WorldWideScience

Sample records for host cell-targeted effectors

  1. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  2. Manipulation of host membranes by bacterial effectors.

    Science.gov (United States)

    Ham, Hyeilin; Sreelatha, Anju; Orth, Kim

    2011-07-18

    Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.

  3. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence1[OPEN

    Science.gov (United States)

    2017-01-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451

  4. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    Science.gov (United States)

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  6. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin.

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2017-01-01

    Full Text Available Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.

  7. Early host cell targets of Yersinia pestis during primary pneumonic plague.

    Directory of Open Access Journals (Sweden)

    Roger D Pechous

    Full Text Available Inhalation of Yersinia pestis causes primary pneumonic plague, a highly lethal syndrome with mortality rates approaching 100%. Pneumonic plague progression is biphasic, with an initial pre-inflammatory phase facilitating bacterial growth in the absence of host inflammation, followed by a pro-inflammatory phase marked by extensive neutrophil influx, an inflammatory cytokine storm, and severe tissue destruction. Using a FRET-based probe to quantitate injection of effector proteins by the Y. pestis type III secretion system, we show that these bacteria target alveolar macrophages early during infection of mice, followed by a switch in host cell preference to neutrophils. We also demonstrate that neutrophil influx is unable to limit bacterial growth in the lung and is ultimately responsible for the severe inflammation during the lethal pro-inflammatory phase.

  8. The Role of B Cell Targeting in Chronic Graft-Versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Ruben Rhoades

    2017-10-01

    Full Text Available Chronic graft-versus-host disease (cGVHD is a leading cause of late morbidity and mortality following allogeneic stem cell transplantation. Current therapies, including corticosteroids and calcineurin inhibitors, are only effective in roughly 50% of cases; therefore, new treatment strategies are under investigation. What was previously felt to be a T cell disease has more recently been shown to involve activation of both T and B cells, as well as a number of cytokines. With a better understanding of its pathophysiology have come more expansive preclinical and clinical trials, many focused on B cell signaling. This report briefly reviews our current understanding of cGVHD pathophysiology and reviews clinical and preclinical trials with B cell-targeted agents.

  9. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    Science.gov (United States)

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  10. Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.; Niemann, George S.; Sydor, Michael A.; Sanchez, Octavio; Ansong, Charles; Lu, Shao-Yeh; Choi, Hyungwon; Valleau, Dylan; Weitz, Karl K.; Savchenko, Alexei; Cambronne, Eric D.; Adkins, Joshua N.; McFall-Ngai, Margaret J.

    2016-07-12

    Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction.

    IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of

  11. Plant parasitic nematode effectors target host defence and nuclear functions to establish feeding cells

    Directory of Open Access Journals (Sweden)

    Michaël eQuentin

    2013-03-01

    Full Text Available Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells. Effectors synthesised in the oesophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized feeding cells requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defence responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalised within feeding cell nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesised roles in the unique feeding behaviour of these pests.

  12. Characterisation of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    Directory of Open Access Journals (Sweden)

    Remco eStam

    2013-10-01

    Full Text Available Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centres on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signalling. Here, we characterised three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localisation of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organisation, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.

  13. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  14. Mechanism of host substrate acetylation by a YopJ family effector.

    Science.gov (United States)

    Zhang, Zhi-Min; Ma, Ka-Wai; Gao, Linfeng; Hu, Zhenquan; Schwizer, Simon; Ma, Wenbo; Song, Jikui

    2017-07-24

    The Yersinia outer protein J (YopJ) family of bacterial effectors depends on a novel acetyltransferase domain to acetylate signalling proteins from plant and animal hosts. However, the underlying mechanism is unclear. Here, we report the crystal structures of PopP2, a YopJ effector produced by the plant pathogen Ralstonia solanacearum, in complex with inositol hexaphosphate (InsP 6 ), acetyl-coenzyme A (AcCoA) and/or substrate Resistance to Ralstonia solanacearum 1 (RRS1-R) WRKY . PopP2 recognizes the WRKYGQK motif of RRS1-R WRKY to position a targeted lysine in the active site for acetylation. Importantly, the PopP2-RRS1-R WRKY association is allosterically regulated by InsP 6 binding, suggesting a previously unidentified role of the eukaryote-specific cofactor in substrate interaction. Furthermore, we provide evidence for the reaction intermediate of PopP2-mediated acetylation, an acetyl-cysteine covalent adduct, lending direct support to the 'ping-pong'-like catalytic mechanism proposed for YopJ effectors. Our study provides critical mechanistic insights into the virulence activity of YopJ class of acetyltransferases.

  15. Legionella Effector AnkX Disrupts Host Cell Endocytic Recycling in a Phosphocholination-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Samual C. Allgood

    2017-09-01

    Full Text Available The facultative intracellular bacterium Legionella pneumophila proliferates within amoebae and human alveolar macrophages, and it is the causative agent of Legionnaires' disease, a life-threatening pneumonia. Within host cells, L. pneumophila establishes a replicative haven by delivering numerous effector proteins into the host cytosol, many of which target membrane trafficking by manipulating the function of Rab GTPases. The Legionella effector AnkX is a phosphocholine transferase that covalently modifies host Rab1 and Rab35. However, a detailed understanding of the biological consequence of Rab GTPase phosphocholination remains elusive. Here, we broaden the understanding of AnkX function by presenting three lines of evidence that it interferes with host endocytic recycling. First, using immunogold transmission electron microscopy, we determined that GFP-tagged AnkX ectopically produced in mammalian cells localizes at the plasma membrane and tubular membrane compartments, sites consistent with targeting the endocytic recycling pathway. Furthermore, the C-terminal region of AnkX was responsible for association with the plasma membrane, and we determined that this region was also able to bind the phosphoinositide lipids PI(3P and PI(4P in vitro. Second, we observed that mCherry-AnkX co-localized with Rab35, a regulator of recycling endocytosis and with major histocompatibility class I protein (MHC-I, a key immunoregulatory protein whose recycling from and back to the plasma membrane is Rab35-dependent. Third, we report that during infection of macrophages, AnkX is responsible for the disruption of endocytic recycling of transferrin, and AnkX's phosphocholination activity is critical for this function. These results support the hypothesis that AnkX targets endocytic recycling during host cell infection. Finally, we have demonstrated that the phosphocholination activity of AnkX is also critical for inhibiting fusion of the Legionella

  16. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization

    Science.gov (United States)

    Hyre, Amanda N.; Kavanagh, Kylie; Kock, Nancy D.; Donati, George L.

    2016-01-01

    ABSTRACT Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae, in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI. PMID:28031261

  17. Global impact of Salmonella type III secretion effector SteA on host cells

    International Nuclear Information System (INIS)

    Cardenal-Muñoz, Elena; Gutiérrez, Gabriel; Ramos-Morales, Francisco

    2014-01-01

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration

  18. Global impact of Salmonella type III secretion effector SteA on host cells

    Energy Technology Data Exchange (ETDEWEB)

    Cardenal-Muñoz, Elena; Gutiérrez, Gabriel; Ramos-Morales, Francisco

    2014-07-11

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.

  19. Exploitation of the host cell ubiquitin machinery by microbial effector proteins.

    Science.gov (United States)

    Lin, Yi-Han; Machner, Matthias P

    2017-06-15

    Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu ( J. Cell Sci. 130 , 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' ( J. Cell Sci. 130 , 1981-1983). © 2017. Published by The Company of Biologists Ltd.

  20. Identification and Initial Characterization of the Effectors of an Anther Smut Fungus and Potential Host Target Proteins

    Directory of Open Access Journals (Sweden)

    Venkata S. Kuppireddy

    2017-11-01

    Full Text Available (1 Background: Plant pathogenic fungi often display high levels of host specificity and biotrophic fungi; in particular, they must manipulate their hosts to avoid detection and to complete their obligate pathogenic lifecycles. One important strategy of such fungi is the secretion of small proteins that serve as effectors in this process. Microbotryum violaceum is a species complex whose members infect members of the Caryophyllaceae; M. lychnidis-dioicae, a parasite on Silene latifolia, is one of the best studied interactions. We are interested in identifying and characterizing effectors of the fungus and possible corresponding host targets; (2 Methods: In silico analysis of the M. lychnidis-dioicae genome and transcriptomes allowed us to predict a pool of small secreted proteins (SSPs with the hallmarks of effectors, including a lack of conserved protein family (PFAM domains and also localized regions of disorder. Putative SSPs were tested for secretion using a yeast secretion trap method. We then used yeast two-hybrid analyses for candidate-secreted effectors to probe a cDNA library from a range of growth conditions of the fungus, including infected plants; (3 Results: Roughly 50 SSPs were identified by in silico analysis. Of these, 4 were studied further and shown to be secreted, as well as examined for potential host interactors. One of the putative effectors, MVLG_01732, was found to interact with Arabidopsis thaliana calcium-dependent lipid binding protein (AtCLB and with cellulose synthase interactive protein 1 orthologues; and (4 Conclusions: The identification of a pool of putative effectors provides a resource for functional characterization of fungal proteins that mediate the delicate interaction between pathogen and host. The candidate targets of effectors, e.g., AtCLB, involved in pollen germination suggest tantalizing insights that could drive future studies.

  1. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    Science.gov (United States)

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  2. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  3. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development.

    Science.gov (United States)

    Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A

    2016-02-01

    Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.

  4. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.

    Science.gov (United States)

    Yasuda, Michiko; Miwa, Hiroki; Masuda, Sachiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Okazaki, Shin

    2016-08-01

    Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Peptide Nucleic Acid Knockdown and Intra-host Cell Complementation of Ehrlichia Type IV Secretion System Effector

    Directory of Open Access Journals (Sweden)

    Pratibha Sharma

    2017-06-01

    Full Text Available Survival of Ehrlichia chaffeensis depends on obligatory intracellular infection. One of the barriers to E. chaffeensis research progress has been the inability, using conventional techniques, to generate knock-out mutants for genes essential for intracellular infection. This study examined the use of Peptide Nucleic Acids (PNAs technology to interrupt type IV secretion system (T4SS effector protein expression in E. chaffeensis followed by intracellular complementation of the effector to determine its requirement for infection. Successful E. chaffeensis infection depends on the E. chaffeensis-specific T4SS protein effector, ehrlichial translocated factor-1 (Etf-1, which induces Rab5-regulated autophagy to provide host cytosolic nutrients required for E. chaffeensis proliferation. Etf-1 is also imported by host cell mitochondria where it inhibits host cell apoptosis to prolong its infection. We designed a PNA specific to Etf-1 and showed that the PNA bound to the target region of single-stranded Etf-1 RNA using a competitive binding assay. Electroporation of E. chaffeensis with this PNA significantly reduced Etf-1 mRNA and protein, and the bacteria's ability to induce host cell autophagy and infect host cells. Etf-1 PNA-mediated inhibition of ehrlichial Etf-1 expression and E. chaffeensis infection could be intracellularly trans-complemented by ectopic expression of Etf-1-GFP in host cells. These data affirmed the critical role of bacterial T4SS effector in host cell autophagy and E. chaffeensis infection, and demonstrated the use of PNA to analyze the gene functions of obligate intracellular bacteria.

  6. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    Science.gov (United States)

    Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G; Dehio, Christoph

    2014-06-01

    Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that

  7. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    Directory of Open Access Journals (Sweden)

    Rusudan Okujava

    2014-06-01

    Full Text Available Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs infected with a ΔbepE mutant of B. henselae (Bhe displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID domain of BepEBhe (BID2.EBhe. Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d. model for B. tribocorum (Btr infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we

  8. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex.

    Directory of Open Access Journals (Sweden)

    Marie-Cécile Caillaud

    2013-12-01

    Full Text Available Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa, and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a, resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA-triggered immunity (SATI in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.

  9. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules.

    Science.gov (United States)

    Kenny, Brendan; Ellis, Sarah; Leard, Alan D; Warawa, Jonathan; Mellor, Harry; Jepson, Mark A

    2002-05-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of paediatric diarrhoea and a model for the family of attaching and effacing (A/E) pathogens. A/E pathogens encode a type III secretion system to transfer effector proteins into host cells. The EPEC Tir effector protein acts as a receptor for the bacterial surface protein intimin and is involved in the formation of Cdc42-independent, actin-rich pedestal structures beneath the adhered bacteria. In this paper, we demonstrate that EPEC binding to HeLa cells also induces Tir-independent, cytoskeletal rearrangement evidenced by the early, transient formation of filopodia-like structures at sites of infection. Filopodia formation is dependent on expression of the EPEC Map effector molecule - a protein that targets mitochondria and induces their dysfunction. We show that Map-induced filopodia formation is independent of mitochondrial targeting and is abolished by cellular expression of the Cdc42 inhibitory WASP-CRIB domain, demonstrating that Map has at least two distinct functions in host cells. The transient nature of the filopodia is related to an ability of EPEC to downregulate Map-induced cell signalling that, like pedestal formation, was dependent on both Tir and intimin proteins. The ability of Tir to downregulate filopodia was impaired by disrupting a putative GTPase-activating protein (GAP) motif, suggesting that Tir may possess such a function, with its interaction with intimin triggering this activity. Furthermore, we also found that Map-induced cell signalling inhibits pedestal formation, revealing that the cellular effects of Tir and Map must be co-ordinately regulated during infection. Possible implications of the multifunctional nature of EPEC effector molecules in pathogenesis are discussed.

  10. Phenotypic analysis of apoplastic effectors from the phytopathogenic nematode, Globodera rostochiensis demonstrates that an expansin can induce and suppress host defenses

    Science.gov (United States)

    The potato cyst nematode Globodera rostochiensis (Woll.) is an important pest of potato. Like other biotrophic pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm to successfully infect their hosts. We have identifie...

  11. A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle.

    Science.gov (United States)

    Marchesini, María I; Morrone Seijo, Susana M; Guaimas, Francisco F; Comerci, Diego J

    2016-01-01

    Brucella abortus , the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the Brucella containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Brucella Type IV Secretion System (VirB) is a major virulence factor essential for the biogenesis of the replicative organelle. Upon infection, Brucella uses the VirB system to translocate effector proteins from the BCV into the host cell cytoplasm. Although the functions of many translocated proteins remain unknown, some of them have been demonstrated to modulate host cell signaling pathways to favor intracellular survival and replication. BPE123 (BAB2_0123) is a B. abortus VirB-translocated effector protein recently identified by our group whose function is yet unknown. In an attempt to identify host cell proteins interacting with BPE123, a pull-down assay was performed and human alpha-enolase (ENO-1) was identified by LC/MS-MS as a potential interaction partner of BPE123. These results were confirmed by immunoprecipitation assays. In bone-marrow derived macrophages infected with B. abortus , ENO-1 associates to BCVs in a BPE123-dependent manner, indicating that interaction with translocated BPE123 is also occurring during the intracellular phase of the bacterium. Furthermore, ENO-1 depletion by siRNA impaired B. abortus intracellular replication in HeLa cells, confirming a role for α-enolase during the infection process. Indeed, ENO-1 activity levels were enhanced upon B. abortus infection of THP-1 macrophagic cells, and this activation is highly dependent on BPE123. Taken together, these results suggest that interaction between BPE123 and host cell ENO-1 contributes to the intracellular lifestyle of B. abortus .

  12. A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment.

    Science.gov (United States)

    Tomkins, Melissa; Kliot, Adi; Marée, Athanasius Fm; Hogenhout, Saskia A

    2018-03-13

    Members of the Candidatus genus Phytoplasma are small bacterial pathogens that hijack their plant hosts via the secretion of virulence proteins (effectors) leading to a fascinating array of plant phenotypes, such as witch's brooms (stem proliferations) and phyllody (retrograde development of flowers into vegetative tissues). Phytoplasma depend on insect vectors for transmission, and interestingly, these insect vectors were found to be (in)directly attracted to plants with these phenotypes. Therefore, phytoplasma effectors appear to reprogram plant development and defence to lure insect vectors, similarly to social engineering malware, which employs tricks to lure people to infected computers and webpages. A multi-layered mechanistic modelling approach will enable a better understanding of how phytoplasma effector-mediated modulations of plant host development and insect vector behaviour contribute to phytoplasma spread, and ultimately to predict the long reach of phytoplasma effector genes. Copyright © 2018. Published by Elsevier Ltd.

  13. Intravital imaging of donor allogeneic effector and regulatory T cells with host dendritic cells during GVHD.

    Science.gov (United States)

    Lin, Kaifeng Lisa; Fulton, LeShara M; Berginski, Matthew; West, Michelle L; Taylor, Nicholas A; Moran, Timothy P; Coghill, James M; Blazar, Bruce R; Bear, James E; Serody, Jonathan S

    2014-03-06

    Graft-versus-host disease (GVHD) is a systemic inflammatory response due to the recognition of major histocompatibility complex disparity between donor and recipient after hematopoietic stem cell transplantation (HSCT). T-cell activation is critical to the induction of GVHD, and data from our group and others have shown that regulatory T cells (Tregs) prevent GVHD when given at the time of HSCT. Using multiphoton laser scanning microscopy, we examined the single cell dynamics of donor T cells and dendritic cells (DCs) with or without Tregs postallogeneic transplantation. We found that donor conventional T cells (Tcons) spent very little time screening host DCs. Tcons formed stable contacts with DCs very early after transplantation and only increased velocity in the lymph node at 20 hours after transplant. We also observed that Tregs reduced the interaction time between Tcons and DCs, which was dependent on the generation of interleukin 10 by Tregs. Imaging using inducible Tregs showed similar disruption of Tcon-DC contact. Additionally, we found that donor Tregs induce host DC death and down-regulate surface proteins required for donor T-cell activation. These data indicate that Tregs use multiple mechanisms that affect host DC numbers and function to mitigate acute GVHD.

  14. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range.

    Science.gov (United States)

    Deng, Cecilia H; Plummer, Kim M; Jones, Darcy A B; Mesarich, Carl H; Shiller, Jason; Taranto, Adam P; Robinson, Andrew J; Kastner, Patrick; Hall, Nathan E; Templeton, Matthew D; Bowen, Joanna K

    2017-05-02

    Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host

  15. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Science.gov (United States)

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  16. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  17. MYR1-Dependent Effectors Are the Major Drivers of a Host Cell's Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects.

    Science.gov (United States)

    Naor, Adit; Panas, Michael W; Marino, Nicole; Coffey, Michael J; Tonkin, Christopher J; Boothroyd, John C

    2018-04-03

    The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, "hidden" responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite's ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1

  18. MYR1-Dependent Effectors Are the Major Drivers of a Host Cell’s Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects

    Directory of Open Access Journals (Sweden)

    Adit Naor

    2018-04-01

    Full Text Available The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5 and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma, we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT, RHΔmyr1, and RHΔasp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, “hidden” responses arising in RHΔmyr1- but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite’s ability to co-opt host cell functions.

  19. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis.

    Science.gov (United States)

    Sun, Hui; Kamanova, Jana; Lara-Tejero, Maria; Galán, Jorge E

    2016-03-01

    Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen's virulence.

  20. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2.

    Directory of Open Access Journals (Sweden)

    André N Mueller

    2013-02-01

    Full Text Available The basidiomycete Ustilago maydis causes smut disease in maize, with large plant tumors being formed as the most prominent disease symptoms. During all steps of infection, U. maydis depends on a biotrophic interaction, which requires an efficient suppression of plant immunity. In a previous study, we identified the secreted effector protein Pit2, which is essential for maintenance of biotrophy and induction of tumors. Deletion mutants for pit2 successfully penetrate host cells but elicit various defense responses, which stops further fungal proliferation. We now show that Pit2 functions as an inhibitor of a set of apoplastic maize cysteine proteases, whose activity is directly linked with salicylic-acid-associated plant defenses. Consequently, protease inhibition by Pit2 is required for U. maydis virulence. Sequence comparisons with Pit2 orthologs from related smut fungi identified a conserved sequence motif. Mutation of this sequence caused loss of Pit2 function. Consequently, expression of the mutated protein in U. maydis could not restore virulence of the pit2 deletion mutant, indicating that the protease inhibition by Pit2 is essential for fungal virulence. Moreover, synthetic peptides of the conserved sequence motif showed full activity as protease inhibitor, which identifies this domain as a new, minimal protease inhibitor domain in plant-pathogenic fungi.

  1. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host.

    Science.gov (United States)

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Dinakaran, Vasudevan; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-01-01

    Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.

  2. Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole

    Directory of Open Access Journals (Sweden)

    Lara J. Kohler

    2016-07-01

    Full Text Available Coxiella burnetii replicates in an acidified lysosome-derived vacuole. Biogenesis of the Coxiella-containing vacuole (CCV requires bacterial effector proteins delivered into host cells by the Dot/Icm secretion system. Genetic and cell biological analysis revealed that an effector protein called Cig2 promotes constitutive fusion of autophagosomes with the CCV to maintain this compartment in an autolysosomal stage of maturation. This distinguishes the CCV from other pathogen-containing vacuoles that are targeted by the host autophagy pathway, which typically confers host resistance to infection by delivering the pathogen to a toxic lysosomal environment. By maintaining the CCV in an autolysosomal stage of maturation, Cig2 enabled CCV homotypic fusion and enhanced bacterial virulence in the Galleria mellonella (wax moth model of infection by a mechanism that decreases host tolerance. Thus, C. burnetii residence in an autolysosomal organelle alters host tolerance of infection, which indicates that Cig2-dependent manipulation of a lysosome-derived vacuole influences the host response to infection.

  3. MicroRNA-155 Modulates Acute Graft-versus-Host Disease by Impacting T Cell Expansion, Migration, and Effector Function.

    Science.gov (United States)

    Zitzer, Nina C; Snyder, Katiri; Meng, Xiamoei; Taylor, Patricia A; Efebera, Yvonne A; Devine, Steven M; Blazar, Bruce R; Garzon, Ramiro; Ranganathan, Parvathi

    2018-06-15

    MicroRNA-155 (miR-155) is a small noncoding RNA critical for the regulation of inflammation as well as innate and adaptive immune responses. MiR-155 has been shown to be dysregulated in both donor and recipient immune cells during acute graft-versus-host disease (aGVHD). We previously reported that miR-155 is upregulated in donor T cells of mice and humans with aGVHD and that mice receiving miR-155-deficient (miR155 -/- ) splenocytes had markedly reduced aGVHD. However, molecular mechanisms by which miR-155 modulates T cell function in aGVHD have not been fully investigated. We identify that miR-155 expression in both donor CD8 + T cells and conventional CD4 + CD25 - T cells is pivotal for aGVHD pathogenesis. Using murine aGVHD transplant experiments, we show that miR-155 strongly impacts alloreactive T cell expansion through multiple distinct mechanisms, modulating proliferation in CD8 + donor T cells and promoting exhaustion in donor CD4 + T cells in both the spleen and colon. Additionally, miR-155 drives a proinflammatory Th1 phenotype in donor T cells in these two sites, and miR-155 -/- donor T cells are polarized toward an IL-4-producing Th2 phenotype. We further demonstrate that miR-155 expression in donor T cells regulates CCR5 and CXCR4 chemokine-dependent migration. Notably, we show that miR-155 expression is crucial for donor T cell infiltration into multiple target organs. These findings provide further understanding of the role of miR-155 in modulating aGVHD through T cell expansion, effector cytokine production, and migration. Copyright © 2018 by The American Association of Immunologists, Inc.

  4. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism.

    Science.gov (United States)

    Chen, Jiansong; Hu, Lili; Sun, Longhua; Lin, Borong; Huang, Kun; Zhuo, Kan; Liao, Jinling

    2018-02-27

    Plant-parasitic nematodes can secrete effector proteins into the host tissue to facilitate their parasitism. In this study, we report a novel effector protein, MgMO237, from Meloidogyne graminicola, which is exclusively expressed within the dorsal oesophageal gland cell and markedly up-regulated in parasitic third-/fourth-stage juveniles of M. graminicola. Transient expression of MgMO237 in protoplasts from rice roots showed that MgMO237 was localized in the cytoplasm and nucleus of the host cells. Rice plants overexpressing MgMO237 showed an increased susceptibility to M. graminicola. In contrast, rice plants expressing RNA interference vectors targeting MgMO237 showed an increased resistance to M. graminicola. In addition, yeast two-hybrid and co-immunoprecipitation assays showed that MgMO237 interacted specifically with three rice endogenous proteins, i.e. 1,3-β-glucan synthase component (OsGSC), cysteine-rich repeat secretory protein 55 (OsCRRSP55) and pathogenesis-related BetvI family protein (OsBetvI), which are all related to host defences. Moreover, MgMO237 can suppress host defence responses, including the expression of host defence-related genes, cell wall callose deposition and the burst of reactive oxygen species. These results demonstrate that the effector MgMO237 probably promotes the parasitism of M. graminicola by interacting with multiple host defence-related proteins and suppressing plant basal immunity in the later parasitic stages of nematodes. © 2018 BSPP AND JOHN WILEY & SONS LTD.

  5. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism.

    Directory of Open Access Journals (Sweden)

    Jiansong Chen

    2017-04-01

    Full Text Available Plant pathogen effectors can recruit the host post-translational machinery to mediate their post-translational modification (PTM and regulate their activity to facilitate parasitism, but few studies have focused on this phenomenon in the field of plant-parasitic nematodes. In this study, we show that the plant-parasitic nematode Meloidogyne graminicola has evolved a novel effector, MgGPP, that is exclusively expressed within the nematode subventral esophageal gland cells and up-regulated in the early parasitic stage of M. graminicola. The effector MgGPP plays a role in nematode parasitism. Transgenic rice lines expressing MgGPP become significantly more susceptible to M. graminicola infection than wild-type control plants, and conversely, in planta, the silencing of MgGPP through RNAi technology substantially increases the resistance of rice to M. graminicola. Significantly, we show that MgGPP is secreted into host plants and targeted to the ER, where the N-glycosylation and C-terminal proteolysis of MgGPP occur. C-terminal proteolysis promotes MgGPP to leave the ER, after which it is transported to the nucleus. In addition, N-glycosylation of MgGPP is required for suppressing the host response. The research data provide an intriguing example of in planta glycosylation in concert with proteolysis of a pathogen effector, which depict a novel mechanism by which parasitic nematodes could subjugate plant immunity and promote parasitism and may present a promising target for developing new strategies against nematode infections.

  6. SseK3 Is a Salmonella Effector That Binds TRIM32 and Modulates the Host's NF-κB Signalling Activity.

    Directory of Open Access Journals (Sweden)

    Zhe Yang

    Full Text Available Salmonella Typhimurium employs an array of type III secretion system effectors that facilitate intracellular survival and replication during infection. The Salmonella effector SseK3 was originally identified due to amino acid sequence similarity with NleB; an effector secreted by EPEC/EHEC that possesses N-acetylglucoasmine (GlcNAc transferase activity and modifies death domain containing proteins to block extrinsic apoptosis. In this study, immunoprecipitation of SseK3 defined a novel molecular interaction between SseK3 and the host protein, TRIM32, an E3 ubiquitin ligase. The conserved DxD motif within SseK3, which is essential for the GlcNAc transferase activity of NleB, was required for TRIM32 binding and for the capacity of SseK3 to suppress TNF-stimulated activation of NF-κB pathway. However, we did not detect GlcNAc modification of TRIM32 by SseK3, nor did the SseK3-TRIM32 interaction impact on TRIM32 ubiquitination that is associated with its activation. In addition, lack of sseK3 in Salmonella had no effect on production of the NF-κB dependent cytokine, IL-8, in HeLa cells even though TRIM32 knockdown suppressed TNF-induced NF-κB activity. Ectopically expressed SseK3 partially co-localises with TRIM32 at the trans-Golgi network, but SseK3 is not recruited to Salmonella induced vacuoles or Salmonella induced filaments during Salmonella infection. Our study has identified a novel effector-host protein interaction and suggests that SseK3 may influence NF-κB activity. However, the lack of GlcNAc modification of TRIM32 suggests that SseK3 has further, as yet unidentified, host targets.

  7. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

    Science.gov (United States)

    Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...

  8. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    Science.gov (United States)

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents.

    Directory of Open Access Journals (Sweden)

    Andrea D Olmstead

    2012-01-01

    Full Text Available HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV, whose assembly and pathogenesis depend on interaction with lipid droplets (LDs. One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1--or site-1 protease (S1P. SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs, which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow

  10. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    Science.gov (United States)

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  11. Oomycetes, effectors, and all that jazz.

    Science.gov (United States)

    Bozkurt, Tolga O; Schornack, Sebastian; Banfield, Mark J; Kamoun, Sophien

    2012-08-01

    Plant pathogenic oomycetes secrete a diverse repertoire of effector proteins that modulate host innate immunity and enable parasitic infection. Understanding how effectors evolve, translocate and traffic inside host cells, and perturb host processes are major themes in the study of oomycete-plant interactions. The last year has seen important progress in the study of oomycete effectors with, notably, the elucidation of the 3D structures of five RXLR effectors, and novel insights into how cytoplasmic effectors subvert host cells. In this review, we discuss these and other recent advances and highlight the most important open questions in oomycete effector biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus.

    Directory of Open Access Journals (Sweden)

    Marcela de Souza Santos

    2017-06-01

    Full Text Available The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS production using the Type III Secretion System 2 (T3SS2 effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.

  13. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.

    Science.gov (United States)

    Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie

    2016-01-01

    Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Context-dependent protein folding of a virulence peptide in the bacterial and host environments: structure of an SycH–YopH chaperone–effector complex

    International Nuclear Information System (INIS)

    Vujanac, Milos; Stebbins, C. Erec

    2013-01-01

    The structure of a SycH–YopH chaperone–effector complex from Yersinia reveals the bacterial state of a protein that adopts different folds in the host and pathogen environments. Yersinia pestis injects numerous bacterial proteins into host cells through an organic nanomachine called the type 3 secretion system. One such substrate is the tyrosine phosphatase YopH, which requires an interaction with a cognate chaperone in order to be effectively injected. Here, the first crystal structure of a SycH–YopH complex is reported, determined to 1.9 Å resolution. The structure reveals the presence of (i) a nonglobular polypeptide in YopH, (ii) a so-called β-motif in YopH and (iii) a conserved hydrophobic patch in SycH that recognizes the β-motif. Biochemical studies establish that the β-motif is critical to the stability of this complex. Finally, since previous work has shown that the N-terminal portion of YopH adopts a globular fold that is functional in the host cell, aspects of how this polypeptide adopts radically different folds in the host and in the bacterial environments are analysed

  15. Characterization of the Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) Fungal Effector Candidate PEC6 and Its Corresponding Host Targets

    DEFF Research Database (Denmark)

    Liu, Changhai

    Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important fungal diseases on wheat worldwide and a serious threat to wheat production. Understanding the plant-microbe interaction mechanism is the basic step to assist future plant breeding aiming at increasing...... factor. By using the yeast two-hybrid system, the adenosine kinase (ADK) was identified as a host target of PEC6. Virus-induced gene silencing (VIGS) of ADK enhanced wheat susceptibility to stripe rust indicates that ADK is a positive regulator in plant defense. Based on EtHAn-mediated effector delivery......, seventy-two wheat landraces were screened to search for the presence of potential resistance (R) genes. Three landraces showed strong hypersensitive response (HR) when PEC6 was expressed in the cells, suggesting the presence of certain R gene(s) recognizing PEC6. However, these landraces did not show...

