primary features of the new low air volume (LV) DPIs are fixed hollow capillaries that both pierce the capsule and provide a continuous flow path for air and aerosol passing through the device. Two different configurations were evaluated, which were a straight-through (ST) device, with the inlet and outlet capillaries on opposite ends of the capsule, and a single-sided (SS) device, with both the inlet and outlet capillaries on the same side of the capsule. The devices were operated with five actuations of a 10 mL air syringe using an albuterol sulfate (AS) excipient-enhanced growth (EEG) formulation. Device emptying and aerosol characteristics were evaluated for multiple device outlet configurations. Each device had specific advantages. The best case ST device produced the smallest aerosol [mean mass median aerodynamic diameter (MMAD) = 1.57 μm; fine particle fraction <5 μm (FPF <5μm ) = 95.2%)] but the mean emitted dose (ED) was 61.9%. The best case SS device improved ED (84.8%), but produced a larger aerosol (MMAD = 2.13 μm; FPF <5μm  = 89.3%) that was marginally higher than the initial deaggregation target. The new LV-DPIs produced an acceptable high-quality aerosol with only 10 mL of dispersion air per actuation and were easy to load and operate. This performance should enable application in high and low flow

  11. Microwave-Assisted Drying for the Conservation of Honeybee Pollen

    Directory of Open Access Journals (Sweden)

    Angelo Canale

    2016-05-01

    Full Text Available Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%–30% wt %, thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.

  12. An evaluation of airborne nickel, zinc, and lead exposure at hot dip galvanizing plants.

    Science.gov (United States)

    Verma, D K; Shaw, D S

    1991-12-01

    Industrial hygiene surveys were conducted at three hot dip galvanizing plants to determine occupational exposure to nickel, zinc, and lead. All three plants employed the "dry process" and used 2% nickel, by weight, in their zinc baths. A total of 32 personal and area air samples were taken. The air samples were analyzed for nickel, zinc, and lead. Some samples were also analyzed for various species of nickel (i.e., metallic, soluble, and oxidic). The airborne concentrations observed for nickel and its three species, zinc, and lead at the three plants were all well below the current and proposed threshold limit values recommended by the American Conference of Governmental Industrial Hygienists (ACGIH).

  13. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    (arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, and nickel) in the southern Tucson metropolitan area. A Tucson company that uses beryllium oxide to manufacture thermally conductive ceramics has prompted strong citizen concern. This study found that the study area has good air quality with respect to PM10 and metals, with ambient concentrations meeting US Environmental Protection Agency and World Health Organization standards. Beryllium was detected only once (during a dust storm) and was ascribed to naturally-occurring beryllium in the suspended soil. The third paper (to be submitted to the Journal of Great Lakes Research) studies nitrogen dry deposition over Lake Michigan and Lake Superior. Numerous studies have shown that wet and dry deposition of nitrogen has contributed to the eutrophication of coastal waters and declining productivity of marine fisheries. Nitrogen dry deposition over the Great Lakes themselves, as opposed to the shorelines, has not been documented in the peer-reviewed literature. This paper calculates nitrogen dry deposition over Lake Michigan and Lake Superior, using aircraft measurements from the LADCO Aircraft Study, and finds that over-water, nitrogen dry deposition is a significant source of nitrogen to Lake Michigan and Lake Superior.

  14. DRI Renewable Energy Center (REC) (NV)

    Energy Technology Data Exchange (ETDEWEB)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable

  15. Turbulent transport across an interface between dry and humid air in a stratified environment

    Science.gov (United States)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  16. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans.

    Science.gov (United States)

    Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe

    2017-11-01

    This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Spent fuel treatment to allow storage in air

    International Nuclear Information System (INIS)

    Williams, K.L.

    1988-01-01

    During Fiscal Year 1987 (FY-87), research began at the Idaho National Engineering Laboratory (INEL) to develop a treatment material and process to coat fuel rods in commercial spent fuel assemblies to allow the assemblies to be stored in hot (up to 380 0 C) air without oxidation of the fuel. This research was conducted under a research and development fund provided by the U.S. Department of Energy (DOE) and independently administered by EG and G Idaho, Inc., DOE's prime contractor at the INEL. The objectives of the research were to identify and evaluate possible treatment processes and materials, identify areas of uncertainty, and to recommend the most likely candidate to allow spent fuel dry storage in hot air. The results of the research are described: results were promising and several good candidates were identified, but further research is needed to examine the candidates to the point where comparison is possible

  18. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  19. Simulation of a hot air engine for a generation of electricity using biogas for Tanzania rural application

    International Nuclear Information System (INIS)

    Mkiramweni, L.L.N.; Msaki, P.; Mshoro, I.B.

    2007-01-01

    At the moment, about 80% of the rural population in Tanzania lacks grid electricity. As a result, up to 90% of energy requirements in rural areas are met by firewood and hence causing deforestation. In the present paper, the authors are advocating the application of biogas to generate electricity in rural areas to minimise deforestation. Preliminary study conducted has shown that the power required in rural areas is about 10kW for household and small economic activities. As such, the authors have investigated the possibility of applying a hot air engine using biogas as a source of energy to generate electricity. The study involved simulation of hot air engine using a Stirling Numerical Analysis Program (SNAP) with use modifiable code. In the exercise, the performance of the simulated engine was assessed with helium, hydrogen and air as working media. Reheat loss and pressure losses were also assessed for varies range of engine power and efficiency. It has been observed that with helium and hydrogen as working gas, the power output could easily reach 10kW, which is sufficient for rural household application. However, with air the engine could realise only 4kW under similar conditions. It has further been observed that air has bigger and more viscous molecular with lower thermal conductivity and heat capacity, which results in higher losses. This implies that a relatively bigger engine need be employed for running with air. However, high initial cost will be offset by the reduction in operating cost, since air is freely available. For proper operation of the engine heater temperature should be maintained above 630(deg)C, which is realizable with biogas having a flame temperature of about 870(deg)C. (author)

  20. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  1. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  2. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  3. Effect of process parameters on energy performance of spray drying with exhaust air heat recovery for production of high value particles

    International Nuclear Information System (INIS)

    Julklang, Wittaya; Golman, Boris

    2015-01-01

    Highlights: • We study heat recovery from spray dryer using air-to-air heat exchanger. • We examine dryer energy performance using advanced mathematical model. • We use the response surface methodology to study the effect of process parameters. • Energy efficiency up to 43.3% is obtained at high flow rate of dilute slurry. • Energy saving up to 52.4% is obtained at high drying air temperature. - Abstract: Spray drying process has been widely used in various industries for many decades for production of numerous materials. This paper explores the energy performance of an industrial scale spray dryer equipped with an exhaust air heat recovery system for production of high value particles. Energy efficiency and energy saving were calculated using a comprehensive mathematical model of spray drying. The response surface methodology (RSM) was utilized to study the effect of process parameters on energy performance using a space-filling design. The meta model equations were formulated employing the well-fitted response surface equations with adjusted R 2 larger than 0.995. The energy efficiency as high as 43.3% was obtained at high flow rate of dilute slurry, while the highest energy saving of 52.4% was found by combination of positive effect of drying air temperature and negative effect of slurry mass flow rate. The utilization of efficient air-to-air heat exchanger leads to an increase in energy efficiency and energy savings. The detailed temperature and vapor concentration profiles obtained with the model are also valuable in determining final product quality when spray dryer is operated at energy efficient conditions

  4. Shrinkage and porosity evolution during air-drying of non-cellular food systems: Experimental data versus mathematical modelling.

    Science.gov (United States)

    Nguyen, Thanh Khuong; Khalloufi, Seddik; Mondor, Martin; Ratti, Cristina

    2018-01-01

    In the present work, the impact of glass transition on shrinkage of non-cellular food systems (NCFS) during air-drying will be assessed from experimental data and the interpretation of a 'shrinkage' function involved in a mathematical model. Two NCFS made from a mixture of water/maltodextrin/agar (w/w/w: 1/0.15/0.015) were created out of maltodextrins with dextrose equivalent 19 (MD19) or 36 (MD36). The NCFS made with MD19 had 30°C higher Tg than those with MD36. This information indicated that, during drying, the NCFS with MD19 would pass from rubbery to glassy state sooner than NCFS MD36, for which glass transition only happens close to the end of drying. For the two NCFS, porosity and volume reduction as a function of moisture content were captured with high accuracy when represented by the mathematical models previously developed. No significant differences in porosity and in maximum shrinkage between both samples during drying were observed. As well, no change in the slope of the shrinkage curve as a function of moisture content was perceived. These results indicate that glass transition alone is not a determinant factor in changes of porosity or volume during air-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modification of Cell Wall Polysaccharides during Drying Process Affects Texture Properties of Apple Chips

    Directory of Open Access Journals (Sweden)

    Min Xiao

    2018-01-01

    Full Text Available The influences of hot air drying (AD, medium- and short-wave infrared drying (IR, instant controlled pressure drop drying (DIC, and vacuum freeze drying (FD on cell wall polysaccharide modification were studied, and the relationship between the modifications and texture properties was analyzed. The results showed that the DIC treated apple chips exhibited the highest crispness (92 and excellent honeycomb-like structure among all the dried samples, whereas the FD dried apple chips had low crispness (10, the minimum hardness (17.4 N, and the highest volume ratio (0.76 and rehydration ratio (7.55. Remarkable decreases in the contents of total galacturonic acid and the amounts of water extractable pectin (WEP were found in all the dried apple chips as compared with the fresh materials. The highest retention of WEP fraction (102.7 mg/g AIR was observed in the FD dried apple chips, which may lead to a low structural rigidity and may be partially responsible for the lower hardness of the FD apple chips. In addition, the crispness of the apple chips obtained by DIC treatment, as well as AD and IR at 90°C, was higher than that of the samples obtained from the other drying processes, which might be due to the severe degradation of pectic polysaccharides, considering the results of the amounts of pectic fractions, the molar mass distribution, and concentrations of the WEP fractions. Overall, the data suggested that the modifications of pectic polysaccharides of apple chips, including the amount of the pectic fractions and their structural characteristics and the extent of degradation, significantly affect the texture of apple chips.

  6. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    Science.gov (United States)

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  7. Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves.

    Science.gov (United States)

    Jeng, Toong Long; Lai, Chia Chi; Liao, Ting Chen; Lin, Su Yue; Sung, Jih Min

    2015-12-01

    Caffeoylquinic acid (CQA) derivatives are known to possess antioxidative potential and have many beneficial effects on human health. The present study compared the CQA contents and antioxidant activities of aerial parts of sweet potato plants. The effects of drying methods (freeze drying, and drying at 30°C, 70°C, and 100°C) on these two parameters of the first fully expanded leaves were also assessed. The results indicated that the CQA derivatives were detectable in leaves, stem, and flowers of sweet potato plants (varied from 39.34 mg/g dry weight to 154.05 mg/g dry weight), with the leaves (particularly expanding and first fully expanded leaves) containing more CQA derivatives than other aerial plant parts. The expanding and first fully expanded leaves also exhibited greater antioxidant activities than other aerial plant parts, possibly due to their higher contents of CQA derivatives. Drying method significantly affected the content of CQA derivatives in dried sweet potato leaf tissues. Drying treatments at both 70°C and 100°C significantly reduced the CQA derivative content and antioxidant activity in the first fully expanded leaves. Among the tested drying methods, the freeze-drying method demonstrated the preservation of the highest amount of CQA derivatives (147.84 mg/g) and antioxidant property. However, 30°C cool air drying was also a desirable choice (total CQA derivative content was reduced to only 129.52 mg/g), compared to 70°C and 100°C hot air drying, for commercial-scale processing of sweet potato leaves, if the higher operation cost of freeze drying was a major concern. Copyright © 2014. Published by Elsevier B.V.

  8. Shelf-life of infrared dry-roasted almonds

    Science.gov (United States)

    Infrared heating was recently used to develop a more efficient roasting technology than traditional hot air roasting. Therefore, in this study, we evaluated the shelf-life of almonds roasted with three different approaches, namely infrared [IR], sequential infrared and hot air [SIRHA], and regular h...

  9. Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China

    Directory of Open Access Journals (Sweden)

    Guangzheng Jiang

    2016-10-01

    Full Text Available Development and utilization of deep geothermal resources, especially a hot dry rock (HDR geothermal resource, is beneficial for both economic and environmental consideration in oilfields. This study used data from multiple sources to assess the geothermal energy resource in the Daqing Oilfield. The temperature logs in boreholes (both shallow water wells and deep boreholes and the drilling stem test temperature were used to create isothermal maps in depths. Upon the temperature field and thermophysical parameters of strata, the heat content was calculated by 1 km × 1 km × 0.1 km cells. The result shows that in the southeastern part of Daqing Oilfield, the temperature can reach 150 °C at a depth of 3 km. The heat content within 3–5 km is 24.28 × 1021 J, wherein 68.2% exceeded 150 °C. If the recovery factor was given by 2% and the lower limit of temperature was set to be 150 °C, the most conservative estimate for recoverable HDR geothermal resource was 0.33 × 1021 J. The uncertainties of the estimation are mainly contributed to by the temperature extrapolation and the physical parameter selections.

  10. Contribution of {sup 222}Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China

    Energy Technology Data Exchange (ETDEWEB)

    Song Gang, E-mail: songg2005@126.co [School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Xinming [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Diyun; Chen Yongheng [School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006 (China)

    2011-04-15

    This study investigates the contribution of radon ({sup 222}Rn)-bearing water to indoor {sup 222}Rn in thermal baths. The {sup 222}Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM{sub 10} and PM{sub 2.5}) and carbon dioxide (CO{sub 2}) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m{sup -3} of {sup 222}Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which {sup 222}Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average {sup 222}Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor {sup 222}Rn levels were influenced by the {sup 222}Rn concentrations in the hot spring water and the bathing times. The average {sup 222}Rn transfer coefficients from water to air were 6.2 x 10{sup -4}-4.1 x 10{sup -3}. The 24-h average levels of CO{sub 2} and PM{sub 10} in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM{sub 2.5}. Radon and PM{sub 10} levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. - Highlights: {yields} {sup 222}Rn-bearing water is the main contributor to indoor radon in hot spring hotel. {yields} The PM{sub 2.5} and CO{sub 2} are also the main indoor pollutants in the hotel rooms. {yields} Higher radon and PM levels might have significant negative health effects to human. {yields} The radon transfer coefficients are consistent with the published data.

  11. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  12. Herbal dryer: drying of ginger (zingiber officinale) using tray dryer

    Science.gov (United States)

    Haryanto, B.; Hasibuan, R.; Alexander; Ashari, M.; Ridha, M.

    2018-02-01

    Drying is widely used as a method to preserve food because of its convenience and affordability. Drying of ginger using tray dryer were carried out at various drying conditions, such as air-drying flow, air-drying temperature, and sample dimensions, to achieve the highest drying rate. Samples with various dimensions were placed in the tray dryer and dried using various air-drying flow and temperatures. The weights of samples were observed every 3 minutes interval. Drying was stopped after three times of constant weighing. Data of drying was collected to make the drying curves. Drying curves show that the highest drying rate is achieved using highest air flow and temperature.