  16. NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity

    DEFF Research Database (Denmark)

    El Qaidi, Samir; Chen, Kangming; Halim, Adnan

    2017-01-01

    proteins with N-acetyl-D-glucosamine to inhibit antibacterial and inflammatory host responses. NleB is conserved among the attaching/effacing pathogens enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium. Moreover, Salmonella enterica strains encode up to three Nle......B orthologs named SseK1, SseK2, and SseK3. However, there are conflicting reports regarding the activities and host protein targets among the NleB/SseK orthologs. Therefore, here we performed in vitro glycosylation assays and cell culture experiments to compare the activities and substrate specificities...... of these effectors. SseK1, SseK3, EHEC NleB1, EPEC NleB1, and C. rodentium NleB blocked TNF-mediated NF-κB pathway activation, whereas SseK2 and NleB2 did not. C. rodentium NleB, EHEC NleB1, and SseK1 glycosylated host glyceraldehyde 3-phosphate dehydrogenase (GAPDH). C. rodentium NleB, EHEC NleB1, EPEC NleB1...

  17. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype.

    Science.gov (United States)

    Ali, Niwa; Flutter, Barry; Sanchez Rodriguez, Robert; Sharif-Paghaleh, Ehsan; Barber, Linda D; Lombardi, Giovanna; Nestle, Frank O

    2012-01-01

    The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice") are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null)), notably the NOD-scid IL-2Rγ(null) (NSG) and BALB/c-Rag2(null) IL-2Rγ(null) (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+) compartment and higher engraftment levels of CD3(+) T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM)) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM)-cell driven GvHD.

  18. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype.

    Directory of Open Access Journals (Sweden)

    Niwa Ali

    Full Text Available The occurrence of Graft-versus-Host Disease (GvHD is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice" are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null, notably the NOD-scid IL-2Rγ(null (NSG and BALB/c-Rag2(null IL-2Rγ(null (BRG mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+ compartment and higher engraftment levels of CD3(+ T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM phenotype and high levels of cutaneous lymphocyte antigen (CLA expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM-cell driven GvHD.

  19. Host-adaptation of Francisella tularensis alters the bacterium's surface-carbohydrates to hinder effectors of innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Tiffany M Zarrella

    Full Text Available The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase.SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice.F. tularensis undergoes host-adaptation which

  20. The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence.

    Directory of Open Access Journals (Sweden)

    Suayib Üstün

    Full Text Available The phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv requires type III effector proteins (T3Es for virulence. After translocation into the host cell, T3Es are thought to interact with components of host immunity to suppress defence responses. XopJ is a T3E protein from Xcv that interferes with plant immune responses; however, its host cellular target is unknown. Here we show that XopJ interacts with the proteasomal subunit RPT6 in yeast and in planta to inhibit proteasome activity. A C235A mutation within the catalytic triad of XopJ as well as a G2A exchange within the N-terminal myristoylation motif abolishes the ability of XopJ to inhibit the proteasome. Xcv ΔxopJ mutants are impaired in growth and display accelerated symptom development including tissue necrosis on susceptible pepper leaves. Application of the proteasome inhibitor MG132 restored the ability of the Xcv ΔxopJ to attenuate the development of leaf necrosis. The XopJ dependent delay of tissue degeneration correlates with reduced levels of salicylic acid (SA and changes in defence- and senescence-associated gene expression. Necrosis upon infection with Xcv ΔxopJ was greatly reduced in pepper plants with reduced expression of NPR1, a central regulator of SA responses, demonstrating the involvement of SA-signalling in the development of XopJ dependent phenotypes. Our results suggest that XopJ-mediated inhibition of the proteasome interferes with SA-dependent defence response to attenuate onset of necrosis and to alter host transcription. A central role of the proteasome in plant defence is discussed.

  1. Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy.

    Science.gov (United States)

    Babayan, Simon A; Read, Andrew F; Lawrence, Rachel A; Bain, Odile; Allen, Judith E

    2010-10-19

    Humans and other mammals mount vigorous immune assaults against helminth parasites, yet there are intriguing reports that the immune response can enhance rather than impair parasite development. It has been hypothesized that helminths, like many free-living organisms, should optimize their development and reproduction in response to cues predicting future life expectancy. However, immune-dependent development by helminth parasites has so far eluded such evolutionary explanation. By manipulating various arms of the immune response of experimental hosts, we show that filarial nematodes, the parasites responsible for debilitating diseases in humans like river blindness and elephantiasis, accelerate their development in response to the IL-5 driven eosinophilia they encounter when infecting a host. Consequently they produce microfilariae, their transmission stages, earlier and in greater numbers. Eosinophilia is a primary host determinant of filarial life expectancy, operating both at larval and at late adult stages in anatomically and temporally separate locations, and is implicated in vaccine-mediated protection. Filarial nematodes are therefore able to adjust their reproductive schedules in response to an environmental predictor of their probability of survival, as proposed by evolutionary theory, thereby mitigating the effects of the immune attack to which helminths are most susceptible. Enhancing protective immunity against filarial nematodes, for example through vaccination, may be less effective at reducing transmission than would be expected and may, at worst, lead to increased transmission and, hence, pathology.

  2. Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy.

    Directory of Open Access Journals (Sweden)

    Simon A Babayan

    Full Text Available Humans and other mammals mount vigorous immune assaults against helminth parasites, yet there are intriguing reports that the immune response can enhance rather than impair parasite development. It has been hypothesized that helminths, like many free-living organisms, should optimize their development and reproduction in response to cues predicting future life expectancy. However, immune-dependent development by helminth parasites has so far eluded such evolutionary explanation. By manipulating various arms of the immune response of experimental hosts, we show that filarial nematodes, the parasites responsible for debilitating diseases in humans like river blindness and elephantiasis, accelerate their development in response to the IL-5 driven eosinophilia they encounter when infecting a host. Consequently they produce microfilariae, their transmission stages, earlier and in greater numbers. Eosinophilia is a primary host determinant of filarial life expectancy, operating both at larval and at late adult stages in anatomically and temporally separate locations, and is implicated in vaccine-mediated protection. Filarial nematodes are therefore able to adjust their reproductive schedules in response to an environmental predictor of their probability of survival, as proposed by evolutionary theory, thereby mitigating the effects of the immune attack to which helminths are most susceptible. Enhancing protective immunity against filarial nematodes, for example through vaccination, may be less effective at reducing transmission than would be expected and may, at worst, lead to increased transmission and, hence, pathology.

  3. Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector.

    Science.gov (United States)

    Brenner, Moran; Lobel, Lior; Borovok, Ilya; Sigal, Nadejda; Herskovits, Anat A

    2018-03-01

    Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA) biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector.

  4. Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector.

    Directory of Open Access Journals (Sweden)

    Moran Brenner

    2018-03-01

    Full Text Available Listeria monocytogenes (Lm is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector.

  5. SPRYSEC effector proteins in Globodera rostochiensis

    NARCIS (Netherlands)

    Rehman, S.

    2008-01-01

    Plant pathogens inject so-called effector molecules into the cells of a host plant to promote their growth and reproduction in these hosts. In plant parasitic nematodes, these effector molecules are produced in the salivary glands. The objective of this thesis was to identify and characterize

  6. In planta processing and glycosylation of a nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-like effector and its interaction with a host CLAVATA2-like receptor to promote parasitism.

    Science.gov (United States)

    Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S; Mitchum, Melissa G; Wang, Xiaohong

    2015-01-01

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. In Planta Processing and Glycosylation of a Nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-Like Effector and Its Interaction with a Host CLAVATA2-Like Receptor to Promote Parasitism1[OPEN

    Science.gov (United States)

    Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S.; Mitchum, Melissa G.

    2015-01-01

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. PMID:25416475

  8. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  9. Inhibition of protein geranylgeranylation and farnesylation protects against graft-versus-host disease via effects on CD4 effector T cells.

    Science.gov (United States)

    Hechinger, Anne-Kathrin; Maas, Kristina; Dürr, Christoph; Leonhardt, Franziska; Prinz, Gabriele; Marks, Reinhard; Gerlach, Ulrike; Hofmann, Maike; Fisch, Paul; Finke, Jürgen; Pircher, Hanspeter; Zeiser, Robert

    2013-01-01

    Despite advances in immunosuppressive regimens, acute graft-versus-host disease remains a frequent complication of allogeneic hematopoietic cell transplantation. Pathogenic donor T cells are dependent on correct attachment of small GTPases to the cell membrane, mediated by farnesyl- or geranylgeranyl residues, which, therefore, constitute potential targets for graft-versus-host disease prophylaxis. A mouse model was used to study the impact of a farnesyl-transferase inhibitor and a geranylgeranyl-transferase inhibitor on acute graft-versus-host disease, anti-cytomegalovirus T-cell responses and graft-versus-leukemia activity. Treatment of mice undergoing allogeneic hematopoietic cell transplantation with farnesyl-transferase inhibitor and geranylgeranyl-transferase inhibitor reduced the histological severity of graft-versus-host disease and prolonged survival significantly. Mechanistically, farnesyl-transferase inhibitor and geranylgeranyl-transferase inhibitor treatment resulted in reduced alloantigen-driven expansion of CD4 T cells. In vivo treatment led to increased thymic cellularity and polyclonality of the T-cell receptor repertoire by reducing thymic graft-versus-host disease. These effects were absent when squalene production was blocked. The farnesyl-transferase inhibitor and geranylgeranyl-transferase inhibitor did not compromise CD8 function against leukemia cells or reconstitution of T cells that were subsequently responsible for anti-murine cytomegalovirus responses. In summary, we observed an immunomodulatory effect of inhibitors of farnesyl-transferase and geranylgeranyl-transferase on graft-versus-host disease, with enhanced functional immune reconstitution. In the light of the modest toxicity of farnesyl-transferase inhibitors such as tipifarnib in patients and the potent reduction of graft-versus-host disease in mice, farnesyl-transferase and geranylgeranyl-transferase inhibitors could help to reduce graft-versus-host disease significantly without

  10. Repeat-containing protein effectors of plant-associated organisms

    Directory of Open Access Journals (Sweden)

    Carl H. Mesarich

    2015-10-01

    Full Text Available Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  11. Uncovering the Legionella genus effector repertoire - strength in diversity and numbers

    Science.gov (United States)

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-01-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ~300 virulence proteins, termed effectors, which manipulate host-cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species, and predicted their effector repertoire using a previously validated machine-learning approach. This analysis revealed a treasure trove of 5,885 predicted effectors. The effector repertoire of different Legionella species was found to be largely non-overlapping, and only seven core-effectors were shared among all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from their natural protozoan hosts. Furthermore, we detected numerous novel conserved effector domains, and discovered new domain combinations, which allowed inferring yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution. PMID:26752266

  12. Effector proteins of rust fungi.

    Science.gov (United States)

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  13. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  14. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane

    Science.gov (United States)

    Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...

  15. Nematode effector proteins: an emerging paradigm of parasitism

    Science.gov (United States)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  16. TAL effectors and the executor R genes.

    Science.gov (United States)

    Zhang, Junli; Yin, Zhongchao; White, Frank

    2015-01-01

    Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized-recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  17. TAL effectors and the executor R genes

    Directory of Open Access Journals (Sweden)

    Junli eZhang

    2015-08-01

    Full Text Available Transcription activation-like (TAL effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R genes have been characterized - recessive, dominant non-transcriptional and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

  18. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach.

    Directory of Open Access Journals (Sweden)

    David Burstein

    2009-07-01

    Full Text Available A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a classification problem: each L. pneumophila open reading frame (ORF was classified as either effector or not. We computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors, reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40 novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability of machine

  19. Systematic Identification of Intracellular-Translocated Candidate Effectors in Edwardsiella piscicida

    Directory of Open Access Journals (Sweden)

    Lingzhi Zhang

    2018-02-01

    Full Text Available Many bacterial pathogens inject effectors directly into host cells to target a variety of host cellular processes and promote bacterial dissemination and survival. Identifying the bacterial effectors and elucidating their functions are central to understanding the molecular pathogenesis of these pathogens. Edwardsiella piscicida is a pathogen with a wide host range, and very few of its effectors have been identified to date. Here, based on the genes significantly regulated by macrophage infection, we identified 25 intracellular translocation-positive candidate effectors, including all five previously reported effectors, namely EseG, EseJ, EseH, EseK, and EvpP. A subsequent secretion analysis revealed diverse secretion patterns for the 25 effector candidates, suggesting that multiple transport pathways were involved in the internalization of these candidate effectors. Further, we identified two novel type VI secretion system (T6SS putative effectors and three outer membrane vesicles (OMV-dependent putative effectors among the candidate effectors described above, and further analyzed their contribution to bacterial virulence in a zebrafish model. This work demonstrates an effective approach for screening bacterial effectors and expands the effectors repertoire in E. piscicida.

  20. Identification of proteins similar to AvrE type III effector proteins from ...

    African Journals Online (AJOL)

    Type III effector proteins are injected into host cells through type III secretion systems. Some effectors are similar to host proteins to promote pathogenicity, while others lead to the activation of disease resistance. We used partial least squares alignment-free bioinformatics methods to identify proteins similar to AvrE proteins ...

  1. Effector-Triggered Self-Replication in Coupled Subsystems.

    Science.gov (United States)

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD.

    Directory of Open Access Journals (Sweden)

    Yang Chen

    Full Text Available The covalent attachment of adenosine monophosphate (AMP to proteins, a process called AMPylation (adenylylation, has recently emerged as a novel theme in microbial pathogenesis. Although several AMPylating enzymes have been characterized, the only known virulence protein with de-AMPylation activity is SidD from the human pathogen Legionella pneumophila. SidD de-AMPylates mammalian Rab1, a small GTPase involved in secretory vesicle transport, thereby targeting the host protein for inactivation. The molecular mechanisms underlying Rab1 recognition and de-AMPylation by SidD are unclear. Here, we report the crystal structure of the catalytic region of SidD at 1.6 Å resolution. The structure reveals a phosphatase-like fold with additional structural elements not present in generic PP2C-type phosphatases. The catalytic pocket contains a binuclear metal-binding site characteristic of hydrolytic metalloenzymes, with strong dependency on magnesium ions. Subsequent docking and molecular dynamics simulations between SidD and Rab1 revealed the interface contacts and the energetic contribution of key residues to the interaction. In conjunction with an extensive structure-based mutational analysis, we provide in vivo and in vitro evidence for a remarkable adaptation of SidD to its host cell target Rab1 which explains how this effector confers specificity to the reaction it catalyses.

  3. Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Thorpe, Peter; Mantelin, Sophie; Cock, Peter Ja; Blok, Vivian C; Coke, Mirela C; Eves-van den Akker, Sebastian; Guzeeva, Elena; Lilley, Catherine J; Smant, Geert; Reid, Adam J; Wright, Kathryn M; Urwin, Peter E; Jones, John T

    2014-10-23

    The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.

  4. Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph

    2011-01-01

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  5. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2011-02-01

    Full Text Available Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS, and thereby translocated Bartonella effector proteins (Beps, evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial

  6. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  7. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus

    Directory of Open Access Journals (Sweden)

    Maryam eRafiqi

    2013-07-01

    Full Text Available One of the emerging systems in plant-microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe in silico analyses to predict effectors of P. indica and we explore effector features considered here to mine a high priority protein list for functional analysis.

  8. Effector-triggered immunity: from pathogen perception to robust defense.

    Science.gov (United States)

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  9. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity.

    Directory of Open Access Journals (Sweden)

    Remco Stam

    Full Text Available Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.

  10. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on diots and monocots

    NARCIS (Netherlands)

    Stergiopoulos, I.; Burg, van den H.A.; Ökmen, B.; Beenen, H.G.; Liere, van S.; Kema, G.H.J.; Wit, de P.J.G.M.

    2010-01-01

    Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce

  11. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins

    Directory of Open Access Journals (Sweden)

    Mary M. Weber

    2018-01-01

    Full Text Available Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis, and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  12. Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Pedersen, Carsten; Kwaaitaal, Mark Adrianus Cornelis J

    2012-01-01

    A large number of effector candidates have been identified recently in powdery mildew fungi. However, their roles and how they perform their functions remain unresolved. In this study, we made use of host-induced gene silencing and confirmed that the secreted barley powdery mildew effector candid...

  13. How to conquer a tomato plant? Fusarium oxysporum effector targets

    NARCIS (Netherlands)

    de Sain, M.

    2016-01-01

    Pathogens secrete small proteins, called effectors, to alter the environment in their host to facilitate infection. The causal agent of Fusarium wilt on tomato, Fusarium oxysporum f. sp. lycopersici (Fol), secretes these proteins in the xylem sap of infected plants and hence they have been called

  14. Structure and evolution of barley powdery mildew effector candidates

    DEFF Research Database (Denmark)

    Pedersen, Carsten; Themaat, Emiel Ver Loren van; McGuffin, Liam J.

    2012-01-01

    Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute...

  15. Type IV Secretion System of Brucella spp. and its Effectors

    Directory of Open Access Journals (Sweden)

    Yuehua eKe

    2015-10-01

    Full Text Available Brucella spp. cause brucellosis in domestic and wild animals. They are intracellular bacterial pathogens and used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we will discuss roles of Brucella VirB T4SS and in more detail of all 15 identified effectors, which may be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells, suggesting that it plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. So, we listed some key molecular events in the intracellular life cycle of Brucella potentially targeted by the VirB T4SS effectors. Elucidating functions of the effectors secreted will be crucial to clarifying mechanism of T4SS during infection. Studying the effectors secreted by Brucella spp. might provide insights into the mechanisms by which the bacteria hijack the host signaling pathways, which help us to develop better vaccines and therapies against brucellosis.

  16. Type IV secretion system of Brucella spp. and its effectors.

    Science.gov (United States)

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.

  17. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire.

    Science.gov (United States)

    Wang, Qunqing; Han, Changzhi; Ferreira, Adriana O; Yu, Xiaoli; Ye, Wenwu; Tripathy, Sucheta; Kale, Shiv D; Gu, Biao; Sheng, Yuting; Sui, Yangyang; Wang, Xiaoli; Zhang, Zhengguang; Cheng, Baoping; Dong, Suomeng; Shan, Weixing; Zheng, Xiaobo; Dou, Daolong; Tyler, Brett M; Wang, Yuanchao

    2011-06-01

    The genome of the soybean pathogen Phytophthora sojae contains nearly 400 genes encoding candidate effector proteins carrying the host cell entry motif RXLR-dEER. Here, we report a broad survey of the transcription, variation, and functions of a large sample of the P. sojae candidate effectors. Forty-five (12%) effector genes showed high levels of polymorphism among P. sojae isolates and significant evidence for positive selection. Of 169 effectors tested, most could suppress programmed cell death triggered by BAX, effectors, and/or the PAMP INF1, while several triggered cell death themselves. Among the most strongly expressed effectors, one immediate-early class was highly expressed even prior to infection and was further induced 2- to 10-fold following infection. A second early class, including several that triggered cell death, was weakly expressed prior to infection but induced 20- to 120-fold during the first 12 h of infection. The most strongly expressed immediate-early effectors could suppress the cell death triggered by several early effectors, and most early effectors could suppress INF1-triggered cell death, suggesting the two classes of effectors may target different functional branches of the defense response. In support of this hypothesis, misexpression of key immediate-early and early effectors severely reduced the virulence of P. sojae transformants.

  18. Comprehensive Analysis of the Activation and Proliferation Kinetics and Effector Functions of Human Lymphocytes, and Antigen Presentation Capacity of Antigen-Presenting Cells in Xenogeneic Graft-Versus-Host Disease.

    Science.gov (United States)

    Kawasaki, Yasufumi; Sato, Kazuya; Hayakawa, Hiroko; Takayama, Norihito; Nakano, Hirofumi; Ito, Ryoji; Mashima, Kiyomi; Oh, Iekuni; Minakata, Daisuke; Yamasaki, Ryoko; Morita, Kaoru; Ashizawa, Masahiro; Yamamoto, Chihiro; Hatano, Kaoru; Fujiwara, Shin-Ichiro; Ohmine, Ken; Muroi, Kazuo; Kanda, Yoshinobu

    2018-04-17

    Xenogeneic graft-versus-host disease (GVHD) models in highly immunodeficient mice are currently being used worldwide to investigate human immune responses against foreign antigens in vivo. However, the individual roles of CD4 + and CD8 + T cells, and donor/host hematopoietic and nonhematopoietic antigen-presenting cells (APCs) in the induction and development of GVHD have not been fully investigated. In the present study, we comprehensively investigated the immune responses of human T cells and the antigen presentation capacity of donor/host hematopoietic and nonhematopoietic APCs in xenogeneic GVHD models using nonobese diabetic/Shi-scid-IL2rg null mice. CD4 + T cells and, to a lesser extent, CD8 + T cells individually mediated potentially lethal GVHD. In addition to inflammatory cytokine production, CD4 + T cells also supported the activation and proliferation of CD8 + T cells. Using bone marrow chimeras, we demonstrated that host hematopoietic, but not nonhematopoietic, APCs play a critical role in the development of CD4 + T cell-mediated GVHD. During early GVHD, we detected 2 distinct populations in memory CD4 + T cells. One population was highly activated and proliferated in major histocompatibility complex antigen (MHC) +/+ mice but not in MHC -/- mice, indicating alloreactive T cells. The other population showed a less activated and slowly proliferative status regardless of host MHC expression, and was associated with higher susceptibility to apoptosis, indicating nonalloreactive T cells in homeostasis-driven proliferation. These observations are clinically relevant to donor T cell response after allogeneic hematopoietic stem cell transplantation. Our findings provide a better understanding of the immunobiology of humanized mice and support the development of novel options for the prevention and treatment for GVHD. Copyright © 2018. Published by Elsevier Inc.

  19. Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall.

    Science.gov (United States)

    Brown, I R; Mansfield, J W; Taira, S; Roine, E; Romantschuk, M

    2001-03-01

    The Hrp pilus, composed of HrpA subunits, is an essential component of the type III secretion system in Pseudomonas syringae. We used electron microscopy (EM) and immunocytochemistry to examine production of the pilus in vitro from P. syringae pv. tomato strain DC3000 grown under hrp-inducing conditions on EM grids. Pili, when labeled with antibodies to HrpA, developed rapidly in a nonpolar manner shortly after the detection of the hrpA transcript and extended up to 5 microm into surrounding media. Structures at the base of the pilus were clearly differentiated from the basal bodies of flagella. The HrpZ protein, also secreted via the type III system, was found by immunogold labeling to be associated with the pilus in vitro. Accumulation and secretion of HrpA and HrpZ were also examined quantitatively after the inoculation of wild-type DC3000 and hrpA and hrpZ mutants into leaves of Arabidopsis thaliana. The functional pilus crossed the plant cell wall to generate tracks of immunogold labeling for HrpA and HrpZ. Mutants that produced HrpA but did not assemble pili were nonpathogenic, did not secrete HrpA protein, and were compromised for the accumulation of HrpZ. A model is proposed in which the rapidly elongating Hrp pilus acts as a moving conveyor, facilitating transfer of effector proteins from bacteria to the plant cytoplasm across the formidable barrier of the plant cell wall.

  20. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong; Yan, Chuangye; Pan, Xiaojing; Mahfouz, Magdy M.; Wang, Jiawei; Zhu, Jiankang; Shi, Yi Gong; Yan, Nieng

    2012-01-01

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair

  1. The Shigella flexneri OspB effector: an early immunomodulator.

    Science.gov (United States)

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro

    2015-01-01

    Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Orbital maneuvering end effectors

    Science.gov (United States)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1986-01-01

    This invention relates to an end effector device for grasping and maneuvering objects such as berthing handles of a space telescope. The device includes a V-shaped capture window defined as inclined surfaces in parallel face plates which converge toward a retainer recess in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess where latches lock handle in the recess. To align the capture window, plates may be cocked plus or minus five degrees on base. Drive means is included in the form of a motor coupled with a harmonic drive speed reducer, which provides for slow movement of the fingers at a high torque so that large articles may be handled. Novelty of the invention is believed to reside in the combined intermeshing finger structure, drive means and the harmonic drive speed reducer, which features provide the required maneuverability and strength.

  3. Identification and functional analysis of secreted effectors from phytoparasitic nematodes.

    Science.gov (United States)

    Rehman, Sajid; Gupta, Vijai K; Goyal, Aakash K

    2016-03-21

    Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant

  4. Effector profiles distinguish formae speciales of Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; Fokkens, Like; Schmidt, Sarah M; Linmans, Jasper H J; Kistler, H Corby; Ma, Li-Jun; Rep, Martijn

    2016-11-01

    Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Endothelial Cell-Targeted Adenoviral Vector for Suppressing Breast Malignancies

    National Research Council Canada - National Science Library

    Huang, Shuang

    2004-01-01

    .... Our proposal is designed to develop an endothelial cell-targeted adenoviral vector and to use the targeted vector to express high levels of anticancer therapeutic genes in the sites of angiogenenic...

  6. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2015-12-01

    Full Text Available The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen’s advantage. Proteinaceous effectors are synthesised intracellularly and must be externalised to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localisation predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes.

  7. Hacker Within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    Directory of Open Access Journals (Sweden)

    Taslima Taher Lina

    2016-05-01

    Full Text Available Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME, an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  8. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.

    Science.gov (United States)

    Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre

    2016-07-01

    Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.

  9. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  10. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  11. Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race.

    Science.gov (United States)

    Marín, Macarena; Uversky, Vladimir N; Ott, Thomas

    2013-09-01

    Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants' innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein-protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.

  12. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing

    NARCIS (Netherlands)

    Jonge, de R.; Esse, van H.P.; Maruthachalam, K.; Bolton, M.D.; Santhanam, P.; Keykha Saber, M.; Zhang, Z.; Usami, T.; Lievens, B.; Subbarao, K.V.; Thomma, B.

    2012-01-01

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and

  13. Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is a bona fide substrate for Legionelle pneumophila effector glucosyltransferases

    DEFF Research Database (Denmark)

    Tzivelekidis, Tina; Jank, Thomas; Pohl, Corinna

    2011-01-01

    Legionella pneumophila, which is the causative organism of Legionnaires disease, translocates numerous effector proteins into the host cell cytosol by a type IV secretion system during infection. Among the most potent effector proteins of Legionella are glucosyltransferases (Lgt’s), which...

  14. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA targeting proteins

    Science.gov (United States)

    Doyle, Erin L.; Stoddard, Barry L.; Voytas, Daniel F.; Bogdanove, Adam J.

    2013-01-01

    Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria in the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting. PMID:23707478

  15. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  16. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors.

    Science.gov (United States)

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A; Barry, Kerrie W; Spatafora, Joseph; Grigoriev, Igor V; Martin, Francis M; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species ( Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca , and Botrosphaeria dothidea ) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  17. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors

    Directory of Open Access Journals (Sweden)

    David Lopez

    2018-03-01

    Full Text Available Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  18. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    Directory of Open Access Journals (Sweden)

    Diane G O Saunders

    Full Text Available Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i contain a secretion signal, (ii are encoded by in planta induced genes, (iii have similarity to haustorial proteins, (iv are small and cysteine rich, (v contain a known effector motif or a nuclear localization signal, (vi are encoded by genes with long intergenic regions, (vii contain internal repeats, and (viii do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  19. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens.

    Science.gov (United States)

    Sánchez-Vallet, Andrea; Fouché, Simone; Fudal, Isabelle; Hartmann, Fanny E; Soyer, Jessica L; Tellier, Aurélien; Croll, Daniel

    2018-05-16

    Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  20. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene

    Science.gov (United States)

    Lilley, Catherine J.; Maqbool, Abbas; Wu, Duqing; Yusup, Hazijah B.; Jones, Laura M.; Birch, Paul R. J.; Urwin, Peter E.

    2018-01-01

    Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to “GS-like effectors”. Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function. PMID:29641602

  1. Liver cell-targeted delivery of therapeutic molecules.

    Science.gov (United States)

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-01-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.

  2. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System.

    Science.gov (United States)

    Tay, Daniel Ming Ming; Govindarajan, Kunde Ramamoorthy; Khan, Asif M; Ong, Terenze Yao Rui; Samad, Hanif M; Soh, Wei Wei; Tong, Minyan; Zhang, Fan; Tan, Tin Wee

    2010-10-15

    Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a platform for inclusion of

  3. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Tong Minyan

    2010-10-01

    Full Text Available Abstract Background Effectors of Type III Secretion System (T3SS play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Results Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i comprehensive annotation of experimental status of effectors, ii submission and curation review of records by users of the database, and iii the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%. Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. Conclusions T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors

  4. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    Directory of Open Access Journals (Sweden)

    Christina eNeumann

    2014-10-01

    Full Text Available Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6, thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  5. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    KAUST Repository

    Neumann, Christina

    2014-10-17

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  6. Evidence for acquisition of virulence effectors in pathogenic chytrids

    Directory of Open Access Journals (Sweden)

    Summers Kyle

    2011-07-01

    Full Text Available Abstract Background The decline in amphibian populations across the world is frequently linked to the infection of the chytrid fungus Batrachochytrium dendrobatidis (Bd. This is particularly perplexing because Bd was only recently discovered in 1999 and no chytrid fungus had previously been identified as a vertebrate pathogen. Results In this study, we show that two large families of known virulence effector genes, crinkler (CRN proteins and serine peptidases, were acquired by Bd from oomycete pathogens and bacteria, respectively. These two families have been duplicated after their acquisition by Bd. Additional selection analyses indicate that both families evolved under strong positive selection, suggesting that they are involved in the adaptation of Bd to its hosts. Conclusions We propose that the acquisition of virulence effectors, in combination with habitat disruption and climate change, may have driven the Bd epidemics and the decline in amphibian populations. This finding provides a starting point for biochemical investigations of chytridiomycosis.

  7. The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Directory of Open Access Journals (Sweden)

    Adnane eNemri

    2014-03-01

    Full Text Available Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp. Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimise parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analysed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote

  8. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    Energy Technology Data Exchange (ETDEWEB)

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George; Brown, Roslyn N.; Adkins, Joshua N.; Heffron, Fred

    2013-08-12

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  9. The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

    Science.gov (United States)

    Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their

  10. Structure and evolution of barley powdery mildew effector candidates

    Directory of Open Access Journals (Sweden)

    Pedersen Carsten

    2012-12-01

    Full Text Available Abstract Background Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease. Results Here we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen’s annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100–150 amino acids, with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300–400 amino acids, with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons. Conclusions We employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f

  11. SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity

    Directory of Open Access Journals (Sweden)

    Amalia Diaz-Granados

    2016-10-01

    Full Text Available Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These round worms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.

  12. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.

    Science.gov (United States)

    MacLean, Allyson M; Sugio, Akiko; Makarova, Olga V; Findlay, Kim C; Grieve, Victoria M; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A

    2011-10-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.

  13. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Jones, John T; Urwin, Peter E

    2014-09-01

    Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  14. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Directory of Open Access Journals (Sweden)

    Sebastian Eves-van den Akker

    2014-09-01

    Full Text Available Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  15. Human immune cell targeting of protein nanoparticles - caveospheres

    Science.gov (United States)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  16. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole.

    Directory of Open Access Journals (Sweden)

    Hayley J Newton

    Full Text Available The human pathogen Coxiella burnetii encodes a type IV secretion system called Dot/Icm that is essential for intracellular replication. The Dot/Icm system delivers bacterial effector proteins into the host cytosol during infection. The effector proteins delivered by C. burnetii are predicted to have important functions during infection, but when these proteins are needed during infection has not been clearly defined. Here, we use a reporter system consisting of fusion proteins that have a β-lactamase enzyme (BlaM fused to C. burnetii effector proteins to study protein translocation by the Dot/Icm system. Translocation of BlaM fused to the effector proteins CBU0077, CBU1823 and CBU1524 was not detected until 8-hours after infection of HeLa cells, which are permissive for C. burnetii replication. Translocation of these effector fusion proteins by the Dot/Icm system required acidification of the Coxiella-containing vacuole. Silencing of the host genes encoding the membrane transport regulators Rab5 or Rab7 interfered with effector translocation, which indicates that effectors are not translocated until bacteria traffic to a late endocytic compartment in the host cell. Similar requirements for effector translocation were discerned in bone marrow macrophages derived from C57BL/6 mice, which are primary cells that restrict the intracellular replication of C. burnetii. In addition to requiring endocytic maturation of the vacuole for Dot/Icm-mediated translocation of effectors, bacterial transcription was required for this process. Thus, translocation of effector proteins by the C. burnetii Dot/Icm system occurs after acidification of the CCV and maturation of this specialized organelle to a late endocytic compartment. This indicates that creation of the specialized vacuole in which C. burnetii replicates represents a two-stage process mediated initially by host factors that regulate endocytic maturation and then by bacterial effectors delivered into

  17. Telepresence master glove controller for dexterous robotic end-effectors

    Science.gov (United States)

    Fisher, Scott S.

    1987-01-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computer in real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  18. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    Science.gov (United States)

    2014-10-01

    cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10(7): 467-78. 22. Gomes AQ, Martins DS...costimulator (ICOS) is critical for the development of human T(H)17 cells . Sci Transl Med 2010; 2(55): 55ra78. 36. Cua DJ, Tato CM. Innate IL-17...intestinal epithelial lympho- cytes (17, 18). In contrast, circulating γδ T cells can be found in the blood and lymphoid organs, and are dominated by γδ

  19. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation.

    Directory of Open Access Journals (Sweden)

    Eric D Cambronne

    2007-12-01

    Full Text Available Many gram-negative pathogens use a type IV secretion system (T4SS to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.

  20. Orbital maneuvering vehicle end effectors

    Science.gov (United States)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1988-01-01

    An end effector device (A) for grasping and holding an article such as a handle (18) of a space telescope is disclosed. The device includes a V-shaped capture window (74) defined as inclined surfaces (76, 78) in parallel face plates (22, 24) which converge toward a retainer recess (54) in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers (26, 28) which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess (54) where latches (50) lock handle (18) in the recess. To align the capture window, plates (22, 24) may be cocked plus or minus five degrees on base (64).

  1. Bacterial Effectors and Their Functions in the Ubiquitin-Proteasome System: Insight from the Modes of Substrate Recognition

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    2014-08-01

    Full Text Available Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  2. Bacterial effectors and their functions in the ubiquitin-proteasome system: insight from the modes of substrate recognition.

    Science.gov (United States)

    Kim, Minsoo; Otsubo, Ryota; Morikawa, Hanako; Nishide, Akira; Takagi, Kenji; Sasakawa, Chihiro; Mizushima, Tsunehiro

    2014-08-18

    Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  3. Pseudomonas syringae pv. Tomato DC3000 Type III secretion effector polymutants reveal an interplay between hopAD1 and AvrPtoB

    Science.gov (United States)

    The model pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of plants by injecting a complex repertoire of effector proteins into host cells via the type III secretion system. The model effector AvrPtoB has multiple domains and plant protein interactors i...

  4. In planta processing and glycosylation of a nematode CLE effector and its interaction with a CLV2-like receptor to promote parasitism

    Science.gov (United States)

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ESR (CLE)-like proteins have been identified in several cyst nematodes including the potato cyst nematode (PCN); however, th...

  5. Structure-function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune-suppressing activity from recognition

    NARCIS (Netherlands)

    Di, X.; Cao, L.; Hughes, R.K.; Tintor, N.; Banfield, M.J.; Takken, F.L.W.

    2017-01-01

    Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol

  6. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors.

    Science.gov (United States)

    Wei, Hai-Lei; Collmer, Alan

    2017-12-25

    Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  7. Selective tumor cell targeting by the disaccharide moiety of bleomycin.

    Science.gov (United States)

    Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M

    2013-02-27

    In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.

  8. An optimal set of features for predicting type IV secretion system effector proteins for a subset of species based on a multi-level feature selection approach.

    Directory of Open Access Journals (Sweden)

    Zhila Esna Ashari

    Full Text Available Type IV secretion systems (T4SS are multi-protein complexes in a number of bacterial pathogens that can translocate proteins and DNA to the host. Most T4SSs function in conjugation and translocate DNA; however, approximately 13% function to secrete proteins, delivering effector proteins into the cytosol of eukaryotic host cells. Upon entry, these effectors manipulate the host cell's machinery for their own benefit, which can result in serious illness or death of the host. For this reason recognition of T4SS effectors has become an important subject. Much previous work has focused on verifying effectors experimentally, a costly endeavor in terms of money, time, and effort. Having good predictions for effectors will help to focus experimental validations and decrease testing costs. In recent years, several scoring and machine learning-based methods have been suggested for the purpose of predicting T4SS effector proteins. These methods have used different sets of features for prediction, and their predictions have been inconsistent. In this paper, an optimal set of features is presented for predicting T4SS effector proteins using a statistical approach. A thorough literature search was performed to find features that have been proposed. Feature values were calculated for datasets of known effectors and non-effectors for T4SS-containing pathogens for four genera with a sufficient number of known effectors, Legionella pneumophila, Coxiella burnetii, Brucella spp, and Bartonella spp. The features were ranked, and less important features were filtered out. Correlations between remaining features were removed, and dimensional reduction was accomplished using principal component analysis and factor analysis. Finally, the optimal features for each pathogen were chosen by building logistic regression models and evaluating each model. The results based on evaluation of our logistic regression models confirm the effectiveness of our four optimal sets of

  9. ROBOTIC TANK INSPECTION END EFFECTOR

    International Nuclear Information System (INIS)

    Rachel Landry

    1999-01-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related sub-tasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these sub-tasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these sub-tasks were derived from the original intent

  10. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity.

    Directory of Open Access Journals (Sweden)

    Barbara A Fox

    2016-07-01

    Full Text Available Nonreplicating type I uracil auxotrophic mutants of Toxoplasma gondii possess a potent ability to activate therapeutic immunity to established solid tumors by reversing immune suppression in the tumor microenvironment. Here we engineered targeted deletions of parasite secreted effector proteins using a genetically tractable Δku80 vaccine strain to show that the secretion of specific rhoptry (ROP and dense granule (GRA proteins by uracil auxotrophic mutants of T. gondii in conjunction with host cell invasion activates antitumor immunity through host responses involving CD8α+ dendritic cells, the IL-12/interferon-gamma (IFN-γ TH1 axis, as well as CD4+ and CD8+ T cells. Deletion of parasitophorous vacuole membrane (PVM associated proteins ROP5, ROP17, ROP18, ROP35 or ROP38, intravacuolar network associated dense granule proteins GRA2 or GRA12, and GRA24 which traffics past the PVM to the host cell nucleus severely abrogated the antitumor response. In contrast, deletion of other secreted effector molecules such as GRA15, GRA16, or ROP16 that manipulate host cell signaling and transcriptional pathways, or deletion of PVM associated ROP21 or GRA3 molecules did not affect the antitumor activity. Association of ROP18 with the PVM was found to be essential for the development of the antitumor responses. Surprisingly, the ROP18 kinase activity required for resistance to IFN-γ activated host innate immunity related GTPases and virulence was not essential for the antitumor response. These data show that PVM functions of parasite secreted effector molecules, including ROP18, manipulate host cell responses through ROP18 kinase virulence independent mechanisms to activate potent antitumor responses. Our results demonstrate that PVM associated rhoptry effector proteins secreted prior to host cell invasion and dense granule effector proteins localized to the intravacuolar network and host nucleus that are secreted after host cell invasion coordinately

  11. New clues in the nucleus: Transcriptional reprogramming in effector-triggered immunity

    Directory of Open Access Journals (Sweden)

    SAIKAT eBHATTACHARJEE

    2013-09-01

    Full Text Available The robustness of plant effector-triggered immunity is correlated with massive alterations of the host transcriptome. Yet the molecular mechanisms that cause and underlie this reprogramming remain obscure. Here we will review recent advances in deciphering nuclear functions of plant immune receptors and of associated proteins. Important open questions remain, such as the identities of the primary transcription factors involved in control of effector-triggered immune responses, and indeed whether this can be generalized or whether particular effector-resistance protein interactions impinge on distinct sectors in the transcriptional response web. Multiple lines of evidence have implicated WRKY transcription factors at the core of responses to microbe-associated molecular patterns and in intersections with effector-triggered immunity. Recent findings from yeast two-hybrid studies suggest that members of the TCP transcription factor family are targets of several effectors from diverse pathogens. Additional transcription factor families that are directly or indirectly involved in effector-triggered immunity are likely to be identified.

  12. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.

    Science.gov (United States)

    Ashida, Hiroshi; Sasakawa, Chihiro

    2015-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  13. Shigella IpaH family effectors as a versatile model for studying pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Hiroshi eAshida

    2016-01-01

    Full Text Available Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis. Via the type III secretion system (T3SS, Shigella deliver a subset of virulence proteins (effectors that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC. Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  14. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor

    DEFF Research Database (Denmark)

    Zhao, Chaoyang; Escalante, Lucio Navarro; Chen, Hang

    2015-01-01

    Gall-forming arthropods are highly specialized herbivores that, in combination with their hosts, produce extended phenotypes with unique morphologies [1]. Many are economically important, and others have improved our understanding of ecology and adaptive radiation [2]. However, the mechanisms...... in plants and E3-ligase-mimicking effectors in plant pathogenic bacteria. SSGP-71 proteins and wheat Skp proteins interact in vivo. Mutations in different SSGP-71 genes avoid the effector-triggered immunity that is directed by the wheat resistance genes H6 and H9. Results point to effectors as the agents...

  15. Oxysterols and Their Cellular Effectors

    Directory of Open Access Journals (Sweden)

    Eija Nissilä

    2012-02-01

    Full Text Available Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR α and γ, and Epstein-Barr virus induced gene 2 (EBI2 have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.

  16. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana.

    Science.gov (United States)

    Xiong, Qin; Ye, Wenwu; Choi, Duseok; Wong, James; Qiao, Yongli; Tao, Kai; Wang, Yuanchao; Ma, Wenbo

    2014-12-01

    The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.

  17. The pore-forming bacterial effector, VopQ, halts autophagic turnover.

    Science.gov (United States)

    Sreelatha, Anju; Orth, Kim; Starai, Vincent J

    2013-12-01

    Vibrio parahemolyticus Type III effector VopQ is both necessary and sufficient to induce autophagy within one hour of infection. We demonstrated that VopQ interacts with the Vo domain of the conserved vacuolar H(+)-ATPase. Membrane-associated VopQ subsequently forms pores in the membranes of acidic compartments, resulting in immediate release of protons without concomitant release of lumenal protein contents. These studies show how a bacterial pathogen can compromise host ion potentials using a gated pore-forming effector to equilibrate levels of small molecules found in endolysosomal compartments and disrupt cellular processes such as autophagy.

  18. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  19. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  20. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene.

    Directory of Open Access Journals (Sweden)

    Raul A Cernadas

    2014-02-01

    Full Text Available Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo, which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting.

  1. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  2. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Science.gov (United States)

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  3. A generalized quantitative antibody homeostasis model: maintenance of global antibody equilibrium by effector functions.

    Science.gov (United States)

    Prechl, József

    2017-11-01

    The homeostasis of antibodies can be characterized as a balanced production, target-binding and receptor-mediated elimination regulated by an interaction network, which controls B-cell development and selection. Recently, we proposed a quantitative model to describe how the concentration and affinity of interacting partners generates a network. Here we argue that this physical, quantitative approach can be extended for the interpretation of effector functions of antibodies. We define global antibody equilibrium as the zone of molar equivalence of free antibody, free antigen and immune complex concentrations and of dissociation constant of apparent affinity: [Ab]=[Ag]=[AbAg]= K D . This zone corresponds to the biologically relevant K D range of reversible interactions. We show that thermodynamic and kinetic properties of antibody-antigen interactions correlate with immunological functions. The formation of stable, long-lived immune complexes correspond to a decrease of entropy and is a prerequisite for the generation of higher-order complexes. As the energy of formation of complexes increases, we observe a gradual shift from silent clearance to inflammatory reactions. These rules can also be applied to complement activation-related immune effector processes, linking the physicochemical principles of innate and adaptive humoral responses. Affinity of the receptors mediating effector functions shows a wide range of affinities, allowing the continuous sampling of antibody-bound antigen over the complete range of concentrations. The generation of multivalent, multicomponent complexes triggers effector functions by crosslinking these receptors on effector cells with increasing enzymatic degradation potential. Thus, antibody homeostasis is a thermodynamic system with complex network properties, nested into the host organism by proper immunoregulatory and effector pathways. Maintenance of global antibody equilibrium is achieved by innate qualitative signals modulating a

  4. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    Science.gov (United States)

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  5. Yeast as a Heterologous Model System to Uncover Type III Effector Function.

    Directory of Open Access Journals (Sweden)

    Crina Popa

    2016-02-01

    Full Text Available Type III effectors (T3E are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. "Favourite" targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure-function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations

  6. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    Science.gov (United States)

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  7. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    Science.gov (United States)

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  8. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties.

    Science.gov (United States)

    Prajeeth, Chittappen K; Kronisch, Julius; Khorooshi, Reza; Knier, Benjamin; Toft-Hansen, Henrik; Gudi, Viktoria; Floess, Stefan; Huehn, Jochen; Owens, Trevor; Korn, Thomas; Stangel, Martin

    2017-10-16

    Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS. To understand the effects driven by Th17 cells in the CNS, we induced experimental autoimmune encephalomyelitis in wild-type mice and CD4 + T cell-specific integrin α4-deficient mice where trafficking of Th1 cells into the CNS was affected. We compared microglial and astrocyte response in the brain and spinal cord of these mice. We further treated astrocytes with supernatants from highly pure Th1 and Th17 cultures and assessed the messenger RNA expression of neurotrophic factors, cytokines and chemokines, using real-time PCR. Data obtained was analyzed using the Kruskal-Wallis test. We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates, suggesting that Th17 cells target astrocytes and not microglia. In vitro, in response to supernatants from Th1 and Th17 cultures, astrocytes showed altered expression of neurotrophic factors, pro-inflammatory cytokines and chemokines. Furthermore, increased expression of chemokines in Th1- and Th17-treated astrocytes enhanced recruitment of microglia and transendothelial migration of Th17 cells in vitro. Our results demonstrate the delicate interaction between T cell subsets and glial cells and how they communicate to mediate their effects. Effectors of Th1 act on both microglia and astrocytes whereas Th17 effectors preferentially target astrocytes to promote neuroinflammation.

  9. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  10. Meta-analytic approach to the accurate prediction of secreted virulence effectors in gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Sato Yoshiharu

    2011-11-01

    Full Text Available Abstract Background Many pathogens use a type III secretion system to translocate virulence proteins (called effectors in order to adapt to the host environment. To date, many prediction tools for effector identification have been developed. However, these tools are insufficiently accurate for producing a list of putative effectors that can be applied directly for labor-intensive experimental verification. This also suggests that important features of effectors have yet to be fully characterized. Results In this study, we have constructed an accurate approach to predicting secreted virulence effectors from Gram-negative bacteria. This consists of a support vector machine-based discriminant analysis followed by a simple criteria-based filtering. The accuracy was assessed by estimating the average number of true positives in the top-20 ranking in the genome-wide screening. In the validation, 10 sets of 20 training and 20 testing examples were randomly selected from 40 known effectors of Salmonella enterica serovar Typhimurium LT2. On average, the SVM portion of our system predicted 9.7 true positives from 20 testing examples in the top-20 of the prediction. Removal of the N-terminal instability, codon adaptation index and ProtParam indices decreased the score to 7.6, 8.9 and 7.9, respectively. These discrimination features suggested that the following characteristics of effectors had been uncovered: unstable N-terminus, non-optimal codon usage, hydrophilic, and less aliphathic. The secondary filtering process represented by coexpression analysis and domain distribution analysis further refined the average true positive counts to 12.3. We further confirmed that our system can correctly predict known effectors of P. syringae DC3000, strongly indicating its feasibility. Conclusions We have successfully developed an accurate prediction system for screening effectors on a genome-wide scale. We confirmed the accuracy of our system by external validation

  11. A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function

    Science.gov (United States)

    Tomalka, Amanda G.; Stopford, Charles M.; Lee, Pei-Chung; Rietsch, Arne

    2012-01-01

    Summary Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the P. aeruginosa translocator protein PopD as a model to identify its export signals. The amino-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone-binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells. PMID:23121689

  12. The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis

    Science.gov (United States)

    Gimenez-Ibanez, Selena; Boter, Marta; Fernández-Barbero, Gemma; Chini, Andrea; Rathjen, John P.; Solano, Roberto

    2014-01-01

    Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome. PMID:24558350

  13. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots.

    Science.gov (United States)

    Stergiopoulos, Ioannis; van den Burg, Harrold A; Okmen, Bilal; Beenen, Henriek G; van Liere, Sabine; Kema, Gert H J; de Wit, Pierre J G M

    2010-04-20

    Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce effector-triggered immunity in their presence. Here we show that homologs of the C. fulvum Avr4 and Ecp2 effectors are present in other pathogenic fungi of the Dothideomycete class, including Mycosphaerella fijiensis, the causal agent of black Sigatoka disease of banana. We demonstrate that the Avr4 homolog of M. fijiensis is a functional ortholog of C. fulvum Avr4 that protects fungal cell walls against hydrolysis by plant chitinases through binding to chitin and, despite the low overall sequence homology, triggers a Cf-4-mediated hypersensitive response (HR) in tomato. Furthermore, three homologs of C. fulvum Ecp2 are found in M. fijiensis, one of which induces different levels of necrosis or HR in tomato lines that lack or contain a putative cognate Cf-Ecp2 protein, respectively. In contrast to Avr4, which acts as a defensive virulence factor, M. fijiensis Ecp2 likely promotes virulence by interacting with a putative host target causing host cell necrosis, whereas Cf-Ecp2 could possibly guard the virulence target of Ecp2 and trigger a Cf-Ecp2-mediated HR. Overall our data suggest that Avr4 and Ecp2 represent core effectors that are collectively recognized by single cognate Cf-proteins. Transfer of these Cf genes to plant species that are attacked by fungi containing these cognate core effectors provides unique ways for breeding disease-resistant crops.

  14. Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons.

    Directory of Open Access Journals (Sweden)

    Soledad Sacristán

    2009-10-01

    Full Text Available Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVR(k1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVR(k1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1 the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2 the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome.

  15. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    Science.gov (United States)

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  16. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Science.gov (United States)

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins that are delivered to the apoplast, as well as...

  17. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity.

    Directory of Open Access Journals (Sweden)

    Xiangzi Zheng

    2014-04-01

    Full Text Available Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs, such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs, the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI, significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the

  18. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis

    OpenAIRE

    Sugio, Akiko; Kingdom, Heather N.; MacLean, Allyson M.; Grieve, Victoria M.; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect per...

  19. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    Science.gov (United States)

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  20. Diversifying Selection in the Wheat Stem Rust Fungus Acts Predominantly on Pathogen-Associated Gene Families and Reveals Candidate Effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2014-09-01

    Full Text Available Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defence proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialised gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control.

  1. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene

    Science.gov (United States)

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we ...

  2. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.

    Science.gov (United States)

    Harms, Alexander; Liesch, Marius; Körner, Jonas; Québatte, Maxime; Engel, Philipp; Dehio, Christoph

    2017-10-01

    Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the

  3. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.

    Directory of Open Access Journals (Sweden)

    Alexander Harms

    2017-10-01

    Full Text Available Host-targeting type IV secretion systems (T4SS evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery domain-similar to the Bartonella effector proteins (Beps that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping

  4. Long-Term Live Cell Imaging Reveals New Roles For Salmonella Effector Proteins SseG and SteA

    Science.gov (United States)

    McQuate, Sarah E.; Young, Alexandra M.; Silva-Herzog, Eugenia; Bunker, Eric; Hernandez, Mateo; de Chaumont, Fabrice; Liu, Xuedong; Detweiler, Corrella S.; Palmer, Amy E.

    2016-01-01

    Summary Salmonella Typhimurium is an intracellular bacterial pathogen that infects both epithelial cells and macrophages. Salmonella effector proteins, which are translocated into the host cell and manipulate host cell components, control the ability to replicate and/or survive in host cells. Due to the complexity and heterogeneity of Salmonella infections, there is growing recognition of the need for single cell and live-cell imaging approaches to identify and characterize the diversity of cellular phenotypes and how they evolve over time. Here we establish a pipeline for long-term (16 hours) live-cell imaging of infected cells and subsequent image analysis methods. We apply this pipeline to track bacterial replication within the Salmonella-containing vacuole in epithelial cells, quantify vacuolar replication versus survival in macrophages, and investigate the role of individual effector proteins in mediating these parameters. This approach revealed that dispersed bacteria can coalesce at later stages of infection, that the effector protein SseG influences the propensity for cytosolic hyperreplication in epithelial cells, and that while SteA only has a subtle effect on vacuolar replication in epithelial cells, it has a profound impact on infection parameters in immunocompetent macrophages, suggesting differential roles for effector proteins in different infection models. PMID:27376507

  5. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation.

    Directory of Open Access Journals (Sweden)

    Roger W Kramer

    2007-02-01

    Full Text Available Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.

  6. Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors

    Directory of Open Access Journals (Sweden)

    Fadel Sayes

    2018-04-01

    Full Text Available Summary: The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. : Sayes et al. develop an approach to express distinct fluorescent reporters that is based on the recognition of specific Mycobacterium tuberculosis MHC class II epitopes by highly discriminative T cell hybridomas. This multiplexed technology allows the study of secretion, subcellular location, and regulation patterns of these instrumental protein members. Keywords: mycobacterium tuberculosis, type VII secretion systems, intracellular bacteria, T-cell hybridomas, mycobacterial virulence factors, bacterial antigen presentation, lentiviral vectors, reporter T cells, in vivo antigen presentation, protein localization

  7. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection.

    Science.gov (United States)

    Qiao, Yongli; Shi, Jinxia; Zhai, Yi; Hou, Yingnan; Ma, Wenbo

    2015-05-05

    A broad range of parasites rely on the functions of effector proteins to subvert host immune response and facilitate disease development. The notorious Phytophthora pathogens evolved effectors with RNA silencing suppression activity to promote infection in plant hosts. Here we report that the Phytophthora Suppressor of RNA Silencing 1 (PSR1) can bind to an evolutionarily conserved nuclear protein containing the aspartate-glutamate-alanine-histidine-box RNA helicase domain in plants. This protein, designated PSR1-Interacting Protein 1 (PINP1), regulates the accumulation of both microRNAs and endogenous small interfering RNAs in Arabidopsis. A null mutation of PINP1 causes embryonic lethality, and silencing of PINP1 leads to developmental defects and hypersusceptibility to Phytophthora infection. These phenotypes are reminiscent of transgenic plants expressing PSR1, supporting PINP1 as a direct virulence target of PSR1. We further demonstrate that the localization of the Dicer-like 1 protein complex is impaired in the nucleus of PINP1-silenced or PSR1-expressing cells, indicating that PINP1 may facilitate small RNA processing by affecting the assembly of dicing complexes. A similar function of PINP1 homologous genes in development and immunity was also observed in Nicotiana benthamiana. These findings highlight PINP1 as a previously unidentified component of RNA silencing that regulates distinct classes of small RNAs in plants. Importantly, Phytophthora has evolved effectors to target PINP1 in order to promote infection.

  8. Duplications and losses in gene families of rust pathogens highlight putative effectors

    Directory of Open Access Journals (Sweden)

    Amanda L. Pendleton

    2014-06-01

    Full Text Available Rust fungi are a group of fungal pathogens that cause some of the world’s most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host’s cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of sixteen diverse fungal species, which include fifteen basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: i arose or expanded in rust pathogens relative to other fungi, or ii contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  9. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola.

    Science.gov (United States)

    Triplett, Lindsay R; Cohen, Stephen P; Heffelfinger, Christopher; Schmidt, Clarice L; Huerta, Alejandra I; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J; Leach, Jan E

    2016-09-01

    The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid

    Science.gov (United States)

    Asai, Shuta; Caillaud, Marie-Cécile; Furzer, Oliver J.; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D. G.

    2014-01-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome. PMID:25329884

  11. Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid.

    Directory of Open Access Journals (Sweden)

    Shuta Asai

    2014-10-01

    Full Text Available Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.

  12. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism.

    Science.gov (United States)

    Guzmán-Guzmán, Paulina; Alemán-Duarte, Mario Iván; Delaye, Luis; Herrera-Estrella, Alfredo; Olmedo-Monfil, Vianey

    2017-02-15

    Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T

  13. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...... about the function of many CSEPs in virulence and the identities of their host targets. In this PhD study, we investigated the function of nine CSEPs and found that CSEP0081, CSEP0105, CSEP0162 and CSEP0254 act as effectors by promoting the Bgh infection success. Independent silencing of these CSEPs...... proteins (sHsps), Hsp16.9 and Hsp17.5, were identified as interactors for both CSEP0105 and CSEP0162. These interactions were confirmed in planta by BiFC and co-localization studies. Small heat shock proteins are highly conserved ATP-independent chaperones that protect the cell from stress-induced protein...

  14. Improved Tumor Penetration and Single-Cell Targeting of Antibody-Drug Conjugates Increases Anticancer Efficacy and Host Survival.

    Science.gov (United States)

    Cilliers, Cornelius; Menezes, Bruna; Nessler, Ian; Linderman, Jennifer; Thurber, Greg M

    2018-02-01

    Current antibody-drug conjugates (ADC) have made advances in engineering the antibody, linker, conjugation site, small-molecule payload, and drug-to-antibody ratio (DAR). However, the relationship between heterogeneous intratumoral distribution and efficacy of ADCs is poorly understood. Here, we compared trastuzumab and ado-trastuzumab emtansine (T-DM1) to study the impact of ADC tumor distribution on efficacy. In a mouse xenograft model insensitive to trastuzumab, coadministration of trastuzumab with a fixed dose of T-DM1 at 3:1 and 8:1 ratios dramatically improved ADC tumor penetration and resulted in twice the improvement in median survival compared with T-DM1 alone. In this setting, the effective DAR was lowered, decreasing the amount of payload delivered to each targeted cell but increasing the number of cells that received payload. This result is counterintuitive because trastuzumab acts as an antagonist in vitro and has no single-agent efficacy in vivo , yet improves the effectiveness of T-DM1 in vivo Novel dual-channel fluorescence ratios quantified single-cell ADC uptake and metabolism and confirmed that the in vivo cellular dose of T-DM1 alone exceeded the minimum required for efficacy in this model. In addition, this technique characterized cellular pharmacokinetics with heterogeneous delivery after 1 day, degradation and payload release by 2 days, and in vitro cell killing and in vivo tumor shrinkage 2 to 3 days later. This work demonstrates that the intratumoral distribution of ADC, independent of payload dose or plasma clearance, plays a major role in ADC efficacy. Significance: This study shows how lowering the drug-to-antibody ratio during treatment can improve the intratumoral distribution of a antibody-drug conjugate, with implications for improving the efficacy of this class of cancer drugs. Cancer Res; 78(3); 758-68. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  16. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  17. Fibre optic sensor on robot end effector for flexible assembly

    International Nuclear Information System (INIS)

    Yung, K.L.; Lau, W.S.; Choi, C.K.; Shan, Y.Y.

    1995-01-01

    A fibre optic sensor system was constructed for use on robot end effectors for flexible assembly. The sensor detected the deviations between robot end effector and the workpiece. The signal was fed back to robot controller to shift the end effector until the centre of end effector and the centre of workpiece were aligned at the correct orientation. Then workpiece can be grasped symmetrically. Sensor fusion concept was used to guard against sensor system failure. Fuzzy linguistic variable and control rule concept were introduced in the sensor integration. The experimental setup for the sensor integrated system was shown. The accuracy was also discussed

  18. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Deng, Meng-Ying; Sun, Yun-Hao; Li, Pai; Fu, Bei; Shen, Dong; Lu, Yong-Jun

    2016-10-01

    Virulent protein toxins secreted by the bacterial pathogens can cause cytotoxicity by various molecular mechanisms to combat host cell defense. On the other hand, these proteins can also be used as probes to investigate the defense pathway of host innate immunity. Ralstonia solanacearum, one of the most virulent bacterial phytopathogens, translocates more than 70 effector proteins via type III secretion system during infection. Here, we characterized the cytotoxicity of effector RipI in budding yeast Saccharomyce scerevisiae, an alternative host model. We found that over-expression of RipI resulted in severe growth defect and arginine (R) 117 within the predicted integrase motif was required for inhibition of yeast growth. The phenotype of death manifested the hallmarks of apoptosis. Our data also revealed that RipI-induced apoptosis was independent of Yca1 and mitochondria-mediated apoptotic pathways because Δyca1 and Δaif1 were both sensitive to RipI as compared with the wild type. We further demonstrated that RipI was localized in the yeast nucleus and the N-terminal 1-174aa was required for the localization. High-throughput RNA sequencing analysis showed that upon RipI over-expression, 101 unigenes of yeast ribosome presented lower expression level, and 42 GO classes related to the nucleus or recombination were enriched with differential expression levels. Taken together, our data showed that a nuclear-targeting effector RipI triggers yeast apoptosis, potentially dependent on its integrase function. Our results also provided an alternative strategy to dissect the signaling pathway of cytotoxicity induced by the protein toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor

    Science.gov (United States)

    Johnson, A J; Shukle, R H; Chen, M-S; Srivastava, S; Subramanyam, S; Schemerhorn, B J; Weintraub, P G; Abdel Moniem, H E M; Flanders, K L; Buntin, G D; Williams, C E

    2015-01-01

    Evidence is emerging that some proteins secreted by gall-forming parasites of plants act as effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are the putative effectors responsible for the physiological changes elicited in susceptible seedling wheat by Hessian fly, Mayetiola destructor (Say), larvae have been documented. However, how the genes encoding these candidate effectors might respond under field conditions is unknown. The goal of this study was to use microarray analysis to investigate variation in SSGP transcript abundance amongst field collections from different geographical regions (southeastern USA, central USA, and the Middle East). Results revealed significant variation in SSGP transcript abundance amongst the field collections studied. The field collections separated into three distinct groups that corresponded to the wheat classes grown in the different geographical regions as well as to recently described Hessian fly populations. These data support previous reports correlating Hessian fly population structure with micropopulation differences owing to agro-ecosystem parameters such as cultivation of regionally adapted wheat varieties, deployment of resistance genes and variation in climatic conditions. PMID:25528896

  20. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Soledad R. Ordonez

    2017-10-01

    Full Text Available Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung.