  13. Dry air oxidation kinetics of K-Basin spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Buchanan, H.C.; Gerry, W.M.; Gray, W.J.; Marschman, S.C.

    1998-06-01

    The safety and process analyses of the proposed Integrated Process Strategy (IPS) to move the N-Reactor spent nuclear fuel (SNF) stored at K-Basin to an interim storage facility require information about the oxidation behavior of the metallic uranium. Limited experiments have been performed on the oxidation reaction of SNF samples taken from an N-Reactor outer fuel element in various atmospheres. This report discusses studies on the oxidation behavior of SNF using two independent experimental systems: (1) a tube furnace with a flowing gas mixture of 2% oxygen/98% argon; and (2) a thermogravimetric system for dry air oxidation

  14. Herbs drying using a heat pump dryer

    Energy Technology Data Exchange (ETDEWEB)

    Fatouh, M.; Metwally, M.N.; Helali, A.B.; Shedid, M.H. [Department of Mechanical Power Engineering, Faculty of Engineering at El Mattaria, Helwan University, P.O. Box 11718, Masaken El-Helmia, Cairo (Egypt)

    2006-09-15

    In the present work, a heat pump assisted dryer is designed and constructed to investigate the drying characteristics of various herbs experimentally. R134a is used as a working fluid in the heat pump circuit during the experimental work. Experiments have been conducted on Jew's mallow, spearmint and parsley. The effects of herb size, stem presence, surface load, drying air temperature and air velocity on the drying characteristics of Jew's mallow have been predicted. Experimental results show that a high surface load of 28kg/m{sup 2} yields the smallest drying rate, while the drying air with temperature of 55{sup o}C and velocity of 2.7m/s achieves the largest drying rate. A maximum dryer productivity of about 5.4kg/m{sup 2}h is obtained at the air temperature of 55{sup o}C, air velocity of 2.7m/s and dryer surface load of 28kg/m{sup 2}. It was found that small size herbs without stem need low specific energy consumption and low drying time. Comparison of the drying characteristics of different herbs revealed that parsley requires the lowest specific energy consumption (3684kJ/kg{sub H{sub 2}O}) followed by spearmint (3982kJ/kg{sub H{sub 2}O}) and Jew's mallow (4029kJ/kg{sub H{sub 2}O}). Finally, dryer productivity has been correlated in terms of surface load, drying air velocity and drying air temperature. (author)

  15. Air cooling of refrigerating loops: 'dry-hybrid' systems; Refroidissement par air des circuits frigorifiques: les systemes ''secs hybrides''

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W. [Societe Jaggi-Gunter (Switzerland)

    2003-02-01

    Different type of cooling systems can be implemented on coldness production plants. The choice very often depends on the initial investment, but from a technical and economical point of view, this choice is not necessary the best solution. Thus, it can be useful to know the different existing systems and their exploitation costs with respect to the expected needs. A particular solution which uses a 'dry-hybrid' cooler is presented in this study: 1 - open-loop evaporative cooler; 2 - open-loop evaporative cooler with intermediate exchanger; 3 - close-loop evaporative cooler; 4 - dry-cooler; 5 - dry cooler with spraying in the air flow way; 6 - dry cooler with counterflow spraying; 7 - hybrid dry cooler; 8 - example of a realization in Germany: technical and economical value of the project, description of compared solutions and hypotheses, interpretation of results. (J.S.)

  16. Effect mechanism of air deflectors on the cooling performance of dry cooling tower with vertical delta radiators under crosswind

    International Nuclear Information System (INIS)

    Zhao, Yuanbin; Long, Guoqing; Sun, Fengzhong; Li, Yan; Zhang, Cuijiao; Liu, Jiabin

    2015-01-01

    Highlights: • A 3D numerical model was set for NDDCTV to study the effect of air deflectors. • The air deflectors improve the tower performance by 1.375 °C at u c = 6 m/s for a case. • The air deflectors reduce the air inflow deviation angle θ d at most delta entries. • The reduced θ d can improve the cooling performance of former deteriorated columns. • Both the radial inflow air velocity and θ d impact the cooling performance of delta. - Abstract: To study the effect mechanism of air deflectors on dry cooling tower, a three dimensional numerical model was established, with full consideration of the delta structure. The accuracy and credibility of dry cooling tower numerical model were validated. By numerical model, the average air static pressure and the average radial inflow air velocity were computed and analyzed at delta air entry, sector air entry and exit faces. By the air inflow deviation angle θ d , the effect of air deflectors on the aerodynamic field around tower was analyzed. The water exit temperatures of θ −1 columns, θ +2 columns and cooling sectors were also presented to clarify the effect of air deflectors. It was found that the air deflectors improved the aerodynamic field around cooling columns. The reduced air inflow deviation degree at delta entry improved the cooling performance of deteriorated columns. Referring to the radial inflow air velocity u ra and the air inflow deviation degree at delta entry, the effect mechanism of air deflectors are clarified under crosswind

  17. Effect of Hot Water Blanching Time and Drying Temperature on the Thin Layer Drying Kinetics of and Anthocyanin Degradation in Black Carrot (Daucus carota L. Shreds

    Directory of Open Access Journals (Sweden)

    Umar Garba

    2015-01-01

    Full Text Available This study was conducted to investigate the eff ect of blanching treatment (98 °C for 3 and 6 min and air drying temperature of 40, 50 and 60 °C on the thin layer drying characteristics such as drying time, drying rate constant, effective moisture diffusivity and activation energy, as well as on anthocyanin content of black carrot shreds. It was observed that drying temperature aff ected the drying rate but blanching did not have an eff ect on drying time. Three thin layer drying models, i.e. Page, Lewis and Henderson-Pabis were evaluated. The goodness of these models was evaluated based on the coefficient of determination (R2, root mean square error, reduced chi square (χ2 and standard error. Page model showed the best fit to the drying data. The effective diffusivity ranges of 1.4·10–9 to 2.6·10–9 m2/s, 1.3·10–9 to 2.1·10–9 m2/s and 1.5·10–9 to 2.2·10–9 m2/s aft er 3 or 6 min of blanching and control samples respectively were calculated using Fick’s second law. The activation energy of 37.5, 26.0 and 34.6 kJ/(mol·K of the control samples and samples blanched for 3 or 6 min respectively was determined from the Arrhenius plot. The blanching treatment affected the anthocyanin content to a great extent. The anthocyanin content of (231.7±2.9 and (278.8±7.8 mg per 100 g was recorded in samples blanched for 3 and 6 min and then dried at 60 °C, and (153.0±4.3 and (247.0±5.5 mg per 100 g was recorded at 40 °C as compared to the control of (580.1±1.3 at 60 °C and (466.7±1.1 mg per 100 g at 40 °C.

  18. Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique

    Science.gov (United States)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.

  19. The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in Hot Dry Climate

    Directory of Open Access Journals (Sweden)

    Sahar eZahiri

    2016-03-01

    Full Text Available This paper describes a series of field studies and simulation analysis to improve the thermal performance of school buildings in the city of Tehran in Iran during warm season. The field studies used on-site measurement and questionnaire-based survey in the warm spring season in a typical female secondary school building. The on-site monitoring assessed the indoor air temperature and humidity levels of six classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, thermal simulation analysis was also carried out to evaluate and improve the thermal performance of the classrooms based on the students’ thermal requirements and passive design strategies. In this study, the environmental design guidelines for female secondary school buildings were introduced for the hot and dry climate of Tehran, using passive design strategies. The study shows that the application of passive design strategies including south and south-east orientation, 10cm thermal insulation in wall and 5cm in the roof, and the combination of 30cm side fins and overhangs as a solar shading devices, as well as all-day ventilation strategy and the use of thermal mass materials with 25cm-30cm thickness, has considerable impact on indoor air temperatures in warm season in Tehran and keeps the indoor environment in an acceptable thermal condition. The results of the field studies also indicated that most of the occupants found their thermal environment not to be comfortable and the simulation results showed that passive design techniques had a significant influence on the indoor air temperature and can keep it in an acceptable range based on the female students’ thermal requirement. Therefore, in order to enhance the indoor environment and to increase the learning performance of the students, it is necessary to use the appropriate passive design strategies, which also reduce the need for mechanical systems and

  20. Hot-pressing steatite bodies

    International Nuclear Information System (INIS)

    Aparicio Arroyo, E.

    1967-01-01

    Requirements for some special nuclear engineering ceramic shapes are: big size, impervious, dimensional accuracy and good mechanical and dielectric properties. Limitations of te conventional methods and advantages of te hot pressing techniques for the manufacturing of these shapes are discussed. Hot pressing characteristics of a certain steatite powder are studied. Occurrence of an optimum densification temperature just above the tale decomposition range is found. Experimental data show that the height/diameter ratio of the specimen has no effect on the sintering conditions. Increasing darkness from the graphite mould is detected above the optimum temperature. The hot-pressed steatite is compared with a fired dry-pressed sample of the same composition. (Author) 13 refs

  1. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    Science.gov (United States)

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-03-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK "hot dry rock" experimental geothermal site (Rosemanowes, Cornwall). We quantify the evolution of several metrics used to characterise induced seismicity, including the seismic strain partition factor and the "seismogenic index". The results show a low strain partition factor of 0.01% and a low seismogenenic index indicating that aseismic processes dominate. We also analyse the spatio-temporal distribution of hypocentres, using simple models for the evolution of hydraulic diffusivity by (a) isotropic and (b) anisotropic pore-pressure relaxation. The principal axes of the diffusivity or permeability tensor inferred from the spatial distribution of earthquake foci are aligned parallel to the present-day stress field, although the maximum permeability is vertical, whereas the maximum principal stress is horizontal. Our results are consistent with a triggering mechanism that involves (a) seismic shear slip along optimally-oriented pre-existing fractures, (b) a large component of aseismic slip with creep (c) activation of tensile fractures as hydraulic conduits created by both the present-day stress field and by the induced shear slip, both exploiting pre-existing joint sets exposed in borehole data.

  2. A computer code for the prediction of mill gases and hot air distribution between burners sections as input parameters for 3D CFD furnace calculation

    International Nuclear Information System (INIS)

    Tucakovic, Dragan; Zivanovic, Titoslav; Beloshevic, Srdjan

    2006-01-01

    Current computer technology development enables application of powerful software packages that can provide a reliable insight into real operating conditions of a steam boiler in the Thermal Power Plant. Namely, an application of CFD code to the 3D analysis of combustion and heat transfer in a furnace provides temperature, velocity and concentration fields in both cross sectional and longitudinal planes of the observed furnace. In order to obtain reliable analytical results, which corresponds to real furnace conditions, it is necessary to accurately predict a distribution of mill gases and hot air between burners' sections, because these parameters are input values for the furnace 3D calculation. Regarding these tasks, the computer code for the prediction of mill gases and hot air distribution has been developed at the Department for steam boilers of the Faculty of Mechanical Engineering in Belgrade. The code is based on simultaneous calculations of material and heat balances for fan mill and air tracts. The aim of this paper is to present a methodology of performed calculations and results obtained for the steam boiler furnace of 350 MWe Thermal Power Plant equipped with eight fan mills. Key words: mill gases, hot air, aerodynamic calculation, air tract, mill tract.

  3. Advanced air detritiation dryer

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The isotopic exchange principle has proved effective in increasing air detritiation factors of atmospheric dryers. A CFFTP/AECL Chalk River program has demonstrated detritiation factors of 100,000 in trials. The technology is designed for application on regenerating atmospheric dryers using molecular sieve desiccant beds, used in rooms likely to encounter airborne tritium contamination. Dryer design concepts for dryers at JET (Joint European Torus, England) and ITER have been prepared by Alan Dombra of AECL, using the isotopic exchange technology. The isotopic exchange method works by passing tritiated air over a detritiated desiccant bed. Airborne tritium atoms are exchanged in the bed for ordinary hydrogen atoms from the bed's residual moisture loading. Tritium remains on the bed until it is discharged in a regeneration cycle. During regeneration, the desiccant bed is first heated with hot, dry air to drive off collected tritiated moisture. Airborne tritium removed from the air is collected as a tritiated water distillate and stored for later processing. During the second part of the regeneration cycle, the desiccant bed is washed with clean moist air to elute remaining traces of tritium and to refresh the bed to ready it for another tritium absorption period

  4. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    Science.gov (United States)

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  5. Physical properties of sunflower grains after drying

    Directory of Open Access Journals (Sweden)

    Paulo Carteri Coradi

    2015-12-01

    Full Text Available The knowledge of the physical properties of the grains is important for the optimization of post-harvest operations. This study aimed to evaluate the effects of convective drying with different air temperatures (45, 55, 65 and 75 °C the physical properties of sunflower seeds. The drying sunflower grains was performed in convection oven with forced air. In natural conditions, samples of 5 kg of pellets were used for each repetition drying. During the drying process, the grains samples were weighed periodically until they reach 10% (wet basis, w.b., then were subjected to evaluations of physical properties. According to the results it was observed that the porosity, apparent density, thousand kernel weight to the drag coefficient, roundness, sphericity and width of sunflower seed did not change with increasing temperature drying air. It was concluded that the drying air temperatures of 45 °C and 55 retained the initial physical characteristics of sunflower seeds. The temperature of the drying air of 75 °C had greater influence on changes in volumetric shrinkage of the grains.

  6. Serum biochemical activities and muscular soreness in transported goats administered with ascorbic acid during the hot-dry season

    Directory of Open Access Journals (Sweden)

    Ndazo S Minka

    2010-12-01

    Full Text Available The effects of handling, loading and 12 h of road transportation during the hot-dry season on muscular metabolism of 20 experimental goats administered orally with 100 mg/kg body weight of ascorbic acid (AA dissolved in 10 ml of sterile water, and other 20 control goats given equivalent of sterile water 40 min prior to transportation were investigated. The result obtained post-transportation showed that handling, loading and transportation were stressful to the goats, especially the control goats and resulted into muscular damage and the development of delayed-onset-muscular-soreness (DOMS, which may lead to dark-firm-dry (DFD syndrome meat with undesirable effects on its quality. In the experimental goats administered AA such transportation effects were minimal or completely abolished. The result demonstrated that AA reduced the incidence of DOMS and muscular damage in transported goats, therefore it may be used to improve the welfare and quality of meat obtained from goats subjected to long period of road transportation under adverse climatic conditions.

  7. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    Science.gov (United States)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  8. 40 CFR 68.85 - Hot work permit.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner or operator shall issue a hot work permit for hot work operations conducted on or near a covered process. (b...

  9. Daily efficiency of flat-plate solar air collectors for grain drying

    Energy Technology Data Exchange (ETDEWEB)

    Ting, K.C.; Shove, G.C.

    1983-01-01

    Single cover flat-plate solar collectors incorporated into walls and roofs of farm buildings have been used to heat ambient air for low temperature grain drying systems. Large surface area and high airflow rate are common features of these collectors. The drying period may range from several days to several weeks. Therefore, a knowledge of the variations of the collectors' daily efficiencies with respect to their design parameters would be helpful in applying solar collectors to grain drying. The objective of this study was to develop a simpler means of direct calculation of a collector's daily efficiency based on its design parameters. Many factors, such as configuration of the collector, airflow rate, weather conditions, etc. will affect the performance of solar collectors. A large number of varied conditions need to be tested in order to investigate the effect of different parameters on the collector performance. To facilitate this investigation, a computer simulation model developed by Ting was used to calculate the daily efficiencies of collectors under different operating conditions. The computer model was verified by Morrison's experimental data. Based on the simulation results, a functional relationship was developed between the daily efficiencies of collectors and their design parameters.

  10. Effective moisture diffusivity, moisture sorption, thermo-physical properties and infrared drying kinetics of germinated paddy

    Directory of Open Access Journals (Sweden)

    Supawan Tirawanichakul

    2014-02-01

    Full Text Available Temperature and relative humidity (RH dependence of moisture sorption phenomena for agricultural products provide valuable information related to the thermodynamics of the system. So the equilibrium moisture contents (EMC, effective moisture diffusivity (Deff and thermo-physical properties in terms of void fraction, specific heat capacity, and the apparent density of germinated non-waxy Suphanburi 1 paddy were evaluated. Five commonly cited EMC equations were fitted to the experimental data among temperatures of 40-60°C correlating with RH of 0-90%. The results showed that the modified GAB equation was the best function for describing experimental results while those evaluated thermo-physical properties depended on moisture content. To determine drying kinetics model, the simulated values using Midilli et al. (2002 model and Page’s model was the best fitting to exact drying kinetics values for infrared (IR and hot air (HA drying, respectively. Finally, the Deff value of paddy dried with IR and HA sources were also evaluated and the calculated Deff value of both HA and IR drying was in order of 10-9 m2/s.

  11. Comparison of dehumidification and heat and vent drying of hem-fir softwood

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, J F.G.; Nielson, R W

    1988-03-01

    The objective of this project was to demonstrate the performance of dehumidifier kilns, compared to gas-fired, hot-air kilns in drying a commercial grade of softwood lumber. To accomplish this, drying tests were conducted with matched loads of lumber in a new test facility which was constructed to operate as a conventional heat and vent kiln or as a dehumidifier kiln. Comparisons were made of drying times, shrinkage and quality of dried product and total drying energy consumptions. Data from these tests were used in conjunction with capital, energy and other costs obtained from suppliers and operators of existing kilns to make economic comparisons between commercial-sized dehumidifier and heat and vent kilns. These comparisons were made on the basis of equivalent uniform annual costs. Dehumidification drying took about 20% longer and used about 50% of energy compared to heat and vent drying. Analysis of the test runs indicated that further improvements in the energy utilization efficiencies of dehumidifier kilns are feasible since one run indicated an energy consumption of only 36% of that in heat and vent drying. No differences in shrinkage or degrade were apparent. Economic comparisons for three sizes of kilns showed total drying costs by dehumidification to be less for a small-size kiln but more for medium- and large-size operations. Sensitivity analyses were performed to observe the effect of alternate energy prices, dehumidifier energy consumptions, dehumidifier drying times, building costs and degrade. 9 refs., 7 figs., 36 tabs.

  12. Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer.

    Science.gov (United States)

    El-Mesery, Hany S; Mwithiga, Gikuru

    2015-05-01

    A conveyor-belt dryer was developed using a combined infrared and hot air heating system that can be used in the drying of fruits and vegetables. The drying system having two chambers was fitted with infrared radiation heaters and through-flow hot air was provided from a convective heating system. The system was designed to operate under either infrared radiation and cold air (IR-CA) settings of 2000 W/m(2) with forced ambient air at 30 °C and air flow of 0.6 m/s or combined infrared and hot air convection (IR-HA) dryer setting with infrared intensity set at 2000 W/m(2) and hot at 60 °C being blown through the dryer at a velocity of 0.6 m/s or hot air convection (HA) at an air temperature of 60 °C and air flow velocity 0.6 m/s but without infrared heating. Apple slices dried under the different dryer settings were evaluated for quality and energy requirements. It was found that drying of apple (Golden Delicious) slices took place in the falling rate drying period and no constant rate period of drying was observed under any of the test conditions. The IR-HA setting was 57.5 and 39.1 % faster than IR-CA and HA setting, respectively. Specific energy consumption was lower and thermal efficiency was higher for the IR-HA setting when compared to both IR-CA and HA settings. The rehydration ratio, shrinkage and colour properties of apples dried under IR-HA conditions were better than for either IR-CA or HA.

  13. Atmospheric properties measurements and data collection from a hot-air balloon

    Science.gov (United States)

    Watson, Steven M.; Olson, N.; Dalley, R. P.; Bone, W. J.; Kroutil, Robert T.; Herr, Kenneth C.; Hall, Jeff L.; Schere, G. J.; Polak, M. L.; Wilkerson, Thomas D.; Bodrero, Dennis M.; Borys, R. O.; Lowenthal, D.

    1995-02-01

    Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various atmospheric measurements and remote sensing tasks. We have been performing experiments in these areas since the winter of 1993. These platforms are extremely inexpensive to operate, do not cause disturbances such as prop wash and high airspeeds, and have substantial payload lifting and altitude capabilities. The equipment operated and tested on the balloons included FTIR spectrometers, multi-spectral imaging spectrometer, PM10 Beta attenuation monitor, mid- and far-infrared cameras, a radiometer, video recording equipment, ozone meter, condensation nuclei counter, aerodynamic particle sizer with associated computer equipment, a tethersonde and a 2.9 kW portable generator providing power to the equipment. Carbon monoxide and ozone concentration data and particle concentrations and size distributions were collected as functions of altitude in a wintertime inversion layer at Logan, Utah and summertime conditions in Salt Lake City, Utah and surrounding areas. Various FTIR spectrometers have been flown to characterize chemical plumes emitted from a simulated industrial stack. We also flew the balloon into diesel and fog oil smokes generated by U.S. Army and U.S. Air Force turbine generators to obtain particle size distributions.

  14. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  15. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  16. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y; Osuga, M; Yamauchi, T [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  17. Convective drying of chilies using a concentrating solar collector

    International Nuclear Information System (INIS)

    Hanif, M.; Khattak, M.K.; Aamir, M.

    2015-01-01

    A concentrating solar collector was developed for convective drying of green chilies by providing optimum drying environment. A temperature in the range of 45-65 degree C and relative humidity of less than 10% was observed during the drying period provided by the solar collector from 9.00 am to 5.00 pm. Different levels of drying temperature and air mass flow rates were tested to find their effect on drying time of the chilies. The experiment was laid out as a randomized complete block design with a factorial arrangement of the treatments consisting of 3 levels of temperature and 3 levels of air mass flow rate, replicated 3 times. Drying temperature and air mass flow rates effected the drying time significantly. The means comparison showed that minimum drying time of 17.96 h was recorded at high temperature of 65 degree C followed by a drying time of 20.27 and 21.43 h at temperatures of 55 and 45 degree C. The means of air mass flow rates showed that minimum drying time of 18.49 h was noted at high air mass flow rate of 3.50 kg min-1 followed by 20.32 and 20.86 h at air mass flow rates of 1.5 and 2.30 kg min-l. Chilies dried at temperature of 65 degree C and air mass flow rate of 3.5 kg min-1 showed an average drying rate of 0.02 g(H20)hrl cm-2as compared to the slow drying rates at 55 and 45 degree C. It was concluded that chilies must be dried at high temperature and high air mass flow rates to get on time quality dried chilies. (author)

  18. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    Science.gov (United States)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  19. Supply of dry ambient air in Alstroemenia. Test on the impact of the supply of dry ambient air on the microclimate and crops in alstroemeria; Droge buitenlucht toevoeren in Alstroemeria. Praktijkproef naar de invloed van droge buitenlucht toevoeren op microklimaat en gewas in alstroemeria

    Energy Technology Data Exchange (ETDEWEB)

    Van der Helm, F.; Van Weel, P.; Raaphorst, M.

    2012-08-15

    After one year of dry air distribution in Alstroemeria it is shown that it can effectively lower the vapour deficit between the leaves. It resulted in a decrease of leaf tip damage of 70% compared to the reference, but not to a decrease of spontaneously broken stems. The research is conducted in practice at Hoogenboom Alstroemeria on 1000 m{sup 2} within a larger greenhouse compartment planted with the variety 'Primadonna'. Wageningen UR has conducted the research with an air distribution system of 8 m{sup 3}/m{sup 2} from supplier Lekhabo. The dry air was distributed in the crop by two transparent air tubes. Climate could not be controlled in the research area separate from the reference, therefore more dry air was required than expected, which is contradictive with energy saving. Growers that want to use dry air to either to prevent leaf tips or to save energy will have to find a balance between these two benefits that partly contradict. Both advantages are required to make the investment profitable. It is calculated that nurseries with a relatively small heat and power cogeneration and greenhouses that are already equipped with a second screen can probably profitably invest in a simple and small capacity dry air distribution system [Dutch] Na ruim een jaar opgewarmde buitenlucht toevoeren in Alstroemeria is duidelijk geworden dat hiermee effectief het vocht deficit tussen het gewas verlaagd kan worden. Dit leidde in dit onderzoek tot een afname van vochtblaadjes van 70%, maar niet tot minder afgroeiers. De proef is uitgevoerd in 1000 m{sup 2} binnen een afdeling met het ras Primadonna bij het bedrijf Hoogenboom alstroemeria in Nieuwe Wetering. De proef is door Wageningen UR glastuinbouw uitgevoerd met een installatie voor aanvoer van 8m{sup 3}/m{sup 2} per uur lucht door twee slurven aan de zijkant van het bed. In de proefomgeving kon het klimaat niet apart geregeld worden op het toevoeren van buitenlucht. Hierdoor is steeds relatief veel buitenlucht

  20. Environmental monitoring for the hot dry rock geothermal energy development project. Annual report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Pettitt, R.A. (comp.)

    1976-09-01

    The objectives of this environmental monitoring report are to provide a brief conceptual and historical summary of the Hot Dry Rock Geothermal Project, a brief overview of the environmental monitoring responsibilities and activities of the Los Alamos Scientific Laboratory, and descriptions of the studies, problems, and results obtained from the various monitoring programs. Included are descriptions of the work that has been done in three major monitoring areas: (1) water quality, both surface and subsurface; (2) seismicity, with a discussion of the monitoring strategy of regional, local, and close-in detection networks; and (3) climatology. The purpose of these programs is to record baseline data, define potential effects from the project activities, and determine and record any impacts that may occur.

  1. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.)

    International Nuclear Information System (INIS)

    Doymaz, İbrahim

    2012-01-01

    Highlights: ► In this study, convective drying (50–70 °C) was applied as a preservation technology for persimmon slices. ► The highest drying and rehydration rates obtained with blanched slices. ► The Midilli et al., Page and Weibull models were determined as the suitable models. ► Effective moisture diffusivity, diffusivity constant and activation energy for drying process were determined. - Abstract: The effect of blanching and drying temperature (50, 60 and 70 °C) on drying kinetics and rehydration ratio of persimmons under hot-air drying was investigated. It was observed that both the drying temperature and blanching affected the drying time. The shortest drying times and highest rehydration ratios were obtained from blanched samples. Six thin-layer drying models were evaluated in the kinetics research. The fit quality of the proposed models was evaluated by using the determination of coefficient (R 2 ), reduced chi-square (χ 2 ) and root means square error (RMSE). The Midilli et al., Page and Weibull models showed a better fit to experimental drying data as compared to other models. Effective moisture diffusivity (D eff ) ranged from 7.05 × 10 −11 to 2.34 × 10 −10 m 2 /s calculated using the Fick’s second law. The activation energies of blanched and control samples determined from slope of the Arrhenius plot, ln(D eff ) versus 1/(T + 273.15), was 30.64 and 43.26 kJ/mol, respectively.

  2. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.

  3. Shrinkage modeling of concrete reinforced by palm fibres in hot dry environments

    Science.gov (United States)

    Akchiche, Hamida; Kriker, Abdelouahed

    2017-02-01

    The cement materials, such as concrete and conventional mortar present very little resistance to traction and cracking, these hydraulic materials which induces large withdrawals on materials and cracks in structures. The hot dry environments such as: the Saharan regions of Algeria, Indeed, concrete structures in these regions are very fragile, and present high shrinkage. Strengthening of these materials by fibers can provide technical solutions for improving the mechanical performance. The aim of this study is firstly, to reduce the shrinkage of conventional concrete with its reinforcement with date palm fibers. In fact, Algeria has an extraordinary resources in natural fibers (from Palm, Abaca, Hemp) but without valorization in practical areas, especially in building materials. Secondly, to model the shrinkage behavior of concrete was reinforced by date palm fibers. In the literature, several models for still fiber concrete were founded but few are offers for natural fiber concretes. To do so, a still fiber concretes model of YOUNG - CHERN was used. According to the results, a reduction of shrinkage with reinforcement by date palm fibers was showed. A good ability of molding of shrinkage of date palm reinforced concrete with YOUNG - CHERN Modified model was obtained. In fact, a good correlation between experimental data and the model data was recorded.

  4. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    Science.gov (United States)

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  5. NSGA-II Algorithm with a Local Search Strategy for Multiobjective Optimal Design of Dry-Type Air-Core Reactor

    Directory of Open Access Journals (Sweden)

    Chengfen Zhang

    2015-01-01

    Full Text Available Dry-type air-core reactor is now widely applied in electrical power distribution systems, for which the optimization design is a crucial issue. In the optimization design problem of dry-type air-core reactor, the objectives of minimizing the production cost and minimizing the operation cost are both important. In this paper, a multiobjective optimal model is established considering simultaneously the two objectives of minimizing the production cost and minimizing the operation cost. To solve the multi-objective optimization problem, a memetic evolutionary algorithm is proposed, which combines elitist nondominated sorting genetic algorithm version II (NSGA-II with a local search strategy based on the covariance matrix adaptation evolution strategy (CMA-ES. NSGA-II can provide decision maker with flexible choices among the different trade-off solutions, while the local-search strategy, which is applied to nondominated individuals randomly selected from the current population in a given generation and quantity, can accelerate the convergence speed. Furthermore, another modification is that an external archive is set in the proposed algorithm for increasing the evolutionary efficiency. The proposed algorithm is tested on a dry-type air-core reactor made of rectangular cross-section litz-wire. Simulation results show that the proposed algorithm has high efficiency and it converges to a better Pareto front.

  6. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    Science.gov (United States)

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-01-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.