  1. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    Science.gov (United States)

    Ordonez, Soledad R.; Veldhuizen, Edwin J. A.; van Eijk, Martin; Haagsman, Henk P.

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that form the first barrier of defense against fungal infections. These include host defense peptides, like LL-37 and defensins that can neutralize fungi by direct killing of the pathogen, and collectins, such as surfactant protein A and D, that can aggregate fungi and stimulate phagocytosis. In addition, these molecules have immunomodulatory activities which can aid in fungal clearance from the lung. However, existing observations are based on in vitro studies which do not reflect the complexity of the lung and its airway surface liquid. Ionic strength, pH, and the presence of mucus can have strong detrimental effects on antifungal activity, while the potential synergistic interplay between soluble effector molecules is largely unknown. In this review, we describe the current knowledge on soluble effector molecules that contribute to antifungal activity, the importance of environmental factors and discuss the future directions required to understand the innate antifungal defense in the lung. PMID:29163395

  2. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

    Science.gov (United States)

    Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A

    2011-11-29

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.

  3. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  4. Graft rejection by cytolytic T cells. Specificity of the effector mechanism in the rejection of allogeneic marrow

    International Nuclear Information System (INIS)

    Nakamura, H.; Gress, R.E.

    1990-01-01

    Cellular effector mechanisms of allograft rejection remain incompletely described. Characterizing the rejection of foreign-marrow allografts rather than solid-organ grafts has the advantage that the cellular composition of the marrow graft, as a single cell suspension, can be altered to include cellular components with differing antigen expression. Rejection of marrow grafts is sensitive to lethal doses of radiation in the mouse but resistant to sublethal levels of radiation. In an effort to identify cells mediating host resistance, lymphocytes were isolated and cloned from spleens of mice 7 days after sublethal TBI (650 cGy) and inoculation with allogeneic marrow. All clones isolated were cytolytic with specificity for MHC encoded gene products of the allogeneic marrow donor. When cloned cells were transferred in vivo into lethally irradiated (1025 cGy) recipients unable to reject allogeneic marrow, results utilizing splenic 125IUdR uptake indicated that these MHC-specific cytotoxic clones could suppress marrow proliferation. In order to characterize the effector mechanism and the ability of the clones to affect final engraftment, double donor chimeras were constructed so that 2 target cell populations differing at the MHC from each other and from the host were present in the same marrow allograft. Results directly demonstrated an ability of CTL of host MHC type to mediate graft rejection and characterized the effector mechanism as one with specificity for MHC gene products

  5. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  6. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    Science.gov (United States)

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC.

    Science.gov (United States)

    Akeda, Yukihiro; Kodama, Toshio; Saito, Kazunobu; Iida, Tetsuya; Oishi, Kazunori; Honda, Takeshi

    2011-11-01

    The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Abscisic Acid as Pathogen Effector and Immune Regulator

    Science.gov (United States)

    Lievens, Laurens; Pollier, Jacob; Goossens, Alain; Beyaert, Rudi; Staal, Jens

    2017-01-01

    Abscisic acid (ABA) is a sesquiterpene signaling molecule produced in all kingdoms of life. To date, the best known functions of ABA are derived from its role as a major phytohormone in plant abiotic stress resistance. Different organisms have developed different biosynthesis and signal transduction pathways related to ABA. Despite this, there are also intriguing common themes where ABA often suppresses host immune responses and is utilized by pathogens as an effector molecule. ABA also seems to play an important role in compatible mutualistic interactions such as mycorrhiza and rhizosphere bacteria with plants, and possibly also the animal gut microbiome. The frequent use of ABA in inter-species communication could be a possible reason for the wide distribution and re-invention of ABA as a signaling molecule in different organisms. In humans and animal models, it has been shown that ABA treatment or nutrient-derived ABA is beneficial in inflammatory diseases like colitis and type 2 diabetes, which confer potential to ABA as an interesting nutraceutical or pharmacognostic drug. The anti-inflammatory activity, cellular metabolic reprogramming, and other beneficial physiological and psychological effects of ABA treatment in humans and animal models has sparked an interest in this molecule and its signaling pathway as a novel pharmacological target. In contrast to plants, however, very little is known about the ABA biosynthesis and signaling in other organisms. Genes, tools and knowledge about ABA from plant sciences and studies of phytopathogenic fungi might benefit biomedical studies on the physiological role of endogenously generated ABA in humans. PMID:28469630

  9. Systems-Biology Approaches to Discover Anti-Viral Effectors of the Human Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Andreas F.R. Sommer

    2011-07-01

    Full Text Available Virus infections elicit an immediate innate response involving antiviral factors. The activities of some of these factors are, in turn, blocked by viral countermeasures. The ensuing battle between the host and the viruses is crucial for determining whether the virus establishes a foothold and/or induces adaptive immune responses. A comprehensive systems-level understanding of the repertoire of anti-viral effectors in the context of these immediate virus-host responses would provide significant advantages in devising novel strategies to interfere with the initial establishment of infections. Recent efforts to identify cellular factors in a comprehensive and unbiased manner, using genome-wide siRNA screens and other systems biology “omics” methodologies, have revealed several potential anti-viral effectors for viruses like Human immunodeficiency virus type 1 (HIV-1, Hepatitis C virus (HCV, West Nile virus (WNV, and influenza virus. This review describes the discovery of novel viral restriction factors and discusses how the integration of different methods in systems biology can be used to more comprehensively identify the intimate interactions of viruses and the cellular innate resistance.

  10. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  11. Identification and characterization of LysM effectors in Penicillium expansum.

    Science.gov (United States)

    Levin, Elena; Ballester, Ana Rosa; Raphael, Ginat; Feigenberg, Oleg; Liu, Yongsheng; Norelli, John; Gonzalez-Candelas, Luis; Ma, Jing; Dardick, Christopher; Wisniewski, Michael; Droby, Samir

    2017-01-01

    P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Although, many studies on modification of the host environment by the pathogen were done, its interactions with fruit during the early stages of infection and the virulence factors that mediate pathogenicity have not been fully defined. Effectors carrying LysM domain have been identified in numerous pathogenic fungi and their role in the first stages of infection has been established. In this study, we identified 18 LysM genes in the P. expansum genome. Amino acid sequence analysis indicated that P. expansum LysM proteins belong to a clade of fungal-specific LysM. Eleven of the discovered LysM genes were found to have secretory pathway signal peptide, among them, 4 (PeLysM1 PeLysM2, PeLysM3 and PeLysM4) were found to be highly expressed during the infection and development of decay of apple fruit. Effect of targeted deletion of the four putative PeLysM effectors on the growth and pathogenicity was studied. Possible interactions of PeLysM with host proteins was investigated using the yeast-two-hybrid system.

  12. Identification and characterization of LysM effectors in Penicillium expansum.

    Directory of Open Access Journals (Sweden)

    Elena Levin

    Full Text Available P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Although, many studies on modification of the host environment by the pathogen were done, its interactions with fruit during the early stages of infection and the virulence factors that mediate pathogenicity have not been fully defined. Effectors carrying LysM domain have been identified in numerous pathogenic fungi and their role in the first stages of infection has been established. In this study, we identified 18 LysM genes in the P. expansum genome. Amino acid sequence analysis indicated that P. expansum LysM proteins belong to a clade of fungal-specific LysM. Eleven of the discovered LysM genes were found to have secretory pathway signal peptide, among them, 4 (PeLysM1 PeLysM2, PeLysM3 and PeLysM4 were found to be highly expressed during the infection and development of decay of apple fruit. Effect of targeted deletion of the four putative PeLysM effectors on the growth and pathogenicity was studied. Possible interactions of PeLysM with host proteins was investigated using the yeast-two-hybrid system.

  13. TAL effectors specificity stems from negative discrimination.

    Directory of Open Access Journals (Sweden)

    Basile I M Wicky

    Full Text Available Transcription Activator-Like (TAL effectors are DNA-binding proteins secreted by phytopathogenic bacteria that interfere with native cellular functions by binding to plant DNA promoters. The key element of their architecture is a domain of tandem-repeats with almost identical sequences. Most of the polymorphism is located at two consecutive amino acids termed Repeat Variable Diresidue (RVD. The discovery of a direct link between the RVD composition and the targeted nucleotide allowed the design of TAL-derived DNA-binding tools with programmable specificities that revolutionized the field of genome engineering. Despite structural data, the molecular origins of this specificity as well as the recognition mechanism have remained unclear. Molecular simulations of the recent crystal structures suggest that most of the protein-DNA binding energy originates from non-specific interactions between the DNA backbone and non-variable residues, while RVDs contributions are negligible. Based on dynamical and energetic considerations we postulate that, while the first RVD residue promotes helix breaks--allowing folding of TAL as a DNA-wrapping super-helix--the second provides specificity through a negative discrimination of matches. Furthermore, we propose a simple pharmacophore-like model for the rationalization of RVD-DNA interactions and the interpretation of experimental findings concerning shared affinities and binding efficiencies. The explanatory paradigm presented herein provides a better comprehension of this elegant architecture and we hope will allow for improved designs of TAL-derived biotechnological tools.

  14. System for exchanging tools and end effectors on a robot

    International Nuclear Information System (INIS)

    Burry, D.B.; Williams, P.M.

    1991-01-01

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot. 12 figures

  15. Hijacking of the Host Ubiquitin Network by Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    2017-12-01

    Full Text Available Protein ubiquitination is critical for regulation of numerous eukaryotic cellular processes such as protein homeostasis, cell cycle progression, immune response, DNA repair, and vesicular trafficking. Ubiquitination often leads to the alteration of protein stability, subcellular localization, or interaction with other proteins. Given the importance of ubiquitination in the regulation of host immunity, it is not surprising that many infectious agents have evolved strategies to interfere with the ubiquitination network with sophisticated mechanisms such as functional mimicry. The facultative intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires' disease. L. pneumophila is phagocytosed by macrophages and is able to replicate within a niche called Legionella-containing vacuole (LCV. The biogenesis of LCV is dependent upon the Dot/Icm type IV secretion system which delivers more than 330 effector proteins into host cytosol. The optimal intracellular replication of L. pneumophila requires the host ubiquitin-proteasome system. Furthermore, membranes of the bacterial phagosome are enriched with ubiquitinated proteins in a way that requires its Dot/Icm type IV secretion system, suggesting the involvement of effectors in the manipulation of the host ubiquitination machinery. Here we summarize recent advances in our understanding of mechanisms exploited by L. pneumophila effector proteins to hijack the host ubiquitination pathway.

  16. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species.

    Science.gov (United States)

    Giesbers, Anne K J; Pelgrom, Alexandra J E; Visser, Richard G F; Niks, Rients E; Van den Ackerveken, Guido; Jeuken, Marieke J W

    2017-11-01

    Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its cross-compatibility with the host species L. sativa enables the study of inheritance of nonhost resistance (NHR). We performed transient expression of candidate RXLR effector genes from B. lactucae in a diverse Lactuca germplasm set. Responses to two candidate effectors (BLR31 and BLN08) were genetically mapped and tested for co-segregation with disease resistance. BLN08 induced a hypersensitive response (HR) in 55% of the L. saligna accessions, but responsiveness did not co-segregate with resistance to Bl:24. BLR31 triggered an HR in 5% of the L. saligna accessions, and revealed a novel R gene providing complete B. lactucae race Bl:24 resistance. Resistant hybrid plants that were BLR31 nonresponsive indicated other unlinked R genes and/or nonhost QTLs. We have identified a candidate avirulence effector of B. lactucae (BLR31) and its cognate R gene in L. saligna. Concurrently, our results suggest that R genes are not required for NHR of L. saligna. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Bartonella entry mechanisms into mammalian host cells.

    Science.gov (United States)

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  18. Robotic end-effector for rewaterproofing shuttle tiles

    Science.gov (United States)

    Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd

    1992-11-01

    This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.

  19. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression.

    Science.gov (United States)

    Yang, Bo; Wang, Qunqing; Jing, Maofeng; Guo, Baodian; Wu, Jiawei; Wang, Haonan; Wang, Yang; Lin, Long; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Wang, Yuanchao

    2017-04-01

    Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79 th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  1. Functional heterogeneity of human effector CD8+ T cells.

    Science.gov (United States)

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  2. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  3. Mi Casa es Su Casa: how an intracellular symbiont manipulates host biology.

    Science.gov (United States)

    Bhattacharya, Tamanash; Newton, Irene L G

    2017-10-27

    Wolbachia pipientis, the most common intracellular infection on the planet, infects 40% of insects as well as nematodes, isopods and arachnids. Wolbachia are obligately intracellular and challenging to study; there are no genetic tools for manipulating Wolbachia nor can they be cultured outside of host cells. Despite these roadblocks, the research community has defined a set of Wolbachia loci involved in host interaction: Wolbachia effectors. Through the use of Drosophila genetics, surrogate systems and biochemistry, the field has begun to define the toolkit Wolbachia use for host manipulation. Below we review recent findings identifying these Wolbachia effectors and point to potential, as yet uncharacterized, links between known phenotypes induced by Wolbachia infection and predicted effectors. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7

    Directory of Open Access Journals (Sweden)

    Vanessa M. D’Costa

    2015-09-01

    Full Text Available Intracellular bacterial pathogens of a diverse nature share the ability to evade host immunity by impairing trafficking of endocytic cargo to lysosomes for degradation, a process that is poorly understood. Here, we show that the Salmonella enterica type 3 secreted effector SopD2 mediates this process by binding the host regulatory GTPase Rab7 and inhibiting its nucleotide exchange. Consequently, this limits Rab7 interaction with its dynein- and kinesin-binding effectors RILP and FYCO1 and thereby disrupts host-driven regulation of microtubule motors. Our study identifies a bacterial effector capable of directly binding and thereby modulating Rab7 activity and a mechanism of endocytic trafficking disruption that may provide insight into the pathogenesis of other bacteria. Additionally, we provide a powerful tool for the study of Rab7 function, and a potential therapeutic target.

  5. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor.

    Science.gov (United States)

    Ma, Zhenchuan; Zhu, Lin; Song, Tianqiao; Wang, Yang; Zhang, Qi; Xia, Yeqiang; Qiu, Min; Lin, Yachun; Li, Haiyang; Kong, Liang; Fang, Yufeng; Ye, Wenwu; Wang, Yan; Dong, Suomeng; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao

    2017-02-17

    The extracellular space (apoplast) of plant tissue represents a critical battleground between plants and attacking microbes. Here we show that a pathogen-secreted apoplastic xyloglucan-specific endoglucanase, PsXEG1, is a focus of this struggle in the Phytophthora sojae -soybean interaction. We show that soybean produces an apoplastic glucanase inhibitor protein, GmGIP1, that binds to PsXEG1 to block its contribution to virulence. P. sojae , however, secretes a paralogous PsXEG1-like protein, PsXLP1, that has lost enzyme activity but binds to GmGIP1 more tightly than does PsXEG1, thus freeing PsXEG1 to support P. sojae infection. The gene pair encoding PsXEG1 and PsXLP1 is conserved in many Phytophthora species, and the P. parasitica orthologs PpXEG1 and PpXLP1 have similar functions. Thus, this apoplastic decoy strategy may be widely used in Phytophthora pathosystems. Copyright © 2017, American Association for the Advancement of Science.

  6. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    Science.gov (United States)

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Much is known about how T3SS1 effectors function in isolation, but we wanted to understand how their concerted action globally affects host cell signaling. To assess the host response to T3SS1, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1−). Overall, the host transcriptional response to both T3SS1+ and T3SS1− V. para was rapid, robust, and temporally dynamic. T3SS1 re-wired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors target host cells at the posttranslational level to cause cytotoxicity, network analysis indicated that V. para T3SS1 also precipitates a host transcriptional response that initially activates cell survival and represses cell death networks. The increased expression of several key pro-survival transcripts mediated by T3SS1 was dependent on a host signaling pathway that is silenced later in infection by the posttranslational action of T3SS1. Taken together, our analysis reveals a complex interplay between roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. PMID:28512145

  7. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants.

    Science.gov (United States)

    Postma, Wiebe J; Slootweg, Erik J; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O G; van Gelderen, Kasper; Lozano-Torres, Jose L; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-10-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.

  8. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  9. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1.

    Science.gov (United States)

    Zhang, Shujian; Chakrabarty, Pranjib K; Fleites, Laura A; Rayside, Patricia A; Hopkins, Donald L; Gabriel, Dean W

    2015-01-01

    Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.

  10. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1.

    Directory of Open Access Journals (Sweden)

    Shujian Zhang

    Full Text Available Xylella fastidiosa (X. fastidiosa infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703 and a serine protease (PD0956; two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928, and at least one relatively short, hemagglutinin-like protein (PD0986. Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3 overexpressing PD1703 exhibited a hypersensitive response (HR in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot and a PD0986 (hemagglutinin were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.

  11. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U RNA.

    Directory of Open Access Journals (Sweden)

    Tiago Antonio de Souza

    Full Text Available Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC, a translin-associated factor X (CsTRAX, a VirE2-interacting protein (CsVIP2, a high mobility group (CsHMG and two poly(A-binding proteins (CsPABP1 and 2, interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.

  12. Optimal expression of a Fab-effector fusion protein in Escherichia coli by removing the cysteine residues responsible for an interchain disulfide bond of a Fab molecule.

    Science.gov (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon

    2017-04-01

    Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (V H +C H1 ) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2

    Directory of Open Access Journals (Sweden)

    María Pilar Castañeda-Ojeda

    2017-05-01

    Full Text Available The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts.

  14. Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2

    Science.gov (United States)

    Castañeda-Ojeda, María Pilar; Moreno-Pérez, Alba; Ramos, Cayo; López-Solanilla, Emilia

    2017-01-01

    The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E) in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts. PMID:28529516

  15. Target selection biases from recent experience transfer across effectors.

    Science.gov (United States)

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.

  16. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing

    2010-05-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host\\'s essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  17. Cirtical role for Salmonella effector SopB in regulating inflammasome activation.

    Science.gov (United States)

    Hu, Gui-Qiu; Song, Pei-Xuan; Chen, Wei; Qi, Shuai; Yu, Shui-Xing; Du, Chong-Tao; Deng, Xu-Ming; Ouyang, Hong-Sheng; Yang, Yong-Jun

    2017-10-01

    Salmonella is known to evolve many mechanisms to avoid or delay inflammasome activation which remain largely unknown. In this study, we investigated whether the SopB protein critical to bacteria virulence capacity was an effector that involved in the regulation of inflammasome activation. BMDMs from NLRC4-, NLRP3-, caspase-1/-11-, IFI16- and AIM2-deficient mice were pretreated with LPS, and subsequently stimulated with a series of SopB-related strains of Salmonella, inflammasome induced cell death, IL-1β secretion, cleaved caspase-1 production and ASC speckle formation were detected. We found that SopB could inhibit host IL-1β secretion, caspase-1 activation and inflammasome induced cell death using a series of SopB-related strains of Salmonella; however the reduction of IL-1β secretion was not dependent on sensor that contain PYD domain, such as NLRP3, AIM2 or IFI16, but dependent on NLRC4. Notably, SopB specifically prevented ASC oligomerization and the enzymatic activity of SopB was responsible for the inflammasome inhibition. Furthermore, inhibition of Akt signaling induced enhanced inflammasome activation. These results revealed a novel role in inhibition of NLRC4 inflammasome for Salmonella effector SopB. Copyright © 2017. Published by Elsevier Ltd.

  18. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    Science.gov (United States)

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  19. The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE.

    Directory of Open Access Journals (Sweden)

    Puthayalai Treerat

    Full Text Available Many Gram-negative pathogens use a type III secretion system (TTSS for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness.

  20. The Toolbox for Uncovering the Functions of Legionella Dot/Icm Type IVb Secretion System Effectors: Current State and Future Directions

    Directory of Open Access Journals (Sweden)

    Gunnar N. Schroeder

    2018-01-01

    Full Text Available The defective in organelle trafficking/intracellular multiplication (Dot/Icm Type IVb secretion system (T4SS is the essential virulence factor for the intracellular life style and pathogenicity of Legionella species. Screens demonstrated that an individual L. pneumophila strain can use the Dot/Icm T4SS to translocate an unprecedented number of more than 300 proteins into host cells, where these, so called Icm/Dot-translocated substrates (IDTS or effectors, manipulate host cell functions to the benefit of the bacteria. Bioinformatic analysis of the pan-genus genome predicts at least 608 orthologous groups of putative effectors. Deciphering the function of these effectors is key to understanding Legionella pathogenesis; however, the analysis is challenging. Substantial functional redundancy renders classical, phenotypic screening of single gene deletion mutants mostly ineffective. Here, I review experimental approaches that were successfully used to identify, validate and functionally characterize T4SS effectors and highlight new methods, which promise to facilitate unlocking the secrets of Legionella's extraordinary weapons arsenal.

  1. Diacylglycerol kinases in T cell tolerance and effector function

    Directory of Open Access Journals (Sweden)

    Shelley S Chen

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs are a family of enzymes that regulate the relative levels of diacylglycerol (DAG and phosphatidic acid (PA in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR signal by recruiting multiple effector molecules such as RasGRP1, PKC, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms,  and , in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.

  2. Special-purpose multifingered robotic end-effectors

    International Nuclear Information System (INIS)

    Crowder, R.M.

    1990-01-01

    A number of advanced multifingered robotic end-effectors have been developed recently in which the finger joints are powered from external actuators. Although this gives dexterous performance, there are considerable problems with power transmission, due to the use of flexible tendons between the external actuators and the individual finger joints. If a multifingered robotic end-effector is to be operated in a confined space, local actuation of the fingers needs to be fully considered, even if there is a reduction in hand dexterity over that of an externally mounted actuator system. The University of Southampton has developed a number of end-effectors that incorporate integral finger actuators and mechanisms, two examples of which are discussed in this paper

  3. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling.

    Science.gov (United States)

    Wang, Nan; Wei, Fang; Qi, Yuhang; Li, Hongxiang; Lu, Xin; Zhao, Guoqiang; Xu, Qun

    2014-11-26

    MoS2 nanosheets with polydispersity of the lateral dimensions from natural mineral molybdenite have been prepared in the emulsions microenvironment built by the water/surfactant/CO2 system. The size, thickness, and atomic structure are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and laser-scattering particle size analysis. Meanwhile, by the analysis of photoluminescence spectroscopy and microscope, the MoS2 nanosheets with smaller lateral dimensions exhibit extraordinary photoluminescence properties different from those with relatively larger lateral dimensions. The discovery of the excitation dependent photoluminescence for MoS2 nanosheets makes them potentially of interests for the applications in optoelectronics and biology. Moreover, we demonstrate that the fabricated MoS2 nanosheets can be a nontoxic fluorescent label for cell-targeted labeling application.

  4. Recombinant interleukin 6 with M cell-targeting moiety produced in Lactococcus lactis IL1403 as a potent mucosal adjuvant for peroral immunization.

    Science.gov (United States)

    Li, Hui-Shan; Piao, Da-Chuan; Jiang, Tao; Bok, Jin-Duck; Cho, Chong-Su; Lee, Yoon-Seok; Kang, Sang-Kee; Choi, Yun-Jaie

    2015-04-15

    Development and application of safe and effective mucosal adjuvants are important to improve immunization efficiency in oral vaccine. Here, we report a novel mucosal adjuvant, IL-6-CKS9, a recombinant cytokine generated by conjugating an M cell-targeting peptide (CKS9) with c-terminus of the murine interleukin 6 (IL-6), which facilitated enhancement of mucosal immune response. Lactococcus lactis IL1403, a food-grade strain of lactic acid bacteria (LAB) which is widely used in dairy industry, was used as a host cell to express and secrete the IL-6-CKS9 for a mucosal vaccine adjuvant. The recombinant L. lactis IL1403 secreting IL-6-CKS9 was orally administered with a model antigen protein, M-BmpB (Brachyspira membrane protein B conjugated with CKS9), to BALB/c mice for mucosal immunization. ELISA analyses showed consistent enhancement tendencies in induction of anti-M-BmpB antibody levels both with mucosal (IgA) and systemic (IgG) immune responses in IL-6-CKS9-LAB treated group compared with other groups tested by conducting two separated mice immunization assays. In addition, we characterized that the oral administration of model protein antigen with live LAB producing IL-6-CKS9 could induce both Th1 and Th2 type immune responses by analysis of the specific anti-BmpB IgG1 and IgG2a isotypes in the sera and also investigated possible oral tolerance in our vaccine strategy. Collectively, our results showed successful production and secretion of recombinant murine IL-6 with M cell-targeting moiety (IL-6-CKS9) from L. lactis IL1403 and demonstrated the live recombinant LAB producing IL-6-CKS9 could have a potential to be used as an efficient adjuvant for peroral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development and testing of the cooling coil cleaning end effector

    International Nuclear Information System (INIS)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-01-01

    The Retrieval Process Development and Enhancement (KPD ampersand E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design

  6. Identification of Anaplasma marginale type IV secretion system effector proteins.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS. The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141 of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system.The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.

  7. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

    Science.gov (United States)

    Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

    2018-02-08

    The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

  8. Structural Features Facilitating Tumor Cell Targeting and Internalization by Bleomycin and Its Disaccharide

    Science.gov (United States)

    2016-01-01

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide–cytotoxin conjugates. PMID:25905565

  9. Structural features facilitating tumor cell targeting and internalization by bleomycin and its disaccharide.

    Science.gov (United States)

    Yu, Zhiqiang; Paul, Rakesh; Bhattacharya, Chandrabali; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M

    2015-05-19

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide-cytotoxin conjugates.

  10. Nanorobotic end-effectors: Design, fabrication, and in situ characterization

    Science.gov (United States)

    Fan, Zheng

    Nano-robotic end-effectors have promising applications for nano-fabrication, nano-manufacturing, nano-optics, nano-medical, and nano-sensing; however, low performances of the conventional end-effectors have prevented the widespread utilization of them in various fields. There are two major difficulties in developing the end-effectors: their nano-fabrication and their advanced characterization in the nanoscale. Here we introduce six types of end-effectors: the nanotube fountain pen (NFP), the super-fine nanoprobe, the metal-filled carbon nanotube (m CNT)-based sphere-on-pillar (SOP) nanoantennas, the tunneling nanosensor, and the nanowire-based memristor. The investigations on the NFP are focused on nano-fluidics and nano-fabrications. The NFP could direct write metallic "inks" and fabricating complex metal nanostructures from 0D to 3D with a position servo control, which is critically important to future large-scale, high-throughput nanodevice production. With the help of NFP, we could fabricate the end-effectors such as super-fine nanoprobe and m CNT-based SOP nanoantennas. Those end-effectors are able to detect local flaws or characterize the electrical/mechanical properties of the nanostructure. Moreover, using electron-energy-loss-spectroscopy (EELS) technique during the operation of the SOP optical antenna opens a new basis for the application of nano-robotic end-effectors. The technique allows advanced characterization of the physical changes, such as carrier diffusion, that are directly responsible for the device's properties. As the device was coupled with characterization techniques of scanning-trasmission-electron-microscopy (STEM), the development of tunneling nanosensor advances this field of science into quantum world. Furthermore, the combined STEM-EELS technique plays an important role in our understanding of the memristive switching performance in the nanowire-based memristor. The developments of those nano-robotic end-effectors expend the study

  11. A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type III effector proteins

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Niemann, George; Baker, Erin Shammel; Belov, Mikhail E.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; McDermott, Jason E.

    2010-11-08

    Many pathogenic Gram-negative bacteria use a type III secretion system (T3SS) to deliver effector proteins into the host cell where they reprogram host defenses and facilitate pathogenesis. While it has been determined that the first 20 - 30 N-terminal residues usually contain the ‘secretion signal’ that targets effector proteins for translocation, the molecular basis for recognition of this signal is not understood. Recent machine-learning approaches, such as SVM-based Identification and Evaluation of Virulence Effectors (SIEVE), have improved the ability to identify effector proteins from genomics sequence information. While these methods all suggest that the T3SS secretion signal has a characteristic amino acid composition bias, it is still unclear if the amino acid pattern is important and if there are any unifying structural properties that direct recognition. To address these issues a peptide corresponding to the secretion signal for Salmonella enterica serovar Typhimurium effector SseJ was synthesized (residues 1-30, SseJ) along with scrambled peptides of the same amino acid composition that produced high (SseJ-H) and low (SseJ-L) SIEVE scores. The secretion properties of these three peptides were tested using a secretion signal-CyaA fusion assay and their structures systematically probed using circular dichroism, nuclear magnetic resonance, and ion mobility spectrometry-mass spectrometry. The signal-CyaA fusion assay showed that the native and SseJ-H fusion constructs were secreted into J774 macrophage at similar levels via the SPI-2 secretion pathway while secretion of the SseJ-L fusion construct was substantially retarded, suggesting that the SseJ secretion signal was sequence order dependent. The structural studies showed that the SseJ, SseJ-H, and SseJ-L peptides were intrinsically disordered in aqueous solution with only a small predisposition to adopt nascent helical structure in the presence of the powerful structure stabilizing agent, 1

  12. New players in the same old game: a system level in silico study to predict type III secretion system and effector proteins in bacterial genomes reveals common themes in T3SS mediated pathogenesis.