  7. Effect of Drying Temperature on Rosmarinic Acid and Sinensetin Concentration in Orthosiphon stamineus Herbal Leaves

    Science.gov (United States)

    Abdullah, Sriyana; Razak Shaari, Abdul; Hajar Rukunudin, Ibni; Syarhabil Ahmad, Muhammad

    2018-03-01

    The objective of this work was to investigate the effects of drying temperature on the concentration of O rthosiphon stamineus biomarker compounds which were rosmarinic acid (RA) and sinensetin (SEN). The thin layer drying approach was used to dry O. stamineus leaves at various temperatures of 30, 40 and 50°C using a laboratory scale hot air dryer. The dried leaves were then extracted using 60% aqueous methanol prior to quantification. The RA and SEN concentrations in the dried leaves extracts were quantified by the high performance liquid chromatography. The concentration of RA for the dried leaves at 30 and 40°C were higher as compared to that of the fresh leaves. This may due to the response of the plant cells to abiotic stress. The concentration of RA also showed a significant reduction when the temperature was increased to 50°C. In contrast, the SEN concentration in O. stamineus dried leaf extract was lower than that of the fresh samples. The concentrations of SEN depicted insignificant effects by drying at 30 and 50°C, and the highest value was obtained in the samples dried at 40°C. Results showed that the drying process was found to affect the concentration of both compounds; therefore suitable drying conditions should be adopted to enhance the medicinal values of the plant species.

  8. A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine.

    Science.gov (United States)

    Mahmah, Osama; Tabbakh, Rami; Kelly, Adrian; Paradkar, Anant

    2014-02-01

    To compare the properties of solid dispersions of felodipine for oral bioavailability enhancement using two different polymers, polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), by hot-melt extrusion (HME) and spray drying. Felodipine solid dispersions were prepared by HME and spray drying techniques. PVP and HPMCAS were used as polymer matrices at different drug : polymer ratios (1 : 1, 1 : 2 and 1 : 3). Detailed characterization was performed using differential scanning calorimetry, powder X-ray diffractometry, scanning electron microscopy and in-vitro dissolution testing. Dissolution profiles were evaluated in the presence of sodium dodecyl sulphate. Stability of different solid dispersions was studied under accelerated conditions (40°C/75% RH) over 8 weeks. Spray-dried formulations were found to release felodipine faster than melt extruded formulations for both polymer matrices. Solid dispersions containing HMPCAS exhibited higher drug release rates and better wettability than those produced with a PVP matrix. No significant differences in stability were observed except with HPMCAS at a 1 : 1 ratio, where crystallization was detected in spray-dried formulations. Solid dispersions of felodipine produced by spray drying exhibited more rapid drug release than corresponding melt extruded formulations, although in some cases improved stability was observed for melt extruded formulations. © 2013 Royal Pharmaceutical Society.

  9. A method of exploration of the atmosphere of Titan. [hot air balloon heated by solar radiation or planetary thermal flux

    Science.gov (United States)

    Blamont, J.

    1978-01-01

    A hot-air balloon, with the air heated by natural sources, is described. Buoyancy is accomplished by either solar heating or by utilizing the IR thermal flux of the planet to heat the gas in the balloon. Altitude control is provided by a valve which is opened and closed by a barometer. The balloon is made of an organic material which has to absorb radiant energy and to emit as little as possible.

  10. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    Science.gov (United States)

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  11. Drying of building lumber

    Energy Technology Data Exchange (ETDEWEB)

    Washimi, Hiroshi

    1988-08-20

    Dried lumber is classified into air dried and kiln-dried lumber. The water content of kiln-dried lumber is specified by the Japan Agricultural Standards. However, since building lumber varies in such factors as the location where it was growing, species and shape, the standards, though relaxed, are not being observed. In fact, lumbered products which are not ''Kiln-dried'' frequently bear ''kiln-dried lumber'' marks. In an attempt to correct the situation, the Forestry Agency has set up voluntary standards, but problems still remain. The conventional drying method consists of first subjecting the lumber to optimum drying, then letting bending and deformations to freely and fully appear, and follow this with corrective sawing to produce planks straight from end to end. Compared with air dried lumber in terms of moisture content, kiln-dried lumber remains much with same with minimal shrinkage and expansion. For oil-containing resin, such normal treatments as drying by heating, steaming and boiling seem to be quite effective. Kiln drying, which is becoming more and more important with changes in the circulation system, consists of the steaming-drying-heating method and the dehumidizing type drying method. The major factor which determines the drying cost is the number of days required for drying, which depends largely on the kind of lumber and moisture content. The Forestry Angency is promoting production of defoiled lumber. (2 figs, 2 tables)

  12. Two-dimensional mathematical model for simulation of the drying process of thick layers of natural materials in a conveyor-belt dryer

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2017-01-01

    Full Text Available This paper presents the mathematical model and numerical analysis of the convective drying process of thick slices of colloidal capillary-porous materials slowly moving through conveyor-belt dryer. A flow of hot moist air was used as drying agent. The drying process has been analyzed in the form of a 2-D mathematical model, in two directions: along the conveyor and perpendicular on it. The mathematical model consists of two non-linear differential equations and one equation with a transcendent character and it is based on the mathematical model developed for drying process in a form of a 1-D thin layer. The appropriate boundary conditions were introduced. The presented model is suitable for the automated control of conveyor-belt dryers. The obtained results with analysis could be useful in predicting the drying kinetics of potato slices and similar natural products.

  13. Effect of hot-boned pork on the keeping quality of fresh pork sausage.

    Science.gov (United States)

    Guerrero Legarreta, I; Usborne, W R; Ashton, G C

    1987-01-01

    The first experiment evaluated the effect of solid carbon dioxide (dry ice) addition to hot-boned meat, in different proportions, upon the keeping quality of fresh pork sausage patties. Dry ice had some negative effects at levels of 20% to 40%, such as hardening and colour fading of samples, although it increased water-holding capacity of the sausage. In the second experiment three proportions of hot-boned meat and chilled meat were evaluated as a means to extend the retail storage time of fresh pork sausage links. Hot-boned pork was treated by three methods: freezing the meat before grinding, salting and freezing, and salting plus dry ice addition. The results favoured the use of 50% hot-boned meat and 50% chilled meat, for which the lowest hardness and oxidation values were obtained. Microbial counts and hue values showed no significant variation among the three treatments. Salting and freezing hot-boned meat before grinding was the method which produced the best overall quality. Copyright © 1987. Published by Elsevier Ltd.

  14. Hot chocolate effect

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1982-01-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments

  15. Progress of the LASL dry hot rock geothermal energy project

    Science.gov (United States)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  16. Convective Drying of Osmo-Treated Abalone (Haliotis rufescens Slices: Diffusion, Modeling, and Quality Features

    Directory of Open Access Journals (Sweden)

    Roberto Lemus-Mondaca

    2018-01-01

    Full Text Available The focus of this research was based on the application of an osmotic pretreatment (15% NaCl for drying abalone slices, and it evaluates the influence of hot-air drying temperature (40–80°C on the product quality. In addition, the mass transfer kinetics of salt and water was also studied. The optimal time of the osmotic treatment was established until reaching a pseudo equilibrium state of the water and salt content (290 min. The water effective diffusivity values during drying ranged from 3.76 to 4.75 × 10−9 m2/s for three selected temperatures (40, 60, and 80°C. In addition, experimental data were fitted by Weibull distribution model. The modified Weibull model provided good fitting of experimental data according to applied statistical tests. Regarding the evaluated quality parameters, the color of the surface showed a change more significant at high temperature (80°C, whereas the nonenzymatic browning and texture showed a decrease during drying process mainly due to changes in protein matrix and rehydration rates, respectively. In particular, working at 60°C resulted in dried samples with the highest quality parameters.

  17. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  18. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity.

    Science.gov (United States)

    Aral, Serdar; Beşe, Ayşe Vildan

    2016-11-01

    Thin layer drying characteristics and physicochemical properties of hawthorn fruit (Crataegus spp.) were investigated using a convective dryer at air temperatures 50, 60 and 70°C and air velocities of 0.5, 0.9 and 1.3m/s. The drying process of hawthorn took place in the falling rate period, and the drying time decreased with increasing air temperature and velocity. The experimental data obtained during the drying process were fitted to eleven different mathematical models. The Midilli et al.'s model was found to be the best appropriate model for explaining the drying behavior of hawthorn fruit. Effective moisture diffusion coefficients (Deff) were calculated by Fick's diffusion model and their values varied from 2.34×10(-10)m(2)/s to 2.09×10(-9)m(2)/s. An Arrhenius-type equation was applied to determine the activation energies. While the shrinkage decreased, the rehydration ratio increased with increasing air temperature and air velocity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cost modelling of electricity producing hot dry rock (HDR) geothermal systems in the UK

    International Nuclear Information System (INIS)

    Doherty, P.S.

    1992-03-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. (Author)

  20. Inhibition of water uptake after dry storage of cut flowers: Role of aspired air and wound-induced processes in Chrysanthemum

    NARCIS (Netherlands)

    Meeteren, van U.; Arévalo-Galarza, L.; Doorn, van W.G.

    2006-01-01

    We investigated the relative role of aspired air and a plant-induced reaction in the vascular occlusion of dry-stored cv. Cassa chrysanthemum flowers (Chrysanthemum × morifolium Ramat). Measurements of hydraulic capacity showed that the air that is aspired directly after cutting (into the opened

  1. Experimental investigation of drying characteristics of cornelian cherry fruits ( Cornus mas L.)

    Science.gov (United States)

    Ozgen, Filiz

    2015-03-01

    Major target of present paper is to investigate the drying kinetics of cornelian cherry fruits ( Cornus mas L.) in a convective dryer, by varying the temperature and the velocity of drying air. Freshly harvested fruits are dried at drying air temperature of 35, 45 and 55 °C. The considered drying air velocities are V air = 1 and 1.5 m/s for each temperature. The required drying time is determined by taking into consideration the moisture ratio measurements. When the moisture ratio reaches up to 10 % at the selected drying air temperature, then the time is determined ( t = 40-67 h). The moisture ratio, fruit temperature and energy requirement are presented as the functions of drying time. The lowest drying time (40 h) is obtained when the air temperature is 55 °C and air velocity is 1.5 m/s. The highest drying time (67 h) is found under the conditions of 35 °C temperature and 1 m/s velocity. Both the drying air temperature and the air velocity significantly affect the required energy for drying system. The minimum amount of required energy is found as 51.12 kWh, at 55 °C and 1 m/s, whilst the maximum energy requirement is 106.7 kWh, at 35 °C and 1.5 m/s. It is also found that, air temperature significantly influences the total drying time. Moreover, the energy consumption is decreasing with increasing air temperature. The effects of three parameters (air temperature, air velocity and drying time) on drying characteristics have also been analysed by means of analysis of variance method to show the effecting levels. The experimental results have a good agreement with the predicted ones.

  2. Feasibility study on novel room air conditioner with natural cooling capability

    International Nuclear Information System (INIS)

    Han, Zongwei; Liu, Qiankun; Zhang, Yanqing; Zhang, Shuwei; Liu, Jiangzhen; Li, Weiliang

    2016-01-01

    Highlights: • A novel heat pipe combined evaporative cooling room air conditioner is constructed. • The mathematical model of the air conditioner is established. • The reliability of the model is verified by experiments. • The performance of the novel and conventional air conditioner is compared. • The applicability of the novel air conditioner in different areas is investigated. - Abstract: In order to improve the energy efficiency of room air conditioners, this paper proposed a new air conditioner that combined evaporative cooling technology, separate type heat pipe technology, and vapour compression refrigeration technology (called “combined air conditioner”). The mathematical model of the air conditioner was established and its reliability was verified by experiments. Based on the model, the simulation of the operating performance of the combined air conditioner and a conventional air conditioner was studied in typical climate regions during the cooling period, with the following results: In cold and dry areas like Shenyang, compared with the conventional air conditioner, the average cooling coefficient of performance (COP) of the combined air conditioner was increased by 27.40%. As the climate gradually became warmer and humidity gradually increased, the running time of the heat pipe cooling mode was gradually reduced, and then the energy-saving effect of the combined air conditioner became worse. For example, in the hot and humid Guangzhou, the energy saving rate was only 11.81%. Therefore, it was found that the combined air conditioner had good energy-saving potential in cold and dry areas.

  3. a comparative study of the drying rate constant, drying efficiency

    African Journals Online (AJOL)

    The drying rate constants for the solar dryer and open- air sun dried bitter leaf were 0.8 and ... of cost benefit but the poorest when other considerations ... J. I. Eze, National Centre for Energy Research and Development (NCERD), University of ...

  4. Pipeline drying using dehumidified air with low dew point temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Syed Younus; Gandhidasan, P.; Al-Farayedhi, A.A. [King Fahd Univ. of Petroleum and Minerals, Mechanical Engineering Dept., Dhahran (Saudi Arabia)

    1998-05-01

    The presence of humidity may be detrimental to the operation of pipelines transporting natural gas or other petroleum products. In particular conditions water solidifies or reacts chemically with hydrocarbons, forming hydrates. Such crystalline substances may cause obstruction of the lines and damage the equipment of the relevant facilities. A procedure for predicting the performance of drying a pipeline using dehumidified air with a low dew point is described in this paper. The mathematical model estimates the time required for the complete removal of moisture in the pipeline for the given operating conditions with simplified assumptions. The governing equations are solved analytically as well as numerically and the results are briefly discussed in the paper. (Author)

  5. Can forced hot air quickly dry feces on transport cage flooring and eliminate campylobacter before cage re-use?

    Science.gov (United States)

    Allowing feces left on transport coops to dry is an effective way to reduce numbers of viable Campylobacter left by positive flocks. The problem with this approach is that poultry processors do not have the time, space or resources to maintain several times the minimum number of transport cages that...

  6. Specific energy consumption in microwave drying of garlic cloves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.P. [Department of Processing and Food Engineering, College of Technology and Agricultural Engineering, Udaipur 313 001, Rajasthan (India); Prasad, Suresh [Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India)

    2006-09-15

    The convective and microwave-convective drying of garlic cloves was carried out in a laboratory scale microwave dryer, which was developed for this purpose. The specific energy consumption involved in the two drying processes was estimated from the energy supplied to the various components of the dryer during the drying period. The specific energy consumption was computed by dividing the total energy supplied by amount of water removed during the drying process. The specific energy consumption in convective drying of garlic cloves at 70{sup o}C temperature and 1.0m/s air velocity was estimated as 85.45MJ/kg of water evaporated. The increase in air velocity increased the energy consumption. The specific energy consumption at 40W of microwave power output, 70{sup o}C air temperature and 1.0m/s air velocity was 26.32MJ/kg of water removed, resulting in about a 70% energy saving as compared to convective drying processes. The drying time increased with increase in air velocity in microwave-convective drying process; a trend reverse to what was observed in convective drying process of garlic cloves. (author)

  7. Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System

    Directory of Open Access Journals (Sweden)

    Cüneyt Tunçkal

    2018-02-01

    Full Text Available Pineapple (Ananascomosus slices were dried with the aid of a heat pump assisted dryer (HPD. During this process, air velocity was kept constant at 1m/s, while air temperatures were changed as 37°C, 40°C and 43°C. The drying air was also circulated by using an axial fan in a closed cycle and fresh air was not allowed into the system. The drying rate and drying time were significantly influenced by drying temperature. It was observed that drying temperatures had significant effects on the drying rate and drying time. During the conduct of the study, pineapple slices were dried at 37, 40 and 43°C for 465, 360 and 290 min, respectively. The specific moisture extraction ratio (SMER values were observed to change as drying temperatures were changed. The drying rate curves indicated that the whole drying process occurred in the falling rate period. Seven well-known thin-layer models (Lewis, Henderson &Pabis, Logarithmic, Page, Midilli & Kucuk, Weibull and Aghbashlo et al. were employed to make a prediction about drying kinetics through nonlinear regression analysis. The Midilli & Kucuk and Aghbashlo et al. models were consistent with the experimental data. Fick’s second law of diffusion was used to determine the moisture diffusivity coefficient ranging from 3.78×10–9 to 6.57×10-9  m2/s the each of the above mentioned temperatures. The dependence of effective diffusivity coefficient on temperature was defined by means a fan Arrhenius type equation. The activation energy of moisture diffusion was found to be 75.24kJ/mol.   Article History: Received: July 18th 2017; Received: October 27th 2017; Accepted: January 16th 2018; Available online How to Cite This Article: Tunçkal, C., Coşkun, S., Doymaz, I. and Ergun, E. (2018 Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System. International Journal of Renewable Energy Development, 7(1, 35-41. https://doi.org/10.14710/ijred.7.1.35-41

  8. Thin layer modelling of Gelidium sesquipedale solar drying process

    International Nuclear Information System (INIS)

    Ait Mohamed, L.; Ethmane Kane, C.S.; Kouhila, M.; Jamali, A.; Mahrouz, M.; Kechaou, N.

    2008-01-01

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 deg. C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m 3 /s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square (χ 2 ) of 3.381 x 10 -6

  9. The influence of alloying elements on the hot-dip aluminizing process and on the subsequent high-temperature oxidation

    International Nuclear Information System (INIS)

    Glasbrenner, H.; Nold, E.; Voss, Z.

    1997-01-01

    For hot dip aluminizing HDA an Al melt was doped with one of the elements Mo, W or Nb with a nominal composition of about 1 wt%. In case of W, the nominal composition was achieved, not so for Mo and Nb. The influence of these elements on the coating formed and on the following oxidation process was investigated. Hot dip aluminizing was carried out at 800 C for 5 min under dry Ar atmosphere. The oxidation experiments were performed at 950 C for 24 h in air. Compared to the HDA processes with pure Al, the addition of the alloying elements lead to thinner intermetallic layers. A change in the oxidation behavior was observed as well concerning the suppression of internal oxidation and the formation of dense and close oxide scales. (orig.)

  10. Short-term pressure and temperature MSLB response analyses for large dry containment of the Maanshan nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Liang-Che, E-mail: lcdai@iner.gov.tw; Chen, Yen-Shu; Yuann, Yng-Ruey

    2014-12-15

    Highlights: • The GOTHIC code is used for the PWR dry containment pressure and temperature analysis. • Boundary conditions are hot standby and 102% power main steam line break accidents. • Containment pressure and temperature responses of GOTHIC are similar with FSAR. • The capability of the developed model to perform licensing calculation is assessed. - Abstract: Units 1 and 2 of the Maanshan nuclear power station are the typical Westinghouse three-loop PWR (pressurized water reactor) with large dry containments. In this study, the containment analysis program GOTHIC is adopted for the dry containment pressure and temperature analysis. Free air space and sump of the PWR dry containment are individually modeled as control volumes. The containment spray system and fan cooler unit are also considered in the GOTHIC model. The blowdown mass and energy data of the main steam line break (hot standby condition and various reactor thermal power levels) are tabulated in the Maanshan Final Safety Analysis Report (FSAR) 6.2 which could be used as the boundary conditions for the containment model. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR results. In this study, hot standby and 102% reactor thermal power main steam line break accidents are selected. The calculated peak containment pressure is 323.50 kPag (46.92 psig) for hot standby MSLB, which is a little higher than the FSAR value of 311.92 kPag (45.24 psig). But it is still below the design value of 413.69 kPag (60 psig). The calculated peak vapor temperature inside the containment is 187.0 °C (368.59 F) for 102% reactor thermal power MSLB, which is lower than the FSAR result of 194.42 °C (381.95 F). The effects of the containment spray system and fan cooler units could be clearly observed in the GOTHIC analysis. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR

  11. Short-term pressure and temperature MSLB response analyses for large dry containment of the Maanshan nuclear power station

    International Nuclear Information System (INIS)

    Dai, Liang-Che; Chen, Yen-Shu; Yuann, Yng-Ruey

    2014-01-01

    Highlights: • The GOTHIC code is used for the PWR dry containment pressure and temperature analysis. • Boundary conditions are hot standby and 102% power main steam line break accidents. • Containment pressure and temperature responses of GOTHIC are similar with FSAR. • The capability of the developed model to perform licensing calculation is assessed. - Abstract: Units 1 and 2 of the Maanshan nuclear power station are the typical Westinghouse three-loop PWR (pressurized water reactor) with large dry containments. In this study, the containment analysis program GOTHIC is adopted for the dry containment pressure and temperature analysis. Free air space and sump of the PWR dry containment are individually modeled as control volumes. The containment spray system and fan cooler unit are also considered in the GOTHIC model. The blowdown mass and energy data of the main steam line break (hot standby condition and various reactor thermal power levels) are tabulated in the Maanshan Final Safety Analysis Report (FSAR) 6.2 which could be used as the boundary conditions for the containment model. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR results. In this study, hot standby and 102% reactor thermal power main steam line break accidents are selected. The calculated peak containment pressure is 323.50 kPag (46.92 psig) for hot standby MSLB, which is a little higher than the FSAR value of 311.92 kPag (45.24 psig). But it is still below the design value of 413.69 kPag (60 psig). The calculated peak vapor temperature inside the containment is 187.0 °C (368.59 F) for 102% reactor thermal power MSLB, which is lower than the FSAR result of 194.42 °C (381.95 F). The effects of the containment spray system and fan cooler units could be clearly observed in the GOTHIC analysis. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR

  12. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Cai-Hang; Zhang, Li-Zhi; Pei, Li-Xia [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-09-15

    A direct expansion (DX) air dehumidification system is an efficient way to supply fresh and dry air to a built environment. It plays a key role in preventing the spread of respiratory disease like Swine flu (H1N1). To improve the efficiency of a conventional DX system in hot and humid regions, a new system of DX in combination with a membrane-based total heat exchanger is proposed. Air is supplied with dew points. A detailed mathematical modeling is performed. A cell-by-cell simulation technique is used to simulate its performances. A real prototype is built in our laboratory in South China University of Technology to validate the model. The effects of inlet air humidity and temperature, evaporator and condenser sizes on the system performance are investigated. The results indicate that the model can predict the system accurately. Compared to a conventional DX system, the air dehumidification rate (ADR) of the novel system is 0.5 times higher, and the coefficient of performance (COP) is 1 times higher. Furthermore, the system performs well even under harsh hot and humid weather conditions. (author)

  13. Study on Processing Technology and Quality of Moringa oleifera leaves with y - Aminobutyric Acid

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2017-01-01

    Full Text Available In order to obtain the high level of γ-aminobutyric acid Moringa oleifera leaves, Use 7% sodium glutamate solution to soak the fresh Moringa oleifera leaves, study effect of different treatment times and three different drying methods( hot air drying, vacuum freeze drying, shadow drying on the formation of y-aminobutyric acid and quality (total flavonoids, soluble sugar, amino acids, polyphenols, colorof dried Moringa oleifera leaves. The results indicated that shadow-dried Moringa oleifera leaves had the hightest retention of γ-aminobutyric acid, but its browning degree were not preferable, soluble sugar was damaged gravely, and its vulnerable to weather conditions. Vacuum freeze dried Moringa oleifera leaves had the hightest retention of flavonoids, polyphenols and amino acids. The y-aminobutyric acid content of Vacuum freeze dried and hot air dried Moringa oleifera leaves had no much difference. Hot air dried Moringa oleifera leaves browning degree were preferable, it’s had an moderate content of soluble sugar and amino acids, the short drying time is characteristics of this drying method.with the treatment time increased, the content of γ-aminobutyric acid and amino acids content first increased and then decreased. Flavonoids and polyphenols content first decreased and then increased. Soluble sugar content decreased. In summary, after soaking with 7% sodium glutamate solution for 10h, then dried by hot air drying(drying temperature of 60°C, was the most suitable way for industrial production of the high level of γ-aminobutyric acid Moringa oleifera leaves.

  14. Thin layer modelling of Gelidium sesquipedale solar drying process

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)

    2008-05-15

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)

  15. Experimental study of drying kinetics by forced convection of aromatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Belghit, A; Boutaleb, B C [Laboratoire de Mecanique des Fluides et Energetique, Marrakech (Morocco). Faculte des Sciences Semlalia; Kouhila, M [Laboratoire d' Energie Solaire, Marrakech (Morocco). Ecole Normale Superieure

    2000-08-01

    This paper has the objectives to determine the isotherms of sorption and the drying kinetics of verbena, which is the most consumed aromatic plant in Morocco. The experiments undertaken consist of examining the effects of drying air velocity, temperature of drying air and air moisture content on the drying kinetics of verbena in a laboratory drying tunnel working by forced convection. The results verified, with good reproducibility, that temperature is the main factor in controlling the rate of drying. The expression of the drying rate is determined empirically from the characteristic curve of drying. (author)

  16. Time to B. cereus about hot chocolate.

    OpenAIRE

    Nelms, P K; Larson, O; Barnes-Josiah, D

    1997-01-01

    OBJECTIVE: To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. METHODS: The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverag...

  17. Market opportunities for solar drying

    International Nuclear Information System (INIS)

    Voskens, R.G.J.H.; Out, P.G.; Schulte, B.

    2000-01-01

    One of the most promising applications for solar heating is the drying of agricultural products. The drying of agricultural products requires large quantities of low temperature air, in many cases, on a year-round basis. Low cost air-based collectors can provide heated air at solar collection efficiencies of 30 to 70%. In 1998/1999 a study was commissioned to better understand the technical and economic potential for solar drying of agricultural products in the world. The practical potential for solar drying was then determined for 59 crops and 22 regions. The world market for solar drying can be divided into three market segments: 1) mechanical drying T 50 deg. C; 3) sun drying. The most promising market for solar drying is generally market segment 1. For this segment the potential amount of energy displaced by solar is in between 216 770 PJ (World-wide). For Western Europe this potential is estimated between 23 88 PJ and for Eastern Europe between 7 and 13 PJ. A different market introduction strategy is required for each market segment. A total of 13 combinations of crops and regions are selected that appear to have the highest practical potential for solar drying. In the Netherlands a programme of activities was carried out by Ecofys and other organisations, to identify and develop the market potential for solar (assisted) drying of agricultural products. A promotional campaign for the use of renewable energy in the (promising) flower bulb sector is planned on a short-term basis to speed up market developments. It can be concluded that there is a large market for solar drying in the World as well as in Europe. (au)

  18. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  19. A state of the art report on the decontamination technology for dry ice blasting

    International Nuclear Information System (INIS)

    Shin, J. M.; Kim, K. H.; Park, J. J.; Lee, H. H.; Yang, M. S.; Nam, S. H.; Kim, M. J.

    2000-05-01

    DUPIC fuel fabrication process is a dry processing technology to manufacture CANDU compatible fuel through a direct reprocessing fabrication process from spent PWR fuel. DUPIC fuel fabrication process consists of the slitting of the spent PWR fuel rods, OREOX processing, homogeneous mixing, pelletizing and sintering. All these processes should be conducted by remote means in a M6 hot cell at IMEF. Since DUPIC fuel fabrication process includes powder handling process of highly radioactive spent fuel, decontamination of highly radioactive particulates from all types of surfaces such as DUPIC fuel manufacturing equipment, hot cell floor, tools is very important to improve the safety of hot cell and reduce the dose exposure to operator, This report describes various technologies for dry ice blasting. It provides the fundamentals of dry ice blasting decontamination and technical review of dry ice blasting on the radioactive decontamination

  20. A state of the art report on the decontamination technology for dry ice blasting

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J M; Kim, K H; Park, J J; Lee, H H; Yang, M S; Nam, S H; Kim, M J

    2000-05-01

    DUPIC fuel fabrication process is a dry processing technology to manufacture CANDU compatible fuel through a direct reprocessing fabrication process from spent PWR fuel. DUPIC fuel fabrication process consists of the slitting of the spent PWR fuel rods, OREOX processing, homogeneous mixing, pelletizing and sintering. All these processes should be conducted by remote means in a M6 hot cell at IMEF. Since DUPIC fuel fabrication process includes powder handling process of highly radioactive spent fuel, decontamination of highly radioactive particulates from all types of surfaces such as DUPIC fuel manufacturing equipment, hot cell floor, tools is very important to improve the safety of hot cell and reduce the dose exposure to operator, This report describes various technologies for dry ice blasting. It provides the fundamentals of dry ice blasting decontamination and technical review of dry ice blasting on the radioactive decontamination.

  1. Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous-media reservoir used for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.

    1979-10-01

    The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.

  2. Drying of plasterboard - some quality aspects

    Energy Technology Data Exchange (ETDEWEB)

    Naesman, L. (University of Lund (Sweden)); Wimmerstedt, R. (University of Lund (Sweden))

    1993-06-01

    The manufacture process, especially the drying operation, of plasterboard was studied. The purpose was to measure physical properties, which can be used for the optimization of the process with respect to energy and quality. The cardboard was found to be hygroscopic whereas the gypsum was not. It was determined that the chloride content in the gypsum raw material should not exceed 75 ppm. The starch was found to migrate towards the surface of the gypsum core during the drying process (air temperture 140 C, dew-point of air 30 C and air velocity 10 m/s). The drying of different qualitites of plasterboard was also investigated. It was found that the cardboard is a very important parameter whereas the gypsum core has little effect on the drying rate and core temperature. (orig.)

  3. Kinetics, mass transport characteristics, and structural changes during air-drying of purple yam (Dioscorea Alata L.) at different process conditions

    Science.gov (United States)

    De Vera, Flordeliza C.; Comaling, Leif Anthony B.; Lao, Iya Ray Alyanna M.; Caparanga, Alvin R.; Sauli, Zaliman

    2017-11-01

    This experiment was designed to follow the 2k factorial design to study the effects of the three drying parameters on the drying characteristics and effective moisture diffusivity and to fit each run performed on the best thin-layer drying kinetics model. Raw purple yam samples were pre-treated and undergone the designed drying procedures at which the weight of the samples were recorded every minute until such time that the sample weights become constant. Scanning Electron Microscopy (SEM) is utilized for qualitative analysis of the dried samples. The number of pores per unit area and the overall aesthetics of the surface of the dried samples were compared also using SEM. Considering the qualitative analysis conducted on the samples from the images of SEM, dried samples from run 2 has the most desirable conditions such as high temperature and low air velocity for drying because the samples from this run have large pore diameters with minimal cell breakages.

  4. The hot chocolate effect

    Science.gov (United States)

    Crawford, Frank S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  5. Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, Ok-Hwan; Jeon, You-Jin; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.