    Science.gov (United States)

    Sadarangani, Vineet; Datta, Sunando; Arunachalam, Manonmani

    2013-07-26

    Type III secretion system (T3SS) plays an important role in virulence or symbiosis of many pathogenic or symbiotic bacteria [CHM 2:291-294, 2007; Physiology (Bethesda) 20:326-339, 2005]. T3SS acts like a tunnel between a bacterium and its host through which the bacterium injects 'effector' proteins into the latter [Nature 444:567-573, 2006; COSB 18:258-266, 2008]. The effectors spatially and temporally modify the host signalling pathways [FEMS Microbiol Rev 35:1100-1125, 2011; Cell Host Microbe5:571-579, 2009]. In spite its crucial role in host-pathogen interaction, the study of T3SS and the associated effectors has been limited to a few bacteria [Cell Microbiol 13:1858-1869, 2011; Nat Rev Microbiol 6:11-16, 2008; Mol Microbiol 80:1420-1438, 2011]. Before one set out to perform systematic experimental studies on an unknown set of bacteria it would be beneficial to identify the potential candidates by developing an in silico screening algorithm. A system level study would also be advantageous over traditional laboratory methods to extract an overriding theme for host-pathogen interaction, if any, from the vast resources of data generated by sequencing multiple bacterial genomes. We have developed an in silico protocol in which the most conserved set of T3SS proteins was used as the query against the entire bacterial database with increasingly stringent search parameters. It enabled us to identify several uncharacterized T3SS positive bacteria. We adopted a similar strategy to predict the presence of the already known effectors in the newly identified T3SS positive bacteria. The huge resources of biochemical data [FEMS Microbiol Rev 35:1100-1125, 2011; Cell Host Microbe 5:571-579, 2009; BMC Bioinformatics 7(11):S4, 2010] on the T3SS effectors enabled us to search for the common theme in T3SS mediated pathogenesis. We identified few cellular signalling networks in the host, which are manipulated by most of the T3SS containing pathogens. We went on to look for

  13. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity.

    Directory of Open Access Journals (Sweden)

    Amit P Bhavsar

    Full Text Available To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.

  14. Host-microbe interactions in the gut of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Takayuki eKuraishi

    2013-12-01

    Full Text Available Many insect species subsist on decaying and contaminated matter and are thus exposed to large quantities of microorganisms. To control beneficial commensals and combat infectious pathogens, insects must be armed with efficient systems for microbial recognition, signaling pathways, and effector molecules. The molecular mechanisms regulating these host-microbe interactions in insects have been largely clarified in Drosophila melanogaster with its powerful genetic and genomic tools. Here we review recent advances in this field, focusing mainly on the relationships between microbes and epithelial cells in the intestinal tract where the host exposure to the external environment is most frequent.

  15. Developmental control of integrin expression regulates Th2 effector homing

    Science.gov (United States)

    Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T ...

  16. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...

  17. The Coding and Effector Transfer of Movement Sequences

    Science.gov (United States)

    Kovacs, Attila J.; Muhlbauer, Thomas; Shea, Charles H.

    2009-01-01

    Three experiments utilizing a 14-element arm movement sequence were designed to determine if reinstating the visual-spatial coordinates, which require movements to the same spatial locations utilized during acquisition, results in better effector transfer than reinstating the motor coordinates, which require the same pattern of homologous muscle…

  18. Cell volume homeostatic mechanisms: effectors and signalling pathways

    DEFF Research Database (Denmark)

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    . Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  19. Identification of human embryonic progenitor cell targeting peptides using phage display.

    Directory of Open Access Journals (Sweden)

    Paola A Bignone

    Full Text Available Human pluripotent stem (hPS cells are capable of differentiation into derivatives of all three primary embryonic germ layers and can self-renew indefinitely. They therefore offer a potentially scalable source of replacement cells to treat a variety of degenerative diseases. The ability to reprogram adult cells to induced pluripotent stem (iPS cells has now enabled the possibility of patient-specific hPS cells as a source of cells for disease modeling, drug discovery, and potentially, cell replacement therapies. While reprogramming technology has dramatically increased the availability of normal and diseased hPS cell lines for basic research, a major bottleneck is the critical unmet need for more efficient methods of deriving well-defined cell populations from hPS cells. Phage display is a powerful method for selecting affinity ligands that could be used for identifying and potentially purifying a variety of cell types derived from hPS cells. However, identification of specific progenitor cell-binding peptides using phage display may be hindered by the large cellular heterogeneity present in differentiating hPS cell populations. We therefore tested the hypothesis that peptides selected for their ability to bind a clonal cell line derived from hPS cells would bind early progenitor cell types emerging from differentiating hPS cells. The human embryonic stem (hES cell-derived embryonic progenitor cell line, W10, was used and cell-targeting peptides were identified. Competition studies demonstrated specificity of peptide binding to the target cell surface. Efficient peptide targeted cell labeling was accomplished using multivalent peptide-quantum dot complexes as detected by fluorescence microscopy and flow cytometry. The cell-binding peptides were selective for differentiated hPS cells, had little or no binding on pluripotent cells, but preferential binding to certain embryonic progenitor cell lines and early endodermal hPS cell derivatives. Taken

  20. Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets

    Science.gov (United States)

    Isaac, Dervla T; Isberg, Ralph

    2014-01-01

    Macrophages are the front line of immune defense against invading microbes. Microbes, however, have evolved numerous and diverse mechanisms to thwart these host immune defenses and thrive intracellularly. Legionella pneumophila, a Gram-negative pathogen of amoebal and mammalian phagocytes, is one such microbe. In humans, it causes a potentially fatal pneumonia referred to as Legionnaires' disease. Armed with the Icm/Dot type IV secretion system, which is required for virulence, and approximately 300 translocated proteins, Legionella is able to enter host cells, direct the biogenesis of its own vacuolar compartment, and establish a replicative niche, where it grows to high levels before lysing the host cell. Efforts to understand the pathogenesis of this bacterium have focused on characterizing the molecular activities of its many effectors. In this article, we highlight recent strides that have been made in understanding how Legionella effectors mediate host-pathogen interactions. PMID:24762308

  1. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing; Zhu, Jian-Kang

    2010-01-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host's essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  2. Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity.

    Science.gov (United States)

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2016-03-01

    We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  4. Molecular Mechanisms of Host Cytoskeletal Rearrangements by Shigella Invasins

    Directory of Open Access Journals (Sweden)

    Jun Hyuck Lee

    2014-10-01

    Full Text Available Pathogen-induced reorganization of the host cell cytoskeleton is a common strategy utilized in host cell invasion by many facultative intracellular bacteria, such as Shigella, Listeria, enteroinvasive E. coli and Salmonella. Shigella is an enteroinvasive intracellular pathogen that preferentially infects human epithelial cells and causes bacillary dysentery. Invasion of Shigella into intestinal epithelial cells requires extensive remodeling of the actin cytoskeleton with the aid of pathogenic effector proteins injected into the host cell by the activity of the type III secretion system. These so-called Shigella invasins, including IpaA, IpaC, IpgB1, IpgB2 and IpgD, modulate the actin-regulatory system in a concerted manner to guarantee efficient entry of the bacteria into host cells.

  5. d-Fructose-Decorated Poly(ethylene imine) for Human Breast Cancer Cell Targeting.

    Science.gov (United States)

    Englert, Christoph; Pröhl, Michael; Czaplewska, Justyna A; Fritzsche, Carolin; Preußger, Elisabeth; Schubert, Ulrich S; Traeger, Anja; Gottschaldt, Michael

    2017-08-01

    The high affinity of GLUT5 transporter for d-fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d-fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four-step synthesis of a thiol-group bearing d-fructose enables the decoration of a cationic polymer backbone with d-fructose via thiol-ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d-fructose decoration of 16% renders the polymers water-soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA-MB-231 breast cancer cells. Therefore, the introduction of d-fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation

    Directory of Open Access Journals (Sweden)

    Thomas J. Kean

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the “first-pass” accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC therapeutic dose.

  7. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy.

    Science.gov (United States)

    Machado, Yoan; Duinkerken, Sanne; Hoepflinger, Veronika; Mayr, Melissa; Korotchenko, Evgeniia; Kurtaj, Almedina; Pablos, Isabel; Steiner, Markus; Stoecklinger, Angelika; Lübbers, Joyce; Schmid, Maximillian; Ritter, Uwe; Scheiblhofer, Sandra; Ablinger, Michael; Wally, Verena; Hochmann, Sarah; Raninger, Anna M; Strunk, Dirk; van Kooyk, Yvette; Thalhamer, Josef; Weiss, Richard

    2017-11-28

    Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14 + dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure.

    Science.gov (United States)

    Khan, Shahzada; Telwatte, Sushama; Trapecar, Martin; Yukl, Steven; Sanjabi, Shomyseh

    2017-11-01

    The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4 + T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4 + T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.

  9. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Science.gov (United States)

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  10. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Shan Wang

    2016-03-01

    Full Text Available The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors.

  11. The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection

    DEFF Research Database (Denmark)

    Del Bel Belluz, Lisa; Guidi, Riccardo; Pateras, Ioannis S.

    2016-01-01

    Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of these effectors during the course of infection remains poorly characterized. To address this i...

  12. End-Effector Development for the PIP Puck Handling Robot

    International Nuclear Information System (INIS)

    Fowley, M.D.

    2001-01-01

    It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck

  13. Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells

    NARCIS (Netherlands)

    van Leeuwen, Ester M.; Gamadia, Laila E.; Baars, Paul A.; Remmerswaal, Ester B.; ten Berge, Ineke J.; van Lier, René A.

    2002-01-01

    Two prototypic types of virus-specific CD8(+) T cells can be found in latently infected individuals: CD45R0(+)CD27(+)CCR7(-) effector-memory, and CD45RA(+)CD27(-)CCR7(-) effector-type cells. It has recently been implied that CD45RA(+)CD27(-)CCR7(-) T cells are terminally differentiated effector

  14. Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection

    Directory of Open Access Journals (Sweden)

    Hossein Nahrevanian

    Full Text Available Nitric oxide (NO is thought to be an important mediator and critical signaling molecule for malaria immunopathology; it is also a target for therapy and for vaccine. Inducible nitric oxide synthase (iNOS is synthesized by a number of cell types under inflammatory conditions. The most relevant known triggers for its expression are endotoxins and cytokines. To date, there have been conflicting reports concerning the clinical significance of NO in malaria. Some researchers have proposed that NO contributes to the development of severe and complicated malaria, while others have argued that NO has a protective role. Infection with parasites resistant to the microbicidal action of NO may result in high levels of NO being generated, which could then damage the host, instead of controlling parasitemia. Consequently, the host-parasite interaction is a determining factor for whether the parasite is capable of stimulating NO production; the role of NO in resistance to malaria appears to be strain specific. It is known that NO and/or its related molecules are involved in malaria, but their involvement is not independent of other immune events. NO is an important, but possibly not an essential contributor to the control of acute-phase malaria infection. The protective immune responses against malaria parasite are multifactorial; however, they necessarily involve final effector molecules, including NO, iNOS and RNI.

  15. Structural and Biochemical Characterization of SrcA, a Multi-cargo Type III Secretion Chaperone in Salmonella Required for Pathogenic Association with a Host

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C.; Zhang, K; Andres, S; Fnag, Y; Kaniuk, N; Hannemann, M; Brumell, J; Foster, L; Junop, M; Coombes, B

    2010-01-01

    Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 {angstrom} revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  16. Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host.

    Directory of Open Access Journals (Sweden)

    Colin A Cooper

    2010-02-01

    Full Text Available Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2 is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2 and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  17. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting

    Directory of Open Access Journals (Sweden)

    Sander A. A. Kooijmans

    2016-03-01

    Full Text Available Background: Extracellular vesicles (EVs are attractive candidate drug delivery systems due to their ability to functionally transport biological cargo to recipient cells. However, the apparent lack of target cell specificity of exogenously administered EVs limits their therapeutic applicability. In this study, we propose a novel method to equip EVs with targeting properties, in order to improve their interaction with tumour cells. Methods: EV producing cells were transfected with vectors encoding for anti-epidermal growth factor receptor (EGFR nanobodies, which served as targeting ligands for tumour cells, fused to glycosylphosphatidylinositol (GPI anchor signal peptides derived from decay-accelerating factor (DAF. EVs were isolated using ultrafiltration/size-exclusion liquid chromatography and characterized using western blotting, Nanoparticle Tracking Analysis, and electron microscopy. EV–tumour cell interactions were analyzed under static conditions using flow cytometry and under flow conditions using a live-cell fluorescence microscopy-coupled perfusion system. Results: V analysis showed that GPI-linked nanobodies were successfully displayed on EV surfaces and were highly enriched in EVs compared with parent cells. Display of GPI-linked nanobodies on EVs did not alter general EV characteristics (i.e. morphology, size distribution and protein marker expression, but greatly improved EV binding to tumour cells dependent on EGFR density under static conditions. Moreover, nanobody-displaying EVs showed a significantly improved cell association to EGFR-expressing tumour cells under flow conditions. Conclusions: We show that nanobodies can be anchored on the surface of EVs via GPI, which alters their cell targeting behaviour. Furthermore, this study highlights GPI-anchoring as a new tool in the EV toolbox, which may be applied for EV display of a variety of proteins, such as antibodies, reporter proteins and signaling molecules.

  18. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy

    International Nuclear Information System (INIS)

    Han, Yu Kyeong; Lee, Jae Ho; Park, Ga-Young; Chun, Sung Hak; Han, Jeong Yun; Kim, Sung Dae; Lee, Janet; Lee, Chang-Woo; Yang, Kwangmo; Lee, Chang Geun

    2013-01-01

    Highlights: ► A CDK4 inhibitor may be used for breast cancer stem cell-targeted therapy. ► The CDK4 inhibitor differentiated the cancer stem cell population (CD24 − /CD44 + ) of MDA-MB-231. ► The differentiation of the cancer stem cells by the CDK4 inhibitor radiosensitized MDA-MB-231. -- Abstract: Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus, many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies. This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study, we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells, which are shown by multiple marker or phenotypes of CSCs. Thus, these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus, further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer

  19. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif

    Directory of Open Access Journals (Sweden)

    Emmersen Jeppe

    2010-05-01

    Full Text Available Abstract Background Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense. Results In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented ~3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes. Conclusion In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.

  20. The cytotoxic type 3 secretion system 1 of Vibrio rewires host gene expression to subvert cell death and activate cell survival pathways.

    Science.gov (United States)

    De Nisco, Nicole J; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-05-16

    Bacterial effectors potently manipulate host signaling pathways. The marine bacterium Vibrio parahaemolyticus ( V. para ) delivers effectors into host cells through two type 3 secretion systems (T3SSs). T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate nonapoptotic cell death. To understand how the concerted action of T3SS1 effectors globally affects host cell signaling, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1 + ) to those in cells infected with V. para lacking T3SS1 (T3SS1 - ). Overall, the host transcriptional response to both T3SS1 + and T3SS1 - V. para was rapid, robust, and temporally dynamic. T3SS1 rewired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors targeted host cells at the posttranslational level to cause cytotoxicity, V. para T3SS1 also precipitated a host transcriptional response that initially activated cell survival and repressed cell death networks. The increased expression of several key prosurvival transcripts mediated by T3SS1 depended on a host signaling pathway that is silenced posttranslationally later in infection. Together, our analysis reveals a complex interplay between the roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. Copyright © 2017, American Association for the Advancement of Science.

  1. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood.

    Directory of Open Access Journals (Sweden)

    Kerstin Hünniger

    2014-02-01

    Full Text Available Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment

  2. Screening of molecular cell targets for carcinogenic heterocyclic aromatic amines by using CALUX® reporter gene assays.

    Science.gov (United States)

    Steinberg, Pablo; Behnisch, Peter A; Besselink, Harrie; Brouwer, Abraham A

    2017-06-01

    Heterocyclic aromatic amines (HCAs) are compounds formed when meat or fish are cooked at high temperatures for a long time or over an open fire. To determine which pathways of toxicity are activated by HCAs, nine out of the ten HCAs known to be carcinogenic in rodents (2-amino-9H-pyrido[2,3-b]indole (AαC), 2-aminodipyrido[1,2-a:3',2-d]imidazole (Glu-P-2), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2)) were tested in the estrogen receptor α (ERα), androgen receptor (AR), glucocorticoid receptor (GR), peroxisome proliferator-activated receptor γ2 (PPARγ2), polycyclic aromatic hydrocarbons (PAH), Nrf2, and p53 CALUX® reporter gene assays. Trp-P-1 was the only HCA that led to a positive response in the ERα, PPARγ2, and Nrf2 CALUX® assays. In the PAH CALUX® assay, Trp-P-2, MeAαC, and AαC induced luciferase activity to a greater extent than MeIQ and PhIP. In the p53 CALUX® assay without a coupled metabolic activation, only Trp-P-1 and Trp-P-2 enhanced luciferase expression; when a metabolic activation step was coupled to the p53 CALUX® assay, Trp-P-1, Glu-P-2, MeIQ, MeIQx, and PhIP induced a positive response. No HCA was positive in the AR and GR CALUX® assays. Taken together, the results obtained show that the battery of CALUX® assays performed in the present study can successfully be used to screen for molecular cell targets of carcinogenic compounds such as HCAs.

  3. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Directory of Open Access Journals (Sweden)

    Unzueta U

    2012-08-01

    Full Text Available Ugutz Unzueta,1–3 María Virtudes Céspedes,3,4 Neus Ferrer-Miralles,1–3 Isolda Casanova,3,4 Juan Cedano,5 José Luis Corchero,1–3 Joan Domingo-Espín,1–3 Antonio Villaverde,1–3 Ramón Mangues,3,4 Esther Vázquez1–31Institut de Biotecnologia i de Biomedicina, 2Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 3CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona, 4Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 5Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, UruguayBackground: Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4 is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing.Results: Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer.Conclusion: Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles

  4. Host-pathogen interplay of Haemophilus ducreyi.

    Science.gov (United States)

    Janowicz, Diane M; Li, Wei; Bauer, Margaret E

    2010-02-01

    Haemophilus ducreyi, the causative agent of the sexually transmitted infection chancroid, is primarily a pathogen of human skin. During infection, H. ducreyi thrives extracellularly in a milieu of professional phagocytes and other antibacterial components of the innate and adaptive immune responses. This review summarizes our understanding of the interplay between this pathogen and its host that leads to development and persistence of disease. H. ducreyi expresses key virulence mechanisms to resist host defenses. The secreted LspA proteins are tyrosine-phosphorylated by host kinases, which may contribute to their antiphagocytic effector function. The serum resistance and adherence functions of DsrA map to separate domains of this multifunctional virulence factor. An influx transporter protects H. ducreyi from killing by the antimicrobial peptide LL37. Regulatory genes have been identified that may coordinate virulence factor expression during disease. Dendritic cells and natural killer cells respond to H. ducreyi and may be involved in determining the differential outcomes of infection observed in humans. A human model of H. ducreyi infection has provided insights into virulence mechanisms that allow this human-specific pathogen to survive immune pressures. Components of the human innate immune system may also determine the ultimate fate of H. ducreyi infection by driving either clearance of the organism or an ineffective response that allows disease progression.

  5. Shigella infection of intestinal epithelium and circumvention of the host innate defense system.

    Science.gov (United States)

    Ashida, Hiroshi; Ogawa, Michinaga; Mimuro, Hitomi; Sasakawa, Chihiro

    2009-01-01

    Shigella, Gram-negative bacteria closely related to Escherichia coli, are highly adapted human pathogens that cause bacillary dysentery. Although Shigella have neither adherence factors nor flagella required for attaching or accessing the intestinal epithelium, Shigella are capable of colonizing the intestinal epithelium by exploiting epithelial-cell functions and circumventing the host innate immune response. During Shigella infection, they deliver many numbers of effectors through the type III secretion system into the surrounding space and directly into the host-cell cytoplasm. The effectors play pivotal roles from the onset of bacterial infection through to the establishment of the colonization of the intestinal epithelium, such as bacterial invasion, intracellular survival, subversion of the host immune defense response, and maintenance of the infectious foothold. These examples suggest that Shigella have evolved highly sophisticated infectious and intracellular strategies to establish replicative niches in the intestinal epithelium.

  6. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Directory of Open Access Journals (Sweden)

    Sebastian Hannemann

    Full Text Available Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS, which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  7. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Science.gov (United States)

    Hannemann, Sebastian; Gao, Beile; Galán, Jorge E

    2013-01-01

    Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  8. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity.

    Science.gov (United States)

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between

  9. Adaptation to the Host Environment by Plant-Pathogenic Fungi.

    Science.gov (United States)

    van der Does, H Charlotte; Rep, Martijn

    2017-08-04

    Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.

  10. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  11. The Effector SPRYSEC-19 of Globodera rostochiensis Suppresses CC-NB-LRR-Mediated Disease Resistance in Plants1[C][W][OA

    Science.gov (United States)

    Postma, Wiebe J.; Slootweg, Erik J.; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O.G.; van Gelderen, Kasper; Lozano-Torres, Jose L.; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-01-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants. PMID:22904163

  12. Three Antagonistic Cyclic di-GMP-Catabolizing Enzymes Promote Differential Dot/Icm Effector Delivery and Intracellular Survival at the Early Steps of Legionella pneumophila Infection

    Science.gov (United States)

    Allombert, Julie; Lazzaroni, Jean-Claude; Baïlo, Nathalie; Gilbert, Christophe; Charpentier, Xavier; Doublet, Patricia

    2014-01-01

    Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole. PMID:24379287

  13. The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation.

    Science.gov (United States)

    Zulauf, Katelyn E; Sullivan, Jonathan Tabb; Braunstein, Miriam

    2018-04-30

    To subvert host defenses, Mycobacterium tuberculosis (Mtb) avoids being delivered to degradative phagolysosomes in macrophages by arresting the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. The SecA2 dependent protein export system is required for phagosome maturation arrest and consequently growth of Mtb in macrophages. To better understand the role of the SecA2 pathway in phagosome maturation arrest, we identified two effectors exported by SecA2 that contribute to this process: the phosphatase SapM and the kinase PknG. Then, utilizing the secA2 mutant of Mtb as a platform to study effector functions, we identified specific steps in phagosome maturation inhibited by SapM and/or PknG. By identifying a histidine residue that is essential for SapM phosphatase activity, we confirmed for the first time that the phosphatase activity of SapM is required for its effects on phagosome maturation in macrophages. We further demonstrated that SecA2 export of SapM and PknG contributes to the ability of Mtb to replicate in macrophages. Finally, we extended our understanding of the SecA2 pathway, SapM, and PknG by revealing that their contribution goes beyond preventing Mtb delivery to mature phagolysosomes and includes inhibiting Mtb delivery to autophagolysosomes. Together, our results revealed SapM and PknG to be two effectors exported by the SecA2 pathway of Mtb with distinct as well as cumulative effects on phagosome and autophagosome maturation. Our results further reveal that Mtb must have additional mechanisms of limiting acidification of the phagosome, beyond inhibiting recruitment of the V-ATPase proton pump to the phagosome, and they indicate differences between effects of Mtb on phagosome and autophagosome maturation.

  14. Exact positioning of the robotic arm end effector

    Science.gov (United States)

    Korepanov, Valery; Dudkin, Fedir

    2016-07-01

    Orbital service becomes a new challenge of space exploration. The necessity to introduce it is connected first of all with an attractive opportunity to prolong the exploitation terms of expensive commercial satellites by, e.g., refilling of fuel or changing batteries. Other application area is a fight with permanently increasing amount of space litter - defunct satellites, burnt-out rocket stages, discarded trash and other debris. Now more than few tens of thousands orbiting objects larger than 5-10 cm (or about 1 million junks larger than 1 cm) are a huge problem for crucial and costly satellites and manned vehicles. For example, in 2014 the International Space Station had to change three times its orbit to avoid collision with space debris. So the development of the concepts and actions related to removal of space debris or non-operational satellites with use of robotic arm of a servicing satellite is very actual. Such a technology is also applicable for unmanned exploratory missions in solar system, for example for collecting a variety of samples from a celestial body surface. Naturally, the robotic arm movements should be controlled with great accuracy at influence of its non-rigidity, thermal and other factors. In these circumstances often the position of the arm end effector has to be controlled with high accuracy. The possibility of coordinate determination for the robotic arm end effector with use of a low frequency active electromagnetic system has been considered in the presented report. The proposed design of such a system consists of a small magnetic dipole source, which is mounted inside of the arm end effector and two or three 3-component magnetic field sensors mounted on a servicing satellite body. The data from this set of 3-component magnetic field sensors, which are fixed relatively to the satellite body, allows use of the mathematical approach for determination of position and orientation of the magnetic dipole source. The theoretical

  15. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    Science.gov (United States)

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  16. Principles and applications of TAL effectors for plant physiology and metabolism.

    Science.gov (United States)

    Bogdanove, Adam J

    2014-06-01

    Recent advances in DNA targeting allow unprecedented control over gene function and expression. Targeting based on TAL effectors is arguably the most promising for systems biology and metabolic engineering. Multiple, orthogonal TAL-effector reagents of different types can be used in the same cell. Furthermore, variation in base preferences of the individual structural repeats that make up the TAL effector DNA recognition domain makes targeting stringency tunable. Realized applications range from genome editing to epigenome modification to targeted gene regulation to chromatin labeling and capture. The principles that govern TAL effector DNA recognition make TAL effectors well suited for applications relevant to plant physiology and metabolism. TAL effector targeting has merits that are distinct from those of the RNA-based DNA targeting CRISPR/Cas9 system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Human Memory B Cells Targeting Staphylococcus aureus Exotoxins Are Prevalent with Skin and Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Adam J. Pelzek

    2018-03-01

    Full Text Available Staphylococcus aureus is a Gram-positive opportunistic pathogen that causes superficial and invasive infections in the hospital and community. High mortality from infection emphasizes the need for improved methods for prevention and treatment. Although S. aureus possesses an arsenal of virulence factors that contribute to evasion of host defenses, few studies have examined long-term humoral and B-cell responses. Adults with acute-phase skin and soft tissue infections were recruited; blood samples were obtained; and S. aureus isolates, including methicillin-resistant strains, were subjected to genomic sequence analysis. In comparisons of acute-phase sera with convalescent-phase sera, a minority (37.5% of patients displayed 2-fold or greater increases in antibody titers against three or more S. aureus antigens, whereas nearly half exhibited no changes, despite the presence of toxin genes in most infecting strains. Moreover, enhanced antibody responses waned over time, which could reflect a defect in B-cell memory or long-lived plasma cells. However, memory B cells reactive with a range of S. aureus antigens were prevalent at both acute-phase and convalescent-phase time points. While some memory B cells exhibited toxin-specific binding, those cross-reactive with structurally related leucocidin subunits were dominant across patients, suggesting the targeting of conserved epitopes. Memory B-cell reactivity correlated with serum antibody levels for selected S. aureus exotoxins, suggesting a relationship between the cellular and humoral compartments. Overall, although there was no global defect in the representation of anti-S. aureus memory B cells, there was evidence of restrictions in the range of epitopes recognized, which may suggest potential therapeutic approaches for augmenting host defenses.

  18. Innovative technology summary report: Confined sluicing end effector

    International Nuclear Information System (INIS)

    1998-09-01

    A Confined Sluicing End-Effector (CSEE) was field tested during the summer of 1997 in Tank W-3, one of the Gunite and Associated Tanks (GAAT) at the Oak Ridge Reservation (ORR). It should be noted that the specific device used at the Oak Ridge Reservation demonstration was the Sludge Retrieval End-Effector (SREE), although in common usage it is referred to as the CSEE. Deployed by the Modified Light-Duty Utility Arm (MLDUA) and the Houdini remotely operated vehicle (ROV), the CSEE was used to mobilize and retrieve waste from the tank. After removing the waste, the CSEE was used to scarify the gunite walls of Tank W-3, removing approximately 0.1 in of material. The CSEE uses three rotating water-jets to direct a short-range pressurized jet of water to effectively mobilize the waste. Simultaneously, the water and dislodged tank waste, or scarified materials, are aspirated using a water-jet pump-driven conveyance system. The material is then pumped outside of the tank, where it can be stored for treatment. The technology, its performance, uses, cost, and regulatory issues are discussed

  19. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.

  20. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.

    Science.gov (United States)

    Iribarren, María Josefina; Pascuan, Cecilia; Soto, Gabriela; Ayub, Nicolás Daniel

    2015-11-01

    Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Vibrio Type III Effector VPA1380 Is Related to the Cysteine Protease Domain of Large Bacterial Toxins

    Science.gov (United States)

    Calder, Thomas; Kinch, Lisa N.; Fernandez, Jessie; Salomon, Dor; Grishin, Nick V.; Orth, Kim

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator. PMID:25099122

  2. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members.

    Directory of Open Access Journals (Sweden)

    Jana Kamanova

    2016-04-01

    Full Text Available Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms.

  3. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    Science.gov (United States)

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  4. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins.

    Directory of Open Access Journals (Sweden)

    Thomas Calder

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2, but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.

  5. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway.

    Science.gov (United States)

    Popa, Crina; Li, Liang; Gil, Sergio; Tatjer, Laura; Hashii, Keisuke; Tabuchi, Mitsuaki; Coll, Núria S; Ariño, Joaquín; Valls, Marc

    2016-06-03

    Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation.

  6. Functions and requirements for the INEL light duty utility arm gripper end effector

    International Nuclear Information System (INIS)

    Pace, D.P.; Barnes, G.E.

    1995-02-01

    This gripper end effector system functions and requirements document defines the system functions that the end effector must perform as well as the requirements the design must meet. Safety, quality assurance, operations, environmental conditions, and regulatory requirements have been considered. The main purpose of this document is to provide a basis for the end effector engineering, design, and fabrication activities. The document shall be the living reference document to initiate the development activities and will be updated as system technologies are finalized

  7. Functions and requirements for the INEL light duty utility arm sampler end effector

    International Nuclear Information System (INIS)

    Pace, D.P.; Barnes, G.E.

    1995-02-01

    This sampler end effector system functions and requirements document defines the system functions that the end effector must perform as well as the requirements the design must meet. Safety, quality assurance, operations, environmental conditions, and regulatory requirements have been considered. The main purpose of this document is to provide a basis for the end effector engineering, design, and fabrication activities. The document shall be the living reference document to initiate the development activities and will be updated as system technologies are finalized

  8. Functions of galectins as 'self/non-self'-recognition and effector factors.

    Science.gov (United States)

    Vasta, Gerardo R; Feng, Chiguang; González-Montalbán, Nuria; Mancini, Justin; Yang, Lishi; Abernathy, Kelsey; Frost, Graeme; Palm, Cheyenne

    2017-07-31

    Carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang; Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinlzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian

    2013-01-24

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.

  10. The barley powdery mildew effector candidates CSEP0081 and CSEP0254 promote fungal infection success

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim; Pedersen, Carsten; Thordal-Christensen, Hans

    2016-01-01

    Effectors play significant roles in the success of pathogens. Recent advances in genome sequencing have revealed arrays of effectors and effector candidates from a wide range of plant pathogens. Yet, the vast majority of them remain uncharacterized. Among the ~500 Candidate Secreted Effector...... independent silencing of the transcripts for these CSEPs significantly reduced the fungal penetration and haustoria formation rate. Both CSEPs are likely required during and after the formation of haustoria, in which their transcripts were found to be differentially expressed, rather than in epiphytic tissue...

  11. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity.

    Science.gov (United States)

    Rosebrock, Tracy R; Zeng, Lirong; Brady, Jennifer J; Abramovitch, Robert B; Xiao, Fangming; Martin, Gregory B

    2007-07-19

    Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.

  12. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  13. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation.

    Science.gov (United States)

    Jefferis, R; Lund, J; Pound, J D

    1998-06-01

    The Fc region of human IgG expresses interaction sites for many effector ligands. In this review the topographical distributions of ten of these sites are discussed in relation to functional requirement. It is apparent that interaction sites localised to the inter-CH2-CH3 domain region of the Fc allow for functional divalency, whereas sites localised to the hinge proximal region of the CH2 domain are functionally monovalent, with expression of the latter sites being particularly dependent on glycosylation. All x-ray crystal structures for Fc and Fc-ligand complexes report that the protein structure of the hinge proximal region of the CH2 domain is "disordered", suggesting "internal mobility". We propose a model in which such "internal mobility" results in the generation of a dynamic equilibrium between multiple conformers, certain of which express interaction sites specific to individual ligands. The emerging understanding of the influence of oligosaccharide/protein interactions on protein conformation and biological function of IgG antibodies suggests a potential to generate novel glycoforms of antibody molecules having unique profiles of effector functions.

  14. BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors.

    Science.gov (United States)

    Dong, Xiaobao; Lu, Xiaotian; Zhang, Ziding

    2015-01-01

    Gram-negative pathogenic bacteria inject type III secreted effectors (T3SEs) into host cells to sabotage their immune signaling networks. Because T3SEs constitute a meeting-point of pathogen virulence and host defense, they are of keen interest to host-pathogen interaction research community. To accelerate the identification and functional understanding of T3SEs, we present BEAN 2.0 as an integrated web resource to predict, analyse and store T3SEs. BEAN 2.0 includes three major components. First, it provides an accurate T3SE predictor based on a hybrid approach. Using independent testing data, we show that BEAN 2.0 achieves a sensitivity of 86.05% and a specificity of 100%. Second, it integrates a set of online sequence analysis tools. Users can further perform functional analysis of putative T3SEs in a seamless way, such as subcellular location prediction, functional domain scan and disorder region annotation. Third, it compiles a database covering 1215 experimentally verified T3SEs and constructs two T3SE-related networks that can be used to explore the relationships among T3SEs. Taken together, by presenting a one-stop T3SE bioinformatics resource, we hope BEAN 2.0 can promote comprehensive understanding of the function and evolution of T3SEs. © The Author(s) 2015. Published by Oxford University Press.

  15. Effective prediction of bacterial type IV secreted effectors by combined features of both C-termini and N-termini.

    Science.gov (United States)

    Wang, Yu; Guo, Yanzhi; Pu, Xuemei; Li, Menglong

    2017-11-01

    Various bacterial pathogens can deliver their secreted substrates also called as effectors through type IV secretion systems (T4SSs) into host cells and cause diseases. Since T4SS secreted effectors (T4SEs) play important roles in pathogen-host interactions, identifying them is crucial to our understanding of the pathogenic mechanisms of T4SSs. A few computational methods using machine learning algorithms for T4SEs prediction have been developed by using features of C-terminal residues. However, recent studies have shown that targeting information can also be encoded in the N-terminal region of at least some T4SEs. In this study, we present an effective method for T4SEs prediction by novelly integrating both N-terminal and C-terminal sequence information. First, we collected a comprehensive dataset across multiple bacterial species of known T4SEs and non-T4SEs from literatures. Then, three types of distinctive features, namely amino acid composition, composition, transition and distribution and position-specific scoring matrices were calculated for 50 N-terminal and 100 C-terminal residues. After that, we employed information gain represent to rank the importance score of the 150 different position residues for T4SE secretion signaling. At last, 125 distinctive position residues were singled out for the prediction model to classify T4SEs and non-T4SEs. The support vector machine model yields a high receiver operating curve of 0.916 in the fivefold cross-validation and an accuracy of 85.29% for the independent test set.

  16. End effectors and attachments for buried waste excavation equipment

    International Nuclear Information System (INIS)

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER ampersand WM) Department's needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications

  17. Hanford Waste End Effector Phase I Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatchell, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mount, Jason C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A.M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-22

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulants to determine pumping rate, dilution factors, and screen fouling rate.

  18. Comparative reactivity of human IgE to cynomolgus monkey and human effector cells and effects on IgE effector cell potency

    Science.gov (United States)

    Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N

    2014-01-01

    Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations.   Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303

  19. Pointing Hand Stimuli Induce Spatial Compatibility Effects and Effector Priming

    Directory of Open Access Journals (Sweden)

    Akio eNishimura

    2013-04-01

    Full Text Available The present study investigated the automatic influence of perceiving a picture that indicates other’s action on one’s own task performance in terms of spatial compatibility and effector priming. Participants pressed left and right buttons with their left and right hands respectively, depending on the color of a central dot target. Preceding the target, a left or right hand stimulus (pointing either to the left or right with the index or little finger was presented. In Experiment 1, with brief presentation of the pointing hand, a spatial compatibility effect was observed: Responses were faster when the direction of the pointed finger and the response position were spatially congruent than when incongruent. The spatial compatibility effect was larger for the pointing index finger stimulus compared to the pointing little finger stimulus. Experiment 2 employed longer duration of the pointing hand stimuli. In addition to the spatial compatibility effect for the pointing index finger, the effector priming effect was observed: Responses were faster when the anatomical left/right identity of the pointing and response hands matched than when the pointing and response hands differed in left/right identity. The results indicate that with sufficient processing time, both spatial/symbolic and anatomical features of a static body part implying another’s action simultaneously influence different aspects of the perceiver’s own action. Hierarchical coding, according to which an anatomical code is used only when a spatial code is unavailable, may not be applicable if stimuli as well as responses contain anatomical features.

  20. Genotyping of polymorphic effectors of Toxoplasma gondii isolates from China

    Directory of Open Access Journals (Sweden)

    Weisheng Cheng

    2017-11-01

    Full Text Available Abstract Background Toxoplasma gondii is an opportunistic protozoan apicomplexan and obligate intracellular parasite that infects a wide range of animals and humans. Rhoptry proteins 5 (ROP5, ROP16, ROP18 and dense granules 15 (GRA15 are the important effectors secreted by T. gondii which link to the strain virulence for mice and modulate the host’s response to the parasite. Little has been known about these molecules as well as GRA3 in type Chinese 1 strains that show polymorphism among strains of archetypical genotypes. This study examined the genetic diversity of these effectors and its correlated virulence in mice among T. gondii isolates from China. Results Twenty-one isolates from stray cats were detected, of which 15 belong to Chinese 1, and 6 to ToxoDB #205. Wh6 isolate, a Chinese 1 strain, has an avirulent phenotype. PCR-RFLP results of ROP5 and ROP18 presented few variations among the strains. Genotyping of GRA15 and ROP16 revealed that all the strains belong to type II allele except Xz7 which carries type I allele. ROP16 amino acid alignment at 503 locus demonstrated that 17 isolates are featured as type I or type III (ROP16I/III, and the other 4 as type II (ROP16II. The strains investigated may be divided into four groups based on GRA3 amino acid alignment, and all isolates of type Chinese 1 belong to the μ-1 allele except Wh6 which is identical to type II strain. Conclusions PCR-RFLP and sequence alignment analyses of ROP5, ROP16, ROP18, GRA3, and GRA15 in T. gondii revealed that strains with the same genotype may have variations in some of their key genes. GRA3 variation exhibited by Wh6 strain may be associated with the difference in phenotype and pathogenesis.

  1. Expansion of PD-1-positive effector CD4 T cells in an experimental model of SLE: contribution to the self-organized criticality theory.

    Science.gov (United States)

    Miyazaki, Yumi; Tsumiyama, Ken; Yamane, Takashi; Ito, Mitsuhiro; Shiozawa, Shunichi

    2013-04-18

    We have developed a systems biology concept to explain the origin of systemic autoimmunity. From our studies of systemic lupus erythematosus (SLE) we have concluded that this disease is the inevitable consequence of over-stimulating the host's immune system by repeated exposure to antigen to levels that surpass a critical threshold, which we term the system's "self-organized criticality". We observed that overstimulation of CD4 T cells in mice led to the development of autoantibody-inducing CD4 T cells (aiCD4 T) capable of generating various autoantibodies and pathological lesions identical to those observed in SLE. We show here that this is accompanied by the significant expansion of a novel population of effector T cells characterized by expression of programmed death-1 (PD-1)-positive, CD27(low), CD127(low), CCR7(low) and CD44(high)CD62L(low) markers, as well as increased production of IL-2 and IL-6. In addition, repeated immunization caused the expansion of CD8 T cells into fully-matured cytotoxic T lymphocytes (CTL) that express Ly6C(high)CD122(high) effector and memory markers. Thus, overstimulation with antigen leads to the expansion of a novel effector CD4 T cell population that expresses an unusual memory marker, PD-1, and that may contribute to the pathogenesis of SLE.

  2. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting

    International Nuclear Information System (INIS)

    Campos, Samuel K.; Barry, Michael A.

    2006-01-01

    The direct genetic modification of adenoviral capsid proteins with new ligands is an attractive means to confer targeted tropism to adenoviral vectors. Although several capsid proteins have been reported to tolerate the genetic fusion of foreign peptides and proteins, direct comparison of cell targeting efficiencies through the different capsomeres has been lacking. Likewise, direct comparison of with one or multiple ligands has not been performed due to a lack of capsid-compatible ligands available for retargeting. Here we utilize a panel of metabolically biotinylated Ad vectors to directly compare targeted transduction through the fiber, protein IX, and hexon capsomeres using a variety of biotinylated ligands including antibodies, transferrin, EGF, and cholera toxin B. These results clearly demonstrate that cell targeting with a variety of high affinity receptor-binding ligands is only effective when transduction is redirected through the fiber protein. In contrast, protein IX and hexon-mediated targeting by the same set of ligands failed to mediate robust vector targeting, perhaps due to aberrant trafficking at the cell surface or inside targeted cells. These data suggest that vector targeting by genetic incorporation of high affinity ligands will likely be most efficient through modification of the adenovirus fiber rather than the protein IX and hexon capsomeres. In contrast, single-step monomeric avidin affinity purification of Ad vectors using the metabolic biotinylation system is most effective through capsomeres like protein IX and hexon

  3. Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities.

    Science.gov (United States)

    Ray, Ann; Schwartz, Nika; de Souza Santos, Marcela; Zhang, Junmei; Orth, Kim; Salomon, Dor

    2017-11-01

    Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti-eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine-like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX-effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti-eukaryotic effectors. One of these is a MIX-effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX-effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  4. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Guo-Feng Jiang

    2013-09-01

    Full Text Available It is well known that the type III secretion system (T3SS and type III (T3 effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2 which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2 is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME. Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

  5. High immunosuppressive burden in advanced hepatocellular carcinoma patients: Can effector functions be restored?

    Science.gov (United States)

    Lugade, Amit A; Kalathil, Suresh; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin

    2013-07-01

    The accumulation of immunosuppressive cells and exhausted effector T cells highlight an important immune dysfunction in advanced stage hepatocellular carcinoma (HCC) patients. These cells significantly hamper the efficacy immunotherapies and facilitate HCC progression. We have recently demonstrated that the multipronged depletion of immunosuppressive cells potentially restores effector T-cell function in HCC.

  6. The Alpha-Melanocyte Stimulating Hormone Induces Conversion of Effector T Cells into Treg Cells

    Directory of Open Access Journals (Sweden)

    Andrew W. Taylor

    2011-01-01

    Full Text Available The neuropeptide alpha-melanocyte stimulating hormone (α-MSH has an important role in modulating immunity and homeostasis. The production of IFN-γ by effector T cells is suppressed by α-MSH, while TGF-β production is promoted in the same cells. Such α-MSH-treated T cells have immune regulatory activity and suppress hypersensitivity, autoimmune diseases, and graft rejection. Previous characterizations of the α-MSH-induced Treg cells showed that the cells are CD4+ T cells expressing the same levels of CD25 as effector T cells. Therefore, we further analyzed the α-MSH-induced Treg cells for expression of effector and regulatory T-cell markers. Also, we examined the potential for α-MSH-induced Treg cells to be from the effector T-cell population. We found that the α-MSH-induced Treg cells are CD25+  CD4+ T cells that share similar surface markers as effector T cells, except that they express on their surface LAP. Also, the α-MSH treatment augments FoxP3 message in the effector T cells, and α-MSH induction of regulatory activity was limited to the effector CD25+ T-cell population. Therefore, α-MSH converts effector T cells into Treg cells, which suppress immunity targeting specific antigens and tissues.

  7. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  8. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Amey Redkar

    2017-05-01

    Full Text Available Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  9. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Derek B Danahy

    2017-09-01

    Full Text Available Sepsis is a systemic infection that enhances host vulnerability to secondary infections normally controlled by T cells. Using CLP sepsis model, we observed that sepsis induces apoptosis of circulating memory CD8 T-cells (TCIRCM and diminishes their effector functions, leading to impaired CD8 T-cell mediated protection to systemic pathogen re-infection. In the context of localized re-infections, tissue resident memory CD8 T-cells (TRM provide robust protection in a variety of infectious models. TRM rapidly 'sense' infection in non-lymphoid tissues and 'alarm' the host by enhancing immune cell recruitment to the site of the infection to accelerate pathogen clearance. Here, we show that compared to pathogen-specific TCIRCM, sepsis does not invoke significant numerical decline of Vaccinia virus induced skin-TRM keeping their effector functions (e.g., Ag-dependent IFN-γ production intact. IFN-γ-mediated recruitment of immune cells to the site of localized infection was, however, reduced in CLP hosts despite TRM maintaining their 'sensing and alarming' functions. The capacity of memory CD8 T-cells in the septic environment to respond to inflammatory cues and arrive to the site of secondary infection/antigen exposure remained normal suggesting T-cell-extrinsic factors contributed to the observed lesion. Mechanistically, we showed that IFN-γ produced rapidly during sepsis-induced cytokine storm leads to reduced IFN-γR1 expression on vascular endothelium. As a consequence, decreased expression of adhesion molecules and/or chemokines (VCAM1 and CXCL9 on skin endothelial cells in response to TRM-derived IFN-γ was observed, leading to sub-optimal bystander-recruitment of effector cells and increased susceptibility to pathogen re-encounter. Importantly, as visualized by intravital 2-photon microscopy, exogenous administration of CXCL9/10 was sufficient to correct sepsis-induced impairments in recruitment of effector cells at the localized site of TRM

  10. In Planta Functional Analysis and Subcellular Localization of the Oomycete Pathogen Plasmopara viticola Candidate RXLR Effector Repertoire

    Directory of Open Access Journals (Sweden)

    Yunxiao Liu

    2018-04-01

    Full Text Available Downy mildew is one of the most destructive diseases of grapevine, causing tremendous economic loss in the grape and wine industry. The disease agent Plasmopara viticola is an obligate biotrophic oomycete, from which over 100 candidate RXLR effectors have been identified. In this study, 83 candidate RXLR effector genes (PvRXLRs were cloned from the P. viticola isolate “JL-7-2” genome. The results of the yeast signal sequence trap assay indicated that most of the candidate effectors are secretory proteins. The biological activities and subcellular localizations of all the 83 effectors were analyzed via a heterologous Agrobacterium-mediated Nicotiana benthamiana expression system. Results showed that 52 effectors could completely suppress cell death triggered by elicitin, 10 effectors could partially suppress cell death, 11 effectors were unable to suppress cell death, and 10 effectors themselves triggered cell death. Live-cell imaging showed that the majority of the effectors (76 of 83 could be observed with informative fluorescence signals in plant cells, among which 34 effectors were found to be targeted to both the nucleus and cytosol, 29 effectors were specifically localized in the nucleus, and 9 effectors were targeted to plant membrane system. Interestingly, three effectors PvRXLR61, 86 and 161 were targeted to chloroplasts, and one effector PvRXLR54 was dually targeted to chloroplasts and mitochondria. However, western blot analysis suggested that only PvRXLR86 carried a cleavable N-terminal transit peptide and underwent processing in planta. Many effectors have previously been predicted to target organelles, however, to the best of our knowledge, this is the first study to provide experimental evidence of oomycete effectors targeted to chloroplasts and mitochondria.

  11. Identification of cognate host targets and specific ubiquitylation sites on the Salmonella SPI-1 effector SopB/SigD

    DEFF Research Database (Denmark)

    Rogers, Lindsay D; Kristensen, Anders R; Boyle, Erin C

    2008-01-01

    Salmonella enterica is a bacterial pathogen responsible for enteritis and typhoid fever. Virulence is linked to two Salmonella pathogenicity islands (SPI-1 and SPI-2) on the bacterial chromosome, each of which encodes a type III secretion system. While both the SPI-1 and SPI-2 systems secrete...

  12. A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors.

    Science.gov (United States)

    Bürger, Marco; Willige, Björn C; Chory, Joanne

    2017-12-19

    Several Pseudomonas and Xanthomonas species are plant pathogens that infect the model organism Arabidopsis thaliana and important crops such as Brassica. Resistant plants contain the infection by rapid cell death of the infected area through the hypersensitive response (HR). A family of highly related α/β hydrolases is involved in diverse processes in all domains of life. Functional details of their catalytic machinery, however, remained unclear. We report the crystal structures of α/β hydrolases representing two different clades of the family, including the protein SOBER1, which suppresses AvrBsT-incited HR in Arabidopsis. Our results reveal a unique hydrophobic anchor mechanism that defines a previously unknown family of protein deacetylases. Furthermore, this study identifies a lid-loop as general feature for substrate turnover in acyl-protein thioesterases and the described family of deacetylases. Furthermore, we found that SOBER1's biological function is not restricted to Arabidopsis thaliana and not limited to suppress HR induced by AvrBsT.

  13. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex.

    Science.gov (United States)

    Klein, Carsten; Evrard, Henry C; Shapcott, Katharine A; Haverkamp, Silke; Logothetis, Nikos K; Schmid, Michael C

    2016-04-06

    Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. TAL effectors target the C-terminal domain of RNA polymerase II (CTD by inhibiting the prolyl-isomerase activity of a CTD-associated cyclophilin.

    Directory of Open Access Journals (Sweden)

    Mariane Noronha Domingues

    Full Text Available Transcriptional activator-like (TAL effectors of plant pathogenic bacteria function as transcription factors in plant cells. However, how TAL effectors control transcription in the host is presently unknown. Previously, we showed that TAL effectors of the citrus canker pathogen Xanthomonas citri, named PthAs, targeted the citrus protein complex comprising the thioredoxin CsTdx, ubiquitin-conjugating enzymes CsUev/Ubc13 and cyclophilin CsCyp. Here we show that CsCyp complements the function of Cpr1 and Ess1, two yeast cyclophilins that regulate transcription by the isomerization of proline residues of the regulatory C-terminal domain (CTD of RNA polymerase II. We also demonstrate that CsCyp, CsTdx, CsUev and four PthA variants interact with the citrus CTD and that CsCyp co-immunoprecipitate with the CTD in citrus cell extracts and with PthA2 transiently expressed in sweet orange epicotyls. The interactions of CsCyp with the CTD and PthA2 were inhibited by cyclosporin A (CsA, a cyclophilin inhibitor. Moreover, we present evidence that PthA2 inhibits the peptidyl-prolyl cis-trans isomerase (PPIase activity of CsCyp in a similar fashion as CsA, and that silencing of CsCyp, as well as treatments with CsA, enhance canker lesions in X. citri-infected leaves. Given that CsCyp appears to function as a negative regulator of cell growth and that Ess1 negatively regulates transcription elongation in yeast, we propose that PthAs activate host transcription by inhibiting the PPIase activity of CsCyp on the CTD.

  15. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b.

    Science.gov (United States)

    Kong, Guanghui; Zhao, Yao; Jing, Maofeng; Huang, Jie; Yang, Jin; Xia, Yeqiang; Kong, Liang; Ye, Wenwu; Xiong, Qin; Qiao, Yongli; Dong, Suomeng; Ma, Wenbo; Wang, Yuanchao

    2015-08-01

    Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a "helper" that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b.

  16. Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence*

    Science.gov (United States)

    Ratner, Dmitry; Orning, M. Pontus A.; Starheim, Kristian K.; Marty-Roix, Robyn; Proulx, Megan K.; Goguen, Jon D.; Lien, Egil

    2016-01-01

    Innate immunity plays a central role in resolving infections by pathogens. Host survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is favored by a robust early innate immune response initiated by IL-1β and IL-18. These cytokines are produced by a two-step mechanism involving NF-κB-mediated pro-cytokine production and inflammasome-driven maturation into bioactive inflammatory mediators. Because of the anti-microbial effects induced by IL-1β/IL-18, it may be desirable for pathogens to manipulate their production. Y. pestis type III secretion system effectors YopJ and YopM can interfere with different parts of this process. Both effectors have been reported to influence inflammasome caspase-1 activity; YopJ promotes caspase-8-dependent cell death and caspase-1 cleavage, whereas YopM inhibits caspase-1 activity via an incompletely understood mechanism. However, neither effector appears essential for full virulence in vivo. Here we report that the sum of influences by YopJ and YopM on IL-1β/IL-18 release is suppressive. In the absence of YopM, YopJ minimally affects caspase-1 cleavage but suppresses IL-1β, IL-18, and other cytokines and chemokines. Importantly, we find that Y. pestis containing combined deletions of YopJ and YopM induces elevated levels of IL-1β/IL-18 in vitro and in vivo and is significantly attenuated in a mouse model of bubonic plague. The reduced virulence of the YopJ-YopM mutant is dependent on the presence of IL-1β, IL-18, and caspase-1. Thus, we conclude that Y. pestis YopJ and YopM can both exert a tight control of host IL-1β/IL-18 production to benefit the bacteria, resulting in a redundant impact on virulence. PMID:26884330

  17. Prediction of production of {sup 22}Na in a gas-cell target irradiated by protons using Monte Carlo tracking

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, M., E-mail: mohammad.eslami25@yahoo.com [Department of Physics, Faculty of Science, University of Zanjan, Zengan (Zanjan) (Iran, Islamic Republic of); Kakavand, T. [Department of Physics, Faculty of Science, University of Zanjan, Zengan (Zanjan) (Iran, Islamic Republic of); Department of Physics, Faculty of Science, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Mirzaii, M.; Rajabifar, S. [Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj (Iran, Islamic Republic of)

    2015-01-01

    Highlights: • Angular distribution of the proton beam in a gaseous environment. • Particle energy distribution profile and proton flux within gas-cell target with MCNPX. • Detection of the residual nuclei during the nuclear reactions. • Estimation of production yield for {sup 22,nat}Ne(p,x){sup 22}Na reactions. - Abstract: The {sup 22}Ne(p,n){sup 22}Na is an optimal reaction for the cyclotron production of {sup 22}Na. This work tends to monitor the proton induced production of {sup 22}Na in a gas-cell target, containing natural and enriched neon gas, using Monte Carlo method. The excitation functions of reactions are calculated by both TALYS-1.6 and ALICE/ASH codes and then the optimum energy range of projectile for the high yield production is selected. A free gaseous environment of neon at a particular pressure and temperature is prearranged and the proton beam is transported within it using Monte Carlo codes MCNPX and SRIM. The beam monitoring performed by each of these codes indicates that the gas-cell has to be designed as conical frustum to reach desired interactions. The MCNPX is also employed to calculate the energy distribution of proton in the designed target and estimation of the residual nuclei during irradiation. The production yield of {sup 22}Na in {sup 22}Ne(p,n){sup 22}Na and {sup nat}Ne(p,x){sup 22}Na reactions are estimated and it shows a good agreement with the experimental results. The results demonstrate that Monte Carlo makes available a beneficial manner to design and optimize the gas targets as well as calibration of detectors, which can be used for the radionuclide production purposes.

  18. Demonstrating concepts of pathogenesis using effectors of Phytophthora infestans

    Science.gov (United States)

    Pathogenesis, or how pathogens cause disease, is an important concept in plant pathology. The study of pathogenesis in plant pathology has rapidly expanded and is now a significant portion of plant pathology research (especially research at the molecular level of host-pathogen interaction). With the...

  19. Molecular analysis of candidate probiotic effector molecules of Lactobacillus plantarum

    NARCIS (Netherlands)

    Remus, D.M.

    2012-01-01

    Probiotics are health-promoting microorganisms that exert their beneficial effects in several ways. While it is known that probiotic bacteria interact with cells of the host gastrointestinal tractand modulate cell-signaling responses by which they might promote health, the underlying molecular

  20. DMPD: MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18191460 MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis...g) (.svg) (.html) (.csml) Show MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis...e and effector immunity totuberculosis. Authors Reiling N, Ehlers S, Holscher C. Publication Immunol Lett. 2

  1. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis.

    LENUS (Irish Health Repository)

    Matlawska-Wasowska, Ksenia

    2010-12-01

    Vibrio parahaemolyticus is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to V. parahaemolyticus, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.

  2. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  3. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation.

    Science.gov (United States)

    Kettles, Graeme J; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  4. The potato aphid salivary effector Me47 is a glutathione-S-transferase involved in modifying plant responses to aphid infestation

    Directory of Open Access Journals (Sweden)

    Graeme James Kettles

    2016-08-01

    Full Text Available Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae is a notable pest of solanaceous crops, however the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here we describe a novel aphid effector (Me47 which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST. Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae. Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs, compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

  5. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  6. The death effector domains of caspase-8 induce terminal differentiation.

    Directory of Open Access Journals (Sweden)

    Ainhoa Mielgo

    2009-11-01

    Full Text Available The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DEDs, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156 in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence.

  7. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  8. Hematopoietic Stem and Progenitor Cells as Effectors in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Jennifer L. Granick

    2012-01-01

    Full Text Available Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC. While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.

  9. Exosomes: novel effectors of human platelet lysate activity

    Directory of Open Access Journals (Sweden)

    E Torreggiani

    2014-09-01

    Full Text Available Despite the popularity of platelet-rich plasma (PRP and platelet lysate (PL in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF, vascular endothelial growth factor (VEGF, platelet-derived growth factor (PDGF-BB and transforming growth factor beta 1 (TGF-β1 as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies.

  10. Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases

    Directory of Open Access Journals (Sweden)

    Reis Roberta

    2010-07-01

    Full Text Available Abstract A successful infection of the human intestine by enteropathogenic bacteria depends on the ability of bacteria to attach and colonize the intestinal epithelium and, in some cases, to invade the host cell, survive intracellularly and disseminate from cell to cell. To accomplish these processes bacteria have evolved an arsenal of molecules that are mostly secreted by dedicated type III secretion systems, and that interact with the host, subverting normal cellular functions. Here we overview the most important molecular strategies developed by enteropathogenic Escherichia coli, Salmonella enterica, Shigella flexneri, and Yersinia enterocolitica to cause enteric infections. Despite having evolved different effectors, these four microorganisms share common host cellular targets.

  11. Space-based multifunctional end effector systems functional requirements and proposed designs

    Science.gov (United States)

    Mishkin, A. H.; Jau, B. M.

    1988-01-01

    The end effector is an essential element of teleoperator and telerobot systems to be employed in space in the next decade. The report defines functional requirements for end effector systems to perform operations that are currently only feasible through Extra-Vehicular Activity (EVA). Specific tasks and functions that the end effectors must be capable of performing are delineated. Required capabilities for forces and torques, clearances, compliance, and sensing are described, using current EVA requirements as guidelines where feasible. The implications of these functional requirements on the elements of potential end effector systems are discussed. The systems issues that must be considered in the design of space-based manipulator systems are identified; including impacts on subsystems tightly coupled to the end effector, i.e., control station, information processing, manipulator arm, tool and equipment stowage. Possible end effector designs are divided into three categories: single degree-of-freedom end effectors, multiple degree of freedom end effectors, and anthropomorphic hands. Specific design alternatives are suggested and analyzed within the individual categories. Two evaluations are performed: the first considers how well the individual end effectors could substitute for EVA; the second compares how manipulator systems composed of the top performers from the first evaluation would improve the space shuttle Remote Manipulator System (RMS) capabilities. The analysis concludes that the anthropomorphic hand is best-suited for EVA tasks. A left- and right-handed anthropomorphic manipulator arm configuration is suggested as appropriate to be affixed to the RMS, but could also be used as part of the Smart Front End for the Orbital Maneuvering Vehicle (OMV). The technical feasibility of the anthropomorphic hand and its control are demonstrated. An evolutionary development approach is proposed and approximate scheduling provided for implementing the suggested

  12. Design and force analysis of end-effector for plug seedling transplanter.

    Directory of Open Access Journals (Sweden)

    Zhuohua Jiang

    Full Text Available Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients. Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.

  13. Design and force analysis of end-effector for plug seedling transplanter.

    Science.gov (United States)

    Jiang, Zhuohua; Hu, Yang; Jiang, Huanyu; Tong, Junhua

    2017-01-01

    Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.

  14. Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33T with its coral host

    Directory of Open Access Journals (Sweden)

    Jiun-Yan eDing

    2016-03-01

    Full Text Available The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its host. Testosterone degradation and type III secretion system are commonly present in Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, this bacterium could move into coral cells via endocytosis after binding to coral’s Eph receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase are possible type III secretion effectors that might help coral to prevent mitochondrial dysfunction and promote gluconeogenesis, especially under stress conditions. Based on all these findings, we inferred that E. montiporae was a facultative endosymbiont that can recognize, translocate, communicate and modulate its coral host.

  15. Suppressive versus augmenting effect of the same pretreatment regimen in two murine tumor systems with distinct effector mechanisms

    International Nuclear Information System (INIS)

    Fujiwara, Hiromi; Hamaoka, Toshiyuki; Kitagawa, Masayasu

    1978-01-01

    The effect of presensitization with x-irradiated tumor cells on the development of host's immune resistance against the tumor-associated transplantation antigens (TATA) was investigated in two syngeneic tumor systems with distinct effector mechanisms. When X5563 plasmacytoma, to which immune resistance was mediated exclusively by killer T lymphocytes, was intravenously inoculated into syngeneic C3H/He mice with lower number after 7000 R x-irradiation, the mice failed to exhibit any protective immunity against the subsequent challenge with viable tumor cells. Moreover, these mice lost their capability to develop any immune resistance even after an appropriate immunization procedure. The immunodepression induced by such a pretreatment regimen was specific for X5563 tumor. While no suppressor cell activity was detected in the above pretreated mice, serum factor(s) from these mice was virtually responsible for this suppression. When the serum factor mediating this tumor-specific suppression was fractionated on the Sephadex G-200 column, the suppressive activity was found in albumin-corresponding fraction, free of any immunoglobulin component. In contrast, in MM102 mammary tumor system, in which immune resistance is solely mediated by tumor-specific antibody, the pretreatment with x-irradiated MM102 cells augmented the induction of anti-tumor immunity. These results indicate that while tumor antigens given in the form of x-irradiated tumor cells suppress the induction of killer T cell-mediated immunity in one system, the same presensitization regimen of tumor antigens augments the antibody-mediated immunity in another system, thus giving a divergent effect on the distinct effector mechanisms of syngeneic tumor immunity. (author)

  16. Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM.

    Science.gov (United States)

    McPhee, Joseph B; Mena, Patricio; Zhang, Yue; Bliska, James B

    2012-07-01

    Pathogenic Yersinia species modulate host immune responses through the activity of a plasmid-encoded type III secretion system and its associated effector proteins. One effector, YopM, is a leucine-rich-repeat-containing protein that is important for virulence in murine models of Yersinia infection. Although the mechanism by which YopM promotes virulence is unknown, we previously demonstrated that YopM was required for the induction of high levels of the immunosuppressive cytokine interleukin-10 (IL-10) in sera of C57BL/6J mice infected with Yersinia pseudotuberculosis. To determine if IL-10 production is important for the virulence function of YopM, C57BL/6J or congenic IL-10⁻/⁻ mice were infected intravenously with wild-type or yopM mutant Y. pseudotuberculosis strains. Analysis of cytokine levels in serum and bacterial colonization in the spleen and liver showed that YopM is required for IL-10 induction in C57BL/6J mice infected with either the IP32953 or the 32777 strain of Y. pseudotuberculosis, demonstrating that the phenotype is conserved in the species. In single-strain infections, the ability of the 32777ΔyopM mutant to colonize the liver was significantly increased by the delivery of exogenous IL-10 to C57BL/6J mice. In mixed infections, the competitive advantage of a yopM⁺ 32777 strain over an isogenic yopM mutant to colonize spleen and liver, as observed for C57BL/6J mice, was significantly reduced in IL-10⁻/⁻ animals. Thus, by experimentally controlling IL-10 levels in a mouse infection model, we obtained evidence that the induction of this cytokine is an important mechanism by which YopM contributes to Y. pseudotuberculosis virulence.

  17. Molecular model of a type III secretion system needle: Implications for host-cell sensing.

    Science.gov (United States)

    Deane, Janet E; Roversi, Pietro; Cordes, Frank S; Johnson, Steven; Kenjale, Roma; Daniell, Sarah; Booy, Frank; Picking, William D; Picking, Wendy L; Blocker, Ariel J; Lea, Susan M

    2006-08-15

    Type III secretion systems are essential virulence determinants for many Gram-negative bacterial pathogens. The type III secretion system consists of cytoplasmic, transmembrane, and extracellular domains. The extracellular domain is a hollow needle protruding above the bacterial surface and is held within a basal body that traverses both bacterial membranes. Effector proteins are translocated, via this external needle, directly into host cells, where they subvert normal cell functions to aid infection. Physical contact with host cells initiates secretion and leads to formation of a pore, thought to be contiguous with the needle channel, in the host-cell membrane. Here, we report the crystal structure of the Shigella flexneri needle subunit MxiH and a complete model for the needle assembly built into our three-dimensional EM reconstruction. The model, combined with mutagenesis data, reveals that signaling of host-cell contact is relayed through the needle via intersubunit contacts and suggests a mode of binding for a tip complex.

  18. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  19. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein.

    Science.gov (United States)

    Alcoforado Diniz, Juliana; Coulthurst, Sarah J

    2015-07-01

    The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and can deliver toxic effector proteins into eukaryotic cells or competitor bacteria. Antibacterial T6SSs are increasingly recognized as key mediators of interbacterial competition and may contribute to the outcome of many polymicrobial infections. Multiple antibacterial effectors can be delivered by these systems, with diverse activities against target cells and distinct modes of secretion. Polymorphic toxins containing Rhs repeat domains represent a recently identified and as-yet poorly characterized class of T6SS-dependent effectors. Previous work had revealed that the potent antibacterial T6SS of the opportunistic pathogen Serratia marcescens promotes intraspecies as well as interspecies competition (S. L. Murdoch, K. Trunk, G. English, M. J. Fritsch, E. Pourkarimi, and S. J. Coulthurst, J Bacteriol 193:6057-6069, 2011, http://dx.doi.org/10.1128/JB.05671-11). In this study, two new Rhs family antibacterial effectors delivered by this T6SS have been identified. One of these was shown to act as a DNase toxin, while the other contains a novel, cytoplasmic-acting toxin domain. Importantly, using S. marcescens, it has been demonstrated for the first time that Rhs proteins, rather than other T6SS-secreted effectors, can be the primary determinant of intraspecies competition. Furthermore, a new family of accessory proteins associated with T6SS effectors has been identified, exemplified by S. marcescens EagR1, which is specifically required for deployment of its associated Rhs effector. Together, these findings provide new insight into how bacteria can use the T6SS to deploy Rhs-family effectors and mediate different types of interbacterial interactions. Infectious diseases caused by bacterial pathogens represent a continuing threat to health and economic prosperity. To counter this threat, we must understand how such organisms survive and prosper. The type VI secretion system is a weapon that

  20. Modulation of nonessential amino acid biosynthetic pathways in virulent Hessian fly larvae (Mayetiola destructor), feeding on susceptible host wheat (Triticum aestivum)

    Science.gov (United States)

    Hessian fly (Mayetiola destructor), an obligate plant-parasitic gall midge, is an important dipteran pest of wheat (Triticum aestivum). The insect employs an effector-based feeding strategy to reprogram the host plant to be nutritionally beneficial for the developing larva by inducing formation of p...

  1. The host immune response to Clostridium difficile infection

    Science.gov (United States)

    2013-01-01

    Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future. PMID:25165542

  2. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate) nanoparticles with polyethylenimine coat as simple, safe, and versatile vehicles for cell targeting

    DEFF Research Database (Denmark)

    Wu, Linping; Wang, Danyang; Parhamifar, Ladan

    2014-01-01

    A simple and highly safe poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate) nanoparticulate delivery system that targets different cell types is developed. A sub-cytotoxic level of polyethylenimine coat mediates universal cell targeting. Internalized nanoparticles traffic along endolysosomal compart...... compartments, endoplasmic reticulum and the Golgi complex. Nanoparticles have no detrimental effects on cell morphology and respiration.......A simple and highly safe poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate) nanoparticulate delivery system that targets different cell types is developed. A sub-cytotoxic level of polyethylenimine coat mediates universal cell targeting. Internalized nanoparticles traffic along endolysosomal...

  4. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    Science.gov (United States)

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hitting the Sweet Spot: Glycans as Targets of Fungal Defense Effector Proteins

    Directory of Open Access Journals (Sweden)

    Markus Künzler

    2015-05-01

    Full Text Available Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparatively low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous fungi against microbial competitors and animal predators.

  6. Controlling transcription in human pluripotent stem cells using CRISPR-effectors.

    Science.gov (United States)

    Genga, Ryan M; Kearns, Nicola A; Maehr, René

    2016-05-15

    The ability to manipulate transcription in human pluripotent stem cells (hPSCs) is fundamental for the discovery of key genes and mechanisms governing cellular state and differentiation. Recently developed CRISPR-effector systems provide a systematic approach to rapidly test gene function in mammalian cells, including hPSCs. In this review, we discuss recent advances in CRISPR-effector technologies that have been employed to control transcription through gene activation, gene repression, and epigenome engineering. We describe an application of CRISPR-effector mediated transcriptional regulation in hPSCs by targeting a synthetic promoter driving a GFP transgene, demonstrating the ease and effectiveness of CRISPR-effector mediated transcriptional regulation in hPSCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    NARCIS (Netherlands)

    Ordonez, Soledad R; Veldhuizen, Edwin J A; van Eijk, Martin; Haagsman, Henk P

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that

  8. A Conserved EAR Motif Is Required for Avirulence and Stability of the Ralstonia solanacearum Effector PopP2 In Planta

    Directory of Open Access Journals (Sweden)

    Cécile Segonzac

    2017-08-01

    Full Text Available Ralstonia solanacearum is the causal agent of the devastating bacterial wilt disease in many high value Solanaceae crops. R. solanacearum secretes around 70 effectors into host cells in order to promote infection. Plants have, however, evolved specialized immune receptors that recognize corresponding effectors and confer qualitative disease resistance. In the model species Arabidopsis thaliana, the paired immune receptors RRS1 (resistance to Ralstonia solanacearum 1 and RPS4 (resistance to Pseudomonas syringae 4 cooperatively recognize the R. solanacearum effector PopP2 in the nuclei of infected cells. PopP2 is an acetyltransferase that binds to and acetylates the RRS1 WRKY DNA-binding domain resulting in reduced RRS1-DNA association thereby activating plant immunity. Here, we surveyed the naturally occurring variation in PopP2 sequence among the R. solanacearum strains isolated from diseased tomato and pepper fields across the Republic of Korea. Our analysis revealed high conservation of popP2 sequence with only three polymorphic alleles present amongst 17 strains. Only one variation (a premature stop codon caused the loss of RPS4/RRS1-dependent recognition in Arabidopsis. We also found that PopP2 harbors a putative eukaryotic transcriptional repressor motif (ethylene-responsive element binding factor-associated amphiphilic repression or EAR, which is known to be involved in the recruitment of transcriptional co-repressors. Remarkably, mutation of the EAR motif disabled PopP2 avirulence function as measured by the development of hypersensitive response, electrolyte leakage, defense marker gene expression and bacterial growth in Arabidopsis. This lack of recognition was partially but significantly reverted by the C-terminal addition of a synthetic EAR motif. We show that the EAR motif-dependent gain of avirulence correlated with the stability of the PopP2 protein. Furthermore, we demonstrated the requirement of the PopP2 EAR motif for PTI

  9. The Role of CD39 in Modulating Effector Immune Responses in Inflammatory Bowel Disease

    OpenAIRE

    Huang, Huang

    2015-01-01

    Inflammatory bowel disease is associated with excessive inflammation of the bowel and intestinal tissues in genetically susceptible individuals. IBD can manifest in two major forms, ulcerative colitis and Crohn’s disease. T helper type 17 cells (Th17) are effector lymphocytes that have been linked to intestinal inflammation in both mice and humans. Effector Th17 cells and regulatory T cells (Treg) – a subset pivotal to immune-tolerance maintenance – derive from the same CD4 progenitors. Our i...

  10. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    2014-07-01

    Full Text Available The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE, interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity

  11. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1.

    Directory of Open Access Journals (Sweden)

    Zhaohui Liu

    2012-01-01

    Full Text Available The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular

  12. An Immunity-Triggering Effector from the Barley Smut Fungus Ustilago hordei Resides in an Ustilaginaceae-Specific Cluster Bearing Signs of Transposable Element-Assisted Evolution

    KAUST Repository

    Ali, Shawkat

    2014-07-03

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  13. An Immunity-Triggering Effector from the Barley Smut Fungus Ustilago hordei Resides in an Ustilaginaceae-Specific Cluster Bearing Signs of Transposable Element-Assisted Evolution

    KAUST Repository

    Ali, Shawkat; Laurie, John D.; Linning, Rob; Cervantes-Chá vez, José Antonio; Gaudet, Denis; Bakkeren, Guus

    2014-01-01

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.

  14. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    Science.gov (United States)

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (T EM ), and longer-lived central memory (T CM ) and stem cell memory (T SCM ) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of T CM and T SCM memory cells resulted in phenotypic conversion into T EM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired T EM -associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  15. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  16. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  17. Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5

    Science.gov (United States)

    Lucas, María; Gaspar, Andrew H.; Pallara, Chiara; Rojas, Adriana Lucely; Fernández-Recio, Juan; Machner, Matthias P.; Hierro, Aitor

    2014-01-01

    A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD–Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization. PMID:25114243

  18. Emerging Evidence for Platelets as Immune and Inflammatory Effector Cells

    Directory of Open Access Journals (Sweden)

    Matthew Thomas Rondina

    2014-12-01

    Full Text Available While traditionally recognized for their roles in hemostatic pathways, emerging evidence demonstrates that platelets have previously unrecognized, dynamic roles that span the immune continuum. These newly-recognized platelet functions, including the secretion of immune mediators, interactions with endothelial cells, monocytes, and neutrophils, toll-like receptor (TLR mediated responses, and induction of neutrophil extracellular trap (NET formation, bridge thrombotic and inflammatory pathways and contribute to host defense mechanisms against invading pathogens. In this focused review, we highlight several of these emerging aspects of platelet biology and their implications in clinical infectious syndromes.

  19. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    Science.gov (United States)

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    Science.gov (United States)

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DEEP--a tool for differential expression effector prediction.

    Science.gov (United States)

    Degenhardt, Jost; Haubrock, Martin; Dönitz, Jürgen; Wingender, Edgar; Crass, Torsten

    2007-07-01

    --differentially expressed or not--may play pivotal roles in the tissues or conditions under examination. The described method has been implemented in Java as a client/server application and a web interface called DEEP (Differential Expression Effector Prediction). The client, which features an easy-to-use graphical interface, can freely be downloaded from the following URL: http://deep.bioinf.med.uni-goettingen.de.

  2. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis.

    Science.gov (United States)

    Zeng, Tian; Holmer, Rens; Hontelez, Jan; Te Lintel-Hekkert, Bas; Marufu, Lucky; de Zeeuw, Thijs; Wu, Fangyuan; Schijlen, Elio; Bisseling, Ton; Limpens, Erik

    2018-05-01

    Arbuscular mycorrhizal fungi form the most wide-spread endosymbiosis with plants. There is very little host specificity in this interaction, however host preferences as well as varying symbiotic efficiencies have been observed. We hypothesize that secreted proteins (SPs) may act as fungal effectors to control symbiotic efficiency in a host-dependent manner. Therefore, we studied whether arbuscular mycorrhizal (AM) fungi adjust their secretome in a host- and stage-dependent manner to contribute to their extremely wide host range. We investigated the expression of SP-encoding genes of Rhizophagus irregularis in three evolutionary distantly related plant species, Medicago truncatula, Nicotiana benthamiana and Allium schoenoprasum. In addition we used laser microdissection in combination with RNA-seq to study SP expression at different stages of the interaction in Medicago. Our data indicate that most expressed SPs show roughly equal expression levels in the interaction with all three host plants. In addition, a subset shows significant differential expression depending on the host plant. Furthermore, SP expression is controlled locally in the hyphal network in response to host-dependent cues. Overall, this study presents a comprehensive analysis of the R. irregularis secretome, which now offers a solid basis to direct functional studies on the role of fungal SPs in AM symbiosis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  3. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis

    Directory of Open Access Journals (Sweden)

    Hai-Lei Wei

    2018-05-01

    Full Text Available Summary: The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. : Wei et al. used a Pseudomonas syringae strain lacking all known type III effectors with a modularized library expressing the 29 active effectors in the strain’s native repertoire, individually and in pairs, to comprehensively determine effector actions and interplay in inducing and suppressing responses associated with plant pathogenesis and immunity. Keywords: effector-triggered-immunity, pattern-triggered-immunity, Hop proteins, plant immunity, mini-Tn7

  4. Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.

    Science.gov (United States)

    Alteri, Christopher J; Himpsl, Stephanie D; Zhu, Kevin; Hershey, Haley L; Musili, Ninette; Miller, Jessa E; Mobley, Harry L T

    2017-11-01

    Type VI secretion systems (T6SS) function to deliver lethal payloads into target cells. Many studies have shown that protection against a single, lethal T6SS effector protein requires a cognate antidote immunity protein, both of which are often encoded together in a two-gene operon. The T6SS and an effector-immunity pair is sufficient for both killing and immunity. HereIn this paper we describe a T6SS effector operon that differs from conventional effector-immunity pairs in that eight genes are necessary for lethal effector function, yet can be countered by a single immunity protein. In this study, we investigated the role that the PefE T6SS immunity protein plays in recognition between two strains harboring nearly identical effector operons. Interestingly, despite containing seven of eight identical effector proteins, the less conserved immunity proteins only provided protection against their native effectors, suggesting that specificity and recognition could be dependent on variation within an immunity protein and one effector gene product. The variable effector gene product, PefD, is encoded upstream from pefE, and displays toxic activity that can be countered by PefE independent of T6SS-activity. Interestingly, while the entire pef operon was necessary to exert toxic activity via the T6SS in P. mirabilis, production of PefD and PefE alone was unable to exert this effector activity. Chimeric PefE proteins constructed from two P. mirabilis strains were used to localize immunity function to three amino acids. A promiscuous immunity protein was created using site-directed mutagenesis to change these residues from one variant to another. These findings support the notion that subtle differences between conserved effectors are sufficient for T6SS-mediated kin discrimination and that PefD requires additional factors to function as a T6SS-dependent effector.

  5. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  6. BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures.

    Science.gov (United States)

    Truttmann, Matthias C; Guye, Patrick; Dehio, Christoph

    2011-01-01

    The gram-negative, zoonotic pathogen Bartonella henselae (Bhe) translocates seven distinct Bartonella effector proteins (Beps) via the VirB/VirD4 type IV secretion system (T4SS) into human cells, thereby interfering with host cell signaling [1], [2]. In particular, the effector protein BepG alone or the combination of effector proteins BepC and BepF trigger massive F-actin rearrangements that lead to the establishment of invasome structures eventually resulting in the internalization of entire Bhe aggregates [2], [3]. In this report, we investigate the molecular function of the effector protein BepF in the eukaryotic host cell. We show that the N-terminal [E/T]PLYAT tyrosine phosphorylation motifs of BepF get phosphorylated upon translocation but do not contribute to invasome-mediated Bhe uptake. In contrast, we found that two of the three BID domains of BepF are capable to trigger invasome formation together with BepC, while a mutation of the WxxxE motif of the BID-F1 domain inhibited its ability to contribute to the formation of invasome structures. Next, we show that BepF function during invasome formation can be replaced by the over-expression of constitutive-active Rho GTPases Rac1 or Cdc42. Finally we demonstrate that BID-F1 and BID-F2 domains promote the formation of filopodia-like extensions in NIH 3T3 and HeLa cells as well as membrane protrusions in HeLa cells, suggesting a role for BepF in Rac1 and Cdc42 activation during the process of invasome formation.

  7. BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures.

    Directory of Open Access Journals (Sweden)

    Matthias C Truttmann

    Full Text Available The gram-negative, zoonotic pathogen Bartonella henselae (Bhe translocates seven distinct Bartonella effector proteins (Beps via the VirB/VirD4 type IV secretion system (T4SS into human cells, thereby interfering with host cell signaling [1], [2]. In particular, the effector protein BepG alone or the combination of effector proteins BepC and BepF trigger massive F-actin rearrangements that lead to the establishment of invasome structures eventually resulting in the internalization of entire Bhe aggregates [2], [3]. In this report, we investigate the molecular function of the effector protein BepF in the eukaryotic host cell. We show that the N-terminal [E/T]PLYAT tyrosine phosphorylation motifs of BepF get phosphorylated upon translocation but do not contribute to invasome-mediated Bhe uptake. In contrast, we found that two of the three BID domains of BepF are capable to trigger invasome formation together with BepC, while a mutation of the WxxxE motif of the BID-F1 domain inhibited its ability to contribute to the formation of invasome structures. Next, we show that BepF function during invasome formation can be replaced by the over-expression of constitutive-active Rho GTPases Rac1 or Cdc42. Finally we demonstrate that BID-F1 and BID-F2 domains promote the formation of filopodia-like extensions in NIH 3T3 and HeLa cells as well as membrane protrusions in HeLa cells, suggesting a role for BepF in Rac1 and Cdc42 activation during the process of invasome formation.

  8. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  9. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Mesquita Júnior, D.; Cruvinel, W.M.; Araujo, J.A.P.; Salmazi, K.C.; Kallas, E.G.; Andrade, L.E.C.

    2014-01-01

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25 +/high CD127 Ø/low FoxP3 + , and effector T cells were defined as CD25 + CD127 + FoxP3 Ø . The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4 + TREG and CD28 + TREG cells and an increased frequency of CD40L + TREG cells. There was a decrease in the TREG/effector-T ratio for GITR + , HLA-DR + , OX40 + , and CD45RO + cells, and an increased ratio of TREG/effector-T CD40L + cells in patients with SLE. In addition, CD40L + TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease

  10. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors.

    Science.gov (United States)

    Williams, Angela H; Sharma, Mamta; Thatcher, Louise F; Azam, Sarwar; Hane, James K; Sperschneider, Jana; Kidd, Brendan N; Anderson, Jonathan P; Ghosh, Raju; Garg, Gagan; Lichtenzveig, Judith; Kistler, H Corby; Shea, Terrance; Young, Sarah; Buck, Sally-Anne G; Kamphuis, Lars G; Saxena, Rachit; Pande, Suresh; Ma, Li-Jun; Varshney, Rajeev K; Singh, Karam B

    2016-03-05

    Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host

  11. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Marie Tollot

    2016-06-01

    Full Text Available The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 "late effectors" was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection.

  12. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Eric Warren

    2017-02-01

    Full Text Available Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs, which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG

  13. A genetic screen identifies interferon-α effector genes required to suppress hepatitis C virus replication.

    Science.gov (United States)

    Fusco, Dahlene N; Brisac, Cynthia; John, Sinu P; Huang, Yi-Wen; Chin, Christopher R; Xie, Tiao; Zhao, Hong; Jilg, Nikolaus; Zhang, Leiliang; Chevaliez, Stephane; Wambua, Daniel; Lin, Wenyu; Peng, Lee; Chung, Raymond T; Brass, Abraham L

    2013-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, β 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, β isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this

  14. Calixarene methylene bisphosphonic acids as promising effectors of biochemical processes

    Directory of Open Access Journals (Sweden)

    S. V. Komisarenko

    2013-12-01

    Full Text Available This interdisciplinary study, performed with participation of research workers of Palladin Institute of Biochemistry and Institute of Organic Chemist­ry of NAS of Ukraine, is devoted to analysis of biochemical effects of some calixarene methylene bisphosphonic acids (cyclic phenol oligomers on two well-known biological phenomenons – Mg2+-dependent ATP hydrolysis (myosin subfragment-1 of myometrium smooth muscle was used as an example and fibrin polymerization. Calix[4]arene С-97 (calix[4]arene methylene bisphosphonic acids is a macrocyclic substance, which contains intramolecular highly ordered lipophilic cavity formed by four aromatic rings, one of which is functionalized at the upper rim with methylene bisphosphonic group. At concentration of 100 µM, this substance was shown to effectively inhibit ATPase activity of pig myometrium myosin subfragment-1 (inhibition coefficient І0.5 = 83 ± 7 µM. At the same time, this calix[4]arene causes significant (vs. control increase of myosin subfragment-1 hydrodynamic diameter, which may indicate formation of an intermolecular complex between calixa­rene and myosin head. Computer simulation methods (docking and molecular dynamics with addition of grid technologies enabled to elucidate the grounds of intermolecular interactions between calix[4]arene С-97 and myometrium myosin subfragment-1, that involve hydrophobic, electrostatic and π-π-stacking interactions, some of which are close to the ATPase active centre. In view of the ability of calixarenes to penetrate into the cell and their low toxicity, the results obtained may be used as a basis for further development of a new generation of supramolecular effectors (starting from the above mentioned substances, in particular calix[4]arene С-97 for regulation of smooth muscle contractile activity at the level of ATP dependent actin-myosin interaction. Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper

  15. Guidelines for Hosted Payload Integration

    Science.gov (United States)

    2014-06-06

    reduces risk. Need to consider mass simulator to protect host launch window. Average Payload Power Both BOL and EOL . Host must consider orbit...acceptance testing. Peak Payload Power Both BOL and EOL . Host must consider orbit constraints. Typically driven by Payload operations but must...post-retirement failure might cause damage to the Spacecraft Host or its payloads. Safe conditions at EOL should consider thermal and radiation

  16. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis

    Science.gov (United States)

    McNally, Alice; Hill, Geoffrey R.; Sparwasser, Tim; Thomas, Ranjeny; Steptoe, Raymond J.

    2011-01-01

    CD4+CD25+ regulatory T cells (Treg) play a crucial role in the regulation of immune responses. Although many mechanisms of Treg suppression in vitro have been described, the mechanisms by which Treg modulate CD8+ T cell differentiation and effector function in vivo are more poorly defined. It has been proposed, in many instances, that modulation of cytokine homeostasis could be an important mechanism by which Treg regulate adaptive immunity; however, direct experimental evidence is sparse. Here we demonstrate that CD4+CD25+ Treg, by critically regulating IL-2 homeostasis, modulate CD8+ T-cell effector differentiation. Expansion and effector differentiation of CD8+ T cells is promoted by autocrine IL-2 but, by competing for IL-2, Treg limit CD8+ effector differentiation. Furthermore, a regulatory loop exists between Treg and CD8+ effector T cells, where IL-2 produced during CD8+ T-cell effector differentiation promotes Treg expansion. PMID:21502514

  17. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype......, or function in any of the tissues examined. These findings demonstrate that CXCR3 controls virus-specific effector CD4(+) T cell migration in vivo, and suggest that blocking CXCR3-mediated recruitment may limit T cell-induced immunopathology during respiratory virus infections....

  18. GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.

    Science.gov (United States)

    Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide

    2015-01-01

    Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.

  19. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    Directory of Open Access Journals (Sweden)

    Fleur eGawehns

    2015-11-01

    Full Text Available Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f. sp. lycopersici (Fol secretes small proteins that are referred to as SIX (Secreted In Xylem proteins. Of these, Six1 (Avr3, Six3 (Avr2, Six5 and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5 or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS. Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs, each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome.

  20. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    Science.gov (United States)

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  1. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

    Science.gov (United States)

    2014-01-01

    Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains. PMID:25186587

  2. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  3. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    Science.gov (United States)

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  4. Obesity-Induced Metabolic Stress Leads to Biased Effector Memory CD4+ T Cell Differentiation via PI3K p110δ-Akt-Mediated Signals.

    Science.gov (United States)

    Mauro, Claudio; Smith, Joanne; Cucchi, Danilo; Coe, David; Fu, Hongmei; Bonacina, Fabrizia; Baragetti, Andrea; Cermenati, Gaia; Caruso, Donatella; Mitro, Nico; Catapano, Alberico L; Ammirati, Enrico; Longhi, Maria P; Okkenhaug, Klaus; Norata, Giuseppe D; Marelli-Berg, Federica M

    2017-03-07

    Low-grade systemic inflammation associated to obesity leads to cardiovascular complications, caused partly by infiltration of adipose and vascular tissue by effector T cells. The signals leading to T cell differentiation and tissue infiltration during obesity are poorly understood. We tested whether saturated fatty acid-induced metabolic stress affects differentiation and trafficking patterns of CD4 + T cells. Memory CD4 + T cells primed in high-fat diet-fed donors preferentially migrated to non-lymphoid, inflammatory sites, independent of the metabolic status of the hosts. This was due to biased CD4 + T cell differentiation into CD44 hi -CCR7 lo -CD62L lo -CXCR3 + -LFA1 + effector memory-like T cells upon priming in high-fat diet-fed animals. Similar phenotype was observed in obese subjects in a cohort of free-living people. This developmental bias was independent of any crosstalk between CD4 + T cells and dendritic cells and was mediated via direct exposure of CD4 + T cells to palmitate, leading to increased activation of a PI3K p110δ-Akt-dependent pathway upon priming. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity.

    Science.gov (United States)

    Liu, Lijing; Sonbol, Fathi-Mohamed; Huot, Bethany; Gu, Yangnan; Withers, John; Mwimba, Musoki; Yao, Jian; He, Sheng Yang; Dong, Xinnian

    2016-10-11

    It is an apparent conundrum how plants evolved effector-triggered immunity (ETI), involving programmed cell death (PCD), as a major defence mechanism against biotrophic pathogens, because ETI-associated PCD could leave them vulnerable to necrotrophic pathogens that thrive on dead host cells. Interestingly, during ETI, the normally antagonistic defence hormones, salicylic acid (SA) and jasmonic acid (JA) associated with defence against biotrophs and necrotrophs respectively, both accumulate to high levels. In this study, we made the surprising finding that JA is a positive regulator of RPS2-mediated ETI. Early induction of JA-responsive genes and de novo JA synthesis following SA accumulation is activated through the SA receptors NPR3 and NPR4, instead of the JA receptor COI1. We provide evidence that NPR3 and NPR4 may mediate this effect by promoting degradation of the JA transcriptional repressor JAZs. This unique interplay between SA and JA offers a possible explanation of how plants can mount defence against a biotrophic pathogen without becoming vulnerable to necrotrophic pathogens.

  6. Differential effector responses by circulating/blood and tissue/peritoneal neutrophils following burn combined with Enterococcus faecalis infection.

    Science.gov (United States)

    Fazal, Nadeem; Shelip, Alla; Siddiqui, Erum; Ali, Ashraf; Azim, Anser C; Al-Ghoul, Walid M

    2012-03-01

    Recently we found that superimposition of Enterococcus faecalis infection on burn injury caused an eruption of host mortality not seen with either individual challenge. We hypothesized that the Enterococcus bacteria, and/or factors related to these organisms, aggravate burn-induced modulations in host defense by neutrophils. Our study focuses on alterations in neutrophils' oxidative, proteolytic, and adhesive functions and transendothelial migration of neutrophils in burn rats inoculated with E. faecalis. Rats were subjected to burn (30% total body surface area) and then intra-abdominally inoculated with E. faecalis (10(4)CFU kg(-1) b.w). Polymorphonuclear neutrophils (PMNs) were harvested from circulating/blood and tissue/peritoneal cavity at day-2 post injury. Extracellular release of O(-)(2) anion production was determined by luminometry, and intracellular production of reactive oxygen species was measured by digital imaging technique. Fluoroscan analysis and confocal microscopy determined intracellular elastase production. The expression of adhesion molecule CD11b/CD18 was performed by flow cytometry. Calcein AM-labeled PMNs were co-cultured with TNF-α-stimulated rat lung microvascular endothelial cells, and their ability to adhere was assessed by fluorometry and digital imaging and finally, chemotaxis was measured by neutrophil transmigration assays. The results showed differential effector responses by circulatory and/or tissue PMNs. Tissue/peritoneal PMNs produced more O(-)(2), less intracellular elastase, and increased expression of CD11b/CD18 accompanied with increased adhesivity of MIP-2-stimulated PMNs to endothelial cells as compared to circulatory/blood PMNs. This differential effect was more pronounced following burn plus E. faecalis infection, indicating that the combined injury changed neutrophil functions. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription

    Directory of Open Access Journals (Sweden)

    Habiba Harouz

    2014-12-01

    Full Text Available Shigella flexneri, a gram-negative bacterium responsible of bacillary dysentery, uses multiple strategies to overcome host immune defense. We have decrypted how this bacterium manipulates host-cell chromatin binders to take control of immune gene expression. We found that OspF, an injected virulence factor previously identified as a repressor of immune gene expression, targets the chromatin reader HP1γ. Heterochromatin Protein 1 family members specifically recognize and bind histone H3 methylated at Lys 9. Although initially identified as chromatin-associated transcriptional silencers in heterochromatin, their location in euchromatin indicates an active role in gene expression. Notably, HP1γ phosphorylation at Serine 83 defines a subpopulation exclusively located to euchromatin, targeted to the site of transcriptional elongation. We showed that OspF directly interacts with HP1γ, and causes HP1 dephosphorylation, suggesting a model in which this virulence effector “uses” HP1 proteins as beacons to target and repress immune gene expression (Harouz, et al. EMBO J (2014. OspF alters HP1γ phosphorylation mainly by inactivating the Erk-activated kinase MSK1, spotlighting it as a new HP1 kinase. In vivo, infectious stresses trigger HP1γ phosphorylation in the colon, principally in the lamina propria and the intestinal crypts. Several lines of evidence suggest that HP1 proteins are modified as extensively as histones, and decrypting the impact of these HP1 post-translational modifications on their transcriptional activities in vivo will be the next challenges to be taken up.

  8. Pas de deux: An Intricate Dance of Anther Smut and Its Host

    Directory of Open Access Journals (Sweden)

    Su San Toh

    2018-02-01

    Full Text Available The successful interaction between pathogen/parasite and host requires a delicate balance between fitness of the former and survival of the latter. To optimize fitness a parasite/pathogen must effectively create an environment conducive to reproductive success, while simultaneously avoiding or minimizing detrimental host defense response. The association between Microbotryum lychnidis-dioicae and its host Silene latifolia serves as an excellent model to examine such interactions. This fungus is part of a species complex that infects species of the Caryophyllaceae, replacing pollen with the fungal spores. In the current study, transcriptome analyses of the fungus and its host were conducted during discrete stages of bud development so as to identify changes in fungal gene expression that lead to spore development and to identify changes associated with infection in the host plant. In contrast to early biotrophic phase stages of infection for the fungus, the latter stages involve tissue necrosis and in the case of infected female flowers, further changes in the developmental program in which the ovary aborts and a pseudoanther is produced. Transcriptome analysis via Illumina RNA sequencing revealed enrichment of fungal genes encoding small secreted proteins, with hallmarks of effectors and genes found to be relatively unique to the Microbotryum species complex. Host gene expression analyses also identified interesting sets of genes up-regulated, including those involving stress response, host defense response, and several agamous-like MADS-box genes (AGL61 and AGL80, predicted to interact and be involved in male gametophyte development.

  9. Learning-based position control of a closed-kinematic chain robot end-effector

    Science.gov (United States)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1990-01-01

    A trajectory control scheme whose design is based on learning theory, for a six-degree-of-freedom (DOF) robot end-effector built to study robotic assembly of NASA hardwares in space is presented. The control scheme consists of two control systems: the feedback control system and the learning control system. The feedback control system is designed using the concept of linearization about a selected operating point, and the method of pole placement so that the closed-loop linearized system is stabilized. The learning control scheme consisting of PD-type learning controllers, provides additional inputs to improve the end-effector performance after each trial. Experimental studies performed on a 2 DOF end-effector built at CUA, for three tracking cases show that actual trajectories approach desired trajectories as the number of trials increases. The tracking errors are substantially reduced after only five trials.

  10. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    Science.gov (United States)

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  11. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Suzuki, Godai; Wang, Yang; Kubo, Karen; Hirata, Eri; Ohnuki, Shinsuke; Ohya, Yoshikazu

    2018-02-20

    The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications.

  12. Role of Rab family GTPases and their effectors in melanosomal logistics.

    Science.gov (United States)

    Ohbayashi, Norihiko; Fukuda, Mitsunori

    2012-04-01

    Rab GTPases constitute a family of small GTPases that regulate a variety of membrane trafficking events in all eukaryotic cells by recruiting their specific effector molecules. Recent accumulating evidence indicates that members of the mammalian Rab small GTPase family are involved in certain physiological and pathological processes. In particular, functional impairments of specific Rab proteins, e.g. Rab38 and Rab27A, their regulators or their effectors cause pigmentation disorders in humans and coat colour variations in mice because such impairments cause defects in melanosomal logistics, i.e. defects in melanosome biogenesis and transport. Genetic and biochemical analyses of the gene products responsible for mammalian pigmentation disorders in the past decade have revealed that Rab-mediated endosomal transport systems and melanosome transport systems play crucial roles in the efficient darkening of mammalian hair and skin. In this article, we review current knowledge regarding melanosomal logistics, with particular focus on the roles of Rab small GTPases and their effectors.

  13. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  14. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  15. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  16. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  17. Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames.

    Science.gov (United States)

    Wiestler, Tobias; Waters-Metenier, Sheena; Diedrichsen, Jörn

    2014-04-02

    Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere.

  18. Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida.

    Science.gov (United States)

    Chavarría, Max; Santiago, César; Platero, Raúl; Krell, Tino; Casasnovas, José M; de Lorenzo, Víctor

    2011-03-18

    The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5'-TTAAACGTTTCA-3' (K(D) = 26.3 ± 3.1 nM) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a K(D) of 209 ± 20 nM. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida.

  19. Fructose 1-Phosphate Is the Preferred Effector of the Metabolic Regulator Cra of Pseudomonas putida*

    Science.gov (United States)

    Chavarría, Max; Santiago, César; Platero, Raúl; Krell, Tino; Casasnovas, José M.; de Lorenzo, Víctor

    2011-01-01

    The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of Gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5′-TTAAACGTTTCA-3′ (KD = 26.3 ± 3.1 nm) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a KD of 209 ± 20 nm. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida. PMID:21239488

  20. Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite

    DEFF Research Database (Denmark)

    McMullan, Mark; Gardiner, Anastasia; Bailey, Kate

    2015-01-01

    How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies...... by normally non-infecting races. This facilitates introgression and the exchange of effector repertoires, and may enable the evolution of novel races that can undergo clonal population expansion on new hosts. We discuss recent studies on hybridization in other eukaryotes such as yeast, Heliconius butterflies...

  1. Design criteria for the light duty utility arm system end effectors

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1995-01-01

    This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory

  2. Revealing the inventory of type III effectors in Pantoea agglomerans gall-forming pathovars using draft genome sequences and a machine-learning approach.

    Science.gov (United States)

    Nissan, Gal; Gershovits, Michael; Morozov, Michael; Chalupowicz, Laura; Sessa, Guido; Manulis-Sasson, Shulamit; Barash, Isaac; Pupko, Tal

    2018-02-01

    Pantoea agglomerans, a widespread epiphytic bacterium, has evolved into a hypersensitive response and pathogenicity (hrp)-dependent and host-specific gall-forming pathogen by the acquisition of a pathogenicity plasmid containing a type III secretion system (T3SS) and its effectors (T3Es). Pantoea agglomerans pv. betae (Pab) elicits galls on beet (Beta vulgaris) and gypsophila (Gypsophila paniculata), whereas P. agglomerans pv. gypsophilae (Pag) incites galls on gypsophila and a hypersensitive response (HR) on beet. Draft genome sequences were generated and employed in combination with a machine-learning approach and a translocation assay into beet roots to identify the pools of T3Es in the two pathovars. The genomes of the sequenced Pab4188 and Pag824-1 strains have a similar size (∼5 MB) and GC content (∼55%). Mutational analysis revealed that, in Pab4188, eight T3Es (HsvB, HsvG, PseB, DspA/E, HopAY1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on beet and gypsophila. In Pag824-1, nine T3Es (HsvG, HsvB, PthG, DspA/E, HopAY1, HopD1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on gypsophila, whereas the PthG effector triggers HR on beet. HsvB, HsvG, PthG and PseB appear to endow pathovar specificities to Pab and Pag, and no homologous T3Es were identified for these proteins in other phytopathogenic bacteria. Conversely, the remaining T3Es contribute to the virulence of both pathovars, and homologous T3Es were found in other phytopathogenic bacteria. Remarkably, HsvG and HsvB, which act as host-specific transcription factors, displayed the largest contribution to disease development. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  3. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development.

    Science.gov (United States)

    Lee, Chris; Chronis, Demosthenis; Kenning, Charlotte; Peret, Benjamin; Hewezi, Tarek; Davis, Eric L; Baum, Thomas J; Hussey, Richard; Bennett, Malcolm; Mitchum, Melissa G

    2011-02-01

    Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.

  4. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL domain effector of Rhizobium sp. strain NGR234.

    Directory of Open Access Journals (Sweden)

    Da-Wei Xin

    Full Text Available Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.

  5. Poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate) nanoparticles with polyethylenimine coat as simple, safe, and versatile vehicles for cell targeting: population characteristics, cell uptake, and intracellular trafficking.

    Science.gov (United States)

    Wu, Lin-Ping; Wang, Danyang; Parhamifar, Ladan; Hall, Arnaldur; Chen, Guo-Qiang; Moghimi, Seyed M

    2014-06-01

    A simple and highly safe poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate) nanoparticulate delivery system that targets different cell types is developed. A sub-cytotoxic level of polyethylenimine coat mediates universal cell targeting. Internalized nanoparticles traffic along endolysosomal compartments, endoplasmic reticulum and the Golgi complex. Nanoparticles have no detrimental effects on cell morphology and respiration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Characterization of pituitary cells targeted by antipituitary antibodies in patients with isolated autoimmune diseases without pituitary insufficiency may help to foresee the kind of future hypopituitarism.

    Science.gov (United States)

    De Bellis, A; Dello Iacovo, A; Bellastella, G; Savoia, A; Cozzolino, D; Sinisi, A A; Bizzarro, A; Bellastella, A; Giugliano, D

    2014-10-01

    Detection of antipituitary antibodies (APA) at high levels and with a particular immunofluorescence pattern in patients with autoimmune polyendocrine syndromes may indicate a possible future autoimmune pituitary involvement. This longitudinal study was aimed at characterizing in patients with a single organ-specific autoimmune disease the pituitary cells targeted by APA at start, verifying whether this characterization allows to foresee the kind of possible subsequent hypopituitarism. Thirty-six APA positive and 40 APA negative patients with isolated autoimmune diseases participated in the study. None of them had pituitary dysfunction at entry. Characterization by four-layer immunofluorescence of pituitary cells targeted by APA in APA positive patients at entry and study of pituitary function in all patients were performed every 6 months during a 5 year follow-up. Antipituitary antibodies immunostained selectively one type of pituitary-secreting cells in 21 patients (58.3 %, group 1), and several types of pituitary cells in the remaining 15 (41.7 %, group 2). All patients in group 1 showed subsequently a pituitary insufficiency, corresponding to the type of cells targeted by APA in 18 of them (85.7 %). Only 8 out of 15 patients in group 2 (53.3 %) showed a hypopituitarism, isolated in 7 and combined in the other one. None of APA negative patients showed hypopituitarism. The characterization of pituitary cells targeted by APA in patients with isolated autoimmune diseases, when the pituitary function is still normal, may help to foresee the kind of subsequent hypopituitarism, especially when APA immunostained selectively only one type of pituitary cells. A careful follow-up of pituitary function in these patients is advisable to allow an early diagnosis of hypopituitarism, even in subclinical phase and a consequent timely replacement therapy.

  7. Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens

    Directory of Open Access Journals (Sweden)

    Shimpei eMagori

    2011-11-01

    Full Text Available The SCF (SKP1-CUL1-F-box protein ubiquitin ligase complex mediates polyubiquitination of proteins targeted for degradation, thereby controlling a plethora of biological processes in eukaryotic cells. Although this ubiquitination machinery is found and functional only in eukaryotes, many non-eukaryotic pathogens also encode F-box proteins, the critical subunits of the SCF complex. Increasing evidence indicates that such non-eukaryotic F-box proteins play an essential role in subverting or exploiting the host ubiquitin/proteasome system for efficient pathogen infection. A recent bioinformatic analysis has identified more than 70 F-box proteins in 22 different bacterial species, suggesting that use of pathogen-encoded F-box effectors in the host cell may be a widespread infection strategy. In this review, we focus on plant pathogen-encoded F-box effectors, such as VirF of Agrobacterium tumefaciens, GALAs of Ralstonia solanacearum, and P0 of Poleroviruses, and discuss the molecular mechanism by which plant pathogens use these factors to manipulate the host cell for their own benefit.

  8. Differential modulation of plant immune responses by diverse members of the Pseudomonas savastanoi pv. savastanoi HopAF type III effector family.

    Science.gov (United States)

    Castañeda-Ojeda, M Pilar; López-Solanilla, Emilia; Ramos, Cayo

    2017-06-01

    The Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III secretion system (T3SS) effector repertoire includes 33 candidates, seven of which translocate into host cells and interfere with plant defences. The present study was performed to investigate the co-existence of both plasmid- and chromosomal-encoded members of the HopAF effector family, HopAF1-1 and HopAF1-2, respectively, in the genome of NCPPB 3335. Here, we show that the HopAF1 paralogues are widely distributed in the Pseudomonas syringae complex, where HopAF1-1 is most similar to the homologues encoded by other P. syringae pathovars infecting woody hosts that belong to phylogroups 1 and 3. We show that the expression of both HopAF1-1 and HopAF-2 is transcriptionally dependent on HrpL and demonstrate their delivery into Nicotiana tabacum leaves. Although the heterologous delivery of either HopAF1-1 or HopAF1-2 significantly suppressed the production of defence-associated reactive oxygen species levels, only HopAF1-2 reduced the levels of callose deposition. Moreover, the expression of HopAF1-2 by functionally effectorless P. syringae pv. tomato DC3000D28E completely inhibited the hypersensitive response in tobacco and significantly increased the competitiveness of the strain in Nicotiana benthamiana. Despite their functional differences, subcellular localization studies reveal that green fluorescent protein (GFP) fusions to either HopAF1-1 or HopAF1-2 are targeted to the plasma membrane when they are expressed in plant cells, a process that is completely dependent on the integrity of their N-myristoylation motif. Our results further support the notion that highly similar T3SS effectors might differentially interact with diverse plant targets, even when they co-localize in the same cell compartment. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  9. Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence.

    Science.gov (United States)

    Ratner, Dmitry; Orning, M Pontus A; Starheim, Kristian K; Marty-Roix, Robyn; Proulx, Megan K; Goguen, Jon D; Lien, Egil

    2016-05-06

    Innate immunity plays a central role in resolving infections by pathogens. Host survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is favored by a robust early innate immune response initiated by IL-1β and IL-18. These cytokines are produced by a two-step mechanism involving NF-κB-mediated pro-cytokine production and inflammasome-driven maturation into bioactive inflammatory mediators. Because of the anti-microbial effects induced by IL-1β/IL-18, it may be desirable for pathogens to manipulate their production. Y. pestis type III secretion system effectors YopJ and YopM can interfere with different parts of this process. Both effectors have been reported to influence inflammasome caspase-1 activity; YopJ promotes caspase-8-dependent cell death and caspase-1 cleavage, whereas YopM inhibits caspase-1 activity via an incompletely understood mechanism. However, neither effector appears essential for full virulence in vivo Here we report that the sum of influences by YopJ and YopM on IL-1β/IL-18 release is suppressive. In the absence of YopM, YopJ minimally affects caspase-1 cleavage but suppresses IL-1β, IL-18, and other cytokines and chemokines. Importantly, we find that Y. pestis containing combined deletions of YopJ and YopM induces elevated levels of IL-1β/IL-18 in vitro and in vivo and is significantly attenuated in a mouse model of bubonic plague. The reduced virulence of the YopJ-YopM mutant is dependent on the presence of IL-1β, IL-18, and caspase-1. Thus, we conclude that Y. pestis YopJ and YopM can both exert a tight control of host IL-1β/IL-18 production to benefit the bacteria, resulting in a redundant impact on virulence. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Comparative Genomics of Smut Pathogens: Insights From Orphans and Positively Selected Genes Into Host Specialization

    Directory of Open Access Journals (Sweden)

    Juliana Benevenuto

    2018-04-01

    Full Text Available Host specialization is a key evolutionary process for the diversification and emergence of new pathogens. However, the molecular determinants of host range are poorly understood. Smut fungi are biotrophic pathogens that have distinct and narrow host ranges based on largely unknown genetic determinants. Hence, we aimed to expand comparative genomics analyses of smut fungi by including more species infecting different hosts and to define orphans and positively selected genes to gain further insights into the genetics basis of host specialization. We analyzed nine lineages of smut fungi isolated from eight crop and non-crop hosts: maize, barley, sugarcane, wheat, oats, Zizania latifolia (Manchurian rice, Echinochloa colona (a wild grass, and Persicaria sp. (a wild dicot plant. We assembled two new genomes: Ustilago hordei (strain Uhor01 isolated from oats and U. tritici (strain CBS 119.19 isolated from wheat. The smut genomes were of small sizes, ranging from 18.38 to 24.63 Mb. U. hordei species experienced genome expansions due to the proliferation of transposable elements and the amount of these elements varied among the two strains. Phylogenetic analysis confirmed that Ustilago is not a monophyletic genus and, furthermore, detected misclassification of the U. tritici specimen. The comparison between smut pathogens of crop and non-crop hosts did not reveal distinct signatures, suggesting that host domestication did not play a dominant role in shaping the evolution of smuts. We found that host specialization in smut fungi likely has a complex genetic basis: different functional categories were enriched in orphans and lineage-specific selected genes. The diversification and gain/loss of effector genes are probably the most important determinants of host specificity.

  11. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO; 1550 clusters were assigned enzyme commission (EC numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to

  12. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine.

    Science.gov (United States)

    Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong

    2014-07-31

    Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato.

    Science.gov (United States)

    Jelinski, Nicolas A; Broz, Karen; Jonkers, Wilfried; Ma, Li-Jun; Kistler, H Corby

    2017-07-01

    Seventy-four Fusarium oxysporum soil isolates were assayed for known effector genes present in an F. oxysporum f. sp. lycopersici race 3 tomato wilt strain (FOL MN-25) obtained from the same fields in Manatee County, Florida. Based on the presence or absence of these genes, four haplotypes were defined, two of which represented 96% of the surveyed isolates. These two most common effector haplotypes contained either all or none of the assayed race 3 effector genes. We hypothesized that soil isolates with all surveyed effector genes, similar to FOL MN-25, would be pathogenic toward tomato, whereas isolates lacking all effectors would be nonpathogenic. However, inoculation experiments revealed that presence of the effector genes alone was not sufficient to ensure pathogenicity on tomato. Interestingly, a nonpathogenic isolate containing the full suite of unmutated effector genes (FOS 4-4) appears to have undergone a chromosomal rearrangement yet remains vegetatively compatible with FOL MN-25. These observations confirm the highly dynamic nature of the F. oxysporum genome and support the conclusion that pathogenesis among free-living populations of F. oxysporum is a complex process. Therefore, the presence of effector genes alone may not be an accurate predictor of pathogenicity among soil isolates of F. oxysporum.

  14. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair.

    Science.gov (United States)

    Whitney, John C; Chou, Seemay; Russell, Alistair B; Biboy, Jacob; Gardiner, Taylor E; Ferrin, Michael A; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D

    2013-09-13

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.

  15. Identification, Structure, and Function of a Novel Type VI Secretion Peptidoglycan Glycoside Hydrolase Effector-Immunity Pair*

    Science.gov (United States)

    Whitney, John C.; Chou, Seemay; Russell, Alistair B.; Biboy, Jacob; Gardiner, Taylor E.; Ferrin, Michael A.; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D.

    2013-01-01

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity. PMID:23878199

  16. Human reinforcement learning subdivides structured action spaces by learning effector-specific values.

    Science.gov (United States)

    Gershman, Samuel J; Pesaran, Bijan; Daw, Nathaniel D

    2009-10-28

    Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable because of the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning-such as prediction error signals for action valuation associated with dopamine and the striatum-can cope with this "curse of dimensionality." We propose a reinforcement learning framework that allows for learned action valuations to be decomposed into effector-specific components when appropriate to a task, and test it by studying to what extent human behavior and blood oxygen level-dependent (BOLD) activity can exploit such a decomposition in a multieffector choice task. Subjects made simultaneous decisions with their left and right hands and received separate reward feedback for each hand movement. We found that choice behavior was better described by a learning model that decomposed the values of bimanual movements into separate values for each effector, rather than a traditional model that treated the bimanual actions as unitary with a single value. A decomposition of value into effector-specific components was also observed in value-related BOLD signaling, in the form of lateralized biases in striatal correlates of prediction error and anticipatory value correlates in the intraparietal sulcus. These results suggest that the human brain can use decomposed value representations to "divide and conquer" reinforcement learning over high-dimensional action spaces.

  17. Using effectors of Phytophthora infestans to teach pathogenesis: Our attempt to provide a more comprehensive education

    Science.gov (United States)

    The topic of pathogenesis mechanisms (R/avirulence genes, effectors, and hypersensitive response) has proved challenging for students in our introductory plant pathology course. An apparent gap exists in the curriculum between this introductory course and higher level plant-microbe interaction cours...

  18. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    Science.gov (United States)

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Rail-guided robotic end-effector position error due to rail compliance and ship motion

    NARCIS (Netherlands)

    Borgerink, Dian; Stegenga, J.; Brouwer, Dannis Michel; Woertche, H.J.; Stramigioli, Stefano

    2014-01-01

    A rail-guided robotic system is currently being designed for the inspection of ballast water tanks in ships. This robotic system will manipulate sensors toward the interior walls of the tank. In this paper, the influence of rail compliance on the end-effector position error due to ship movement is

  20. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion.

    Science.gov (United States)

    Hesse, S; Schattat, N; Mehrholz, J; Werner, C

    2013-01-01

    A task-specific repetitive approach in gait rehabilitation after CNS lesion is well accepted nowadays. To ease the therapists' and patients' physical effort, the past two decades have seen the introduction of gait machines to intensify the amount of gait practice. Two principles have emerged, an exoskeleton- and an endeffector-based approach. Both systems share the harness and the body weight support. With the end-effector-based devices, the patients' feet are positioned on two foot plates, whose movements simulate stance and swing phase. This article provides an overview on the end-effector based machine's effectiveness regarding the restoration of gait. For the electromechanical gait trainer GT I, a meta analysis identified nine controlled trials (RCT) in stroke subjects (n = 568) and were analyzed to detect differences between end-effector-based locomotion + physiotherapy and physiotherapy alone. Patients practising with the machine effected in a superior gait ability (210 out of 319 patients, 65.8% vs. 96 out of 249 patients, 38.6%, respectively, Z = 2.29, p = 0.020), due to a larger training intensity. Only single RCTs have been reported for other devices and etiologies. The introduction of end-effector based gait machines has opened a new succesful chapter in gait rehabilitation after CNS lesion.

  1. Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Škerlová, Jana; Fábry, Milan; Hubálek, Martin; Otwinowski, Z.; Řezáčová, Pavlína

    2014-01-01

    Roč. 281, č. 18 (2014), s. 4280-4292 ISSN 1742-464X R&D Projects: GA MŠk ME08016 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : dimeric interface * effector binding * Schiff base * transcription repressor * X-ray crystallography Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 4.001, year: 2014

  2. The interplay between a Phytophthora RXLR effector and an Arabidopsis lectin receptor kinase

    NARCIS (Netherlands)

    Bouwmeester, K.

    2010-01-01

    Phytophthora infestans – the causal agent of potato late blight – secretes a plethora of effector proteins to facilitate plant infection. The central subject of this thesis is ipiO, one of the first cloned Phytophthora genes with a putative function in pathogenicity as was anticipated based on its

  3. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector

    Science.gov (United States)

    Caplan, Jeffrey L.; Mamillapalli, Padmavathi; Burch-Smith, Tessa M.; Czymmek, Kirk; Dinesh-Kumar, S.P.

    2008-01-01

    Summary Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50-kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein, NRIP1, that directly interacts with both N's TIR domain and p50. NRIP1 is a functional rhodanese sulfurtransferase and is required for N to provide complete resistance to TMV. Interestingly, NRIP1 that normally localizes to the chloroplasts is recruited to the cytoplasm and nucleus by the p50 effector. As a consequence, NRIP1 interacts with N only in the presence of the p50 effector. Our findings show that a chloroplastic protein is intimately involved in pathogen recognition. We propose that N's activation requires a pre-recognition complex containing the p50 effector and NRIP1. PMID:18267075

  4. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat induced point mutations

    NARCIS (Netherlands)

    Rouxel, T.; Grandaubert, J.; Hane, J.K.; Hoede, C.; Wouw, A.; Couloux, A.; Dominguez, V.; Anthouard, V.; Bally, P.; Bourras, S.; Cozijnsen, A.J.; Ciuffetti, L.M.; Degrave, A.; Dilmaghani, A.; Duret, L.; Fudal, L.; Goodwin, S.B.; Gout, L.; Glaser, N.; Linglin, J.; Kema, G.H.J.; Lapalu, N.; Lawrence, C.B.; May, K.; Meyer, M.; Ollivier, B.; Poulain, J.; Schoch, C.L.; Simon, A.; Spatafora, J.W.; Stachowiak, A.; Turgeon, B.G.; Tyler, B.M.; Vincent, D.; Weissenbach, J.; Amselem, J.; Quesneville, H.; Oliver, R.P.; Wincker, P.; Balesdent, M.H.; Howlett, B.J.

    2011-01-01

    Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes

  5. Identification of virulence factors and type III effectors of Phylotype I ...

    Indian Academy of Sciences (India)

    HP2000

    R. solanacearum finds its way into the plant through wounds in the roots and .... 10% (c) Acidic residues should be absent within the first twelve amino acids. .... PilA has been used to study the genetic diversity in soil bacterium ..... the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different.

  6. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    NARCIS (Netherlands)

    Gawehns, Fleur; Ma, Lisong; Bruning, Oskar; Houterman, Petra M.; Boeren, Sjef; Cornelissen, B.J.C.; Rep, Martijn; Takken, Frank L.W.

    2015-01-01

    Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1

  7. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum

    NARCIS (Netherlands)

    Schmidt, S.M.; Houterman, P.M.; Schreiver, I.; Ma, L.; Amyotte, S.; Chellappan, B.; Boeren, S.; Takken, F.L.W.; Rep, M.

    2013-01-01

    Background The plant-pathogenic fungus Fusarium oxysporum f.sp.lycopersici (Fol) has accessory, lineage-specific (LS) chromosomes that can be transferred horizontally between strains. A single LS chromosome in the Fol4287 reference strain harbors all known Fol effector genes. Transfer of this

  8. Specific Hypersensitive Response–Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato

    NARCIS (Netherlands)

    Mesarich, Carl H.; Ӧkmen, Bilal; Rovenich, Hanna; Griffiths, Scott A.; Wang, Changchun; Karimi Jashni, Mansoor; Mihajlovski, Aleksandar; Collemare, Jérôme; Hunziker, Lukas; Deng, Cecilia H.; Burgt, Van Der Ate; Beenen, Henriek G.; Templeton, Matthew D.; Bradshaw, Rosie E.; Wit, De Pierre J.G.M.

    2018-01-01

    Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes

  9. Parallel manipulators with two end-effectors : Getting a grip on Jacobian-based stiffness analysis

    NARCIS (Netherlands)

    Hoevenaars, A.G.L.

    2016-01-01

    Robots that are developed for applications which require a high stiffness-over-inertia ratio, such as pick-and-place robots, machining robots, or haptic devices, are often based on parallel manipulators. Parallel manipulators connect an end-effector to an inertial base using multiple serial

  10. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors.

    Science.gov (United States)

    Kast, David J; Yang, Changsong; Disanza, Andrea; Boczkowska, Malgorzata; Madasu, Yadaiah; Scita, Giorgio; Svitkina, Tatyana; Dominguez, Roberto

    2014-04-01

    The Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB-PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB-PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain. The crystal structure of Cdc42 bound to the CRIB-PR reveals a new mode of effector binding to Rho family GTPases. Structure-inspired mutations disrupt autoinhibition and Cdc42 binding in vitro and decouple Cdc42- and IRSp53-dependent filopodia formation in cells. The data support a combinatorial mechanism of IRSp53 activation.

  11. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Fábia A. Salvador

    2014-09-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC are important human gastroenteritis agents. The prevalence of six non-LEE genes encoding type 3 translocated effectors was investigated. The nleC, cif and nleB genes were more prevalent in typical than in atypical EPEC, although a higher diversity of genes combinations was observed in atypical EPEC.

  12. Persistent expansion of CD4(+) effector memory T cells in Wegener's granulomatosis

    NARCIS (Netherlands)

    Abdulahad, W. H.; van der Geld, Y. M.; Stegeman, C. A.; Kallenberg, C. G. M.

    In order to test the hypothesis that Wegener's granulomatosis (WG) is associated with an ongoing immune effector response, even in remission, we examined the distribution of peripheral naive and memory T-lymphocytes in this disease, and analyzed the function-related phenotypes of the memory T-cell

  13. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.

    Directory of Open Access Journals (Sweden)

    Kris E Spaeth

    2009-09-01

    Full Text Available In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone. Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole ("inclusion". The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.

  14. Assessing the ability of Salmonella enterica to translocate Type III effectors into plant cells

    Science.gov (United States)

    Salmonella enterica, a human enteric pathogen, has the ability to multiply and survive endophytically in plants, and mutations in genes encoding the type III secretion system (T3SS) or its effectors (T3Es) may contribute to this colonization. Two reporter plasmids for T3E translocation into plant ce...

  15. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family

    NARCIS (Netherlands)

    Thaw, P.; Sedelnikova, S.E.; Muranova, T.; Wiese, S.; Ayora, S.; Alonso, J.C.; Brinkman, A.B.; Akerboom, A.P.; Oost, van der J.; Rafferty, J.B.

    2006-01-01

    The Lrp/AsnC family of transcriptional regulatory proteins is found in both archaea and bacteria. Members of the family influence cellular metabolism in both a global (Lrp) and specific (AsnC) manner, often in response to exogenous amino acid effectors. In the present study we have determined both

  16. Host Factors in Ebola Infection.

    Science.gov (United States)

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  17. Abstract and Effector-Selective Decision Signals Exhibit Qualitatively Distinct Dynamics before Delayed Perceptual Reports.

    Science.gov (United States)

    Twomey, Deirdre M; Kelly, Simon P; O'Connell, Redmond G

    2016-07-13

    Electrophysiological research has isolated neural signatures of decision formation in a variety of brain regions. Studies in rodents and monkeys have focused primarily on effector-selective signals that translate the emerging decision into a specific motor plan, but, more recently, research on the human brain has identified an abstract signature of evidence accumulation that does not appear to play any direct role in action preparation. The functional dissociations between these distinct signal types have only begun to be characterized, and their dynamics during decisions with deferred actions with or without foreknowledge of stimulus-effector mapping, a commonly studied task scenario in single-unit and functional imaging investigations, have not been established. Here we traced the dynamics of distinct abstract and effector-selective decision signals in the form of the broad-band centro-parietal positivity (CPP) and limb-selective β-band (8-16 and 18-30 Hz) EEG activity, respectively, during delayed-reported motion direction decisions with and without foreknowledge of direction-response mapping. With foreknowledge, the CPP and β-band signals exhibited a similar gradual build-up following evidence onset, but whereas choice-predictive β-band activity persisted up until the delayed response, the CPP dropped toward baseline after peaking. Without foreknowledge, the CPP exhibited identic