  6. Experimental investigation of a super performance dew point air cooler

    International Nuclear Information System (INIS)

    Xu, Peng; Ma, Xiaoli; Zhao, Xudong; Fancey, Kevin

    2017-01-01

    Highlights: •The cooler had a complex heat & mass exchanger with an advanced wet material layer. •Intermittent water supply scheme was implemented. •The cooler achieved 100–160% higher COP compared to the existing dew point coolers. •Electricity use of the cooler was reduced by 50–70% compared to existing dew coolers. •This optimal working air ratio was 0.364 that enabled maximised cooling effectiveness. -- Abstract: This paper presents an experimental investigation of a super performance dew point air cooler which, by employing a super performance wet material layer, innovative heat and mass exchanger and intermittent water supply scheme, has achieved a significantly higher energy efficiency (i.e. Coefficient of Performance, COP) and a much lower electrical energy use compared to the existing air coolers of the same type. This involves the dedicated system design & construction, fully planned experimental testing under various simulated climatic conditions representing the climate of hot & dry, warm & dry, moderate, warm & humid and standard lab testing condition, testing results analysis and discussion, as well as the parallel comparison against the commercial dew point air cooler. Under the standard test condition, i.e. dry bulb temperature of 37.8 °C and coincident wet bulb temperature of 21.1 °C, the prototype cooler achieved the wet-bulb cooling effectiveness of 114% and dew-point cooling effectiveness of 75%, yielding a significantly high COP value of 52.5 at the optimal working air ratio of 0.364. The testing also indicated that the lower inlet air relative humidity led to a higher cooling efficiency, while the lower cooling output helped increase COP and cooling effectiveness (including the wet-bulb effectiveness and dew-point effectiveness) of the cooler.

  7. Spray drying of fruit and vegetable juices--a review.

    Science.gov (United States)

    Verma, Anjali; Singh, Satya Vir

    2015-01-01

    The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work.

  8. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    International Nuclear Information System (INIS)

    Yehia, Ashraf; Mizuno, Akira

    2013-01-01

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  9. Drying of α-amylase by spray drying and freeze-drying - a comparative study

    Directory of Open Access Journals (Sweden)

    S. S. de Jesus

    2014-09-01

    Full Text Available This study is aimed at comparing two traditional methods of drying of enzymes and at verifying the efficiency of each one and their advantages and disadvantages. The experiments were performed with a laboratory spray dryer and freeze-dryer using α-amylase as the model enzyme. An experimental design in star revealed that spray drying is mainly influenced by the inlet air temperature and feed flow rate, which were considered to be the main factors influencing the enzymatic activity and water activity; the long period of material exposure to high temperatures causes a partial activity loss. In the experiments of freeze drying, three methods of freezing were used (freezer, acetone and dry ice, and liquid nitrogen and samples subsequently freeze-dried for times ranging between 0-24 hours. The product obtained from the two techniques showed high enzymatic activity and low water activity. For the drying of heat-resistant enzymes, in which the product to be obtained does not have high added value, spray drying may be more economically viable because, in the freeze drying process, the process time can be considered as a limiting factor when choosing a technique.

  10. Analysis on energy consumption of drying process for dried Chinese noodles

    International Nuclear Information System (INIS)

    Wang, Zhenhua; Zhang, Yingquan; Zhang, Bo; Yang, Fuguang; Yu, Xiaolei; Zhao, Bo; Wei, Yimin

    2017-01-01

    Highlights: • Energy analysis of a tunnel dryer for dried Chinese noodles is completed. • Energy saving performance of dryers with different inlet air was compared. • MND was developed and evaluated, and the efficiency and throughput was improved. - Abstract: Drying is an important operation during the production of dried Chinese noodles, and the energy consumption from drying accounts for approximately 60% of the total energy consumption during the manufacturing process. To investigate the energy consumption and throughput of dryers for dried Chinese noodles, experiments were conducted using a new 130-m long tunnel dryer with two lines of noodles (ND) and an old 60-m long tunnel dryer with five lines of noodles (OD). The energy saving effects of a modified new 130-m long tunnel dryer (MND), which was only modified through the inclusion of automatic control for temperature and humidity without any modifications to the oil heater or ND dryer structure, were also compared. The energy saving effect was determined from the enthalpy difference between the inlet and outlet humid air of the ND and MND. Finally, the MND was found to be better than ND in terms of energy efficiency and throughput, and trends for the future of noodle drying were discussed.

  11. Influence of carbon monoxide additions on the sensitivity of the dry hydrogen-air mixtures to detonation

    International Nuclear Information System (INIS)

    Magzumov, A.E.; Kirillov, I.A.; Fridman, A.A.; Rusanov, V.D.

    1995-01-01

    Under severe accident conditions of water cooled nuclear reactors the hydrogen-air detonation represents one of the most hazardous events which can result in the reactor containment damage. An important factor related with the measure of gas mixture detonability is the detonation cell size which correlates with the critical tube diameter and detonation initiation energy. A numerical kinetic study is presented of the influence of carbon monoxide admixtures (from 0 vol.% to 40 vol.%) upon the sensitivity (detonation cell size) of the dry hydrogen-air gas mixtures to detonation in post-accident containment atmosphere. (author). 3 refs., 3 figs

  12. Applications of web produced by hot air assisted melt differential electrospinning method

    International Nuclear Information System (INIS)

    Bubakir, Mahmoud M; Li, Haoyi; Wu, Weifeng; Li, Xiaohu; Ma, Shuai; Yang, Weimin

    2014-01-01

    Melt electrospinning, a technique that has gained increasing attention since it easily can generate continuous ultrafine fibers directly from polymer melts without the use of any solvent. Therefore, it is considered as a safe, cost effective, and environmental friendly technique. However, with all those great advantages, the technique still suffers some drawbacks such as: large fiber diameter and low throughput. The hot air assisted melt differential electrospinning (MDES) is a new technique invented by our research team that can solve or eliminate those drawbacks. The most important features of our used apparatus are: Needleless nozzle that could generate multiple Taylor cones around the bottom edge of the nozzle, which can result in a high throughput. The stretching force acting on the jets can be further strengthened by an air current provided by an air pressure gun. Interference between the high voltage supply and temperature sensors could be prevented through the grounding of the nozzle. The ultrafine pp webs produced using the same apparatus was in the micro/nano scale with a diameter of 600nm-6um and a smooth surface. Porosity of the webs ranges from 86.5%-99.4% when different collecting devices are used. The resultant ultrafine webs were applied in three areas: oil sorption, water treatment, and hydrophilic PP membrane. The results were very promising as for oil the sorption capacity was 129.0g/g; for water treatment, the rejection rate for 3um particles was 95%. And for the hydrophilic PP membrane, the water sorption capacity was 12.3 g/g

  13. Review of Sustainable Energy -- Without the Hot Air by David MacKay (2009

    Directory of Open Access Journals (Sweden)

    Kira Hamman

    2016-07-01

    Full Text Available David MacKay. Sustainable Energy: Without the hot air. (Cambridge, England: UIT Cambridge Ltd., 2009. 384 pp. ISBN 978-0954452933 (also available as a free e-book. Physicist David MacKay transforms what has historically been a debate fraught with skepticism and hysteria into an informed conversation. He does this by providing clear, accurate quantitative information on energy production and consumption in a form that allows comparison and invites thoughtful analysis. By recalibrating power into kilowatt-hours per day per person, he makes the numbers meaningful on an individual level. He then meticulously estimates the productive capacity of various renewable energy sources, explores alternative energy solutions, and ends with an array of concrete plans to get the planet off fossil fuels for good.

  14. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    Science.gov (United States)

    Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current

  15. Low cycle fatigue behavior of hot-bent 347 stainless steel in a simulated PWR water environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Ho; Seo, Myung Gyu; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Hong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Soon [Central Research InstituteKorea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    The effect of hot bending on the Low cycle fatigue (LCF) behavior of 347 SS was evaluated in Room temperature (RT) air and simulated Pressurized water reactor (PWR) water environments. The LCF life of 347 SS in PWR water was shorter than that in RT air for the as-received and hot-bent conditions. The LCF life of hot-bent 347 SS was relatively longer than that of the as-received condition in both RT air and PWR water. Microstructure analysis indicated development of dislocation structure near niobium carbide particles and increase in dislocation density for the hot-bent 347 SS. Such microstructure acted as barriers to dislocation movement during the LCF test, resulting in minimal hardening for the hot-bent 347 SS in RT air.

  16. Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Qumer Iqbal

    2015-03-01

    Full Text Available The maintenance of the quality and storage life of perishable fruits and vegetables is a major challenge for the food industry. In this study, the effects of different temperatures, packaging materials and storage time on the stability of capsaicinoids and antioxidants, such as total carotenoids, ascorbic acid and total phenolic compounds, were studied in three commercially cultivated hot pepper hybrids, namely Sky Red, Maha and Wonder King. For this purpose, dry whole pods were packed in jute bags and low-density polyethylene bags (LDPE, stored for five months under controlled conditions at 20, 25 or 30 ○C and analyzed on Day 0 and at 50-day intervals until Day 150. The three hot pepper hybrids differed significantly with respect to their capsaicinoids and antioxidant concentrations, but the results indicated that with the increase in storage temperature and time, a gradual and steady decrease in these levels was equally observed for all hybrids. Overall, mean concentrations after five months were significantly reduced by 22.6% for ascorbic acid, 19.0% for phenolic compounds, 17% for carotenoids and 12.7% for capsaicinoids. The trends of capsaicinoids and antioxidants evolution were decreasing gradually during storage until Day 150, this effect being more pronounced at higher temperature. Furthermore, the disappearance rates of capsaicinoids and antioxidants were higher in peppers packed in jute bags than in those wrapped with LDPE. In conclusion, despite the sensitivity of capsaicinoids and antioxidants to oxygen, light and moisture, the packaging in natural jute or synthetic LDPE plastic bags, as well as the storage at ambient temperature preserved between 77.4% and 87.3% of the initial amounts of these health- and nutrition-promoting compounds during five months’ storage.

  17. Development of automated control system for wood drying

    Science.gov (United States)

    Sereda, T. G.; Kostarev, S. N.

    2018-05-01

    The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.

  18. Induction of genetic changes in Saccharomyces cerevisiae by partial drying in air of constant relative humidity and by UV

    International Nuclear Information System (INIS)

    Hieda, K.

    1981-01-01

    It was investigated whether there was a critical degree of dryness for induction of genetic changes by drying. Saccharomyces cerevisiae cells were dried in air of 0.33, 53 and 76% relative humidity (RH). The frequencies of mitotic recombination at ade2, of gene conversion at leu1, and of gene mutation at can1 were measured in X2447, XS1473 and S288C strains, respectively. After the cells had been dried at 0% RH for 4 h the frequencies of the genetic changes at ade2, leu1 and can1 were, respectively, 56, 7 and 3.5 times higher than each spontaneous frequency. Induction rates, defined as the frequencies of the induced genetic changes per unit time (1 h) of drying, were greatly decreased with increase in RH. Partial drying in air of 76% RH up to 4 and 8 h induced no genetic change at ade2 and leu1, respectively. It was concluded, therefore, that drying at a certain RH between 53 and 76% gave the critical degreee of dryness of cells for the induction of the genetic changes. The water contents of cells (g water per g dry material) were 12% at 53% RH and 21% at 76% RH, whereas the water content of native cells was 212%. Removal of a large amount of cellular water had no effect on the induction of the genetic changes. UV sensitivity of partially dried cells of X2447 for the induction of the genetic change at ade2 drastically increased with decrease in RH between 76 and 53%. The drastic change in the UV sensitivity suggested that photochemical reactivity of DNA of chromosome XV, in which the ade2 locus is located, changed between 76 and 53% RH. It seems that the genetic changes were induced only in the low RH region where DNA in vivo had a different photochemical reactivity. (orig.)

  19. Improvement of Cooling Performance of a Compact Thermoelectric Air Conditioner Using a Direct Evaporative Cooling System

    Science.gov (United States)

    Tipsaenporm, W.; Lertsatitthanakorn, C.; Bubphachot, B.; Rungsiyopas, M.; Soponronnarit, S.

    2012-06-01

    This paper presents the results of tests carried out to investigate the potential application of a direct evaporative cooling (DEC) system for improving the performance of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The DEC system produced cooling air that was used to assist the release of heat from the heat sinks at the hot side of the TE modules. The results showed that the cooling air dry bulb temperature from the DEC system achieved drops of about 5.9°C in parallel with about a 33.4% rise in relative humidity. The cooling efficiency of the DEC system varies between 72.1% and 81.5%. It increases the cooling capacity of the compact TE air conditioner from 53.0 W to 74.5 W. The 21.5 W (40.6%) increase represents the difference between the compact air conditioner operating with ambient air flowing through the TE module's heat sinks, and the compact air conditioner operating with the cooler air from the DEC system flowing through the TE module's heat sinks. In both scenarios, electric current of 4.5 A was supplied to the TE modules. It also has been experimentally proven that the coefficient of performance (COP) of the compact TE air conditioner can be improved by up to 20.9% by incorporating the DEC system.

  20. Evaluation of the impact of food matrix change on the in vitro bioaccessibility of carotenoids in pumpkin (Cucurbita moschata) slices during two drying processes.

    Science.gov (United States)

    Zhang, Zhongyuan; Wang, Xiaoyan; Li, Yixiang; Wei, Qiuyu; Liu, Chunju; Nie, Meimei; Li, Dajing; Xiao, Yadong; Liu, Chunquan; Xu, Lang; Zhang, Min; Jiang, Ning

    2017-12-13

    The food matrix is a limiting factor in determining the bioaccessibility of carotenoids. The impact of food matrix change on the bioaccessibility of carotenoids during drying processes is still unknown. The effect of intermittent microwave vacuum-assisted drying (IMVD) and hot air drying (HAD) on the in vitro liberation and micellization of carotenoids in pumpkin slices was studied. This variable depended on the changes of the matrix driven by the drying process. Different changes in the cell morphology and carotenoid distribution of pumpkin slices during the two processing methods were observed. For IMVD, cell wall degradation and complete chromoplast organelle disruption contributed to the improvement in the liberation and micellization of carotenoids. In the HAD-dried sample, large pigment aggregates hindered the liberation of carotenoids. The carotenoid level in the micellar fraction appeared to be lower than that in the aqueous supernatant during the two processes, suggesting that the new obstacles formed during processing and/or digestion hindered the incorporation of carotenoids in mixed micelles.

  1. Air solar collectors in building use - A review

    Science.gov (United States)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu

    2018-02-01

    In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  2. Air solar collectors in building use - A review

    Directory of Open Access Journals (Sweden)

    Bejan Andrei-Stelian

    2018-01-01

    Full Text Available In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  3. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    Science.gov (United States)

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  4. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from comfrey (Symphytum officinale L.) root.

    Science.gov (United States)

    Shang, Hongmei; Zhou, Haizhu; Duan, Mengying; Li, Ran; Wu, Hongxin; Lou, Yujie

    2018-06-01

    This study was designed to investigate the extraction conditions of polysaccharides from comfrey (Symphytum officinale L.) root (CRPs) using response surface methodology (RSM). The effects of three variables including liquid-solid ratio, extraction time and extraction temperature on the extraction yield of CRPs were taken into consideration. Moreover, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the physicochemical properties and antioxidant activities of CRPs were evaluated. The optimal conditions to extract the polysaccharides were as follows: liquid-solid ratio (15mL/g), extraction time (74min), and extraction temperature (95°C), allowed a maximum polysaccharides yield of 22.87%. Different drying methods had significant effects on the physicochemical properties of CRPs such as the chemical composition (contents of total polysaccharides and uronic acid), relative viscosity, solubility and molecular weight. CRPs drying with FD method showed stronger reducing power and radical scavenging capacities against DPPH and ABTS radicals compared with CRPs drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharides from comfrey root. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Physicochemical and phytochemical properties of cold and hot water extraction from Hibiscus sabdariffa.

    Science.gov (United States)

    Ramirez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R

    2011-04-01

    Hibiscus cold (25 °C) and hot (90 °C) water extracts were prepared in various time-temperature combinations to determine equivalent extraction conditions regarding their physicochemical and phytochemical properties. Equivalent anthocyanins concentration was obtained at 25 °C for 240 min and 90 °C for 16 min. Total phenolics were better extracted with hot water that also resulted in a higher antioxidant capacity in these extracts. Similar polyphenolic profiles were observed between fresh and dried hibiscus extracts. Hibiscus acid and 2 derivatives were found in all extracts. Hydroxybenzoic acids, caffeoylquinic acids, flavonols, and anthocyanins constituted the polyphenolic compounds identified in hibiscus extracts. Two major anthocyanins were found in both cold and hot extracts: delphynidin-3-sambubioside and cyanidin-3-sambubioside. In general, both cold and hot extractions yielded similar phytochemical properties; however, under cold extraction, color degradation was significantly lower and extraction times were 15-fold longer. Hibiscus beverages are prepared from fresh or dried calyces by a hot extraction and pasteurized, which can change organoleptic, nutritional, and color attributes. Nonthermal technologies such as dense phase carbon dioxide may maintain their fresh-like color, flavor, and nutrients. This research compares the physicochemical and phytochemical changes resulting from a cold and hot extraction of fresh and dried hibiscus calyces and adds to the knowledge of work done on color, quality attributes, and antioxidant capacity of unique tropical products. In addition, the research shows how these changes could lead to alternative nonthermal processes for hibiscus.

  6. Application of High Power Ultrasound in Drying of Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Werner, Z.

    2010-04-01

    Full Text Available Ultrasound is a sound frequency in the range between 18 and 100 kHz that is above hearing of the human ear. High power ultrasound means application of intensities higher than 1 W cm–2 (usually in the range between I=10–1000Wcm–2. High power and low frequency ultrasound (f = 20 to 100 kHz is considered as “power ultrasound” because its application causes cavitation and is applied in the food industry. High power ultrasound is applied for degassing of liquid food, for induction of oxidation/reduction reactions, for extraction of enzymes and proteins, for inactivation of enzymes and induction of nucleation for crystallization. Ultrasound is anticipating heat transfer; it is used for emulsifying, sterilization, extraction, degassing, filtrating, drying and induction of oxidation. Conventional hot air drying is a very energy- and cost-intensive process. Drying is a simultaneous operation of heat and mass exchange that is followed by phase changes. Application of different pretreatments, like osmotic dehydration, ultrasound and ultrasound assisted osmotic dehydration has shown different effects on fruits and vegetables. When the high intensity acoustic energy is passing through solid material, it causes several fast and successive compressions and rarefactions with speeds that depend on the frequency applied. Thus, material is exposed to a series of exchangeable squeezing and relaxations, very like continuous squeezing and releasing of the sponge. This mechanism known as "rectified diffusion" is very important in acoustic drying and migration of water. Application of ultrasound as a pretreatment has shown great influence on reducing afterward hot air drying thereby reducing total drying time. It is also shown that pretreatment before drying facilitates better mass transfer and water diffusivity than osmotic dehydration. Quality of the product after drying is better because ultrasound pretreatment is applied at room temperature thus reducing

  7. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  8. Radioactive spent resins conditioning by the hot super-compaction process

    International Nuclear Information System (INIS)

    Roth, Andreas; Centner, Baudouin; Lemmens, Alain

    2007-01-01

    Spent ion exchanger media are considered to be problematic waste that, in many cases, requires special approaches and precautions during its immobilization to meet the acceptance criteria for disposal. The waste acceptance criteria define, among others, the quality of waste forms for disposal, and therefore will sometimes define appropriate treatment options. The selection of treatment options for spent ion exchange materials must consider their physical and chemical characteristics. Basically, the main methods for the treatment of spent organic ion exchange materials, following to pretreatment methods are: - Direct immobilization, producing a stable end product by using Cement, Bitumen, Polymer or High Integrity Containers, - The destruction of the organic compounds by using Thermochemical processes or Oxidation to produce an inorganic intermediate product that may or may not be further conditioned for storage and/or disposal, - The complete removal of the resin inner structural water by a thermal process. After a thorough technical economical analysis, Tractebel Engineering selected the Resin Hot Compaction Process to be installed at Tihange Nuclear Power Plant. The Resin Hot Compaction Process is used to make dense homogenous organic blocks from a wide range of particulate waste. In this process spent resins are first dewatered and dried to remove the inner structural water content. The drying takes place in a drying vessel that holds the contents of two 200 L drums (Figure). In the oil heated drying and mixing unit, the resins are heated to the necessary process temperature for the hot pressing step and then placed into special metal drums, which are automatically lidded and immediately transferred to a high force compactor. After high force compaction the pellets are transferred to a measuring unit, where the dose rate, height and weight are automatically measured and recorded. A volume reduction factor of approximately up to four (depending on the type of

  9. CLEAN-AIR heat pump. Reduced energy consumption for ventilation in buildings by integrating air cleaning and heat pump. Final Report; CLEAN-AIR heat pump - Reduceret energiforbrug til ventilation af bygninger ved luftrensning integreret med luft varmepumpe. Slut rapport

    Energy Technology Data Exchange (ETDEWEB)

    Fang, L.; Olesen, Bjarne W.; Molinaro, G.; Simmonsen, P.; Skocajic, S. [Danmarks Tekniske Univ. Institut for Byggeri og Anlaeg, Lyngby (Denmark); Hummelshoej, R.M.; Carlassara, L. [COWI A/S, Lyngby, (Denmark); Groenbaek, H.; Hansen, Ole R. [Exhausto A/S, Langeskov (Denmark)

    2011-07-01

    much lower than the domestic price. For the extremely hot and humid climate, the clean air heat pump has the maximum ability of the energy saving for ventilation. The calculations showed that annual energy saving of using the clean air heat pump for ventilation in Sri Lanka is 62%. In general, the clean air heat pump system is suitable for ventilation in all kind of climates around the world except for the hot and dry climate. The annual energy saving is expected in the range between 30% and 60% depending on the climate. It is worth noting that the calculated energy reduction of a ventilation system using the clean air heat pump technology was an extra saving compared to a ventilation system that equipped with the high efficiency counter flow heat recovery equipment with a temperature efficiency of 80%. Based on this simulation, it can be concluded that the energy saving of the clean air heat pump for ventilation is remarkable. Therefore, the technology is highly recommended provided that this simulation results are further validated by experiments. (Author)

  10. Standardization of spray-dried powder of Piper betle hot water extract.

    Science.gov (United States)

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-04-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle.

  11. Standardization of spray-dried powder of Piper betle hot water extract

    Science.gov (United States)

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-01-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle. PMID:21716924

  12. Synoptic weather typing applied to air pollution mortality among the elderly in 10 Canadian cities.

    Science.gov (United States)

    Vanos, Jennifer K; Cakmak, Sabit; Bristow, Corben; Brion, Vladislav; Tremblay, Neil; Martin, Sara L; Sheridan, Scott S

    2013-10-01

    Synoptic circulation patterns (large-scale weather systems) affect ambient levels of air pollution, as well as the relationship between air pollution and human health. To investigate the air pollution-mortality relationship within weather types and seasons, and to determine which combination of atmospheric conditions may pose increased health threats in the elderly age categories. The relative risk of mortality (RR) due to air pollution was examined using Poisson generalized linear models (GLMs) within specific weather types. Analysis was completed by weather type and age group (all ages, ≤64, 65-74, 75-84, ≥85 years) in ten Canadian cities from 1981 to 1999. There was significant modification of RR by weather type and age. When examining the entire population, weather type was shown to have the greatest modifying effect on the risk of dying due to ozone (O3). This effect was highest on average for the dry tropical (DT) weather type, with the all-age RR of mortality at a population weighted mean (PWM) found to be 1.055 (95% CI 1.026-1.085). All-weather type risk estimates increased with age due to exposure to carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2). On average, RR increased by 2.6, 3.8 and 1.5% for the respective pollutants between the ≤64 and ≥85 age categories. Conversely, mean ozone estimates remained relatively consistent with age. Elevated levels of air pollution were found to be detrimental to the health of elderly individuals for all weather types. However, the entire population was negatively effected by air pollution on the hot dry (DT) and hot humid (MT) days. We identified a significant modification of RR for mortality due to air pollution by age, which is enhanced under specific weather types. Efforts should be targeted at minimizing pollutant exposure to the elderly and/or all age groups with respect to weather type in question. Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.

  13. Physiological And Blood Biochemical Responses To Dried Live Yeast Plus Vitamin E As A Dietary Supplement To Bovine Baladi Calves Under Hot Summer Conditions

    International Nuclear Information System (INIS)

    ABDALLA, E.B.; EL-MASRY, K.A.; TEAMA, F.E.; EMARA, S.S.

    2009-01-01

    The experiment was designed to study the effect of supplemented dried live yeast (DLY) + vitamin E to the diet of growing calves under hot summer conditions in Egypt. Six bovine Baladi calves with 115 kg initial body weight and 8-10 months old were used during two periods. In the first period, the calves were offered the concentrated basal diet only for one month and considered as a control period. In the second period, the calves were fed the same basal diet which supplemented with 15 g dried live yeast (Saccharomyces cerevisiae) + 600 IU vitamin E (alpha- tocopherol) per calf daily for one month and considered as a treated period. Body weight was recorded at the beginning and the end of each period, and daily gain was calculated for each animal. Blood samples were collected from each animal at the end of each period to determine some blood biochemical parameters and T 3 and T 4 concentrations as well as some immunological indices.The results showed that supplementation of DLY + 600 IU vitamin E to the diet of calves reduced significantly (P 3 and T 4 levels and improved feed efficiency and daily gain. It is concluded that supplementation of growing calves with 15 g DLY + 600 IU vitamin E / calf / day under Egyptian hot summer conditions reduced the effect of heat stress as shown by a decline in RT and modified most blood constituents and thyroid function which leads to an improvement in growing calves

  14. Mathematical modelling of thin layer drying of pear

    Directory of Open Access Journals (Sweden)

    Lutovska Monika

    2016-01-01

    Full Text Available In this study, a thin - layer drying of pear slices as a function of drying conditions were examined. The experimental data set of thin - layer drying kinetics at five drying air temperatures 30, 40, 50, 60 and 70°C, and three drying air velocities 1, 1.5 and 2 m s-1 were obtained on the experimental setup, designed to imitate industrial convective dryer. Five well known thin - layer drying models from scientific literature were used to approximate the experimental data in terms of moisture ratio. In order to find which model gives the best results, numerical experiments were made. For each model and data set, the statistical performance index, (φ, and chi-squared, (χ2, value were calculated and models were ranked afterwards. The performed statistical analysis shows that the model of Midilli gives the best statistical results. Because the effect of drying air temperature and drying air velocity on the empirical parameters was not included in the base Midilli model, in this study the generalized form of this model was developed. With this model, the drying kinetic data of pear slices can be approximated with high accuracy. The effective moisture diffusivity was determined by using Fick’s second laws. The obtained values of the effective moisture diffusivity, (Deff, during drying ranged between 6.49 x 10-9 and 3.29 x 10-8 m2 s-1, while the values of activation energy (E0 varied between 28.15 to 30.51 kJ mol-1.

  15. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ebihara, Y.; Hirota, T.; Murase, M.

    2011-01-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35 o C ~ 65 o C. Cold air was approximately 25 o C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  16. Evaporation heat transfer of hot water from horizontal free service

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Y.; Ebihara, Y.; Hirota, T. [Shinshu Univ., Ueda, Nagano (Japan); Murase, M. [INSS, Mihama-cho, Fukui (Japan)

    2011-07-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35{sup o}C ~ 65{sup o}C. Cold air was approximately 25{sup o}C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  17. Hot dry rock geothermal energy development program. Annual report, fiscal year 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, G.M. (comp.)

    1981-07-01

    Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

  18. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  19. Ozone Generation in Dry Air Using Pulsed Discharges With and Without a Solid Dielectric Layer

    OpenAIRE

    Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Hackam, R.; Akiyama, H.; ミヤハラ, Y.; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2001-01-01

    Energy efficient generation of ozone is very important because ozone is being used increasingly in a wide range of industrial applications. Ozonizers usually use dielectric barrier discharges and employ alternating current (ac) with consequent heat generation, which necessitates cooling. In the present study, very short duration pulsed voltage is employed resulting in reduced heating of the gas and discharge reactor. A comparison of ozone generation in dry air using a coaxial concentric elect...

  20. Drying Kinetics Analysis of Seaweed Gracilaria changii using Solar Drying System

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Ahmad Fudholi; Kamaruzzaman Sopian; Mohd Hafidz Ruslan; Muhammad Yahya

    2012-01-01

    A solar drying system suitable for agricultural and marine products have been designed, constructed and evaluated under Malaysia climatic conditions. The solar drying system has been constructed and evaluated for the drying of seaweed Gracilaria changii. The initial and final moisture content of seaweed are 95 % (wet basis) and 10 % (product basis), respectively. The drying time was about 7 hours at average solar radiation of 593 W/ m 2 and air flow rate of 0.0613 kg/ s. Three different thin-layer drying models were compared with experimental data, during the drying of seaweed using the solar drying system at average temperature and humidity of about 50 degree Celsius and 20 %, respectively. The one with highest R2 and lowest MBE and RMSE was selected to better estimate the drying curves. The study showed that the Page model was better fit to drying seaweed compared to the other models (Newton model, and Henderson and Pabis model). (author)

  1. Quartz dissolution and silica deposition in hot-dry-rock geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.

    1982-07-01

    The kinetics of quartz dissolution control the produced fluid dissolved silica concentration in geothermal systems in which the downhole residence time is finite. The produced fluid of the Phase I, Run Segment 5 experimental Hot Dry Rock (HDR) geothermal system at Fenton Hill, NM, was undersaturated with respect to quartz in one pass through the reservoir, suggesting that the rate of granite dissolution governed the outlet dissolved silica concentration in this system. The literature data for the rate of quartz dissolution in water from 65 to 625/sup 0/C is correlated using an empirical rate law which is first order in quartz surface area and degree of undersaturation of the fluid. The Arrhenius plot (ln k vs T/sup -1/) is linear over eight orders of magnitude of the rate constant, verifying the validity of the proposed rate expression. Carefully performed quartz dissolution experiments in the present study duplicated the literature data and completed the data base in the temperature range from 150 to 250/sup 0/C. Identical experiments using crushed granite indicate that the rate of quartz dissolution in the presence of granite could be as much as 1 to 2 orders of magnitude faster than the rates observed in the pure quartz experiments. A temperature dependent HDR reservoir model incorporates the quartz dissolution rate law to simulate the dissolved silica behavior during the Fenton Hill Run Segment 5 experiment. For this low-permeability, fracture-dominated reservoir, the assumptions of one-dimensional plug flow through a vertically-inclined rectangular fracture and one-dimensional rock heat conduction perpendicular to the direction of flow are employed. These simplifications lead to an analytical solution for the temperature field in the reservoir.

  2. Development of Radioactive Substance Contamination Diffusion Preventive Equipment for a Hot cell

    International Nuclear Information System (INIS)

    Choo, Yong Sun; Kim, Do Sik; Baik, Seung Je; Yoo, Byung Ok; Kim, Ki Ha; Lee, Eun Pyo; Ahn, Sang Bok; Ryu, Woo Seok

    2009-01-01

    The hot cell of irradiated materials examination facility (IMEF), which has been operating since 1996, is generally contaminated by the radioactive nuclides of irradiated nuclear fuels and structural steels like Cs-137, Co-60, Co-134 and Ru-106. Especially Cs-137 is a main contaminated radioactive isotope which is easily moved here and there due to air flow in the hot cell, water-soluble, extremely toxic, and has a half-life of 30.23 years. To repair or fix the abnormal function of test apparatus installed in the hot cell, the maintenance door, so called a rear door and located at an intervention area, is opened to enter the hot cell inside. In a moment of opening the maintenance door, dirty air diffusion from the hot cell to an intervention area could be occurred in spite of increasing the rpm of exhaust fan to maintain much low under pressure, but an adjacent area to a maintenance door, i.e. intervention area, is very severely contaminated due to the unpredictable air flow. In this paper, the development of the radioactive substance contamination diffusion preventive equipment for a hot cell is studied to prevent dirty and toxic gaseous radioactive nuclides diffusion from a hot cell and installed at an intervention area of IMEF

  3. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L.) Calyces Extract Dried with Foaming Agent under Different Temperatures.

    Science.gov (United States)

    Djaeni, Mohamad; Kumoro, Andri Cahyo; Sasongko, Setia Budi; Utari, Febiani Dwi

    2018-01-01

    The utilisation of roselle ( Hibiscus sabdariffa L.) calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS). The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  4. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States)

    2009-08-15

    The performances of three types of heat exchangers that use the louver fin geometry: (1) parallel flow parallel fin with extruded flat tubes heat exchanger (PF{sup 2}), (2) parallel flow serpentine fin with extruded flat tubes heat exchanger (PFSF) and (3) round tube wave plate fin heat exchanger (RTPF) have been experimentally studied under dry, wet and frost conditions and results are presented. The parameters quantified include air-side pressure drop, water retention on the surface of the heat exchanger, capacity and overall heat transfer coefficient for air face velocity 0.9, 2 and 3 m/s, air humidity 70% and 80% and different orientations. The performances of three types of heat exchanger are compared and the results obtained are presented. The condensate drainage behavior of the air-side surface of these three heat exchanger types was studied using both the dip testing method and wind tunnel experiment. (author)

  5. Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand.

    Science.gov (United States)

    Davis, Robert E; Dougherty, Erin; McArthur, Colin; Huang, Qiu Sue; Baker, Michael G

    2016-07-01

    The relationship between weather and influenza and pneumonia mortality was examined retrospectively using daily data from 1980 to 2009 in Auckland, New Zealand, a humid, subtropical location. Mortality events, defined when mortality exceeded 0·95 standard deviation above the mean, followed periods of anomalously cold air (ta.m. = -4·1, P < 0·01; tp.m. = -4·2, P < 0·01) and/or anomalously dry air (ta.m. = -4·1, P < 0·01; tp.m. = -3·8, P < 0·01) by up to 19 days. These results suggest that respiratory infection is enhanced during unusually cold conditions and during conditions with unusually low humidity, even in a subtropical location where humidity is typically high. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  6. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature.......This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...

  7. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution.

    Science.gov (United States)

    Davis, Mark T; Potter, Catherine B; Walker, Gavin M

    2018-06-10

    Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Corn Drying with Zeolite in The Fluidized Bed Dryer under Medium Temperature

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2013-08-01

    Full Text Available Drying is an important step to find high quality of corn. Based on Standard of National Industry, populer as SNI, number 01-3920-1995, the corn was well stored at moisture content 14% or below (wet basis. However, conventional corn drying dealed with in-efficient energy process and corn quality degradation. This research evaluated the performance of corn drying assisted by zeolite as moisture adsorbent. In this process, the zeolite and corn were placed in the dryer fluidized by warm air as drying medium under 40 - 50oC. The air evaporated water product from corn, and at same time the zeolite adsorbed moisture in air. So, the relative humidity of air in dryer can be kept low in which enhanced the driving force for drying. Beside that, the moisture adsoprtion by zeolite was exothermic process that can supply the energy for drying or keep the dryer temperature. Thus, the drying rate can be faster. This work foccussed to observe the effect of drying temperature, air velocity, and corn to zeolite ratio on drying time as well as corn quality. As indicators, the drying rate was estimated and the proxymates content such as protein, fat, and carbohydrate content were analyzed. The results showed that compared with conventional fluidised bed dryer, corn drying with zeolite, can speed up drying time as well as improving the constant of drying rate. In addition, the corn proximate nutrition content can be well retained. At operating temperature 40oC, air velocity 9 m.s-1, and zeolite to corn ratio 1:2, the drying time can be 60 minutes shorter compared to that without zeolite.

  9. Kinetics modeling of the drying of sunflower stem (Helianthus annuus L.) in a forced convection tunnel

    International Nuclear Information System (INIS)

    López, R; Vaca, M; Terres, H; Lizardi, A; Morales, J; Flores, J; Chávez, S

    2015-01-01

    The sunflower is an annual plant native to the Americas. It possesses a large inflorescence (flowering head), and its name is derived from the flower's shape and image, which is often used to capture the sun. The plant has a rough, broad, hairy stem, coarsely toothed, with rough leaves, and circular flower heads. The sunflower seeds are appreciated for their oil, which has become a widespread cooking ingredient. Leaves of the sunflower can be used as cattle feed, while the stems contain a fiber that may be used in paper production. Recently this flower has been used in phytoremediation of soils, contaminated with heavy metals. Sunflower has been probed as an efficient phytoextractor of chromium, lead, aluminum, zinc, cadmium from soil. In this work we present the experimental results of the drying of the sunflower stem, cut in 100 mm longitudinal sections, with diameters in the range of 11-18 mm. The aim was to obtain a dry and easy-to-handle final product, since these plants were originally cultivated in order to extract heavy metals from a polluted soil. The dried stems could then be easily confined or sent to recycle premises to concentrate the metals. The drying process was done in forced convection within a hot air tunnel. The used temperature was 60 °C, the velocity of air was 3 m/s and the required times were 8 hours. The initial average wet mass was 28 g and the final value was 5 g, resulting in the aimed product

  10. Kinetics modeling of the drying of sunflower stem (Helianthus annuus L.) in a forced convection tunnel

    Science.gov (United States)

    López, R.; Vaca, M.; Terres, H.; Lizardi, A.; Morales, J.; Flores, J.; Chávez, S.

    2015-01-01

    The sunflower is an annual plant native to the Americas. It possesses a large inflorescence (flowering head), and its name is derived from the flower's shape and image, which is often used to capture the sun. The plant has a rough, broad, hairy stem, coarsely toothed, with rough leaves, and circular flower heads. The sunflower seeds are appreciated for their oil, which has become a widespread cooking ingredient. Leaves of the sunflower can be used as cattle feed, while the stems contain a fiber that may be used in paper production. Recently this flower has been used in phytoremediation of soils, contaminated with heavy metals. Sunflower has been probed as an efficient phytoextractor of chromium, lead, aluminum, zinc, cadmium from soil. In this work we present the experimental results of the drying of the sunflower stem, cut in 100 mm longitudinal sections, with diameters in the range of 11-18 mm. The aim was to obtain a dry and easy-to-handle final product, since these plants were originally cultivated in order to extract heavy metals from a polluted soil. The dried stems could then be easily confined or sent to recycle premises to concentrate the metals. The drying process was done in forced convection within a hot air tunnel. The used temperature was 60 °C, the velocity of air was 3 m/s and the required times were 8 hours. The initial average wet mass was 28 g and the final value was 5 g, resulting in the aimed product.

  11. Radiation data input for the design of dry or semi-dry U tailings disposal

    International Nuclear Information System (INIS)

    Kvasnicka, J.

    1986-01-01

    Before discussion of design criteria for the handling of dry or semi-dry tailings, it is necessary to obtain an insight into the radiation levels associated with the tailings particles and to study the basic physical properties of dry tailings. This article presents the experimental results of assessing Ra and specific alpha-activity distribution with respect to particle size of the Ranger (RUM) and Nabarlek (QML) uranium mines dry tailings samples. The variation of Rn emanation coefficient versus particle size of dry tailings has also been measured. The nuclear-track detection technique, gamma spectrometry and alpha counting were used for the above measurements. Surface Rn flux from the hypothetical Nabarlek semi-infinite dry tailings pile is 32 Bq m -2 s -1 and the Rn flux for Ranger is 10 Bq m -2 s -1 . The theoretical exposure rates for 1 m above these hypothetical tailings piles are 0.95 microC kg -1 h -1 and 0.28 microC kg -1 h -1 , respectively. The derived air alpha-contamination limits (DAAC) for the tailings dust were calculated to be 1.2 Bq m -3 for workers and 0.034 Bq m -3 for a member of the public. The limit for workers corresponds to the air tailings dust concentration of 0.79 mg m -3 for QML tailings and 2.2 mg m -3 for RUM tailings. The DAAC limit for the public corresponds to the air tailings dust concentration of 0.022 mg m -3 for QML tailings and 0.064 mg m -3 for RUM tailings

  12. Cool and dry weather enhances the effects of air pollution on emergency IHD hospital admissions.

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak-Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-20

    Associations between ambient pollution and cardiovascular morbidity including ischemic heart disease (IHD) have been confirmed. Weather factors such as temperature, season and relative humidity (RH) may modify the effects of pollution. We conducted this study to examine the effects of air pollution on emergency IHD hospital admissions varied across seasons and RH levels, and to explore the possible joint modification of weather factors on pollution effects. Daily time series of air pollution concentrations, mean temperature and RH were collected from IHD hospital admissions from 1998 to 2007 in Hong Kong. We used generalized additive Poisson models with interaction term to estimate the pollution effects varied across seasons and RH levels, after adjusting for time trends, weather conditions, and influenza outbreaks. An increase in the detrimental effects of air pollution in cool season and on low humidity days was observed. In the cool and dry season, a 10 μg/m(3) increment of lag03 exposure was associated with an increase of emergency IHD admissions by 1.82% (95% CI: 1.24-2.40%), 3.89% (95% CI: 3.08-4.70%), and 2.19% (95% CI: 1.33-3.06%) for particles with an aerodynamic diameter less than 10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3), respectively. The effects of pollutants decreased greatly and lost statistical significance in the warm and humid season. We found season and RH jointly modified the associations between ambient pollution and IHD admissions, resulting in increased IHD admissions in the cool and dry season and reduced admissions in the warm and humid season. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  14. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; German, A. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Dakin, B. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  15. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Feldman, E.M.; Fisher, M.W.

    1987-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM programs, e.g., Prototypical Consolidation Demonstration Program (PCDP). The program is being conducted at the Idaho National Engineering Laboratory (INEL) by the INEL Operating Contractor EG and G Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment is used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SFSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation is accomplished by individual, horizontal rod pulling. A computerized semiautomatic control system with operator involvement is utilized to conduct consolidation operations. During consolidation operations, data is taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software was completed in September of 1986. Following installation in the hot cell, consolidation operations begins in May 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  16. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L. Calyces Extract Dried with Foaming Agent under Different Temperatures

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2018-01-01

    Full Text Available The utilisation of roselle (Hibiscus sabdariffa L. calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS. The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  17. Modelamiento de la cinética de secado de lúcuma (Pouteria lucuma)

    OpenAIRE

    Barrena Gurbillón, Miguel Angel

    2011-01-01

    Pouteria lucuma "eggfruit”, is a fruit sold fresh and dry as an input to confectionery and food industry. This study determined the parameters necessary to design a tray dryer with hot air for production eggfruit flour, being used for this fresh eggfruit physiological maturity and with good sanitary conditions. The pulp was cut into slices 0,3 cm thick and placed in a laboratory tray dryer with hot air. Three temperatures were tested for air drying (40 ºC, 50 ºC and 60 ºC) and three air speed...

  18. Study of the morphology of corrosion features of natural graphite oxidised by dry and humid air

    International Nuclear Information System (INIS)

    Senevat, Jean

    1965-12-01

    The author reports a study which aimed at highlighting the morphology differences between corrosion features which affect flakes of natural graphite oxidised by dry air and by humid air. The study is based on observations made by optical and transmission electronic microscopy, this last one being performed on replicates. As the so-called 'Hennig' replicates did not result in a sufficient resolution of corrosion feature details, another method has been developed. Three classes of samples (in relationship with the rate of impurities present in samples) have been studied. Flakes have thus been sorted and each flake has then been oxidised at different wear rates. This highlights the influence of damages created by impurities in the lattice [fr

  19. Drying Spirulina with Foam Mat Drying at Medium Temperature

    Directory of Open Access Journals (Sweden)

    Aji Prasetyaningrum

    2012-10-01

    Full Text Available Spirulina is a single cell blue green microalgae (Cyanobacteria containing many Phytonutrients (Beta-carotene, Chlorophyl, Xanthophyl, Phyocianin using as anti-carcinogen in food. Producing dry spirulina by quick drying process at medium temperature is very important to retain the Phytonutrient quality. Currently, the work is still challenging due to the gel formation that block the water diffusion from inside to the surface.  This research studies the performance of foam-mat drying on production of dry spirulina. In this method the spirulina was mixed with foaming agent (glair/egg albumen, popular as white egg at 2.5% by weight at air velocity 2.2 m/sec. Here, the effect of spirulina thickness and operational temperature on drying time and quality (Beta-carotene and color were observed. The drying time was estimated based on the measurement of water content in spirulina versus time. Result showed that the thicker spirulina, the longer drying time. Conversely, the higher operational temperature, faster drying time. At thickness ranging 1-3 mm and operational temperature below 70oC, the quality of spirulina can fit the market requirement

  20. The minimum work required for air conditioning process

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2006-01-01

    This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods