WorldWideScience

Sample records for horn neuronal responses

  1. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    National Research Council Canada - National Science Library

    Jae Hyo Kim; Hee Young Kim; Kyungsoon Chung; Jin Mo Chung

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain...

  2. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compr...

  3. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats.

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-05-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level.

  4. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  5. Bursting deep dorsal horn neurons

    DEFF Research Database (Denmark)

    Carlsen, Eva Meier; Rasmussen, Rune

    2017-01-01

    In a recent publication, Thaweerattanasinp et al. (J Neurophysiol 116: 1644–1653, 2016) investigated spinal cord injury and firing properties of deep dorsal horn neurons during NMDA or zolmitriptan application by employing electrophysiology in an in vitro spinal cord preparation. Deep dorsal horn...

  6. Reactive Oxygen Species Donors Increase the Responsiveness of Dorsal Horn Neurons and Induce Mechanical Hyperalgesia in Rats

    Directory of Open Access Journals (Sweden)

    Hee Young Kim

    2015-01-01

    Full Text Available Our previous studies suggest that reactive oxygen species (ROS scavengers have analgesic effect on neuropathic pain through spinal mechanisms in the rat. The studies suggest that superoxide in spinal cord is one of important mediators of persistent pain. To test the hypothesis that increase of superoxide-derived intermediates leads to central sensitization and pain, the effects of an intrathecal injection of chemical ROS donors releasing either OH∙, OCl-, or H2O2 were examined on pain behaviors. Following treatment with t-BOOH (OH∙ donor, dorsal horn neuron responses to mechanical stimuli in normal rats and the changes of neuronal excitability were explored on substantia gelatinosa (SG neurons using whole-cell patch clamping recordings. Intrathecal administration of t-BOOH or NaOCl (OCl- donor, but not H2O2, significantly decreased mechanical thresholds of hind paws. The responses of wide dynamic range neurons to mechanical stimuli increased after a local application of t-BOOH. The t-BOOH increased the frequency and the amplitude of excitatory postsynaptic potentials, depolarized membrane potential in SG neurons, and increased the frequency of action potentials evoked by depolarizing current pulses. These results suggest that elevated ROS, especially OH∙, in the spinal cord sensitized dorsal horn neurons and produced hyperalgesia in normal rats.

  7. Intracisternal injection of palmitoylethanolamide inhibits the peripheral nociceptive evoked responses of dorsal horn wide dynamic range neurons.

    Science.gov (United States)

    González-Hernández, Abimael; Martínez-Lorenzana, Guadalupe; Rodríguez-Jiménez, Javier; Rojas-Piloni, Gerardo; Condés-Lara, Miguel

    2015-03-01

    Endogenous palmitoylethanolamide (PEA) has a key role in pain modulation. Central or peripheral PEA can reduce nociceptive behavior, but no study has yet reported a descending inhibitory effect on the neuronal nociceptive activity of Aδ- and C-fibers. This study shows that intracisternal PEA inhibits the peripheral nociceptive responses of dorsal horn wide dynamic range cells (i.e., inhibition of Aδ- and C-fibers), an effect blocked by spinal methiothepin. These results suggest that a descending analgesic mechanism mediated by the serotonergic system could be activated by central PEA.

  8. Topical hindpaw application of L-menthol decreases responsiveness to heat with biphasic effects on cold sensitivity of rat lumbar dorsal horn neurons

    Science.gov (United States)

    Klein, Amanda H.; Sawyer, Carolyn M.; Takechi, Kenichi; Davoodi, Auva; Ivanov, Margaret A.; Carstens, Mirela Iodi; Carstens, E

    2012-01-01

    Menthol is used in pharmaceutical applications because of its desired cooling and analgesic properties. The neural mechanism by which topical application of menthol decreases heat pain is not fully understood. We investigated the effects of topical menthol application on lumbar dorsal horn wide dynamic range and nociceptive-specific neuronal responses to noxious heat and cooling of glaborous hindpaw cutaneous receptive fields. Menthol increased thresholds for responses to noxious heat in a concentration-dependent manner. Menthol had a biphasic effect on cold-evoked responses, reducing the threshold (to warmer temperatures) at a low (1%) concentration and increasing threshold and reducing response magnitude at high (10, 40%) concentrations. Menthol had little effect on responses to innocuous or noxious mechanical stimuli, ruling out a local anesthetic action. Application of 40% menthol to the contralateral hindpaw tended to reduce responses to cooling and noxious heat, suggesting a weak heterosegmental inhibitory effect. These results indicate that menthol has an analgesic effect on heat sensitivity of nociceptive dorsal horn neurons, as well as biphasic effects on cold sensitivity, consistent with previous behavioral observations. PMID:22687951

  9. Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1994-01-01

    Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup of the re......Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup...

  10. Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex and operant responses to aversive cold after CFA inflammation.

    Science.gov (United States)

    Lemons, L L; Wiley, R G

    2012-08-02

    The spinal Neuropeptide Y (NPY) system is a potential target for development of new pain therapeutics. NPY and two of its receptors (Y1 and Y2) are found in the superficial dorsal horn of the spinal cord, a key area of nociceptive gating and modulation. Lumbar intrathecal injection of (NPY) is antinociceptive, reducing hyper-reflexia to thermal and mechanical stimulation, particularly after nerve injury and inflammation. We have also shown that intrathecal injection of the targeted cytotoxin, Neuropeptide Y-sap (NPY-sap), is also antinociceptive, reducing nocifensive reflex responses to noxious heat and formalin. In the present study, we sought to determine the role of dorsal horn Y1R-expressing neurons in pain by destroying them with NPY-sap and testing the rats on three operant tasks. Lumbar intrathecal NPY-sap (1) reduced Complete Freund's Adjuvant (CFA)-induced hyper-reflexia on the 10°C cold plate, (2) reduced cold aversion on the thermal preference and escape tasks, (3) was analgesic to noxious heat on the escape task, (4) reduced the CFA-induced allodynia to cold temperatures experienced on the thermal preference, feeding interference, and escape tasks, and (5) did not inhibit or interfere with morphine analgesia. Published by Elsevier Ltd.

  11. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  12. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Science.gov (United States)

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  13. Plateau-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1996-01-01

    1. In transverse slices of the spinal cord of the turtle, intracellular recordings were used to characterize and analyse the responses to injected current and activation of primary afferents in dorsal horn neurones. 2. A subpopulation of neurones, with cell bodies located laterally in the deep do....... The sAHP was mediated by both apamin and tetraethylammonium (TEA)-sensitive K+ channels. 7. Our findings suggest that basic properties of sensory integration may reside with the specialized intrinsic response properties of particular subtypes of neurones in the dorsal horn.......1. In transverse slices of the spinal cord of the turtle, intracellular recordings were used to characterize and analyse the responses to injected current and activation of primary afferents in dorsal horn neurones. 2. A subpopulation of neurones, with cell bodies located laterally in the deep...

  14. Burst-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1996-01-01

    1. In transverse slices of the spinal cord of the turtle, intracellular recordings were used to characterize and analyse the responses to injected current and activation of primary afferents in dorsal horn neurones. 2. A subpopulation of neurones, with cell bodies located centrally in the dorsal...

  15. Effect of xenon on excitatory and inhibitory transmission in rat spinal ventral horn neurons.

    Science.gov (United States)

    Yamamoto, Tomohiro; Honda, Hiroyuki; Baba, Hiroshi; Kohno, Tatsuro

    2012-05-01

    The minimum alveolar concentration is determined in the spinal cord rather than in the brain. Xenon inhibits glutamatergic excitatory synaptic transmission in the dorsal horn neurons. However, its actions in the ventral horn neurons have not been investigated. The effects of 50 or 75% xenon on excitatory and inhibitory synaptic transmission were examined in the spinal lamina IX neurons of neonatal rats by using a whole cell patch clamp technique. Fifty percent xenon inhibited the α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid-induced currents (amplitudes = 72 ± 9% and integrated area = 73 ± 13% of the control values), and α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid receptor-mediated electrically evoked excitatory postsynaptic currents (amplitudes = 69 ± 13% of the control values). Seventy-five percent xenon similarly inhibited α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid-induced currents. However, xenon had no effect on the N-methyl-D-aspartate-induced currents or N-methyl-D-aspartate receptor-mediated electrically evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There were no discernible effects on the currents induced by γ-aminobutyric acid or glycine or on miniature inhibitory postsynaptic currents. Xenon inhibits α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid receptor-mediated glutamatergic excitatory transmission in the spinal lamina IX neurons via a postsynaptic mechanism. In contrast, there are no substantial effects on N-methyl-D-aspartate receptor-mediated or inhibitory synaptic transmission. The suppressive effects on excitatory synaptic transmission in the ventral horn neurons partly account for the mechanism behind xenon's ability to produce immobility in response to noxious stimuli and to determine the minimum alveolar concentration.

  16. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn

    Science.gov (United States)

    Grudt, T J; Perl, E R

    2002-01-01

    Relationships between the morphology of individual neurones of the spinal superficial dorsal horn (SDH), laminae I and II, and their electrophysiological properties were studied in spinal cord slices prepared from anaesthetized, free-ranging hamsters. Tight-seal, whole-cell recordings were made with pipette microelectrodes filled with biocytin to establish electrophysiological characteristics and to label the studied neurones. Neurones were categorized according to location and size of the somata, the dendritic and axonal pattern of arborization, spontaneous synaptic potentials, evoked postsynaptic currents, pattern of discharge to depolarizing pulses and current-voltage relationships. Data were obtained for 170 neurones; 13 of these had somata in lamina I and 157 in lamina II. Stimulation of the segmental dorsal root evoked a prompt excitatory response in almost every neurone sampled (161/166) with nearly 3/4 displaying putative monosynaptic EPSCs. The majority of neurones (133/170) fitted one of several distinctive morphological categories. To a considerable extent, neurones with a common morphological configuration and neurite disposition shared electrophysiological characteristics. Five of the 13 lamina I neurones were relatively large with extensive dendritic arborization in the horizontal dimension and a prominent axon directed ventrally and contralaterally. These presumptive ventrolateral projection neurones differed structurally and electrophysiologically from the other lamina I neurones, which had ipsilateral, locally arborizing axons and/or branches entering the dorsal lateral funiculus. One hundred and twenty lamina II neurones fitted one of five morphological categories: islet, central, medial-lateral, radial or vertical. Central cells were further divided into three groups on functional features. We conclude that the spinal SDH comprises many types of neurones whose morphological characteristics are associated with specific functional features implying

  17. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    Science.gov (United States)

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  18. Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP

    Directory of Open Access Journals (Sweden)

    Willis William D

    2006-09-01

    Full Text Available Abstract Background The synaptic and cellular mechanisms of pain-related central sensitization in the spinal cord are not fully understood yet. Calcitonin gene-related peptide (CGRP has been identified as an important molecule in spinal nociceptive processing and ensuing behavioral responses, but its contribution to synaptic plasticity, cellular mechanisms and site of action in the spinal cord remain to be determined. Here we address the role of CGRP in synaptic plasticity in the spinal dorsal horn in a model of arthritic pain. Results Whole-cell current- and voltage-clamp recordings were made from substantia gelatinosa (SG neurons in spinal cord slices from control rats and arthritic rats (> 6 h postinjection of kaolin/carrageenan into the knee. Monosynaptic excitatory postsynaptic currents (EPSCs were evoked by electrical stimulation of afferents in the dorsal root near the dorsal root entry zone. Neurons in slices from arthritic rats showed increased synaptic transmission and excitability compared to controls. A selective CGRP1 receptor antagonist (CGRP8-37 reversed synaptic plasticity in neurons from arthritic rats but had no significant effect on normal transmission. CGRP facilitated synaptic transmission in the arthritis pain model more strongly than under normal conditions where both facilitatory and inhibitory effects were observed. CGRP also increased neuronal excitability. Miniature EPSC analysis suggested a post- rather than pre-synaptic mechanism of CGRP action. Conclusion This study is the first to show synaptic plasticity in the spinal dorsal horn in a model of arthritic pain that involves a postsynaptic action of CGRP on SG neurons.

  19. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain

    Science.gov (United States)

    Masuda, Takahiro; Ozono, Yui; Mikuriya, Satsuki; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Iwatsuki, Ken; Uneyama, Hisayuki; Ichikawa, Reiko; Salter, Michael W.; Tsuda, Makoto; Inoue, Kazuhide

    2016-01-01

    Activation of purinergic receptors in the spinal cord by extracellular ATP is essential for neuropathic hypersensitivity after peripheral nerve injury (PNI). However, the cell type responsible for releasing ATP within the spinal cord after PNI is unknown. Here we show that PNI increases expression of vesicular nucleotide transporter (VNUT) in the spinal cord. Extracellular ATP content ([ATP]e) within the spinal cord was increased after PNI, and this increase was suppressed by exocytotic inhibitors. Mice lacking VNUT did not show PNI-induced increase in [ATP]e and had attenuated hypersensitivity. These phenotypes were recapitulated in mice with specific deletion of VNUT in spinal dorsal horn (SDH) neurons, but not in mice lacking VNUT in primary sensory neurons, microglia or astrocytes. Conversely, ectopic VNUT expression in SDH neurons of VNUT-deficient mice restored PNI-induced increase in [ATP]e and pain. Thus, VNUT is necessary for exocytotic ATP release from SDH neurons which contributes to neuropathic pain. PMID:27515581

  20. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have re...

  1. Dendritic spine dysgenesis in superficial dorsal horn sensory neurons after spinal cord injury.

    Science.gov (United States)

    Cao, Xiaoyu C; Pappalardo, Laura W; Waxman, Stephen G; Tan, Andrew M

    2017-01-01

    Neuropathic pain is a major complication of spinal cord injury, and despite aggressive efforts, this type of pain is refractory to available clinical treatment. Our previous work has demonstrated a structure-function link between dendritic spine dysgenesis on nociceptive sensory neurons in the intermediate zone, laminae IV/V, and chronic pain in central nervous system and peripheral nervous system injury models of neuropathic pain. To extend these findings, we performed a follow-up structural analysis to assess whether dendritic spine remodeling occurs on superficial dorsal horn neurons located in lamina II after spinal cord injury. Lamina II neurons are responsible for relaying deep, delocalized, often thermally associated pain commonly experienced in spinal cord injury pathologies. We analyzed dendritic spine morphometry and localization in tissue obtained from adult rats exhibiting neuropathic pain one-month following spinal cord injury. Although the total density of dendritic spines on lamina II neurons did not change after spinal cord injury, we observed an inverse relationship between the densities of thin- and mushroom-shaped spines: thin-spine density decreased while mushroom-spine density increased. These structural changes were specifically noted along dendritic branches within 150 µm from the soma, suggesting a possible adverse contribution to nociceptive circuit function. Intrathecal treatment with NSC23766, a Rac1-GTPase inhibitor, significantly reduced spinal cord injury-induced changes in both thin- and mushroom-shaped dendritic spines. Overall, these observations demonstrate that dendritic spine remodeling occurs in lamina II, regulated in part by the Rac1-signaling pathway, and suggests that structural abnormalities in this spinal cord region may also contribute to abnormal nociception after spinal cord injury.

  2. Neuronal intrinsic properties shape naturally evoked sensory inputs in the dorsal horn of the spinal cord.

    Science.gov (United States)

    Reali, Cecilia; Russo, Raúl E

    2013-01-01

    Intrinsic electrophysiological properties arising from specific combinations of voltage-gated channels are fundamental for the performance of small neural networks in invertebrates, but their role in large-scale vertebrate circuits remains controversial. Although spinal neurons have complex intrinsic properties, some tasks produce high-conductance states that override intrinsic conductances, minimizing their contribution to network function. Because the detection and coding of somato-sensory information at early stages probably involves a relatively small number of neurons, we speculated that intrinsic electrophysiological properties are likely involved in the processing of sensory inputs by dorsal horn neurons (DHN). To test this idea, we took advantage of an integrated spinal cord-hindlimbs preparation from turtles allowing the combination of patch-clamp recordings of DHN embedded in an intact network, with accurate control of the extracellular milieu. We found that plateau potentials and low threshold spikes (LTS) -mediated by L- and T-type Ca(2+)channels, respectively- generated complex dynamics by interacting with naturally evoked synaptic potentials. Inhibitory receptive fields could be changed in sign by activation of the LTS. On the other hand, the plateau potential transformed sensory signals in the time domain by generating persistent activity triggered on and off by brief sensory inputs and windup of the response to repetitive sensory stimulation. Our findings suggest that intrinsic properties dynamically shape sensory inputs and thus represent a major building block for sensory processing by DHN. Intrinsic conductances in DHN appear to provide a mechanism for plastic phenomena such as dynamic receptive fields and sensitization to pain.

  3. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat.

    Science.gov (United States)

    Li, Ai-Ling; Sibi, Jiny E; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-06-01

    Deep brain stimulation has been found to be effective in relieving intractable pain. The ventral tegmental area (VTA) plays a role not only in the reward process, but also in the modulation of nociception. Lesions of VTA result in increased pain thresholds and exacerbate pain in several pain models. It is hypothesized that direct activation of VTA will reduce pain experience. In this study, we investigated the effect of direct electrical stimulation of the VTA on mechanical, thermal and carrageenan-induced chemical nociceptive thresholds in Sprague-Dawley rats using our custom-designed wireless stimulator. We found that: (1) VTA stimulation itself did not show any change in mechanical or thermal threshold; and (2) the decreased mechanical and thermal thresholds induced by carrageenan injection in the hind paw contralateral to the stimulation site were significantly reversed by VTA stimulation. To further explore the underlying mechanism of VTA stimulation-induced analgesia, spinal cord dorsal horn neuronal responses to graded mechanical stimuli were recorded. VTA stimulation significantly inhibited dorsal horn neuronal activity in response to pressure and pinch from the paw, but not brush. This indicated that VTA stimulation may have exerted its analgesic effect via descending modulatory pain pathways, possibly through its connections with brain stem structures and cerebral cortex areas.

  4. Depressive effects of mu and delta opioid receptor agonists on activities of dorsal horn neurones are enhanced by dibencozide.

    Science.gov (United States)

    Villanueva, L; Bing, Z; Bouhassira, D; Le Bars, D

    1991-06-01

    The effects on C fiber evoked activity in lumbar dorsal horn convergent neurones of i.v. morphine alone, of Tyr-D-Thr-Gly-Phe-Leu-Thr (DTLET) alone or of either of these drugs in association with 5-deoxyadenosylcobalamine (dibencozide) were investigated in anesthetized rats. Both morphine and DTLET depressed the neuronal responses in a dose-related fashion, with the former requiring lower doses. Although dibencozide alone was devoid of any effect, it significantly enhanced the depressive effects of all doses of morphine tested and of the lower two doses of DTLET. It is concluded that dibencozide enhances the spinal depression of nociceptive information elicited by mu and delta opioid agonists. This drug could provide a useful tool for the study of interactions between opioids and opioids receptors. It is also suggested that dibencozide could be useful in clinical practice for reducing the dosage of opioids.

  5. CB1 Receptors Mediated Inhibition of ATP-Induced [Ca2+]i Increase in Cultured Rat Spinal Dorsal Horn Neurons.

    Science.gov (United States)

    Long, Jingdong; Lei, Xiaolu; Chen, Meiyun; Yang, Shulei; Sun, Tao; Zeng, Junwei; Yu, Deqian; Tian, Hong; Liu, Xiaohong

    2017-11-10

    Spinal cannabinoid receptor 1 (CB1R) and purinergic P2X receptors (P2XR) play a critical role in the process of pathological pain. Both CB1R and P2XR are expressed in spinal dorsal horn (DH) neurons. It is not clear whether CB1 receptor activation modulates the function of P2X receptor channels within dorsal horn. For this reason, we observed the effect of CP55940 (cannabinoid receptor agonist) on ATP-induced Ca2+ mobilization in cultured rat DH neurons. The changes of intracellular calcium concentration ([Ca2+]i) were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator. 100 μM ATP caused [Ca2+]i increase in cultured DH neurons. ATP-evoked [Ca2+]i increase in DH neurons was blocked by chelating extracellular Ca2+ and P2 purinoceptor antagonist PPADS. At the same time, ATP-γ-S (a non-hydrolyzable ATP analogue) mimicked the ATP action, while P2Y receptor agonist ADP failed to evoke [Ca2+]i increase in cultured DH neurons. These data suggest that ATP-induced [Ca2+]i elevation in cultured DH neurons is mediated by P2X receptor. Subsequently, we noticed that, in cultured rat DH neurons, ATP-induced Ca2+ mobilization was inhibited after pretreated with CP55940 with a concentration-dependent manner, which implies that the opening of P2X receptor channels are down-regulated by activation of cannabinoid receptor. The inhibitory effect of CP55940 on ATP-induced Ca2+ response was mimicked by ACEA (CB1R agonist), but was not influenced by AM1241 (CB2R agonist). Moreover, the inhibitory effect of CP55940 on ATP-induced Ca2+ mobilization was blocked by AM251 (CB1 receptor antagonist), but was not influenced by AM630 (CB2 receptor antagonist). In addition, we also observed that forskolin (an activator of adenylate cyclase) and 8-Br-cAMP (a cell-permeable cAMP analog) reversed the inhibitory effect of CP55940, respectively. In a summary, our observations raise a possibility that CB1R rather than CB2R can downregulate the opening

  6. Phorbol Ester Modulation of Ca2+ Channels Mediates Nociceptive Transmission in Dorsal Horn Neurones

    Directory of Open Access Journals (Sweden)

    Gary J. Stephens

    2013-05-01

    Full Text Available Phorbol esters are analogues of diacylglycerol which activate C1 domain proteins, such as protein kinase C (PKC. Phorbol ester/PKC pathways have been proposed as potential therapeutic targets for chronic pain states, potentially by phosphorylating proteins involved in nociception, such as voltage-dependent Ca2+ channels (VDCCs. In this brief report, we investigate the potential involvement of CaV2 VDCC subtypes in functional effects of the phorbol ester, phorbol 12-myristate 13-acetate (PMA on nociceptive transmission in the spinal cord. Effects of PMA and of selective pharmacological blockers of CaV2 VDCC subtypes on nociceptive transmission at laminae II dorsal horn neurones were examined in mouse spinal cord slices. Experiments were extended to CaV2.3(−/− mice to complement pharmacological studies. PMA increased the mean frequency of spontaneous postsynaptic currents (sPSCs in dorsal horn neurones, without an effect on event amplitude or half-width. sPSC frequency was reduced by selective VDCC blockers, w-agatoxin-IVA (AgTX; CaV2.1, w-conotoxin-GVIA (CTX; CaV2.2 or SNX-482 (CaV2.3. PMA effects were attenuated in the presence of each VDCC blocker and, also, in CaV2.3(−/− mice. These initial data demonstrate that PMA increases nociceptive transmission at dorsal horn neurones via actions on different CaV2 subtypes suggesting potential anti-nociceptive targets in this system.

  7. Properties of sodium currents in neonatal and young adult mouse superficial dorsal horn neurons.

    Science.gov (United States)

    Tadros, Melissa A; Farrell, Kristen E; Graham, Brett A; Brichta, Alan M; Callister, Robert J

    2015-03-28

    Superficial dorsal horn (SDH) neurons process nociceptive information and their excitability is partly determined by the properties of voltage-gated sodium channels. Recently, we showed the excitability and action potential properties of mouse SDH neurons change markedly during early postnatal development. Here we compare sodium currents generated in neonate (P0-5) and young adult (≥P21) SDH neurons. Whole cell recordings were obtained from lumbar SDH neurons in transverse spinal cord slices (CsF internal, 32°C). Fast activating and inactivating TTX-sensitive inward currents were evoked by depolarization from a holding potential of -100 mV. Poorly clamped currents, based on a deflection in the IV relationship at potentials between -60 and -50 mV, were not accepted for analysis. Current density and decay time increased significantly between the first and third weeks of postnatal development, whereas time to peak was similar at both ages. This was accompanied by more subtle changes in activation range and steady state inactivation. Recovery from inactivation was slower and TTX-sensitivity was reduced in young adult neurons. Our study suggests sodium channel expression changes markedly during early postnatal development in mouse SDH neurons. The methods employed in this study can now be applied to future investigations of spinal cord sodium channel plasticity in murine pain models.

  8. Delta Opioid Receptors Presynaptically Regulate Cutaneous Mechanosensory Neuron Input to the Spinal Cord Dorsal Horn

    Science.gov (United States)

    Bardoni, Rita; Tawfik, Vivianne L.; Wang, Dong; François, Amaury; Solorzano, Carlos; Shuster, Scott A.; Choudhury, Papiya; Betelli, Chiara; Cassidy, Colleen; Smith, Kristen; de Nooij, Joriene C.; Mennicken, Françoise; O’Donnell, Dajan; Kieffer, Brigitte L.; Woodbury, C. Jeffrey; Basbaum, Allan I.; MacDermott, Amy B.; Scherrer, Grégory

    2014-01-01

    SUMMARY Cutaneous mechanosensory neurons detect mechanical stimuli that generate touch and pain sensation. Although opioids are generally associated only with the control of pain, here we report that the opioid system in fact broadly regulates cutaneous mechanosensation, including touch. This function is predominantly subserved by the delta opioid receptor (DOR), which is expressed by myelinated mechanoreceptors that form Meissner corpuscles, Merkel cell-neurite complexes, and circumferential hair follicle endings. These afferents also include a small population of CGRP-expressing myelinated nociceptors that we now identify as the somatosensory neurons that coexpress mu and delta opioid receptors. We further demonstrate that DOR activation at the central terminals of myelinated mechanoreceptors depresses synaptic input to the spinal dorsal horn, via the inhibition of voltage-gated calcium channels. Collectively our results uncover a molecular mechanism by which opioids modulate cutaneous mechanosensation and provide a rationale for targeting DOR to alleviate injury-induced mechanical hypersensitivity. PMID:24583022

  9. Neuronal networks and nociceptive processing in the dorsal horn of the spinal cord.

    Science.gov (United States)

    Cordero-Erausquin, Matilde; Inquimbert, Perrine; Schlichter, Rémy; Hugel, Sylvain

    2016-12-03

    The dorsal horn (DH) of the spinal cord receives a variety of sensory information arising from the inner and outer environment, as well as modulatory inputs from supraspinal centers. This information is integrated by the DH before being forwarded to brain areas where it may lead to pain perception. Spinal integration of this information relies on the interplay between different DH neurons forming complex and plastic neuronal networks. Elements of these networks are therefore potential targets for new analgesics and pain-relieving strategies. The present review aims at providing an overview of the current knowledge on these networks, with a special emphasis on those involving interlaminar communication in both physiological and pathological conditions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Influence of spaceflight on succinate dehydrogenase activity and soma size of rat ventral horn neurons

    Science.gov (United States)

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1996-01-01

    Succinate dehydrogenase (SDH) activities and soma cross-sectional areas (CSA) of neurons in the dorsolateral region of the ventral horn at the L5 segmental level of the spinal cord in the rat were determined after 14 days of spaceflight and after 9 days of recovery on earth. The results were compared to those in age-matched ground-based control rats. Spinal cords were quick-frozen, and the SDH activity and CSA of a sample of neurons with a visible nucleus were determined using a digitizer and a computer-assisted image analysis system. An inverse relationship between CSA and SDH activity of neurons was observed in all groups of rats. No change in mean CSA or mean SDH activity or in the size distribution of neurons was observed following spaceflight or recovery. However, there was a selective decrease in the SDH activity of neurons with soma CSA between 500 and 800 microns2 in the flight rats, and this effect persisted for at least 9 days following return to 1 g. It remains to be determined whether the selected population of motoneurons or the specific motor pools affected by spaceflight may be restricted to specific muscles.

  11. Mechanisms of lidocaine's action on subtypes of spinal dorsal horn neurons subject to the diverse roles of Na(+) and K(+) channels in action potential generation.

    Science.gov (United States)

    Wolff, Matthias; Schnöbel-Ehehalt, Rose; Mühling, Jörg; Weigand, Markus A; Olschewski, Andrea

    2014-08-01

    Superficial dorsal horn neurons of the spinal cord receive sensory information from Aδ and C fibers. According to their response to sustained depolarization, these cells can be divided into 3 groups: tonic (TFN), adapting (AFN), and single spike firing (SSN) neurons. During spinal and systemic administration of lidocaine, these neurons are exposed to different concentrations of the local anesthetic lidocaine. In this study, we explored its effect on the excitability of sensory neurons. Whole-cell patch-clamp recordings from dorsal horn neurons of Wistar rats were used to study the action of lidocaine on firing properties. To estimate the impact of a blockade of voltage-gated potassium channels by lidocaine (100 μM) on the firing properties of different neurons, the sodium and potassium channel inhibition of lidocaine was investigated in the light of the effects of tetrodotoxin (TTX, 10 nM) and tetraethylammonium (10 mM). For statistical analysis, the Wilcoxon matched-pairs signed rank test was used throughout. All 3 types of neurons responded to lidocaine with changes in the shape of their action potentials. The peak amplitude of the single action potentials was decreased (P = 0.031, P = 0.013, and P = 0.014 for SSN, AFN, and TFN neurons, respectively), and the duration of the action potentials was increased (P = 0.016, P = 0.032, and P = 0.031 for SSN, AFN, and TFN neurons, respectively). The maximum positive slope (P = 0.016 and P = 0.0010 for SSN and AFN, respectively) and the negative slope (P = 0.016, P = 0.0025, and P = 0.020 for SSN, AFN, and TFN neurons, respectively) decreased after application of lidocaine. In tonically firing neurons, lidocaine reduced the repetitive firing (P = 0.0016), and this effect was mimicked by a combination of TTX and tetraethylammonium. In AFN, TTX mimicked the action of lidocaine. Lidocaine at low concentrations suppresses tonic firing neurons by interacting with voltage-gated potassium channels. The effects on adapting

  12. Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment

    Directory of Open Access Journals (Sweden)

    Kondo Masahiro

    2008-11-01

    Full Text Available Abstract Background In order to evaluate mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc; the medullary dorsal horn and upper cervical spinal cord (C1-C2 nociceptive neurons to heat, cold and mechanical stimuli following topical capsaicin treatment of the facial skin, nocifensive behaviors as well as phosphorylation of extracellular regulated-kinase (pERK in Vc and C1-C2 neurons were studied in rats. Results Compared to vehicle application, capsaicin application to the lateral facial skin produced 1 hour later a flare in the skin, and also induced significantly greater nocifensive behaviors to heat, cold or mechanical stimulus of the lateral facial skin. The intrathecal (i.t. injection of the MEK inhibitor PD98059 markedly attenuated the nocifensive behaviors to these stimuli in capsaicin-treated rats. Moreover, the number of pERK-like immunoreactive (pERK-LI cells in Vc and C1-C2 was significantly larger following the heat, cold and mechanical stimuli in capsaicin-treated rats compared with vehicle-treated rats. The number of pERK-LI cells gradually increased following progressive increases in the heat or mechanical stimulus intensity and following progressive decrease in the cold stimulus. The ERK phosphorylation in Vc and C1-C2 neurons was strongly inhibited after subcutaneous injection of the capsaicin antagonist capsazepine in capsaicin-treated rats. Conclusion The present findings revealed that capsaicin treatment of the lateral facial skin causes an enhancement of ERK phosphorylation in Vc and C1-C2 neurons as well as induces nocifensive behavior to heat, cold and mechanical simulation of the capsaicin-treated skin. The findings suggest that TRPV1 receptor mechanisms in rat facial skin influence nociceptive responses to noxious cutaneous thermal and mechanical stimuli by inducing neuroplastic changes in Vc and C1-C2 neurons that involve in the MAP kinase cascade.

  13. Antinociceptive effect of botulinum toxin A involves alterations in AMPA receptor expression and glutamate release in spinal dorsal horn neurons.

    Science.gov (United States)

    Hong, Bin; Yao, LingLing; Ni, Linhui; Wang, Li; Hu, XingYue

    2017-08-15

    The use of botulinum toxin A (BTX-A) for various clinical therapeutic applications is increasing. It is widely believed that peripheral therapeutic or toxic effects of BTX-A are exclusively mediated by SNAP-25 cleavage. There is growing evidence of long-distance retrograde axonal transport of BTX-A on entering the central nervous system, subsequent to a local injection of the toxin. However, the prevalence of central antinociceptive effects after BTX-A peripheral application and its underlying mechanisms are unclear. Our results show that (1) BTX-A can undergo retrograde axonal transport to the dorsal horn after peripheral application; (2) Peripheral pretreatment with BTX-A decreases the expression and function of AMPA receptors in the spinal cord dorsal horn neurons; (3) Peripheral pretreatment with BTX-A does not change basal glutamate release, but decreases the effect of formalin-evoked release of glutamate in spinal cord dorsal horn neurons. These results suggest that peripheral application of BTX-A can change AMPA receptor expression in, and glutamate release from, spinal dorsal horn neurons, which may have significance in its central antinociceptive effects. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. The effects of protein phosphatase inhibitors on the duration of central sensitization of rat dorsal horn neurons following injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li

    2006-07-01

    Full Text Available Abstract Protein kinases and phosphatases catalyze opposing reactions of phosphorylation and dephosphorylation, which may modulate the function of crucial signaling proteins in central nervous system. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. To explore the role of protein phosphatase in central sensitization of spinal nociceptive neurons following peripheral noxious stimulation, using electrophysiological recording techniques, we investigated the role of two inhibitors of protein phosphatase type 2A (PP2A, fostriecin and okadaic acid (OA, on the responses of dorsal horn neurons to mechanical stimuli in anesthetized rats following intradermal injection of capsaicin. Central sensitization was initiated by injection of capsaicin into the plantar surface of the left paw. A microdialysis fiber was implanted in the spinal cord dorsal horn for perfusion of ACSF and inhibitors of PP2A, fostriecin and okadaic acid. We found that in ACSF pretreated animals, the responses to innocuous and noxious stimuli following capsaicin injection increased over a period of 15 min after injection and had mostly recovered by 60 min later. However, pre- or post-treatment with the phosphatase inhibitors, fostriecin or OA, significantly enhanced the effects of capsaicin injection by prolonging the responses to more than 3 hours. These results confirm that blockade of protein phosphatase activity may potentiate central sensitization of nociceptive transmission in the spinal cord following capsaicin injection and indicate that protein phosphatase type 2A may be involved in determining the duration of capsaicin-induced central sensitization.

  15. Material basis for inhibition of Dragon's Blood on evoked discharges of wide dynamic range neurons in spinal dorsal horn of rats.

    Science.gov (United States)

    Guo, Min; Chen, Su; Liu, Xiangming

    2008-11-01

    In vivo experiments were designed to verify the analgesic effect of Dragon's Blood and the material basis for this effect. Extracellular microelectrode recordings were used to observe the effects of Dragon's Blood and various combinations of the three components (cochinchinenin A, cochinchinenin B, and loureirin B) extracted from Dragon's Blood on the discharge activities of wide dynamic range (WDR) neurons in spinal dorsal horn (SDH) of intact male Wistar rats evoked by electric stimulation at sciatic nerve. When the Hill's coefficients describing the dose-response relations of drugs were different, based on the concept of dose equivalence, the equations of additivity surfaces which can be applied to assess the interaction between three drugs were derived. Adopting the equations and Tallarida's isobole equations used to assess the interaction between two drugs with dissimilar dose-response relations, the effects produced by various combinations of the three components in modulating the evoked discharge activities of WDR neurons were evaluated. Results showed that Dragon's Blood and its three components could inhibit the evoked discharge frequencies of WDR neurons in a concentration-dependent way. The Hill's coefficients describing dose-response relations of three components were different. Only the combined effect of cochinchinenin A, cochinchinenin B and loureirin B was similar to that of Dragons Blood. Furthermore, the combined effect was synergistic. This investigation demonstrated that through the synergistic interaction of the three components Dragon's Blood could interfere with the transmission and processing of pain signals in spinal dorsal horn. All these further proved that the combination of cochinchinenin A, cochinchinenin B, and loureirin B was the material basis for the analgesic effect of Dragon's Blood.

  16. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses...... include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review...... the responses of neurons to various physiological stressors at the molecular and cellular level....

  17. Sustained morphine-induced sensitization and loss of diffuse noxious inhibitory controls (DNIC) in dura-sensitive medullary dorsal horn neurons

    OpenAIRE

    Okada-Ogawa, Akiko; Porreca, Frank; Meng, Ian D.

    2009-01-01

    Overuse of medications used to treat migraine headache can produce a chronic daily headache, termed medication overuse headache (MOH). Although “overuse” of opioids, triptans, and over-the-counter analgesics can all produce MOH, the neuronal mechanisms remain unknown. Headache pain is likely to be produced by stimulation of primary afferent neurons that innervate the intracranial vasculature and the resulting activation of medullary dorsal horn (MDH) neurons. The present study compared the re...

  18. [The effects of hyperventilation upon spinal dorsal horn neuronal single-unit activities under nitrous oxide anesthesia].

    Science.gov (United States)

    Ide, Yasuo; Tagami, Megumu; Sumida, Toshinobu; Hanaoka, Kazuo

    2005-07-01

    The purpose of this study is to investigate the effects of hyperventilation upon spinal dorsal horn neuronal single-unit activities under nitrous oxide anesthesia. Eight decerebrated spinal cats with laminectomy were maintained with oxygen and pancuronium bromide. Following the control period of normocapnia, 50% nitrous oxide was administered for 30 minutes after a hypocapnia period of 20-25 mmHg for 20 minutes. The recoveries of activities followed with normocapnia and pure oxygen administration. The changes of spontaneous and evoked activities by the pinching were investigated every 5 minutes after control study. Inhalation of 50% nitrous oxide suppressed the WDR neuronal activities and with hyperventilation the suppressions significantly increased. These results were compatible with clinical reports on the effectiveness of hyperventilation as a maintenance method under N2O anesthesia.

  19. Tumor necrosis factor α modulates sodium-activated potassium channel SLICK in rat dorsal horn neurons via p38 MAPK activation pathway

    Directory of Open Access Journals (Sweden)

    Wang K

    2017-05-01

    Full Text Available Kun Wang,1 Feng Wang,1 Jun-Ping Bao,2 Zhi-Yang Xie,1 Lu Chen,1 Bao-Yi Zhou,1 Xin-Hui Xie,2 Xiao-Tao Wu1,2 1Medical School of Southeast University, 2Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China Abstract: The dorsal horn (DH of the spinal cord is the integrative center that processes and transmits pain sensation. Abnormal changes in ion channel expression can enhance the excitability of pain-related DH neurons. Sodium-activated potassium (KNa channels are highly expressed particularly in the central nervous system; however, information about whether rat DH neurons express the SLICK channel protein is lacking, and the direct effects on SLICK in response to inflammation and the potential signaling pathway mediating such effects are yet to be elucidated. Here, using cultured DH neurons, we have shown that tumor necrosis factor-α inhibits the total outward potassium current IK and the KNa current predominantly as well as induces a progressive loss of firing accommodation. However, we found that this change in channel activity is offset by the p38 inhibitor SB202190, thereby suggesting the modulation of SLICK channel activity via the p38 MAPK pathway. Furthermore, we have demonstrated that the tumor necrosis factor-α modulation of KNa channels does not occur at the level of SLICK channel gating but arises from possible posttranslational modification. Keywords: p38 MAPK, SLICK channel, neuropathic pain, dorsal horn, TNF-α

  20. Sustained morphine-induced sensitization and loss of diffuse noxious inhibitory controls in dura-sensitive medullary dorsal horn neurons.

    Science.gov (United States)

    Okada-Ogawa, Akiko; Porreca, Frank; Meng, Ian D

    2009-12-16

    Overuse of medications used to treat migraine headache can produce a chronic daily headache, termed medication overuse headache (MOH). Although "overuse" of opioids, triptans, and over-the-counter analgesics can all produce MOH, the neuronal mechanisms remain unknown. Headache pain is likely to be produced by stimulation of primary afferent neurons that innervate the intracranial vasculature and the resulting activation of medullary dorsal horn (MDH) neurons. The present study compared the receptive field properties of MDH dura-sensitive neurons in rats treated with morphine to those given vehicle. Animals were implanted with osmotic minipumps or pellets for sustained subcutaneous administration of morphine or vehicle 6-7 d before recording from dura-sensitive neurons. Electrical and mechanical activation thresholds from the dura were significantly lower in chronic morphine-treated animals when compared to vehicle controls. In addition, sustained morphine increased the cutaneous receptive field sizes. The presence of diffuse noxious inhibitory controls (DNICs) was examined by placing the tail in 55 degrees C water during concomitant noxious thermal stimulation of the cutaneous receptive field, usually located in the ophthalmic region. The DNIC stimulus produced significant inhibition of heat-evoked activity in vehicle- but not chronic morphine-treated animals. Inactivation of the rostral ventromedial medulla with 4% lidocaine reinstated DNICs in chronic morphine-treated animals. These results are consistent with studies demonstrating a loss of DNICs in patients that suffer from chronic daily headache and may partially explain why overuse of medication used to treat migraine can induce headaches.

  1. Synaptic transmission of chaotic spike trains between primary afferent fiber and spinal dorsal horn neuron in the rat.

    Science.gov (United States)

    Wan, Y-H; Jian, Z; Wen, Z-H; Wang, Y-Y; Han, S; Duan, Y-B; Xing, J-L; Zhu, J-L; Hu, S-J

    2004-01-01

    Primary sensory neurons can generate irregular burst firings in which the existence of significant deterministic behaviors of chaotic dynamics has been proved with nonlinear time series analysis. But how well the deterministic characteristics and neural information of presynaptic chaotic spike trains were transmitted into postsynaptic spike trains is still an open question. Here we investigated the synaptic transmission of chaotic spike trains between primary Adelta afferent fiber and spinal dorsal horn neuron. Two kinds of basic stimulus unit, brief burst and single pulse, were employed by us to comprise chaotic stimulus trains. For time series analysis, we defined "events" as the longest sequences of spikes with all interspike intervals less than or equal to a certain threshold and extracted the interevent intervals (IEIs) from spike trains. Return map analysis of the IEI series showed that the main temporal structure of chaotic input trains could be detected in postsynaptic output trains, especially under brief-burst stimulation. Using correlation dimension and nonlinear prediction methods, we found that synaptic transmission could influence the nonlinear characteristics of chaotic trains, such as fractal dimension and short-term predictability, with greater influence made under single-pulse stimulation. By calculating the mutual information between input and output trains, we found the information carried by presynaptic spike trains could not be completely transmitted at primary afferent synapses, and that brief bursts could more reliably transmit the information carried by chaotic input trains across synapses. These results indicate that although unreliability exists during synaptic transmission, the main deterministic characteristics of chaotic burst trains can be transmitted across primary afferent synapses. Moreover, brief bursts that come from the periphery can more reliably transmit neural information between primary afferent fibers and spinal dorsal horn

  2. Peripheral oxytocin receptors inhibit the nociceptive input signal to spinal dorsal horn wide-dynamic-range neurons.

    Science.gov (United States)

    González-Hernández, Abimael; Manzano-García, Alfredo; Martínez-Lorenzana, Guadalupe; Tello-García, Irma A; Carranza, Martha; Arámburo, Carlos; Condés-Lara, Miguel

    2017-11-01

    Oxytocin (OT) has emerged as a mediator of endogenous analgesia in behavioral and electrophysiological experiments. In fact, OT receptors (OTRs) in the spinal dorsal horn participate in a selective inhibition of the neuronal activity mediated by Aδ and C fibers but not Aβ fibers. This study shows that OTRs are expressed in the terminal nerve endings and are able to inhibit nociceptive neuronal firing. Indeed, local peripheral OT blocked the first sensorial activity of Aδ and C fibers recorded in the spinal cord neurons. Furthermore, using the formalin behavioral nociceptive test, we demonstrated that only ipsilateral OTR activation inhibits pain behavior. Our data are reinforced by the fact that the OTR protein is expressed in the sciatic nerve. Consistent with this, immunofluorescence of primary afferent fibers suggest that OTRs could be located in nociceptive-specific terminals of the skin. Taken together, our results suggest that OTRs could be found in nociceptive terminals and that on activation they are able to inhibit nociceptive input.

  3. Locally released small (non-protein) ninhydrin-reacting molecules underlie developmental differences of cultured medullary versus spinal dorsal horn neurons.

    Science.gov (United States)

    Xie, Yu-Feng; Pflueger, Melissa; Feng, Shuang; Lin, Shuang-Xiu; Kwan, Chun L; Galasko, Gail; Sessle, Barry J; Yu, Xian-Min

    2012-08-01

    Neurons located in the trigeminal subnucleus caudalis (Vc) play crucial roles in pain and sensorimotor functions in the orofacial region. Because of many anatomical and functional similarities with the spinal dorsal horn (SDH), Vc has been termed the medullary dorsal horn--analogous to the SDH. Here, we report that when compared with embryonic SDH neurons in culture, neurons isolated from the Vc region showed significantly slower growth, lower glutamate receptor activity, and more cells undergoing cell death. SDH neuron development was inhibited in co-cultures of SDH and Vc tissues while Vc neuron development was promoted by co-culture with SDH tissues. Furthermore, we identified that small (non-protein) ninhydrin-reacting molecules purified from either embryonic or post-natal Vc-conditioned medium inhibited neuronal growth whereas ninhydrin-reacting molecules from SDH-conditioned medium promoted neuronal growth. These findings suggest the involvement of locally released factors in the region-specific regulation of neuronal development in Vc and SDH, central nervous system regions playing critical roles in pain, and point to novel avenues for investigating central nervous system regionalization and for designing therapeutic approaches to manage neurodegenerative diseases and pain. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  4. Localization of NADPH-diaphorase containing neurons in the spinal dorsal horn and spinal sensory ganglia of the turtle Chrysemys d'orbigny.

    Science.gov (United States)

    Radmilovich, M; Fernández, A; Trujillo-Cenóz, O

    1997-03-01

    NADPH-diaphorase positive (NDP) neurons and nerve fibers were found in the spinal dorsal horn (DH) and sensory ganglia of the turtle Chrysemys d'orbigny. Three well-defined types of NDP neurons were found in the DH: (a) elongated nerve cells with two radially arranged dendritic branches, (b) neurons with rostrocaudal dendritic branches, (c) bitufted neurons with two, practically symmetric branches that project to the ipsilateral and contralateral dorsal horns. A combination of the techniques that reveal NADPH-diaphorase activity with the horseradish peroxidase transganglionic labeling of the dorsal root collaterals, suggested that NDP neurons of the DH are second-order cells of the spinal sensory pathway. NDP neurons were also found in the spinal sensory ganglia at all metameric levels. Our findings indicate that the DH of turtles, like that of mammals, contains both the enzymatic machinery and the neural connections required to postulate the participation of nitric oxide in "plastic phenomena" such as hyperalgesia and central sensitization. Two other alternatives or complementary hypotheses are discussed: (a) NDP neurons in the DH and sensory ganglia may represent specific cell populations involved in the processing of sensory visceral information; (b) NADPH-diaphorase reactivity may indicate sustained levels of neuronal activity.

  5. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila.

    Science.gov (United States)

    Séjourné, Julien; Plaçais, Pierre-Yves; Aso, Yoshinori; Siwanowicz, Igor; Trannoy, Séverine; Thoma, Vladimiros; Tedjakumala, Stevanus R; Rubin, Gerald M; Tchénio, Paul; Ito, Kei; Isabel, Guillaume; Tanimoto, Hiromu; Preat, Thomas

    2011-06-19

    Aversive olfactory memory is formed in the mushroom bodies in Drosophila melanogaster. Memory retrieval requires mushroom body output, but the manner in which a memory trace in the mushroom body drives conditioned avoidance of a learned odor remains unknown. To identify neurons that are involved in olfactory memory retrieval, we performed an anatomical and functional screen of defined sets of mushroom body output neurons. We found that MB-V2 neurons were essential for retrieval of both short- and long-lasting memory, but not for memory formation or memory consolidation. MB-V2 neurons are cholinergic efferent neurons that project from the mushroom body vertical lobes to the middle superiormedial protocerebrum and the lateral horn. Notably, the odor response of MB-V2 neurons was modified after conditioning. As the lateral horn has been implicated in innate responses to repellent odorants, we propose that MB-V2 neurons recruit the olfactory pathway involved in innate odor avoidance during memory retrieval.

  6. The correlation between the distribution of the NK1 receptor and the actions of tachykinin agonists in the dorsal horn of the rat indicates that substance P does not have a functional role on substantia gelatinosa (lamina II) neurons.

    Science.gov (United States)

    Bleazard, L; Hill, R G; Morris, R

    1994-12-01

    The presence of substance P in primary afferents that terminate in the outer laminae of the spinal cord has led to considerable interest in the function of this neuropeptide in nociception. We have examined the actions of tachykinin agonists on the membrane potential of neurons in lamina II of a neonatal spinal cord slice preparation in vitro. Only 10.5% (n = 75) of these neurons showed any response to the application of a selective NK1 receptor agonist while 48.3% (n = 60) of neurons in deeper dorsal horn laminae responded to this agonist. Lamina II neurons were equally insensitive to selective NK2 and NK3 agonists. Synaptic potentials evoked in lamina II neurons by peripheral nerve stimulation were similarly not altered by the NK1 agonist. Immunocytochemical studies using an antibody raised against the C-terminal of the NK1 receptor revealed that very few lamina II neurons express NK1 receptors, and this offers an explanation for our findings.

  7. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  8. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn

    Directory of Open Access Journals (Sweden)

    Black Joel A

    2012-11-01

    Full Text Available Abstract Background Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn. Results Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF, exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals. Conclusions The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.

  9. Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Brichta Alan M

    2009-11-01

    Full Text Available Abstract Background Neurons in superficial (SDH and deep (DDH laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR and GABAA-receptors (GABAARs contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. Methods and Results Here we compare fast inhibitory synaptic transmission in mouse (P17-37 SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23°C. GlyR-mediated mIPSCs were detected in 74% (25/34 and 94% (25/27 of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18. Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 ± 3.9 vs. 64.7 ± 5.0 pA; n = 25 each, decay time was slower (8.5 ± 0.8 vs. 5.5 ± 0.3 ms, and frequency was lower (0.15 ± 0.03 vs. 0.72 ± 0.13 Hz in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 ± 2.4, n = 14 vs. 25. ± 2.0 pA, n = 18 and frequencies (0.21 ± 0.08 vs. 0.18 ± 0.04 Hz in both regions; however, decay times were slower (23.0 ± 3.2 vs. 18.9 ± 1.8 ms in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 ± 1.6 pS, n = 11 vs. 55.7 ± 1.8, n = 8 and GABAARs (22.7 ± 1.7 pS, n = 10 vs. 22.4 ± 2.0 pS, n = 11 in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA, had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 μM reduced GlyR-mediated mIPSC frequency in SDH

  10. Do premotor interneurons act in parallel on spinal motoneurons and on dorsal horn spinocerebellar and spinocervical tract neurons in the cat?

    Science.gov (United States)

    Krutki, Piotr; Jelen, Sabina

    2011-01-01

    It has previously been established that ventral spinocerebellar tract (VSCT) neurons and dorsal spinocerebellar tract neurons located in Clarke's column (CC DSCT neurons) forward information on actions of premotor interneurons in reflex pathways from muscle afferents on α-motoneurons. Whether DSCT neurons located in the dorsal horn (dh DSCT neurons) and spinocervical tract (SCT) neurons are involved in forwarding similar feedback information has not yet been investigated. The aim of the present study was therefore to examine the input from premotor interneurons to these neurons. Electrical stimuli were applied within major hindlimb motor nuclei to activate axon-collaterals of interneurons projecting to these nuclei, and intracellular records were obtained from dh DSCT and SCT neurons. Direct actions of the stimulated interneurons were differentiated from indirect actions by latencies of postsynaptic potentials evoked by intraspinal stimuli and by the absence or presence of temporal facilitation. Direct actions of premotor interneurons were found in a smaller proportion of dh DSCT than of CC DSCT neurons. However, they were evoked by both excitatory and inhibitory interneurons, whereas only inhibitory premotor interneurons were previously found to affect CC DSCT neurons [as indicated by monosynaptic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in dh DSCT and only IPSPs in CC DSCT neurons]. No effects of premotor interneurons were found in SCT neurons, since monosynaptic EPSPs or IPSPs were only evoked in them by stimuli applied outside motor nuclei. The study thus reveals a considerable differentiation of feedback information provided by different populations of ascending tract neurons. PMID:21273308

  11. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control.

    Science.gov (United States)

    Zhang, Tianhe C; Janik, John J; Peters, Ryan V; Chen, Gang; Ji, Ru-Rong; Grill, Warren M

    2015-07-01

    Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry. Copyright © 2015 the American Physiological Society.

  12. No effect of hypergravity on adult rat ventral horn neuron size or SDH activity

    Science.gov (United States)

    Roy, R. R.; Ishihara, A.; Moran, M. M.; Wade, C. E.; Edgerton, V. R.

    2001-01-01

    BACKGROUND: Spaceflights of short duration (approximately 2 wk) result in adaptations in the size and/or metabolic properties of a select population of motoneurons located in the lumbosacral region of the rat spinal cord. A decrease in succinate dehydrogenase (SDH, an oxidative marker enzyme) activity of moderately sized (500-800 microm2) motoneurons in the retrodorsolateral region of the spinal cord (L6) has been observed after a 14-d flight. HYPOTHESIS: Our hypothesis was that exposure to short-term hypergravity would result in adaptations in the opposite direction, reflecting a continuum of morphological and biochemical responses in the spinal motoneurons from zero gravity to hypergravity. METHODS: Young, male rats were centrifuged at either 1.5 or 2.0 G for 2 wk. The size and SDH activity of a population of motoneurons in the retrodorsolateral region of the spinal cord (L5) were determined and compared with age-matched rats maintained at 1.0 G. The absolute and relative (to body weight) masses of the soleus, gastrocnemius, adductor longus and tibialis anterior muscles were compared among the three groups. RESULTS: There were no effects of either hypergravity intervention on the motoneuron properties. Rats maintained under hypergravity conditions gained less body mass than rats kept at 1.0 G. For the 1.5 and 2.0 G groups, the muscle absolute mass was smaller and relative mass similar to that observed in the 1.0 G rats, except for the adductor longus. The adductor longus absolute mass was similar to and the relative mass larger in both hypergravity groups than in the 1.0 G group. CONCLUSIONS: Our hypothesis was rejected. The findings suggest that rat motoneurons are more responsive to short-term chronic exposure to spaceflight than to hypergravity conditions.

  13. Effect of resveratrol on c-fos expression of rat trigeminal spinal nucleus caudalis and C1 dorsal horn neurons following mustard oil-induced acute inflammation.

    Science.gov (United States)

    Matsumoto, Yasuhiro; Komatsu, Kyouhei; Shimazu, Yoshihito; Takehana, Shiori; Syouji, Yumiko; Kobayashi, Ayumu; Takeda, Mamoru

    2017-10-01

    The dietary constituent, resveratrol, was recently identified as a transient receptor potential ankyrin 1 (TRPA1) antagonist, voltage-dependent sodium ion (Na+ ) channel, and cyclooxygenase-2 (COX-2) inhibitor. The aim of the present study was to investigate whether pretreatment with resveratrol attenuates acute inflammation-induced sensitization of nociceptive processing in rat spinal trigeminal nucleus caudalis (SpVc) and upper cervical (C1) dorsal horn neurons, via c-fos immunoreactivity. Mustard oil (MO), a TRPA1 channel agonist, was injected into the whisker pads of rats to induce inflammation. Pretreatment with resveratrol significantly decreased the mean thickness of inflammation-induced edema in whisker pads compared with those of untreated, inflamed rats. Ipsilateral of both the superficial and deep laminae of SpVc and C1 dorsal horn, there were significantly more c-fos-immunoreactive SpVc/C1 neurons in inflamed rats compared with naïve rats, and resveratrol pretreatment significantly decreased that number relative to untreated, inflamed rats. These results suggest that systemic administration of resveratrol attenuates acute inflammation-induced augmented nociceptive processing of trigeminal SpVc and C1 neurons. These findings support resveratrol as a potential therapeutic agent for use in alternative, complementary medicine to attenuate, or even prevent, acute trigeminal inflammatory pain. © 2017 Eur J Oral Sci.

  14. Forensic DNA barcoding and bio-response studies of animal horn products used in traditional medicine.

    Directory of Open Access Journals (Sweden)

    Dan Yan

    Full Text Available BACKGROUND: Animal horns (AHs have been applied to traditional medicine for more than thousands of years, of which clinical effects have been confirmed by the history. But now parts of AHs have been listed in the items of wildlife conservation, which limits the use for traditional medicine. The contradiction between the development of traditional medicine and the protection of wild resources has already become the common concern of zoophilists, traditional medical professionals, economists, sociologists. We believe that to strengthen the identification for threatened animals, to prevent the circulation of them, and to seek fertile animals of corresponding bioactivities as substitutes are effective strategies to solve this problem. METHODOLOGY/PRINCIPAL FINDINGS: A powerful technique of DNA barcoding based on the mitochondrial gene cytochrome c oxidase I (COI was used to identify threatened animals of Bovidae and Cervidae, as well as their illegal adulterants (including 10 species and 47 specimens. Meanwhile, the microcalorimetric technique was used to characterize the differences of bio-responses when those animal specimens acted on model organism (Escherichia coli. We found that the COI gene could be used as a universal primer to identify threatened animals and illegal adulterants mentioned above. By analyzing 223 mitochondrial COI sequences, a 100% identification success rate was achieved. We further found that the horns of Mongolian Gazelle and Red Deer could be exploited as a substitute for some functions of endangered Saiga Antelope and Sika Deer in traditional medicine, respectively. CONCLUSION/SIGNIFICANCE: Although it needs a more comprehensive evaluation of bioequivalence in order to completely solve the problem of substitutes for threatened animals, we believe that the identification (DNA barcoding of threatened animals combined with seeking substitutions (bio-response can yet be regarded as a valid strategy for establishing a balance

  15. Amitriptyline and carbamazepine utilize voltage-gated ion channel suppression to impair excitability of sensory dorsal horn neurons in thin tissue slice: An in vitro study.

    Science.gov (United States)

    Wolff, Matthias; Czorlich, Patrick; Nagaraj, Chandran; Schnöbel-Ehehalt, Rose; Li, Yingji; Kwapiszewska, Grazyna; Olschewski, Horst; Heschl, Stefan; Olschewski, Andrea

    2016-08-01

    Amitriptyline, carbamazepine and gabapentin are often used for the treatment of neuropathic pain. However, their analgesic action on central sensory neurons is still not fully understood. Moreover, the expression pattern of their target ion channels is poorly elucidated in the dorsal horn of the spinal cord. Thus, we performed patch-clamp investigations in visualized neurons of lamina I-III of the spinal cord. The expression of the different voltage-gated ion channels, as the targets of these drugs, was detected by RT-PCR and immunohistochemistry. Neurons of the lamina I-III express the TTX-sensitive voltage-gated Na(+) as well as voltage-gated K(+) subunits assembling the fast inactivating (A-type) currents and the delayed rectifier K(+) currents. Our pharmacological studies show that tonically-firing, adapting-firing and single spike neurons responded dose-dependently to amitriptyline and carbamazepine. The ion channel inhibition consecutively reduced the firing rate of tonically-firing and adapting-firing neurons. This study provides evidence for the distribution of voltage-gated Na(+) and K(+) subunits in lamina I-III of the spinal cord and for the action of drugs used for the treatment of neuropathic pain. Our work confirms that modulation of voltage-gated ion channels in the central nervous system contributes to the antinociceptive effects of these drugs. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  16. Development of inflammation-induced hyperalgesia and allodynia is associated with the upregulation of extrasynaptic AMPA receptors in tonically firing lamina II dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Olga eKopach

    2012-10-01

    Full Text Available Persistent peripheral inflammation changes AMPA receptor (AMPAR trafficking in dorsal horn neurons by promoting internalization of GluR2-containing, Ca2+-impermeable AMPARs from the synapses and by increasing insertion of GluR1-containing, Ca2+-permeable AMPARs in extrasynaptic plasma membrane. These changes contribute to the maintenance of persistent inflammatory pain. However, much less is known about AMPAR trafficking during development of persistent inflammatory pain and direct studies of extrasynaptic AMPARs functioning during this period are still lacking. Using Complete Freund’s adjuvant (CFA-induced model of long-lasting peripheral inflammation, we showed that remarkable hyperalgesia and allodynia developes in 1–3 h after intraplantar CFA injection. By utilizing patch-clamp recording combined with Ca2+ imaging, we found a significant upregulation of extrasynaptic AMPARs in substantia gelatinosa (SG neurons of the rat spinal cord 2–3 h after CFA injection. This upregulation was manifested as a robust increase in the amplitude of AMPAR-mediated currents 2–3 h post-CFA. These changes were observed specifically in SG neurons characterized by intrinsic tonic firing properties, but not in those that exhibited strong adaptation. Our results indicate that CFA-induced inflammation increases functional expression of extrasynaptic AMPARs in tonically firing SG neurons during development of pain hypersensitivity and that this increase may contribute to the development of peripheral persistent pain.

  17. Responses of MST neurons to plaid stimuli.

    Science.gov (United States)

    Khawaja, Farhan A; Liu, Liu D; Pack, Christopher C

    2013-07-01

    The estimation of motion information from retinal input is a fundamental function of the primate dorsal visual pathway. Previous work has shown that this function involves multiple cortical areas, with each area integrating information from its predecessors. Compared with neurons in the primary visual cortex (V1), neurons in the middle temporal (MT) area more faithfully represent the velocity of plaid stimuli, and the observation of this pattern selectivity has led to two-stage models in which MT neurons integrate the outputs of component-selective V1 neurons. Motion integration in these models is generally complemented by motion opponency, which refines velocity selectivity. Area MT projects to a third stage of motion processing, the medial superior temporal (MST) area, but surprisingly little is known about MST responses to plaid stimuli. Here we show that increased pattern selectivity in MST is associated with greater prevalence of the mechanisms implemented by two-stage MT models: Compared with MT neurons, MST neurons integrate motion components to a greater degree and exhibit evidence of stronger motion opponency. Moreover, when tested with more challenging unikinetic plaid stimuli, an appreciable percentage of MST neurons are pattern selective, while such selectivity is rare in MT. Surprisingly, increased motion integration is found in MST even for transparent plaid stimuli, which are not typically integrated perceptually. Thus the relationship between MST and MT is qualitatively similar to that between MT and V1, as repeated application of basic motion mechanisms leads to novel selectivities at each stage along the pathway.

  18. Third-Degree Hindpaw Burn Injury Induced Apoptosis of Lumbar Spinal Cord Ventral Horn Motor Neurons and Sciatic Nerve and Muscle Atrophy in Rats

    Directory of Open Access Journals (Sweden)

    Sheng-Hua Wu

    2015-01-01

    Full Text Available Background. Severe burns result in hypercatabolic state and concomitant muscle atrophy that persists for several months, thereby limiting patient recovery. However, the effects of burns on the corresponding spinal dermatome remain unknown. This study aimed to investigate whether burns induce apoptosis of spinal cord ventral horn motor neurons (VHMNs and consequently cause skeletal muscle wasting. Methods. Third-degree hindpaw burn injury with 1% total body surface area (TBSA rats were euthanized 4 and 8 weeks after burn injury. The apoptosis profiles in the ventral horns of the lumbar spinal cords, sciatic nerves, and gastrocnemius muscles were examined. The Schwann cells in the sciatic nerve were marked with S100. The gastrocnemius muscles were harvested to measure the denervation atrophy. Result. The VHMNs apoptosis in the spinal cord was observed after inducing third-degree burns in the hindpaw. The S100 and TUNEL double-positive cells in the sciatic nerve increased significantly after the burn injury. Gastrocnemius muscle apoptosis and denervation atrophy area increased significantly after the burn injury. Conclusion. Local hindpaw burn induces apoptosis in VHMNs and Schwann cells in sciatic nerve, which causes corresponding gastrocnemius muscle denervation atrophy. Our results provided an animal model to evaluate burn-induced muscle wasting, and elucidate the underlying mechanisms.

  19. [EFFECT OF PEPTIDE SEMAX ON SYNAPTIC ACTIVITY AND SHORT-TERM PLASTICITY OF GLUTAMATERGIC SYNAPSES OF CO-CULTURED DORSAL ROOT GANGLION AND DORSAL HORN NEURONS].

    Science.gov (United States)

    Shypshyna, M S; Veselovsky, N S; Myasoedov, N F; Shram, S I; Fedulova, S A

    2015-01-01

    The influence of long-term culturing (12 days in vitro) of dorsal root ganglion (DRG) and dorsal horn (DH) neurons with peptide Semax on the level of synaptic activity at co-cultures, as well as short-term plasticity in sensory synapses were studied. It has been shown that neuronal culturing with peptide at concentrations of 10 and 100 µM led to increasing the frequency of spontaneous glutamatergic postsynaptic currents in DH neurons to 71.7 ± 1.8% and 93.9 ± 3.1% (n = 6; P effect on the amplitude and frequency of miniature glutamatergic currents, but causes an increase of the amplitudes of spontaneous postsynaptic currents, as well as elevates the quantum content. The data show the increase of multivesicular glutamate release efficiency in neural networks of co-cultures following incubation with the peptide. Also Semax (10 and 100 µM) induces changes of the basic parameters of short-term plasticity in sensory synapses: (1) increasing the paired-pulse ratio from 0.53 ± 0.028 (n = 8) to 0.91 ± 0.072 (n = 6, P effect of Semax on the activity of glutamatergic synapses in neural networks of co-cultures, as well as the ability of the peptide to effectively modulate the short-term plasticity in sensory synapses.

  20. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: An intracellular calcium-imaging study in spinal cord slices from adult rats.

    Science.gov (United States)

    Baba, Hiroshi; Petrenko, Andrey B; Fujiwara, Naoshi

    2016-10-01

    Pregabalin is thought to exert its therapeutic effect in neuropathic pain via binding to α2δ-1 subunits of voltage-gated calcium (Ca(2+)) channels. However, the exact analgesic mechanism after its binding to α2δ-1 subunits remains largely unknown. Whether a clinical concentration of pregabalin (≈10μM) can cause acute inhibition of dorsal horn neurons in the spinal cord is controversial. To address this issue, we undertook intracellular Ca(2+)-imaging studies using spinal cord slices with an intact attached L5 dorsal root, and examined if pregabalin acutely inhibits the primary afferent stimulation-evoked excitation of dorsal horn neurons in normal rats and in rats with streptozotocin-induced painful diabetic neuropathy. Under normal conditions, stimulation of a dorsal root evoked Ca(2+) signals predominantly in the superficial dorsal horn. Clinically relevant (10μM) and a very high concentration of pregabalin (100μM) did not affect the intensity or spread of dorsal root stimulation-evoked Ca(2+) signals, whereas an extremely high dose of pregabalin (300μM) slightly but significantly attenuated Ca(2+) signals in normal rats and in diabetic neuropathic (DN) rats. There was no difference between normal rats and DN rats with regard to the extent of signal attenuation at all concentrations tested. These results suggest that the activity of dorsal horn neurons in the spinal cord is not inhibited acutely by clinical doses of pregabalin under normal or DN conditions. It is very unlikely that an acute inhibitory action in the dorsal horn is the main analgesic mechanism of pregabalin in neuropathic pain states. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neutrino horn

    CERN Multimedia

    1967-01-01

    View of the new neutrino horn installed in its blockhouse from the target end. Protons pass through the 2mm hole in the centre of the small fluorescent screen, hitting the target immediately behind it. The circular tubes carry pressurized cooling water.

  2. magnetic horn

    CERN Multimedia

    Neutrinos and antineutrinos are ideal for probing the weak force because it is effectively the only force they feel. How were they made? Protons fired into a metal target produce a tangle of secondary particles. A magnetic horn like this one, invented by Simon Van der Meer, selected pions and focused them into a sharp beam. Pions decay into muons and neutrinos or antineutrinos. The muons were stopped in a wall of 3000 tons of iron and 1000 tons of concrete, leaving the neutrinos or antineutrinos to reach the Gargamelle bubble chamber. A simple change of magnetic field direction on the horn flipped between focusing positively- or negatively-charged pion beams, and so between neutrinos and antineutrinos.

  3. Focusing horn

    CERN Multimedia

    1980-01-01

    This was the first magnetic horn developed by Simon Van der Meer to collect antiprotons in the AD complex. It was used for the AA (antiproton accumulator). Making an antiproton beam took a lot of time and effort. Firstly, protons were accelerated to an energy of 26 GeV/c (protons at 26GeV/c, antiprotons at 3.6GeV/c) in the PS and ejected onto a metal target. From the spray of emerging particles, a magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet. For a million protons hitting the target, just one antiproton was captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 -, three hundred thousand million - antiprotons. The development of this technology was a key step to the functioning of CERN's Super Proton Synchrotron as a proton - antiproton collider.

  4. Enhanced spinal neuronal responses as a mechanism for the increased nociceptive sensitivity of interleukin-4 deficient mice.

    Science.gov (United States)

    Lemmer, Sören; Schießer, Peter; Geis, Christian; Sommer, Claudia; Vanegas, Horacio; Üçeyler, Nurcan

    2015-09-01

    Lack of the anti-inflammatory and analgesic cytokine interleukin-4 (IL-4) is associated with mechanical hypersensitivity in mice, and low systemic levels of IL-4 are associated with pain in humans. We investigated whether the firing properties of murine nociceptive neurons in the spinal dorsal horn are affected by IL-4 deficiency. Single unit recordings from lumbar dorsal horn wide-dynamic-range (WDR) neurons were performed in IL-4 knock out (ko) mice and wild type (WT) littermates (3, 9, and 22 months old). We measured neuronal responses to innocuous (1g) and noxious (26 g) von Frey mechanical stimulation at the plantar hind paw. Additionally, we induced secondary hyperalgesia by intraplantar injection of capsaicin and recorded discharges before and 5 and 10 min after injection. Baseline activity, activity upon innocuous stimulation, and postdischarges after noxious stimulation were not different between genotypes and ages. Responses to the noxious von Frey filament in 3 (34.5, 26.6-41.1 Hz) and 9 month old (49.7, 21.7-108.2 Hz) IL-4 ko mice were greater than in WT littermates (3 months, 18.1, 16.3-27.2 Hz, n.s.; 9 months, 33.6, 10.4-69.7 Hz; pnociceptive pathway may contribute to the increased behavioral responsiveness to painful stimuli of young IL-4 ko mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Autologous adipose-derived stem cells attenuate muscular atrophy and protect spinal cord ventral horn motor neurons in an animal model of burn injury.

    Science.gov (United States)

    Wu, Sheng-Hua; Huang, Shu-Hung; Lo, Yi-Ching; Chai, Chee-Yin; Lee, Su-Shin; Chang, Kao-Ping; Lin, Sin-Daw; Lai, Chung-Sheng; Yeh, Jwu-Lai; Kwan, Aij-Lie

    2015-08-01

    Burn injuries might increase muscle mass loss, but the mechanisms are still unclear. In this study, we demonstrated that burn injury induced spinal cord ventral horn motor neuron (VHMN) apoptosis and subsequently caused muscle atrophy and revealed the potential protection of autologous adipose-derived stem cells (ASCs) transplantation on spinal cord VHMNs and muscle against burn injury. Third-degree hind-paw burns were established by contact with a 75°C metal surface for 10 seconds. Adipose tissues were harvested from the groin fat pad, expanded in culture and labeled with chloromethyl-benzamido/1,1'-dioctadecyl-3,3,3',3'- tetramethyl indocarbocyanine perchlorate. The ASCs were transplanted into the injured hind paw at 4 weeks after burn injury. The lumbar spinal cord, sciatic nerve, gastrocnemius muscle and hind-paw skin were processed for immunofluorescent staining at 4 weeks after transplantation, including terminal deoxynucleotidyl transferase (TUNEL) assay, caspase-3, caspase-9, CD 90 and S100, and the gastrocnemius muscle was evaluated through the use of hematoxylin and eosin staining. Caspase-3-positive, caspase-9-positive and TUNEL-positive cells were significantly increased in the corresponding dermatome spinal cord VHMNs after burn injury. Moreover, the decrease of Schwann cells in sciatic nerve and the increase of denervation atrophy in gastrocnemius muscle were observed. Furthermore, ASCs transplantation significantly attenuated apoptotic death of VHMNs and the area of muscle denervation atrophy in the gastrocnemius muscle fibers. The animal model of third-degree burns in the hind paw showed significant apoptosis in the corresponding spinal cord VHMNs, which suggests that neuroprotection might be the potentially therapeutic target in burn-induced muscle atrophy. ASCs have potential neuroprotection against burn injuries through its anti-apoptotic effects. Copyright © 2015. Published by Elsevier Inc.

  6. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.

    Science.gov (United States)

    Dong, Qiulei; Wang, Hong; Hu, Zhanyi

    2018-02-01

    Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automatically predict V4 neuron responses. Currently, deep neural networks (DNNs) in the field of computer vision have reached image object categorization performance comparable to that of human beings on ImageNet, a data set that contains 1.3 million training images of 1000 categories. We explore whether the DNN neurons (units in DNNs) possess image object representational statistics similar to monkey IT neurons, particularly when the network becomes deeper and the number of image categories becomes larger, using VGG19, a typical and widely used deep network of 19 layers in the computer vision field. Following Lehky, Kiani, Esteky, and Tanaka ( 2011 , 2014 ), where the response statistics of 674 IT neurons to 806 image stimuli are analyzed using three measures (kurtosis, Pareto tail index, and intrinsic dimensionality), we investigate the three issues in this letter using the same three measures: (1) the similarities and differences of the neural response statistics between VGG19 and primate IT cortex, (2) the variation trends of the response statistics of VGG19 neurons at different layers from low to high, and (3) the variation trends of the response statistics of VGG19 neurons when the numbers of stimuli and neurons increase. We find that the response statistics on both single-neuron selectivity and population sparseness of VGG19 neurons are fundamentally different from those of IT neurons in most cases; by increasing the number of neurons in different layers and the number of stimuli, the response statistics of neurons at different layers from low to high do not substantially change; and the estimated intrinsic dimensionality values at the low

  7. The role of phenotypic plasticity in responses of hunted thinhorn sheep ram horn growth to changing climate conditions.

    Science.gov (United States)

    Loehr, J; Carey, J; O'Hara, R B; Hik, D S

    2010-04-01

    When phenotypic change occurs over time in wildlife populations, it can be difficult to determine to what degree it is because of genetic effects or phenotypic plasticity. Here, we assess phenotypic changes over time in horn length and volume of thinhorn sheep (Ovis dalli) rams from Yukon Territory, Canada. We considered 42 years of horn growth from over 50,000 growth measurements in over 8000 individuals. We found that weather explained a large proportion of the annual fluctuation in horn growth, being particularly sensitive to spring weather. Only 2.5% of variance in horn length growth could be explained by an individual effect, and thus any genetic changes over the time period could only have had a small effect on phenotypes. Our findings allow insight into the capacity for horn morphology to react to selection pressures and demonstrate the overall importance of climate in determining growth.

  8. Acute pressure on the sciatic nerve results in rapid inhibition of the wide dynamic range neuronal response

    Directory of Open Access Journals (Sweden)

    Wang Wenxue

    2012-12-01

    Full Text Available Abstract Background Acute pressure on the sciatic nerve has recently been reported to provide rapid short-term relief of pain in patients with various pathologies. Wide dynamic range (WDR neurons transmit nociceptive information from the dorsal horn to higher brain centers. In the present study, we examined the effect of a 2-min application of sciatic nerve pressure on WDR neuronal activity in anesthetized male Sprague–Dawley rats. Results Experiments were carried out on 41 male Sprague–Dawley albino rats weighing 160–280 grams. Dorsal horn WDR neurons were identified on the basis of characteristic responses to mechanical stimuli applied to the cutaneous receptive field. Acute pressure was applied for 2 min to the sciatic nerve using a small vascular clip. The responses of WDR neurons to three mechanical stimuli applied to the cutaneous receptive field were recorded before, and 2, 5 and 20 min after cessation of the 2-min pressure application on the sciatic nerve. Two-min pressure applied to the sciatic nerve caused rapid attenuation of the WDR response to pinching, pressure and brushing stimuli applied to the cutaneous receptive field. Maximal attenuation of the WDR response to pinching and pressure was noted 5 min after release of the 2-min pressure on the sciatic nerve. The mean firing rate decreased from 31.7±1.7 Hz to 13±1.4 Hz upon pinching (p p p Conclusions Our results indicate that acute pressure applied to the sciatic nerve exerts a rapid inhibitory effect on the WDR response to both noxious and innocuous stimuli. Our results may partially explain the rapid analgesic effect of acute sciatic nerve pressure noted in clinical studies, and also suggest a new model for the study of pain.

  9. Ca2+ -Mediated Plateau Potentials in a Subpopulation of Interneurons in the Ventral Horn of the Turtle Spinal Cord

    DEFF Research Database (Denmark)

    Hounsgaard, J.; Kjaerulff, O.

    1992-01-01

    The response properties of interneurons in the ventral horn were studied in transverse slices of segments D8 to S2 from the turtle spinal cord, using the current clamp technique. In about half of the neurons the response properties were dominated by their ability to generate plateau potentials...

  10. Anterior Horn Cell Diseases

    Directory of Open Access Journals (Sweden)

    Merve Firinciogullari

    2016-09-01

    Full Text Available The anterior horn cells control all voluntary movement. Motor activity, respiratory, speech, and swallowing functions are dependent upon signals from the anterior horn cells. Diseases that damage the anterior horn cells, therefore, have a profound impact. Symptoms of anterior horn cell loss (weakness, falling, choking lead patients to seek medical attention. In this article, anterior horn diseases were reviewed, diagnostic criteria and management were discussed in detail. [Archives Medical Review Journal 2016; 25(3.000: 269-303

  11. Metabolic responses of the South American ornate horned frog (Ceratophrys ornata) to estivation.

    Science.gov (United States)

    Groom, Derrick J E; Kuchel, Louise; Richards, Jeffrey G

    2013-01-01

    We examined the metabolic responses of the South American frog, Ceratophrys ornata, to laboratory-induced estivation. Whole-animal and mass-specific oxygen consumption rates (VO(2)) did not change during fasting or 56days of estivation, despite observing significant decreases in body mass. The maintenance of mass-specific metabolic rate at routine levels during estivation suggests that metabolic rate suppression is not a major response to estivation in this species. There was a significant decline in liver glycogen and a loss of adipose tissue mass during estivation, suggesting that both carbohydrate and lipid pathways are used to fuel metabolism during estivation. The activity of pyruvate dehydrogenase, an important regulator of carbohydrate oxidation, and carnitine palmitoyltransferase and 3-hydroxyacyl-CoA dehydrogenase, regulators of lipid oxidation, showed no significant change in activity in liver, heart, and muscle between estivating and active frogs. There was an increase in plasma osmolality, which is characteristic of estivating animals. Overall, our metabolic analysis of estivation in C. ornata indicates that this species does not employ a dramatic suppression metabolic rate to survive dehydration stress and that both endogenous carbohydrates and lipids are used as metabolic fuels. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Fluorescent tube light evokes flicker responses in visual neurons.

    Science.gov (United States)

    Eysel, U T; Burandt, U

    1984-01-01

    Single neurons in the cat visual system respond distinctly to the temporal information present in light from fluorescent tubes driven by 50 or 60 Hz alternating current. Despite the resulting flicker frequencies of 100 or 120 Hz all retinal and most thalamic neurons show strong phase locking of the neuronal responses to the modulation of fluorescent tube light. Some retinal ganglion cells have not yet reached their critical flicker fusion frequency under such conditions. Though usually beyond perception, the frequency and depth of modulation of artificial light thus might well play a role in biological light effects.

  13. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    DEFF Research Database (Denmark)

    Carlsen, Eva Maria Meier; Perrier, Jean-Francois Marie

    2014-01-01

    by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice...... an inhibition occurring at the presynaptic side of synapses. In the presence of blockers for extracellular ectonucleotidases, TFLLR did not induce presynaptic inhibition. Puffing adenosine reproduced the effect of TFLLR and blocking adenosine A1 receptors with 8-Cyclopentyl-1,3-dipropylxanthine prevented it....... Altogether our results show that ventral horn astrocytes are responsible for a tonic and a phasic inhibition of excitatory synaptic transmission by releasing ATP, which gets converted into adenosine that binds to inhibitory presynaptic A1 receptors....

  14. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting

    Directory of Open Access Journals (Sweden)

    Bharath K. Mani

    2017-08-01

    Conclusions: These results suggest that 1 activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2 activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3 axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act.

  15. VTA neurons show a potentially protective transcriptional response to MPTP.

    Science.gov (United States)

    Phani, Sudarshan; Gonye, Gregory; Iacovitti, Lorraine

    2010-07-09

    Parkinson's disease and its characteristic symptoms are thought to arise from the progressive degeneration of specific midbrain dopamine (DA) neurons. In humans, DA neurons of the substantia nigra (SN) and their projections to the striatum show selective vulnerability, while neighboring DA neurons of the ventral tegmental area (VTA) are relatively spared from degeneration. This pattern of cell loss is mimicked in humans, primates, and certain rodents by the neurotoxin MPTP. In this study, we aimed to test the hypothesis that there are factors in the VTA that are potentially neuroprotective against MPTP and that these factors change over time. We have found a dynamic transcriptional response within the cells of the VTA to sustained exposure to a low dose of MPTP. Specifically, the VTA has increased expression of 148 genes as an early response to MPTP and 113 genes as a late response to MPTP toxicity. This response encompasses many areas of cellular function, including protein regulation (Phf6) and ion/metal regulation (PANK2 and Car4). Notably, these responses were largely absent from the cells of the SN. Our data show a clear dynamic response in maintaining the homeostasis and viability of the neurons in the VTA that is lacking in the SN after neurotoxin challenge. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Intrinsic response of thoracic propriospinal neurons to axotomy

    Directory of Open Access Journals (Sweden)

    Stelzner Dennis J

    2010-06-01

    Full Text Available Abstract Background Central nervous system axons lack a robust regenerative response following spinal cord injury (SCI and regeneration is usually abortive. Supraspinal pathways, which are the most commonly studied for their regenerative potential, demonstrate a limited regenerative ability. On the other hand, propriospinal (PS neurons, with axons intrinsic to the spinal cord, have shown a greater regenerative response than their supraspinal counterparts, but remain relatively understudied in regards to spinal cord injury. Results Utilizing laser microdissection, gene-microarray, qRT-PCR, and immunohistochemistry, we focused on the intrinsic post-axotomy response of specifically labelled thoracic propriospinal neurons at periods from 3-days to 1-month following T9 spinal cord injury. We found a strong and early (3-days post injury, p.i upregulation in the expression of genes involved in the immune/inflammatory response that returned towards normal by 1-week p.i. In addition, several regeneration associated and cell survival/neuroprotective genes were significantly up-regulated at the earliest p.i. period studied. Significant upregulation of several growth factor receptor genes (GFRa1, Ret, Lifr also occurred only during the initial period examined. The expression of a number of pro-apoptotic genes up-regulated at 3-days p.i. suggest that changes in gene expression after this period may have resulted from analyzing surviving TPS neurons after the cell death of the remainder of the axotomized TPS neuronal population. Conclusions Taken collectively these data demonstrate that thoracic propriospinal (TPS neurons mount a very dynamic response following low thoracic axotomy that includes a strong regenerative response, but also results in the cell death of many axotomized TPS neurons in the first week after spinal cord injury. These data also suggest that the immune/inflammatory response may have an important role in mediating the early strong

  17. Acute pressure on the sciatic nerve results in rapid inhibition of the wide dynamic range neuronal response.

    Science.gov (United States)

    Wang, Wenxue; Tan, Wei; Luo, Danping; Lin, Jianhua; Yu, Yaoqing; Wang, Qun; Zhao, Wangyeng; Wu, Buling; Chen, Jun; He, Jiman

    2012-12-04

    Acute pressure on the sciatic nerve has recently been reported to provide rapid short-term relief of pain in patients with various pathologies. Wide dynamic range (WDR) neurons transmit nociceptive information from the dorsal horn to higher brain centers. In the present study, we examined the effect of a 2-min application of sciatic nerve pressure on WDR neuronal activity in anesthetized male Sprague-Dawley rats. Experiments were carried out on 41 male Sprague-Dawley albino rats weighing 160-280 grams. Dorsal horn WDR neurons were identified on the basis of characteristic responses to mechanical stimuli applied to the cutaneous receptive field. Acute pressure was applied for 2 min to the sciatic nerve using a small vascular clip. The responses of WDR neurons to three mechanical stimuli applied to the cutaneous receptive field were recorded before, and 2, 5 and 20 min after cessation of the 2-min pressure application on the sciatic nerve. Two-min pressure applied to the sciatic nerve caused rapid attenuation of the WDR response to pinching, pressure and brushing stimuli applied to the cutaneous receptive field. Maximal attenuation of the WDR response to pinching and pressure was noted 5 min after release of the 2-min pressure on the sciatic nerve. The mean firing rate decreased from 31.7±1.7 Hz to 13±1.4 Hz upon pinching (p < 0.001), from 31.2±2.3 Hz to 10.9±1.4 Hz (p < 0.001) when pressure was applied, and from 18.9±1.2 Hz to 7.6±1.1 Hz (p < 0.001) upon brushing. Thereafter, the mean firing rates gradually recovered. Our results indicate that acute pressure applied to the sciatic nerve exerts a rapid inhibitory effect on the WDR response to both noxious and innocuous stimuli. Our results may partially explain the rapid analgesic effect of acute sciatic nerve pressure noted in clinical studies, and also suggest a new model for the study of pain.

  18. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Frederic Venail

    2015-01-01

    Full Text Available The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement, electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device. The electrical response, measured using auto-NRT (neural responses telemetry algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P<0.01, the scalar placement of the electrodes (β = −8.50 ± 1.97, P<0.01, and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF. Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  19. The inhibition of subchondral bone lesions significantly reversed the weight-bearing deficit and the overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn in the monosodium iodoacetate induced model of osteoarthritis pain.

    Directory of Open Access Journals (Sweden)

    Degang Yu

    Full Text Available BACKGROUND: Chronic pain is the most prominent and disabling symptom of osteoarthritis (OA. Clinical data suggest that subchondral bone lesions contribute to the occurrence of joint pain. The present study investigated the effect of the inhibition of subchondral bone lesions on joint pain. METHODS: Osteoarthritic pain was induced by an injection of monosodium iodoacetate (MIA into the rat knee joint. Zoledronic acid (ZOL, a third generation of bisphosphonate, was used to inhibit subchondral bone lesions. Joint histomorphology was evaluated using X-ray micro computed tomography scanning and hematoxylin-eosin staining. The activity of osteoclast in subchondral bone was evaluated using tartrate-resistant acid phosphatase staining. Joint pain was evaluated using weight-bearing asymmetry, the expression of calcitonin gene-related peptide (CGRP in the dorsal root ganglion (DRG, and spinal glial activation status using glial fibrillary acidic protein (GFAP and ionized calcium binding adaptor molecule-1 (Iba-1 immunofluorescence. Afferent neurons in the DRGs that innervated the joints were identified using retrograde fluorogold labeling. RESULTS: MIA injections induced significant histomorphological alterations and joint pain. The inhibition of subchondral bone lesions by ZOL significantly reduced the MIA-induced weight-bearing deficit and overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn at 3 and 6 weeks after MIA injection; however, joint swelling and synovial reaction were unaffected. CONCLUSIONS: The inhibition of subchondral bone lesions alleviated joint pain. Subchondral bone lesions should be a key target in the management of osteoarthritic joint pain.

  20. Neuronal modelling of baroreflex response to orthostatic stress

    Science.gov (United States)

    Samin, Azfar

    The accelerations experienced in aerial combat can cause pilot loss of consciousness (GLOC) due to a critical reduction in cerebral blood circulation. The development of smart protective equipment requires understanding of how the brain processes blood pressure (BP) information in response to acceleration. We present a biologically plausible model of the Baroreflex to investigate the neural correlates of short-term BP control under acceleration or orthostatic stress. The neuronal network model, which employs an integrate-and-fire representation of a biological neuron, comprises the sensory, motor, and the central neural processing areas that form the Baroreflex. Our modelling strategy is to test hypotheses relating to the encoding mechanisms of multiple sensory inputs to the nucleus tractus solitarius (NTS), the site of central neural processing. The goal is to run simulations and reproduce model responses that are consistent with the variety of available experimental data. Model construction and connectivity are inspired by the available anatomical and neurophysiological evidence that points to a barotopic organization in the NTS, and the presence of frequency-dependent synaptic depression, which provides a mechanism for generating non-linear local responses in NTS neurons that result in quantifiable dynamic global baroreflex responses. The entire physiological range of BP and rate of change of BP variables is encoded in a palisade of NTS neurons in that the spike responses approximate Gaussian 'tuning' curves. An adapting weighted-average decoding scheme computes the motor responses and a compensatory signal regulates the heart rate (HR). Model simulations suggest that: (1) the NTS neurons can encode the hydrostatic pressure difference between two vertically separated sensory receptor regions at +Gz, and use changes in that difference for the regulation of HR; (2) even though NTS neurons do not fire with a cardiac rhythm seen in the afferents, pulse

  1. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  2. Response properties of MST parafoveal neurons during smooth pursuit adaptation.

    Science.gov (United States)

    Ono, Seiji; Mustari, Michael J

    2016-07-01

    Visual motion neurons in the posterior parietal cortex play a critical role in the guidance of smooth pursuit eye movements. Initial pursuit (open-loop period) is driven, in part, by visual motion signals from cortical areas, such as the medial superior temporal area (MST). The purpose of this study was to determine whether adaptation of initial pursuit gain arises because of altered visual sensitivity of neurons at the cortical level. It is well known that the visual motion response in MST is suppressed after exposure to a large-field visual motion stimulus, showing visual motion adaptation. One hypothesis is that foveal motion responses in MST are associated with smooth pursuit adaptation using a small target spot. We used a step-ramp tracking task with two steps of target velocity (double-step paradigm), which induces gain-down or gain-up adaptation. We found that after gain-down adaptation 58% of our MST visual neurons showed a significant decrease in firing rate. This was the case even though visual motion input (before the pursuit onset) from target motion was constant. Therefore, repetitive visual stimulation during the gain-down paradigm could lead to adaptive changes in the visual response. However, the time course of adaptation did not show a correlation between the visual response and pursuit behavior. These results indicate that the visual response in MST may not directly contribute to the adaptive change in pursuit initiation. Copyright © 2016 the American Physiological Society.

  3. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting.

    Science.gov (United States)

    Mani, Bharath K; Osborne-Lawrence, Sherri; Mequinion, Mathieu; Lawrence, Sydney; Gautron, Laurent; Andrews, Zane B; Zigman, Jeffrey M

    2017-08-01

    Ghrelin is a stomach-derived hormone that affects food intake and regulates blood glucose. The best-characterized actions of ghrelin are mediated by its binding to and activation of the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Adequate examination of the identity, function, and relevance of specific subsets of GHSR-expressing neurons has been hampered by the absence of a suitable Cre recombinase (Cre)-expressing mouse line with which to manipulate gene expression in a targeted fashion within GHSR-expressing neurons. The present study aims to characterize the functional significance and neurocircuitry of GHSR-expressing neurons in the mediobasal hypothalamus (MBH), as they relate to ghrelin-induced food intake and fasting-associated rebound hyperphagia, using a novel mouse line in which Cre expression is controlled by the Ghsr promoter. A Ghsr-IRES-Cre mouse line that expresses Cre directed by the Ghsr promoter was generated. The line was validated by comparing Cre activity in reporter mice to the known brain distribution pattern of GHSR. Next, the requirement of MBH GHSR-expressing neuronal activity in mediating food intake in response to administered ghrelin and in response to fasting was assessed after stereotaxic delivery of inhibitory designer receptor exclusively activated by designer drugs (DREADD) virus to the MBH. In a separate cohort of Ghsr-IRES-Cre mice, stereotaxic delivery of stimulatory DREADD virus to the MBH was performed to assess the sufficiency of MBH GHSR-expressing neuronal activity on food intake. Finally, the distribution of MBH GHSR-expressing neuronal axonal projections was assessed in the DREADD virus-injected animals. The pattern of Cre activity in the Ghsr-IRES-Cre mouse line mostly faithfully reproduced the known GHSR expression pattern. DREADD-assisted inhibition of MBH GHSR neuronal activity robustly suppressed the normal orexigenic response to ghrelin and fasting-associated rebound food intake. DREADD

  4. The effect of medial meniscal horn injury on knee stability.

    Science.gov (United States)

    Chen, Lianxu; Linde-Rosen, Monica; Hwang, Sun Chul; Zhou, Jingbin; Xie, Qiang; Smolinski, Patrick; Fu, Freddie H

    2015-01-01

    This study investigated the effect of damage of the posterior and anterior horns of the medial meniscus on knee stability. Twenty fresh-frozen porcine knees were divided into two groups (anterior horn and posterior horn injury). Each group was tested in three states: intact medial meniscus, posterior or anterior horn of medial meniscus resection and total medial meniscectomy. A robotic testing system was used to test anterior tibial translation (ATT) at 30° (full extension), 60° and 90° of knee flexion with an external anterior tibial load of 89 N, internal rotation (IR) and external rotation (ER) at 30° and 60° of knee flexion under a 4 N m tibial rotation torque. In response to an IR torque, there was a significant difference between the state of intact medial meniscus and anterior and posterior horn damage, except for anterior horn resection at 60° of knee flexion. In response to an ER torque, there were no significant differences between the state of intact meniscus and horn damage except for anterior horn resection at 30° of knee flexion. Meniscal damage had no significant effect on ATT. The results indicated that the posterior horn was more important in controlling the IR stability than the anterior horn with knee flexion, and the anterior horn was more important in controlling the ER stability than the posterior horn at full knee extension in the anterior cruciate ligament-intact knee. These findings further the understanding of the mechanisms, the prevention of injuries and rehabilitation of meniscal horn injury in clinical practice.

  5. The effect of nearby timpani strokes on horn playing.

    Science.gov (United States)

    Chen, Jer-Ming; Smith, John; Wolfe, Joe

    2014-01-01

    Horn players have observed that timpani strokes can interfere disruptively with their playing, especially when they are seated close to the timpani. Measuring the horn's transfer function in the bell-to-mouthpiece direction reveals that the horn behaves as an acoustic impedance matching device, capable of transmitting waves with pressure gains of at least 20 dB near horn playing resonances. During moderate to loud timpani strokes, the horn transmits an overall impulse gain response of at least 16 dB from the bell to the mouthpiece, while evidence of non-linear bore propagation can be observed for louder strokes. If the timpani is tuned near a horn resonance, as is usually the case, further bore resonance interactions may be observed leading to gains of ∼26 dB from bell to mouthpiece. Finally, measurements of horn playing made under conditions approximating playing reveal that timpani strokes sounding near the horn bell are capable of disrupting horn playing by affecting the amplitude, periodicity, and frequency of the pressure signal generated at the horn player's lips.

  6. Finite post synaptic potentials cause a fast neuronal response

    Directory of Open Access Journals (Sweden)

    Moritz eHelias

    2011-02-01

    Full Text Available A generic property of the communication between neurons is the exchange of pulsesat discrete time points, the action potentials. However, the prevalenttheory of spiking neuronal networks of integrate-and-fire model neuronsrelies on two assumptions: the superposition of many afferent synapticimpulses is approximated by Gaussian white noise, equivalent to avanishing magnitude of the synaptic impulses, and the transfer oftime varying signals by neurons is assessable by linearization. Goingbeyond both approximations, we find that in the presence of synapticimpulses the response to transient inputs differs qualitatively fromprevious predictions. It is instantaneous rather than exhibiting low-passcharacteristics, depends non-linearly on the amplitude of the impulse,is asymmetric for excitation and inhibition and is promoted by a characteristiclevel of synaptic background noise. These findings resolve contradictionsbetween the earlier theory and experimental observations. Here wereview the recent theoretical progress that enabled these insights.We explain why the membrane potential near threshold is sensitiveto properties of the afferent noise and show how this shapes the neuralresponse. A further extension of the theory to time evolution in discretesteps quantifies simulation artifacts and yields improved methodsto cross check results.

  7. Learning and Stress Shape the Reward Response Patterns of Serotonin Neurons.

    Science.gov (United States)

    Zhong, Weixin; Li, Yi; Feng, Qiru; Luo, Minmin

    2017-09-13

    The ability to predict reward promotes animal survival. Both dopamine neurons in the ventral tegmental area and serotonin neurons in the dorsal raphe nucleus (DRN) participate in reward processing. Although the learning effects on dopamine neurons have been extensively characterized, it remains largely unknown how the response of serotonin neurons evolves during learning. Moreover, although stress is known to strongly influence reward-related behavior, we know very little about how stress modulates neuronal reward responses. By monitoring Ca 2+ signals during the entire process of Pavlovian conditioning, we here show that learning differentially shapes the response patterns of serotonin neurons and dopamine neurons in mice of either sex. Serotonin neurons gradually develop a slow ramp-up response to the reward-predicting cue, and ultimately remain responsive to the reward, whereas dopamine neurons increase their response to the cue but reduce their response to the reward. For both neuron types, the responses to the cue and the reward depend on reward value, are reversible when the reward is omitted, and are rapidly reinstated by restoring the reward. We also found that stressors including head restraint and fearful context substantially reduce the response strength of both neuron types, to both the cue and the reward. These results reveal the dynamic nature of the reward responses, support the hypothesis that DRN serotonin neurons signal the current likelihood of receiving a net benefit, and suggest that the inhibitory effect of stress on the reward responses of serotonin neurons and dopamine neurons may contribute to stress-induced anhedonia. SIGNIFICANCE STATEMENT Both serotonin neurons in the dorsal raphe and dopamine neurons in the ventral tegmental area are intimately involved in reward processing. Using long-term fiber photometry of Ca 2+ signals from freely behaving mice, we here show that learning produces a ramp-up activation pattern in serotonin neurons

  8. Neuronal response impedance mechanism implementing cooperative networks with low firing rates and μs precision.

    Science.gov (United States)

    Vardi, Roni; Goldental, Amir; Marmari, Hagar; Brama, Haya; Stern, Edward A; Sardi, Shira; Sabo, Pinhas; Kanter, Ido

    2015-01-01

    Realizations of low firing rates in neural networks usually require globally balanced distributions among excitatory and inhibitory links, while feasibility of temporal coding is limited by neuronal millisecond precision. We show that cooperation, governing global network features, emerges through nodal properties, as opposed to link distributions. Using in vitro and in vivo experiments we demonstrate microsecond precision of neuronal response timings under low stimulation frequencies, whereas moderate frequencies result in a chaotic neuronal phase characterized by degraded precision. Above a critical stimulation frequency, which varies among neurons, response failures were found to emerge stochastically such that the neuron functions as a low pass filter, saturating the average inter-spike-interval. This intrinsic neuronal response impedance mechanism leads to cooperation on a network level, such that firing rates are suppressed toward the lowest neuronal critical frequency simultaneously with neuronal microsecond precision. Our findings open up opportunities of controlling global features of network dynamics through few nodes with extreme properties.

  9. Antiproton focusing horn

    CERN Multimedia

    1992-01-01

    This focusing horn was developed in 1992 by Remo Maccaferri, Jean Claude Schnuriger and Lubrano di Scampamorte and is still operating in the AD complex at CERN (as of 2017). This device could pulse at 400 KA (160 KA for the previous version). This enabled an antiproton collection ten times better than the old one. Firstly, protons were accelerated to an energy of 26 GeV/c and ejected onto a metal target. From the spray of emerging particles, the magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet. For a million protons hitting the target, ten antiprotons were captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 - three hundred thousand million - antiprotons. Originally magnetic focusing horns were developed by Simon van der Meer - see for example object AC-022 in this database.

  10. Differential Responses of Thalamic Reticular Neurons to Nociception in Freely Behaving Mice

    Science.gov (United States)

    Huh, Yeowool; Cho, Jeiwon

    2016-01-01

    Pain serves an important protective role. However, it can also have debilitating adverse effects if dysfunctional, such as in pathological pain conditions. As part of the thalamocortical circuit, the thalamic reticular nucleus (TRN) has been implicated to have important roles in controlling nociceptive signal transmission. However studies on how TRN neurons, especially how TRN neuronal subtypes categorized by temporal bursting firing patterns—typical bursting, atypical bursting and non-bursting TRN neurons—contribute to nociceptive signal modulation is not known. To reveal the relationship between TRN neuronal subtypes and modulation of nociception, we simultaneously recorded behavioral responses and TRN neuronal activity to formalin induced nociception in freely moving mice. We found that typical bursting TRN neurons had the most robust response to nociception; changes in tonic firing rate of typical TRN neurons exactly matched changes in behavioral nociceptive responses, and burst firing rate of these neurons increased significantly when behavioral nociceptive responses were reduced. This implies that typical TRN neurons could critically modulate ascending nociceptive signals. The role of other TRN neuronal subtypes was less clear; atypical bursting TRN neurons decreased tonic firing rate after the second peak of behavioral nociception and the firing rate of non-bursting TRN neurons mostly remained at baseline level. Overall, our results suggest that different TRN neuronal subtypes contribute differentially to processing formalin induced sustained nociception in freely moving mice. PMID:27917114

  11. Absence of a robust innate immune response in rat neurons facilitates persistent infection of Borna disease virus in neuronal tissue.

    Science.gov (United States)

    Lin, Chia-Ching; Wu, Yuan-Ju; Heimrich, Bernd; Schwemmle, Martin

    2013-11-01

    Borna disease virus (BDV) persistently infects neurons of the central nervous system of various hosts, including rats. Since type I IFN-mediated antiviral response efficiently blocks BDV replication in primary rat embryo fibroblasts, it has been speculated that BDV is not effectively sensed by the host innate immune system in the nervous system. To test this assumption, organotypical rat hippocampal slice cultures were infected with BDV for up to 4 weeks. This resulted in the secretion of IFN and the up-regulation of IFN-stimulated genes. Using the rat Mx protein as a specific marker for IFN-induced gene expression, astrocytes and microglial cells were found to be Mx positive, whereas neurons, the major cell type in which BDV is replicating, lacked detectable levels of Mx protein. In uninfected cultures, neurons also remained Mx negative even after treatment with high concentrations of IFN-α. This non-responsiveness correlated with a lack of detectable nuclear translocation of both pSTAT1 and pSTAT2 in these cells. Consistently, neuronal dissemination of BDV was not prevented by treatment with IFN-α. These data suggest that the poor innate immune response in rat neurons renders this cell type highly susceptible to BDV infection even in the presence of exogenous IFN-α. Intriguingly, in contrast to rat neurons, IFN-α treatment of mouse neurons resulted in the up-regulation of Mx proteins and block of BDV replication, indicating species-specific differences in the type I IFN response of neurons between mice and rats.

  12. Long descending cervical propriospinal neurons differ from thoracic propriospinal neurons in response to low thoracic spinal injury

    Directory of Open Access Journals (Sweden)

    Stelzner Dennis J

    2010-11-01

    Full Text Available Abstract Background Propriospinal neurons, with axonal projections intrinsic to the spinal cord, have shown a greater regenerative response than supraspinal neurons after axotomy due to spinal cord injury (SCI. Our previous work focused on the response of axotomized short thoracic propriospinal (TPS neurons following a low thoracic SCI (T9 spinal transection or moderate spinal contusion injury in the rat. The present investigation analyzes the intrinsic response of cervical propriospinal neurons having long descending axons which project into the lumbosacral enlargement, long descending propriospinal tract (LDPT axons. These neurons also were axotomized by T9 spinal injury in the same animals used in our previous study. Results Utilizing laser microdissection (LMD, qRT-PCR, and immunohistochemistry, we studied LDPT neurons (located in the C5-C6 spinal segments between 3-days, and 1-month following a low thoracic (T9 spinal cord injury. We examined the response of 89 genes related to growth factors, cell surface receptors, apoptosis, axonal regeneration, and neuroprotection/cell survival. We found a strong and significant down-regulation of ~25% of the genes analyzed early after injury (3-days post-injury with a sustained down-regulation in most instances. In the few genes that were up-regulated (Actb, Atf3, Frs2, Hspb1, Nrap, Stat1 post-axotomy, the expression for all but one was down-regulated by 2-weeks post-injury. We also compared the uninjured TPS control neurons to the uninjured LDPT neurons used in this experiment for phenotypic differences between these two subpopulations of propriospinal neurons. We found significant differences in expression in 37 of the 84 genes examined between these two subpopulations of propriospinal neurons with LDPT neurons exhibiting a significantly higher base line expression for all but 3 of these genes compared to TPS neurons. Conclusions Taken collectively these data indicate a broad overall down

  13. [Horn and cupping].

    Science.gov (United States)

    Huang, Tao; Wu, Mozheng; Lu, Yang

    2016-10-12

    Cupping, with an ancient name of horn method, possessed other different names and operational approaches through the history. There was wrong information about cupping which was passed on due to unawareness of predecessors. Through probing into the literature and history, this article summarizes and studies warming cupping, cupping over needles, water boiled cupping and fire cupping.

  14. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    Directory of Open Access Journals (Sweden)

    Eva Meier Carlsen

    2014-06-01

    Full Text Available Spinal neuronal networks are essential for motor function. They are involved in the integration of sensory inputs and the generation of rhythmic motor outputs. They continuously adapt their activity to the internal state of the organism and to the environment. This plasticity can be provided by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice. Neurons responded to electrical stimulation by monosynaptic EPSCs. We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single neighboring astrocyte increased the amplitude of synaptic currents. In contrast, when we selectively stimulated astrocytes by activating PAR-1 receptors with the peptide TFLLR, the amplitude of EPSCs evoked by a paired stimulation protocol was reduced. The paired-pulse ratio was increased, suggesting an inhibition occurring at the presynaptic side of synapses. In the presence of blockers for extracellular ectonucleotidases, TFLLR did not induce presynaptic inhibition. Puffing adenosine reproduced the effect of TFLLR and blocking adenosine A1 receptors with DPCPX prevented it. Altogether our results show that ventral horn astrocytes are responsible for a tonic and a phasic inhibition of excitatory synaptic transmission by releasing ATP, which gets converted into adenosine that binds to inhibitory

  15. Single-unit analysis of the spinal dorsal horn in patients with neuropathic pain.

    Science.gov (United States)

    Guenot, Marc; Bullier, Jean; Rospars, Jean-Pierre; Lansky, Petr; Mertens, Patrick; Sindou, Marc

    2003-04-01

    Despite the key role played by the dorsal horn of the spinal cord in pain modulation, single-unit recordings have only been performed very rarely in this structure in humans. The authors report the results of a statistical analysis of 64 unit recordings from the human dorsal horn. The recordings were done in three groups of patients: patients with deafferentation pain resulting from brachial plexus avulsion, patients with neuropathic pain resulting from peripheral nerve injury, and patients with pain resulting from disabling spasticity. The patterns of neuronal activities were compared among these three groups. Nineteen neurons were recorded in the dorsal horns of five patients undergoing DREZotomy for a persistent pain syndrome resulting from peripheral nerve injury (i.e., nondeafferented dorsal horns), 31 dorsal horn neurons were recorded in nine patients undergoing DREZotomy for a persistent pain syndrome resulting from brachial plexus avulsion (i.e., deafferented dorsal horns), and 14 neurons were recorded in eight patients undergoing DREZotomy for disabling spasticity. These groups were compared in terms of mean frequency, coefficient of variation of the discharge, other properties of the neuronal discharge studied by the nonparametric test of Wald-Wolfowitz, and the possible presence of bursts. The coefficient of variation tended to be higher in the deafferented dorsal horn group than in the other two groups. Two neurons displaying burst activity could be recorded, both of which belonged to the deafferented dorsal horn group. A significant difference was found in term of neuronal behavior between the peripheral nerve trauma group and the other groups: The brachial plexus avulsion and disabling spasticity groups were very similar, including various types of neuronal behavior, whereas the peripheral nerve lesion group included mostly neurons with "nonrandom" patterns of discharge (i.e., with serial dependency of interspike intervals).

  16. Action of ethanol on responses to nicotine from cerebellar Purkinje neurons: relationship to methyllycaconitine (MLA) inhibition of nicotine responses.

    Science.gov (United States)

    Yang, X; Criswell, H E; Breese, G R

    1999-08-01

    The effect of ethanol on responses to nicotine from rat cerebellar Purkinje neurons was investigated using extracellular single-unit recording. Systemic administration of ethanol initially enhanced the nicotine-induced inhibition from 50% of the Purkinje neurons. However, irrespective of whether there was an initial enhancement, systemic administration of ethanol antagonized the response to nicotine from the majority of Purkinje neurons. When varying ethanol concentrations were electro-osmotically applied to this neuronal cell type, the responses to nicotine (6/8) were enhanced when a low concentration of ethanol (40 mM) was in the pipette, whereas the majority of nicotine responses (10/11) were antagonized when a higher concentration of ethanol (160 mM) was applied to Purkinje neurons. Thus, the concentration of ethanol presented to the neuron seemed to explain the biphasic consequence of systemically administered ethanol on responses to nicotine. In order to determine whether ethanol affected a specific nACh receptor subtype containing the alpha-7 subunit, it was initially established that the nicotinic antagonists, alpha-bungarotoxin (alpha-BTX) and methyllycaconitine (MLA), which are associated with this subunit, had identical actions on responses to nicotine from Purkinje neurons. When MLA was tested against responses to nicotine from this cell type, MLA antagonized the response to nicotine from 45% (9/20) of the neurons tested. In a direct comparison of the action of ethanol to inhibit responses to nicotine with the action of MLA on the same Purkinje neuron, ethanol inhibited responses to nicotine on all neurons sensitive to MLA. However, ethanol also affected nicotine-induced neural changes from some Purkinje neurons not sensitive to MLA antagonism of nicotine. These data support the supposition that ethanol affects a nACh receptor subtype which has an alpha-7 subunit as well as other nACh receptor subtypes without this specific subunit.

  17. Influence of inter-field communication on neuronal response synchrony across auditory cortex.

    Science.gov (United States)

    Carrasco, Andres; Lomber, Stephen G

    2013-10-01

    Sensory information is encoded by cortical neurons in the form of synaptic discharge time and rate level. These neuronal codes generate response patterns across cell assemblies that are crucial to various cognitive functions. Despite pivotal information about structural and cognitive factors involved in the generation of synchronous neuronal responses such as stimulus context, attention, age, cortical depth, sensory experience, and receptive field properties, the influence of cortico-cortical connectivity on the emergence of neuronal response patterns is poorly understood. The present investigation assesses the role of cortico-cortical connectivity in the modulation of neuronal discharge synchrony across auditory cortex cell-assemblies. Acute single-unit recording techniques in combination with reversible cooling deactivation procedures were used in the domestic cat (Felis catus). Recording electrodes were positioned across primary and non-primary auditory fields and neuronal activity was measured before, during, and after synaptic deactivation of adjacent cortical regions in the presence of acoustic stimulation. Cross-correlation functions of simultaneously recorded units were generated and changes in response synchrony levels across cooling conditions were measured. Data analyses revealed significant decreases in response time coincidences between cortical neurons during periods of cortical deactivation. Collectively, the results of the present investigation demonstrate that cortical neurons participate in the modulation of response synchrony levels across neuronal assemblies of primary and non-primary auditory fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Magnetic Focusing Horn

    CERN Multimedia

    1974-01-01

    This magnetic focusing horn was used for the AA (antiproton accumulator). Its development was an important step towards using CERN's Super Proton Synchrotron as a proton - antiproton collider. This eventually led to the discovery of the W and Z particles in 1983. Making an antiproton beam took a lot of time and effort. Firstly, protons were accelerated to an energy of 26 GeV in the PS and ejected onto a metal target. From the spray of emerging particles, a magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet. For a million protons hitting the target, just one antiproton was captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 -, three hundred thousand million - antiprotons.

  19. Neuronal regulation of immune responses in the central nervous system.

    Science.gov (United States)

    Tian, Li; Rauvala, Heikki; Gahmberg, Carl G

    2009-02-01

    The central nervous system (CNS) has traditionally been considered to be immunologically privileged, but over the years there has been a re-evaluation of this dogma. To date, studies have tended to focus on the immune functions of glial cells, whereas the roles of neurons have been regarded as passive and their immune-regulatory properties have been less examined. However, recent findings indicate that CNS neurons actively participate in immune regulation by controlling their glial cell counterparts and infiltrated T cells. Here, we describe the immune-regulatory roles of CNS neurons by both contact-dependent and contact-independent mechanisms. In addition, we specifically deal with the immune functions of neuronal cell adhesion molecules, many of which are key modulators of neuronal synaptic formation and plasticity.

  20. The constructive role of diversity in the global response of coupled neuron systems.

    Science.gov (United States)

    Pérez, Toni; Mirasso, Claudio R; Toral, Raúl; Gunton, James D

    2010-12-28

    We study the effect that the heterogeneity present among the elements of an ensemble of coupled excitable neurons has on the collective response of the system to an external signal. We consider two different interaction scenarios, one in which the neurons are diffusively coupled and another in which the neurons interact via pulse-like signals. We find that the type of interaction between the neurons has a crucial role in determining the response of the system to the external modulation. We develop a mean-field theory based on an order parameter expansion that quantitatively reproduces the numerical results in the case of diffusive coupling.

  1. Propensity to obesity impacts the neuronal response to energy imbalance

    Directory of Open Access Journals (Sweden)

    Marc-Andre eCornier

    2015-02-01

    Full Text Available The mechanisms responsible for the propensity to gain weight or remain normal weight are poorly understood. The objective of this study was to study the neuronal response to visual food cues during short-term energy imbalance in healthy adults recruited as obesity-resistant (OR or obesity-prone (OP based on self-identification, BMI, and personal/family weight history. 25 OR and 28 OP subjects were studied in underfed (UF and overfed (OF as compared to eucaloric (EU conditions in a randomized crossover design. Each study phase included a 3 day run-in diet, 1 day of controlled feeding (basal energy needs for EU, 40% above/below basal energy needs for OF/UF, and a test day. On the test day fMRI was performed in the acute fed stated (30 minutes after a test meal while subjects viewed images of foods of high hedonic value and neutral non-food objects. Measures of appetite and hormones were also performed before and every 30 minutes after the test meal. UF was associated with significantly increased activation of insula, somatosensory cortex, inferior and medial prefrontal cortex, parahippocampus, precuneus, cingulate and visual cortex in OR. However, UF had no impact in OP. As a result, UF was associated with significantly greater activation, specifically in the insula, inferior prefrontal cortex, and somatosensory cortex in OR as compared to OP. While OF was overall associated with reduced activation of inferior visual cortex, no group interaction was observed with OF. In summary, these findings suggest that individuals resistant to weight gain and obesity are more sensitive to short-term energy imbalance, particularly with UF, than those prone to weight gain. The inability to sense or adapt to changes in energy balance may represent an important mechanism contributing to excess energy intake and risk for obesity.

  2. The thermosensitive potassium channel TREK-1 contributes to coolness-evoked responses of Grueneberg ganglion neurons.

    Science.gov (United States)

    Stebe, Sabrina; Schellig, Katharina; Lesage, Florian; Breer, Heinz; Fleischer, Joerg

    2014-01-01

    Neurons of the Grueneberg ganglion (GG) residing in the vestibule of the murine nose are activated by cool ambient temperatures. Activation of thermosensory neurons is usually mediated by thermosensitive ion channels of the transient receptor potential (TRP) family. However, there is no evidence for the expression of thermo-TRPs in the GG, suggesting that GG neurons utilize distinct mechanisms for their responsiveness to cool temperatures. In search for proteins that render GG neurons responsive to coolness, we have investigated whether TREK/TRAAK channels may play a role; in heterologous expression systems, these potassium channels have been previously found to close upon exposure to coolness, leading to a membrane depolarization. The results of the present study indicate that the thermosensitive potassium channel TREK-1 is expressed in those GG neurons that are responsive to cool temperatures. Studies analyzing TREK-deficient mice revealed that coolness-evoked responses of GG neurons were clearly attenuated in these animals compared with wild-type conspecifics. These data suggest that TREK-1 channels significantly contribute to the responsiveness of GG neurons to cool temperatures, further supporting the concept that TREK channels serve as thermoreceptors in sensory cells. Moreover, the present findings provide the first evidence of how thermosensory GG neurons are activated by given temperature stimuli in the absence of thermo-TRPs.

  3. Enhanced behavioral responses to cold stimuli following CGRPα sensory neuron ablation are dependent on TRPM8.

    Science.gov (United States)

    McCoy, Eric S; Zylka, Mark J

    2014-11-19

    Calcitonin gene-related peptide-α (CGRPα) is a classic marker of peptidergic nociceptive neurons and is expressed in myelinated and unmyelinated dorsal root ganglia (DRG) neurons. Recently, we found that ablation of Cgrpα-expressing sensory neurons reduced noxious heat sensitivity and enhanced sensitivity to cold stimuli in mice. These studies suggested that the enhanced cold responses were due to disinhibition of spinal neurons that receive inputs from cold-sensing/TRPM8 primary afferents; although a direct role for TRPM8 was not examined at the time. Here, we ablated Cgrpα-expressing sensory neurons in mice lacking functional TRPM8 and evaluated sensory responses to noxious heat, cold temperatures, and cold mimetics (acetone evaporative cooling and icilin). We also evaluated thermoregulation in these mice following an evaporative cold challenge. We found that ablation of Cgrpα-expressing sensory neurons in a Trpm8-/- background reduced sensitivity to noxious heat but did not enhance sensitivity to cold stimuli. Thermoregulation following the evaporative cold challenge was not affected by deletion of Trpm8 in control or Cgrpα-expressing sensory neuron-ablated mice. Our data indicate that the enhanced behavioral responses to cold stimuli in CGRPα sensory neuron-ablated mice are dependent on functional TRPM8, whereas the other sensory and thermoregulatory phenotypes caused by CGRPα sensory neuron ablation are independent of TRPM8.

  4. Carcinoma Buccal Mucosa Underlying a Giant Cutaneous Horn: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2014-01-01

    Full Text Available Cutaneous horn is a conical, dense, and hyperkeratotic protrusion that often appears similar to the horn of an animal. Giant cutaneous horns are rare; no incidence or prevalence has been reported. The significance of cutaneous horns is that they occur in association with, or as a response to, a wide variety of underlying benign, premalignant, and malignant cutaneous diseases. A case of giant cutaneous horn of left oral commissure along with carcinoma left buccal mucosa is reported here as an extremely rare oral/perioral pathology.

  5. Temperature response of the neuronal cytoskeleton mapped via atomic force and fluorescence microscopy

    CERN Document Server

    Spedden, Elise; Staii, Cristian

    2013-01-01

    Neuronal cells change their growth properties in response to external physical stimuli such as variations in external temperature, stiffness of the growth substrate, or topographical guidance cues. Detailed knowledge of the mechanisms that control these biomechanical responses is necessary for understanding the basic principles that underlie neuronal growth and regeneration. Here, we present elasticity maps of living cortical neurons (embryonic rat) as a function of temperature, and correlate these maps to the locations of internal structural components of the cytoskeleton. Neurons display a significant increase in the average elastic modulus upon a decrease in ambient temperature from 37{\\deg}C to 25{\\deg}C. We demonstrate that the dominant mechanism by which the elasticity of the neurons changes in response to temperature is the stiffening of the actin components of the cytoskeleton induced by myosin II. We also report a reversible shift in the location and composition of the high-stiffness areas of the neu...

  6. Pipecolic acid enhancement of GABA response in single neurons of rat brain.

    Science.gov (United States)

    Takahama, K; Hashimoto, T; Wang, M W; Akaike, N; Hitoshi, T; Okano, Y; Kasé, Y; Miyata, T

    1986-03-01

    Using unit recording and microelectrophoresis, influence of pipecolic acid (PA), a major metabolite of lysine in the brain, on GABA and glycine responses was studied in the cerebral cortical and hippocampal pyramidal neurons of rats. With small currents, PA had no effect on the single neuron activities but enhanced GABA response without affecting glycine response. The finding provides a new evidence that PA may have a connection with central GABA system.

  7. Auto and crosscorrelograms for the spike response of LIF neurons with slow synapses

    CERN Document Server

    Moreno-Bote, Ruben

    2006-01-01

    An analytical description of the response properties of simple but realistic neuron models in the presence of noise is still lacking. We determine completely up to the second order the firing statistics of a single and a pair of leaky integrate-and-fire neurons (LIFs) receiving some common slowly filtered white noise. In particular, the auto- and cross-correlation functions of the output spike trains of pairs of cells are obtained from an improvement of the adiabatic approximation introduced in \\cite{Mor+04}. These two functions define the firing variability and firing synchronization between neurons, and are of much importance for understanding neuron communication.

  8. Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum.

    Directory of Open Access Journals (Sweden)

    Balint Nagy

    2017-08-01

    Full Text Available In the developing and adult brain, oligodendrocyte precursor cells (OPCs are influenced by neuronal activity: they are involved in synaptic signaling with neurons, and their proliferation and differentiation into myelinating glia can be altered by transient changes in neuronal firing. An important question that has been unanswered is whether OPCs can discriminate different patterns of neuronal activity and respond to them in a distinct way. Here, we demonstrate in brain slices that the pattern of neuronal activity determines the functional changes triggered at synapses between axons and OPCs. Furthermore, we show that stimulation of the corpus callosum at different frequencies in vivo affects proliferation and differentiation of OPCs in a dissimilar way. Our findings suggest that neurons do not influence OPCs in "all-or-none" fashion but use their firing pattern to tune the response and behavior of these nonneuronal cells.

  9. Specific responses of human hippocampal neurons are associated with better memory.

    Science.gov (United States)

    Suthana, Nanthia A; Parikshak, Neelroop N; Ekstrom, Arne D; Ison, Matias J; Knowlton, Barbara J; Bookheimer, Susan Y; Fried, Itzhak

    2015-08-18

    A population of human hippocampal neurons has shown responses to individual concepts (e.g., Jennifer Aniston) that generalize to different instances of the concept. However, recordings from the rodent hippocampus suggest an important function of these neurons is their ability to discriminate overlapping representations, or pattern separate, a process that may facilitate discrimination of similar events for successful memory. In the current study, we explored whether human hippocampal neurons can also demonstrate the ability to discriminate between overlapping representations and whether this selectivity could be directly related to memory performance. We show that among medial temporal lobe (MTL) neurons, certain populations of neurons are selective for a previously studied (target) image in that they show a significant decrease in firing rate to very similar (lure) images. We found that a greater proportion of these neurons can be found in the hippocampus compared with other MTL regions, and that memory for individual items is correlated to the degree of selectivity of hippocampal neurons responsive to those items. Moreover, a greater proportion of hippocampal neurons showed selective firing for target images in good compared with poor performers, with overall memory performance correlated with hippocampal selectivity. In contrast, selectivity in other MTL regions was not associated with memory performance. These findings show that a substantial proportion of human hippocampal neurons encode specific memories that support the discrimination of overlapping representations. These results also provide previously unidentified evidence consistent with a unique role of the human hippocampus in orthogonalization of representations in declarative memory.

  10. Horn installed in CNGS tunnel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The horn is installed for the CERN Neutrinos to Gran Sasso (CNGS) project. Protons collide with a graphite target producing charged particles that are focussed by the magnetic field in the horn. These particles will then pass into a decay tube where they decay into neutrinos, which travel towards a detector at Gran Sasso 732 km away in Italy.

  11. Responses of descending neurons to looming stimuli in the praying mantis Tenodera aridifolia.

    Science.gov (United States)

    Yamawaki, Yoshifumi; Toh, Yoshihiro

    2009-03-01

    Responses to visual stimuli of some neurons that descend the nerve cord from the brain were recorded extracellularly in the mantis Tenodera aridifolia. Most of the recorded neurons showed their largest responses to looming stimuli that simulated a black circle approaching towards the mantis. The neurons showed a transient excitatory response to a gradually darkening or receding circle. The neurons showed sustained excitation to the linearly expanding stimuli, but the spike frequency decreased rapidly. The responses of the neurons were affected by both the diameter and the speed of looming stimuli. Faster or smaller looming stimuli elicited a higher peak frequency. These responses were observed in both recordings from the connective between suboesophageal and prothoracic ganglia and the connective between prothoracic and mesothoracic ganglia. There was a one-to-one correspondence of spike firing between these two recordings with a fixed delay. The neurons had the receptive field on ipsilateral side to its axon at the cervical connective. These results suggest that there is a looming-sensitive descending neuron, with an axon projecting over prothoracic ganglion, in the mantis nervous system.

  12. Compartmentalized cGMP Responses of Olfactory Sensory Neurons inCaenorhabditis elegans.

    Science.gov (United States)

    Shidara, Hisashi; Hotta, Kohji; Oka, Kotaro

    2017-04-05

    Cyclic guanosine monophosphate (cGMP) plays a crucial role as a second messenger in the regulation of sensory signal transduction in many organisms. In AWC olfactory sensory neurons of Caenorhabditis elegans , cGMP also has essential and distinctive functions in olfactory sensation and adaptation. According to molecular genetic studies, when nematodes are exposed to odorants, a decrease in cGMP regulates cGMP-gated channels for olfactory sensation. Conversely, for olfactory adaptation, an increase in cGMP activates protein kinase G to modulate cellular physiological functions. Although these opposing cGMP responses in single neurons may occur at the same time, it is unclear how cGMP actually behaves in AWC sensory neurons. A hypothetical explanation for opposing cGMP responses is region-specific behaviors in AWC: for odor sensation, cGMP levels in cilia could decrease, whereas odor adaptation is mediated by increased cGMP levels in soma. Therefore, we visualized intracellular cGMP in AWC with a genetically encoded cGMP indicator, cGi500, and examined spatiotemporal cGMP responses in AWC neurons. The cGMP imaging showed that, after odor exposure, cGMP levels in AWC cilia decreased transiently, whereas levels in dendrites and soma gradually increased. These region-specific responses indicated that the cGMP responses in AWC neurons are explicitly compartmentalized. In addition, we performed Ca 2+ imaging to examine the relationship between cGMP and Ca 2+ These results suggested that AWC sensory neurons are in fact analogous to vertebrate photoreceptor neurons. SIGNIFICANCE STATEMENT Cyclic guanosine monophosphate (cGMP) plays crucial roles in the regulation of sensory signal transduction in many animals. In AWC olfactory sensory neurons of Caenorhabditis elegans , cGMP also has essential and distinctive functions involving olfactory sensation and adaptation. Here, we visualized intracellular cGMP in AWC neurons with a genetically encoded cGMP indicator and examined

  13. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Qu, Man; Li, Yunhui; Wu, Qiuli; Xia, Yankai; Wang, Dayong

    2017-05-01

    ERK signaling is one of the important mitogen-activated protein kinases (MAPKs). However, the role of ERK signaling in the regulation of response to engineered nanomaterial exposure is still largely unclear. In this study, using in vivo assay system of Caenorhabditis elegans, we investigated the function of ERK signaling in response to graphene oxide (GO) exposure and the underlying molecular mechanism. GO exposure increased the expression of MEK-2/MEK and MPK-1/ERK in the ERK signaling pathway. Mutation of mek-2 or mpk-1 resulted in a susceptibility to GO toxicity. Both the MEK-2 and the MPK-1 acted in neurons to regulate the response to GO exposure, and the neuronal expression of MEK-2 or MPK-1 caused a resistance to GO toxicity. In the neurons, SKN-1b/Nrf acted downstream of the MPK-1, and AEX-3, a guanine exchange factor for GTPase, further acted downstream of the SKN-1b to regulate the response to GO exposure. Therefore, a signaling cascade of MEK-2-MPK-1-SKN-1b/-AEX-3 was identified in the neurons required for the regulation of response to GO exposure. Moreover, genetic interaction assay demonstrated that the neuronal ERK signaling-mediated signaling pathway and the intestinal p38 MAPK-mediated signaling pathway functioned synergistically in the regulation of response to GO exposure. Our results highlight the crucial function of the neuronal ERK signaling in the regulation of response to nanomaterial exposure in organisms.

  14. Interferon-γ increases neuronal death in response to amyloid-β1-42

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2006-03-01

    Full Text Available Abstract Background Alzheimer's disease is a neurodegenerative disorder characterized by a progressive cognitive impairment, the consequence of neuronal dysfunction and ultimately the death of neurons. The amyloid hypothesis proposes that neuronal damage results from the accumulation of insoluble, hydrophobic, fibrillar peptides such as amyloid-β1-42. These peptides activate enzymes resulting in a cascade of second messengers including prostaglandins and platelet-activating factor. Apoptosis of neurons is thought to follow as a consequence of the uncontrolled release of second messengers. Biochemical, histopathological and genetic studies suggest that pro-inflammatory cytokines play a role in neurodegeneration during Alzheimer's disease. In the current study we examined the effects of interferon (IFN-γ, tumour necrosis factor (TNFα, interleukin (IL-1β and IL-6 on neurons. Methods Primary murine cortical or cerebellar neurons, or human SH-SY5Y neuroblastoma cells, were grown in vitro. Neurons were treated with cytokines prior to incubation with different neuronal insults. Cell survival, caspase-3 activity (a measure of apoptosis and prostaglandin production were measured. Immunoblots were used to determine the effects of cytokines on the levels of cytoplasmic phospholipase A2 or phospholipase C γ-1. Results While none of the cytokines tested were directly neurotoxic, pre-treatment with IFN-γ sensitised neurons to the toxic effects of amyloid-β1-42 or HuPrP82-146 (a neurotoxic peptide found in prion diseases. The effects of IFN-γ were seen on cortical and cerebellar neurons, and on SH-SY5Y neuroblastoma cells. However, pre-treatment with IFN-γ did not affect the sensitivity to neurons treated with staurosporine or hydrogen peroxide. Pre-treatment with IFN-γ increased the levels of cytoplasmic phospholipase A2 in SH-SY5Y cells and increased prostaglandin E2 production in response to amyloid-β1-42. Conclusion Treatment of neuronal cells

  15. Single Pulse Responses in Cultured Neuronal Networks to Describe Connectivity

    NARCIS (Netherlands)

    le Feber, Jakob; Corner, Michael

    2011-01-01

    Synaptic connections between neurons play a crucial role in cognitive processes like learning and memory. In recent work we developed a method, using conditional firing probability (CFP analysis), to estimate functional connectivity in terms of strength and latency, and here we further explored on

  16. Noise-modulated-microwave-induced response in snail neurons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.C.; Arber, S.L.

    1983-01-01

    Helix aspersa neurons were irradiated with noise-amplitude-modulated microwaves (carrier frequency 2450 MHz, 20% AM, 0-20 kHz, specific absorption rate 6.8 and 14.4 mW/g). It was found that such an exposure caused an appearance of high frequency bursts and a rise in membrane resistance.

  17. Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish.

    Science.gov (United States)

    Levi, Rafael; Akanyeti, Otar; Ballo, Aleksander; Liao, James C

    2015-01-15

    The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. First, we used sine wave stimulation to characterize the response properties of the afferent neurons. The average frequency-response curve was flat across stimulation frequencies between 0 and 100 Hz, matching the filtering properties of a displacement detector. Spike rate increased asymptotically with frequency, and phase locking was maximal between 10 and 60 Hz. Second, we used pulse train stimulation to analyze the maximum spike rate capabilities. We found that afferent neurons could generate up to 80 spikes/s and could follow a pulse train stimulation rate of up to 40 pulses/s in a reliable and precise manner. Both sine wave and pulse stimulation protocols indicate that an afferent neuron can maintain their evoked activity for longer durations at low stimulation frequencies than at high frequencies. We found one type of afferent neuron based on spontaneous activity patterns and discovered a correlation between the level of spontaneous and evoked activity. Overall, our results establish the baseline response properties of lateral line primary afferent neurons in larval zebrafish, which is a crucial step in understanding how vertebrate mechanoreceptive systems sense and subsequently process information from the environment. Copyright © 2015 the American Physiological Society.

  18. Role of serotonergic neurons in the Drosophila larval response to light

    Directory of Open Access Journals (Sweden)

    Campos Ana

    2009-06-01

    Full Text Available Abstract Background Drosophila larval locomotion consists of forward peristalsis interrupted by episodes of pausing, turning and exploratory behavior (head swinging. This behavior can be regulated by visual input as seen by light-induced increase in pausing, head swinging and direction change as well as reduction of linear speed that characterizes the larval photophobic response. During 3rd instar stage, Drosophila larvae gradually cease to be repelled by light and are photoneutral by the time they wander in search for a place to undergo metamorphosis. Thus, Drosophila larval photobehavior can be used to study control of locomotion. Results We used targeted neuronal silencing to assess the role of candidate neurons in the regulation of larval photobehavior. Inactivation of DOPA decarboxylase (Ddc neurons increases the response to light throughout larval development, including during the later stages of the 3rd instar characterized by photoneutral response. Increased response to light is characterized by increase in light-induced direction change and associated pause, and reduction of linear movement. Amongst Ddc neurons, suppression of the activity of corazonergic and serotonergic but not dopaminergic neurons increases the photophobic response observed during 3rd instar stage. Silencing of serotonergic neurons does not disrupt larval locomotion or the response to mechanical stimuli. Reduced serotonin (5-hydroxytryptamine, 5-HT signaling within serotonergic neurons recapitulates the results obtained with targeted neuronal silencing. Ablation of serotonergic cells in the ventral nerve cord (VNC does not affect the larval response to light. Similarly, disruption of serotonergic projections that contact the photoreceptor termini in the brain hemispheres does not impact the larval response to light. Finally, pan-neural over-expression of 5-HT1ADro receptors, but not of any other 5-HT receptor subtype, causes a significant decrease in the response to

  19. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    Full Text Available All organisms are confronted with dynamic environmental changes that challenge homeostasis, which is the operational definition of stress. Stress produces adaptive behavioral and physiological responses, which, in the Metazoa, are mediated through the actions of various hormones. Based on its associated phenotypes and its expression profiles, a candidate stress hormone in Drosophila is the corazonin neuropeptide. We evaluated the potential roles of corazonin in mediating stress-related changes in target behaviors and physiologies through genetic alteration of corazonin neuronal excitability. Ablation of corazonin neurons confers resistance to metabolic, osmotic, and oxidative stress, as measured by survival. Silencing and activation of corazonin neurons lead to differential lifespan under stress, and these effects showed a strong dependence on sex. Additionally, altered corazonin neuron physiology leads to fundamental differences in locomotor activity, and these effects were also sex-dependent. The dynamics of altered locomotor behavior accompanying stress was likewise altered in flies with altered corazonin neuronal function. We report that corazonin transcript expression is altered under starvation and osmotic stress, and that triglyceride and dopamine levels are equally impacted in corazonin neuronal alterations and these phenotypes similarly show significant sexual dimorphisms. Notably, these sexual dimorphisms map to corazonin neurons. These results underscore the importance of central peptidergic processing within the context of stress and place corazonin signaling as a critical feature of neuroendocrine events that shape stress responses and may underlie the inherent sexual dimorphic differences in stress responses.

  20. Magnetic, but not non-magnetic, reduced graphene oxide in spinal cord increases nociceptive neuronal responsiveness.

    Science.gov (United States)

    Manzo, Luis Paulo; Ceragioli, Helder; Bonet, Ivan José; Nishijima, Catarine Massucato; Vieira, Willians Fernando; Oliveira, Elaine Conceição; Destro-Filho, João-Batista; Sartori, César Renato; Tambeli, Claudia Herrera; Parada, Carlos Amilcar

    2017-07-01

    The interference between external magnetic fields and neurophysiology is not new, however, the role of the neuronal magnetic field remains unclear. This study aimed at investigating a possible role of the neuronal magnetic field in nociception. Highly and poorly magnetic reduced graphene oxide (rGO) was injected intrathecally in rats. Nociceptive responsiveness was greater in rats that received highly magnetic-rGO in von Frey electronic or intraplantar capsaicin tests. Furthermore, in vitro experiments demonstrated that the number of KCl-responsive DRG-neurons was greater when treated with highly magnetic-rGO when compared with non-magnetic-rGO. Our data also suggested that the mechanism underlying the increased nociceptive responsiveness involves increased Ca2+v activity. Complementary experiments excluded the cytotoxic and inflammatory effects of the magnetic-rGO in neuronal responsiveness. These data suggest that the disturbance of the neuronal magnetic field in spinal cord increases nociceptive responsiveness, suggesting an importance of the magnetic component of the electromagnetic field in neuronal transmission. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Learning of anticipatory responses in single neurons of the human medial temporal lobe.

    Science.gov (United States)

    Reddy, Leila; Poncet, Marlene; Self, Matthew W; Peters, Judith C; Douw, Linda; van Dellen, Edwin; Claus, Steven; Reijneveld, Jaap C; Baayen, Johannes C; Roelfsema, Pieter R

    2015-10-09

    Neuronal processes underlying the formation of new associations in the human brain are not yet well understood. Here human participants, implanted with depth electrodes in the brain, learned arbitrary associations between images presented in an ordered, predictable sequence. During learning we recorded from medial temporal lobe (MTL) neurons that responded to at least one of the pictures in the sequence (the preferred stimulus). We report that as a result of learning, single MTL neurons show asymmetric shifts in activity and start firing earlier in the sequence in anticipation of their preferred stimulus. These effects appear relatively early in learning, after only 11 exposures to the stimulus sequence. The anticipatory neuronal responses emerge while the subjects became faster in reporting the next item in the sequence. These results demonstrate flexible representations that could support learning of new associations between stimuli in a sequence, in single neurons in the human MTL.

  2. Cortically evoked responses of human pallidal neurons recorded during stereotactic neurosurgery.

    Science.gov (United States)

    Nishibayashi, Hiroki; Ogura, Mitsuhiro; Kakishita, Koji; Tanaka, Satoshi; Tachibana, Yoshihisa; Nambu, Atsushi; Kita, Hitoshi; Itakura, Toru

    2011-02-15

    Responses of neurons in the globus pallidus (GP) to cortical stimulation were recorded for the first time in humans. We performed microelectrode recordings of GP neurons in 10 Parkinson's disease (PD) patients and 1 cervical dystonia (CD) patient during surgeries to implant bilateral deep brain stimulation electrodes in the GP. To identify the motor territories in the external (GPe) and internal (GPi) segments of the GP, unitary responses evoked by stimulation of the primary motor cortex were observed by constructing peristimulus time histograms. Neurons in the motor territories of the GPe and GPi responded to cortical stimulation. Response patterns observed in the PD patients were combinations of an early excitation, an inhibition, and a late excitation. In addition, in the CD patient, a long-lasting inhibition was prominent, suggesting increased activity along the cortico-striato-GPe/GPi pathways. The firing rates of GPe and GPi neurons in the CD patient were lower than those in the PD patients. Many GPe and GPi neurons of the PD and CD patients showed burst or oscillatory burst activity. Effective cathodal contacts tended to be located close to the responding neurons. Such unitary responses induced by cortical stimulation may be of use to target motor territories of the GP for stereotactic functional neurosurgery. Future findings utilizing this method may give us new insights into understanding the pathophysiology of movement disorders. Copyright © 2011 Movement Disorder Society.

  3. Plasticity of Fear and Safety Neurons of the Amygdala in Response to Fear Extinction

    Science.gov (United States)

    Sangha, Susan

    2015-01-01

    Fear inhibition learning induces plasticity and remodeling of circuits within the amygdala. Most studies examine these changes in nondiscriminative fear conditioning paradigms. Using a discriminative fear, safety, and reward conditioning task, Sangha et al. (2013) have previously reported several neural microcircuits within the basal amygdala (BA) which discriminate among these cues, including a subpopulation of neurons responding selectively to a safety cue and not a fear cue. Here, the hypothesis that these “safety” neurons isolated during discriminative conditioning are biased to become fear cue responsive as a result of extinction, when fear behavior diminishes, was tested. Although 41% of “safety” neurons became fear cue responsive as a result of extinction, the data revealed that there was no bias for these neurons to become preferentially responsive during fear extinction compared to the other identified subgroups. In addition to the plasticity seen in the “safety” neurons, 44% of neurons unresponsive to either the fear cue or safety cue during discriminative conditioning became fear cue responsive during extinction. Together these emergent responses to the fear cue as a result of extinction support the hypothesis that new learning underlies extinction. In contrast, 47% of neurons responsive to the fear cue during discriminative conditioning became unresponsive to the fear cue during extinction. These findings are consistent with a suppression of neural responding mediated by inhibitory learning, or, potentially, by direct unlearning. Together, the data support extinction as an active process involving both gains and losses of responses to the fear cue and suggests the final output of the integrated BA circuit in influencing fear behavior is a balance of excitation and inhibition, and perhaps reversal of learning-induced changes. PMID:26733838

  4. On the acoustic wave sensor response to immortalized hypothalamic neurons at the device-liquid interface

    Directory of Open Access Journals (Sweden)

    Shilin Cheung

    2016-12-01

    Full Text Available The response of a thickness shear mode biosensor to immortalized murine hypothalamic neurons (mHypoE-38 and -46 cells under a variety of conditions and stimuli is discussed. Cellular studies which lead to the production of detectable neuronal responses include neuronal deposition, adhesion and proliferation, alteration in the extent of specific cell-surface interactions, actin filament and microtubule cytoskeletal disruptions, effects of cell depolarization, inhibition of the Na+-K+ pump via ouabain, effects of neuronal synchronization and the effects ligand-receptor interaction (glucagon. In the presence of cells, fs shifts are largely influenced by the damping of the TSM resonator. The formation of cell-surface interactions and hence the increase in coupling and acoustic energy dissipation can be modeled as an additional resistor in the BVD model. Further sensor and cellular changes can be obtained by negating the effects of damping from fs via the use of Rm and θmax.

  5. Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae).

    Science.gov (United States)

    Oliva, Damián; Medan, Violeta; Tomsic, Daniel

    2007-03-01

    Behavioral responses to looming stimuli have been studied in many vertebrate and invertebrate species, but neurons sensitive to looming have been investigated in very few animals. In this paper we introduce a new experimental model using the crab Chasmagnathus granulatus, which allows investigation of the processes of looming detection and escape decision at both the behavioral and neuronal levels. By analyzing the escape response of the crab in a walking simulator device we show that: (i) a robust and reliable escape response can be elicited by computer-generated looming stimuli in all tested animals; (ii) parameters such as distance, speed, timing and directionality of the escape run, are easy to record and quantify precisely in the walking device; (iii) although the magnitude of escape varies between animals and stimulus presentations, the timing of the response is remarkably consistent and does not habituate at 3 min stimulus intervals. We then study the response of neurons from the brain of the crab by means of intracellular recordings in the intact animal and show that: (iv) two subclasses of previously identified movement detector neurons from the lobula (third optic neuropil) exhibit robust and reliable responses to the same looming stimuli that trigger the behavioral response; (v) the neurons respond to the object approach by increasing their rate of firing in a way that closely matches the dynamics of the image expansion. Finally, we compare the neuronal with the behavioral response showing that: (vi) differences in the neuronal responses to looming, receding or laterally moving stimuli closely reflect the behavioral differences to such stimuli; (vii) during looming, the crab starts to run soon after the looming-sensitive neurons begin to increase their firing rate. The increase in the running speed during stimulus approach faithfully follows the increment in the firing rate, until the moment of maximum stimulus expansion. Thereafter, the neurons abruptly

  6. Responses of neurons in the cat primary auditory cortex to sequential sounds.

    Science.gov (United States)

    Zhang, J; Nakamoto, K T; Kitzes, L M

    2009-06-30

    In the natural acoustic environment sounds frequently arrive at the two ears in quick succession. The responses of a cortical neuron to acoustic stimuli can be dramatically altered, usually suppressed, by a preceding sound. The purpose of this study was to determine if the binaural interaction evoked by a preceding sound is involved in subsequent suppressive interactions observed in auditory cortex neurons. Responses of neurons in the primary auditory cortex (AI) exhibiting binaural suppressive interactions (EO/I) were studied in barbiturate-anesthetized cats. For the majority (72.5%) of EO/I neurons studied, the response to a monaural contralateral stimulus was suppressed by a preceding monaural contralateral stimulus, but was not changed by a preceding monaural ipsilateral stimulus. For this subset of EO/I neurons, when a monaural contralateral stimulus was preceded by a binaural stimulus, the level of both the ipsilateral and the contralateral component of the binaural stimulus influenced the response to the subsequent monaural contralateral stimulus. When the contralateral level of the binaural stimulus was constant, increasing its ipsilateral level decreased the suppression of the response to the subsequent monaural contralateral stimulus. When the ipsilateral level of the binaural stimulus was constant, increasing its contralateral level increased the suppression of the response to the subsequent monaural contralateral stimulus. These results demonstrate that the sequential inhibition of responses of AI neurons is a function of the product of a preceding binaural interaction. The magnitude of the response to the contralateral stimulus is related to, but not determined by the magnitude of the response to the preceding binaural stimulus. Possible mechanisms of this sequential interaction are discussed.

  7. Caudate neuronal recording in freely behaving animals following acute and chronic dose response methylphenidate exposure.

    Science.gov (United States)

    Claussen, Catherine M; Dafny, Nachum

    2015-09-01

    The misuse and abuse of the psychostimulant, methylphenidate (MPD) the drug of choice in the treatment of attention deficit hyperactivity disorder (ADHD) has seen a sharp uprising in recent years among both youth and adults for its cognitive enhancing effects and for recreational purposes. This uprise in illicit use has lead to many questions concerning the long-term consequences of MPD exposure. The objective of this study was to record animal behavior concomitantly with the caudate nucleus (CN) neuronal activity following acute and repetitive (chronic) dose response exposure to methylphenidate (MPD). A saline control and three MPD dose (0.6, 2.5, and 10.0mg/kg) groups were used. Behaviorally, the same MPD dose in some animals following chronic MPD exposure elicited behavioral sensitization and other animals elicited behavioral tolerance. Based on this finding, the CN neuronal population recorded from animals expressing behavioral sensitization was also evaluated separately from CN neurons recorded from animals expressing behavioral tolerance to chronic MPD exposure, respectively. Significant differences in CN neuronal population responses between the behaviorally sensitized and the behaviorally tolerant animals were observed for the 2.5 and 10.0mg/kg MPD exposed groups. For 2.5mg/kg MPD, behaviorally sensitized animals responded by decreasing their firing rates while behaviorally tolerant animals showed mainly an increase in their firing rates. The CN neuronal responses recorded from the behaviorally sensitized animals following 10.0mg/kg MPD responded by increasing their firing rates whereas the CN neuronal recordings from the behaviorally tolerant animals showed that approximately half decreased their firing rates in response to 10.0mg/kg MPD exposure. The comparison of percentage change in neuronal firing rates showed that the behaviorally tolerant animals trended to exhibit increases in their neuronal firing rates at ED1 following initial MPD exposure and

  8. A Unique "Angiotensin-Sensitive" Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress.

    Science.gov (United States)

    de Kloet, Annette D; Wang, Lei; Pitra, Soledad; Hiller, Helmut; Smith, Justin A; Tan, Yalun; Nguyen, Dani; Cahill, Karlena M; Sumners, Colin; Stern, Javier E; Krause, Eric G

    2017-03-29

    Stress elicits neuroendocrine, autonomic, and behavioral responses that mitigate homeostatic imbalance and ensure survival. However, chronic engagement of such responses promotes psychological, cardiovascular, and metabolic impairments. In recent years, the renin-angiotensin system has emerged as a key mediator of stress responding and its related pathologies, but the neuronal circuits that orchestrate these interactions are not known. These studies combine the use of the Cre-recombinase/loxP system in mice with optogenetics to structurally and functionally characterize angiotensin type-1a receptor-containing neurons of the paraventricular nucleus of the hypothalamus, the goal being to determine the extent of their involvement in the regulation of stress responses. Initial studies use neuroanatomical techniques to reveal that angiotensin type-1a receptors are localized predominantly to the parvocellular neurosecretory neurons of the paraventricular nucleus of the hypothalamus. These neurons are almost exclusively glutamatergic and send dense projections to the exterior portion of the median eminence. Furthermore, these neurons largely express corticotrophin-releasing hormone or thyrotropin-releasing hormone and do not express arginine vasopressin or oxytocin. Functionally, optogenetic stimulation of these neurons promotes the activation of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as well as a rise in systolic blood pressure. When these neurons are optogenetically inhibited, the activity of these neuroendocrine axes are suppressed and anxiety-like behavior in the elevated plus maze is dampened. Collectively, these studies implicate this neuronal population in the integration and coordination of the physiological responses to stress and may therefore serve as a potential target for therapeutic intervention for stress-related pathology.SIGNIFICANCE STATEMENT Chronic stress leads to an array of physiological responses that ultimately

  9. Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera.

    Science.gov (United States)

    Haehnel, Melanie; Menzel, Randolf

    2012-02-01

    Honeybees learn to associate an odor with sucrose reward under conditions that allow the monitoring of neural activity by imaging Ca(2+) transients in morphologically identified neurons. Here we report such recordings from mushroom body extrinsic neurons - which belong to a recurrent tract connecting the output of the mushroom body with its input, potentially providing inhibitory feedback - and other extrinsic neurons. The neurons' responses to the learned odor and two novel control odors were measured 24 h after learning. We found that calcium responses to the learned odor and an odor that was strongly generalized with it were enhanced compared with responses to a weakly generalized control. Thus, the physiological responses measured in these extrinsic neurons accurately reflect what is observed in behavior. We conclude that the recorded recurrent neurons feed information back to the mushroom body about the features of learned odor stimuli. Other extrinsic neurons may signal information about learned odors to different brain regions.

  10. Gender differences in human single neuron responses to male emotional faces.

    Science.gov (United States)

    Newhoff, Morgan; Treiman, David M; Smith, Kris A; Steinmetz, Peter N

    2015-01-01

    Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala.

  11. Hippocampal adaptive response following extensive neuronal loss in an inducible transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Kristoffer Myczek

    Full Text Available Neuronal loss is a common component of a variety of neurodegenerative disorders (including Alzheimer's, Parkinson's, and Huntington's disease and brain traumas (stroke, epilepsy, and traumatic brain injury. One brain region that commonly exhibits neuronal loss in several neurodegenerative disorders is the hippocampus, an area of the brain critical for the formation and retrieval of memories. Long-lasting and sometimes unrecoverable deficits caused by neuronal loss present a unique challenge for clinicians and for researchers who attempt to model these traumas in animals. Can these deficits be recovered, and if so, is the brain capable of regeneration following neuronal loss? To address this significant question, we utilized the innovative CaM/Tet-DT(A mouse model that selectively induces neuronal ablation. We found that we are able to inflict a consistent and significant lesion to the hippocampus, resulting in hippocampally-dependent behavioral deficits and a long-lasting upregulation in neurogenesis, suggesting that this process might be a critical part of hippocampal recovery. In addition, we provide novel evidence of angiogenic and vasculature changes following hippocampal neuronal loss in CaM/Tet-DTA mice. We posit that angiogenesis may be an important factor that promotes neurogenic upregulation following hippocampal neuronal loss, and both factors, angiogenesis and neurogenesis, can contribute to the adaptive response of the brain for behavioral recovery.

  12. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise.

    Science.gov (United States)

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  13. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise

    Science.gov (United States)

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons. PMID:29209192

  14. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise

    Directory of Open Access Journals (Sweden)

    Feibiao Zhan

    2017-11-01

    Full Text Available Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  15. Factors responsible for neurofibrillary tangles and neuronal cell losses in tauopathy.

    Science.gov (United States)

    Wakasaya, Yasuhito; Kawarabayashi, Takeshi; Watanabe, Mitsunori; Yamamoto-Watanabe, Yukiko; Takamura, Ayumi; Kurata, Tomoko; Murakami, Tetsuro; Abe, Koji; Yamada, Kiyofumi; Wakabayashi, Koichi; Sasaki, Atsushi; Westaway, David; Hyslop, Peter St George; Matsubara, Etsuro; Shoji, Mikio

    2011-04-01

    TgTauP301L mice that overexpress the mutant human tauP301L present in FTDP-17 reproduce neurofibrillary tangles (NFTs), neuronal cell losses, memory disturbance, and substantial phenotypic variation. To demonstrate factors responsible for NFT formation and neuronal cell losses, sets of TgTauP301L for comparison with or without NFTs and neuronal cell losses were studied with oligonucleotide microarrays. Gene expressions were altered in biological pathways, including oxidative stress, apoptosis, mitochondrial fatty acid betaoxidation, inflammatory response pathway, and complement and coagulation cascade pathways. Among 24 altered genes, increased levels of apolipoprotein D (ApoD) and neuronal PAS domain protein 4 (Npas4) and decreased levels of doublecortin (DCX) and potassium channel, voltage-gated, shaker-related subfamily, β member 1 (Kcnab1) were found in the TgTauP301L with NFTs and neuronal cell losses, Alzheimer's brains, and tauopathy brains. Thus, many biological pathways and novel molecules are associated with NFT formation and neuronal cell losses in tauopathy brains. Copyright © 2011 Wiley-Liss, Inc.

  16. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication

    Directory of Open Access Journals (Sweden)

    Gefei Wang

    2016-01-01

    Full Text Available Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i. but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy.

  17. Spectral reconstruction of phase response curves reveals the synchronization properties of mouse globus pallidus neurons.

    Science.gov (United States)

    Goldberg, Joshua A; Atherton, Jeremy F; Surmeier, D James

    2013-11-01

    The propensity of a neuron to synchronize is captured by its infinitesimal phase response curve (iPRC). Determining whether an iPRC is biphasic, meaning that small depolarizing perturbations can actually delay the next spike, if delivered at appropriate phases, is a daunting experimental task because negative lobes in the iPRC (unlike positive ones) tend to be small and may be occluded by the normal discharge variability of a neuron. To circumvent this problem, iPRCs are commonly derived from numerical models of neurons. Here, we propose a novel and natural method to estimate the iPRC by direct estimation of its spectral modes. First, we show analytically that the spectral modes of the iPRC of an arbitrary oscillator are readily measured by applying weak harmonic perturbations. Next, applying this methodology to biophysical neuronal models, we show that a low-dimensional spectral reconstruction is sufficient to capture the structure of the iPRC. This structure was preserved reasonably well even with added physiological scale jitter in the neuronal models. To validate the methodology empirically, we applied it first to a low-noise electronic oscillator with a known design and then to cortical pyramidal neurons, recorded in whole cell configuration, that are known to possess a monophasic iPRC. Finally, using the methodology in conjunction with perforated-patch recordings from pallidal neurons, we show, in contrast to recent modeling studies, that these neurons have biphasic somatic iPRCs. Biphasic iPRCs would cause lateral somatically targeted pallidal inhibition to desynchronize pallidal neurons, providing a plausible explanation for their lack of synchrony in vivo.

  18. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.

    Directory of Open Access Journals (Sweden)

    Tristan Aumentado-Armstrong

    2015-10-01

    Full Text Available Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.

  19. Serum Response Factor (SRF mediated gene activity in physiological and pathological processes of neuronal motility

    Directory of Open Access Journals (Sweden)

    Bernd eKnoll

    2011-12-01

    Full Text Available In recent years, the transcription factor SRF (serum response factor was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance and e.g. synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility and neurite branching. SRF teams up with MRTFs (myocardin related transcription factors and TCFs (ternary complex factors to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration.

  20. Influence of probe flexibility and gelatin embedding on neuronal density and glial responses to brain implants.

    Directory of Open Access Journals (Sweden)

    Per Köhler

    Full Text Available To develop long-term high quality communication between brain and computer, a key issue is how to reduce the adverse foreign body responses. Here, the impact of probe flexibility and gelatine embedding on long-term (6w tissue responses, was analyzed. Probes of same polymer material, size and shape, flexible mainly in one direction, were implanted in rat cerebral cortex (nimplants = 3 x 8 in two orientations with respect to the major movement direction of the brain relative to the skull: parallel to (flex mode or transverse to (rigid mode. Flex mode implants were either embedded in gelatin or non-embedded. Neurons, activated microglia and astrocytes were visualized using immunohistochemistry. The astrocytic reactivity, but not microglial response, was significantly lower to probes implanted in flex mode as compared to rigid mode. The microglial response, but not astrocytic reactivity, was significantly smaller to gelatin embedded probes (flex mode than non-embedded. Interestingly, the neuronal density was preserved in the inner zone surrounding gelatin embedded probes. This contrasts to the common reports of reduced neuronal density close to implanted probes. In conclusion, sheer stress appears to be an important factor for astrocytic reactivity to implanted probes. Moreover, gelatin embedding can improve the neuronal density and reduce the microglial response close to the probe.

  1. Effect of feature-selective attention on neuronal responses in macaque area MT

    Science.gov (United States)

    Chen, X.; Hoffmann, K.-P.; Albright, T. D.

    2012-01-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961

  2. Responses from two firing patterns in inferior colliculus neurons to stimulation of the lateral lemniscus dorsal nucleus

    Directory of Open Access Journals (Sweden)

    Xiao-ting Li

    2016-01-01

    Full Text Available The γ-aminobutyric acid neurons (GABAergic neurons in the inferior colliculus are classified into various patterns based on their intrinsic electrical properties to a constant current injection. Although this classification is associated with physiological function, the exact role for neurons with various firing patterns in acoustic processing remains poorly understood. In the present study, we analyzed characteristics of inferior colliculus neurons in vitro, and recorded responses to stimulation of the dorsal nucleus of the lateral lemniscus using the whole-cell patch clamp technique. Seven inferior colliculus neurons were tested and were classified into two firing patterns: sustained-regular (n = 4 and sustained-adapting firing patterns (n = 3. The majority of inferior colliculus neurons exhibited slight changes in response to stimulation and bicuculline. The responses of one neuron with a sustained-adapting firing pattern were suppressed after stimulation, but recovered to normal levels following application of the γ-aminobutyric acid receptor antagonist. One neuron with a sustained-regular pattern showed suppressed stimulation responses, which were not affected by bicuculline. Results suggest that GABAergic neurons in the inferior colliculus exhibit sustained-regular or sustained-adapting firing patterns. Additionally, GABAergic projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus are associated with sound localization. The different neuronal responses of various firing patterns suggest a role in sound localization. A better understanding of these mechanisms and functions will provide better clinical treatment paradigms for hearing deficiencies.

  3. Responses of neurons in the rat's ventral nucleus of the lateral lemniscus to monaural and binaural tone bursts.

    Science.gov (United States)

    Zhang, Huiming; Kelly, Jack B

    2006-04-01

    Responses to monaural and binaural tone bursts were recorded from neurons in the rat's ventral nucleus of the lateral lemniscus (VNLL). Most of the neurons (55%) had V- or U-shaped frequency-tuning curves with a single clearly defined characteristic frequency (CF). However, many neurons had more complex, multipeaked tuning curves (37%), or other patterns (8%). Temporal firing patterns included both onset and sustained responses to contralateral tone bursts. Onset and sustained responses were distributed along the dorsoventral length of VNLL with no indication of segregation into different regions. Onset neurons had shorter average first-spike latencies than neurons with sustained responses (means, 8.3 vs. 14.8 ms). They also had less jitter, as reflected in the SD of first-spike latencies, than neurons with sustained responses (means, 0.59 and 4.2 ms, respectively). The extent of jitter decreased with an increase in stimulus intensity for neurons with sustained responses, but remained unchanged for onset neurons tested over the same range. Many neurons had binaural responses, primarily of the excitatory/inhibitory (EI) type, widely distributed along the dorsoventral extent of VNLL. Local application of the AMPA receptor antagonist NBQX reduced excitatory responses, indicating that responses were dependent on synaptic activity and not recorded from passing fibers. The results show that many neurons in VNLL have a precision of timing that is well suited for processing auditory temporal information. In the rat, these neurons are intermingled among cells with less precise temporal response features and include cells with binaural as well as monaural responses.

  4. Physiological properties of spinal lamina II GABAergic neurons in mice following peripheral nerve injury.

    Science.gov (United States)

    Schoffnegger, Doris; Heinke, Bernhard; Sommer, Claudia; Sandkühler, Jürgen

    2006-12-15

    Aberrant GABAergic inhibition in spinal dorsal horn may underlie some forms of neuropathic pain. Potential, but yet unexplored, mechanisms include reduced excitability, abnormal discharge patterns or altered synaptic input of spinal GABAergic neurons. To test these hypotheses, we quantitatively compared active and passive membrane properties, firing patterns in response to depolarizing current steps and synaptic input of GABAergic neurons in spinal dorsal horn lamina II of neuropathic and of control animals. Transgenic mice were used which expressed enhanced green fluorescent protein (EGFP) controlled by the GAD67 promoter, thereby labelling one-third of all spinal GABAergic neurons. In all neuropathic mice included in this study, chronic constriction injury of one sciatic nerve led to tactile allodynia and thermal hyperalgesia. Control mice were sham-operated. Membrane excitability of GABAergic neurons from neuropathic or sham-treated animals was indistinguishable. The most frequent firing patterns observed in neuropathic and sham-operated animals were the initial burst (neuropathic: 46%, sham-treated: 42%), the gap (neuropathic: 31%, sham-treated: 29%) and the tonic firing pattern (neuropathic: 16%, sham-treated: 24%). The synaptic input from dorsal root afferents was similar in neuropathic and in control animals. Thus, a reduced membrane excitability, altered firing patterns or changes in synaptic input of this group of GABAergic neurons in lamina II of the spinal cord dorsal horn are unlikely causes for neuropathic pain.

  5. Ablation of serum response factor in dopaminergic neurons exacerbates susceptibility towards MPTP-induced oxidative stress.

    Science.gov (United States)

    Rieker, Claus; Schober, Andreas; Bilbao, Ainhoa; Schütz, Günther; Parkitna, Jan Rodriguez

    2012-03-01

    The high susceptibility of dopaminergic (DA) neurons to cellular stress is regarded as a primary cause of Parkinson's disease. Here we investigate the role of the serum response factor (SRF), an important regulator of anti-apoptotic responses, for the survival of DA neurons in mice. We show that loss of SRF in DA neurons does not affect their viability and does not influence dopamine-dependent behaviors. However, ablation of SRF causes exacerbated sensitivity to 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP), leading to significantly greater loss of DA neurons in the substantia nigra, compared with DA neurons located in the ventral tegmental area. In addition, loss of SRF decreases levels of the anti-apoptotic proteins brain-derived neurotrophic factor (BDNF) and Bcl-2, a plausible underlying cause of increased sensitivity to oxidative stress. These observations support the notion that dysfunction of the SRF-activating mitogen-associated kinase pathway may be part of Parkinson's disease etiology. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Relating neuronal to behavioral performance: variability of optomotor responses in the blowfly.

    Directory of Open Access Journals (Sweden)

    Ronny Rosner

    Full Text Available Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly's (Calliphora vicina visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system.

  7. Looming responses of telencephalic neurons in the pigeon are modulated by optic flow.

    Science.gov (United States)

    Xiao, Qian; Frost, Barrie J

    2009-12-11

    The movement of animals through space filled with various objects requires the interaction between neuronal mechanisms specialized for processing local object motion and those specialized for processing optic flow generated by self-motion of the animal. In the avian brain, visual nuclei in the tectofugal pathway are primarily involved in the detection of object motion. By contrast, the nucleus of the basal optic root (nBOR) and the pretectal nucleus lentiformis mesencephali (nLM) are dedicated to the analysis of optic flow. But little is known about how these two systems interact. Using single-unit recording in the entopallium of the tectofugal pathway, we show that some neurons appeared to be integrating visual information of looming objects and whole-field motion simulating optic flow. They specifically responded to looming objects, but their looming responses were modulated by optic flow. Optic flow in the nasotemporal direction, typically produced by the forward movement of the bird, only mildly inhibited the looming responses. Furthermore, these neurons started firing later than when the looming object was presented against a stationary background. However, optic flow in other directions, especially the temporonasal direction, strongly inhibited their looming responses. Previous studies have implicated looming-sensitive neurons in predator avoidance behavior and these results suggest that a bird in motion may need less time to initiate an avoidance response to an approaching object.

  8. Interactive Responses of a Thalamic Neuron to Formalin Induced Lasting Pain in Behaving Mice

    Science.gov (United States)

    Huh, Yeowool; Bhatt, Rushi; Jung, DaeHyun; Shin, Hee-sup; Cho, Jeiwon

    2012-01-01

    Thalamocortical (TC) neurons are known to relay incoming sensory information to the cortex via firing in tonic or burst mode. However, it is still unclear how respective firing modes of a single thalamic relay neuron contribute to pain perception under consciousness. Some studies report that bursting could increase pain in hyperalgesic conditions while others suggest the contrary. However, since previous studies were done under either neuropathic pain conditions or often under anesthesia, the mechanism of thalamic pain modulation under awake conditions is not well understood. We therefore characterized the thalamic firing patterns of behaving mice in response to nociceptive pain induced by inflammation. Our results demonstrated that nociceptive pain responses were positively correlated with tonic firing and negatively correlated with burst firing of individual TC neurons. Furthermore, burst properties such as intra-burst-interval (IntraBI) also turned out to be reliably correlated with the changes of nociceptive pain responses. In addition, brain stimulation experiments revealed that only bursts with specific bursting patterns could significantly abolish behavioral nociceptive responses. The results indicate that specific patterns of bursting activity in thalamocortical relay neurons play a critical role in controlling long-lasting inflammatory pain in awake and behaving mice. PMID:22292022

  9. Responses of tectal neurons to contrasting stimuli: an electrophysiological study in the barn owl.

    Directory of Open Access Journals (Sweden)

    Yael Zahar

    Full Text Available The saliency of visual objects is based on the center to background contrast. Particularly objects differing in one feature from the background may be perceived as more salient. It is not clear to what extent this so called "pop-out" effect observed in humans and primates governs saliency perception in non-primates as well. In this study we searched for neural-correlates of pop-out perception in neurons located in the optic tectum of the barn owl. We measured the responses of tectal neurons to stimuli appearing within the visual receptive field, embedded in a large array of additional stimuli (the background. Responses were compared between contrasting and uniform conditions. In a contrasting condition the center was different from the background while in the uniform condition it was identical to the background. Most tectal neurons responded better to stimuli in the contrsating condition compared to the uniform condition when the contrast between center and background was the direction of motion but not when it was the orientation of a bar. Tectal neurons also preferred contrasting over uniform stimuli when the center was looming and the background receding but not when the center was receding and the background looming. Therefore, our results do not support the hypothesis that tectal neurons are sensitive to pop-out per-se. The specific sensitivity to the motion contrasting stimulus is consistent with the idea that object motion and not large field motion (e.g., self-induced motion is coded in the neural responses of tectal neurons.

  10. Responses of tectal neurons to contrasting stimuli: an electrophysiological study in the barn owl.

    Science.gov (United States)

    Zahar, Yael; Wagner, Hermann; Gutfreund, Yoram

    2012-01-01

    The saliency of visual objects is based on the center to background contrast. Particularly objects differing in one feature from the background may be perceived as more salient. It is not clear to what extent this so called "pop-out" effect observed in humans and primates governs saliency perception in non-primates as well. In this study we searched for neural-correlates of pop-out perception in neurons located in the optic tectum of the barn owl. We measured the responses of tectal neurons to stimuli appearing within the visual receptive field, embedded in a large array of additional stimuli (the background). Responses were compared between contrasting and uniform conditions. In a contrasting condition the center was different from the background while in the uniform condition it was identical to the background. Most tectal neurons responded better to stimuli in the contrsating condition compared to the uniform condition when the contrast between center and background was the direction of motion but not when it was the orientation of a bar. Tectal neurons also preferred contrasting over uniform stimuli when the center was looming and the background receding but not when the center was receding and the background looming. Therefore, our results do not support the hypothesis that tectal neurons are sensitive to pop-out per-se. The specific sensitivity to the motion contrasting stimulus is consistent with the idea that object motion and not large field motion (e.g., self-induced motion) is coded in the neural responses of tectal neurons.

  11. Responses of Human Medial Temporal Lobe Neurons Are Modulated by Stimulus Repetition

    Science.gov (United States)

    Pedreira, Carlos; Mormann, Florian; Kraskov, Alexander; Cerf, Moran; Fried, Itzhak; Koch, Christof

    2010-01-01

    Recent studies have reported the presence of single neurons with strong responses to visual inputs in the human medial temporal lobe. Here we show how repeated stimulus presentation—photos of celebrities and familiar individuals, landmark buildings, animals, and objects—modulates the firing rate of these cells: a consistent decrease in the neural activity was registered as images were repeatedly shown during experimental sessions. The effect of repeated stimulus presentation was not the same for all medial temporal lobe areas. These findings are consistent with the view that medial temporal lobe neurons link visual percepts to declarative memory. PMID:19864436

  12. Neuronal responses to looming objects in the superior colliculus of the cat.

    Science.gov (United States)

    Liu, Yong-Jun; Wang, Qian; Li, Bing

    2011-01-01

    The superior colliculus (SC) in the mammalian mesencephalon is involved in avoidance or escape behaviors, but little is known about the response properties of collicular neurons to an object approaching on a collision course towards the animal. The present study identified two classes of looming-sensitive neurons, rho and eta cells, in the SC of the cat, but did not find any tau cell, which has been observed in the pigeon tectofugal pathway. The looming responses were characterized by distinct firing patterns, in which the neuronal discharge steadily increased as the object was approaching, and peaked approximately at the time of collision (rho cell) or some time earlier (eta cell). The response onset time of both rho and eta cells was linearly related to the square root of the diameter/velocity ratio of looming objects; whereas for eta cells, the response peak time was linearly related to the diameter/velocity ratio. The receptive fields of these collicular cells were composed of an excitatory center and a suppressive surround, but the occurrence and development of neuronal responses to looming stimuli were independent of the receptive-field organization. Although the cell number was relatively small in the deep layers of the SC, the proportion of looming-sensitive neurons was close to that in the superficial layers. These results suggest that a population of collicular cells is involved in signaling impending collision of a looming object with the animal and the neural mechanisms underlying the collision avoidance behaviors are to some extent conservative across species from insects to mammals. Copyright © 2011 S. Karger AG, Basel.

  13. Electrical characteristics and responses to jejunal distension of neurons in Remak's juxta-jejunal ganglia of the domestic fowl

    Science.gov (United States)

    Smith, Terence K; Lunam, Christine A

    1998-01-01

    Remak's nerve is a ganglionated nerve trunk found only in birds that runs parallel to the gut from the duodenal–jejunal junction to the cloaca. We report the first electrophysiological characterization of these neurons and their responses to gut distension. A segment of chicken jejunum with attached Remak's nerve was pinned in an electrophysiological chamber. Neurons in Remak's ganglia were impaled with microelectrodes. The adjacent segment of gut was distended with fluid. One hundred and thirty neurons were characterized into three electrophysiological classes: (i) tonic neurons (74 %) fired action potentials spontaneously (frequency 3.5 Hz) and continuously (up to 40 Hz) throughout a depolarizing current pulse; (ii) AD neurons (22 %) fired a brief burst of action potentials (1–10), which were followed by a prolonged after-depolarization (AD) of duration 2.8 ± 0.3 s; and (iii) phasic neurons (4 %) fired an initial burst of action potentials followed by an after-hyperpolarization (duration, 520.0 ± 32.0 ms). Tetrodotoxin (1 μM) abolished action potentials in tonic and AD neurons as well as the after-depolarization. Spontaneous fast excitatory postsynaptic potentials (FEPSPs) occurred in all classes of neurons; they were not observed, however, in ganglia isolated from the jejunum. Intracellular injection of biocytin revealed that neurons could be characterized into four morphological classes. Tonic neurons, which had long and extensive dendritic trees, were Remak's Type I, II and IV neurons. AD neurons also comprised Remak's type II neurons. Phasic neurons were Remak's Type III neurons. Most neurons had axons that projected orally along Remak's nerve. Distension of the jejunum evoked FEPSPs and action potentials in tonic neurons, and repetitive bursts of action potentials (1–4) followed by an after-depolarization in AD neurons. All responses to distension were blocked by hexamethonium (300 μM) and tetrodotoxin (1 μM). In conclusion, neurons in Remak

  14. Gender Differences in Human Single Neuron Responses to Male Emotional Faces

    Directory of Open Access Journals (Sweden)

    Morgan eNewhoff

    2015-09-01

    Full Text Available Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions.This study included recordings of single-neuron activity of 14 (6 male epileptic patients in four brain areas: amygdala (236 neurons, hippocampus (n=270, anterior cingulate cortex (n=256, and ventromedial prefrontal cortex (n=174. Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions.Significant gender differences were found in the left amygdala, where 23% (n=15/66 of neurons in men were significantly affected by facial emotion, versus 8% (n=6/76 of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p<0.01. These results show specific differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala.

  15. The broad spectrum of signaling pathways regulated by unfolded protein response in neuronal homeostasis.

    Science.gov (United States)

    Saito, Atsushi; Imaizumi, Kazunori

    2017-06-28

    The protein folding capabilities in the endoplasmic reticulum (ER) are disturbed by alternations in the cellular homeostasis such as the disruption of calcium ion homeostasis, the expression of mutated proteins and oxidative stress. In response to these ER dysfunctions, eukaryotic cells activate canonical branches of signal transduction cascades to restore the protein folding capacity and avoid irreversible damages, collectively termed the unfolded protein response (UPR). Prolonged ER dysfunctions and the downregulation of UPR signaling pathways have been accepted as a crucial trigger for the pathogenesis of various neurodegenerative diseases. Furthermore, recent studies have revealed that the UPR has a wide spectrum of signaling pathways for unique physiological roles in the diverse developmental, differential and lipidomic processes. A developed and intricate ER network exists in the neurites of neurons. Neuronal ER functions and ER-derived signaling mediate efficient communication between cell soma and distal sites through local protein synthesis, sorting and lipogenesis. However, relevant of ER-derived UPR signaling pathways in the elaborate mechanisms regulating neuronal activities, synaptic functions and protective responses against injury is not fully elucidated. In this review, we summarized our current understanding of how the UPR functions provide the appropriate signals for neuronal capabilities. We also reviewed how UPR dysfunctions lead to the pathogenesis of neurodegenerative diseases, and the possibilities ameliorating their toxic effects by targeting UPR components. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The internal state of medium spiny neurons varies in response to different input signals

    Directory of Open Access Journals (Sweden)

    Miller Gary W

    2010-03-01

    Full Text Available Abstract Background Parkinson's disease, schizophrenia, Huntington's chorea and drug addiction are manifestations of malfunctioning neurons within the striatum region at the base of the human forebrain. A key component of these neurons is the protein DARPP-32, which receives and processes various types of dopamine and glutamate inputs and translates them into specific biochemical, cellular, physiological, and behavioral responses. DARPP-32's unique capacity of faithfully converting distinct neurotransmitter signals into appropriate responses is achieved through a complex phosphorylation-dephosphorylation system that evades intuition and predictability. Results To gain deeper insights into the functioning of the DARPP-32 signal transduction system, we developed a dynamic model that is robust and consistent with available clinical, pharmacological, and biological observations. Upon validation, the model was first used to explore how different input signal scenarios are processed by DARPP-32 and translated into distinct static and dynamic responses. Secondly, a comprehensive perturbation analysis identified the specific role of each component on the system's signal transduction ability. Conclusions Our study investigated the effects of various patterns of neurotransmission on signal integration and interpretation by DARPP-32 and showed that the DARPP-32 system has the capability of discerning surprisingly many neurotransmission scenarios. We also screened out potential mechanisms underlying this capability of the DARPP-32 system. This type of insight deepens our understanding of neuronal signal transduction in normal medium spiny neurons, sheds light on neurological disorders associated with the striatum, and might aid the search for intervention targets in neurological diseases and drug addiction.

  17. Light-induced responses of slow oscillatory neurons of the rat olivary pretectal nucleus.

    Science.gov (United States)

    Szkudlarek, Hanna J; Orlowska, Patrycja; Lewandowski, Marian H

    2012-01-01

    The olivary pretectal nucleus (OPN) is a small midbrain structure responsible for pupil constriction in response to eye illumination. Previous electrophysiological studies have shown that OPN neurons code light intensity levels and therefore are called luminance detectors. Recently, we described an additional population of OPN neurons, characterized by a slow rhythmic pattern of action potentials in light-on conditions. Rhythmic patterns generated by these cells last for a period of approximately 2 minutes. To answer whether oscillatory OPN cells are light responsive and whether oscillatory activity depends on retinal afferents, we performed in vivo electrophysiology experiments on urethane anaesthetized Wistar rats. Extracellular recordings were combined with changes in light conditions (light-dark-light transitions), brief light stimulations of the contralateral eye (diverse illuminances) or intraocular injections of tetrodotoxin (TTX). We found that oscillatory neurons were able to fire rhythmically in darkness and were responsive to eye illumination in a manner resembling that of luminance detectors. Their firing rate increased together with the strength of the light stimulation. In addition, during the train of light pulses, we observed two profiles of responses: oscillation-preserving and oscillation-disrupting, which occurred during low- and high-illuminance stimuli presentation respectively. Moreover, we have shown that contralateral retina inactivation eliminated oscillation and significantly reduced the firing rate of oscillatory cells. These results suggest that contralateral retinal innervation is crucial for the generation of an oscillatory pattern in addition to its role in driving responses to visual stimuli.

  18. Timing of single-neuron and local field potential responses in the human medial temporal lobe.

    Science.gov (United States)

    Rey, Hernan Gonzalo; Fried, Itzhak; Quian Quiroga, Rodrigo

    2014-02-03

    The relationship between the firing of single cells and local field potentials (LFPs) has received increasing attention, with studies in animals [1-11] and humans [12-14]. Recordings in the human medial temporal lobe (MTL) have demonstrated the existence of neurons with selective and invariant responses [15], with a relatively late but precise response onset around 300 ms after stimulus presentation [16-18] and firing only upon conscious recognition of the stimulus [19]. This represents a much later onset than expected from direct projections from inferotemporal cortex [16, 18]. The neural mechanisms underlying this onset remain unclear. To address this issue, we performed a joint analysis of single-cell and LFP responses during a visual recognition task. Single-neuron responses were preceded by a global LFP deflection in the theta range. In addition, there was a local and stimulus-specific increase in the single-trial gamma power. These LFP responses correlated with conscious recognition. The timing of the neurons' firing was phase locked to these LFP responses. We propose that whereas the gamma phase locking reflects the activation of local networks encoding particular recognized stimuli, the theta phase locking reflects a global activation that provides a temporal window for processing consciously perceived stimuli in the MTL. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Cell-type-specific resonances shape the responses of striatal neurons to synaptic input.

    Science.gov (United States)

    Beatty, Joseph A; Song, Soomin C; Wilson, Charles J

    2015-02-01

    Neurons respond to synaptic inputs in cell-type-specific ways. Each neuron type may thus respond uniquely to shared patterns of synaptic input. We applied statistically identical barrages of artificial synaptic inputs to four striatal cell types to assess differences in their responses to a realistic input pattern. Each interneuron type fired in phase with a specific input-frequency component. The fast-spiking interneuron fired in relation to the gamma-band (and higher) frequencies, the low-threshold spike interneuron to the beta-band frequencies, and the cholinergic neurons to the delta-band frequencies. Low-threshold spiking and cholinergic interneurons showed input impedance resonances at frequencies matching their spiking resonances. Fast-spiking interneurons showed resonance of input impedance but at lower than gamma frequencies. The spiny projection neuron's frequency preference did not have a fixed frequency but instead tracked its own firing rate. Spiny cells showed no input impedance resonance. Striatal interneurons are each tuned to a specific frequency band corresponding to the major frequency components of local field potentials. Their influence in the circuit may fluctuate along with the contribution of that frequency band to the input. In contrast, spiny neurons may tune to any of the frequency bands by a change in firing rate. Copyright © 2015 the American Physiological Society.

  20. Neurons responsive to face-view in the primate ventrolateral prefrontal cortex.

    Science.gov (United States)

    Romanski, L M; Diehl, M M

    2011-08-25

    Studies have indicated that temporal and prefrontal brain regions process face and vocal information. Face-selective and vocalization-responsive neurons have been demonstrated in the ventrolateral prefrontal cortex (VLPFC) and some prefrontal cells preferentially respond to combinations of face and corresponding vocalizations. These studies suggest VLPFC in nonhuman primates may play a role in communication that is similar to the role of inferior frontal regions in human language processing. If VLPFC is involved in communication, information about a speaker's face including identity, face-view, gaze, and emotional expression might be encoded by prefrontal neurons. In the following study, we examined the effect of face-view in ventrolateral prefrontal neurons by testing cells with auditory, visual, and a set of human and monkey faces rotated through 0°, 30°, 60°, 90°, and -30°. Prefrontal neurons responded selectively to either the identity of the face presented (human or monkey) or to the specific view of the face/head, or to both identity and face-view. Neurons which were affected by the identity of the face most often showed an increase in firing in the second part of the stimulus period. Neurons that were selective for face-view typically preferred forward face-view stimuli (0° and 30° rotation). The neurons which were selective for forward face-view were also auditory responsive compared to other neurons which responded to other views or were unselective which were not auditory responsive. Our analysis showed that the human forward face (0°) was decoded better and also contained the most information relative to other face-views. Our findings confirm a role for VLPFC in the processing and integration of face and vocalization information and add to the growing body of evidence that the primate ventrolateral prefrontal cortex plays a prominent role in social communication and is an important model in understanding the cellular mechanisms of communication

  1. The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn.

    Science.gov (United States)

    Abraira, Victoria E; Kuehn, Emily D; Chirila, Anda M; Springel, Mark W; Toliver, Alexis A; Zimmerman, Amanda L; Orefice, Lauren L; Boyle, Kieran A; Bai, Ling; Song, Bryan J; Bashista, Karleena A; O'Neill, Thomas G; Zhuo, Justin; Tsan, Connie; Hoynoski, Jessica; Rutlin, Michael; Kus, Laura; Niederkofler, Vera; Watanabe, Masahiko; Dymecki, Susan M; Nelson, Sacha B; Heintz, Nathaniel; Hughes, David I; Ginty, David D

    2017-01-12

    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Effects of Chronic Sleep Fragmentation on Wake-Active Neurons and the Hypercapnic Arousal Response

    Science.gov (United States)

    Li, Yanpeng; Panossian, Lori A.; Zhang, Jing; Zhu, Yan; Zhan, Guanxia; Chou, Yu-Ting; Fenik, Polina; Bhatnagar, Seema; Piel, David A.; Beck, Sheryl G.; Veasey, Sigrid

    2014-01-01

    Study Objectives: Delayed hypercapnic arousals may occur in obstructive sleep apnea. The impaired arousal response is expected to promote more pronounced oxyhemoglobin desaturations. We hypothesized that long-term sleep fragmentation (SF) results in injury to or dysfunction of wake-active neurons that manifests, in part, as a delayed hypercapnic arousal response. Design: Adult male mice were implanted for behavioral state recordings and randomly assigned to 4 weeks of either orbital platform SF (SF4wk, 30 events/h) or control conditions (Ct4wk) prior to behavioral, histological, and locus coeruleus (LC) whole cell electrophysiological evaluations. Measurements and Results: SF was successfully achieved across the 4 week study, as evidenced by a persistently increased arousal index, P Piel DA; Beck SG; Veasey S. Effects of chronic sleep fragmentation on wake-active neurons and the hypercapnic arousal response. SLEEP 2014;37(1):51-64. PMID:24470695

  3. Simulating the spiking response of VCSEL-based optical spiking neuron

    Science.gov (United States)

    Li, Qiang; Wang, Zhi; Cui, Can; Li, Runquan; Li, Ying; Liu, Biao; Wu, Chongqing

    2018-01-01

    Based on the Yamada model and rate equation model of vertical cavity surface emitting laser (VCSEL) with a saturable absorber (SA), we numerically simulate the spiking response of VCSEL-based optical spiking neuron under incoherent and coherent perturbations, respectively. First, we simply analyze the dynamics of the laser system based on the Yamada model. Then we discuss the dependence of spiking characteristics, including threshold, response time, response spike's amplitude and pulse-width, with the amplitude of perturbations, the driving current of gain and SA region for single optical pulse injection. Finally, we study the dependence of relative refractory period of VCSEL-based optical spiking neuron with different amplitudes of perturbations. Since VCSELs are ease of integration, it provides new opportunities for realization of large-scale and ultrafast neuromorphic computing systems.

  4. Neuronal Responses in Visual Area V2 (V2) of Macaque Monkeys with Strabismic Amblyopia

    Science.gov (United States)

    Bi, H.; Zhang, B.; Tao, X.; Harwerth, R. S.; Smith, E. L.

    2011-01-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia. PMID:21263036

  5. Imaging light responses of targeted neuron populations in the rodent retina.

    Science.gov (United States)

    Borghuis, Bart G; Tian, Lin; Xu, Ying; Nikonov, Sergei S; Vardi, Noga; Zemelman, Boris V; Looger, Loren L

    2011-02-23

    Decoding the wiring diagram of the retina requires simultaneous observation of activity in identified neuron populations. Available recording methods are limited in their scope: electrodes can access only a small fraction of neurons at once, whereas synthetic fluorescent indicator dyes label tissue indiscriminately. Here, we describe a method for studying retinal circuitry at cellular and subcellular levels combining two-photon microscopy and a genetically encoded calcium indicator. Using specific viral and promoter constructs to drive expression of GCaMP3, we labeled all five major neuron classes in the adult mouse retina. Stimulus-evoked GCaMP3 responses as imaged by two-photon microscopy permitted functional cell type annotation. Fluorescence responses were similar to those measured with the small molecule dye OGB-1. Fluorescence intensity correlated linearly with spike rates >10 spikes/s, and a significant change in fluorescence always reflected a significant change in spike firing rate. GCaMP3 expression had no apparent effect on neuronal function. Imaging at subcellular resolution showed compartment-specific calcium dynamics in multiple identified cell types.

  6. The nitric oxide donor, isosorbide dinitrate, induces a cephalic cutaneous hypersensitivity, associated with sensitization of the medullary dorsal horn.

    Science.gov (United States)

    Flores Ramos, José María; Devoize, Laurent; Descheemaeker, Amélie; Molat, Jean-Louis; Luccarini, Philippe; Dallel, Radhouane

    2017-03-06

    Nitric oxide donors are known to produce headache in healthy as well as migraine subjects, and to induce extracephalic cutaneous hypersensitivity in rodents. However, little is known on the effect of nitric oxide donors on cephalic cutaneous sensitivity. Combining behavioral, immunohistochemical, and in vivo electrophysiological approaches, this study investigated the effect of systemic administration of the nitric oxide donor, isosorbide dinitrate (ISDN), on cephalic and extracephalic cutaneous sensitivity and on neuronal activation within the medullary dorsal horn (MDH) in the rat. Systemic administration of ISDN increased selectively the first phase and interphase of the facial formalin test, but had no effect on the hindpaw formalin one. Monitoring neuronal activity within the MDH with phospho-ERK1/2 immunoreactivity revealed that ISDN alone did not activate MDH neurons, but significantly increased the number of formalin-evoked phospho-ERK1/2-immunoreactive cells in the ipsilateral, but not contralateral, MDH. Using in vivo electrophysiological unit recordings, we show that ISDN administration never affected the spontaneous activity of trigeminal wide dynamic range neurons, but, facilitated C-fiber-evoked responses in half the neurons tested. This research demonstrates that a nitric oxide donor, isosorbide dinitrate, induces selectively cephalic hyperalgesia that arises as a consequence of central sensitization in pain pathways that subserve meningeal nociception. This model better mimics the clinical condition and offers another possibility of studying the role of nitric oxide donor in the physiopathology of headache. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Cortical neurons and networks are dormant but fully responsive during isoelectric brain state.

    Science.gov (United States)

    Altwegg-Boussac, Tristan; Schramm, Adrien E; Ballestero, Jimena; Grosselin, Fanny; Chavez, Mario; Lecas, Sarah; Baulac, Michel; Naccache, Lionel; Demeret, Sophie; Navarro, Vincent; Mahon, Séverine; Charpier, Stéphane

    2017-09-01

    A continuous isoelectric electroencephalogram reflects an interruption of endogenously-generated activity in cortical networks and systematically results in a complete dissolution of conscious processes. This electro-cerebral inactivity occurs during various brain disorders, including hypothermia, drug intoxication, long-lasting anoxia and brain trauma. It can also be induced in a therapeutic context, following the administration of high doses of barbiturate-derived compounds, to interrupt a hyper-refractory status epilepticus. Although altered sensory responses can be occasionally observed on an isoelectric electroencephalogram, the electrical membrane properties and synaptic responses of individual neurons during this cerebral state remain largely unknown. The aim of the present study was to characterize the intracellular correlates of a barbiturate-induced isoelectric electroencephalogram and to analyse the sensory-evoked synaptic responses that can emerge from a brain deprived of spontaneous electrical activity. We first examined the sensory responsiveness from patients suffering from intractable status epilepticus and treated by administration of thiopental. Multimodal sensory responses could be evoked on the flat electroencephalogram, including visually-evoked potentials that were significantly amplified and delayed, with a high trial-to-trial reproducibility compared to awake healthy subjects. Using an analogous pharmacological procedure to induce prolonged electro-cerebral inactivity in the rat, we could describe its cortical and subcortical intracellular counterparts. Neocortical, hippocampal and thalamo-cortical neurons were all silent during the isoelectric state and displayed a flat membrane potential significantly hyperpolarized compared with spontaneously active control states. Nonetheless, all recorded neurons could fire action potentials in response to intracellularly injected depolarizing current pulses and their specific intrinsic

  8. 163 COUNTER-TERRORISM IN THE GREATER HORN OF AFRICA ...

    African Journals Online (AJOL)

    Administrator

    2010-07-11

    Jul 11, 2010 ... Al-Shabaab, a fundamentalist group in Somalia immediately claimed responsibility. These events sparked widespread debate within scholarly circles as far as the counter-terrorism agenda in the Greater Horn of Africa is concerned. In recent years, terrorism has grown to become a vice of global magnitude.

  9. Impaired mastication reduced newly generated neurons at the accessory olfactory bulb and pheromonal responses in mice.

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-12-01

    A large number of neurons are generated at the subventricular zone (SVZ) even during adulthood. In a previous study, we have shown that a reduced mastication impairs both neurogenesis in the SVZ and olfactory functions. Pheromonal signals, which are received by the vomeronasal organ, provide information about reproductive and social states. Vomeronasal sensory neurons project to the accessory olfactory bulb (AOB) located on the dorso-caudal surface of the main olfactory bulb. Newly generated neurons at the SVZ migrate to the AOB and differentiate into granule cells and periglomerular cells. This study aimed to explore the effects of changes in mastication on newly generated neurons and pheromonal responses. Bromodeoxyuridine-immunoreactive (BrdU-ir; a marker of DNA synthesis) and Fos-ir (a marker of neurons excited) structures in sagittal sections of the AOB after exposure to urinary odours were compared between the mice fed soft and hard diets. The density of BrdU-ir cells in the AOB in the soft-diet-fed mice after 1 month was essentially similar to that of the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 3 or 6 months than in the hard-diet-fed mice. The density of Fos-ir cells in the soft-diet-fed mice after 2 months was essentially similar to that in the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 4 months than in the hard-diet-fed mice. The present results suggest that impaired mastication reduces newly generated neurons at the AOB, which in turn impairs olfactory function at the AOB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of chronic sleep fragmentation on wake-active neurons and the hypercapnic arousal response.

    Science.gov (United States)

    Li, Yanpeng; Panossian, Lori A; Zhang, Jing; Zhu, Yan; Zhan, Guanxia; Chou, Yu-Ting; Fenik, Polina; Bhatnagar, Seema; Piel, David A; Beck, Sheryl G; Veasey, Sigrid

    2014-01-01

    Delayed hypercapnic arousals may occur in obstructive sleep apnea. The impaired arousal response is expected to promote more pronounced oxyhemoglobin desaturations. We hypothesized that long-term sleep fragmentation (SF) results in injury to or dysfunction of wake-active neurons that manifests, in part, as a delayed hypercapnic arousal response. Adult male mice were implanted for behavioral state recordings and randomly assigned to 4 weeks of either orbital platform SF (SF4wk, 30 events/h) or control conditions (Ct4wk) prior to behavioral, histological, and locus coeruleus (LC) whole cell electrophysiological evaluations. SF was successfully achieved across the 4 week study, as evidenced by a persistently increased arousal index, P sleep bouts, P sleep/wake times and plasma corticosterone levels were unaffected. A multiple sleep latency test performed at the onset of the dark period showed a reduced latency to sleep in SF4wk mice (P recovery (101 ± 4 sec, P sleep fragmentation (SF4wk) impairs arousal responses to hypercapnia, reduces wake neuron projections and locus coeruleus neuronal excitability, supporting the concepts that some effects of sleep fragmentation may contribute to impaired arousal responses in sleep apnea, which may not reverse immediately with therapy.

  11. Monaural and binaural response properties of single neurons in the rat's dorsal nucleus of the lateral lemniscus.

    Science.gov (United States)

    Kelly, J B; Buckthought, A D; Kidd, S A

    1998-08-01

    Extracellular recordings were made with microelectrodes from single neurons in the rat's dorsal nucleus of the lateral lemniscus (DNLL) and response characteristics were determined for monaural and binaural acoustic stimulation. The vast majority of DNLL neurons were narrowly tuned to sound frequency and their temporal responses to contralateral tone pulses fell into one of three broad categories: onset (57%), sustained (21%) or onset-pause-sustained (22%). Most DNLL neurons fired multiple action potentials to a single click delivered to the contralateral ear. The majority (77%) of DNLL neurons showed a monotonic increase in the number of spikes elicited by contralateral tone pulses of increasing sound pressure level; the remaining cells were weakly non-monotonic. No obvious tonotopic pattern was found in the distribution of characteristic frequency of neurons in DNLL. Most DNLL neurons exhibited either excitatory/inhibitory (74%) or excitatory/excitatory (9%) binaural response patterns. The remaining cells (17%) were monaural and driven exclusively by stimulation of the contralateral ear. The binaural neurons in DNLL were sensitive to both interaural intensity and interaural time differences as determined by presentation of dichotic tone bursts and clicks respectively. The responses of DNLL neurons could be distinguished on the basis of monaural and binaural response characteristics from those in surrounding areas including the sagulum, paralemniscal zone and the intermediate nucleus of the lateral lemniscus.

  12. Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes. Role in vertical vestibulospinal reflexes of the decerebrate cat

    Science.gov (United States)

    Bolton, P. S.; Goto, T.; Schor, R. H.; Wilson, V. J.; Yamagata, Y.; Yates, B. J.

    1992-01-01

    1. To investigate the neural substrate of vestibulospinal reflexes in decerebrate cats, we studied the responses of pontomedullary reticulospinal neurons to natural stimulation of the labyrinth in vertical planes. Our principal aim was to determine whether reticulospinal neurons that terminate in, or are likely to give off collaterals to, the upper cervical segments had properties similar to those of the vestibulocollic reflex (VCR). 2. Antidromic stimulation was used to determine whether the neurons projected to the neck, lower cervical, thoracic, or lumbar levels. Dynamics of the responses of spontaneously firing neurons were studied with sinusoidal stimuli delivered at 0.05-1 Hz and aligned to the plane of body rotation, that produced maximal modulation of the neuron (response vector orientation). Each neuron was assigned a vestibular input classification of otolith, vertical canal, otolith + canal, or spatial-temporal convergence (STC). 3. We found, in agreement with previous studies, that the largest fraction of pontomedullary reticulospinal neurons projected to the lumbar cord, and that only a small number ended in the neck segments. Neurons projecting to all levels of the spinal cord had similar responses to labyrinth stimulation. 4. Reticulospinal neurons that received only vertical canal inputs were rare (1 of 67 units). Most reticulospinal neurons (48%) received predominant otolith inputs, 18% received otolith + canal input, and only 9% had STC behavior. These data are in sharp contrast to the results of our previous studies of vestibulospinal neurons. A considerable portion of vestibulospinal neurons receives vertical canal input (38%), fewer receive predominantly otolith input (22%), whereas the proportion that have otolith + canal input or STC behavior is similar to our present reticulospinal data. 5. The response vector orientations of our reticulospinal neurons, particularly those with canal inputs (canal, otolith + canal, STC) were predominantly in

  13. Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron.

    Science.gov (United States)

    Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2016-03-01

    Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons.

    Science.gov (United States)

    Albert, E S; Bec, J M; Desmadryl, G; Chekroud, K; Travo, C; Gaboyard, S; Bardin, F; Marc, I; Dumas, M; Lenaers, G; Hamel, C; Muller, A; Chabbert, C

    2012-06-01

    Infrared laser irradiation has been established as an appropriate stimulus for primary sensory neurons under conditions where sensory receptor cells are impaired or lost. Yet, development of clinical applications has been impeded by lack of information about the molecular mechanisms underlying the laser-induced neural response. Here, we directly address this question through pharmacological characterization of the biological response evoked by midinfrared irradiation of isolated retinal and vestibular ganglion cells from rodents. Whole cell patch-clamp recordings reveal that both voltage-gated calcium and sodium channels contribute to the laser-evoked neuronal voltage variations (LEVV). In addition, selective blockade of the LEVV by micromolar concentrations of ruthenium red and RN 1734 identifies thermosensitive transient receptor potential vanilloid channels as the primary effectors of the chain reaction triggered by midinfrared laser irradiation. These results have the potential to facilitate greatly the design of future prosthetic devices aimed at restoring neurosensory capacities in disabled patients.

  15. Adaptive Responses of Neuronal Mitochondria to Bioenergetic Challenges: Roles in Neuroplasticity and Disease Resistance

    Science.gov (United States)

    Raefsky, Sophia M.; Mattson, Mark P.

    2016-01-01

    An important concept in neurobiology is “neurons that fire together, wire together” which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca2+, CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic ‘switch’ in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy

  16. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons.

    Science.gov (United States)

    Srinivasan, Rahul; Henley, Beverley M; Henderson, Brandon J; Indersmitten, Tim; Cohen, Bruce N; Kim, Charlene H; McKinney, Sheri; Deshpande, Purnima; Xiao, Cheng; Lester, Henry A

    2016-01-06

    Retrospective epidemiological studies show an inverse correlation between susceptibility to Parkinson's disease and a person's history of tobacco use. Animal model studies suggest nicotine as a neuroprotective agent and nicotinic acetylcholine (ACh) receptors (nAChRs) as targets for neuroprotection, but the underlying neuroprotective mechanism(s) are unknown. We cultured mouse ventral midbrain neurons for 3 weeks. Ten to 20% of neurons were dopaminergic (DA), revealed by tyrosine hydroxylase (TH) immunoreactivity. We evoked mild endoplasmic reticulum (ER) stress with tunicamycin (Tu), producing modest increases in the level of nuclear ATF6, phosphorylated eukaryotic initiation factor 2α, nuclear XBP1, and the downstream proapoptotic effector nuclear C/EBP homologous protein. We incubated cultures for 2 weeks with 200 nm nicotine, the approximate steady-state concentration between cigarette smoking or vaping, or during nicotine patch use. Nicotine incubation suppressed Tu-induced ER stress and the unfolded protein response (UPR). Study of mice with fluorescent nAChR subunits showed that the cultured TH+ neurons displayed α4, α6, and β3 nAChR subunit expression and ACh-evoked currents. Gene expression profile in cultures from TH-eGFP mice showed that the TH+ neurons also express several other genes associated with DA release. Nicotine also upregulated ACh-induced currents in DA neurons by ∼2.5-fold. Thus, nicotine, at a concentration too low to activate an appreciable fraction of plasma membrane nAChRs, induces two sequelae of pharmacological chaperoning in the ER: UPR suppression and nAChR upregulation. Therefore, one mechanism of neuroprotection by nicotine is pharmacological chaperoning, leading to UPR suppression. Measuring this pathway may help in assessing neuroprotection. Parkinson's disease (PD) cannot yet be cured or prevented. However, many retrospective epidemiological studies reveal that PD is diagnosed less frequently in tobacco users. Existing

  17. Neuron's eye view: Inferring features of complex stimuli from neural responses.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2017-08-01

    Full Text Available Experiments that study neural encoding of stimuli at the level of individual neurons typically choose a small set of features present in the world-contrast and luminance for vision, pitch and intensity for sound-and assemble a stimulus set that systematically varies along these dimensions. Subsequent analysis of neural responses to these stimuli typically focuses on regression models, with experimenter-controlled features as predictors and spike counts or firing rates as responses. Unfortunately, this approach requires knowledge in advance about the relevant features coded by a given population of neurons. For domains as complex as social interaction or natural movement, however, the relevant feature space is poorly understood, and an arbitrary a priori choice of features may give rise to confirmation bias. Here, we present a Bayesian model for exploratory data analysis that is capable of automatically identifying the features present in unstructured stimuli based solely on neuronal responses. Our approach is unique within the class of latent state space models of neural activity in that it assumes that firing rates of neurons are sensitive to multiple discrete time-varying features tied to the stimulus, each of which has Markov (or semi-Markov dynamics. That is, we are modeling neural activity as driven by multiple simultaneous stimulus features rather than intrinsic neural dynamics. We derive a fast variational Bayesian inference algorithm and show that it correctly recovers hidden features in synthetic data, as well as ground-truth stimulus features in a prototypical neural dataset. To demonstrate the utility of the algorithm, we also apply it to cluster neural responses and demonstrate successful recovery of features corresponding to monkeys and faces in the image set.

  18. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Mathiesen, Claus; Schaefer, Katharina

    2012-01-01

    Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation-induced ri......Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation......-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy...... and release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals...

  19. Equilibrium and response properties of the integrate-and-fire neuron in discrete time

    Directory of Open Access Journals (Sweden)

    Moritz Helias

    2010-01-01

    Full Text Available The integrate-and-fire neuron with exponential postsynaptic potentials is a frequently employed model to study neural networks. Simulations in discrete time still have highest performance at moderate numerical errors, which makes them first choice for long-term simulations of plastic networks. Here we extend the population density approach to investigate how the equilibrium and response properties of the leaky integrate-and-fire neuron are affected by time discretization. We present a novel analytical treatment of the boundary condition at threshold, taking both discretization of time and finite synaptic weights into account. We uncover an increased membrane potential density just below threshold as the decisive property that explains the deviations found between simulations and the classical diffusion approximation. Temporal discretization and finite synaptic weights both contribute to this effect. Our treatment improves the standard formula to calculate the neuron’s equilibrium firing rate. Direct solution of the Markov process describing the evolution of the membrane potential density confirms our analysis and yields a method to calculate the firing rate exactly. Knowing the shape of the membrane potential distribution near threshold enables us to devise the transient response properties of the neuron model to synaptic input. We find a pronounced non-linear fast response component that has not been described by the prevailing continuous time theory for Gaussian white noise input.

  20. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan

    2010-01-01

    The suprachiasmatic nucleus (SCN) is the principal pacemaker driving circadian rhythms of physiology and behaviour. Neurons within the SCN express both classical and neuropeptide transmitters which regulate clock functions. Cholecyctokinin (CCK) is a potent neurotransmitter expressed in neurons......, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of c......FOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting...

  1. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan

    2010-01-01

    The suprachiasmatic nucleus (SCN) is the principal pacemaker driving circadian rhythms of physiology and behaviour. Neurons within the SCN express both classical and neuropeptide transmitters which regulate clock functions. Cholecyctokinin (CCK) is a potent neurotransmitter expressed in neurons......, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of c......FOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar t, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting...

  2. Aberrant myelinated neurites in the anterior horns of a patient with amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Troost, D.; Louwerse, E. S.; de Jong, J. M.; van Leersum, G. S.; van Raalte, J. A.

    1989-01-01

    A case of amyotrophic lateral sclerosis revealed the classical pathologic features of ALS, i.e. neuronal loss in the anterior horns and pyramidal tract degeneration. In addition to the pathological hallmarks of Alzheimer's disease, senile plaques, neurofibrillary tangles and granulovacuolar changes

  3. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    Science.gov (United States)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components

  4. Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord.

    Science.gov (United States)

    Zhang, Ming-Dong; Barde, Swapnali; Szodorai, Edit; Josephson, Anna; Mitsios, Nicholas; Watanabe, Masahiko; Attems, Johannes; Lubec, Gert; Kovács, Gábor G; Uhlén, Mathias; Mulder, Jan; Harkany, Tibor; Hökfelt, Tomas

    2016-09-01

    Neuronal calcium-binding protein 1 and -2 (NECAB1/2) localize to multiple excitatory neuron populations in the mouse spinal cord. Here, we analyzed rat and human spinal cord, combining in situ hybridization and immunohistochemistry, complementing newly collated data on mouse spinal cord for direct comparisons. Necab1/2 mRNA transcripts showed complementary distribution in rodent's spinal cord. Multiple-labeling fluorescence histochemistry with neuronal phenotypic markers localized NECAB1 to a dense fiber plexus in the dorsal horn, to neurons mainly in superficial layers and to commissural interneurons in both rodent species. NECAB1-positive (+) motor neurons were only found in mice. NECAB1 distribution in the human spinal cord was similar with the addition of NECAB1-like immunoreactivity surrounding myelinated axons. NECAB2 was mainly present in excitatory synaptic boutons in the dorsal horn of all three species, and often in calbindin-D28k(+) neuronal somata. Rodent ependymal cells expressed calbindin-D28k. In humans, they instead were NECAB2(+) and/or calretinin(+). Our results reveal that the association of NECAB2 to excitatory neuronal circuits in the spinal cord is evolutionarily conserved across the mammalian species investigated so far. In contrast, NECAB1 expression is more heterogeneous. Thus, our study suggests that the phenotypic segregation of NECAB1 and -2 to respective excitatory and inhibitory spinal systems can underpin functional modalities in determining the fidelity of synaptic neurotransmission and neuronal responsiveness, and might bear translational relevance to humans.

  5. The Effect of Attention on Neuronal Responses to High and Low Contrast Stimuli

    Science.gov (United States)

    Lee, Joonyeol

    2010-01-01

    It remains unclear how attention affects the tuning of individual neurons in visual cerebral cortex. Some observations suggest that attention preferentially enhances responses to low contrast stimuli, whereas others suggest that attention proportionally affects responses to all stimuli. Resolving how attention affects responses to different stimuli is essential for understanding the mechanism by which it acts. To explore the effects of attention on stimuli of different contrasts, we recorded from individual neurons in the middle temporal visual area (MT) of rhesus monkeys while shifting their attention between preferred and nonpreferred stimuli within their receptive fields. This configuration results in robust attentional modulation that makes it possible to readily distinguish whether attention acts preferentially on low contrast stimuli. We found no evidence for greater enhancement of low contrast stimuli. Instead, the strong attentional modulations were well explained by a model in which attention proportionally enhances responses to stimuli of all contrasts. These data, together with observations on the effects of attention on responses to other stimulus dimensions, suggest that the primary effect of attention in visual cortex may be to simply increase the strength of responses to all stimuli by the same proportion. PMID:20538780

  6. Intracellular responses and morphology of rat ventral complex of the lateral lemniscus neurons in vivo.

    Science.gov (United States)

    Nayagam, David A X; Clarey, Janine C; Paolini, Antonio G

    2006-09-10

    The function of the ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL), collectively termed ventral complex of the lateral lemniscus (VCLL), is unclear. Several studies have suggested that it plays a role in coding the temporal aspects of sound. In our study, a sample (n = 161) of intracellular responses to dichotically presented noise or tone bursts was collected from the VCLL of urethane-anesthetized rats in vivo. Intracellular recordings revealed six distinct response types to tones, distinguished by their synaptic and membrane characteristics as well as firing pattern. Three of these response types were correlated with distinct cellular morphologies revealed by intracellular injection of neurobiotin. 3D reconstructions of recorded neurons within the VCLL showed the spatial distribution of various response properties, including response type, laterality, characteristic frequency (CF), and binaural influences. Cells that responded to monaural (55%) or binaural (45%) stimulation were distributed throughout the VCLL. Almost all VCLL units were responsive to contralateral stimulation (97%). Most neurons were excited by contralateral stimulation (83%), many exclusively (43%), and some in conjunction with ipsilateral inhibition (28%) or excitation (12%). The INLL contained mostly binaural neurons (65%), typically with ipsilateral inhibition and contralateral excitation. These results indicate that the VCLL is not a monaural structure and there is a dorsal-ventral segregation of binaural and monaural cells. 3D reconstructions of intracellular CFs did not reveal the presence of any tonotopic arrangement within the VCLL. Presumably, the proposed timing role of this structure does not require a systematic representation of tonal frequency. 2006 Wiley-Liss, Inc.

  7. Smooth pursuit preparation modulates neuronal responses in visual areas MT and MST.

    Science.gov (United States)

    Ferrera, Vincent P

    2015-07-01

    Primates are able to track small moving visual targets using smooth pursuit eye movements. Target motion for smooth pursuit is signaled by neurons in visual cortical areas MT and MST. In this study, we trained monkeys to either initiate or withhold smooth pursuit in the presence of a moving target to test whether this decision was reflected in the relative strength of "go" and "no-go" processes. We found that the gain of the motor response depended strongly on whether monkeys were instructed to initiate or withhold pursuit, thus demonstrating voluntary control of pursuit initiation. We found that the amplitude of the neuronal response to moving targets in areas MT and MST was also significantly lower on no-go trials (by 2.1 spikes/s on average). The magnitude of the neural response reduction was small compared with the behavioral gain reduction. There were no significant differences in neuronal direction selectivity, spatial selectivity, or response reliability related to pursuit initiation or the absence thereof. Variability in eye speed was negatively correlated with firing rate variability after target motion onset during go trials but not during no-go trials, suggesting that MT and MST activity represents an error signal for a negative feedback controller. We speculate that modulation of the visual motion signals in areas MT and MST may be one of the first visual cortical events in the initiation of smooth pursuit and that the small early response modulation may be amplified to produce an all-or-none motor response by downstream areas. Copyright © 2015 the American Physiological Society.

  8. Sleep-deprivation regulates α-2 adrenergic responses of rat hypocretin/orexin neurons.

    Directory of Open Access Journals (Sweden)

    Aaron Uschakov

    Full Text Available We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA of hypocretin/orexin (hcrt/orx neurons was changed to an inhibition following sleep deprivation (SD. Here we describe that in control condition (CC, i.e. following 2 hours of natural sleep in the morning, the α(2-adrenergic receptor (α(2-AR agonist, clonidine, had no effect on hcrt/orx neurons, whereas following 2 hours of SD (SDC, it hyperpolarized the neurons by activating G-protein-gated inwardly rectifying potassium (GIRK channels. Since concentrations of clonidine up to a thousand times (100 µM higher than those effective in SDC (100 nM, were completely ineffective in CC, a change in the availability of G-proteins is unlikely to explain the difference between the two conditions. To test whether the absence of effect of clonidine in CC could be due to a down-regulation of GIRK channels, we applied baclofen, a GABA(B agonist known to also activate GIRK channels, and found that it hyperpolarized hcrt/orx neurons in that condition. Moreover, baclofen occluded the response to clonidine in SDC, indicating that absence of effect of clonidine in CC could not be attributed to down-regulation of GIRK channels. We finally tested whether α(2-ARs were still available at the membrane in CC and found that clonidine could reduce calcium currents, indicating that α(2-ARs associated with calcium channels remain available in that condition. Taken together, these results suggest that a pool of α(2-ARs associated with GIRK channels is normally down-regulated (or desensitized in hcrt/orx neurons to only become available for their inhibition following sleep deprivation.

  9. Cholinergic intrapancreatic neurons induce Ca²+ signaling and early-response gene expression in pancreatic acinar cells.

    Science.gov (United States)

    Turner, D J; cowles, R A; Segura, B J; Romanchuk, G; Barnhart, D C; Mulholland, M W

    2000-01-01

    Pancreatic exocrine function has been demonstrated to be under neuronal regulation. The pathways responsible for this effect, and the long-term consequences of such interactions, are incompletely described. The effects of neuronal depolarization on pancreatic acinar cells were studied to determine whether calcium signaling and c-fos expression were activated. In pancreatic lobules, which contain both neurons and acinar cells, agonists that selectively stimulated neurons increased intracellular calcium in acinar cells. Depolarization also led to the expression of c-fos protein in 24% +/- 4% of the acinar cells. In AR42J pancreatic acinar cells, cholinergic stimulation demonstrated an average increase of 398 +/- 19 nmol/L in intracellular calcium levels, and induced c-fos expression that was time and dose dependent. The data indicate that intrapancreatic neurons induce Ca²+ signaling and early-response gene expression in pancreatic acinar cells.

  10. Decreased Interleukin-4 Release from the Neurons of the Locus Coeruleus in Response to Immobilization Stress

    Directory of Open Access Journals (Sweden)

    Hyun-ju Lee

    2016-01-01

    Full Text Available It has been demonstrated that immobilization (IMO stress affects neuroimmune systems followed by alterations of physiology and behavior. Interleukin-4 (IL-4, an anti-inflammatory cytokine, is known to regulate inflammation caused by immune challenge but the effect of IMO on modulation of IL-4 expression in the brain has not been assessed yet. Here, it was demonstrated that IL-4 was produced by noradrenergic neurons in the locus coeruleus (LC of the brain and release of IL-4 was reduced in response to IMO. It was observed that IMO groups were more anxious than nontreated groups. Acute IMO (2 h/day, once stimulated secretion of plasma corticosterone and tyrosine hydroxylase (TH in the LC whereas these increments were diminished in exposure to chronic stress (2 h/day, 21 consecutive days. Glucocorticoid receptor (GR, TH, and IL-4-expressing cells were localized in identical neurons of the LC, indicating that hypothalamic-pituitary-adrenal- (HPA- axis and sympathetic-adrenal-medullary- (SAM- axis might be involved in IL-4 secretion in the stress response. Accordingly, it was concluded that stress-induced decline of IL-4 concentration from LC neurons may be related to anxiety-like behavior and an inverse relationship exists between IL-4 secretion and HPA/SAM-axes activation.

  11. Visual responses of pulvinar and collicular neurons during eye movements of awake, trained macaques.

    Science.gov (United States)

    Robinson, D L; McClurkin, J W; Kertzman, C; Petersen, S E

    1991-08-01

    1. We recorded from single neurons in awake, trained rhesus monkeys in a lighted environment and compared responses to stimulus movement during periods of fixation with those to motion caused by saccadic or pursuit eye movements. Neurons in the inferior pulvinar (PI), lateral pulvinar (PL), and superior colliculus were tested. 2. Cells in PI and PL respond to stimulus movement over a wide range of speeds. Some of these cells do not respond to comparable stimulus motion, or discharge only weakly, when it is generated by saccadic or pursuit eye movements. Other neurons respond equivalently to both types of motion. Cells in the superficial layers of the superior colliculus have similar properties to those in PI and PL. 3. When tested in the dark to reduce visual stimulation from the background, cells in PI and PL still do not respond to motion generated by eye movements. Some of these cells have a suppression of activity after saccadic eye movements made in total darkness. These data suggest that an extraretinal signal suppresses responses to visual stimuli during eye movements. 4. The suppression of responses to stimuli during eye movements is not an absolute effect. Images brighter than 2.0 log units above background illumination evoke responses from cells in PI and PL. The suppression appears stronger in the superior colliculus than in PI and PL. 5. These experiments demonstrate that many cells in PI and PL have a suppression of their responses to stimuli that cross their receptive fields during eye movements. These cells are probably suppressed by an extraretinal signal. Comparable effects are present in the superficial layers of the superior colliculus. These properties in PI and PL may reflect the function of the ascending tectopulvinar system.

  12. Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli.

    Science.gov (United States)

    Schaette, Roland; Gollisch, Tim; Herz, Andreas V M

    2005-06-01

    Reliable accounts of the variability observed in neural spike trains are a prerequisite for the proper interpretation of neural dynamics and coding principles. Models that accurately describe neural variability over a wide range of stimulation and response patterns are therefore highly desirable, especially if they can explain this variability in terms of basic neural observables and parameters such as firing rate and refractory period. In this work, we analyze the response variability recorded in vivo from locust auditory receptor neurons under acoustic stimulation. In agreement with results from other systems, our data suggest that neural refractoriness has a strong influence on spike-train variability. We therefore explore a stochastic model of spike generation that includes refractoriness through a recovery function. Because our experimental data are consistent with a renewal process, the recovery function can be derived from a single interspike-interval histogram obtained under constant stimulation. The resulting description yields quantitatively accurate predictions of the response variability over the whole range of firing rates for constant-intensity as well as amplitude-modulated sound stimuli. Model parameters obtained from constant stimulation can be used to predict the variability in response to dynamic stimuli. These results demonstrate that key ingredients of the stochastic response dynamics of a sensory neuron are faithfully captured by a simple stochastic model framework.

  13. Acetaminophen Metabolite N-Acylphenolamine Induces Analgesia via Transient Receptor Potential Vanilloid 1 Receptors Expressed on the Primary Afferent Terminals of C-fibers in the Spinal Dorsal Horn.

    Science.gov (United States)

    Ohashi, Nobuko; Uta, Daisuke; Sasaki, Mika; Ohashi, Masayuki; Kamiya, Yoshinori; Kohno, Tatsuro

    2017-08-01

    The widely used analgesic acetaminophen is metabolized to N-acylphenolamine, which induces analgesia by acting directly on transient receptor potential vanilloid 1 or cannabinoid 1 receptors in the brain. Although these receptors are also abundant in the spinal cord, no previous studies have reported analgesic effects of acetaminophen or N-acylphenolamine mediated by the spinal cord dorsal horn. We hypothesized that clinical doses of acetaminophen induce analgesia via these spinal mechanisms. We assessed our hypothesis in a rat model using behavioral measures. We also used in vivo and in vitro whole cell patch-clamp recordings of dorsal horn neurons to assess excitatory synaptic transmission. Intravenous acetaminophen decreased peripheral pinch-induced excitatory responses in the dorsal horn (53.1 ± 20.7% of control; n = 10; P transient receptor potential vanilloid 1 receptors, but not cannabinoid 1 receptors. The analgesic effects of acetaminophen and N-acylphenolamine were stronger in rats experiencing an inflammatory pain model compared to naïve rats. Our results suggest that the acetaminophen metabolite N-acylphenolamine induces analgesia directly via transient receptor potential vanilloid 1 receptors expressed on central terminals of C-fibers in the spinal dorsal horn and leads to conduction block, shunt currents, and desensitization of these fibers.

  14. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Yong Seek; Park, Cheung-Seog [Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Jin, Young-Ho, E-mail: jinyh@khu.ac.kr [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  15. A neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans

    National Research Council Canada - National Science Library

    Maman, Moria; Carvalhal Marques, Filipa; Volovik, Yuli; Dubnikov, Tatyana; Bejerano-Sagie, Michal; Cohen, Ehud

    2013-01-01

    In the nematode Caenorhabditis elegans, the heat shock response (HSR) is regulated at the organismal level by a network of thermosensory neurons that senses elevated temperatures and activates the HSR in remote tissues...

  16. Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Anna eKiryk

    2013-11-01

    Full Text Available Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimer´s disease (AD and may play a role in dementia. Moreover aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3 and dentate gyrus. Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that thirty-six transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the dentate gyrus a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving

  17. Primary cilia modulate TLR4-mediated inflammatory responses in hippocampal neurons.

    Science.gov (United States)

    Baek, Hyunjung; Shin, Hyo Jung; Kim, Jwa-Jin; Shin, Nara; Kim, Sena; Yi, Min-Hee; Zhang, Enji; Hong, Jinpyo; Kang, Joon Won; Kim, Yonghyun; Kim, Cuk-Seong; Kim, Dong Woon

    2017-09-19

    The primary cilium is an organelle that can act as a master regulator of cellular signaling. Despite the presence of primary cilia in hippocampal neurons, their function is not fully understood. Recent studies have demonstrated that the primary cilium influences interleukin (IL)-1β-induced NF-κB signaling, ultimately mediating the inflammatory response. We, therefore, investigated ciliary function and NF-κB signaling in lipopolysaccharide (LPS)-induced neuroinflammation in conjunction with ciliary length analysis. Since TLR4/NF-κB signaling is a well-known inflammatory pathway, we measured ciliary length and inflammatory mediators in wild type (WT) and TLR4-/- mice injected with LPS. Next, to exclude the effects of microglial TLR4, we examined the ciliary length, ciliary components, inflammatory cytokine, and mediators in HT22 hippocampal neuronal cells. Primary ciliary length decreased in hippocampal pyramidal neurons after intracerebroventricular injection of LPS in WT mice, whereas it increased in TLR4-/- mice. LPS treatment decreased primary ciliary length, activated NF-κB signaling, and increased Cox2 and iNOS levels in HT22 hippocampal neurons. In contrast, silencing Kif3a, a key protein component of cilia, increased ARL13B ciliary protein levels and suppressed NF-κB signaling and expression of inflammatory mediators. These data suggest that LPS-induced NF-κB signaling and inflammatory mediator expression are modulated by cilia and that the blockade of primary cilium formation by Kif3a siRNA regulates TLR4-induced NF-κB signaling. We propose that primary cilia are critical for regulating NF-κB signaling events in neuroinflammation and in the innate immune response.

  18. Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness.

    Science.gov (United States)

    Fiorenza, Anna; Lopez-Atalaya, Jose P; Rovira, Victor; Scandaglia, Marilyn; Geijo-Barrientos, Emilio; Barco, Angel

    2016-04-01

    The RNase Dicer is essential for the maturation of most microRNAs, a molecular system that plays an essential role in fine-tuning gene expression. To gain molecular insight into the role of Dicer and the microRNA system in brain function, we conducted 2 complementary RNA-seq screens in the hippocampus of inducible forebrain-restricted Dicer1 mutants aimed at identifying the microRNAs primarily affected by Dicer loss and their targets, respectively. Functional genomics analyses predicted the main biological processes and phenotypes associated with impaired microRNA maturation, including categories related to microRNA biology, signal transduction, seizures, and synaptic transmission and plasticity. Consistent with these predictions, we found that, soon after recombination, Dicer-deficient mice exhibited an exaggerated seizure response, enhanced induction of immediate early genes in response to different stimuli, stronger and more stable fear memory, hyperphagia, and increased excitability of CA1 pyramidal neurons. In the long term, we also observed slow and progressive excitotoxic neurodegeneration. Overall, our results indicate that interfering with microRNA biogenesis causes an increase in neuronal responsiveness and disrupts homeostatic mechanisms that protect the neuron against overactivation, which may explain both the initial and late phenotypes associated with the loss of Dicer in excitatory neurons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. The iso-response method: Measuring neuronal stimulus integration with closed-loop experiments

    Directory of Open Access Journals (Sweden)

    Tim eGollisch

    2012-12-01

    Full Text Available Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex nonlinear operations. The shapes of these filters and nonlinearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the nonlinearities relevant for stimulus integration, disentangle subsequent neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, iso-response may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modelling are tightly integrated into experiments.

  20. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons.

    Science.gov (United States)

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-06-01

    The dysfunction of the ubiquitin proteasome system has been related to a broad array of neurodegenerative disorders in which the accumulation of misfolded protein aggregates causes proteotoxicity. The ability of proteasome inhibitors to induce cell cycle arrest and apoptosis has emerged as a powerful strategy for cancer therapy. Bortezomib is a proteasome inhibitor used as an antineoplastic drug, although its neurotoxicity frequently causes a severe sensory peripheral neuropathy. In this study we used a rat model of bortezomib treatment to study the nucleolar and Cajal body responses to the proteasome inhibition in sensory ganglion neurons that are major targets of bortezomib-induced neurotoxicity. Treatment with bortezomib induced dose-dependent dissociation of protein synthesis machinery (chromatolysis) and nuclear retention of poly(A) RNA granules resulting in neuronal dysfunction. However, as a compensatory response to the proteotoxic stress, both nucleoli and Cajal bodies exhibited reactive changes. These include an increase in the number and size of nucleoli, strong nucleolar incorporation of the RNA precursor 5'-fluorouridine, and increased expression of both 45S rRNA and genes encoding nucleolar proteins UBF, fibrillarin and B23. Taken together, these findings appear to reflect the activation of the nucleolar transcription in response to proteotoxic stress Furthermore, the number of Cajal bodies, a parameter related to transcriptional activity, increases upon proteasome inhibition. We propose that nucleoli and Cajal bodies are important targets in the signaling pathways that are activated by the proteotoxic stress response to proteasome inhibition. The coordinating activity of these two organelles in the production of snRNA, snoRNA and rRNA may contribute to neuronal survival after proteasome inhibition. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans.

    Science.gov (United States)

    Narayan, Anusha; Venkatachalam, Vivek; Durak, Omer; Reilly, Douglas K; Bose, Neelanjan; Schroeder, Frank C; Samuel, Aravinthan D T; Srinivasan, Jagan; Sternberg, Paul W

    2016-03-08

    Animals find mates and food, and avoid predators, by navigating to regions within a favorable range of available sensory cues. How are these ranges set and recognized? Here we show that male Caenorhabditis elegans exhibit strong concentration preferences for sex-specific small molecule cues secreted by hermaphrodites, and that these preferences emerge from the collective dynamics of a single male-specific class of neurons, the cephalic sensory neurons (CEMs). Within a single worm, CEM responses are dissimilar, not determined by anatomical classification and can be excitatory or inhibitory. Response kinetics vary by concentration, suggesting a mechanism for establishing preferences. CEM responses are enhanced in the absence of synaptic transmission, and worms with only one intact CEM show nonpreferential attraction to all concentrations of ascaroside for which CEM is the primary sensor, suggesting that synaptic modulation of CEM responses is necessary for establishing preferences. A heterogeneous concentration-dependent sensory representation thus appears to allow a single neural class to set behavioral preferences and recognize ranges of sensory cues.

  2. Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response.

    Science.gov (United States)

    Wang, Qiao-Ping; Lin, Yong Qi; Zhang, Lei; Wilson, Yana A; Oyston, Lisa J; Cotterell, James; Qi, Yue; Khuong, Thang M; Bakhshi, Noman; Planchenault, Yoann; Browman, Duncan T; Lau, Man Tat; Cole, Tiffany A; Wong, Adam C N; Simpson, Stephen J; Cole, Adam R; Penninger, Josef M; Herzog, Herbert; Neely, G Gregory

    2016-07-12

    Non-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term effects of sweet/energy imbalance. In flies, chronic sweet/energy imbalance promoted hyperactivity, insomnia, glucose intolerance, enhanced sweet taste perception, and a sustained increase in food and calories consumed, effects that are reversed upon sucralose removal. Mechanistically, this response was mapped to the ancient insulin, catecholamine, and NPF/NPY systems and the energy sensor AMPK, which together comprise a novel neuronal starvation response pathway. Interestingly, chronic sweet/energy imbalance promoted increased food intake in mammals as well, and this also occurs through an NPY-dependent mechanism. Together, our data show that chronic consumption of a sweet/energy imbalanced diet triggers a conserved neuronal fasting response and increases the motivation to eat. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Model System for Live Imaging of Neuronal Responses to Injury and Repair

    Directory of Open Access Journals (Sweden)

    Mathieu Gravel

    2011-11-01

    Full Text Available Although it has been well established that induction of growth-associated protein-43 (GAP-43 during development coincides with axonal outgrowth and early synapse formation, the existence of neuronal plasticity and neurite outgrowth in the adult central nervous system after injuries is more controversial. To visualize the processes of neuronal injury and repair in living animals, we generated reporter mice for bioluminescence and fluorescence imaging bearing the luc (luciferase and gfp (green fluorescent protein reporter genes under the control of the murine GAP-43 promoter. Reporter functionality was first observed during the development of transgenic embryos. Using in vivo bioluminescence and fluorescence imaging, we visualized induction of the GAP-43 signals from live embryos starting at E10.5, as well as neuronal responses to brain and peripheral nerve injuries (the signals peaked at 14 days postinjury. Moreover, three-dimensional analysis of the GAP-43 bioluminescent signal confirmed that it originated from brain structures affected by ischemic injury. The analysis of fluorescence signal at cellular level revealed colocalization between endogenous protein and the GAP-43-driven gfp transgene. Taken together, our results suggest that the GAP-43-luc/gfp reporter mouse represents a valid model system for real-time analysis of neurite outgrowth and the capacity of the adult nervous system to regenerate after injuries.

  4. Intravenous administration of lidocaine directly acts on spinal dorsal horn and produces analgesic effect: An in vivo patch-clamp analysis.

    Science.gov (United States)

    Kurabe, Miyuki; Furue, Hidemasa; Kohno, Tatsuro

    2016-05-18

    Intravenous lidocaine administration produces an analgesic effect in various pain states, such as neuropathic and acute pain, although the underlying mechanisms remains unclear. Here, we hypothesized that intravenous lidocaine acts on spinal cord neurons and induces analgesia in acute pain. We therefore examined the action of intravenous lidocaine in the spinal cord using the in vivo patch-clamp technique. We first investigated the effects of intravenous lidocaine using behavioural measures in rats. We then performed in vivo patch-clamp recording from spinal substantia gelatinosa (SG) neurons. Intravenous lidocaine had a dose-dependent analgesic effect on the withdrawal response to noxious mechanical stimuli. In the electrophysiological experiments, intravenous lidocaine inhibited the excitatory postsynaptic currents (EPSCs) evoked by noxious pinch stimuli. Intravenous lidocaine also decreased the frequency, but did not change the amplitude, of both spontaneous and miniature EPSCs. However, it did not affect inhibitory postsynaptic currents. Furthermore, intravenous lidocaine induced outward currents in SG neurons. Intravenous lidocaine inhibits glutamate release from presynaptic terminals in spinal SG neurons. Concomitantly, it hyperpolarizes postsynaptic neurons by shifting the membrane potential. This decrease in the excitability of spinal dorsal horn neurons may be a possible mechanism for the analgesic action of intravenous lidocaine in acute pain.

  5. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies.

    Science.gov (United States)

    Nishimoto, Shinji; Gallant, Jack L

    2011-10-12

    Area MT has been an important target for studies of motion processing. However, previous neurophysiological studies of MT have used simple stimuli that do not contain many of the motion signals that occur during natural vision. In this study we sought to determine whether views of area MT neurons developed using simple stimuli can account for MT responses under more naturalistic conditions. We recorded responses from macaque area MT neurons during stimulation with naturalistic movies. We then used a quantitative modeling framework to discover which specific mechanisms best predict neuronal responses under these challenging conditions. We find that the simplest model that accurately predicts responses of MT neurons consists of a bank of V1-like filters, each followed by a compressive nonlinearity, a divisive nonlinearity, and linear pooling. Inspection of the fit models shows that the excitatory receptive fields of MT neurons tend to lie on a single plane within the three-dimensional spatiotemporal frequency domain, and suppressive receptive fields lie off this plane. However, most excitatory receptive fields form a partial ring in the plane and avoid low temporal frequencies. This receptive field organization ensures that most MT neurons are tuned for velocity but do not tend to respond to ambiguous static textures that are aligned with the direction of motion. In sum, MT responses to naturalistic movies are largely consistent with predictions based on simple stimuli. However, models fit using naturalistic stimuli reveal several novel properties of MT receptive fields that had not been shown in prior experiments.

  6. Responses of neurons in the inferior colliculus to binaural disparities: insights from the use of Fisher information and mutual information.

    Science.gov (United States)

    Gordon, Noam; Shackleton, Trevor M; Palmer, Alan R; Nelken, Israel

    2008-04-30

    The minimal change in a stimulus property that is detectable by neurons has been often quantified using the receiver operating characteristic (ROC) curve, but recent studies introduced the use of the related Fisher information (FI). Whereas ROC analysis and FI quantify the information available for discriminating between two stimuli, global aspects of the information carried by a neuron are quantified by the mutual information (MI) between stimuli and responses. FI and MI have been shown to be related to each other when FI is large. Here the responses of neurons recorded in the inferior colliculus of anesthetized guinea pigs in response to ensembles of sounds differing in their interaural time differences (ITDs) or binaural correlation (BC) were analyzed. Although the FI is not uniformly large, there are strong relationships between MI and FI. Information-theoretic measures are used to demonstrate the importance of the non-Poisson statistics of these responses. These neurons may reflect the maximization of the MI between stimuli and responses under constraints on the coded stimulus range and the range of firing rates. Remarkably, whereas the maximization of MI, in conjunction with the non-Poisson statistics of the spike trains, is enough to create neurons whose ITD discrimination capabilities are close to the behavioral limits, the same rule does not achieve single-neuron BC discrimination that is as close to behavioral performance.

  7. The iso-response method: measuring neuronal stimulus integration with closed-loop experiments

    Science.gov (United States)

    Gollisch, Tim; Herz, Andreas V. M.

    2012-01-01

    Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the non-linearities relevant for stimulus integration, disentangle consecutive neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, “iso-response” may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modeling are tightly integrated into experiments. PMID:23267315

  8. Mapping speed for an array of corrugated horns.

    Science.gov (United States)

    Padin, Stephen

    2010-01-20

    I address the choice of horn diameter for millimeter-wave array receivers with corrugated horns. For maximum point-source mapping speed, in both total power and polarization with typical receiver noise contributions and a close-packed horn array that fills the field of view, the optimum horn diameter is 1.6-1.7Flambda, where F is the focal ratio. A +/-25% change in horn diameter gives effect on the mapping speed and optimum horn diameter.

  9. Looming-sensitive responses and receptive field organization of telencephalic neurons in the pigeon.

    Science.gov (United States)

    Xiao, Qian; Li, Da-Peng; Wang, Shu-Rong

    2006-01-30

    The tectofugal pathway in birds goes from the optic tectum to the telencephalic entopallium via the thalamic nucleus rotundus (nRt). This pathway may be homologous to the colliculo-pulvinar-cortical pathway in mammals. It is known that a population of rotundal neurons in the pigeon can signal impending collision of looming objects with the animal. Here we show by single-unit recording that there exist two groups of looming-sensitive neurons in the entopallium. A tau cell starts firing at a nearly constant time before collision whereas the response onset time of an eta cell is linearly related to the square root of the diameter/velocity ratio of looming objects. These cells are localized in the caudal entopallium. The receptive field (RF) of looming-sensitive cells was mapped on the screen plane but its inhibitory region could not suppress responses to looming objects. It appears that a population of telencephalic cells in pigeons responds to looming objects and their looming responses are not determined by the receptive field organization mapped on the screen plane.

  10. Neurons in Primate Visual Cortex Alternate between Responses to Multiple Stimuli in Their Receptive Field

    Science.gov (United States)

    Li, Kang; Kozyrev, Vladislav; Kyllingsbæk, Søren; Treue, Stefan; Ditlevsen, Susanne; Bundesen, Claus

    2016-01-01

    A fundamental question concerning representation of the visual world in our brain is how a cortical cell responds when presented with more than a single stimulus. We find supportive evidence that most cells presented with a pair of stimuli respond predominantly to one stimulus at a time, rather than a weighted average response. Traditionally, the firing rate is assumed to be a weighted average of the firing rates to the individual stimuli (response-averaging model) (Bundesen et al., 2005). Here, we also evaluate a probability-mixing model (Bundesen et al., 2005), where neurons temporally multiplex the responses to the individual stimuli. This provides a mechanism by which the representational identity of multiple stimuli in complex visual scenes can be maintained despite the large receptive fields in higher extrastriate visual cortex in primates. We compare the two models through analysis of data from single cells in the middle temporal visual area (MT) of rhesus monkeys when presented with two separate stimuli inside their receptive field with attention directed to one of the two stimuli or outside the receptive field. The spike trains were modeled by stochastic point processes, including memory effects of past spikes and attentional effects, and statistical model selection between the two models was performed by information theoretic measures as well as the predictive accuracy of the models. As an auxiliary measure, we also tested for uni- or multimodality in interspike interval distributions, and performed a correlation analysis of simultaneously recorded pairs of neurons, to evaluate population behavior. PMID:28082892

  11. Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons.

    Science.gov (United States)

    Lo, Michael K; Miller, David; Aljofan, Mohammad; Mungall, Bruce A; Rollin, Pierre E; Bellini, William J; Rota, Paul A

    2010-08-15

    Nipah virus (NiV) is a highly pathogenic paramyxovirus which causes fatal encephalitis in up to 75% of infected humans. Endothelial cells and neurons are important cellular targets in the pathogenesis of this disease. In this study, viral replication and the innate immune responses to NiV in these cell types were measured. NiV infected endothelial cells generated a functionally robust IFN-beta response, which correlated with localization of the NiV W protein to the cytoplasm. There was no antiviral response detected in infected neuronal cells. NiV infection of endothelial cells induced a significant increase in secreted inflammatory chemokines, which corresponded with the increased ability of infected cell supernatants to induce monocyte and T-lymphocyte chemotaxis. These results suggest that pro-inflammatory chemokines produced by NiV infected primary endothelial cells in vitro is consistent with the prominent vasculitis observed in infections, and provide initial molecular insights into the pathogenesis of NiV in physiologically relevant cells types.

  12. Locally Excited State-Charge Transfer State Coupled Dyes as Optically Responsive Neuron Firing Probes.

    Science.gov (United States)

    Sirbu, Dumitru; Butcher, John B; Waddell, Paul G; Andras, Peter; Benniston, Andrew C

    2017-10-17

    A selection of NIR-optically responsive neuron probes was produced comprising of a donor julolidyl group connected to a BODIPY core and several different styryl and vinylpyridinyl derived acceptor moieties. The strength of the donor-acceptor interaction was systematically modulated by altering the electron withdrawing nature of the aryl unit. The fluorescence quantum yield was observed to decrease as the electron withdrawing effect of the aryl subunit increased in line with changes of the Hammett parameter. The effectiveness of these fluorophores as optically responsive dyes for neuronal imaging was assessed by measuring the toxicity and signal-to-noise ratio (SNR) of each dye. A great improvement of SNR was obtained when compared to the first-generation BODIPY-based voltage sensitive dyes with concomitant toxicity decrease. The mechanism for the optical response is disparate from conventional cyanine-based dyes, opening up a new way to produce effective voltage sensitive dyes that respond well into the NIR region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses.

    Science.gov (United States)

    Matarese, Giuseppe; Procaccini, Claudio; Menale, Ciro; Kim, Jae Geun; Kim, Jung Dae; Diano, Sabrina; Diano, Nadia; De Rosa, Veronica; Dietrich, Marcelo O; Horvath, Tamas L

    2013-04-09

    Whole-body energy metabolism is regulated by the hypothalamus and has an impact on diverse tissue functions. Here we show that selective knockdown of Sirtuin 1 Sirt1 in hypothalamic Agouti-related peptide-expressing neurons, which renders these cells less responsive to cues of low energy availability, significantly promotes CD4(+) T-cell activation by increasing production of T helper 1 and 17 proinflammatory cytokines via mediation of the sympathetic nervous system. These phenomena were associated with an impaired thymic generation of forkhead box P3 (FoxP3(+)) naturally occurring regulatory T cells and their reduced suppressive capacity in the periphery, which resulted in increased delayed-type hypersensitivity responses and autoimmune disease susceptibility in mice. These observations unmask a previously unsuspected role of hypothalamic feeding circuits in the regulation of adaptive immune response.

  14. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  15. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    DEFF Research Database (Denmark)

    Carlsen, Eva Maria Meier; Perrier, Jean-Francois Marie

    2014-01-01

    Spinal neuronal networks are essential for motor function. They are involved in the integration of sensory inputs and the generation of rhythmic motor outputs. They continuously adapt their activity to the internal state of the organism and to the environment. This plasticity can be provided...... by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters...... by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice...

  16. AA, sandwich line with magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Continuation from 8010293: Finally, the sandwich line with the horn is placed on the ground, for the horn to be inspected and, if needed, exchanged for a new one. The whole procedure was trained with several members of the AA team, for quick and safe handling, and to share the radiation dose amongst them.

  17. Spherical Horn Array for Wideband Propagation Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund

    2011-01-01

    A spherical array of horn antennas designed to obtain directional channel information and characteristics is introduced. A dual-polarized quad-ridged horn antenna with open flared boundaries and coaxial feeding for the frequency band 600 MHz–6 GHz is used as the element of the array. Matching...... for a wideband multipath propagation studies....

  18. Horn belief change: A contraction core

    CSIR Research Space (South Africa)

    Booth, R

    2010-08-01

    Full Text Available The authors show that Booth et al.’s Horn contraction based on infra-remainder sets corresponds exactly to kernel contraction for belief sets. This result is obtained via a detour through Horn contraction for belief bases, which supports...

  19. Eye injuries caused by cow horns.

    Science.gov (United States)

    Goldblum, D; Frueh, B E; Koerner, F

    1999-01-01

    To assess ocular injuries caused by cow horns; to investigate clinical findings, treatment, and visual outcome in a population of dairy farmers; and to propose possible preventive measures. A retrospective review was conducted to identify patients seen over a 45-month period with cow horn-inflicted eye injuries. Eleven patients were identified and their charts reviewed for demographics, mechanism of injury, initial and final visual acuity, surgeries performed, and anatomic outcome. The mean age of the patients was 64 years. Seven patients had open-globe injuries with vitreous hemorrhage. In five cases, pars plana vitrectomy was performed. Final best-corrected visual acuity was cow horn injuries studied caused severe permanent impairment of vision. Owing to the blunt nature of the horns, a significant amount of energy is imparted into the eye. To prevent these injuries, coagulation of the horns should be performed 2 weeks after a calf's birth or farmers should be advised to wear safety glasses.

  20. Responses of the antennal bimodal hygroreceptor neurons to innocuous and noxious high temperatures in the carabid beetle, Pterostichus oblongopunctatus.

    Science.gov (United States)

    Nurme, Karin; Merivee, Enno; Must, Anne; Sibul, Ivar; Muzzi, Maurizio; Di Giulio, Andrea; Williams, Ingrid; Tooming, Ene

    2015-10-01

    Electrophysiological responses of thermo- and hygroreceptor neurons from antennal dome-shaped sensilla of the carabid beetle Pterostichus oblongopunctatus to different levels of steady temperature ranging from 20 to 35°C and rapid step-changes in it were measured and analysed at both constant relative and absolute ambient air humidity conditions. It appeared that both hygroreceptor neurons respond to temperature which means that they are bimodal. For the first time in arthropods, the ability of antennal dry and moist neurons to produce high temperature induced spike bursts is documented. Burstiness of the spike trains is temperature dependent and increases with temperature increase. Threshold temperatures at which the two neurons switch from regular spiking to spike bursting are lower compared to that of the cold neuron, differ and approximately coincide with the upper limit of preferred temperatures of the species. We emphasise that, in contrast to various sensory systems studied, the hygroreceptor neurons of P. oblongopunctatus have stable and continuous burst trains, no temporal information is encoded in the timing of the bursts. We hypothesise that temperature dependent spike bursts produced by the antennal thermo- and hygroreceptor neurons may be responsible for detection of noxious high temperatures important in behavioural thermoregulation of carabid beetles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Horn growth patterns in Alpine chamois.

    Science.gov (United States)

    Corlatti, Luca; Gugiatti, Alessandro; Imperio, Simona

    2015-06-01

    The analysis of horn growth may provide important information about the allocation of metabolic resources to secondary sexual traits. Depending on the selective advantages offered by horn size during intra- and inter-specific interactions, ungulates may show different investment in horn development, and growth variations within species may be influenced by several parameters, such as sex, age, or resource availability. We investigated the horn growth patterns in two hunted populations of Alpine chamois (Rupicapra r. rupicapra) in the Central Italian Alps. We tested the role of individual heterogeneity on the growth pattern and explored the variation in annulus length as a function of different factors (sex, age, hunting location, cohort). We then investigated the mechanisms underlying horn growth trajectories to test for the occurrence of compensatory or recovery growth and their potential differences between sexes and populations. Annulus length varied as a function of sex, age of individuals and, marginally, hunting location; no effect of cohort or individual heterogeneity was detected. Male and female chamois showed compensatory horn growth within the first 5½ years of life, though the partial convergence of horn trajectories in chamois suggests that this mechanisms would best be described as 'recovery growth'. Compensation rates were greater in males than in females, while only compensatory growth rates up to 2½ years of age were different in the two populations. Besides confirming the sex- and age-dependent pattern of horn development, our study suggests that the mechanism of recovery growth supports the hypothesis of horn size as a weakly selected sexual trait in male and female chamois. Furthermore, the greater compensation rates in horn growth shown by male chamois possibly suggest selective effects of hunting on age at first reproduction, while different compensation rates between populations may suggest the occurrence of some plasticity in resource

  2. Response characteristics of vibration-sensitive neurons in the midbrain of the grassfrog, Rana temporaria

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1989-01-01

    of best frequencies (BF's) was bimodal with peaks at 10 and 100 Hz and the thresholds ranged from 0.02 to 1.28 cm/s2 at the BF. Twenty-three neurons showed phasic-tonic and 11 neurons phasic responses. The dynamic range of seismic intensity for most neurons was 20-30 dB. In contrast to the sharp phase...... response characteristics expressed by inhibition of their spontaneous activity by vibration or by bi- and trimodal sensory sensitivities. In conclusion, the vibration sensitive cells in the midbrain of the grassfrog can encode the frequency, intensity, onset and cessation of vibration stimuli. Seismic...... stimuli probably play a role in communication and detection of predators and the vibration-sensitive midbrain neurons may be involved in the central processing of such behaviorally significant stimuli....

  3. PC12 neuron-like cell response to electrospun poly( 3-hydroxybutyrate) substrates.

    Science.gov (United States)

    Genchi, Giada Graziana; Ciofani, Gianni; Polini, Alessandro; Liakos, Ioannis; Iandolo, Donata; Athanassiou, Athanassia; Pisignano, Dario; Mattoli, Virgilio; Menciassi, Arianna

    2015-02-01

    In the last decade, the importance of topographic properties of extracellular environments has been shown to be essential to addressing cell response, especially when replacing damaged tissues with functional constructs obtained in vitro. In the current study, densely packed sub-micron poly(3-hydroxybutyrate) (PHB) fibres were electrospun with random and parallel orientations. PC12 pheochromocytoma cells that mimic central dopaminergic neurons and represent a model for neuronal differentiation were cultured on collagen-coated fibres to evaluate cell response dependence on substrate topography. Cell adhesion, viability and proliferation, as well as dopamine production were evaluated after three days since seeding. Cell differentiation was examined in terms of neurite number, orientation and length 6 days after administration of nerve growth factor (NGF). Results showed that proliferating PC12 cells secreted a higher quantity of dopamine on fibres with respect to control cultures and as a result, a possible use of PHB fibres was considered for cell transplantation in the central nervous system when local production of dopamine is impaired. Differentiated PC12 cells were characterized by highly aligned and longer neurites on parallel PHB fibres with respect to random fibres, thereby demonstrating the suitability of parallel PHB fibres for further studies in peripheral nervous system regeneration. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Cell-attached recordings of responses evoked by photorelease of GABA in the immature cortical neurons

    Directory of Open Access Journals (Sweden)

    Marat eMinlebaev

    2013-05-01

    Full Text Available We present a novel non-invasive technique to measure the polarity of GABAergic responses based on cell-attached recordings of currents activated by laser-uncaging of GABA. For these recordings, a patch pipette was filled with a solution containing RuBi-GABA, and GABA was released from this complex by a laser beam conducted to the tip of the patch pipette via an optic fiber. In cell-attached recordings from neocortical and hippocampal neurons in postnatal days P2-5 rat brain slices in vitro, we found that laser-uncaging of GABA activates integral cell-attached currents mediated by tens of GABA(A channels. The initial response was inwardly directed, indicating a depolarizing response to GABA. The direction of the initial response was dependent on the pipette potential and analysis of its slope-voltage relationships revealed a depolarizing driving force of +11 mV for the currents through GABA channels. Initial depolarizing responses to GABA uncaging were inverted to hyperpolarizing in the presence of the NKCC1 blocker bumetanide. Current-voltage relationships of the currents evoked by Rubi-GABA uncaging using voltage-ramps at the peak of responses not only revealed a bumetanide-sensitive depolarizing reversal potential of the GABA(A receptor mediated responses, but also showed a strong voltage-dependent hysteresis. Upon desensitization of the uncaged-GABA response, current-voltage relationships of the currents through single GABA(A channels revealed depolarizing responses with the driving force values similar to those obtained for the initial response. Thus, cell-attached recordings of the responses evoked by local intrapipette GABA uncaging are suitable to assess the polarity of the GABA(A-Rs mediated signals in small cell compartments.

  5. Mott-Anderson freeze-out and the strange matter "horn"

    OpenAIRE

    Naskret, M.; Blaschke, D.; Dubinin, A.

    2015-01-01

    We discuss the $\\sqrt{s}$-dependence of the $K^+/\\pi^+$ ratio in heavy-ion collisions (the "horn" effect) within a Mott-Anderson localization model for chemical freeze-out. The different response of pion and kaon radii to the hot and dense hadronic medium results in different freeze-out conditions. We demonstrate within a simple model that this circumstance enhances the "horn" effect relative to statistical models with universal chemical freeze-out.

  6. Responses of neurons in the rostral ventrolateral medulla to whole body rotations: comparisons in decerebrate and conscious cats.

    Science.gov (United States)

    Destefino, V J; Reighard, D A; Sugiyama, Y; Suzuki, T; Cotter, L A; Larson, M G; Gandhi, N J; Barman, S M; Yates, B J

    2011-06-01

    The responses to vestibular stimulation of brain stem neurons that regulate sympathetic outflow and blood flow have been studied extensively in decerebrate preparations, but not in conscious animals. In the present study, we compared the responses of neurons in the rostral ventrolateral medulla (RVLM), a principal region of the brain stem involved in the regulation of blood pressure, to whole body rotations of conscious and decerebrate cats. In both preparations, RVLM neurons exhibited similar levels of spontaneous activity (median of ∼17 spikes/s). The firing of about half of the RVLM neurons recorded in decerebrate cats was modulated by rotations; these cells were activated by vertical tilts in a variety of directions, with response characteristics suggesting that their labyrinthine inputs originated in otolith organs. The activity of over one-third of RVLM neurons in decerebrate animals was altered by stimulation of baroreceptors; RVLM units with and without baroreceptor signals had similar responses to rotations. In contrast, only 6% of RVLM neurons studied in conscious cats exhibited cardiac-related activity, and the firing of just 1% of the cells was modulated by rotations. These data suggest that the brain stem circuitry mediating vestibulosympathetic reflexes is highly sensitive to changes in body position in space but that the responses to vestibular stimuli of neurons in the pathway are suppressed by higher brain centers in conscious animals. The findings also raise the possibility that autonomic responses to a variety of inputs, including those from the inner ear, could be gated according to behavioral context and attenuated when they are not necessary.

  7. Neuronal expression of sodium/bicarbonate cotransporter NBCn1 (SLC4A7) and its response to chronic metabolic acidosis

    Science.gov (United States)

    Park, Hae Jeong; Rajbhandari, Ira; Yang, Han Soo; Lee, Soojung; Cucoranu, Delia; Cooper, Deborah S.; Klein, Janet D.; Sands, Jeff M.

    2010-01-01

    The sodium-bicarbonate cotransporter NBCn1 (SLC4A7) is an acid-base transporter that normally moves Na+ and HCO3− into the cell. This membrane protein is sensitive to cellular and systemic pH changes. We examined NBCn1 expression and localization in the brain and its response to chronic metabolic acidosis. Two new NBCn1 antibodies were generated by immunizing a rabbit and a guinea pig. The antibodies stained neurons in a variety of rat brain regions, including hippocampal pyramidal neurons, dentate gyrus granular neurons, posterior cortical neurons, and cerebellar Purkinje neurons. Choroid plexus epithelia were also stained. Double immunofluorescence labeling showed that NBCn1 and the postsynaptic density protein PSD-95 were found in the same hippocampal CA3 neurons and partially colocalized in dendrites. PSD-95 was pulled down from rat brain lysates with the GST/NBCn1 fusion protein and was also coimmunoprecipitated with NBCn1. Chronic metabolic acidosis was induced by feeding rats with normal chow or 0.4 M HCl-containing chow for 7 days. Real-time PCR and immunoblot showed upregulation of NBCn1 mRNA and protein in the hippocampus of acidotic rats. NBCn1 immunostaining was enhanced in CA3 neurons, posterior cortical neurons, and cerebellar granular cells. Intraperitoneal administration of N-methyl-d-aspartate caused neuronal death determined by caspase-3 activity, and this effect was more severe in acidotic rats. Administering N-methyl-d-aspartate also inhibited NBCn1 upregulation in acidotic rats. We conclude that NBCn1 in neurons is upregulated by chronic acid loads, and this upregulation is associated with glutamate excitotoxicity. PMID:20147654

  8. Neuronal Chemosensation and Osmotic Stress Response Converge in the Regulation of aqp-8 in C. elegans.

    Science.gov (United States)

    Igual Gil, Carla; Jarius, Mirko; von Kries, Jens P; Rohlfing, Anne-Katrin

    2017-01-01

    Aquaporins occupy an essential role in sustaining the salt/water balance in various cells types and tissues. Here, we present new insights into aqp-8 expression and regulation in Caenorhabditis elegans. We show, that upon exposure to osmotic stress, aqp-8 exhibits a distinct expression pattern within the excretory cell compared to other C. elegans aquaporins expressed. This expression is correlated to the osmolarity of the surrounding medium and can be activated physiologically by osmotic stress or genetically in mutants with constitutively active osmotic stress response. In addition, we found aqp-8 expression to be constitutively active in the TRPV channel mutant osm-9(ok1677). In a genome-wide RNAi screen we identified additional regulators of aqp-8. Many of these regulators are connected to chemosensation by the amphid neurons, e.g., odr-10 and gpa-6, and act as suppressors of aqp-8 expression. We postulate from our results, that aqp-8 plays an important role in sustaining the salt/water balance during a secondary response to hyper-osmotic stress. Upon its activation aqp-8 promotes vesicle docking to the lumen of the excretory cell and thereby enhances the ability to secrete water and transport osmotic active substances or waste products caused by protein damage. In summary, aqp-8 expression and function is tightly regulated by a network consisting of the osmotic stress response, neuronal chemosensation as well as the response to protein damage. These new insights in maintaining the salt/water balance in C. elegans will help to reveal the complex homeostasis network preserved throughout species.

  9. Horn of Africa food crisis

    CERN Multimedia

    Staff Association

    2011-01-01

    YOU ARE WONDERFUL, THANK YOU! As we have indicated previously, the Horn of Africa is experiencing an extremely severe food crisis as a result of one of the toughest droughts since the early 1950s. A total of over 12 million people in Djibouti, Ethiopia, Somalia, Kenya and Uganda are severely affected by this devastating crisis and the UN has officially declared famine in these regions. In addition, children are the most vulnerable victims, with more than half a million children at risk of imminent death from severe malnutrition and an estimated 2.3 million children already malnourished. At the beginning of August we opened an account to receive your donations. We are pleased to announce that the funds received are 30’500 CHF, the total sum of which will be transferred to UNICEF. We would like to thank all those who have contributed to this important cause. Rolf Heuer Director-General Michel Goossens President of the Staff Association

  10. 12MW Horns Rev experiment

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Peña, A.; Mikkelsen, Torben

    The 12MW project with the full title ‘12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore’ has the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis...... relevant for the next generation of huge 12 MW wind turbines operating offshore. The report describes the experimental campaign at the Horns Rev offshore wind farm at which observations from Doppler Laser LIDAR and SODAR were collected from 3 May to 24 October 2006. The challenges for mounting...... profile. Further studies on this part of the work are on-going. Technical detail on LIDAR and SODAR are provided as well as theoretical work on turbulence and atmospheric boundary layer flow. Selected results from the experimental campaign are reported....

  11. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons

    Science.gov (United States)

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg

    2014-01-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological

  12. Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise.

    Science.gov (United States)

    Brown, M C; Kujawa, S G; Duca, M L

    1998-06-01

    Single medial olivocochlear (MOC) neurons were recorded from the cochlea of the anesthetized guinea pig. We used tones and noise presented monaurally and binaurally and measured responses for sounds up to 105 dB sound pressure level (SPL). For monaural sound, MOC neuron firing rates were usually higher for noise bursts than tone bursts, a situation not observed for afferent fibers of the auditory nerve that were sampled in the same preparations. MOC neurons also differed from afferent fibers in having less saturation of response. Some MOC neurons had responses that continued to increase even at high sound levels. Differences between MOC and afferent responses suggest that there is convergence in the pathway to olivocochlear neurons, possibly a combination of inputs that are at the characteristic frequency (CF) with others that are off the CF. Opposite-ear noise almost always facilitated the responses of MOC neurons to sounds in the main ear, the ear that best drives the unit. This binaural facilitation depends on several characteristics that pertain to the main ear: it is higher in neurons having a contralateral main ear (contra units), it is higher at main-ear sound levels that are moderate (approximately 65 dB SPL), and it is higher in neurons with low discharge rates to main-ear stimuli. Facilitation also depends on parameters of the opposite-ear sound: facilitation increases with noise level in the opposite ear until saturating, is greater for continuous noise than noise bursts, and is usually greater for noise than for tones. Using optimal opposite-ear facilitators and high-level stimuli, the firing rates of olivocochlear neurons range up to 140 spikes/s, whereas for moderate-level monaural stimuli the rates are neurons increase with CF, an increase that may compensate for the known lower effectiveness of olivocochlear synapses on outer hair cells responding to high frequencies. Overall, our results demonstrate a high MOC response for binaural noise and

  13. Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness.

    Directory of Open Access Journals (Sweden)

    Daisuke Kohno

    2016-11-01

    Full Text Available The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC: glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanism underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2 and taste type 1 receptor 3 (T1R3 and senses sweet tastes. T1R2 and T1R3 receptors are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5 M-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentage of proopiomelanocortin (POMC neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular

  14. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10−5–10−2 M dose dependently increased [Ca2+]i in 12–16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation mainly

  15. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation mainly occurs on

  16. Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses.

    Directory of Open Access Journals (Sweden)

    Nicole Schöbel

    Full Text Available Intracellular Cl(- concentrations ([Cl(-](i of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG and olfactory sensory neurons (OSNs, Cl(- is accumulated by the Na(+-K(+-2Cl(- cotransporter 1 (NKCC1, resulting in a [Cl(-](i above electrochemical equilibrium and a depolarizing Cl(- efflux upon Cl(- channel opening. Here, we investigate the [Cl(-](i and function of Cl(- in primary sensory neurons of trigeminal ganglia (TG of wild type (WT and NKCC1(-/- mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl(-](i of WT TG neurons indicated active NKCC1-dependent Cl(- accumulation. Gamma-aminobutyric acid (GABA(A receptor activation induced a reduction of [Cl(-](i as well as Ca(2+ transients in a corresponding fraction of TG neurons. Ca(2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca(2+ channels (VGCCs. Ca(2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1 were diminished in NKCC1(-/- TG neurons, but elevated under conditions of a lowered [Cl(-](o suggesting a Cl(--dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS, we found expression of different Ca(2+-activated Cl(- channels (CaCCs in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca(2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1(-/- mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca(2+-activated Cl(--dependent signal amplification mechanism in TG neurons that requires intracellular Cl(- accumulation by NKCC1 and the activation of CaCCs.

  17. The SeaHorn Verification Framework

    Science.gov (United States)

    Gurfinkel, Arie; Kahsai, Temesghen; Komuravelli, Anvesh; Navas, Jorge A.

    2015-01-01

    In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code.

  18. Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction

    Science.gov (United States)

    Moorman, David E.; Aston-Jones, Gary

    2015-01-01

    The prefrontal cortex (PFC) guides execution and inhibition of behavior based on contextual demands. In rodents, the dorsal/prelimbic (PL) medial PFC (mPFC) is frequently considered essential for execution of goal-directed behavior (“go”) whereas ventral/infralimbic (IL) mPFC is thought to control behavioral suppression (“stop”). This dichotomy is commonly seen for fear-related behaviors, and for some behaviors related to cocaine seeking. Overall, however, data for reward-directed behaviors are ambiguous, and few recordings of PL/IL activity have been performed to demonstrate single-neuron correlates. We recorded neuronal activity in PL and IL during discriminative stimulus driven sucrose seeking followed by multiple days of extinction of the reward-predicting stimulus. Contrary to a generalized PL-go/IL-stop hypothesis, we found cue-evoked activity in PL and IL during reward seeking and extinction. Upon analyzing this activity based on resultant behavior (lever press or withhold), we found that neurons in both areas encoded contextually appropriate behavioral initiation (during reward seeking) and withholding (during extinction), where context was dictated by response–outcome contingencies. Our results demonstrate that PL and IL signal contextual information for regulation of behavior, irrespective of whether that involves initiation or suppression of behavioral responses, rather than topographically encoding go vs. stop behaviors. The use of context to optimize behavior likely plays an important role in maximizing utility-promoting exertion of activity when behaviors are rewarded and conservation of energy when not. PMID:26170333

  19. Sex-Specific Effects of Stress on Oxytocin Neurons Correspond With Responses to Intranasal Oxytocin.

    Science.gov (United States)

    Steinman, Michael Q; Duque-Wilckens, Natalia; Greenberg, Gian D; Hao, Rebecca; Campi, Katharine L; Laredo, Sarah A; Laman-Maharg, Abigail; Manning, Claire E; Doig, Ian E; Lopez, Eduardo M; Walch, Keenan; Bales, Karen L; Trainor, Brian C

    2016-09-01

    Oxytocin (OT) is considered to be a stress-buffering hormone, dampening the physiologic effects of stress. However, OT can also be anxiogenic. We examined acute and long-lasting effects of social defeat on OT neurons in male and female California mice. We used immunohistochemistry for OT and c-fos cells to examine OT neuron activity immediately after defeat (n = 6-9) and 2 weeks (n = 6-9) and 10 weeks (n = 4-5) later. We quantified Oxt messenger RNA with quantitative polymerase chain reaction (n = 5-9). Intranasal OT was administered to naïve and stressed mice tested in social interaction and resident-intruder tests (n = 8-14). Acute exposure to a third episode of defeat increased OT/c-fos colocalizations in the paraventricular nucleus of both sexes. In the medioventral bed nucleus of the stria terminalis, defeat increased Oxt messenger RNA, total OT neurons, and OT/c-fos colocalizations in female mice but not male mice. Intranasal OT failed to reverse stress-induced social withdrawal in female mice and reduced social interaction behavior in female mice naïve to defeat. In contrast, intranasal OT increased social interaction in stressed male mice and reduced freezing in the resident-intruder test. Social defeat induces long-lasting increases in OT production and OT/c-fos cells in the medioventral bed nucleus of the stria terminalis of female mice but not male mice. Intranasal OT largely reversed the effects of stress on behavior in male mice, but effects were mixed in female mice. These results suggest that changes in OT-sensitive networks contribute to sex differences in behavioral responses to stress. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response.

    Science.gov (United States)

    Lin, Yu-Lung; Tsai, Hong-Chieh; Liu, Pei-Yao; Benneyworth, Michael; Wei, Li-Na

    2017-12-12

    Heat shock response (HSR) is a highly conserved transcriptional program that protects organisms against various stressful conditions. However, the molecular mechanisms modulating HSR, especially the suppression of HSR, is poorly understood. Here, we found that RIP140, a wide-spectrum cofactor of nuclear hormone receptors, acts as a co-repressor of heat shock factor 1 (HSF1) to suppress HSR in healthy neurons. When neurons are stressed such as by heat shock or sodium arsenite (As), cells engage specific proteosome-mediated degradation to reduce RIP140 level, thereby relieving the suppression and activating HSR. RIP140 degradation requires specific Tyr-phosphorylation by Syk that is activated in stressful conditions. Lowering RIP140 level protects hippocampal neurons from As stress, significantly it increases neuron survival and improves spine density. Reducing hippocampal RIP140 in the mouse rescues chronic As-induced spatial learning deficits. This is the first study elucidating RIP140-mediated suppression of HSF1-activated HSR in neurons and brain. Importantly, degradation of RIP140 in stressed neurons relieves this suppression, allowing neurons to efficiently and timely engage HSR programs and recover. Therefore, stimulating RIP140 degradation to activate anti-stress program provides a potential preventive or therapeutic strategy for neurodegeneration diseases.

  1. AA, sandwich line with magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The magnetic horn, focusing the antiprotons emanating from the target, was affixed to a sandwich line through which the 150 kA pulses were supplied. Expecting to have to change from time to time the fragile horn (inner conductor only 0.7 mm thick), the assembly was designed for quick exchange. At the lower end of the sandwich line we see the connectors for the high-current cables, at the upper end the magnet horn. It has just been lifted from the V-supports which held it aligned downstream of the target. Continue with 8010293.

  2. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

    KAUST Repository

    Boury-Jamot, B

    2015-10-27

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  3. Variability of Neuronal Responses: Types and Functional Significance in Neuroplasticity and Neural Darwinism.

    Science.gov (United States)

    Chervyakov, Alexander V; Sinitsyn, Dmitry O; Piradov, Michael A

    2016-01-01

    HIGHLIGHTS We suggest classifying variability of neuronal responses as follows: false (associated with a lack of knowledge about the influential factors), "genuine harmful" (noise), "genuine neutral" (synonyms, repeats), and "genuine useful" (the basis of neuroplasticity and learning).The genuine neutral variability is considered in terms of the phenomenon of degeneracy.Of particular importance is the genuine useful variability that is considered as a potential basis for neuroplasticity and learning. This type of variability is considered in terms of the neural Darwinism theory. In many cases, neural signals detected under the same external experimental conditions significantly change from trial to trial. The variability phenomenon, which complicates extraction of reproducible results and is ignored in many studies by averaging, has attracted attention of researchers in recent years. In this paper, we classify possible types of variability based on its functional significance and describe features of each type. We describe the key adaptive significance of variability at the neural network level and the degeneracy phenomenon that may be important for learning processes in connection with the principle of neuronal group selection.

  4. Alterations of Ca2+ responsive proteins within cholinergic neurons in aging and AD

    Science.gov (United States)

    Riascos, David; Nicholas, Alexander; Samaeekia, Ravand; Yukhnanov, Rustam; Mesulam, M.-Marsel; Bigio, Eileen H.; Weintraub, Sandra; Guo, Ling; Geula, Changiz

    2014-01-01

    The molecular basis of selective neuronal vulnerability in Alzheimer ’s disease (AD) remains poorly understood. Using basal forebrain cholinergic neurons (BFCN) as a model and immunohistochemistry, we have demonstrated significant age-related loss of the calcium binding protein calbindin-D28K (CB) from BFCN, which was associated with tangle formation and degeneration in AD. Here we determined alterations in RNA and protein for CB and other Ca2+ responsive proteins Ca2+/calmodulin-dependent protein kinase I (CaMKI), growth-associated protein-43 (GAP43), calpain in the basal forebrain. We observed progressive downregulation of CB and CaMKI RNA in laser-captured BFCN in the normal-aged-AD continuum. We also detected progressive loss of CB, CaMKI-Delta, and GAP43 proteins in BF homogenates in aging and AD. Activated μ-calpain, a calcium-sensitive protease that degrades CaMKI and GAP-43, was significantly increased in the normal aged BF and was 10-times higher in AD BF. Overactivation of μ-calpain was confirmed using proteolytic fragments of its substrate spectrin. Substantial age and AD related alterations in Ca2+-sensing proteins most likely contribute to selective vulnerability of BFCN to degeneration in AD. PMID:24461366

  5. Reorganization of nuclear compartments of type A neurons of trigeminal ganglia in response to inflammatory injury of peripheral nerve endings.

    Science.gov (United States)

    Navascues, J; Casafont, I; Villagra, N T; Lafarga, M; Berciano, M T

    2004-07-01

    In this study we have taken advantage of the high nuclear responsiveness of type A sensory ganglia neurons to variations of cellular activity to investigate the reorganization and dynamics of nuclear compartments involved in transcription and RNA processing in response to neuronal injury. As experimental model we have used the inflammatory injury of the peripheral nerve endings induced by formalin injection in the areas of ophthalmic/maxillary nerve distribution. We have performed immunofluorescence and confocal laser microscopy analysis with specific antibodies for different nuclear compartments and ultrastructural analysis. The initial response to neuronal injury, within the 3 days post-injury, consisted of chromatin condensation, reduction in the expression level of acetylated histone H4, accumulation of perichromatin granules, reorganization of splicing factors in prominent nuclear speckles, reduction in the number of Cajal bodies and nucleolar alterations. These changes tended to revert by day 7 post-injury and are consistent with a transient inhibition of transcription and RNA processing. Moreover, we have observed an early and sustained expression of the transcription factor c-Jun. These results illustrate the transcription-dependent organization of nuclear compartments in type A trigeminal neurons and also support the importance of the nuclear response to axonal injury as a key component in the regenerative capacity of this neuronal population.

  6. Responses of neurons in the inferior colliculus to binaural masking level difference stimuli measured by rate-versus-level functions.

    Science.gov (United States)

    Jiang, D; McAlpine, D; Palmer, A R

    1997-06-01

    The psychophysical detection threshold of a low-frequency tone masked by broadband noise is reduced by binaural masking level difference: BMLD). The contribution of 120 low-frequency neurons (best frequencies 168-2,090 Hz) in the inferior colliculus (ICC) of the guinea pig to binaural unmasking of 500-Hz tones masked by broadband noise was examined. We measured rate-level functions of the responses to identical signals (So) and noise (No) at the two ears (NoSo) and to identical noise but with the signal inverted at one ear (NoS pi): the noise was 7-15 dB suprathreshold. The masked threshold was estimated by the standard separation, "D". The neural BMLD was estimated as the difference between the masked thresholds for NoSo and NoS pi. The presence of So and S pi tones was indicated by discharge rate increases in 55.3% of neurons. In 36.4% of neurons, the presence of So tones was indicated by an increase in discharge rate and S pi tones by a decrease. In 6.8% of neurons, both So and S pi tones caused a decrease in discharge rate. In only 1.5% of neurons was So indicated by a decrease and S pi by an increase in discharge rate. Responses to the binaural configurations were consistent with the neuron's interaural delay sensitivities; 34.4% of neurons showing increases in discharge rate to both So and S pi tones gave positive BMLDs > or = 3 dB (S pi tones were detected at lower levels than So), whereas 37.3% gave negative BMLDs > or = 3 dB. For neurons in which So signals caused an increase in the discharge rate and S pi a decrease, 72.7% gave positive BMLDs > or = 3 dB and only 4.5% gave negative BMLDs > or = 3 dB. The results suggest that the responses of single ICC neurons are consistent with the psychophysical BMLDs for NoSo versus NoS pi at 500 Hz, and with current binaural interaction models based on coincidence detection. The neurons likely to contribute to the psychophysical BMLD are those with BFs near 500 Hz, but detection of So and S pi tones may depend on

  7. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish.

    Science.gov (United States)

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-01

    The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96h of exposure to copper ions at the sublethal concentration of 30μgL(-1). Densitometric values of cONS, immunostained with anti-G αolf, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30days, we observed a partial restoration of anti-G αolf staining intensity to normal condition. The recovery of cOSNs appeared sustained by neuronal proliferation, quantified with anti-PCNA immunostaining, in particular in the early days after exposure. The densitometric analysis applied to mOSNs, immunostained with anti-TRPC2

  8. Responses of neurons in the inferior colliculus to dynamic interaural phase cues: evidence for a mechanism of binaural adaptation.

    Science.gov (United States)

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    2000-03-01

    Responses to sound stimuli that humans perceive as moving were obtained for 89 neurons in the inferior colliculus (IC) of urethan-anesthetized guinea pigs. Triangular and sinusoidal interaural phase modulation (IPM), which produced dynamically varying interaural phase disparities (IPDs), was used to present stimuli with different depths, directions, centers, and rates of apparent motion. Many neurons appeared sensitive to dynamic IPDs, with responses at any given IPD depending strongly on the IPDs the stimulus had just passed through. However, it was the temporal pattern of the response, rather than the motion cues in the IPM, that determined sensitivity to features such as motion depth, direction, and center locus. IPM restricted only to the center of the IPD responsive area, evoked lower discharge rates than when the stimulus either moved through the IPD responsive area from outside, or up and down its flanks. When the stimulus was moved through the response area first in one direction and then back in the other, and the same IPDs evoked different responses, the response to the motion away from the center of the IPD responsive area was always lower than the response to the motion toward the center. When the IPD was closer at which the direction of motion reversed was to the center, the response to the following motion was lower. In no case did we find any evidence for neurons that under all conditions preferred one direction of motion to the other. We conclude that responses of IC neurons to IPM stimuli depend not on the history of stimulation, per se, but on the history of their response to stimulation, irrespective of the specific motion cues that evoke those responses. These data are consistent with the involvement of an adaptation mechanism that resides at or above the level of binaural integration. We conclude that our data provide no evidence for specialized motion detection involving dynamic IPD cues in the auditory midbrain of the mammal.

  9. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    Directory of Open Access Journals (Sweden)

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  10. Central and peripheral chemoreceptors evoke distinct responses in simultaneously recorded neurons of the raphé-pontomedullary respiratory network.

    Science.gov (United States)

    Nuding, Sarah C; Segers, Lauren S; Shannon, Roger; O'Connor, Russell; Morris, Kendall F; Lindsey, Bruce G

    2009-09-12

    The brainstem network for generating and modulating the respiratory motor pattern includes neurons of the medullary ventrolateral respiratory column (VRC), dorsolateral pons (PRG) and raphé nuclei. Midline raphé neurons are proposed to be elements of a distributed brainstem system of central chemoreceptors, as well as modulators of central chemoreceptors at other sites, including the retrotrapezoid nucleus. Stimulation of the raphé system or peripheral chemoreceptors can induce a long-term facilitation of phrenic nerve activity; central chemoreceptor stimulation does not. The network mechanisms through which each class of chemoreceptor differentially influences breathing are poorly understood. Microelectrode arrays were used to monitor sets of spike trains from 114 PRG, 198 VRC and 166 midline neurons in six decerebrate vagotomized cats; 356 were recorded during sequential stimulation of both receptor classes via brief CO(2)-saturated saline injections in vertebral (central) and carotid arteries (peripheral). Seventy neurons responded to both stimuli. More neurons were responsive only to peripheral challenges than those responsive only to central chemoreceptor stimulation (PRG, 20 : 4; VRC, 41 : 10; midline, 25 : 13). Of 16 474 pairs of neurons evaluated for short-time scale correlations, similar percentages of reference neurons in each brain region had correlation features indicative of a specific interaction with at least one target neuron: PRG (59.6%), VRC (51.0%) and raphé nuclei (45.8%). The results suggest a brainstem network architecture with connectivity that shapes the respiratory motor pattern via overlapping circuits that modulate central and peripheral chemoreceptor-mediated influences on breathing.

  11. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury.

    Directory of Open Access Journals (Sweden)

    Hey-Kyeong Jeong

    Full Text Available BACKGROUND: Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS: Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+ and Iba-1(+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS: Different cellular

  12. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone.

    Science.gov (United States)

    Kurtovic, Amina; Widmer, Alexandre; Dickson, Barry J

    2007-03-29

    Insects, like many other animals, use sex pheromones to coordinate their reproductive behaviours. Volatile pheromones are detected by odorant receptors expressed in olfactory receptor neurons (ORNs). Whereas fruit odours typically activate multiple ORN classes, pheromones are thought to act through single dedicated classes of ORN. This model predicts that activation of such an ORN class should be sufficient to trigger the appropriate behavioural response. Here we show that the Drosophila melanogaster male-specific pheromone 11-cis-vaccenyl acetate (cVA) acts through the receptor Or67d to regulate both male and female mating behaviour. Mutant males that lack Or67d inappropriately court other males, whereas mutant females are less receptive to courting males. These data suggest that cVA has opposite effects in the two sexes: inhibiting mating behaviour in males but promoting mating behaviour in females. Replacing Or67d with moth pheromone receptors renders these ORNs sensitive to the corresponding moth pheromones. In such flies, moth pheromones elicit behavioural responses that mimic the normal response to cVA. Thus, activation of a single ORN class is both necessary and sufficient to mediate behavioural responses to the Drosophila sex pheromone cVA.

  13. Potential contamination effects of neuronal refractoriness on the speech-evoked mismatch negativity response.

    Science.gov (United States)

    Cranford, Jerry L; Walker, Letitia J; Stuart, Andrew; Elangovan, Saravanan; Pravica, David

    2003-07-01

    The mismatch negativity response (MMN) is an event-related potential that is believed to reflect the automatic (possibly preconscious) neural processing of changes in ongoing environmental sounds. The MMN involves a negative voltage shift of baseline electroencephalographic (EEG) activity in the approximate latency window of the N1 and P2 cortical potentials in response to new or novel sounds. The most commonly used laboratory tests for extracting the MMN from EEG activity all involve oddball stimulus presentation procedures in which the interstimulus intervals (ISIs) of the frequently occurring standard sounds are shorter in length then that of the infrequently occurring deviant sounds. This presents the possibility that the MMN response could be affected by neuronal refractory or recovery events. The present study tested 12 young females, using the syllabic events /da/ and /ga/ as standard and deviant stimuli, and found evidence that, with certain experimental protocols, ISI-dependent neural refractory effects can affect the morphology of the MMN, possibly resulting in misinterpretation of the underlying neural bases of the response.

  14. Background complexity affects response of a looming-sensitive neuron to object motion.

    Science.gov (United States)

    Silva, Ana C; McMillan, Glyn A; Santos, Cristina P; Gray, John R

    2015-01-01

    An increasing number of studies show how stimulus complexity affects the responses of looming-sensitive neurons across multiple animal taxa. Locusts contain a well-described, descending motion-sensitive pathway that is preferentially looming sensitive. However, the lobula giant movement detector/descending contralateral movement detector (LGMD/DCMD) pathway responds to more than simple objects approaching at constant, predictable trajectories. In this study, we presented Locusta migratoria with a series of complex three-dimensional visual stimuli presented while simultaneously recording DCMD activity extracellularly. In addition to a frontal looming stimulus, we used a combination of compound trajectories (nonlooming transitioning to looming) presented at different velocities and onto a simple, scattered, or progressive flow field background. Regardless of stimulus background, DCMD responses to looming were characteristic and related to previously described effects of azimuthal approach angle and velocity of object expansion. However, increasing background complexity caused reduced firing rates, delayed peaks, shorter rise phases, and longer fall phases. DCMD responded to transitions to looming with a characteristic drop in a firing rate that was relatively invariant across most stimulus combinations and occurred regardless of stimulus background. Spike numbers were higher in the presence of the scattered background and reduced in the flow field background. We show that DCMD response time to a transition depends on unique expansion parameters of the moving stimulus irrespective of background complexity. Our results show how background complexity shapes DCMD responses to looming stimuli, which is explained within a behavioral context. Copyright © 2015 the American Physiological Society.

  15. Fetal alcohol exposure reduces responsiveness of taste nerves and trigeminal chemosensory neurons to ethanol and its flavor components.

    Science.gov (United States)

    Glendinning, John I; Tang, Joyce; Morales Allende, Ana Paula; Bryant, Bruce P; Youngentob, Lisa; Youngentob, Steven L

    2017-08-01

    Fetal alcohol exposure (FAE) leads to increased intake of ethanol in adolescent rats and humans. We asked whether these behavioral changes may be mediated in part by changes in responsiveness of the peripheral taste and oral trigeminal systems. We exposed the experimental rats to ethanol in utero by administering ethanol to dams through a liquid diet; we exposed the control rats to an isocaloric and isonutritive liquid diet. To assess taste responsiveness, we recorded responses of the chorda tympani (CT) and glossopharyngeal (GL) nerves to lingual stimulation with ethanol, quinine, sucrose, and NaCl. To assess trigeminal responsiveness, we measured changes in calcium levels of isolated trigeminal ganglion (TG) neurons during stimulation with ethanol, capsaicin, mustard oil, and KCl. Compared with adolescent control rats, the adolescent experimental rats exhibited diminished CT nerve responses to ethanol, quinine, and sucrose and GL nerve responses to quinine and sucrose. The reductions in taste responsiveness persisted into adulthood for quinine but not for any of the other stimuli. Adolescent experimental rats also exhibited reduced TG neuron responses to ethanol, capsaicin, and mustard oil. The lack of change in responsiveness of the taste nerves to NaCl and the TG neurons to KCl indicates that FAE altered only a subset of the response pathways within each chemosensory system. We propose that FAE reprograms development of the peripheral taste and trigeminal systems in ways that reduce their responsiveness to ethanol and surrogates for its pleasant (i.e., sweet) and unpleasant (i.e., bitterness, oral burning) flavor attributes.NEW & NOTEWORTHY Pregnant mothers are advised to avoid alcohol. This is because even small amounts of alcohol can alter fetal brain development and increase the risk of adolescent alcohol abuse. We asked how fetal alcohol exposure (FAE) produces the latter effect in adolescent rats by measuring responsiveness of taste nerves and trigeminal

  16. Assembly of the magnetic horns under way

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Ahmed Cherif of the EST Division's Metrology Service checks the straightness of the inner conductor of the first magnetic horn for CNGS. The tolerance is less than one millimetre over a length of approximately 6.5 metres.

  17. Next steps in propositional horn contraction

    CSIR Research Space (South Africa)

    Booth, R

    2009-06-01

    Full Text Available not opted for this choice.) Our start- ing point for defining Horn e-contraction is in terms of Del- grande’s definition of e-remainder sets. Definition 3.1 (Horn e-Remainder Sets) For a belief setH , X ∈ H ↓e Φ iff (i) X ⊆ H , (ii) X 6|= Φ, and (iii...) for every X ′ s.t. X ⊂ X ′ ⊆ H , X ′ |= Φ. We refer to the elements of H ↓eΦ as the Horn e-remainder sets of H w.r.t. Φ. It is easy to verify that all Horn e-remainder sets are belief sets. Also, H ↓eΦ = ∅ iff |= Φ. We now proceed to define selection...

  18. Follicular infundibulum tumour presenting as cutaneous horn

    Directory of Open Access Journals (Sweden)

    Jayaraman M

    1996-01-01

    Full Text Available Tumour of follicular infundibulum is an organoid tumour with a plate like growth attached to the epidermis with connection from the follicular epithelium. We are reporting such a case unusually presenting as cutaneous horn.

  19. Adaptations in responsiveness of brainstem pain-modulating neurons in acute compared with chronic inflammation.

    Science.gov (United States)

    Cleary, Daniel R; Heinricher, Mary M

    2013-06-01

    Despite similar behavioral hypersensitivity, acute and chronic pain have distinct neural bases. We used intraplantar injection of complete Freund's adjuvant to directly compare activity of pain-modulating neurons in the rostral ventromedial medulla (RVM) in acute vs chronic inflammation. Heat-evoked and von Frey-evoked withdrawal reflexes and corresponding RVM neuronal activity were recorded in lightly anesthetized animals either during the first hour after complete Freund's adjuvant injection (acute) or 3 to 10 days later (chronic). Thermal and modest mechanical hyperalgesia during acute inflammation were associated with increases in the spontaneous activity of pain-facilitating ON-cells and suppression of pain-inhibiting OFF-cells. Acute hyperalgesia was reversed by RVM block, showing that the increased activity of RVM ON-cells is necessary for acute behavioral hypersensitivity. In chronic inflammation, thermal hyperalgesia had resolved but mechanical hyperalgesia had become pronounced. The spontaneous discharges of ON- and OFF-cells were not different from those in control subjects, but the mechanical response thresholds for both cell classes were reduced into the innocuous range. RVM block in the chronic condition worsened mechanical hyperalgesia. These studies identify distinct contributions of RVM ON- and OFF-cells to acute and chronic inflammatory hyperalgesia. During early immune-mediated inflammation, ON-cell spontaneous activity promotes hyperalgesia. After inflammation is established, the antinociceptive influence of OFF-cells is dominant, yet the lowered threshold for the OFF-cell pause allows behavioral responses to stimuli that would normally be considered innocuous. The efficacy of OFF-cells in counteracting sensitization of ascending transmission pathways could therefore be an important determining factor in development of chronic inflammatory pain. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All

  20. Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes

    Directory of Open Access Journals (Sweden)

    Yeowool eHuh

    2013-10-01

    Full Text Available Anesthetics are often used to characterize the activity of single neurons in-vivo for its advantages such as reduced noise level and convenience in noxious stimulations. Of the anesthetics, urethane had been widely used in some thalamic studies under the assumption that sensory signals are still relayed to the thalamus under urethane anesthesia and that thalamic response would therefore reflect the response of the awake state. We tested whether this assumption stands by comparing thalamic activity in terms of tonic and burst firing modes during ‘the awake state’ or under ‘urethane anesthesia’ utilizing the extracellular single unit recording technique. First we have tested how thalamic relay neurons respond to the introduction of urethane and then tested how urethane influences thalamic discharges under formalin-induced nociception. Urethane significantly depressed overall firing rates of thalamic relay neurons, which was sustained despite the delayed increase of burst activity over the 4 hour recording period. Thalamic response to nociception under anesthesia was also similar overall except for the slight and transient increase of burst activity. Overall, results demonstrated that urethane suppresses the activity of thalamic relay neurons and that, despite the slight fluctuation of burst firing, formalin-induced nociception cannot significantly change the firing pattern of thalamic relay neurons that was caused by urethane.

  1. Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2017-10-01

    For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S(t) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S(t). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S(t) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S(t) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S(t), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor [Formula: see text] (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a "cross-correlation" measure [Formula: see text]. With increasing A, based on [Formula: see text], we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S(t).

  2. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  3. Heterogeneous Responses to Antioxidants in Noradrenergic Neurons of the Locus Coeruleus Indicate Differing Susceptibility to Free Radical Content

    Science.gov (United States)

    de Oliveira, Ramatis B.; Gravina, Fernanda S.; Lim, Rebecca; Brichta, Alan M.; Callister, Robert J.; van Helden, Dirk F.

    2012-01-01

    The present study investigated the effects of the antioxidants trolox and dithiothreitol (DTT) on mouse Locus coeruleus (LC) neurons. Electrophysiological measurement of action potential discharge and whole cell current responses in the presence of each antioxidant suggested that there are three neuronal subpopulations within the LC. In current clamp experiments, most neurons (55%; 6/11) did not respond to the antioxidants. The remaining neurons exhibited either hyperpolarization and decreased firing rate (27%; 3/11) or depolarization and increased firing rate (18%; 2/11). Calcium and JC-1 imaging demonstrated that these effects did not change intracellular Ca2+ concentration but may influence mitochondrial function as both antioxidant treatments modulated mitochondrial membrane potential. These suggest that the antioxidant-sensitive subpopulations of LC neurons may be more susceptible to oxidative stress (e.g., due to ATP depletion and/or overactivation of Ca2+-dependent pathways). Indeed it may be that this subpopulation of LC neurons is preferentially destroyed in neurological pathologies such as Parkinson's disease. If this is the case, there may be a protective role for antioxidant therapies. PMID:22577493

  4. Brainstem neurons responsible for postural, masseter or pharyngeal muscle atonia during paradoxical sleep in freely-moving cats.

    Science.gov (United States)

    Sakai, K; Neuzeret, P-C

    2011-12-01

    In this mini review, we summarize our findings regarding the brainstem neurons responsible for the postural, masseter, or pharyngeal muscle atonia observed during paradoxical sleep (PS) in freely moving cats. Both the pons and medulla contain neurons showing tonic activation selective to PS and atonia, referred to as PS/atonia-on-neurons. The PS/atonia-on neurons, characterized by their most slow conducting property and located in the peri-locus coeruleus alpha (peri-LCa) and adjacent LCa of the mediodorsal pontine tegmentum, play a critical executive role in the somatic and orofacial muscle atonia observed during PS. Slow conducting medullary PS/atonia-on neurons located in the nuclei reticularis magnocellularis (Mc) and parvocellularis (Pc) may play a critical executive role in the generation of, respectively, antigravity or orofacial muscle atonia during PS. In addition, either tonic or phasic cessation of activity of medullary serotonergic neurons may play an important role in the atonia of genioglossus muscles during PS via a mechanism of disfacilitation.

  5. Impact of glutamate levels on neuronal response and cognitive abilities in schizophrenia

    Directory of Open Access Journals (Sweden)

    Liv E. Falkenberg

    2014-01-01

    Full Text Available Schizophrenia is characterized by impaired cognitive functioning, and brain regions involved in cognitive control processes show marked glutamatergic abnormalities. However, it is presently unclear whether aberrant neuronal response is directly related to the observed deficits at the metabolite level in schizophrenia. Here, 17 medicated schizophrenia patients and 17 matched healthy participants underwent functional magnetic resonance imaging (fMRI when performing an auditory cognitive control task, as well as proton magnetic resonance spectroscopy (1H-MRS in order to assess resting-state glutamate in the anterior cingulate cortex. The combined fMRI–1H-MRS analysis revealed that glutamate differentially predicted cortical blood-oxygen level-dependent (BOLD response in patients and controls. While we found a positive correlation between glutamate and BOLD response bilaterally in the inferior parietal lobes in the patients, the corresponding correlation was negative in the healthy control participants. Further, glutamate levels predicted task performance in patients, such that lower glutamate levels were related to impaired cognitive control functioning. This was not seen for the healthy controls. These findings suggest that schizophrenia patients have a glutamate-related dysregulation of the brain network supporting cognitive control functioning. This could be targeted in future research on glutamatergic treatment of cognitive symptoms in schizophrenia.

  6. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Maurizio, E-mail: maurizio.lazzari@unibo.it; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-15

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L{sup −1}. Densitometric values of cONS, immunostained with anti-G {sub αolf}, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G {sub

  7. Horn of Africa food crisis

    CERN Multimedia

    Association du personnel

    2011-01-01

    Dear colleagues, As many of you are already aware, the Horn of Africa is experiencing an extremely severe food crisis as a result of one of the toughest droughts since the early 1950s. A total of over 12 million people in Djibouti, Ethiopia, Somalia, Kenya and Uganda are severely affected by this devastating crisis and the UN has officially declared famine in these regions. In addition, children are the most vulnerable victims, with more than a half million children at risk of imminent death from severe malnutrition and an estimated 2.3 million children already malnourished. An immediate, determined mobilization is required in order to avert an imminent humanitarian catastrophe and to prevent millions of people from being robbed of a future through the scourge of hunger and malnutrition. CERN has decided to join this international mobilization by specifically opening an account for those who want to make a donation to help the drought- and famine-affected populations in the region. Children being the first...

  8. The response of cortical neurons to in vivo-like input current: theory and experiment: II. Time-varying and spatially distributed inputs.

    Science.gov (United States)

    Giugliano, Michele; La Camera, Giancarlo; Fusi, Stefano; Senn, Walter

    2008-11-01

    The response of a population of neurons to time-varying synaptic inputs can show a rich phenomenology, hardly predictable from the dynamical properties of the membrane's inherent time constants. For example, a network of neurons in a state of spontaneous activity can respond significantly more rapidly than each single neuron taken individually. Under the assumption that the statistics of the synaptic input is the same for a population of similarly behaving neurons (mean field approximation), it is possible to greatly simplify the study of neural circuits, both in the case in which the statistics of the input are stationary (reviewed in La Camera et al. in Biol Cybern, 2008) and in the case in which they are time varying and unevenly distributed over the dendritic tree. Here, we review theoretical and experimental results on the single-neuron properties that are relevant for the dynamical collective behavior of a population of neurons. We focus on the response of integrate-and-fire neurons and real cortical neurons to long-lasting, noisy, in vivo-like stationary inputs and show how the theory can predict the observed rhythmic activity of cultures of neurons. We then show how cortical neurons adapt on multiple time scales in response to input with stationary statistics in vitro. Next, we review how it is possible to study the general response properties of a neural circuit to time-varying inputs by estimating the response of single neurons to noisy sinusoidal currents. Finally, we address the dendrite-soma interactions in cortical neurons leading to gain modulation and spike bursts, and show how these effects can be captured by a two-compartment integrate-and-fire neuron. Most of the experimental results reviewed in this article have been successfully reproduced by simple integrate-and-fire model neurons.

  9. LPS-induced inflammatory response triggers cell cycle reactivation in murine neuronal cells through retinoblastoma proteins induction.

    Science.gov (United States)

    D'Angelo, Barbara; Astarita, Carlo; Boffo, Silvia; Massaro-Giordano, Mina; Iannuzzi, Carmelina; Caporaso, Antonella; Macaluso, Marcella; Giordano, Antonio

    2017-08-18

    Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.

  10. Latency of vestibular responses of pursuit neurons in the caudal frontal eye fields to whole body rotation.

    Science.gov (United States)

    Akao, Teppei; Saito, Hiroshi; Fukushima, Junko; Kurkin, Sergei; Fukushima, Kikuro

    2007-03-01

    The smooth pursuit system and the vestibular system interact to keep the retinal target image on the fovea by matching the eye velocity in space to target velocity during head and/or whole body movement. The caudal part of the frontal eye fields (FEF) in the fundus of the arcuate sulcus contains pursuit-related neurons and the majority of them respond to vestibular stimulation induced by whole body movement. To understand the role of FEF pursuit neurons in the interaction of vestibular and pursuit signals, we examined the latency and time course of discharge modulation to horizontal whole body rotation during different vestibular task conditions in head-stabilized monkeys. Pursuit neurons with horizontal preferred directions were selected, and they were classified either as gaze-velocity neurons or eye/head-velocity neurons based on the previous criteria. Responses of these neurons to whole body step-rotation at 20 degrees/s were examined during cancellation of the vestibulo-ocular reflex (VOR), VOR x1, and during chair steps in complete darkness without a target (VORd). The majority of pursuit neurons tested (approximately 70%) responded during VORd with latencies smooth pursuit. The shortest latency to the onset of target motion during smooth pursuit was 80 ms and the modal value was 95 ms. The time course of discharge rate difference of the two groups of neurons between VOR cancellation and x1 was predicted by the discharge modulation associated with smooth pursuit. These results provide further support for the involvement of the caudal FEF in integration of vestibular inputs and pursuit signals.

  11. A1 noradrenergic neurons lesions reduce natriuresis and hypertensive responses to hypernatremia in rats.

    Directory of Open Access Journals (Sweden)

    Elaine Fernanda da Silva

    Full Text Available Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS infusion in non-anesthetized rats. Male Wistar rats (280-340 g received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL(-1 or free saporin (sham, 0.021 ng.nL(-1 into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2 and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg(-1, b.wt., for longer than 1 min. In the sham-group (n = 8, HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline. Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group, and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg. Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05. In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid.

  12. A1 noradrenergic neurons lesions reduce natriuresis and hypertensive responses to hypernatremia in rats.

    Science.gov (United States)

    da Silva, Elaine Fernanda; Freiria-Oliveira, André Henrique; Custódio, Carlos Henrique Xavier; Ghedini, Paulo César; Bataus, Luiz Artur Mendes; Colombari, Eduardo; de Castro, Carlos Henrique; Colugnati, Diego Basile; Rosa, Daniel Alves; Cravo, Sergio L D; Pedrino, Gustavo Rodrigues

    2013-01-01

    Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280-340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL(-1)) or free saporin (sham, 0.021 ng.nL(-1)) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg(-1), b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid.

  13. Overexpression of Serum Response Factor in Neurons Restores Ocular Dominance Plasticity in a Model of Fetal Alcohol Spectrum Disorders.

    Science.gov (United States)

    Foxworthy, W Alex; Medina, Alexandre E

    2015-10-01

    Deficits in neuronal plasticity underlie many neurobehavioral and cognitive problems presented in fetal alcohol spectrum disorder (FASD). Our laboratory has developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance plasticity (ODP). For instance, a few days of monocular deprivation results in a robust reduction of visual cortex neurons' responsiveness to stimulation of the deprived eye in normal animals, but not in ferrets with early alcohol exposure. Previously our laboratory demonstrated that overexpression of serum response factor (SRF) exclusively in astrocytes can improve neuronal plasticity in FASD. Here, we test whether neuronal overexpression of SRF can achieve similar effects. Ferrets received 3.5 g/kg alcohol intraperitoneally (25% in saline) or saline as control every other day between postnatal day 10 to 30, which is roughly equivalent to the third trimester of human gestation. Animals were given intracortical injections of a Herpes Simplex Virus-based vector to express either green fluorescent protein or a constitutively active form of SRF in infected neurons. They were then monocularly deprived by eyelid suture for 4 to 5 days after which single-unit recordings were conducted to determine whether changes in ocular dominance had occurred. Overexpression of a constitutively active form of SRF by neurons restored ODP in alcohol-treated animals. This effect was observed only in areas near the site of viral infection. Overexpression of SRF in neurons can restore plasticity in the ferret model of FASD, but only in areas near the site of infection. This contrasts with SRF overexpression in astrocytes which restored plasticity throughout the visual cortex. Copyright © 2015 by the Research Society on Alcoholism.

  14. Central sensitization in medullary dorsal horn involves gap junctions and hemichannels

    OpenAIRE

    Chiang, Chen Yu; Li, Zhaohui; Dostrovsky, Jonathan O.; Barry J Sessle

    2010-01-01

    Central sensitization is a fundamental mechanism contributing to acute and chronic pain conditions. Our previous studies have documented a glutamatergic-, purinergic- and glial-dependent central sensitization that can be induced in rat medullary dorsal horn (MDH) nociceptive neurons by mustard oil (MO) application to the tooth pulp. The present study demonstrated that carbenoxolone, a potent gap junction and hemichannel blocker, completely blocked all parameters of MO-induced central sensitiz...

  15. The Drosophila TRPA1 Channel and Neuronal Circuits Controlling Rhythmic Behaviours and Sleep in Response to Environmental Temperature

    Directory of Open Access Journals (Sweden)

    Sanne Roessingh

    2017-10-01

    Full Text Available trpA1 encodes a thermosensitive transient receptor potential channel (TRP channel that functions in selection of preferred temperatures and noxious heat avoidance. In this review, we discuss the evidence for a role of TRPA1 in the control of rhythmic behaviours in Drosophila melanogaster. Activity levels during the afternoon and rhythmic temperature preference are both regulated by TRPA1. In contrast, TRPA1 is dispensable for temperature synchronisation of circadian clocks. We discuss the neuronal basis of TRPA1-mediated temperature effects on rhythmic behaviours, and conclude that they are mediated by partly overlapping but distinct neuronal circuits. We have previously shown that TRPA1 is required to maintain siesta sleep under warm temperature cycles. Here, we present new data investigating the neuronal circuit responsible for this regulation. First, we discuss the difficulties that remain in identifying the responsible neurons. Second, we discuss the role of clock neurons (s-LNv/DN1 network in temperature-driven regulation of siesta sleep, and highlight the role of TRPA1 therein. Finally, we discuss the sexual dimorphic nature of siesta sleep and propose that the s-LNv/DN1 clock network could play a role in the integration of environmental information, mating status and other internal drives, to appropriately drive adaptive sleep/wake behaviour.

  16. Sleep deprivation decreases neuronal excitability and responsiveness in rats both in vivo and ex vivo.

    Science.gov (United States)

    Borbély, Sándor; Világi, Ildikó; Haraszti, Zsófia; Szalontai, Örs; Hajnik, Tünde; Tóth, Attila; Détári, László

    2017-12-11

    Sleep deprivation has severe consequences for higher nervous functions. Its effects on neuronal excitability may be one of the most important factors underlying functional deterioration caused by sleep loss. In the present work, excitability changes were studied using two complementary in vivo and ex vivo models. Auditory evoked potentials were recorded from freely-moving animals in vivo. Amplitude of evoked responses showed a near-continuous decrease during deprivation. Prevention of sleep also reduced synaptic efficacy ex vivo, measured from brain slices derived from rats that underwent sleep deprivation. While seizure susceptibility was not affected significantly by sleep deprivation in these preparations, the pattern of spontaneous seizure activity was altered. If seizures developed, they lasted longer and tended to contain more spikes in slices obtained from sleep-deprived than from control rats. Current-source density analysis revealed that location and sequence of activation of local cortical networks recruited by seizures did not change by sleep deprivation. Moderate differences seen in the amplitude of individual sinks and sources might be explained by smaller net transmembrane currents as a consequence of decreased excitability. These findings contradict the widely accepted conception of synaptic homeostasis suggesting gradual increase of excitability during wakefulness. Our results also indicate that decreased neuronal excitability caused by sleep deprivation is preserved in slices prepared from rats immediately after deprivation. This observation might mean new opportunities to explore the effects of sleep deprivation in ex vivo preparations that allow a wider range of experimental manipulations and more sophisticated methods of analysis than in vivo preparations. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ethyl pyruvate attenuates formalin-induced inflammatory nociception by inhibiting neuronal ERK phosphorylation

    Science.gov (United States)

    2012-01-01

    Background Ethyl pyruvate (EP) possesses anti-inflammatory activity. However, the potential anti-nociceptive value of EP for the treatment of the inflammatory nociception is largely unknown. We investigated whether EP could have any anti-nociceptive effect on inflammatory pain, after systemic administration of EP (10, 50, and 100 mg/kg, i.p.), 1 hour before formalin (5%, 50 μl) injection into the plantar surface of the hind paws of rats. Results EP significantly decreased formalin-induced nociceptive behavior during phase II, the magnitude of paw edema, and the activation of c-Fos in L4-L5 spinal dorsal horn. EP also attenuated the phosphorylation of extracellular signal-regulated kinase (ERK) in the neurons of L4-L5 spinal dorsal horn after formalin injection. Interestingly, the i.t. administration of PD98059, an ERK upstream kinase (MEK) inhibitor, completely blocked the formalin-induced inflammatory nociceptive responses. Conclusions These results demonstrate that EP may effectively inhibit formalin-induced inflammatory nociception via the inhibition of neuronal ERK phosphorylation in the spinal dorsal horn, indicating its therapeutic potential in suppressing acute inflammatory pain. PMID:22640699

  18. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase.

    Science.gov (United States)

    Khan, Sitara G; Melikian, Narbeh; Shabeeh, Husain; Cabaco, Ana R; Martin, Katherine; Khan, Faisal; O'Gallagher, Kevin; Chowienczyk, Philip J; Shah, Ajay M

    2017-09-01

    Mental stress-induced ischemia approximately doubles the risk of cardiac events in patients with coronary artery disease, yet the mechanisms underlying changes in coronary blood flow in response to mental stress are poorly characterized. Neuronal nitric oxide synthase (nNOS) regulates basal coronary blood flow in healthy humans and mediates mental stress-induced vasodilation in the forearm. However, its possible role in mental stress-induced increases in coronary blood flow is unknown. We studied 11 patients (6 men and 5 women, mean age: 58 ± 14 yr) undergoing elective diagnostic cardiac catheterization and assessed the vasodilator response to mental stress elicited by the Stroop color-word test. Intracoronary substance P (20 pmol/min) and isosorbide dinitrate (1 mg) were used to assess endothelium-dependent and -independent vasodilation, respectively. Coronary blood flow was estimated using intracoronary Doppler recordings and quantitative coronary angiography to measure coronary artery diameter. Mental stress increased coronary flow by 34 ± 7.0% over the preceding baseline during saline infusion (P nitric oxide synthase in the human coronary circulation.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/nnos-and-coronary-flow-during-mental-stress/. Copyright © 2017 the American Physiological Society.

  19. Comparison of the VTA and LC response to methylphenidate: a concomitant behavioral and neuronal study of adolescent male rats.

    Science.gov (United States)

    Karim, Tahseen J; Reyes-Vazquez, Cruz; Dafny, Nachum

    2017-09-01

    Methylphenidate (MPD), also known as Ritalin, is a psychostimulant used to treat attention deficit hyperactivity disorder. However, it is increasingly being misused by normal adolescents for recreation and academic advantage. Therefore, it is important to elucidate the behavioral and neurophysiological effects of MPD in normal subjects. MPD inhibits the reuptake of catecholamines, mainly found in the ventral tegmental area (VTA) and locus coeruleus (LC). The VTA and LC normally mediate attention, motivation, and drug reward behaviors. Selective neuronal connections between the VTA and LC have been identified implicating regular interaction between the structures. The objective of this study was to compare the neuronal responses of the VTA and LC to MPD in normal adolescent rats. Animals were implanted with permanent electrodes in the VTA and LC, and neuronal units were recorded following acute and repetitive (chronic) saline or 0.6, 2.5, or 10.0 mg/kg MPD exposure. Animals displayed either behavioral sensitization or tolerance to all three doses of MPD. Acute MPD exposure elicited excitation in the majority of all VTA and LC units. Chronic MPD exposure elicited a further increase in VTA and LC neuronal activity in animals exhibiting behavioral sensitization and an attenuation in VTA and LC neuronal activity in animals exhibiting behavioral tolerance, demonstrating neurophysiological sensitization and tolerance, respectively. The similar pattern in VTA and LC unit activity suggests that the two structures are linked in their response to MPD. These results may help determine the exact mechanism of action of MPD, resulting in optimized treatment of patients.NEW & NOTEWORTHY The same dose of 0.6, 2.5, and 10 mg/kg methylphenidate (MPD) elicits either behavioral sensitization or tolerance in adolescent rats. There is a direct correlation between the ventral tegmental area (VTA) and locus coeruleus (LC) neuronal response to chronic MPD exposure. Both the VTA and LC are

  20. Gender differences in human single neuron responses to male emotional faces

    National Research Council Canada - National Science Library

    Newhoff, Morgan; Treiman, David M; Smith, Kris A; Steinmetz, Peter N

    2015-01-01

    .... To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions...

  1. Response to comments on "Local impermeant anions establish the neuronal chloride concentration"

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K

    2014-01-01

    We appreciate the interest in our paper and the opportunity to clarify theoretical and technical aspects describing the influence of Donnan equilibria on neuronal chloride ion (Cl(-)) distributions....

  2. Spinal dorsal horn astrocytes: New players in chronic itch

    Directory of Open Access Journals (Sweden)

    Makoto Tsuda

    2017-01-01

    Full Text Available Chronic itch is a debilitating symptom of inflammatory skin conditions, such as atopic dermatitis, and systemic diseases, for which existing treatment is largely ineffective. Recent studies have revealed the selective neuronal pathways that are involved in itch sensations; however, the mechanisms by which itch turns into a pathological chronic state are poorly understood. Recent advances in our understanding of the mechanisms producing chronic itch have been made by defining causal roles for astrocytes in the spinal dorsal horn in mouse models of chronic itch including atopic dermatitis. Understanding the key roles of astrocytes may provide us with exciting insights into the mechanisms for itch chronicity and lead to a previously unrecognized target for treating chronic itch.

  3. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Patricia S. Estes

    2013-05-01

    Amyotrophic lateral sclerosis (ALS is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.

  4. Face inversion decreased information about facial identity and expression in face-responsive neurons in macaque area TE.

    Science.gov (United States)

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Ohyama, Kaoru; Kawano, Kenji

    2014-09-10

    To investigate the effect of face inversion and thatcherization (eye inversion) on temporal processing stages of facial information, single neuron activities in the temporal cortex (area TE) of two rhesus monkeys were recorded. Test stimuli were colored pictures of monkey faces (four with four different expressions), human faces (three with four different expressions), and geometric shapes. Modifications were made in each face-picture, and its four variations were used as stimuli: upright original, inverted original, upright thatcherized, and inverted thatcherized faces. A total of 119 neurons responded to at least one of the upright original facial stimuli. A majority of the neurons (71%) showed activity modulations depending on upright and inverted presentations, and a lesser number of neurons (13%) showed activity modulations depending on original and thatcherized face conditions. In the case of face inversion, information about the fine category (facial identity and expression) decreased, whereas information about the global category (monkey vs human vs shape) was retained for both the original and thatcherized faces. Principal component analysis on the neuronal population responses revealed that the global categorization occurred regardless of the face inversion and that the inverted faces were represented near the upright faces in the principal component analysis space. By contrast, the face inversion decreased the ability to represent human facial identity and monkey facial expression. Thus, the neuronal population represented inverted faces as faces but failed to represent the identity and expression of the inverted faces, indicating that the neuronal representation in area TE cause the perceptual effect of face inversion. Copyright © 2014 the authors 0270-6474/14/3412457-13$15.00/0.

  5. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential.

    Science.gov (United States)

    Hermes, Dora; Nguyen, Mai; Winawer, Jonathan

    2017-07-01

    The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8-13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30-80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity.

  6. Responses of young and aged Fischer 344 rat inferior colliculus neurons to binaural tonal stimuli.

    Science.gov (United States)

    Palombi, P S; Caspary, D M

    1996-10-01

    The inferior colliculus (IC) is one nucleus of the central auditory system which displays age-related changes. Inputs to the IC use primarily the amino acid neurotransmitters glutamate and gamma-aminobutryic acid (GABA). Neurochemical and anatomical studies of the Fischer 344 (F344) rat IC have shown decreases in GABA and GABA receptor levels (see Caspary et al., 1995 for review). GABA neurotransmission affects binaural response properties in the IC (Faingold et al., 1991a, b; Vater et al., 1992a; Park and Pollak, 1993, 1994). We hypothesized that aged F344 rats would show alterations in binaural IC neuronal response properties due to an imbalance in the relative levels of inhibition and excitation. Extracellular recordings from 189 single units localized to the IC of anesthetized aged (24 month) F344 rats were compared to those obtained from 221 IC units in young adult (3 month) animals. Quantitative analyses were performed to determine the distribution of ipsilateral and binaural rate/intensity functions (RIFs) in the central nucleus of the IC and external cortex of the IC units. The majority of IC units in both young and aged F344 rats were not responsive to monaural ipsilateral characteristic frequency tone bursts. Although there was some shift in the distribution of binaural RIF shapes with age, it was not statistically significant. The shift included a reduction in the percentage of units classified as E/I (excited by contralateral stimulation/ipsilaterally inhibited during binaural stimulation), but an increase with age in the percentage of units classified as E/f (excited by contralateral stimulation/ further facilitated by the addition of low intensity ipsilateral stimulation, but inhibited by higher intensity ipsilateral stimulation). Despite the role of inhibitory neurotransmission in binaural processing in the IC, age-related neurochemical deficits in the IC do not appear to result in a major deficit in the processing of simple binaural stimuli in F344

  7. Spatially divergent cardiac responses to nicotinic stimulation of ganglionated plexus neurons in the canine heart.

    Science.gov (United States)

    Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Ardell, Jeffrey L; Armour, J Andrew

    2009-01-28

    Ganglionated plexuses (GPs) are major constituents of the intrinsic cardiac nervous system, the final common integrator of regional cardiac control. We hypothesized that nicotinic stimulation of individual GPs exerts divergent regional influences, affecting atrial as well as ventricular functions. In 22 anesthetized canines, unipolar electrograms were recorded from 127 atrial and 127 ventricular epicardial loci during nicotine injection (100 mcg in 0.1 ml) into either the 1) right atrial (RA), 2) dorsal atrial, 3) left atrial, 4) inferior vena cava-inferior left atrial, 5) right ventricular, 6) ventral septal ventricular or 7) cranial medial ventricular (CMV) GP. In addition to sinus and AV nodal function, neural effects on atrial and ventricular repolarization were identified as changes in the area subtended by unipolar recordings under basal conditions and at maximum neurally-induced effects. Animals were studied with intact AV node or following ablation to achieve ventricular rate control. Atrial rate was affected in response to stimulation of all 7 GPs with an incidence of 50-95% of the animals among the different GPs. AV conduction was affected following stimulation of 6/7 GP with an incidence of 22-75% among GPs. Atrial and ventricular repolarization properties were affected by atrial as well as ventricular GP stimulation. Distinct regional patterns of repolarization changes were identified in response to stimulation of individual GPs. RAGP predominantly affected the RA and posterior right ventricular walls whereas CMVGP elicited biatrial and biventricular repolarization changes. Spatially divergent and overlapping cardiac regions are affected in response to nicotinic stimulation of neurons in individual GPs.

  8. The rams horn in western history

    Science.gov (United States)

    Lubman, David

    2003-10-01

    The shofar or rams horn-one of the most ancient of surviving aerophones-may have originated with early Neolithic herders. The shofar is mentioned frequently and importantly in the Hebrew bible and in later biblical and post-biblical literature. Despite its long history, contemporary ritual uses, and profound symbolic significance to western religion, no documentation of shofar acoustical properties was found. Since ancient times, shepherds of many cultures have fashioned sound instruments from the horns of herd animals for practical and musical uses. Shepherd horns of other cultures exhibit an evolution of form and technology (e.g., the inclusion of finger holes). The shofar is unique in having retained its primitive form. It is suggested that after centuries of practical use, the shofar became emblematic of the shepherd culture. Ritual use then developed, which froze its form. A modern ritual rams horn played by an experienced blower was examined. This rather short horn was determined to have a source strength of 92 dB (A) at 1 m, a fundamental frequency near 420 Hz, and maximum power output between 1.2 and 1.8 kHz. Sample sounds and detection range estimates are provided.

  9. Species-specific flight styles of flies are reflected in the response dynamics of a homologue motion sensitive neuron

    Directory of Open Access Journals (Sweden)

    Bart eGeurten

    2012-03-01

    Full Text Available Hoverflies and blowflies have distinctly different flight styles. Yet, both species have been shown to structure their flight behaviour in a way that facilitates extraction of 3D information from the image flow on the retina (optic flow. Neuronal candidates to analyse the optic flow are the tangential cells in the third optical ganglion – the lobula complex. These neurons are directionally selective and integrate the optic flow over large parts of the visual field. Homologue tangential cells in hoverflies and blowflies have a similar morphology. Because blowflies and hoverflies have similar neuronal layout but distinctly different flight behaviours, they are an ideal substrate to pinpoint potential neuronal adaptations to the different flight styles.In this article we describe the relationship between locomotion behaviour and motion vision on three different levels:1.We compare the different flight styles based on the categorisation of flight behaviour into prototypical movements.2.We measure the species specific dynamics of the optic flow under naturalistic flight conditions. We found the translational optic flow of both species to be very different.3.We describe possible adaptations of a homologue motion sensitive neuron. We stimulate this cell in blowflies (Calliphora and hoverflies (Eristalis with naturalistic optic flow generated by both species during free flight. The characterized hoverfly tangential cell responds faster to transient changes in the optic flow than its blowfly homologue. It is discussed whether and how the different dynamical response properties aid optic flow analysis.

  10. Noise-enhanced nonlinear response and the role of modular structure for signal detection in neuronal networks.

    Science.gov (United States)

    Lopes, M A; Lee, K-E; Goltsev, A V; Mendes, J F F

    2014-11-01

    We show that sensory noise can enhance the nonlinear response of neuronal networks, and when delivered together with a weak signal, it improves the signal detection by the network. We reveal this phenomenon in neuronal networks that are in a dynamical state preceding a saddle-node bifurcation corresponding to the appearance of sustained network oscillations. In this state, even a weak subthreshold pulse can evoke a large-amplitude oscillation of neuronal activity. The signal-to-noise ratio reaches a maximum at an optimum level of sensory noise, manifesting stochastic resonance (SR) at the population level. We demonstrate SR by use of simulations and numerical integration of rate equations in a cortical model. Using this model, we mimic the experiments of Gluckman et al. [Phys. Rev. Lett. 77, 4098 (1996)PRLTAO0031-900710.1103/PhysRevLett.77.4098] that have given evidence of SR in mammalian brain. We also study neuronal networks in which neurons are grouped in modules and every module works in the regime of SR. We find that even a few modules can strongly enhance the reliability of signal detection in comparison with the case when a modular organization is absent.

  11. Responses of neurons of lizard's, Lacerta viridis, vestibular nuclei to electrical stimulation of the ipsi- and contralateral VIIIth nerves.

    Science.gov (United States)

    Richter, A; Precht, W; Ozawa, S

    1975-03-22

    Field and intracellular potentials were recorded in the vestibular nuclei of the lizard following stimulation of the ipsi- and contralateral vestibular nerves. The field potentials induced by ipsilateral VIIIth nerve stimulation consisted of an early negative or positive-negative wave (presynaptic component) followed by a slow negativity (transsynaptic component). The spatial distribution of the field potential complex closely paralleled the extension of the vestibular nuclei. Mono- and polysynaptic EPSPs were recorded from vestibular neurons after ipsilateral VIIIth nerve stimulation. In some neurons early depolarizations preceded the EPSPs. These potentials may be elicited by electrical transmission. Often spikelike partial responses were superimposed on the EPSPs. It is assumed that these potentials represent dendritic spikes. Contralateral VIIIth nerve stimulation generated disynaptic and polysynaptic IPSPs in some neurons and EPSPs in others. The possible role of commissural inhibition in phylogeny is discussed. In a group of vestibular neurons stimulation of the ipsilateral VIIIth nerve evoked full action potentials with latencies ranging from 0.25-1.1msec. These potentials are caused by antidromic activation of neurons which send their axons to the labyrinth.

  12. Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice.

    Science.gov (United States)

    Holstege, Jan C; de Graaff, Wim; Hossaini, Mehdi; Cardona Cano, Sebastian; Jaarsma, Dick; van den Akker, Eric; Deschamps, Jacqueline

    2008-04-29

    Although Hox gene expression has been linked to motoneuron identity, a role of these genes in development of the spinal sensory system remained undocumented. Hoxb genes are expressed at high levels in the dorsal horn of the spinal cord. Hoxb8 null mutants manifest a striking phenotype of excessive grooming and hairless lesions on the lower back. Applying local anesthesia underneath the hairless skin suppressed excessive grooming, indicating that this behavior depends on peripheral nerve activity. Functional ablation of mouse Hoxb8 also leads to attenuated response to nociceptive and thermal stimuli. Although spinal ganglia were normal, a lower postmitotic neural count was found in the dorsalmost laminae at lumbar levels around birth, leading to a smaller dorsal horn and a correspondingly narrowed projection field of nociceptive and thermoceptive afferents. The distribution of the dorsal neuronal cell types that we assayed, including neurons expressing the itch-specific gastrin-releasing peptide receptor, was disorganized in the lumbar region of the mutant. BrdU labeling experiments and gene-expression studies at stages around the birth of these neurons suggest that loss of Hoxb8 starts impairing development of the upper laminae of the lumbar spinal cord at approximately embryonic day (E)15.5. Because none of the neuronal markers used was unexpressed in the adult dorsal horn, absence of Hoxb8 does not impair neuronal differentiation. The data therefore suggest that a lower number of neurons in the upper spinal laminae and neuronal disorganization in the dorsal horn underlie the sensory defects including the excessive grooming of the Hoxb8 mutant.

  13. Epilepsy-causing sequence variations in SIK1 disrupt synaptic activity response gene expression and affect neuronal morphology.

    Science.gov (United States)

    Pröschel, Christoph; Hansen, Jeanne N; Ali, Adil; Tuttle, Emily; Lacagnina, Michelle; Buscaglia, Georgia; Halterman, Marc W; Paciorkowski, Alex R

    2017-02-01

    SIK1 syndrome is a newly described developmental epilepsy disorder caused by heterozygous mutations in the salt-inducible kinase SIK1. To better understand the pathophysiology of SIK1 syndrome, we studied the effects of SIK1 pathogenic sequence variations in human neurons. Primary human fetal cortical neurons were transfected with a lentiviral vector to overexpress wild-type and mutant SIK1 protein. We evaluated the transcriptional activity of known downstream gene targets in neurons expressing mutant SIK1 compared with wild type. We then assayed neuronal morphology by measuring neurite length, number and branching. Truncating SIK1 sequence variations were associated with abnormal MEF2C transcriptional activity and decreased MEF2C protein levels. Epilepsy-causing SIK1 sequence variations were associated with significantly decreased expression of ARC (activity-regulated cytoskeletal-associated) and other synaptic activity response element genes. Assay of mRNA levels for other MEF2C target genes NR4A1 (Nur77) and NRG1, found significantly, decreased the expression of these genes as well. The missense p.(Pro287Thr) SIK1 sequence variation was associated with abnormal neuronal morphology, with significant decreases in mean neurite length, mean number of neurites and a significant increase in proximal branches compared with wild type. Epilepsy-causing SIK1 sequence variations resulted in abnormalities in the MEF2C-ARC pathway of neuronal development and synapse activity response. This work provides the first insights into the mechanisms of pathogenesis in SIK1 syndrome, and extends the ARX-MEF2C pathway in the pathogenesis of developmental epilepsy.

  14. Response variability in Attention-Deficit/Hyperactivity Disorder: a neuronal and glial energetics hypothesis

    Directory of Open Access Journals (Sweden)

    Auerbach Judith G

    2006-08-01

    Full Text Available 1. Abstract Background Current concepts of Attention-Deficit/Hyperactivity Disorder (ADHD emphasize the role of higher-order cognitive functions and reinforcement processes attributed to structural and biochemical anomalies in cortical and limbic neural networks innervated by the monoamines, dopamine, noradrenaline and serotonin. However, these explanations do not account for the ubiquitous findings in ADHD of intra-individual performance variability, particularly on tasks that require continual responses to rapid, externally-paced stimuli. Nor do they consider attention as a temporal process dependent upon a continuous energy supply for efficient and consistent function. A consideration of this feature of intra-individual response variability, which is not unique to ADHD but is also found in other disorders, leads to a new perspective on the causes and potential remedies of specific aspects of ADHD. The hypothesis We propose that in ADHD, astrocyte function is insufficient, particularly in terms of its formation and supply of lactate. This insufficiency has implications both for performance and development: H1 In rapidly firing neurons there is deficient ATP production, slow restoration of ionic gradients across neuronal membranes and delayed neuronal firing; H2 In oligodendrocytes insufficient lactate supply impairs fatty acid synthesis and myelination of axons during development. These effects occur over vastly different time scales: those due to deficient ATP (H1 occur over milliseconds, whereas those due to deficient myelination (H2 occur over months and years. Collectively the neural outcomes of impaired astrocytic release of lactate manifest behaviourally as inefficient and inconsistent performance (variable response times across the lifespan, especially during activities that require sustained speeded responses and complex information processing. Testing the hypothesis Multi-level and multi-method approaches are required. These include

  15. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.

    Science.gov (United States)

    Klein, A H; Joe, C L; Davoodi, A; Takechi, K; Carstens, M I; Carstens, E

    2014-06-20

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Seasonal influence on horn production rate, horn abrasion, and horn quality in the hoof wall of Przewalski horses (Equus ferus przewalskii)

    OpenAIRE

    Patan, Bianca

    2010-01-01

    The monthly hoof horn production rate, monthly horn loss and the quality of the coronary horn was examined in the dorsal part of the hoof capsule of Przewalski horses. In order to demonstrate alterations induced by domestication, the results of this study were then compared to related data on the hooves of domestic horses in the literature and a concurrent study on the hoof of warm-blooded horses (KÖNIG, in preparation). The horn production rate and the horn loss were meas...

  17. Neuronal Goα and CAPS regulate behavioral and immune responses to bacterial pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Ferdinand C O Los

    Full Text Available Pore-forming toxins (PFTs are abundant bacterial virulence factors that attack host cell plasma membranes. Host defense mechanisms against PFTs described to date all function in the host tissue that is directly attacked by the PFT. Here we characterize a rapid and fully penetrant cessation of feeding of Caenorhabditis elegans in response to PFT attack. We demonstrate via analyses of C. elegans mutants that inhibition of feeding by PFT requires the neuronal G protein Goα subunit goa-1, and that maintenance of this response requires neuronally expressed calcium activator for protein secretion (CAPS homolog unc-31. Independently from their role in feeding cessation, we find that goa-1 and unc-31 are additionally required for immune protection against PFTs. We thus demonstrate that the behavioral and immune responses to bacterial PFT attack involve the cross-talk between the nervous system and the cells directly under attack.

  18. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury.

    Science.gov (United States)

    Mazaheri, Fargol; Snaidero, Nicolas; Kleinberger, Gernot; Madore, Charlotte; Daria, Anna; Werner, Georg; Krasemann, Susanne; Capell, Anja; Trümbach, Dietrich; Wurst, Wolfgang; Brunner, Bettina; Bultmann, Sebastian; Tahirovic, Sabina; Kerschensteiner, Martin; Misgeld, Thomas; Butovsky, Oleg; Haass, Christian

    2017-07-01

    Sequence variations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to an increased risk for neurodegenerative disorders such as Alzheimer's disease and frontotemporal lobar degeneration. In the brain, TREM2 is predominantly expressed in microglia. Several disease-associated TREM2 variants result in a loss of function by reducing microglial phagocytosis, impairing lipid sensing, preventing binding of lipoproteins and affecting shielding of amyloid plaques. We here investigate the consequences of TREM2 loss of function on the microglia transcriptome. Among the differentially expressed messenger RNAs in wild-type and Trem2(-/-) microglia, gene clusters are identified which represent gene functions in chemotaxis, migration and mobility. Functional analyses confirm that loss of TREM2 impairs appropriate microglial responses to injury and signals that normally evoke chemotaxis on multiple levels. In an ex vivo organotypic brain slice assay, absence of TREM2 reduces the distance migrated by microglia. Moreover, migration towards defined chemo-attractants is reduced upon ablation of TREM2 and can be rescued by TREM2 re-expression. In vivo, microglia lacking TREM2 migrate less towards injected apoptotic neurons, and outgrowth of microglial processes towards sites of laser-induced focal CNS damage in the somatosensory cortex is slowed. The apparent lack of chemotactic stimulation upon depletion of TREM2 is consistent with a stable expression profile of genes characterizing the homoeostatic signature of microglia. © 2017 The Authors.

  19. Dopamine receptor 4 promoter polymorphism modulates memory and neuronal responses to salience.

    Science.gov (United States)

    Strange, B A; Gartmann, N; Brenninkmeyer, J; Haaker, J; Reif, A; Kalisch, R; Büchel, C

    2014-01-01

    Animal models and human functional imaging data implicate the dopamine system in mediating enhanced encoding of novel stimuli into human memory. A separate line of investigation suggests an association between a functional polymorphism in the promoter region for the human dopamine 4 receptor gene (DRD4) and sensitivity to novelty. We demonstrate, in two independent samples, that the -521C>T DRD4 promoter polymorphism determines the magnitude of human memory enhancement for contextually novel, perceptual oddball stimuli in an allele dose-dependent manner. The genotype-dependent memory enhancement conferred by the C allele is associated with increased neuronal responses during successful encoding of perceptual oddballs in the ventral striatum, an effect which is again allele dose-dependent. Furthermore, with repeated presentations of oddball stimuli, this memory advantage decreases, an effect mirrored by adaptation of activation in the hippocampus and substantia nigra/ventral tegmental area in C carriers only. Thus, a dynamic modulation of human memory enhancement for perceptually salient stimuli is associated with activation of a dopaminergic-hippocampal system, which is critically dependent on a functional polymorphism in the DRD4 promoter region. © 2013 Elsevier Inc. All rights reserved.

  20. Effect of protons on the mechanical response of rat muscle nociceptive fibers and neurons in vitro.

    Science.gov (United States)

    Hotta, Norio; Kubo, Asako; Mizumura, Kazue

    2015-03-01

    Strong exercise makes muscle acidic, and painful. The stimulus that activates muscle nociceptors in such instance may be protons. Reportedly, however, not many afferents are excited by protons alone. We, therefore, posited that protons sensitize muscular nociceptors to mechanical stimuli. We examined effects of protons on mechanical sensitivity of muscle nociceptors by single-fiber recording from rat muscle-nerve preparations in vitro and by whole cell patch-clamp recording of mechanically activated (MA) currents from cultured rat dorsal root ganglion neurons. We recorded 38 Aδ- and C-fibers. Their response magnitude was increased by both pH 6.2 and pH 6.8; in addition the mechanical threshold was lowered by pH 6.2. Decrease in the threshold by pH6.2 was also observed in MA currents. Presently observed sensitization by protons could be involved in several types of ischemic muscle pain, and may also be involved in cardiovascular and respiratory controls during exercise. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  1. Suppression of Spontaneous Activity before Visual Response in the Primate V1 Neurons during a Visually Guided Saccade Task

    Directory of Open Access Journals (Sweden)

    Choongkil Lee

    2012-10-01

    Full Text Available Visually guided saccadic responses are thought to involve multiple stages of processing in diverse brain structures including the primary visual cortex (V1. The variability of neural activity in each of these structures may present ambiguities for downstream stages in identifying sensory and motor signals among spontaneous discharges. Response time of saccadic eye movements made toward a visual target is correlated with the time of first spike of V1 evoked by the target (Lee et al., 2010 Journal of Neurophysiology 104 2556–2572. This suggests that downstream neurons receiving the output of V1 are faced with a challenging task of discriminating spikes of visual response against spontaneous discharge. Here we report a novel response property of the output activity of the V1 so that, immediately before neurons discharge a burst of activity to a visual target, spontaneous discharges were transiently suppressed. This suppression was ultra-fast and peaked around 20 ms after target onset. The results of a simulation indicated that the suppression enhanced reliability of detecting activity onset. Thus, the initial transient suppression is hypothesized to enhance temporal contrast for identifying the onset of visual response by downstream neurons.

  2. RARE PRESENTATION OF RUPTURED RUDIMENTARY HORN PREGNANCY

    Directory of Open Access Journals (Sweden)

    Shergill Harbhajan K, Grover Suparna, Chhabra Ajay

    2015-10-01

    Full Text Available It is a rare occurrence for the rudimentary horn of uterus to harbour a pregnancy and the usual outcome is devastating leading to a spontaneous rupture in second trimester with the patient presenting in shock with massive intra-peritoneal haemorrhage and if appropriate management is not instituted in time it may lead to high rate of mortality. We report an unusual case of rupture rudimentary horn pregnancy who presented as a chronic ectopic with an adnexal mass and surprisingly with no sign of shock. Diagnosis is often difficult in such a situation which puts the treating gynaecologist in dilemma. High clinical suspicion supplemented with radiological findings helped clinch the diagnosis and laparotomy was performed followed by resection of the rudimentary horn to prevent future complications.

  3. Constraint Specialisation in Horn Clause Verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2015-01-01

    We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query-answer transformation of a given set of clauses and a goal. The effect is to propagate the constraints from the goal top-down and p......We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query-answer transformation of a given set of clauses and a goal. The effect is to propagate the constraints from the goal top...... results on verification problems show that this is an effective transformation, both in our own verification tools (convex polyhedra analyser) and as a pre-processor to other Horn clause verification tools....

  4. Constraint specialisation in Horn clause verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2017-01-01

    We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query–answer transformed version of a given set of clauses and a goal. The constraints from the model are then used to compute a speciali......We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query–answer transformed version of a given set of clauses and a goal. The constraints from the model are then used to compute...... underlying the clauses. Experimental results on verification problems show that this is an effective transformation, both in our own verification tools (based on a convex polyhedra analyser) and as a pre-processor to other Horn clause verification tools....

  5. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  6. A consensus CaMK IV-responsive RNA sequence mediates regulation of alternative exons in neurons.

    Science.gov (United States)

    Xie, Jiuyong; Jan, Calvin; Stoilov, Peter; Park, Jennifer; Black, Douglas L

    2005-12-01

    Neurons make extensive use of alternative pre-mRNA splicing to regulate gene expression and diversify physiological responses. We showed previously in a pituitary cell line that the Ca(++)/calmodulin-dependent protein kinase CaMK IV specifically repressed splicing of the BK channel STREX exon. This repression is dependent on a CaMK IV-responsive RNA element (CaRRE) within the STREX 3' splice site. Here, we report that similar Ca(++) regulation of splicing, mediated by L-type calcium channels and CaM kinase IV, occurs in cultured neurons and in the brain. We identify a critical CaRRE motif (CACATNRTTAT) that is essential for conferring CaMK IV repression on an otherwise constitutive exon. Additional Ca(++)-regulated exons that carry this consensus sequence are also identified in the human genome. Thus, the Ca(++)/CaMK IV pathway in neurons controls the alternative splicing of a group of exons through this short CaRRE consensus sequence. The functions of some of these exons imply that splicing control through the CaMK IV pathway will alter neuronal activity.

  7. Neurons in the amygdala with response-selectivity for anxiety in two ethologically based tests.

    Directory of Open Access Journals (Sweden)

    Dong V Wang

    Full Text Available The amygdala is a key area in the brain for detecting potential threats or dangers, and further mediating anxiety. However, the neuronal mechanisms of anxiety in the amygdala have not been well characterized. Here we report that in freely-behaving mice, a group of neurons in the basolateral amygdala (BLA fires tonically under anxiety conditions in both open-field and elevated plus-maze tests. The firing patterns of these neurons displayed a characteristic slow onset and progressively increased firing rates. Specifically, these firing patterns were correlated to a gradual development of anxiety-like behaviors in the open-field test. Moreover, these neurons could be activated by any impoverished environment similar to an open-field; and introduction of both comfortable and uncomfortable stimuli temporarily suppressed the activity of these BLA neurons. Importantly, the excitability of these BLA neurons correlated well with levels of anxiety. These results demonstrate that this type of BLA neuron is likely to represent anxiety and/or emotional values of anxiety elicited by anxiogenic environmental stressors.

  8. Enhancing action of LSD on neuronal responsiveness to serotonin in a brain structure involved in obsessive-compulsive disorder.

    Science.gov (United States)

    Zghoul, Tarek; Blier, Pierre

    2003-03-01

    Potent serotonin (5-HT) reuptake inhibitors are the only drugs that consistently exert a therapeutic action in obsessive-compulsive disorder (OCD). Given that some hallucinogens were reported to exert an anti-OCD effect outlasting their psychotomimetic action, possible modifications of neuronal responsiveness to 5-HT by LSD were examined in two rat brain structures: one associated with OCD, the orbitofrontal cortex (OFC), and another linked to depression, the hippocampus. The effects of concurrent microiontophoretic application of LSD and 5-HT were examined on neuronal firing rate in the rat OFC and hippocampus under chloral hydrate anaesthesia. In order to determine whether LSD could also exert a modification of 5-HT neuronal responsiveness upon systemic administration, after a delay when hallucinosis is presumably no longer present, it was given once daily (100 microg/kg i.p.) for 4 d and the experiments were carried out 24 h after the last dose. LSD attenuated the firing activity of OFC neurons, and enhanced the inhibitory effect of 5-HT when concomitantly ejected on the same neurons. In the hippocampus, LSD also decreased firing rate by itself but decreased the inhibitory action of 5-HT. The inhibitory action of 5-HT was significantly greater in the OFC, but smaller in the hippocampus, when examined after subacute systemic administration of LSD. It is postulated that some hallucinogens could have a beneficial action in OCD by enhancing the responsiveness to 5-HT in the OFC, and not necessarily in direct relation to hallucinosis. The latter observation may have theoretical implications for the pharmacotherapy of OCD.

  9. AA, Inner Conductor of Magnetic Horn

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Antiprotons emerging at large angles from the production target (hit by an intense 26 GeV proton beam from the PS), were focused into the acceptance of the injection line of the AA by means of a "magnetic horn" (current-sheet lens). Here we see an early protype of the horn's inner conductor, machined from solid aluminium to a thickness of less than 1 mm. The 1st version had to withstand pulses of 150 kA, 15 us long, every 2.4 s. See 8801040 for a later version.

  10. Prior high corticosterone exposure reduces activation of immature neurons in the ventral hippocampus in response to spatial and nonspatial memory.

    Science.gov (United States)

    Workman, Joanna L; Chan, Melissa Y T; Galea, Liisa A M

    2015-03-01

    Chronic stress or chronically high glucocorticoids attenuate adult hippocampal neurogenesis by reducing cell proliferation, survival, and differentiation in male rodents. Neurons are still produced in the dentate gyrus during chronically high glucocorticoids, but it is not known whether these new neurons are appropriately activated in response to spatial memory. Thus, the goal of this study was to determine whether immature granule neurons generated during chronically high glucocorticoids (resulting in a depressive-like phenotype) are differentially activated by spatial memory retrieval. Male Sprague Dawley rats received either 40 mg/kg corticosterone (CORT) or vehicle for 18 days prior to behavioral testing. Rats were tested in the forced swim test (FST) and then tested in a spatial (hippocampus-dependent) or cued (hippocampus-independent) Morris Water Maze. Tissue was then processed for doublecortin (DCX) to identify immature neurons and zif268, an immediate early gene product. As expected, CORT increased depressive-like behavior (greater immobility in the FST) however, prior CORT modestly enhanced spatial learning and memory compared with oil. Prior CORT reduced the number of DCX-expressing cells and proportion of DCX-expressing cells colabeled for zif268, but only in the ventral hippocampus. Prior CORT shifted the proportion of cells in the ventral hippocampus away from postmitotic cells and toward immature, proliferative cells, likely due to the fact that postmitotic cells were produced and matured during CORT exposure but proliferative cells were produced after high CORT exposure ceased. Compared with cue training, spatial training slightly increased DCX-expressing cells and shifted cells toward the postmitotic stage in the ventral hippocampus. These data suggest that the effects of CORT and spatial training on immature neurons are more pronounced in the ventral hippocampus. Further, high CORT reduced activation of immature neurons, suggesting that exposure

  11. Horn's Biologically Active Substances - Can We Replace Horns of Critically Endangered Species (Saiga) by Horns of More Abundant Animals?

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Romanov, O.

    2017-01-01

    Roč. 7, č. 1 (2017), s. 3-11 ISSN 2210-3155 R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:67985823 Keywords : biologically active compounds * horn * rhinoceros * saiga * traditional Chinese medicine Subject RIV: CB - Analytical Chemistry, Separation

  12. Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans

    OpenAIRE

    Narayan, Anusha; Venkatachalam, Vivek; Durak, Omer; Reilly, Douglas K.; Bose, Neelanjan; Schroeder, Frank C.; Samuel, Aravinthan DT; Srinivasan, Jagan; Sternberg, Paul W.

    2016-01-01

    Animals find mates and food, and avoid predators, by navigating to regions within a favorable range of available sensory cues. How are these ranges set and recognized? Here we show that male Caenorhabditis elegans exhibit strong concentration preferences for sex-specific small molecule cues secreted by hermaphrodites, and that these preferences emerge from the collective dynamics of a single male-specific class of neurons, the cephalic sensory neurons (CEMs). Within a single worm, CEM respons...

  13. Responses to Gamma-Aminobutyric Acid of Rat Visual Cortical Neurons in Tissue Slices

    Science.gov (United States)

    1986-04-01

    abdominal stretch receptor neuron in crayfish. Factor I was later identified as GABA (Bazemore et al., 1957). The next breakthrough came in 1958, when...Kuffler and Edwards found that GABA mimicked the effects of afferent stimulation of the crayfish stretch receptor neuron, and suggested that GABA...GABAergic efferents arising from the corpus striatum. GABA has also been linked to Parkinson’s disease, olivo-vestibular disorders, and spasticity

  14. Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Costigan Michael

    2008-12-01

    Full Text Available Abstract Background The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide in neuropathic pain has yet to be investigated. Results Prolonged upregulation of VGF mRNA and protein was observed in injured dorsal root ganglion neurons, central terminals and their target dorsal horn neurons. Intrathecal application of TLQP-62, the C-terminal active portion of VGF (5–50 nmol to naïve rats caused a long-lasting mechanical and cold behavioral allodynia. Direct actions of 50 nM TLQP-62 upon dorsal horn neuron excitability was demonstrated in whole cell patch recordings in spinal cord slices and in receptive field analysis in intact, anesthetized rats where significant actions of VGF were upon spontaneous activity and cold evoked responses. Conclusion VGF expression is therefore highly modulated in nociceptive pathways following peripheral nerve injury and can cause dorsal horn cell excitation and behavioral hypersensitivity in naïve animals. Together the results point to a novel and powerful role for VGF in neuropathic pain.

  15. Synaptic dynamics regulation in response to high frequency stimulation in neuronal networks

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Li, Huiyan; Wei, Xile; Yu, Haitao; Deng, Bin

    2018-02-01

    High frequency stimulation (HFS) has confirmed its ability in modulating the pathological neural activities. However its detailed mechanism is unclear. This study aims to explore the effects of HFS on neuronal networks dynamics. First, the two-neuron FitzHugh-Nagumo (FHN) networks with static coupling strength and the small-world FHN networks with spike-time-dependent plasticity (STDP) modulated synaptic coupling strength are constructed. Then, the multi-scale method is used to transform the network models into equivalent averaged models, where the HFS intensity is modeled as the ratio between stimulation amplitude and frequency. Results show that in static two-neuron networks, there is still synaptic current projected to the postsynaptic neuron even if the presynaptic neuron is blocked by the HFS. In the small-world networks, the effects of the STDP adjusting rate parameter on the inactivation ratio and synchrony degree increase with the increase of HFS intensity. However, only when the HFS intensity becomes very large can the STDP time window parameter affect the inactivation ratio and synchrony index. Both simulation and numerical analysis demonstrate that the effects of HFS on neuronal network dynamics are realized through the adjustment of synaptic variable and conductance.

  16. Squamous cell carcinoma presenting as cutaneous horn in diabetic ...

    African Journals Online (AJOL)

    ... not the horn itself, which is just dead keratin, but rather the nature of the underlying disease, although the horns are usually benign and that's why the case is reported. Keywords: Cutaneous horn; Cornu cutaneum; Squamous Cell Carcinoma; Diabetes Mellitus. Sudanese Journal of Dermatology Vol. 4 (2) 2006: pp. 86-91 ...

  17. The horn bases of the Reedbuck Redunca arundinum

    Directory of Open Access Journals (Sweden)

    H. Jungius

    1975-07-01

    Full Text Available The structure and function of the horn bases of the reedbuck Redunca arundinum are discussed. It is shown that the white colouration which often occurs is not caused by glandular secretion but by small horn particles which are shed, exposing the lighter coloured material underneath. The shining horn base probably plays a role in the display behaviour of males.

  18. Binaural response properties of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus.

    Science.gov (United States)

    Siveke, Ida; Pecka, Michael; Seidl, Armin H; Baudoux, Sylvie; Grothe, Benedikt

    2006-09-01

    Differences in intensity and arrival time of sounds at the two ears, interaural intensity and time differences (IID, ITD), are the chief cues for sound localization. Both cues are initially processed in the superior olivary complex (SOC), which projects to the dorsal nucleus of the lateral lemniscus (DNLL) and the auditory midbrain. Here we present basic response properties of low-frequency (neurons and their binaural sensitivity to ITDs and IIDs in the anesthetized gerbil. We found many neurons showing binaural properties similar to those reported for SOC neurons. IID-properties were similar to that of the contralateral lateral superior olive (LSO). A majority of cells had an ITD sensitivity resembling that of either the ipsilateral medial superior olive (MSO) or the contralateral LSO. A smaller number of cells displayed intermediate types of ITD sensitivity. In neurons with MSO-like response ITDs that evoked maximal discharges were mostly outside of the range of ITDs the gerbil naturally experiences. The maxima of the first derivative of their ITD-functions (steepest slope), however, were well within the physiological range of ITDs. This finding is consistent with the concept of a population rather than a place code for ITDs. Moreover, we describe several other binaural properties as well as physiological and anatomical evidence for a small but significant input from the contralateral MSO. The large number of ITD-sensitive low-frequency neurons implicates a substantial role for the DNLL in ITD processing and promotes this nucleus as a suitable model for further studies on ITD-coding.

  19. Cellular adaptations of dorsal raphe serotonin neurons associated with the development of active coping in response to social stress.

    Science.gov (United States)

    Wood, Susan K; Zhang, Xiao-Yan; Reyes, Beverly A S; Lee, Catherine S; Van Bockstaele, Elisabeth J; Valentino, Rita J

    2013-06-01

    Social stress is a risk factor for affective disorders for certain vulnerable individuals. Stress and depression are linked in part through regulation of the dorsal raphe (DR)-serotonin (5-HT) system by the stress-related neuropeptide, corticotropin-releasing factor (CRF). We used a rat social stress model that shows individual differences in coping strategies to determine whether differences in CRF-5-HT interactions underlie individual differences in the vulnerability to social stress. Rats were exposed to the resident-intruder model of social stress for 5 days. In vivo single-unit recordings assessed DR-5-HT neuronal responses to CRF and immunoelectron microscopy assessed CRF1 and CRF2 cellular localization 24 hours after the last stress. Rats responded to social stress passively, assuming defeat with short latencies (48%), or actively, with proactive behaviors and longer defeat latencies (LL, 52%). Whereas CRF (30 ng, intra-DR) inhibited 5-HT neuronal activity of control and SL rats, it activated 5-HT neurons of LL rats, an effect that was CRF2-mediated. Consistent with this, social stress promoted CRF1 internalization together with CRF2 recruitment to the plasma membrane of DR neurons selectively in LL rats. These data suggest that a proactive coping strategy toward social stress is associated with a redistribution of CRF1 and CRF2 in DR-5-HT neurons that primes the system to be activated by subsequent stress. The lack of this adaptation in passive coping rats may contribute to their depressive-like phenotype. These studies provide a cellular mechanism for individual differences in stress responses and consequences. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high frequency stimulation in the parkinsonian primate

    Directory of Open Access Journals (Sweden)

    Anan eMoran

    2011-04-01

    Full Text Available Deep brain stimulation in the subthalamic nucleus (STN is a well-established therapy for patients with severe Parkinson‟s disease (PD; however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia during high frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, basal ganglia output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial

  1. Chronic intermittent hypoxia-hypercapnia blunts heart rate responses and alters neurotransmission to cardiac vagal neurons.

    Science.gov (United States)

    Dyavanapalli, Jhansi; Jameson, Heather; Dergacheva, Olga; Jain, Vivek; Alhusayyen, Mona; Mendelowitz, David

    2014-07-01

    Patients with obstructive sleep apnoea experience chronic intermittent hypoxia-hypercapnia (CIHH) during sleep that elicit sympathetic overactivity and diminished parasympathetic activity to the heart, leading to hypertension and depressed baroreflex sensitivity. The parasympathetic control of heart rate arises from pre-motor cardiac vagal neurons (CVNs) located in nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). The mechanisms underlying diminished vagal control of heart rate were investigated by studying the changes in blood pressure, heart rate, and neurotransmission to CVNs evoked by acute hypoxia-hypercapnia (H-H) and CIHH. In vivo telemetry recordings of blood pressure and heart rate were obtained in adult rats during 4 weeks of CIHH exposure. Retrogradely labelled CVNs were identified in an in vitro brainstem slice preparation obtained from adult rats exposed either to air or CIHH for 4 weeks. Postsynaptic inhibitory or excitatory currents were recorded using whole cell voltage clamp techniques. Rats exposed to CIHH had increases in blood pressure, leading to hypertension, and blunted heart rate responses to acute H-H. CIHH induced an increase in GABAergic and glycinergic neurotransmission to CVNs in NA and DMNX, respectively; and a reduction in glutamatergic neurotransmission to CVNs in both nuclei. CIHH blunted the bradycardia evoked by acute H-H and abolished the acute H-H evoked inhibition of GABAergic transmission while enhancing glycinergic neurotransmission to CVNs in NA. These changes with CIHH inhibit CVNs and vagal outflow to the heart, both in acute and chronic exposures to H-H, resulting in diminished levels of cardioprotective parasympathetic activity to the heart as seen in OSA patients. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  2. Assembly of the magnetic horns under way

    CERN Multimedia

    2003-01-01

    One of the key components of the CNGS facility is the system of magnetic lenses, known as horns, which are to point the pions and kaons that will decay into muons and muon-neutrinos in the direction of the Gran Sasso Laboratory. Positioned at the end of the target, which produces the pions and kaons, the system comprises two of these horns. The first focuses the positively charged pions and kaons, which have an energy of approximately 35 GeV, and defocuses the negative particles. Unfortunately, it has a tendency to cause excessive deflection of particles that have energies of less than 35 GeV and insufficient deflection of those with energies of more than 35 GeV. These negative effects are corrected by the second horn (also known as the reflector), which is positioned 40 metres from the first. Ahmed Cherif of the EST Division's Metrology Service checks the straightness of the inner conductor of the first magnetic horn for CNGS. The tolerance is less than one millimetre over a length of approximately 6.5 metre...

  3. Population dynamics of Prostephanus truncatus (Horn) and ...

    African Journals Online (AJOL)

    The effects of three maize varieties and two storage seasons on the population dynamics of Prostephanus truncates (Horn) and Sitophilus zeamais Motschulsky were observed in the traditional `Ewe' barn in the field. Two local varieties, Dzolokpuita and Abutia and an improved variety, Abeleehi, were stored with the husk on ...

  4. Reflectance measurement validation using acoustic horns.

    Science.gov (United States)

    Rasetshwane, Daniel M; Neely, Stephen T

    2015-10-01

    Variability in wideband acoustic reflectance (and absorbance) measurements adversely affects the clinical utility of reflectance for diagnosis of middle-ear disorders. A reflectance standard would encourage consistency across different measurement systems and help identify calibration related issues. Theoretical equations exist for the reflectance of finite-length exponential, conical, and parabolic acoustic horns. Reflectance measurements were repeatedly made in each of these three horn shapes and the results were compared to the corresponding theoretical reflectance. A method is described of adjusting acoustic impedance measurements to compensate for spreading of the wave front that propagates from the small diameter sound port of the probe to the larger diameter of the acoustic cavity. Agreement between measured and theoretical reflectance was less than 1 dB at most frequencies in the range from 0.2 to 10 kHz. Pearson correlation coefficients were greater than 0.95 between measured and theoretical time-domain reflectance within the flare region of the horns. The agreement suggests that the distributed reflectance of acoustic horns may be useful for validating reflectance measurements made in human ear canals; however, refinements to reflectance measurement methods may still be needed.

  5. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization.

    Directory of Open Access Journals (Sweden)

    John P Norman

    Full Text Available Neurologic disease caused by human immunodeficiency virus type 1 (HIV-1 is ultimately refractory to highly active antiretroviral therapy (HAART because of failure of complete virus eradication in the central nervous system (CNS, and disruption of normal neural signaling events by virally induced chronic neuroinflammation. We have previously reported that HIV-1 Tat can induce mitochondrial hyperpolarization in cortical neurons, thus compromising the ability of the neuron to buffer calcium and sustain energy production for normal synaptic communication. In this report, we demonstrate that Tat induces rapid loss of ER calcium mediated by the ryanodine receptor (RyR, followed by the unfolded protein response (UPR and pathologic dilatation of the ER in cortical neurons in vitro. RyR antagonism attenuated both Tat-mediated mitochondrial hyperpolarization and UPR induction. Delivery of Tat to murine CNS in vivo also leads to long-lasting pathologic ER dilatation and mitochondrial morphologic abnormalities. Finally, we performed ultrastructural studies that demonstrated mitochondria with abnormal morphology and dilated endoplasmic reticulum (ER in brain tissue of patients with HIV-1 inflammation and neurodegeneration. Collectively, these data suggest that abnormal RyR signaling mediates the neuronal UPR with failure of mitochondrial energy metabolism, and is a critical locus for the neuropathogenesis of HIV-1 in the CNS.

  6. Epileptiform response of CA1 neurones to convulsant stimulation by cyclothiazide, kainic acid and pentylenetetrazol in anaesthetized rats.

    Science.gov (United States)

    Qian, Binbin; Sun, Yajie; Wu, Zhen; Wan, Li; Chen, Lulan; Kong, Shuzhen; Zhang, Binhong; Zhang, Fayong; Wang, Zhen-Yu; Wang, Yun

    2011-05-01

    We have previously reported that cyclothiazide (CTZ) evokes epileptiform activities in hippocampal neurons and induces seizure behavior. Here we further studied in vivo the sensitivity of the hippocampal CA1 neurons in response to CTZ in epileptogenesis in comparison with two other classic convulsants of kainic acid (KA) and pentylenetetrazol (PTZ). CTZ administered intracerebral ventricle (i.c.v.) induced epileptiform activities from an initial of multiple evoked population spikes, progressed to spontaneous spikes and finally to highly synchronized burst activities in hippocampal CA1 neurons. PTZ, when given by subcutaneously, but not by intracerebral ventricle injection, evoked similar progressive epileptiform activities. In contrast, KA given by i.c.v. induced a quick development of epileptiform burst activities and then shortly switched to continuous high frequency firing as acute status epilepticus (ASE). Pharmacologically, alprazolam, a high-potency benzodiazepine ligand, inhibited CTZ and PTZ, but not KA, induced epileptiform burst activities while GYKI 53784, an AMPA receptor antagonist, suppressed CTZ and KA but not PTZ evoked epileptiform activities. In conclusion, CTZ and PTZ induced epileptiform activities are most likely to share a similar progressive pattern in hippocampus with GABAergic mechanism dominant in epileptogenesis, while CTZ model involves additional glutamate receptor activation. KA induced seizure in hippocampus is different to that of both CTA and PTZ. The results from this study indicate that hippocampal neurons respond to various convulsant stimulation differently which may reflect the complicated causes of the seizure in clinics. Copyright © 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  7. The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2

    Science.gov (United States)

    Ruffault, Pierre-Louis; D'Autréaux, Fabien; Hayes, John A; Nomaksteinsky, Marc; Autran, Sandra; Fujiyama, Tomoyuki; Hoshino, Mikio; Hägglund, Martin; Kiehn, Ole; Brunet, Jean-François; Fortin, Gilles; Goridis, Christo

    2015-01-01

    Maintaining constant CO2 and H+ concentrations in the arterial blood is critical for life. The principal mechanism through which this is achieved in mammals is the respiratory chemoreflex whose circuitry is still elusive. A candidate element of this circuitry is the retrotrapezoid nucleus (RTN), a collection of neurons at the ventral medullary surface that are activated by increased CO2 or low pH and project to the respiratory rhythm generator. Here, we use intersectional genetic strategies to lesion the RTN neurons defined by Atoh1 and Phox2b expression and to block or activate their synaptic output. Photostimulation of these neurons entrains the respiratory rhythm. Conversely, abrogating expression of Atoh1 or Phox2b or glutamatergic transmission in these cells curtails the phrenic nerve response to low pH in embryonic preparations and abolishes the respiratory chemoreflex in behaving animals. Thus, the RTN neurons expressing Atoh1 and Phox2b are a necessary component of the chemoreflex circuitry. DOI: http://dx.doi.org/10.7554/eLife.07051.001 PMID:25866925

  8. PEDOT:PSS interfaces support the development of neuronal synaptic networks with reduced neuroglia response in vitro

    Directory of Open Access Journals (Sweden)

    Giada eCellot

    2016-01-01

    Full Text Available The design of electrodes based on conductive polymers in brain-machine interface technology offers the opportunity to exploit variably manufactured materials to reduce gliosis, indeed the most common brain response to chronically implanted neural electrodes. In fact, the use of conductive polymers, finely tailored in their physical-chemical properties, might result in electrodes with improved adaptability to the brain tissue and increased charge-transfer efficiency. Here we interfaced poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate (PEDOT:PSS doped with different amounts of ethylene glycol (EG with rat hippocampal primary cultures grown for 3 weeks on these synthetic substrates. We used immunofluorescence and scanning electron microscopy combined to single cell electrophysiology to assess the biocompatibility of PEDOT:PSS in terms of neuronal growth and synapse formation. We investigated neuronal morphology, density and electrical activity. We reported the novel observation that opposite to neurons, glial cell density was progressively reduced, hinting at the ability of this material to down regulate glial reaction. Thus PEDOT:PSS is an attractive candidate for the design of new implantable electrodes, controlling the extent of glial reactivity without affecting neuronal viability and function.

  9. Deficiency of Serotonin in Raphe Neurons and Altered Behavioral Responses in Tryptophan Hydroxylase 2-Knockout Medaka (Oryzias latipes).

    Science.gov (United States)

    Ansai, Satoshi; Hosokawa, Hiroshi; Maegawa, Shingo; Naruse, Kiyoshi; Washio, Youhei; Sato, Kenji; Kinoshita, Masato

    2017-12-01

    Serotonin (5-hydroxytryptamine [5-HT]) is a bioactive monoamine that acts as a neurotransmitter in the central and peripheral nervous system of animals. Teleost fish species have serotonergic neurons in the raphe nuclei of the brainstem; however, the role of 5-HT in the raphe neurons in teleost fish remains largely unknown. Here, we established a medaka (Oryzias latipes) strain with targeted disruption of tryptophan hydroxylase 2 (tph2) gene that is involved in the 5-HT synthesis in the raphe nuclei. Immunohistochemistry and mass spectrometry analysis revealed that the homozygous mutants (tph2Δ13/Δ13) lacked the ability to synthesize 5-HT in the raphe neurons. To investigate the effects of 5-HT deficiency in adult behaviors, the mutant fish were subjected to five behavioral paradigms (diving, open-field, light-dark transition, mirror-biting, and two-fish social interaction). The homozygous mutation caused a longer duration of freezing response in all examined paradigms and reduced the number of entries to the top area in the diving test. In addition, the mutants exhibited a decreased number of mirror-biting in the males and an increased contact time in direct social interaction between the females. These results indicate that this tph2-knockout medaka serves as a good model to analyze the effects of 5-HT deficiency in the raphe neurons.

  10. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors.

    Science.gov (United States)

    Borbély, Sándor; Jócsák, Gergely; Moldován, Kinga; Sedlák, Éva; Preininger, Éva; Boldizsár, Imre; Tóth, Attila; Atlason, Palmi T; Molnár, Elek; Világi, Ildikó

    2016-07-01

    Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Persistent attenuation and enhancement of the earthworm main muscle contraction generator response induced by repeated stimulation of a peripheral neuron

    Directory of Open Access Journals (Sweden)

    Y.C. Chang

    1998-10-01

    Full Text Available Responses evoked in the earthworm, Amynthas hawayanus, main muscle contraction generator M-2 (postsynaptic mechanical-stimulus-sensitive neuron by threshold mechanical stimuli in 2-s intertrial intervals (ITI were used as the control or unconditioned responses (UR. Their attenuation induced by decreasing these intervals in non-associative conditioning and their enhancement induced by associating the unconditioned stimuli (US to a train of short (0.1 s hyperpolarizing electrical substitutive conditioning stimuli (SCS in the Peri-Kästchen (PK neuron were measured in four parameters, i.e., peak numbers (N and amplitude (averaged from 120 responses, sum of these amplitudes (SAMP and the highest peak amplitude (V over a period of 4 min. Persistent attenuation similar to habituation was induced by decreasing the control ITI to 0.5 s and 2.0 s in non-associative conditioning within less than 4 min. Dishabituation was induced by randomly pairing one of these habituated US to an electrical stimulus in the PK neuron. All four parameters of the UR were enhanced by forward (SCS-US, but not backward (US-SCS, association of the US with 25, 100 and 250-Hz trains of SCS with 40-ms interstimulus intervals (ISI for 4 min and persisted for another 4 min after turning off the SCS. The enhancement of these parameters was proportional to the SCS frequencies in the train. No UR was evoked by the SCS when the US was turned off after 4 min of classical conditioning.

  12. The response of the neuronal adaptive system to background illumination and readaptation to dark in the immature retina.

    Science.gov (United States)

    Wang, Ling; El Azazi, Mildred; Eklund, Anders; Burstedt, Marie; Wachtmeister, Lillemor

    2015-03-01

    Developmental characteristics of the neuronal adaptive system of the retina, focusing on background light (BGL) adaptation and readaptation functions, were studied by measuring the oscillatory response (SOP) of the electroretinogram (ERG). Digitally filtered and conventional ERGs were simultaneously recorded. Rats aged 15 and 17 days were studied during exposure to BGLs of two mesopic intensities and during readaptation to dark. Results were compared to adult rats. In 'low mesopic' BGL SOP instantly dropped significantly to about half of its dark-adapted (DA) value contrary to mature rats, in which the SOP significantly increased. In 'high mesopic' BGL SOP decreased to about 20% and 30% of DA values in immature and adult rats, respectively. The process of recovery of SOP in darkness lacked the transient enhancement immediately as BGL was turned off, characteristic of adult rats. There were no major age differences in adaptive behaviour of a-wave. In young rats, recovery of b-wave was relatively slower. Properties of BGL adaptation and readaptation functions of the neuronal adaptive system in baby retina differed compared to the adult one by being less forceful and more restrained. Handling of mesopic illumination and recovery in the dark was immature. Development of these functions of the neuronal adaptive system progresses postnatally and lags behind that of the photoreceptor response and seems to be delayed also compared to that of the bipolar response. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Effects of the Botanical Compound p-Anisaldehyde on Horn Fly (Diptera: Muscidae) Repellency, Mortality, and Reproduction.

    Science.gov (United States)

    Showler, Allan T; Harlien, Jessica L

    2018-01-10

    The horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae), is an economically important obligate blood feeder that mainly attacks cattle in Europe, Asia, and North and South America. As horn fly resistance to conventional insecticides becomes more common, alternative control tactics, such as application of bioactive botanical natural products are being investigated. p-Anisaldehyde has been found in many plant species, and it has shown effects that include mortality, attractancy, and interference with host seeking. The series of bioassays we developed was effective for assessing a range of horn fly responses to chemicals and probably those of some other filth fly species. In our study, p-anisaldehyde was lethal to horn fly eggs at concentrations of 0.00001%, and possibly less. Mixed into cow manure, 5000-20,000 ppm p-anisaldehyde reduced horn fly larvae by 85.4%-100%. p-Anisaldehyde caused some immobilization of adult horn flies when exposed by direct contract with spray droplets and by fumigation. Mortality was 90%-100% in response to 5%-10% concentrations by 30 min, and LD50 and LD90 values are reported for five times from 30 min-4 h. Complete horn fly mortality was achieved by fumigation with 0.75% p-anisaldehyde by 3 h in an enclosed space, and we determined that fumigation was more (≈12.5-fold) lethal to adult horn flies than sprayed droplets. Although horn flies were not repelled by p-anisaldehyde in static air tube olfactometers, the compound completely deterred feeding from cotton pads soaked in bovine blood in response to concentrations of 0.6% and greater in ventilated containers. Although horn fly control is not likely to use fumigation methods, p-anisaldehyde might be useful for adult control using sprays and egg and larval control using feed-through techniques. Exposure to sublethal concentrations of p-anisaldehyde did not affect horn fly egg production and hatching. Aside from causing different responses in the same species of arthropod, p

  14. A temperature rise reduces trial-to-trial variability of locust auditory neuron responses.

    Science.gov (United States)

    Eberhard, Monika J B; Schleimer, Jan-Hendrik; Schreiber, Susanne; Ronacher, Bernhard

    2015-09-01

    The neurophysiology of ectothermic animals, such as insects, is affected by environmental temperature, as their body temperature fluctuates with ambient conditions. Changes in temperature alter properties of neurons and, consequently, have an impact on the processing of information. Nevertheless, nervous system function is often maintained over a broad temperature range, exhibiting a surprising robustness to variations in temperature. A special problem arises for acoustically communicating insects, as in these animals mate recognition and mate localization typically rely on the decoding of fast amplitude modulations in calling and courtship songs. In the auditory periphery, however, temporal resolution is constrained by intrinsic neuronal noise. Such noise predominantly arises from the stochasticity of ion channel gating and potentially impairs the processing of sensory signals. On the basis of intracellular recordings of locust auditory neurons, we show that intrinsic neuronal variability on the level of spikes is reduced with increasing temperature. We use a detailed mathematical model including stochastic ion channel gating to shed light on the underlying biophysical mechanisms in auditory receptor neurons: because of a redistribution of channel-induced current noise toward higher frequencies and specifics of the temperature dependence of the membrane impedance, membrane potential noise is indeed reduced at higher temperatures. This finding holds under generic conditions and physiologically plausible assumptions on the temperature dependence of the channels' kinetics and peak conductances. We demonstrate that the identified mechanism also can explain the experimentally observed reduction of spike timing variability at higher temperatures. Copyright © 2015 the American Physiological Society.

  15. Investigations of migratory birds during operation of Horns Rev offshore wind farm. Annual status report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer Christensen, T.; Hounisen, J.P. [NERI, Dept. of Wildlife Ecology and Biodiversity, Roskilde (Denmark)

    2005-07-01

    The aim of the project is to assess the collision risk between birds and wind turbines at the Horns Rev wind farm. The study focused on describing bird movements in relation to the wind farm and to identify the species-specific behavioural responses towards the wind turbines shown by migrating and staging bird species. The study was based on data from spring 2004. The Horns Rev area lies in a region known to be of importance for substantial water bird migration as well as holding internationally important numbers of several wintering and staging water bird species. (au)

  16. Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Koblan Kenneth S

    2002-08-01

    Full Text Available Abstract Background Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord. Further understanding of the molecular interactions and signaling pathways in the dorsal horn neurons will require a better knowledge of the molecular neuroanatomy in the dorsal spinal cord. Results A large scale screening was conducted for genes with enriched expression in the dorsal spinal cord using DNA microarray and quantitative real-time PCR. In addition to genes known to be specifically expressed in the dorsal spinal cord, other neuropeptides, receptors, ion channels, and signaling molecules were also found enriched in the dorsal spinal cord. In situ hybridization and immunohistochemistry revealed the cellular expression of a subset of these genes. The regulation of a subset of the genes was also studied in the spinal nerve ligation (SNL neuropathic pain model. In general, we found that the genes that are enriched in the dorsal spinal cord were not among those found to be up-regulated in the spinal nerve ligation model of neuropathic pain. This study also provides a level of validation of the use of DNA microarrays in conjunction with our novel analysis algorithm (SAFER for the identification of differences in gene expression. Conclusion This study identified molecules that are enriched in the dorsal horn of the spinal cord and provided a molecular neuroanatomy in the spinal cord, which will aid in the understanding of the molecular mechanisms important in nociception and pain.

  17. CX₃CR1 deficiency exacerbates neuronal loss and impairs early regenerative responses in the target-ablated olfactory epithelium.

    Science.gov (United States)

    Blomster, Linda V; Vukovic, Jana; Hendrickx, Debbie A E; Jung, Steffen; Harvey, Alan R; Filgueira, Luis; Ruitenberg, Marc J

    2011-11-01

    The olfactory epithelium is a site of sustained adult neurogenesis where olfactory sensory neurons are continuously replaced from endogenous stem/progenitor cells. Epithelial macrophages have been implicated in the phagocytosis of degenerating cells but the molecular mechanisms allowing for their recruitment and activation while maintaining a neurogenic microenvironment are poorly understood. We have previously shown that the chemokine fractalkine (CX₃CL1) is expressed by olfactory sensory neurons and ensheathing cells in the olfactory epithelium. In turn, the fractalkine receptor, CX₃CR1, is expressed on macrophages and dendritic cells within the olfactory epithelium. We report that a selective cell death of olfactory sensory neurons in the epithelium of CX₃CR1-deficient mice via target ablation (i.e. olfactory bulbectomy) results in an exacerbated loss of olfactory sensory neurons compared to wild-type mice. In addition, reduced proliferation of intraepithelial stem/progenitor cells was observed in lesioned CX₃CR1-deficient mice, suggesting an impaired regenerative response. Importantly, a lack of CX₃CL1-signaling caused increased recruitment of macrophages into the olfactory epithelium, which in turn contained higher levels of pro-inflammatory cytokines (e.g. TNF-α and IL-6) as determined by qPCR. We also present novel data showing that, relative to wild-type, CX₃CR1-deficient macrophages have diminished phagocytic activity following stimulation with CX₃CL1. Collectively, our data indicate that signaling through the CX₃CR1 receptor modulates macrophage activity, resulting in an environment conducive to olfactory sensory neuron clearance and targeted replacement from endogenous stem/progenitor cells. 2011 Elsevier Inc. All rights reserved.

  18. The response of cortical neurons to in vivo-like input current: theory and experiment : I. Noisy inputs with stationary statistics.

    Science.gov (United States)

    La Camera, Giancarlo; Giugliano, Michele; Senn, Walter; Fusi, Stefano

    2008-11-01

    The study of several aspects of the collective dynamics of interacting neurons can be highly simplified if one assumes that the statistics of the synaptic input is the same for a large population of similarly behaving neurons (mean field approach). In particular, under such an assumption, it is possible to determine and study all the equilibrium points of the network dynamics when the neuronal response to noisy, in vivo-like, synaptic currents is known. The response function can be computed analytically for simple integrate-and-fire neuron models and it can be measured directly in experiments in vitro. Here we review theoretical and experimental results about the neural response to noisy inputs with stationary statistics. These response functions are important to characterize the collective neural dynamics that are proposed to be the neural substrate of working memory, decision making and other cognitive functions. Applications to the case of time-varying inputs are reviewed in a companion paper (Giugliano et al. in Biol Cybern, 2008). We conclude that modified integrate-and-fire neuron models are good enough to reproduce faithfully many of the relevant dynamical aspects of the neuronal response measured in experiments on real neurons in vitro.

  19. A consensus CaMK IV-responsive RNA sequence mediates regulation of alternative exons in neurons

    OpenAIRE

    Xie, J. Y.; Jan, C.; Stoilov, P; Park, J.; Black, D L

    2005-01-01

    Neurons make extensive use of alternative pre-mRNA splicing to regulate gene expression and diversify physiological responses. We showed previously in a pituitary cell line that the Ca++/calmodulin-dependent protein kinase CaMK IV specifically repressed splicing of the BK channel STREX exon. This repression is dependent on a CaMK IV-responsive RNA element (CaRRE) within the STREX 3′ splice site. Here, we report that similar Ca++ regulation of splicing, mediated by L-type calcium channels and ...

  20. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Bohmann Dirk

    2005-06-01

    Full Text Available Abstract Background The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. Results Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. Conclusion This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.

  1. Flattening plasma corticosterone levels increases the prevalence of serotonergic dorsal raphe neurons inhibitory responses to nicotine in adrenalectomised rats.

    Science.gov (United States)

    Frías-Domínguez, Carmen; Garduño, Julieta; Hernández, Salvador; Drucker-Colin, René; Mihailescu, Stefan

    2013-09-01

    Major depression is characterized by a diminished activity of the brain serotonergic system as well as by the flattening of plasma cortisol levels. Nicotine improves mood in patients with major depression and in experimentally depressed animals by increasing brain serotonin (5-HT), noradrenaline and dopamine levels. The present study was directed to determine if flattening plasma glucocorticoid levels changes nicotine's stimulatory effects upon 5-HT DRN neurons. The experiments were performed in brain slices obtained from rats previously (14 days) adrenalectomised and implanted subcutaneously with one pellet containing 75mg of corticosterone (Adx+CSR rats). Whole cell voltage and current clamp techniques were used to study the activity of immunocitochemically identified 5-HT DRN neurons. Administration of nicotine (1μM) in sham-operated animals produced stimulatory effects in all 5-HT DRN neurons studied. In Adx+CSR rats however, nicotine inhibited 75% of 5-HT DRN neurons and increased the potassium-dependent inward rectifying current. The inhibitory effect of nicotine upon 5-HT DRN neurons was dependent on serotonin release inside the DRN, since it was converted into a stimulatory response by the selective antagonist of 5-HT1A receptors N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide (WAY100635, 25nM). Adx+CSR rats also presented an increased function of 5-HT1A autoreceptors, since, in these rats, serotonin (1-10μM) produced a higher increase in the potassium dependent inward rectifying current in comparison with sham-operated animals. Serotonin release inside DRN was mediated by α4β2 nicotinic acetylcholine receptors since the selective antagonist of these receptors dihydro-β-erytroidine hydrobromide (DHβE, 100nM) blocked the inhibitory effects of nicotine 5-HT DRN neurons. These data indicate that, in the experimental model of adrenalectomised rats implanted with corticosterone pellets, nicotine increases the function of

  2. Mirror neuron activation of musicians and non-musicians in response to motion captured piano performances

    DEFF Research Database (Denmark)

    Hou, Jiancheng; Rajmohan, Ravi; Fang, Dan

    2017-01-01

    Mirror neurons (MNs) activate when performing an action and when an observer witnesses the same action performed by another individual. Functional magnetic resonance imaging (fMRI) and presentation of motion captured piano performances were used to identify differences in MN activation for musici......Mirror neurons (MNs) activate when performing an action and when an observer witnesses the same action performed by another individual. Functional magnetic resonance imaging (fMRI) and presentation of motion captured piano performances were used to identify differences in MN activation...

  3. The effects of LSD and some analogues on the responses of single cortical neurons of the cat to optical stimulation.

    Science.gov (United States)

    Dray, A; Fox, P C; Hilmy, M; Somjen, G G

    1980-10-27

    The effects of lysergic acid diethylamide (LSD) and its analogues, 2-bromo-LSD (BOL) and methysergide, have been investigated on the responses to photic stimulation of single neurons in the striate cortex of the paralyzed, anesthetized cat. Systemic LSD (0.1--50 micrograms/kg, i.v.) produced: (a) enhancement or depression of evoked activity, the former being common with low, the latter with high doses; (b) changes in directional selectivity; and (c) changes in unstimulated background discharges. The effectiveness of the drug was reduced by repeated administration. Both BOL (10--75 micrograms/kg) and methysergide (100-700 micrograms/kg) produced effects qualitatively similar to LSD, but were considerably less potent. Microelectrophoretic administrations of LSD to single cortical neurons had actions similar to those caused by intravenous administration. BOL and methysergide required much larger currents to produce any effect and sometimes no effect could be induced by iontophoresis. It was concluded that these drugs influence visually evoked neuronal responses mainly by acting directly on cortical cells or synapses; and that the interference with visual cortical function could account for the distortion of visual perception caused by lysergic acid analogues; but that the hallucinogenic and psychotomimetic actions of LSD probably require additional subcortical effects.

  4. Environmental enrichment causes a global potentiation of neuronal responses across stimulus complexity and lamina of sensory cortex

    Directory of Open Access Journals (Sweden)

    Dasuni Sathsara Alwis

    2013-08-01

    Full Text Available Enriched social and physical housing produces many molecular, anatomical, electrophysiological and behaviour benefits even in adult animals. Much less is known of its effects on cortical electrophysiology, especially in how sensory cortex encodes the altered environment, and extant studies have generally been restricted to neurons in input laminae in sensory cortex. To extend the understanding of how an enriched environment alters the way in which cortex views the world, we investigated enrichment-induced changes in neuronal encoding of sensory stimuli across all laminae of the rat barrel cortex receiving input from the face whisker tactile system. Animals were housed in Enriched (n=13 or Isolated housing (n=13 conditions for 8 weeks before extracellular recordings were obtained from barrel cortex in response to simple whisker deflections and whisker motions modelling movements seen in awake animals undertaking a variety of different tasks. Enrichment resulted in increases in neuronal responses to all stimuli, ranging from those modelling exploratory behaviour through to discrimination behaviours. These increases were seen throughout the cortex from supragranular layers through to input Layer 4 and for some stimuli, in infragranular Layer 5. The observed enrichment-induced effect is consistent with the postulate that enrichment causes shift in cortical excitatory/inhibitory balance, and we demonstrate this is greatest in supragranular layers. However we also report that the effects are non-selective for stimulus parameters across a range of stimuli except for one modelling the likely use of whiskers by the rats in the enriched housing.

  5. Responses of Neurons in the Marmoset Primary Auditory Cortex to Interaural Level Differences: Comparison of Pure Tones and Vocalizations.

    Directory of Open Access Journals (Sweden)

    Leo L Lui

    2015-04-01

    Full Text Available Interaural level differences (ILDs are the dominant cue for localizing the sources of high frequency sounds that differ in azimuth. Neurons in the primary auditory cortex (A1 respond differentially to ILDs of simple stimuli such as tones and noise bands, but the extent to which this applies to complex natural sounds, such as vocalizations, is not known. In sufentanil/N2O anaesthetized marmosets, we compared the responses of 76 A1 neurons to three vocalizations (Ock, Tsik and Twitter and pure tones at cells’ characteristic frequency. Each stimulus was presented with ILDs ranging from 20dB favouring the contralateral ear to 20dB favouring the ipsilateral ear to cover most of the frontal azimuthal space. The response to each stimulus was tested at three average binaural levels (ABLs. Most neurons were sensitive to ILDs of vocalizations and pure tones. For all stimuli, the majority of cells had monotonic ILD sensitivity functions favouring the contralateral ear, but we also observed ILD sensitivity functions that peaked near the midline and functions favouring the ipsilateral ear. Representation of ILD in A1 was better for pure tones and the Ock vocalization in comparison to the Tsik and Twitter calls; this was reflected by higher discrimination indices and greater modulation ranges. ILD sensitivity was heavily dependent on ABL: changes in ABL by ±20 dB SPL from the optimal level for ILD sensitivity led to significant decreases in ILD sensitivity for all stimuli, although ILD sensitivity to pure tones and Ock calls was most robust to such ABL changes. Our results demonstrate differences in ILD coding for pure tones and vocalizations, showing that ILD sensitivity in A1 to complex sounds cannot be simply extrapolated from that to pure tones. They also show A1 neurons do not show level-invariant representation of ILD, suggesting that such a representation of auditory space is likely to require population coding, and further processing at subsequent

  6. Metabolic cost of neuronal information in an empirical stimulus-response model.

    Science.gov (United States)

    Kostal, Lubomir; Lansky, Petr; McDonnell, Mark D

    2013-06-01

    The limits on maximum information that can be transferred by single neurons may help us to understand how sensory and other information is being processed in the brain. According to the efficient-coding hypothesis (Barlow, Sensory Comunication, MIT press, Cambridge, 1961), neurons are adapted to the statistical properties of the signals to which they are exposed. In this paper we employ methods of information theory to calculate, both exactly (numerically) and approximately, the ultimate limits on reliable information transmission for an empirical neuronal model. We couple information transfer with the metabolic cost of neuronal activity and determine the optimal information-to-metabolic cost ratios. We find that the optimal input distribution is discrete with only six points of support, both with and without a metabolic constraint. However, we also find that many different input distributions achieve mutual information close to capacity, which implies that the precise structure of the capacity-achieving input is of lesser importance than the value of capacity.

  7. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons

    Directory of Open Access Journals (Sweden)

    Anand Praveen

    2010-11-01

    Full Text Available Abstract Background Oxaliplatin chemotherapy induced neuropathy is a dose related cumulative toxicity that manifests as tingling, numbness, and chronic pain, compromising the quality of life and leading to discontinued chemotherapy. Patients report marked hypersensitivity to cold stimuli at early stages of treatment, when sensory testing reveals cold and heat hyperalgesia. This study examined the morphological and functional effects of oxaliplatin treatment in cultured adult rat DRG neurons. Results 48 hour exposure to oxaliplatin resulted in dose related reduction in neurite length, density, and number of neurons compared to vehicle treated controls, using Gap43 immunostaining. Neurons treated acutely with 20 μg/ml oxaliplatin showed significantly higher signal intensity for cyclic AMP immunofluorescence (160.5 ± 13 a.u., n = 3, P Conclusions Oxaliplatin treatment induces TRP sensitization mediated by increased intracellular cAMP, which may cause neuronal damage. These effects may be mitigated by co-treatment with adenylyl cyclase inhibitors, like CB2 agonists, to alleviate the neurotoxic effects of oxaliplatin.

  8. Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity.

    Science.gov (United States)

    Cowen, Stephen L; Nitz, Douglas A

    2014-01-01

    Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.

  9. Synaptic and intrinsic homeostasis cooperate to optimize single neuron response properties and tune integrator circuits

    Science.gov (United States)

    2016-01-01

    Homeostatic processes that provide negative feedback to regulate neuronal firing rate are essential for normal brain function, and observations suggest that multiple such processes may operate simultaneously in the same network. We pose two questions: why might a diversity of homeostatic pathways be necessary, and how can they operate in concert without opposing and undermining each other? To address these questions, we perform a computational and analytical study of cell-intrinsic homeostasis and synaptic homeostasis in single-neuron and recurrent circuit models. We demonstrate analytically and in simulation that when two such mechanisms are controlled on a long time scale by firing rate via simple and general feedback rules, they can robustly operate in tandem to tune the mean and variance of single neuron's firing rate to desired goals. This property allows the system to recover desired behavior after chronic changes in input statistics. We illustrate the power of this homeostatic tuning scheme by using it to regain high mutual information between neuronal input and output after major changes in input statistics. We then show that such dual homeostasis can be applied to tune the behavior of a neural integrator, a system that is notoriously sensitive to variation in parameters. These results are robust to variation in goals and model parameters. We argue that a set of homeostatic processes that appear to redundantly regulate mean firing rate may work together to control firing rate mean and variance and thus maintain performance in a parameter-sensitive task such as integration. PMID:27306675

  10. Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture.

    Science.gov (United States)

    Odawara, A; Saitoh, Y; Alhebshi, A H; Gotoh, M; Suzuki, I

    2014-01-24

    Human induced pluripotent stem cell (hiPSC)-derived neurons may be effectively used for drug discovery and cell-based therapy. However, the immaturity of cultured human iPSC-derived neurons and the lack of established functional evaluation methods are problematic. We here used a multi-electrode array (MEA) system to investigate the effects of the co-culture of rat astrocytes with hiPSC-derived neurons on the long-term culture, spontaneous firing activity, and drug responsiveness effects. The co-culture facilitated the long-term culture of hiPSC-derived neurons for >3 months and long-term spontaneous firing activity was also observed. After >3 months of culture, we observed synchronous burst firing activity due to synapse transmission within neuronal networks. Compared with rat neurons, hiPSC-derived neurons required longer time to mature functionally. Furthermore, addition of the synapse antagonists bicuculline and 6-cyano-7-nitroquinoxaline-2,3-dione induced significant changes in the firing rate. In conclusion, we used a MEA system to demonstrate that the co-culture of hiPSC-derived neurons with rat astrocytes is an effective method for studying the function of human neuronal cells, which could be used for drug screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. nNOS(+ striatal neurons, a subpopulation spared in Huntington Disease, possess functional NMDA receptors but fail to generate mitochondrial ROS in response to an excitotoxic challenge

    Directory of Open Access Journals (Sweden)

    Lorella M.T. Canzoniero

    2013-05-01

    Full Text Available Hungtinton’s disease (HD is a neurodegenerative condition characterized by severe neuronal loss in the cortex and striatum that leads to motor and behavioral deficits. Excitotoxicity is thought to be involved in HD and several studies have indicated that NMDA receptor (NMDAR overactivation can play a role in the selective neuronal loss found in HD. Interestingly, a small subset of striatal neurons (less than 1% of the overall population is found to be spared in post-mortem HD brains. These neurons are medium-sized aspiny interneurons that highly express the neuronal isoform of nitric oxide synthase (nNOS. Intriguingly, nNOS(+ neurons show reduced vulnerability to NMDAR-mediated excitotoxicity. Mechanisms underlying this reduced vulnerability are still largely unknown. One untested possibility is that nNOS(+ neurons possess fewer or less functioning NMDARs. Employing single cell calcium imaging we challenged this hypothesis and found that cultured striatal nNOS(+ neurons show NMDAR-evoked responses that are identical to the ones observed in the overall population of nNOS(- neurons. NMDAR-dependent dysregulation of intraneuronal Ca2+ is known to generate high levels of reactive oxygen species of mitochondrial origin (mt-ROS, a crucial step in the excitotoxic cascade. With confocal imaging and dihydrorhodamine (DHR; a ROS-sensitive probe we compared mt-ROS levels generated by NMDAR activation in nNOS(+ and (- striatal neurons. DHR experiments revealed that nNOS(+ neurons failed to produce significant amounts of mt-ROS in response to NMDA exposure, thereby providing a mechanism for their reduced vulnerability to excitotoxicity.

  12. In vivo patch-clamp analysis of response properties of rat primary somatosensory cortical neurons responding to noxious stimulation of the facial skin

    Directory of Open Access Journals (Sweden)

    Nasu Masanori

    2010-05-01

    Full Text Available Abstract Background Although it has been widely accepted that the primary somatosensory (SI cortex plays an important role in pain perception, it still remains unclear how the nociceptive mechanisms of synaptic transmission occur at the single neuron level. The aim of the present study was to examine whether noxious stimulation applied to the orofacial area evokes the synaptic response of SI neurons in urethane-anesthetized rats using an in vivo patch-clamp technique. Results In vivo whole-cell current-clamp recordings were performed in rat SI neurons (layers III-IV. Twenty-seven out of 63 neurons were identified in the mechanical receptive field of the orofacial area (36 neurons showed no receptive field and they were classified as non-nociceptive (low-threshold mechanoreceptive; 6/27, 22% and nociceptive neurons. Nociceptive neurons were further divided into wide-dynamic range neurons (3/27, 11% and nociceptive-specific neurons (18/27, 67%. In the majority of these neurons, a proportion of the excitatory postsynaptic potentials (EPSPs reached the threshold, and then generated random discharges of action potentials. Noxious mechanical stimuli applied to the receptive field elicited a discharge of action potentials on the barrage of EPSPs. In the case of noxious chemical stimulation applied as mustard oil to the orofacial area, the membrane potential shifted depolarization and the rate of spontaneous discharges gradually increased as did the noxious pinch-evoked discharge rates, which were usually associated with potentiated EPSP amplitudes. Conclusions The present study provides evidence that SI neurons in deep layers III-V respond to the temporal summation of EPSPs due to noxious mechanical and chemical stimulation applied to the orofacial area and that these neurons may contribute to the processing of nociceptive information, including hyperalgesia.

  13. Non-neuronal cell responses differ between normal and Down syndrome developing brains.

    Science.gov (United States)

    Kanaumi, Takeshi; Milenkovic, Ivan; Adle-Biassette, Homa; Aronica, Eleonora; Kovacs, Gabor G

    2013-12-01

    Down syndrome (DS), the most common genetic cause of mental retardation, is characterized by reduced number of neurons and delayed myelination. Though non-neuronal cells in the brain are vital for the development, survival, and function of neurons, there is a paucity of comparative studies of normal development and DS, in particular in the temporal lobe, a region of interest for cognitive decline. We evaluated immunoreactivity for CD68 (macrophage), HLA-DR (microglia), Olig2 and TPPP/p25 (oligodendroglia), and GFAP (astroglia) in the germinal matrix (GM), temporal lobe white matter (TeWM) and hippocampus from 14 weeks of gestations to newborn in 28 DS patients and 30 age-matched controls. The rate of increase of CD68 positive cells in the GM, CA1 hippocampal subregion and subiculum was significantly higher in DS. The density of Olig2 positive cells in the GM was lower in DS brains at early stages, then showed a transient increase contrasting controls. Olig2 expression increased more in the TeWM in DS, suggesting an altered pattern of oligodendrocyte progenitor generation. GFAP-immunoreactivity in DS was significantly lower in the middle pregnancy period in the TeWM and did not increase between early and middle periods in the GM compared to controls, likely reflecting a defect in astrocyte production. The altered expression of non-neuronal cell markers during normal development and DS may play a role in, or reflect, defective neurogenesis, leading to reduced number of neurons and delayed myelination in the developing DS brain. This has implications for the understanding of the mental retardation in DS patients. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Angiotensin II AT1 receptors mediate neuronal sensitization and sustained blood pressure response induced by a single injection of amphetamine.

    Science.gov (United States)

    Marchese, N A; Paz, M C; Caeiro, X; Dadam, F M; Baiardi, G; Perez, M F; Bregonzio, C

    2017-01-06

    A single exposure to amphetamine induces neurochemical sensitization in striatal areas. The neuropeptide angiotensin II, through AT1 receptors (AT1-R) activation, is involved in these responses. However, amphetamine-induced alterations can be extended to extra-striatal areas involved in blood pressure control and their physiological outcomes. Our aim for the present study was to analyze the possible role for AT1-R in these events using a two-injection protocol and to further characterize the proposed AT1-R antagonism protocol. Central effect of orally administered AT1-R blocker (Candesartan, 3mg/kg p.o.×5days) in male Wistar rats was analyzed by spontaneous activity of neurons within locus coeruleus. In another group of animals pretreated with the AT1-R blocker or vehicle, sensitization was achieved by a single administration of amphetamine (5mg/kg i.p. - day 6) followed by a 3-week period off drug. On day 27, after receiving an amphetamine challenge (0.5mg/kg i.p.), we evaluated: (1) the sensitized c-Fos expression in locus coeruleus (LC), nucleus of the solitary tract (NTS), caudal ventrolateral medulla (A1) and central amygdala (CeAmy); and (2) the blood pressure response. AT1-R blockade decreased LC neurons' spontaneous firing rate. Moreover, sensitized c-Fos immunoreactivity in TH+neurons was found in LC and NTS; and both responses were blunted by the AT1-R blocker pretreatment. Meanwhile, no differences were found neither in CeAmy nor A1. Sensitized blood pressure response was observed as sustained changes in mean arterial pressure and was effectively prevented by AT1-R blockade. Our results extend AT1-R role in amphetamine-induced sensitization over noradrenergic nuclei and their cardiovascular output. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Activation of Brainstem Neurons by Underwater Diving in the Rat

    Science.gov (United States)

    Panneton, W. Michael; Gan, Qi; Le, Jason; Livergood, Robert S.; Clerc, Philip; Juric, Rajko

    2012-01-01

    The mammalian diving response is a powerful autonomic adjustment to underwater submersion greatly affecting heart rate, arterial blood pressure, and ventilation. The bradycardia is mediated by the parasympathetic nervous system, arterial blood pressure is mediated via the sympathetic system and still other circuits mediate the respiratory changes. In the present study we investigate the cardiorespiratory responses and the brainstem neurons activated by voluntary diving of trained rats, and, compare them to control and swimming animals which did not dive. We show that the bradycardia and increase in arterial blood pressure induced by diving were significantly different than that induced by swimming. Neuronal activation was calculated after immunohistochemical processing of brainstem sections for Fos protein. Labeled neurons were counted in the caudal pressor area, the medullary dorsal horn, subnuclei of the nucleus tractus solitarii (NTS), the nucleus raphe pallidus (RPa), the rostroventrolateral medulla, the A5 area, the nucleus locus coeruleus, the Kölliker–Fuse area, and the external lateral and superior lateral subnuclei of the parabrachial nucleus. All these areas showed significant increases in Fos labeling when data from voluntary diving rats were compared to control rats and all but the commissural subnucleus of the NTS, A5 area, and RPa were significantly different from swimming rats. These data provide a substrate for more precise experiments to determine the role of these nuclei in the reflex circuits driving the diving response. PMID:22563319

  16. The effects of overfeeding on the neuronal response to visual food cues in thin and reduced-obese individuals.

    Directory of Open Access Journals (Sweden)

    Marc-Andre Cornier

    2009-07-01

    Full Text Available The regulation of energy intake is a complex process involving the integration of homeostatic signals and both internal and external sensory inputs. The objective of this study was to examine the effects of short-term overfeeding on the neuronal response to food-related visual stimuli in individuals prone and resistant to weight gain.22 thin and 19 reduced-obese (RO individuals were studied. Functional magnetic resonance imaging (fMRI was performed in the fasted state after two days of eucaloric energy intake and after two days of 30% overfeeding in a counterbalanced design. fMRI was performed while subjects viewed images of foods of high hedonic value and neutral non-food objects. In the eucaloric state, food as compared to non-food images elicited significantly greater activation of insula and inferior visual cortex in thin as compared to RO individuals. Two days of overfeeding led to significant attenuation of not only insula and visual cortex responses but also of hypothalamus response in thin as compared to RO individuals.These findings emphasize the important role of food-related visual cues in ingestive behavior and suggest that there are important phenotypic differences in the interactions between external visual sensory inputs, energy balance status, and brain regions involved in the regulation of energy intake. Furthermore, alterations in the neuronal response to food cues may relate to the propensity to gain weight.

  17. A afferent fibers are involved in the pathology of central changes in the spinal dorsal horn associated with myofascial trigger spots in rats.

    Science.gov (United States)

    Meng, Fei; Ge, Hong-You; Wang, Yong-Hui; Yue, Shou-Wei

    2015-11-01

    A afferent fibers have been reported to participate in the development of the central sensitization induced by inflammation and injuries. Current evidence suggests that myofascial trigger points (MTrPs) induce central sensitization in the related spinal dorsal horn, and clinical studies indicate that A fibers are associated with pain behavior. Because most of these clinical studies applied behavioral indexes, objective evidence is needed. Additionally, MTrP-related neurons in dorsal root ganglia and the spinal ventral horn have been reported to be smaller than normal, and these neurons were considered to be related to A fibers. To confirm the role of A fibers in MTrP-related central changes in the spinal dorsal horn, we studied central sensitization as well as the size of neurons associated with myofascial trigger spots (MTrSs, equivalent to MTrPs in humans) in the biceps femoris muscle of rats and provided some objective morphological evidence. Cholera toxin B subunit-conjugated horseradish peroxidase was applied to label the MTrS-related neurons, and tetrodotoxin was used to block A fibers specifically. The results showed that in the spinal dorsal horn associated with MTrS, the expression of glutamate receptor (mGluR1α/mGluR5/NMDAR1) increased, while the mean size of MTrS-related neurons was smaller than normal. After blocking A fibers, these changes reversed to some extent. Therefore, we concluded that A fibers participated in the development and maintenance of the central sensitization induced by MTrPs and were related to the mean size of neurons associated with MTrPs in the spinal dorsal horn.

  18. AA, inner conductor of a magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    At the start-up of the AA and during its initial operation, magnetic horns focused the antiprotons emanating from the production target. These "current-sheet lenses" had a thin inner conductor (for minimum absorption of antiprotons), machined from aluminium to wall thicknesses of 0.7 or 1 mm. The half-sine pulses rose to 150 kA in 8 microsec. The angular acceptance was 50 mrad.

  19. Piracy off the Horn of Africa

    Science.gov (United States)

    2011-04-27

    Coordination Centre in Dar es Salaam , Tanzania, and a new regional maritime information center in Sana’a, Yemen—support the information sharing...AND ADDRESS( ES ) Congressional Research Service, The Library of Congress ,101 Independence Avenue SE,Washington,DC,20540-7500 8. PERFORMING ORGANIZATION...CRS Report for Congress Prepared for Members and Committees of Congress Piracy off the Horn of Africa Lauren Ploch Analyst in African

  20. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury

    Science.gov (United States)

    Stuck, Ellen D.; Irvine, Karen-Amanda; Bresnahan, Jacqueline C.

    2015-01-01

    Abstract Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity. PMID:26668821

  1. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    Science.gov (United States)

    Huie, J Russell; Stuck, Ellen D; Lee, Kuan H; Irvine, Karen-Amanda; Beattie, Michael S; Bresnahan, Jacqueline C; Grau, James W; Ferguson, Adam R

    2015-01-01

    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.

  2. Neuronal apoptosis and inflammatory responses in the central nervous system of a rabbit treated with Shiga toxin-2

    Directory of Open Access Journals (Sweden)

    Ikuta Fusahiro

    2008-03-01

    Full Text Available Abstract Background Shiga toxins (Stxs are the major agents responsible for hemorrhagic colitis and hemolytic-uremic syndrome (HUS during infections caused by Stx-producing Escherichia coli (STEC such as serotype O157:H7. Central nervous system (CNS involvement is an important determinant of mortality in diarrhea associated-HUS. It has been suggested that vascular endothelial injuries caused by Stxs play a crucial role in the development of the disease. The current study investigates the relationship between the cytotoxic effects of Stxs and inflammatory responses in a rabbit brain treated with Stx2. Methods In a rabbit model treated with purified Stx2 or PBS(-, we examined the expression of the Stx receptor globotriaosylceramide (Gb3/CD77 in the CNS and microglial activation using immunohistochemistry. The relationship between inflammatory responses and neuronal cell death was analyzed by the following methods: real time quantitative reverse transcriptase (RT-polymerase chain reaction (PCR to determine the expression levels of pro-inflammatory cytokines, and the terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick-end labeling (TUNEL method to detect apoptotic changes. Results Gb3/CD77 expression was detected in endothelial cells but not in neurons or glial cells. In the spinal cord gray matter, significant levels of Gb3/CD77 expression were observed. Severe endothelial injury and microvascular thrombosis resulted in extensive necrotic infarction, which led to acute neuronal damage. Conversely, in the brain, Stx receptor expression was much lower. The observed neuropathology was less severe. However, neuronal apoptosis was observed at the onset of neurological symptoms, and the number of apoptotic cells significantly increased in the brain at a later stage, several days after onset. Microglial activation was observed, and tumor necrosis factor (TNF-α and interleukin (IL-1β mRNA in the CNS parenchyma was significantly up

  3. Differential development of neuronal physiological responsiveness in two human neural stem cell lines.

    Science.gov (United States)

    Donato, Roberta; Miljan, Erik A; Hines, Susan J; Aouabdi, Sihem; Pollock, Kenneth; Patel, Sara; Edwards, Frances A; Sinden, John D

    2007-05-25

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to neurodegenerative disease. Overexpression of the myc family transcription factors in human primary cells from developing cortex and mesencephalon has produced two stable multipotential NSC lines (ReNcell VM and CX) that can be continuously expanded in monolayer culture. In the undifferentiated state, both ReNcell VM and CX are nestin positive and have resting membrane potentials of around -60 mV but do not display any voltage-activated conductances. As initially hypothesized, using standard methods (stdD) for differentiation, both cell lines can form neurons, astrocytes and oligodendrocytes according to immunohistological characteristics. However it became clear that this was not true for electrophysiological features which designate neurons, such as the firing of action potentials. We have thus developed a new differentiation protocol, designated 'pre-aggregation differentiation' (preD) which appears to favor development of electrophysiologically functional neurons and to lead to an increase in dopaminergic neurons in the ReNcell VM line. In contrast, the protocol used had little effect on the differentiation of ReNcell CX in which dopaminergic differentiation was not observed. Moreover, after a week of differentiation with the preD protocol, 100% of ReNcell VM featured TTX-sensitive Na+-channels and fired action potentials, compared to 25% after stdD. Currents via other voltage-gated channels did not appear to depend on the differentiation protocol. ReNcell CX did not display the same electrophysiological properties as the VM line, generating voltage-dependant K+ currents but no Na+ currents or action potentials under either stdD or preD differentiation. These data demonstrate that overexpression of myc in NSCs can be used to generate electrophysiologically active neurons in culture. Development of a functional neuronal phenotype may be dependent on parameters

  4. Differential development of neuronal physiological responsiveness in two human neural stem cell lines

    Directory of Open Access Journals (Sweden)

    Patel Sara

    2007-05-01

    Full Text Available Abstract Background Neural stem cells (NSCs are powerful research tools for the design and discovery of new approaches to neurodegenerative disease. Overexpression of the myc family transcription factors in human primary cells from developing cortex and mesencephalon has produced two stable multipotential NSC lines (ReNcell VM and CX that can be continuously expanded in monolayer culture. Results In the undifferentiated state, both ReNcell VM and CX are nestin positive and have resting membrane potentials of around -60 mV but do not display any voltage-activated conductances. As initially hypothesized, using standard methods (stdD for differentiation, both cell lines can form neurons, astrocytes and oligodendrocytes according to immunohistological characteristics. However it became clear that this was not true for electrophysiological features which designate neurons, such as the firing of action potentials. We have thus developed a new differentiation protocol, designated 'pre-aggregation differentiation' (preD which appears to favor development of electrophysiologically functional neurons and to lead to an increase in dopaminergic neurons in the ReNcell VM line. In contrast, the protocol used had little effect on the differentiation of ReNcell CX in which dopaminergic differentiation was not observed. Moreover, after a week of differentiation with the preD protocol, 100% of ReNcell VM featured TTX-sensitive Na+-channels and fired action potentials, compared to 25% after stdD. Currents via other voltage-gated channels did not appear to depend on the differentiation protocol. ReNcell CX did not display the same electrophysiological properties as the VM line, generating voltage-dependant K+ currents but no Na+ currents or action potentials under either stdD or preD differentiation. Conclusion These data demonstrate that overexpression of myc in NSCs can be used to generate electrophysiologically active neurons in culture. Development of a

  5. LS1 Report: Thank you magnetic horn!

    CERN Multimedia

    Antonella Del Rosso & Katarina Anthony

    2014-01-01

    Experiments at the Antimatter Decelerator (AD) have been receiving beams since the beginning of this week. There is a crucial element at the heart of the chain that prepares the antiproton beam: the so-called magnetic horn, a delicate piece of equipment that had to be refurbished during LS1 and that is now showing just how well it can perform.   View from the top of the target and horn trolley, along the direction of the beam. Antiprotons for the AD are produced by smashing a beam of protons from the PS onto an iridium target. However, the particles produced by the nuclear interactions are emitted at very wide angles; without a focussing element, all these precious particles would be lost. “A magnetic horn is placed at the exit of the target to focus back a large fraction of the negative particles, including antiprotons, parallel to the beam line and with the right momentum,” explains Marco Calviani, physicist in the EN Department and the expert in charge of the AD targe...

  6. Comparative study of different integrate-and-fire neurons: Spontaneous activity, dynamical response, and stimulus-induced correlation

    Science.gov (United States)

    Vilela, Rafael D.; Lindner, Benjamin

    2009-09-01

    Stochastic integrate-and-fire (IF) neuron models have found widespread applications in computational neuroscience. Here we present results on the white-noise-driven perfect, leaky, and quadratic IF models, focusing on the spectral statistics (power spectra, cross spectra, and coherence functions) in different dynamical regimes (noise-induced and tonic firing regimes with low or moderate noise). We make the models comparable by tuning parameters such that the mean value and the coefficient of variation of the interspike interval (ISI) match for all of them. We find that, under these conditions, the power spectrum under white-noise stimulation is often very similar while the response characteristics, described by the cross spectrum between a fraction of the input noise and the output spike train, can differ drastically. We also investigate how the spike trains of two neurons of the same kind (e.g., two leaky IF neurons) correlate if they share a common noise input. We show that, depending on the dynamical regime, either two quadratic IF models or two leaky IFs are more strongly correlated. Our results suggest that, when choosing among simple IF models for network simulations, the details of the model have a strong effect on correlation and regularity of the output.

  7. How does a neuron know to modulate its epigenetic machinery in response to early-life environment/experience?

    Directory of Open Access Journals (Sweden)

    Carley A Karsten

    2013-08-01

    Full Text Available Exciting information is emerging about epigenetic mechanisms and their role in long-lasting changes of neuronal gene expression. Whereas these mechanisms are active throughout life, recent findings point to a critical window of early postnatal development during which neuronal gene expression may be persistently re-programmed via epigenetic modifications. However, it remains unclear how the epigenetic machinery is modulated. Here we focus on an important example of early-life programming: the effect of sensory input from the mother on expression patterns of key stress-related genes in the developing brain. We focus on the lasting effects of this early life experience on corticotropin releasing hormone (CRH gene expression in the hypothalamus, and describe recent work that integrates organism-wide signals with cellular signals that in turn impact epigenetic regulation. We describe the operational brain networks that convey sensory input to CRH-expressing cells, and highlight the resulting re-wiring of synaptic connectivity to these neurons. We then move from intercellular to intracellular mechanisms, speculating about the induction and maintenance of lifelong CRH repression provoked by early-life experience. Elucidating such pathways is critical for understanding the enduring links between experience and gene expression. In the context of responses to stress, such mechanisms should contribute to vulnerability or resilience to post-traumatic stress disorder (PTSD and other stress-related disorders.

  8. Differential pH and capsaicin responses of Griffonia simplicifolia IB4 (IB4)-positive and IB4-negative small sensory neurons.

    Science.gov (United States)

    Liu, M; Willmott, N J; Michael, G J; Priestley, J V

    2004-01-01

    Protons play a key role in nociception caused by inflammation and ischaemia, but little is known about the relative sensitivities of different dorsal root ganglion (DRG) neurons. We have therefore examined the responses in vitro of rat DRG cells classified according to whether or not they bind Griffonia simplicifolia IB4 (IB4), a lectin which is widely used to distinguish between two major populations of small diameter neurons. Under voltage-clamp conditions, proton-activated inward currents were found in approximately 90% of small DRG neurons and showed one of three waveforms: transient, sustained or mixed. The majority of IB4-positive (IB4+) neurons (63%) gave rise to sustained inward currents that were sensitive to capsazepine. In contrast, the most prevalent waveform in small IB4-negative (IB4-) neurons (69%) was a mixed response containing transient and sustained components. The transient component was inhibited by amiloride whilst the sustained component showed a variable sensitivity to capsazepine. We also found that more IB4+ cells responded to capsaicin and, on average, gave rise to a larger magnitude of response than small IB4- neurons, consistent with their higher prevalence and greater amplitude of vanilloid receptor 1 (TRPV1)-like acid responses. The increase in intracellular Ca(2+) induced by capsaicin was also slightly greater in IB4+ neurons and in these cells its magnitude correlated with the level of TRPV1 immunoreactivity. Our data suggest that acid-sensing ion channels (ASICs) and TRPV1 are the major acid-sensitive receptors in small IB4- neurons, whilst TRPV1 is the predominant one in IB4+ neurons. Because ASIC-like responses were approximately 10-fold more sensitive to changes in H(+) than TRPV1-like responses, we speculate that small IB4- rather than IB4+ neurons play an essential role in sensing acid. Our results also highlight differences in capsaicin responses between IB4+ and IB4- small neurons and reveal the close link between capsaicin

  9. 17β-Estradiol alters the response of subfornical organ neurons that project to supraoptic nucleus to plasma angiotensin II and hypernatremia.

    Science.gov (United States)

    Ciriello, John; Roder, Stefanie

    2013-08-14

    This study was done in urethane anesthetized, ovariectomized (OVX) female rats that were either implanted or not implanted with silastic capsules containing17β-estradiol (E2) to investigate the effect of systemic changes in E2 on the discharge rate of subfornical organ (SFO) neurons that projected to supraoptic nucleus (SON) and responded to changes in plasma levels of angiotensin II (ANG II) or hypernatremia. Extracellular single unit recordings were made from 146 histologically verified single units in SFO. Intra-carotid infusions of ANG II excited ~57% of these neurons, whereas ~23% were excited by hypertonic NaCl. Basal discharge rate of neurons excited by ANG II or hypertonic NaCl was significantly lower in OVX+E2 rats compared to OVX only animals. The response of SFO neurons antidromically activated by SON stimulation to intra-carotid injections of ANG II or hypertonic NaCl was greater in the OVX only compared to the OVX+E2 rats. Intra-carotid injections of E2 in either group attenuated not only the basal discharge of these neurons, but also their response to ANG II or hypertonic NaCl. In all cases this inhibitory effect of E2 was blocked by an intra-carotid injection of the E2 receptor antagonist ICI-182780, although ICI-182780 did not alter the neuron's response to ANG II or hypertonic NaCl. Additionally, ICI-182780 in the OVX+E2 animals significantly raised the basal discharge of SFO neurons and their response to ANG II or hypertonic NaCl. These data indicate that E2 alters the response of SFO neurons to ANG II or NaCl that project to SON, and suggest that E2 functions in the female to regulate neurohypophyseal function in response to circulating ANG II and plasma hypernatremia. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder.

    Science.gov (United States)

    Mertens, Jerome; Wang, Qiu-Wen; Kim, Yongsung; Yu, Diana X; Pham, Son; Yang, Bo; Zheng, Yi; Diffenderfer, Kenneth E; Zhang, Jian; Soltani, Sheila; Eames, Tameji; Schafer, Simon T; Boyer, Leah; Marchetto, Maria C; Nurnberger, John I; Calabrese, Joseph R; Ødegaard, Ketil J; McCarthy, Michael J; Zandi, Peter P; Alda, Martin; Alba, Martin; Nievergelt, Caroline M; Mi, Shuangli; Brennand, Kristen J; Kelsoe, John R; Gage, Fred H; Yao, Jun

    2015-11-05

    Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models, such as reduced glial cell number in the prefrontal cortex of patients, upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca(2+) imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical

  11. [Responses of rabbit's visual cortex neurons to changes in intensity and orientation of visual stimuli].

    Science.gov (United States)

    Polianskiĭ, V B; Alymkulov, D E; Evtikhin, D V; Sokolov, E N; Chernyshev, B V

    2010-01-01

    Changes in the number of spikes in the early phasic discharge (50-90 ms from stimuli replacement) of neurons in the rabbit's primary visual cortex were studied under conditions of an instant change in a flashing-line pattern. We used three type of stimulation: lines with different orientations (0-90 degrees) but constant intensity; lines with constant orientation but different intensities; complex stimuli with different intensities and different orientations of lines. Factor analysis made it possible to reconstruct two-dimensional sensory spaces of orientations in 13 of 43 analyzed neurons (30%). In 5 of 30 analyzed neurons (16.6%), both two-dimensional spaces of orientations and two-dimensional spaces of intensities were revealed. Achromatic spaces were reconstructed during changes in the lines of varying intensities but constant orientation. In experiments with complex stimuli, the intensity of lines with orientations varying from 0 to 38.58 degree was 5 cd/m2. The intensity of lines with orientations varying from 51.44 to 90 degrees was 15 cd/m2. In the sensorial space, stimuli with different intensities were located on the plane formed by the first and second significant factors in opposite quadrants, whereas within each quadrant, the stimuli were arranged closely to their orientation from minimum to maximum. We suggest that this type of sensory space reflects the interaction between intensity and orientation attributes of visual stimuli with the factor of intensity prevailing over the factor of orientation. Only 7 (12%) neurons with such complex spaces were found.

  12. Response of supra oculomotor area neurons during combined saccade-vergence movements.

    Science.gov (United States)

    Pallus, Adam C; Walton, Mark M G; Mustari, Michael J

    2017-11-15

    Combined saccade-vergence movements allow humans and other primates to align their eyes with objects of interest in three-dimensions. In the absence of saccades, vergence movements are typically slow, symmetrical movements of the two eyes in opposite directions. However, combined saccade-vergence movements produce vergence velocities that exceed values observed during vergence alone. This phenomenon is often called "vergence enhancement", or "saccade-facilitated vergence," though it is important to consider that rapid vergence changes, known as "vergence transients," are also observed during conjugate saccades. We developed a visual target array that allows monkeys to make saccades in all directions between targets spaced at distances that correspond to ~1o intervals of vergence angle relative to the monkey. We recorded the activity of vergence-sensitive neurons in the supra-oculomotor area (SOA), located dorsal and lateral to the oculomotor nucleus while monkeys made saccades with vergence amplitudes ranging from 0-10o. The primary focus of this study was to test the hypothesis that neurons in the SOA fire a high frequency burst of spikes during saccades that could generate the enhanced vergence. We found that individual neurons encode vergence velocity during both saccadic and non-saccadic vergence, yet firing rates were insufficient to produce the observed enhancement of vergence velocity. Our results are consistent with the hypothesis that slow vergence changes are encoded by the SOA while fast vergence movements require an additional contribution from the saccadic system. Copyright © 2017, Journal of Neurophysiology.

  13. Complex population response of dorsal putamen neurons predicts the ability to learn.

    Directory of Open Access Journals (Sweden)

    Steeve Laquitaine

    Full Text Available Day-to-day variability in performance is a common experience. We investigated its neural correlate by studying learning behavior of monkeys in a two-alternative forced choice task, the two-armed bandit task. We found substantial session-to-session variability in the monkeys' learning behavior. Recording the activity of single dorsal putamen neurons we uncovered a dual function of this structure. It has been previously shown that a population of neurons in the DLP exhibits firing activity sensitive to the reward value of chosen actions. Here, we identify putative medium spiny neurons in the dorsal putamen that are cue-selective and whose activity builds up with learning. Remarkably we show that session-to-session changes in the size of this population and in the intensity with which this population encodes cue-selectivity is correlated with session-to-session changes in the ability to learn the task. Moreover, at the population level, dorsal putamen activity in the very beginning of the session is correlated with the performance at the end of the session, thus predicting whether the monkey will have a "good" or "bad" learning day. These results provide important insights on the neural basis of inter-temporal performance variability.

  14. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans.

    Science.gov (United States)

    Lee, Seung-Jae; Kenyon, Cynthia

    2009-05-12

    Many ectotherms, including C. elegans, have shorter life spans at high temperature than at low temperature. High temperature is generally thought to increase the "rate of living" simply by increasing chemical reaction rates. In this study, we questioned this view and asked whether the temperature dependence of life span is subject to active regulation. We show that thermosensory neurons play a regulatory role in the temperature dependence of life span. Surprisingly, inhibiting the function of thermosensory neurons by mutation or laser ablation causes animals to have even shorter life spans at warm temperature. Thermosensory mutations shorten life span by decreasing expression of daf-9, a gene required for the synthesis of ligands that inhibit the DAF-12, a nuclear hormone receptor. The short life span of thermosensory mutants at warm temperature is completely suppressed by a daf-12(-) mutation. Our data suggest that thermosensory neurons affect life span at warm temperature by changing the activity of a steroid-signaling pathway that affects longevity. We propose that this thermosensory system allows C. elegans to reduce the effect that warm temperature would otherwise have on processes that affect aging, something that warm-blooded animals do by controlling temperature itself.

  15. Beetle horns and horned beetles: emerging models in developmental evolution and ecology.

    Science.gov (United States)

    Kijimoto, Teiya; Pespeni, Melissa; Beckers, Oliver; Moczek, Armin P

    2013-01-01

    Many important questions in developmental biology increasingly interface with related questions in other biological disciplines such as evolutionary biology and ecology. In this article, we review and summarize recent progress in the development of horned beetles and beetle horns as study systems amenable to the integration of a wide range of approaches, from gene function analysis in the laboratory to population ecological and behavioral studies in the field. Specifically, we focus on three key questions at the current interface of developmental biology, evolutionary biology and ecology: (1) the developmental mechanisms underlying the origin and diversification of novel, complex traits, (2) the relationship between phenotypic diversification and the diversification of genes and transcriptomes, and (3) the role of behavior as a leader or follower in developmental evolution. For each question we discuss how work on horned beetles is contributing to our current understanding of key issues, as well as highlight challenges and opportunities for future studies. Copyright © 2012 Wiley Periodicals, Inc.

  16. Relation between the neuronal and hemodynamic response in the lesioned rat spinal cord following peripheral nerve stimulation

    Science.gov (United States)

    Dubeau, S.; Beaumont, E.; Lesage, F.

    2009-02-01

    In this study, we explore the hemodynamic response in the lesioned rat spinal cord following peripheral nerve stimulation. Oxy and deoxy hemoglobin were measured (using a four color LED multispectral intrinsic optical imaging system) simultaneously with blood flow (laser speckle measurement). Both optical and electrophysiological data are compared spatially and against stimulation strength. When compared with non-lesioned animals, the hemodynamic response is seen to display significant differences exhibiting increased initial dip and decreased blood drain following stimulation. The origin of the difference is observed to be due to the vascular nature of the injury. The distinct hemodynamic responses may have a strong impact on General Linear Model based fMRI studies of spinal cord lesions due to the difficulty in separating vascular effects from neuronal plasticity following injury.

  17. Differences in the Neuronal Response to Food in Obesity-Resistant as Compared to Obesity-Prone Individuals

    Science.gov (United States)

    Cornier, Marc-Andre; McFadden, Kristina L.; Thomas, Elizabeth A.; Bechtell, Jamie L.; Eichman, Lindsay S.; Bessesen, Daniel H.; Tregellas, Jason R.

    2013-01-01

    Despite living in an obesogenic environment, some individuals maintain a thin phenotype compared to the majority who are at risk for weight gain and obesity. Understanding how these different phenotypes regulate energy intake is critical. The objective of this study was to examine the differences in neuronal response to visual food cues in adults recruited as either obesity-resistant (OR) or obesity-prone (OP) based on self-identification, BMI, and personal/family weight history. 25 OR and 28 OP individuals were studied after 4 days of eucaloric energy intake. Functional magnetic resonance imaging (fMRI) was performed in the fasted and acute fed states (30 minutes after a test meal) while subjects viewed images of foods of high hedonic value and neutral non-food objects. Measures of appetite using visual analog scales were performed before and every 30 minutes after the test meal for 3 hours. In the fasted state, food as compared to nonfood images elicited significant response in the insula, somatosensory cortex, parietal cortex, and visual cortex in both OR and OP. The acute fed state resulted in significant attenuation of these and other brain areas in the OR but not OP individuals. Furthermore, OP as compared to OR individuals showed greater activation of medial and anterior prefrontal cortex (PFC) in response to the test meal. Adjusting for fat mass did not impact these results. Attenuation of insula/PFC response to food images in the fed state was associated with greater reductions in hunger. These findings suggest that individuals prone to weight gain and obesity have altered neuronal responses to food cues in brain regions known to be important in energy intake regulation. These altered responses may represent an important mechanism contributing to excess energy intake and risk for obesity. PMID:23313402

  18. Differences in the neuronal response to food in obesity-resistant as compared to obesity-prone individuals.

    Science.gov (United States)

    Cornier, Marc-Andre; McFadden, Kristina L; Thomas, Elizabeth A; Bechtell, Jamie L; Eichman, Lindsay S; Bessesen, Daniel H; Tregellas, Jason R

    2013-02-17

    Despite living in an obesogenic environment, some individuals maintain a thin phenotype compared to the majority who are at risk for weight gain and obesity. Understanding how these different phenotypes regulate energy intake is critical. The objective of this study was to examine the differences in neuronal response to visual food cues in adults recruited as either obesity-resistant (OR) or obesity-prone (OP) based on self-identification, BMI, and personal/family weight history. 25 OR and 28 OP individuals were studied after 4 days of eucaloric energy intake. Functional magnetic resonance imaging (fMRI) was performed in the fasted and acute fed states (30 min after a test meal) while subjects viewed images of foods of high hedonic value and neutral non-food objects. Measures of appetite using visual analog scales were performed before and every 30 min after the test meal for 3 h. In the fasted state, food as compared to nonfood images elicited significant response in the insula, somatosensory cortex, parietal cortex, and visual cortex in both OR and OP. The acute fed state resulted in significant attenuation of these and other brain areas in the OR but not OP individuals. Furthermore, OP as compared to OR individuals showed greater activation of medial and anterior prefrontal cortex (PFC) in response to the test meal. Adjusting for fat mass did not impact these results. Attenuation of insula/PFC response to food images in the fed state was associated with greater reductions in hunger. These findings suggest that individuals prone to weight gain and obesity have altered neuronal responses to food cues in brain regions known to be important in energy intake regulation. These altered responses may represent an important mechanism contributing to excess energy intake and risk for obesity. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Pregnant noncommunicating rudimentary uterine horn with placenta percreta.

    Science.gov (United States)

    Henriet, Emmanuelle; Roman, Horace; Zanati, Joel; Lebreton, Bernard; Sabourin, Jean-Christophe; Loic, Marpeau

    2008-01-01

    To report a placenta percreta in a 7-week gestational rudimentary noncommunicating uterine horn pregnancy. A 28-year-old woman with no complaints presented with a rudimentary uterine horn pregnancy at 7-weeks gestation. The diagnosis was suspected by ultrasonography and diagnosed by laparoscopy. Laparoscopic excision of the rudimentary uterine horn and ipsilateral salpingectomy were performed, as well as biopsy of several peritoneal endometriosis lesions. A 7-week gestation pregnancy with placenta percreta was identified in the rudimentary uterine horn. No communication was found with the right unicornuate uterus. Endometriosis was confirmed. Clinical outcome was favorable. Placenta percreta may occur in rudimentary uterine horn pregnancies, but accidents may be avoided by an early diagnosis and surgical management. However, in young women who desire pregnancy, planned laparoscopic resection of a rudimentary uterine horn revealed accidentally should be discussed.

  20. Reduced responses of submucous neurons from irritable bowel syndrome patients to a cocktail containing histamine, serotonin, TNFα and tryptase (IBS-cocktail

    Directory of Open Access Journals (Sweden)

    Daniela eOstertag

    2015-12-01

    Full Text Available Background & Aims:Malfunctions of enteric neurons are believed to play an important role in the pathophysiology of irritable bowel syndrome (IBS. Our aim was to investigate whether neuronal activity in biopsies from IBS patients is altered in comparison to healthy controls (HC.Methods:Activity of human submucous neurons in response to electrical nerve stimulation and local application of nicotine or a mixture of histamine, serotonin, tryptase and TNF-α (IBS-cocktail was recorded in biopsies from 17 HC and 35 IBS patients with the calcium-sensitive-dye Fluo-4 AM. The concentrations of the mediators resembeled those found in biopsy supernatants or blood. Neuronal activity in guinea-pig submucous neurons was studied with the voltage-sensitive-dye di-8-ANEPPS. Results:Activity in submucous ganglia in response to nicotine or electrical nerve stimulation was not different between HC and IBS patients (P=0.097 or P=0.448. However, the neuronal response after application of the IBS-cocktail was significantly decreased (P=0.039 independent of whether diarrhea (n=12, constipation (n=5 or bloating (n=5 was the predominant symptom. In agreement with this we found that responses of submucous ganglia conditioned by overnight incubation with IBS mucosal biopsy supernatant to spritz application of this supernatant was significantly reduced (P=0.019 when compared to incubation with HC supernatant.Conclusion:We demonstrated for the first time reduced neuronal responses in mucosal IBS biopsies to an IBS mediator cocktail. While excitability to classical stimuli of enteric neurons was comparable to HC, the activation by the IBS-cocktail was decreased. This was very likely due to desensitization to mediators constantly released by mucosal and immune cells in the gut wall of IBS patients.

  1. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies

    Directory of Open Access Journals (Sweden)

    Huo eLu

    2016-03-01

    Full Text Available To study the olivary input to the cerebellar nuclei (CN we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2 in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO with a blue laser (single pulse, 10 - 50 ms duration. Peri-stimulus histograms were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger Purkinje cell inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in Purkinje cell axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons. After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions.

  2. D1 and D2 specific dopamine antagonist modulate the caudate nucleus neuronal responses to chronic methylphenidate exposure.

    Science.gov (United States)

    Venkataraman, Sidish; Claussen, Catherine; Dafny, Nachum

    2017-02-01

    The psychostimulant, methylphenidate (MPD), is the first line treatment as a pharmacotherapy to treat behavioral disorders such as attention deficit hyperactivity disorder (ADHD). MPD is commonly misused in non-ADHD (normal) youth and young adults both as a recreational drug and for cognitive enhancing effects to improve their grades. MPD is known to act on the reward circuit; including the caudate nucleus (CN). The CN is comprised of medium spiny neurons containing largely dopamine (DA) D1 and D2 receptors. It has been widely shown that the DA system plays an important role in the response to MPD exposure. We investigated the role of both D1 and D2 DA receptors in the CN response to chronic MPD administration using specific D1 and D2 DA antagonist. Four groups of young adult, male SD rats were used: a saline (control) and three MPD dose groups (0.6, 2.5, and 10.0 mg/kg). The experiment lasted 11 consecutive days. Each MPD dose group was randomly divided into two subgroups to receive either a 0.4 mg/kg SCH-23390 selective D1 DA antagonist or a 0.3 mg/kg raclopride selective D2 DA antagonist prior to their final (repetitive) MPD rechallenge administration. It was observed that selective D1 DA antagonist (SCH-23390) given 30 min prior to the last MPD exposure at ED11 partially reduced or prevented the effect induced by MPD exposure in CN neuronal firing rates across all MPD doses. Selective D2 DA antagonist (raclopride) resulted in less obvious trends; some CN neuronal firing rates exhibited a slight increase in all MPD doses.

  3. Analysis of the anxiolytic-like effect of TRH and the response of amygdalar TRHergic neurons in anxiety.

    Science.gov (United States)

    Gutiérrez-Mariscal, Mariana; de Gortari, Patricia; López-Rubalcava, Carolina; Martínez, Adrián; Joseph-Bravo, Patricia

    2008-02-01

    Thyrotropin-releasing hormone (TRH) was first described for its neuroendocrine role in controlling the hypothalamus-pituitary-thyroid axis (HPT). Anatomical and pharmacological data evidence its participation as a neuromodulator in the central nervous system. Administration of TRH induces various behavioural effects including arousal, locomotion, analepsy, and in certain paradigms, it reduces fear behaviours. In this work we studied the possible involvement of TRHergic neurons in anxiety tests. We first tested whether an ICV injection of TRH had behavioural effects on anxiety in the defensive burying test (DBT). Corticosterone serum levels were quantified to evaluate the stress response and, the activity of the HPT axis to distinguish the endocrine response of TRH injection. Compared to a saline injection, TRH reduced cumulative burying, and decreased serum corticosterone levels, supporting anxiolytic-like effects of TRH administration. The response of TRH neurons was evaluated in brain regions involved in the stress circuitry of animals submitted to the DBT and to the elevated plus maze (EPM), tests that allow to correlate biochemical parameters with anxiety-like behaviour. In the DBT, the response of Wistar rats was compared with that of the stress-hypersensitive Wistar Kyoto (WKY) strain. Behavioural parameters were analysed in recorded videos. Animals were sacrificed 30 or 60min after test completion. In various limbic areas, the relative mRNA levels of TRH, its receptors TRH-R1 and -R2, and its inactivating ectoenzyme pyroglutamyl peptidase II (PPII), were determined by RT-PCR, TRH tissue content by radioimmunoassay (RIA). The extent of the stress response was evaluated by measuring the expression profile of CRH, CRH-R1 and GR mRNA in the paraventricular nucleus (PVN) of the hypothalamus and in amygdala, corticosterone levels in serum. As these tests demand increased physical activity, the response of the HPT axis was also evaluated. Both tasks increased the

  4. Radiation pattern synthesis for circular aperture horn antennas.

    Science.gov (United States)

    Ludwig, A. C.

    1966-01-01

    Radiation pattern synthesis for circular aperture horn antennas, assuming aperture distribution consisting of fields of cylindrical waveguide modes and by linear combination of radiation pattern functions

  5. VARIABILITY OF NEURONAL RESPONSES: TYPES AND FUNCTIONAL SIGNIFICANCE IN NEUROPLASTICITY AND NEURAL DARWINISM

    Directory of Open Access Journals (Sweden)

    Alexander Chervyakov

    2016-11-01

    Full Text Available In many cases, neural signals detected under the same external experimental conditions significantly change from trial to trial. The variability phenomenon, which complicates extraction of reproducible results and is ignored in many studies by averaging, has attracted attention of researchers in recent years. In this paper, we classify possible types of variability based on its functional significance and describe features of each type. We describe the key adaptive significance of variability at the neural network level and the degeneracy phenomenon that may be important for learning processes in connection with the principle of neuronal group selection.

  6. Sexual differentiation of kisspeptin neurons responsible for sex difference in gonadotropin release in rats.

    Science.gov (United States)

    Tsukamura, Hiroko; Homma, Tamami; Tomikawa, Junko; Uenoyama, Yoshihisa; Maeda, Kei-ichiro

    2010-07-01

    The brain mechanism regulating GnRH/luteinizing hormone (LH) release is sexually differentiated in rodents. Estrogen induces a GnRH/LH surge in females but not in males. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) have been reported to be sexually dimorphic and suggested to be involved in the GnRH/LH surge generation. Neonatal testicular androgen may cause the reduction of AVPV kisspeptin expression and a lack of LH surge in male rats. Thus, it is plausible that perinatal testicular androgen causes defeminization of the AVPV kisspeptin system, resulting in the loss of the surge system in male rats.

  7. Reduced responsiveness of kisspeptin neurons to estrogenic positive feedback associated with age-related disappearance of LH surge in middle-age female rats.

    Science.gov (United States)

    Ishii, Misawa Niki; Matsumoto, Kiyoshi; Matsui, Hisanori; Seki, Nobuyuki; Matsumoto, Hirokazu; Ishikawa, Kaori; Chatani, Fumio; Watanabe, Gen; Taya, Kazuyoshi

    2013-11-01

    Age-related disappearance of the LH surge is one of major biomarkers of reproductive aging in female rats. Kisspeptin neurons in the hypothalamic anteroventral periventricular nucleus (AVPV) are proposed as the critical regulator of the preovulatory LH surge in response to estrogenic positive feedback. Here we investigated the possible involvement of the AVPV kisspeptin neurons in the disappearance of the LH surge in middle-age rats. Middle-age rats exhibiting persistent estrus (M-PE) did not show an LH surge although neither Kiss1 mRNA nor peptide in the AVPV was differentially expressed when compared to young rats exhibiting normal estrous cycles (YN). M-PE released LH in response to exogenous kisspeptin in a similar dose-dependent manner as YN, suggesting that their GnRH neurons still maintained responsiveness to kisspeptin. To investigate the estrogenic positive feedback effect on kisspeptin neurons in the AVPV, rats were ovariectomized and supplemented with estradiol (OVX+E2). We performed in situ hybridization and immunohistochemistry for Kiss1 mRNA and cFos, respectively, and found that M-PE exhibited a significantly lower percentage of Kiss1 mRNA positive neurons with cFos immunoreactivity, although the total number of kisspeptin neurons was not different from that in cyclic rats. Furthermore, OVX+E2 M-PE did not show the surge-like LH release under high estradiol administration while YN did. Thus our current study suggests that the reduced responsiveness of the AVPV kisspeptin neurons to estrogenic positive feedback presumably results in the decrease in kisspeptin secretion from neurons and eventually causes the age-related disappearance of the LH surge in middle age female rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Monosodium glutamate alters the response properties of rat trigeminovascular neurons through activation of peripheral NMDA receptors.

    Science.gov (United States)

    O'Brien, Melissa; Cairns, Brian E

    2016-10-15

    Ingestion of monosodium glutamate (MSG) has been shown to cause headaches in healthy individuals and trigger migraine-like headaches in migraine sufferers. We combined immunohistochemistry, in vivo electrophysiology, and laser Doppler recordings of dural vasculature to investigate the effect of systemic administration of MSG on the trigeminovascular pathway. Immunohistochemical analysis confirmed the expression of NMDA receptors on nerve fibers innervating dural blood vessels and excitatory amino acid transporter 2 on dural blood vessels. Systemic administration of MSG (50mg/kg) evoked an increase in ongoing discharge in 5/6 spinal trigeminal subnucleus caudalis (SpVc) neurons with dural input recorded from male and female rats, respectively, as well as lowering their mechanical activation threshold. There were no sex-related differences in these effects of MSG. Neuronal discharge and mechanical sensitization were significantly attenuated by co-injection with the peripherally restricted NMDA receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV) in both sexes. Systemic administration of MSG induced a 24.5% and 20.6% increase in dural flux in male and female rats, respectively. These results suggest that MSG-induced headache is mediated by the activation of peripheral NMDA receptors and subsequent dural vasodilation. Peripheral NMDA receptors are a potential target for the development of new drugs to treat headaches. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Genetic inactivation of mitochondria-targeted redox enzyme p66ShcA preserves neuronal viability and mitochondrial integrity in response to oxidative challenges

    Directory of Open Access Journals (Sweden)

    Michael eForte

    2012-07-01

    Full Text Available Mitochondria are essential to neuronal viability and function due to their roles in ATP production, intracellular calcium regulation, and activation of apoptotic pathways. Accordingly, mitochondrial dysfunction has been indicated in a wide variety of neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, amyotrophic lateral sclerosis, stroke and multiple sclerosis (MS. Recent evidence points to the permeability transition pore (PTP as a key player in mitochondrial dysfunction in these diseases, in which pathologic opening leads to mitochondrial swelling, rupture, release of cytochrome c, and neuronal death. Reactive oxygen species (ROS, which are inducers of PTP opening, have been prominently implicated in the progression of many of these neurodegenerative diseases. In this context, inactivation of a mitochondria-targeted redox enzyme p66ShcA (p66 has been recently shown to prevent the neuronal cell death leading to axonal severing in the murine model of MS, experimental autoimmune encephalomyelitis (EAE. To further characterize the response of neurons lacking p66, we assessed their reaction to treatment with oxidative stressors implicated in neurodegenerative pathways. Specifically, p66-knockout (p66-KO and wild-type (WT neurons were treated with hydrogen peroxide (H2O2 and nitric oxide (NO, and assessed for cell viability and changes in mitochondrial properties, including morphology and ROS production. The results showed that p66-KO neurons had greater survival following treatment with oxidative stressors and generated less ROS when compared to WT neurons. Correspondingly, mitochondria in p66-KO neurons showed diminished morphological changes in response to these challenges. Overall, these findings highlight the importance of developing mitochondria-targeted therapeutics for neurodegenerative disorders, and emphasize p66, mitochondrial ROS, and the PTP as key targets for maintaining mitochondrial and neuronal

  10. Hard bottom substrate monitoring Horns Rev offshore wind farm. Annual status report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.; Pedersen, John

    2004-05-15

    Elsam and Eltra built the offshore demonstration wind farm at Horns Rev in the North Sea. Elsam is the owner and is responsible for the operation of the wind farm. Eltra is responsible for the connection of the wind farm to the national onshore grid. In the summer months of 2002, Elsam constructed the world's largest offshore wind farm off the Danish west coast. The wind farm is sited 14-20 km into the North Sea, west of Blaevands Huk. The first wind turbine was erected in May 2002 and the last wind turbine tower of a total of 80 was in place by August 2002. The construction work was completed with the last connecting cables sluiced down in September 2002. All the wind turbines were in production by December 2002. The expected impact of the wind farm will primarily be an alternation of habitats due to the introduction of hard bottom substrates as wind turbine towers and scour protections. A continuous development in the epifouling communities will be expected together with an introduction of new or alien species in the area. The indigenous benthic community in the area of Horns Rev can be characterised by infauna species belonging to the Goniadella-Spisula community. This community is typical of sandbanks in the North Sea area, although communities in such areas are very variable and site-specific. Character species used as indicators for environmental changes in the Horns Rev area are the bristle worms Goniadella bobretzkii, Ophelia borealis, Psione remota and Orbinia sertulata and the mussels Goodallia triangularis and Spisula solida. In connection with the implementation of the monitoring programme concerning the ecological impact of the introduction of hard substrate related to the Horns Rev Wind Farm, surveys on hard bottom substrate was conducted in March 2003 and in September 2003. This report describes the first year results of surveys on hard substrate after the completion of the offshore wind farm at Horns Rev. (au)

  11. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture

    Directory of Open Access Journals (Sweden)

    Troy Michael Herter

    2015-04-01

    Full Text Available Primary motor cortex (M1 and red nucleus (RN are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49 and M1 (n = 109 of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms changes of neural discharges in many RN (28 of 49, 57% and M1 (43 of 109, 39% neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  12. Real-time characterization of the neuronal response to osmotic shock by digital holographic microscopy

    Science.gov (United States)

    Gomariz, Maria; Garcia, Isabel; Soto-Sánchez, Cristina; Martínez-Navarrete, Gema; Fernández, Eduardo; Fimia, Antonio

    2015-05-01

    Digital holographic microscopy has numerous applications in biology for visualizing living cells and 3D tissues. This technique allows for the direct visualization of biological structures avoiding invasive and phototoxic procedures such as fixation and dying processing. In this study we have characterized the morphometry changes of neurons subject to osmolarity changes. For this purpose, we have measured the variations of the amplitude and the oscillation frequency of the plasmatic membrane, as well as the volume changes of the cells before the osmotic shock. There was a relation between the neural culture ageing and its behavioral changes. "Long-term" cultures that had not previously been studied were used to analyze the behavioral changes in aged cells.

  13. Measurement of neuronal activity in a macaque monkey in response to animate images using near-infrared spectroscopy (NIRS

    Directory of Open Access Journals (Sweden)

    Masumi Wakita

    2010-06-01

    Full Text Available Near-infrared spectroscopy (NIRS has been used extensively for functional neuroimaging over the past decade, in part because it is considered a powerful tool for investigating brain function in human infants and young children, for whom other neuroimaging techniques are not suitable. In particular, several studies have measured hemodynamic responses in the occipital region in infants upon exposure to visual stimuli. In the present study, we used a multi-channel NIRS to measure neuronal activity in a macaque monkey who was trained to watch videos showing various circus animals performing acrobatic activities without fixing the head position of the monkey. Cortical activity from the occipital region was measured first by placing a probe comprising a 3x5 array of emitters and detectors (2 x 4 cm on the area (area 17, and the robustness and stability of the results were confirmed across sessions. Cortical responses were then measured from the dorsofrontal region. The oxygenated hemoglobin signals increased in area 9 and decreased in area 8b in response to viewing the videos. The results suggest that these regions are involved in cognitive processing of visually presented stimuli. The monkey showed positive responsiveness to the stimuli from the affective standpoint, but its attentional response to them was an inhibitory one.

  14. The inhibitory effect of granisetron on ventrolateral medulla neuron responses to colorectal distension in rats.

    Science.gov (United States)

    Panteleev, Sergey S; Martseva, Alexandra А; Lyubashina, Olga А

    2015-02-15

    Irritable bowel syndrome (IBS) is one of the most widespread functional gastrointestinal disorders characterized by abdominal pain. A key pathophysiological mechanism of abdominal pain is associated with disturbances of serotonergic transmission in feedback control loops of endogenous pain modulation in which the ventrolateral medulla (VLM) plays an important role. The receptors to serotonin (5-HT), and particularly the serotonin 3 (5-HT3) receptors have been extensively used as a potential target for abdominal pain treatment of IBS patients due to antinociceptive features of the 5-HT3 receptor antagonists. The precise mechanisms underlying the antinociceptive action of these antagonists remain unclear. The main objective of our study was to evaluate the involvement of the 5-HT3 receptors in abdominal pain transmission within the VLM. Experiments were carried out on urethane-anaesthetized rats using the animal model of abdominal pain. Noxious colorectal distension (CRD) with a pressure of 80mmHg induced a significant increase in VLM neuron-evoked activity and depressor reactions (171.1±12.7% and 64±1.8% to baseline, accordingly). Selective blockade of the 5-HT3 receptors with granisetron at doses of 1.0 or 2.0mg/kg (i.v) resulted in long-lasting (90min) dose-dependent inhibition of VLM neuron-evoked activity and depressor reactions. When brainstem dorsal surface applications of granisetron (10 or 20µM) were used, the changes were more pronounced. These results suggest involvement of the 5-HT3 receptors in abdominal pain transmission within the VLM, which will be discussed in relation to the central antinociceptive effect of granisetron. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of exposure to simulated microgravity on neuronal catecholamine release and blood pressure responses to norepinephrine and angiotensin

    Science.gov (United States)

    Convertino, V. A.; Ludwig, D. A.; Gray, B. D.; Vernikos, J.

    1998-01-01

    We tested the hypothesis that exposure to microgravity reduces the neuronal release of catecholamines and blood pressure responses to norepinephrine and angiotensin. Eight men underwent 30 days of 6 degrees head-down tilt (HDT) bedrest to simulate exposure to microgravity. Plasma norepinephrine and mean arterial blood pressure (MAP) were measured before and after a cold pressor test (CPT) and graded norepinephrine infusion (8, 16 and 32 ng/kg/min) on day 6 of a baseline control period (C6) and on days 14 and 27 of HDT. MAP and plasma angiotensin II (Ang-II) were measured during graded Ang-II infusion (1, 2 and 4 ng/kg/min) on C8 and days 16 and 29 of HDT. Baseline total circulating norepinephrine was reduced from 1017ng during the baseline control period to 610 ng at day 14 and 673ng at day 27 of HDT, confirming a hypoadrenergic state. An elevation of norepinephrine (+178 ng) to the CPT during the baseline control period was eliminated by HDT days 14 and 27. During norepinephrine infusion, similar elevations in plasma norepinephrine (7.7 pg/ml/ng/kg/min) caused similar elevations in MAP (0.12 mmHg/ng/kg/min) across all test days. Ang-II infusion produced higher levels of plasma Ang-II during HDT (47.3 pg/ml) than during baseline control (35.5 pg/ml), while producing similar corresponding elevations in blood pressure. While vascular responsiveness to norepinephrine appears unaffected, impaired neuronal release of norepinephrine and reduced vascular responsiveness to Ang-II might contribute to the lessened capacity to vasoconstrict after spaceflight. The time course of alterations indicates effects that occur within two weeks of exposure.

  16. Differential responses to ω-agatoxin IVA in murine frontal cortex and spinal cord derived neuronal networks.

    Science.gov (United States)

    Knaack, Gretchen L; Charkhkar, Hamid; Hamilton, Franz W; Peixoto, Nathalia; O'Shaughnessy, Thomas J; Pancrazio, Joseph J

    2013-07-01

    ω-Agatoxin-IVA is a well known P/Q-type Ca(2+) channel blocker and has been shown to affect presynaptic Ca(2+) currents as well postsynaptic potentials. P/Q-type voltage gated Ca(2+) channels play a vital role in presynaptic neurotransmitter release and thus play a role in action potential generation. Monitoring spontaneous activity of neuronal networks on microelectrode arrays (MEAs) provides an important tool for examining this neurotoxin. Changes in extracellular action potentials are readily observed and are dependent on synaptic function. Given the efficacy of murine frontal cortex and spinal cord networks to detect neuroactive substances, we investigated the effects of ω-agatoxin on spontaneous action potential firing within these networks. We found that networks derived from spinal cord are more sensitive to the toxin than those from frontal cortex; a concentration of only 10nM produced statistically significant effects on activity from spinal cord networks whereas 50 nM was required to alter activity in frontal cortex networks. Furthermore, the effects of the toxin on frontal cortex are more complex as unit specific responses were observed. These manifested as either a decrease or increase in action potential firing rate which could be statistically separated as unique clusters. Administration of bicuculline, a GABAA inhibitor, isolated a single response to ω-agatoxin, which was characterized by a reduction in network activity. These data support the notion that the two clusters detected with ω-agatoxin exposure represent differential responses from excitatory and inhibitory neuronal populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Planar Rotary Motor Using Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Chang, Zensheu; Geiyer, Daniel; Allen, Phillip; Ostlund, Patrick; Bar-Cohen, Yoseph

    2011-01-01

    One of the first piezoelectric motor designs with significant rotational speeds was outlined by Barth. This device used extensional piezoelectric elements to produce a time varying force at a distance r from the center of a centrally supported disk. These extensional actuators produced micro-steps at a high frequency with the end result being macroscopic rotation of the disk and high torque. The rotation direction is controlled by the choice of the actuators and the direction of the extension about the rotor center. A recent advancement in producing pre-stressed power ultrasonic horns using flexures allows for the development of high torque ultrasonic motors based on the Barth's idea that can be fabricated in a 2D plate or in more complicated 3D structures. In addition to the pre-stress flexures the design also allows for the use of flexures to produce the rotor/horn normal force. The torque can be controlled by the number of actuators in the plane and the amplitude of the normal force. This paper will present analytical and experimental results obtained from testing prototype planar motors.

  18. Wave propagation inside the Agbo horn | Nwachukwu | Nigerian ...

    African Journals Online (AJOL)

    ... comparable to that of modern horns and other musical instruments in emitting harmonious vibrations of even and odd harmonics when excited. This investigation has further shown that the “agbo” horns can be used for fourier analysis and amplitude modulation. They also have characteristics similar to violin, piano, oboe, ...

  19. Rudimentary horn pregnancy: Pre-rupture diagnosis and management

    African Journals Online (AJOL)

    Rudimentary horn pregnancy is a rare obstetric entity and the diagnosis and management may pose some problems especially in a low-resource center. We report our experience in diagnosing and managing a case of fetal death in a rudimentary horn.

  20. Electron wave collimation by conical horns : computer simulation

    NARCIS (Netherlands)

    Michielsen, K.; de Raedt, H.

    1991-01-01

    Results are presented of extensive numerical simulations of electron wave packets transmitted by horns. A detailed quantitative analysis is given of the collimation of the electron wave by horn-like devices. It is demonstrated that the electron wave collimation effect cannot be described in terms of

  1. Bioprospecting for podophyllotoxin in the Big Horn Mountains, Wyoming

    Science.gov (United States)

    The objective of this study was to evaluate variations in podophyllotoxin concentrations in Juniperus species found in the Big Horn Mountains in Wyoming. It was found that Juniperus species in the Big Horn Mountains included three species; J. communis L. (common juniper), J. horizontalis Moench. (c...

  2. Occupational cow horn eye injuries in Ibadan, Nigeria | Ibrahim ...

    African Journals Online (AJOL)

    This case series aims to describe the clinical features, management, and outcome of occupational eye injuries caused by cow horns and to recommend possible preventive measures. A review of patients with cow horn inflicted eye injuries seen at the University College Hospital, Ibadan between January 2006, and ...

  3. Toward a Regional Security Architecture for the Horn of Africa ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Toward a Regional Security Architecture for the Horn of Africa - Phase II. The Horn of Africa region has endured decades of destruction and human suffering due to long and interrelated wars. Moreover, conflict in one country tends to affect its neighbours, mainly through the flow of refugees and weapons. Building on work ...

  4. The natural horn as an efficient sound radiating system ...

    African Journals Online (AJOL)

    Results obtained showed that the locally made horn are efficient sound radiating systems and are therefore excellent for sound production in local musical renditions. These findings, in addition to the portability and low cost of the horns qualify them to be highly recommended for use in music making and for other purposes ...

  5. Cryptographic protocol verification using tractable classes of horn clauses

    DEFF Research Database (Denmark)

    Seidl, Helmut; Neeraj Verma, Kumar

    2007-01-01

    We consider secrecy problems for cryptographic protocols modeled using Horn clauses and present general classes of Horn clauses which can be efficiently decided. Besides simplifying the methods for the class of flat and onevariable clauses introduced for modeling of protocols with single blind...

  6. Contraction core for horn belief change: preliminary report

    CSIR Research Space (South Africa)

    Booth, R

    2010-05-01

    Full Text Available In this paper the authors continue recent investigations into belief change for Horn logic. The main contribution is a result which shows that the construction method for Horn contraction for belief sets based on infraremainder sets, as recently...

  7. Prefrontal Single-Neuron Responses after Changes in Task Contingencies during Trace Eyeblink Conditioning in Rabbits.

    Science.gov (United States)

    Siegel, Jennifer J

    2016-01-01

    A number of studies indicate that the medial prefrontal cortex (mPFC) plays a role in mediating the expression of behavioral responses during tasks that require flexible changes in behavior. During trace eyeblink conditioning, evidence suggests that the mPFC provides the cerebellum with a persistent input to bridge the temporal gap between conditioned and unconditioned stimuli. Therefore, the mPFC is in a position to directly mediate the expression of trace conditioned responses. However, it is unknown whether persistent neural responses are associated with the flexible expression of behavior when task contingencies are changed during trace eyeblink conditioning. To investigate this, single-unit activity was recorded in the mPFC of rabbits during extinction and reacquisition of trace eyeblink conditioning, and during training to a different conditional stimulus. Persistent responses remained unchanged after full extinction, and also did not change during reacquisition training. During training to a different tone, however, the generalization of persistent responses to the new stimulus was associated with an animal's performance-when persistent responses generalized to the new tone, performance was high (>50% response rate). When persistent responses decreased to baseline rates, performance was poor (<50% response rate). The data suggest that persistent mPFC responses do not appear to mediate flexible changes in the expression of the original learning, but do appear to play a role in the generalization of that learning when the task is modified.

  8. Reflectance of acoustic horns and solution of the inverse problem

    Science.gov (United States)

    Rasetshwane, Daniel M.; Neely, Stephen T.; Allen, Jont B.; Shera, Christopher A.

    2012-01-01

    A method is described for solving the inverse problem of determining the profile of an acoustic horn when time-domain reflectance (TDR) is known only at the entrance. The method involves recasting Webster’s horn equation in terms of forward and backward propagating wave variables. An essential feature of this method is a requirement that the backward propagating wave be continuous at the wave-front at all locations beyond the entrance. Derivation of the inverse solution raises questions about the meaning of causality in the context of wave propagation in non-uniform tubes. Exact reflectance expressions are presented for infinite exponential, conical and parabolic horns based on exact solutions of the horn equation. Diameter functions obtained with the inverse solution are a good match to all three horn profiles. PMID:22423684

  9. Nitric oxide synthase in the frog cerebellum: response of Purkinje neurons to unilateral eighth nerve transection.

    Science.gov (United States)

    Pisu, Maria Bonaria; Conforti, Elena; Botta, Laura; Valli, Paolo; Bernocchi, Graziella

    2002-09-01

    When vestibular damage occurs, nitric oxide synthase (NOS) expression in rat cerebellar flocculus is affected. Since compensation for postural symptoms occurs and Purkinje cells play an important role in movement coordination and motor learning, we analyzed in situ the induction of NOS in the Purkinje cell population of the cerebellum (corpus cerebelli) of frog after unilateral transection of the eighth statoacoustic nerve to gain insight into the role of NO in neural plasticity after injury. Three days after neurectomy, the early effects induced NADPH diaphorase reactivity in most of the Purkinje cells on the ipsilateral side, while on the contralateral side the highest labeling was observed at 15 days. This finding can give information on the dynamics of vestibular compensation, in which NOS involvement was investigated. At 30 days, NADPH diaphorase reactivity was present in a large number of Purkinje cells of the whole cerebellum, while at 60 days a down-regulation for NADPH diaphorase reactivity was evident. A similar trend was observed for NOS-immunoreactivity, which was still present at 60 days in a high percentage of Purkinje cells, mainly on the ipsilateral side. On the basis of cell density evaluations, it was proposed that the early induction of NOS after neurectomy was linked to the degeneration of a part of the Purkinje neurons, while the permanence of NOS labeling might be due to a neuroprotective role of NO in the restoration phase of the vestibular compensation process. Copyright 2002 Wiley-Liss, Inc.

  10. Existential neuroscience: self-esteem moderates neuronal responses to mortality-related stimuli.

    Science.gov (United States)

    Klackl, Johannes; Jonas, Eva; Kronbichler, Martin

    2014-11-01

    According to terror management theory, self-esteem serves as a buffer against existential anxiety. This proposition is well supported empirically, but its neuronal underpinnings are poorly understood. Therefore, in the present neuroimaging study, our aim was to test how self-esteem affects our neural circuitry activation when death-related material is processed. Consistent with previous findings, the bilateral insula responded less to death-related stimuli relative to similarly unpleasant, but death-unrelated sentences, an effect that might reflect a decrease in the sense of oneself in the face of existential threat. In anterior parts of the insula, this 'deactivation' effect was more pronounced for high self-esteem individuals, suggesting that the insula might be of core importance to understanding the anxiety-buffering effect of self-esteem. In addition, low self-esteem participants responded with enhanced activation to death-related over unpleasant stimuli in bilateral ventrolateral prefrontal and medial orbitofrontal cortex, suggesting that regulating death-related thoughts might be more effortful to these individuals. Together, this suggests that the anxiety-buffering effect of self-esteem might be implemented in the brain in the form of both insula-dependent awareness mechanisms and prefrontal cortex-dependent regulation mechanisms. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Mirror neuron activation of musicians and non-musicians in response to motion captured piano performances.

    Science.gov (United States)

    Hou, Jiancheng; Rajmohan, Ravi; Fang, Dan; Kashfi, Karl; Al-Khalil, Kareem; Yang, James; Westney, William; Grund, Cynthia M; O'Boyle, Michael W

    2017-07-01

    Mirror neurons (MNs) activate when performing an action and when an observer witnesses the same action performed by another individual. Functional magnetic resonance imaging (fMRI) and presentation of motion captured piano performances were used to identify differences in MN activation for musicians/non-musicians when viewing piano pieces played in a "Correct" mode (i.e., emphasis on technical correctness) or an "Enjoyment" mode (i.e., simply told to "enjoy" playing the piece). Results showed greater MN activation in a variety of brain regions for musicians, with these differences more pronounced in the "Enjoyment" mode. Our findings suggest that activation of MNs is not only initiated by the imagined action of an observed movement, but such activation is modulated by the level of musical expertise and knowledge of associated motor movements that the observer brings to the viewing situation. Enhanced MN activation in musicians may stem from imagining themselves actually playing the observed piece. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Directory of Open Access Journals (Sweden)

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  13. Parametric inference of neuronal response latency in presence of a background signal

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano; Ditlevsen, Susanne; Lansky, Petr

    2013-01-01

    will persist even when sample size is increasing. The first question is: what is the response latency to the stimulus? Answering this question becomes even more difficult if the latency is of a complex nature, for example composed of a physically implied deterministic part and a stochastic part. This scenario...... is considered here, where the response time is a sum of two components; the delay and the relative latency. Parametric estimators for the time delay and the response latency are derived. These estimators are evaluated on simulated data and their properties are discussed. Finally, we show that the mean...

  14. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin

    Science.gov (United States)

    do Carmo, Jussara M.; da Silva, Alexandre A.; Sessums, Price O.; Ebaady, Sabira H.; Pace, Benjamin R.; Rushing, John S.; Davis, Mark T.; Hall, John E.

    2014-01-01

    Objective We examined whether deficiency of Shp2 signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Design Forebrain Shp2-/- mice were generated by crossing Shp2flox/flox mice with CamKIIα-cre mice. At 22 to 24 weeks of age, mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Results Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic, and hyperphagic compared to Shp2flox/flox control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15°C and 30°C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2flox/flox mice (112±2 vs 113±1 mmHg and 595±34 vs 650±40 bpm), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. Conclusion These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation, and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin. PMID:24030516

  15. A nonrational B-spline profiled horn with high displacement amplification for ultrasonic welding.

    Science.gov (United States)

    Nguyen, Huu-Tu; Nguyen, Hai-Dang; Uan, Jun-Yen; Wang, Dung-An

    2014-12-01

    A new horn with high displacement amplification for ultrasonic welding is developed. The profile of the horn is a nonrational B-spline curve with an open uniform knot vector. The ultrasonic actuation of the horn exploits the first longitudinal displacement mode of the horn. The horn is designed by an optimization scheme and finite element analyses. Performances of the proposed horn have been evaluated by experiments. The displacement amplification of the proposed horn is 41.4% and 8.6% higher than that of the traditional catenoidal horn and a Bézier-profile horn, respectively, with the same length and end surface diameters. The developed horn has a lower displacement amplification than the nonuniform rational B-spline profiled horn but a much smoother stress distribution. The developed horn, the catenoidal horn, and the Bézier horn are fabricated and used for ultrasonic welding of lap-shear specimens. The bonding strength of the joints welded by the open uniform nonrational B-spline (OUNBS) horn is the highest among the three horns for the various welding parameters considered. The locations of the failure mode and the distribution of the voids of the specimens are investigated to explain the reason of the high bonding strength achieved by the OUNBS horn. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Roles of hypothalamic subgroup histamine and orexin neurons on behavioral responses to sleep deprivation induced by the treadmill method in adolescent rats.

    Science.gov (United States)

    Xu, Ajing; Sakurai, Eiko; Kuramasu, Atsuo; Zhang, Jian; Li, Jiyu; Okamura, Nobuyuki; Zhang, Dongying; Yoshikawa, Takeo; Watanabe, Takehiko; Yanai, Kazuhiko

    2010-01-01

    Sleep deprivation induces several negative effects on behavior, emotion, attention, and learning ability. Sleep appears to be particularly important during adolescent brain development. In the present study, we examined the effects of sleep deprivation on behavior and hypothalamic neurotransmission including histamine and orexin neurons in adolescent rats using the treadmill method. Adolescent male rats were divided into three groups: treadmill sleep-deprived, treadmill control, and cage control groups. Energy expenditure, anxiety-like behavior, and locomotor activity were examined among the three groups. Histamine concentration in the cortex and diencephalon and the number of c-Fos-positive neurons in the hypothalamus were also examined. In addition, histamine and orexin neurons in the hypothalamus were simultaneously identified using rat histidine decarboxylase and orexin-A immunohistochemistry, respectively. Both energy expenditure and anxiety-related behavior significantly increased by the experimental 3-day sleep deprivation, while exploratory locomotor activity significantly decreased. Histamine contents did not change in the cortex, but significantly decreased in the diencephalon of sleep-deprived rats. Increased expression of c-Fos-positive neurons, including subgroup histamine and orexin neurons, was observed in the hypothalamus. These findings indicate that sleep deprivation increases energy expenditure and anxiety in adolescent rats and provide evidence for the pivotal role of hypothalamus subgroup histamine and orexin neurons in the behavioral response to sleep deprivation.

  17. Detection of error related neuronal responses recorded by electrocorticography in humans during continuous movements.

    Directory of Open Access Journals (Sweden)

    Tomislav Milekovic

    Full Text Available BACKGROUND: Brain-machine interfaces (BMIs can translate the neuronal activity underlying a user's movement intention into movements of an artificial effector. In spite of continuous improvements, errors in movement decoding are still a major problem of current BMI systems. If the difference between the decoded and intended movements becomes noticeable, it may lead to an execution error. Outcome errors, where subjects fail to reach a certain movement goal, are also present during online BMI operation. Detecting such errors can be beneficial for BMI operation: (i errors can be corrected online after being detected and (ii adaptive BMI decoding algorithm can be updated to make fewer errors in the future. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that error events can be detected from human electrocorticography (ECoG during a continuous task with high precision, given a temporal tolerance of 300-400 milliseconds. We quantified the error detection accuracy and showed that, using only a small subset of 2×2 ECoG electrodes, 82% of detection information for outcome error and 74% of detection information for execution error available from all ECoG electrodes could be retained. CONCLUSIONS/SIGNIFICANCE: The error detection method presented here could be used to correct errors made during BMI operation or to adapt a BMI algorithm to make fewer errors in the future. Furthermore, our results indicate that smaller ECoG implant could be used for error detection. Reducing the size of an ECoG electrode implant used for BMI decoding and error detection could significantly reduce the medical risk of implantation.

  18. Differential responses of neuronal and spermatogenic cells to the doppel cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Kefeng Qin

    Full Text Available Although structurally and biochemically similar to the cellular prion (PrP(C, doppel (Dpl is unique in its biological functions. There are no reports about any neurodegenerative diseases induced by Dpl. However the artificial expression of Dpl in the PrP-deficient mouse brain causes ataxia with Purkinje cell death. Abundant Dpl proteins have been found in testis and depletion of the Dpl gene (Prnd causes male infertility. Therefore, we hypothesize different regulations of Prnd in the nerve and male productive systems. In this study, by electrophoretic mobility shift assays we have determined that two different sets of transcription factors are involved in regulation of the Prnd promoter in mouse neuronal N2a and GC-1 spermatogenic (spg cells, i.e., upstream stimulatory factors (USF in both cells, Brn-3 and Sp1 in GC-1 spg cells, and Sp3 in N2a cells, leading to the expression of Dpl in GC-1 spg but not in N2a cells. We have further defined that, in N2a cells, Dpl induces oxidative stress and apoptosis, which stimulate ataxia-telangiectasia mutated (ATM-modulating bindings of transcription factors, p53 and p21, to Prnp promoter, resulting the PrP(C elevation for counteraction of the Dpl cytotoxicity; in contrast, in GC-1 spg cells, phosphorylation of p21 and N-terminal truncated PrP may play roles in the control of Dpl-induced apoptosis, which may benefit the physiological function of Dpl in the male reproduction system.

  19. Differential Responses of Neuronal and Spermatogenic Cells to the Doppel Cytotoxicity

    Science.gov (United States)

    Qin, Kefeng; Ding, Tianbing; Xiao, Yi; Ma, Wenyu; Wang, Zhen; Gao, Jimin; Zhao, Lili

    2013-01-01

    Although structurally and biochemically similar to the cellular prion (PrPC), doppel (Dpl) is unique in its biological functions. There are no reports about any neurodegenerative diseases induced by Dpl. However the artificial expression of Dpl in the PrP-deficient mouse brain causes ataxia with Purkinje cell death. Abundant Dpl proteins have been found in testis and depletion of the Dpl gene (Prnd) causes male infertility. Therefore, we hypothesize different regulations of Prnd in the nerve and male productive systems. In this study, by electrophoretic mobility shift assays we have determined that two different sets of transcription factors are involved in regulation of the Prnd promoter in mouse neuronal N2a and GC-1 spermatogenic (spg) cells, i.e., upstream stimulatory factors (USF) in both cells, Brn-3 and Sp1 in GC-1 spg cells, and Sp3 in N2a cells, leading to the expression of Dpl in GC-1 spg but not in N2a cells. We have further defined that, in N2a cells, Dpl induces oxidative stress and apoptosis, which stimulate ataxia-telangiectasia mutated (ATM)-modulating bindings of transcription factors, p53 and p21, to Prnp promoter, resulting the PrPC elevation for counteraction of the Dpl cytotoxicity; in contrast, in GC-1 spg cells, phosphorylation of p21 and N-terminal truncated PrP may play roles in the control of Dpl-induced apoptosis, which may benefit the physiological function of Dpl in the male reproduction system. PMID:24339999

  20. Horn Clauses for Communicating Timed Systems

    Directory of Open Access Journals (Sweden)

    Hossein Hojjat

    2014-12-01

    Full Text Available Languages based on the theory of timed automata are a well established approach for modelling and analysing real-time systems, with many applications both in industrial and academic context. Model checking for timed automata has been studied extensively during the last two decades; however, even now industrial-grade model checkers are available only for few timed automata dialects (in particular Uppaal timed automata, exhibit limited scalability for systems with large discrete state space, or cannot handle parametrised systems. We explore the use of Horn constraints and off-the-shelf model checkers for analysis of networks of timed automata. The resulting analysis method is fully symbolic and applicable to systems with large or infinite discrete state space, and can be extended to include various language features, for instance Uppaal-style communication/broadcast channels and BIP-style interactions, and systems with infinite parallelism. Experiments demonstrate the feasibility of the method.

  1. Dynamic Behavior of the RNA Polymerase II and the Ubiquitin Proteasome System During the Neuronal DNA Damage Response to Ionizing Radiation.

    Science.gov (United States)

    Casafont, Iñigo; Palanca, Ana; Lafarga, Vanesa; Mata-Garrido, Jorge; Berciano, Maria T; Lafarga, Miguel

    2016-12-01

    Neurons are highly vulnerable to genotoxic agents. To restore genome integrity upon DNA lesions, neurons trigger a DNA damage response (DDR) that requires chromatin modifications and transcriptional silencing at DNA damage sites. To study the reorganization of the active RNA polymerase II (Pol II), which transcribes all mRNA-encoding genes, and the participation of the ubiquitin-proteasome system (UPS) in the neuronal DDR, we have used rat sensory ganglion neurons exposed to X-rays (4 Gy) ionizing radiation (IR). In control neurons, Pol II appears concentrated in numerous chromatin microfoci identified as transcription factories by the incorporation of 5'-fluorouridine into nascent RNA. Upon IR treatment, numerous IR-induced foci (IRIF), which were immunoreactive for γH2AX and 53BP1, were observed as early as 30 min post-IR; their number progressively reduced at 3 h, 1 day, and 3 days post-IR. The formation of IRIF was associated with a decrease in Pol II levels by both immunofluorescence and Western blotting. Treatment with the proteasome inhibitor bortezomib strongly increased Pol II levels in both control and irradiated neurons, suggesting that proteasome plays a proteolytic role by clearing stalled Pol II complexes at DNA damage sites, as a prelude to DNA repair. Neuronal IRIF recruited ubiquitylated proteins, including ubiquitylated histone H2A (Ub-H2A), and the catalytic proteasome 20S. Ub-H2A has been associated with transcriptional silencing at DNA damage sites. On the other hand, the participation of UPS in neuronal DDR may be essential for the ubiquitylation of Pol II and other proteasome substrates of the DNA repair machinery and their subsequent proteasome-mediated degradation.

  2. On the origin of Ammon's horn.

    Science.gov (United States)

    Iniesta, I

    2014-10-01

    Greek and Roman worship of their gods and myths go back to Ancient Egyptian times. Images engraved in Greco-Roman coinage range from references to the assassination of Caesar and legendary stories like the arrival of a snake shaped demi-god Aesculapius to save the Romans from the plague, to invocations of major deities including Apollo the physician or Ammon the protector. Depicted with the horns of a ram, Ammon was adopted by the Greeks as an epithet of Zeus and later incorporated by the Romans as Jupiter. References to the cult of Ammon appear on tetradrachms minted for Alexander The Great and on provincial Roman coins struck under Claudius. It is thrilling to hold a coin depicting Marcus Aurelius with Salus on the reverse and think that it could have been handed to Galen in payment for his services. However, it is rare to find figures other than rulers on coins and the physician of Pergamum is no exception. Inspired by the Renaissance school of Padua, French anatomists in the Enlightenment (Garengeot in 1742 and Flurant in 1752) continued reviving ancient myths and named the curve-shaped-inner portion of the temporal lobe Ammon's horn. Outstanding scholars who studied this primitive structure of the brain included Lorente de Nó and his mentor Cajal, whose portrait appeared on fifty-pesetas notes issued in 1935. As primary sources of great archaeological and artistic value, Greco-Roman coins provide information about the origins of the myths and gods of classical antiquity and continue to inspire the arts and sciences to this day. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  3. Predator versus prey: locust looming-detector neuron and behavioural responses to stimuli representing attacking bird predators.

    Science.gov (United States)

    Santer, Roger D; Rind, F Claire; Simmons, Peter J

    2012-01-01

    Many arthropods possess escape-triggering neural mechanisms that help them evade predators. These mechanisms are important neuroethological models, but they are rarely investigated using predator-like stimuli because there is often insufficient information on real predator attacks. Locusts possess uniquely identifiable visual neurons (the descending contralateral movement detectors, DCMDs) that are well-studied looming motion detectors. The DCMDs trigger 'glides' in flying locusts, which are hypothesised to be appropriate last-ditch responses to the looms of avian predators. To date it has not been possible to study glides in response to stimuli simulating bird attacks because such attacks have not been characterised. We analyse video of wild black kites attacking flying locusts, and estimate kite attack speeds of 10.8±1.4 m/s. We estimate that the loom of a kite's thorax towards a locust at these speeds should be characterised by a relatively low ratio of half size to speed (l/|v|) in the range 4-17 ms. Peak DCMD spike rate and gliding response occurrence are known to increase as l/|v| decreases for simple looming shapes. Using simulated looming discs, we investigate these trends and show that both DCMD and behavioural responses are strong to stimuli with kite-like l/|v| ratios. Adding wings to looming discs to produce a more realistic stimulus shape did not disrupt the overall relationships of DCMD and gliding occurrence to stimulus l/|v|. However, adding wings to looming discs did slightly reduce high frequency DCMD spike rates in the final stages of object approach, and slightly delay glide initiation. Looming discs with or without wings triggered glides closer to the time of collision as l/|v| declined, and relatively infrequently before collision at very low l/|v|. However, the performance of this system is in line with expectations for a last-ditch escape response.

  4. Compensatory Motor Neuron Response to Chromatolysis in the Murine hSOD1G93A Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Riancho, Javier; Ruiz-Soto, Maria; Villagrá, Nuria T.; Berciano, Jose; Berciano, Maria T.; Lafarga, Miguel

    2014-01-01

    We investigated neuronal self-defense mechanisms in a murine model of amyotrophic lateral sclerosis (ALS), the transgenic hSOD1G93A, during both the asymptomatic and symptomatic stages. This is an experimental model of endoplasmic reticulum (ER) stress with severe chromatolysis. As a compensatory response to translation inhibition, chromatolytic neurons tended to reorganize the protein synthesis machinery at the perinuclear region, preferentially at nuclear infolding domains enriched in nuclear pores. This organization could facilitate nucleo-cytoplasmic traffic of RNAs and proteins at translation sites. By electron microscopy analysis, we observed that the active euchromatin pattern and the reticulated nucleolar configuration of control motor neurons were preserved in ALS chromatolytic neurons. Moreover the 5′-fluorouridine (5′-FU) transcription assay, at the ultrastructural level, revealed high incorporation of the RNA precursor 5′-FU into nascent RNA. Immunogold particles of 5′-FU incorporation were distributed throughout the euchromatin and on the dense fibrillar component of the nucleolus in both control and ALS motor neurons. The high rate of rRNA transcription in ALS motor neurons could maintain ribosome biogenesis under conditions of severe dysfunction of proteostasis. Collectively, the perinuclear reorganization of protein synthesis machinery, the predominant euchromatin architecture, and the active nucleolar transcription could represent compensatory mechanisms in ALS motor neurons in response to the disturbance of ER proteostasis. In this scenario, epigenetic activation of chromatin and nucleolar transcription could have important therapeutic implications for neuroprotection in ALS and other neurodegenerative diseases. Although histone deacetylase inhibitors are currently used as therapeutic agents, we raise the untapped potential of the nucleolar transcription of ribosomal genes as an exciting new target for the therapy of some neurodegenerative

  5. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain

    Directory of Open Access Journals (Sweden)

    Salter Michael W

    2007-09-01

    Full Text Available Abstract Background Disinhibition of neurons in the superficial spinal dorsal horn, via microglia – neuron signaling leading to disruption of chloride homeostasis, is a potential cellular substrate for neuropathic pain. But, a central unresolved question is whether this disinhibition can transform the activity and responses of spinal nociceptive output neurons to account for the symptoms of neuropathic pain. Results Here we show that peripheral nerve injury, local spinal administration of ATP-stimulated microglia or pharmacological disruption of chloride transport change the phenotype of spinal lamina I output neurons, causing them to 1 increase the gain of nociceptive responsiveness, 2 relay innocuous mechanical input and 3 generate spontaneous bursts of activity. The changes in the electrophysiological phenotype of lamina I neurons may account for three principal components of neuropathic pain: hyperalgesia, mechanical allodynia and spontaneous pain, respectively. Conclusion The transformation of discharge activity and sensory specificity provides an aberrant signal in a primarily nociceptive ascending pathway that may serve as a basis for the symptoms of neuropathic pain.

  6. The function of Drosophila larval class IV dendritic arborization sensory neurons in the larval-pupal transition is separable from their function in mechanical nociception responses.

    Science.gov (United States)

    Brown, Hannah E; Desai, Trishna; Murphy, Allison J; Pancholi, Harshida; Schmidt, Zachary W; Swahn, Hannah; Liebl, Eric C

    2017-01-01

    The sensory and physiological inputs which govern the larval-pupal transition in Drosophila, and the neuronal circuity that integrates them, are complex. Previous work from our laboratory identified a dosage-sensitive genetic interaction between the genes encoding the Rho-GEF Trio and the zinc-finger transcription factor Sequoia that interfered with the larval-pupal transition. Specifically, we reported heterozygous mutations in sequoia (seq) dominantly exacerbated the trio mutant phenotype, and this seq-enhanced trio mutant genotype blocked the transition of third instar larvae from foragers to wanderers, a requisite behavioral transition prior to pupation. In this work, we use the GAL4-UAS system to rescue this phenotype by tissue-specific trio expression. We find that expressing trio in the class IV dendritic arborization (da) sensory neurons rescues the larval-pupal transition, demonstrating the reliance of the larval-pupal transition on the integrity of these sensory neurons. As nociceptive responses also rely on the functionality of the class IV da neurons, we test mechanical nociceptive responses in our mutant and rescued larvae and find that mechanical nociception is separable from the ability to undergo the larval-pupal transition. This demonstrates for the first time that the roles of the class IV da neurons in governing two critical larval behaviors, the larval-pupal transition and mechanical nociception, are functionally separable from each other.

  7. EST and microarray analysis of horn development in Onthophagus beetles

    Directory of Open Access Journals (Sweden)

    Tang Zuojian

    2009-10-01

    Full Text Available Abstract Background The origin of novel traits and their subsequent diversification represent central themes in evo-devo and evolutionary ecology. Here we explore the genetic and genomic basis of a class of traits that is both novel and highly diverse, in a group of organisms that is ecologically complex and experimentally tractable: horned beetles. Results We developed two high quality, normalized cDNA libraries for larval and pupal Onthophagus taurus and sequenced 3,488 ESTs that assembled into 451 contigs and 2,330 singletons. We present the annotation and a comparative analysis of the conservation of the sequences. Microarrays developed from the combined libraries were then used to contrast the transcriptome of developing primordia of head horns, prothoracic horns, and legs. Our experiments identify a first comprehensive list of candidate genes for the evolution and diversification of beetle horns. We find that developing horns and legs show many similarities as well as important differences in their transcription profiles, suggesting that the origin of horns was mediated partly, but not entirely, by the recruitment of genes involved in the formation of more traditional appendages such as legs. Furthermore, we find that horns developing from the head and prothorax differ in their transcription profiles to a degree that suggests that head and prothoracic horns are not serial homologs, but instead may have evolved independently from each other. Conclusion We have laid the foundation for a systematic analysis of the genetic basis of horned beetle development and diversification with the potential to contribute significantly to several major frontiers in evolutionary developmental biology.

  8. Genes that act downstream of sensory neurons to influence longevity, dauer formation, and pathogen responses in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Marta M Gaglia

    Full Text Available The sensory systems of multicellular organisms are designed to provide information about the environment and thus elicit appropriate changes in physiology and behavior. In the nematode Caenorhabditis elegans, sensory neurons affect the decision to arrest during development in a diapause state, the dauer larva, and modulate the lifespan of the animals in adulthood. However, the mechanisms underlying these effects are incompletely understood. Using whole-genome microarray analysis, we identified transcripts whose levels are altered by mutations in the intraflagellar transport protein daf-10, which result in impaired development and function of many sensory neurons in C. elegans. In agreement with existing genetic data, the expression of genes regulated by the transcription factor DAF-16/FOXO was affected by daf-10 mutations. In addition, we found altered expression of transcriptional targets of the DAF-12/nuclear hormone receptor in the daf-10 mutants and showed that this pathway influences specifically the dauer formation phenotype of these animals. Unexpectedly, pathogen-responsive genes were repressed in daf-10 mutant animals, and these sensory mutants exhibited altered susceptibility to and behavioral avoidance of bacterial pathogens. Moreover, we found that a solute transporter gene mct-1/2, which was induced by daf-10 mutations, was necessary and sufficient for longevity. Thus, sensory input seems to influence an extensive transcriptional network that modulates basic biological processes in C. elegans. This situation is reminiscent of the complex regulation of physiology by the mammalian hypothalamus, which also receives innervations from sensory systems, most notably the visual and olfactory systems.

  9. Greater Reward-Related Neuronal Response to Hedonic Foods in Women Compared with Men.

    Science.gov (United States)

    Legget, Kristina T; Cornier, Marc-Andre; Bessesen, Daniel H; Mohl, Brianne; Thomas, Elizabeth A; Tregellas, Jason R

    2018-02-01

    The current study aimed to identify how sex influences neurobiological responses to food cues, particularly those related to hedonic eating, and how this relates to obesity propensity, using functional magnetic resonance imaging (fMRI). Adult men and women who were either obesity resistant (OR) or obesity prone (OP) underwent fMRI while viewing visual food cues (hedonic foods, neutral foods, and nonfood objects) in both fasted and fed states. When fasted, a significant sex effect on the response to hedonic vs. neutral foods was observed, with greater responses in women than men in the nucleus accumbens (P = 0.0002) and insula (P = 0.010). Sex-based differences were not observed in the fed state. No significant group effects (OP vs. OR) or group-by-sex interactions were observed in fasted or fed states. Greater fasted responses to hedonic food cues in reward-related brain regions were observed in women compared with men, suggesting that women may be more sensitive to the reward value of hedonic foods than men when fasted. This may indicate sex-dependent neurophysiology underlying eating behaviors. © 2017 The Obesity Society.

  10. Dose-response characteristics of ketamine effect on locomotion, cognitive function and central neuronal activity

    NARCIS (Netherlands)

    Imre, G; Fokkema, DS; Den Boer, JA; Ter Horst, GJ

    2006-01-01

    The present dose-response study sought to determine the effects of subanesthetic dosages (4-16 mg/kg) of ketamine on locomotion, sensorimotor gating (PP1), working memory, as well as c-fos expression in various limbic regions implicated in the pathogenesis of schizophrenia. In addition, we examined

  11. Attenuated Response to Methamphetamine Sensitization and Deficits in Motor Learning and Memory after Selective Deletion of [beta]-Catenin in Dopamine Neurons

    Science.gov (United States)

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…

  12. Formal verification of communication protocols using quantized Horn clauses

    Science.gov (United States)

    Balu, Radhakrishnan

    2016-05-01

    The stochastic nature of quantum communication protocols naturally lends itself for expression via probabilistic logic languages. In this work we describe quantized computation using Horn clauses and base the semantics on quantum probability. Turing computable Horn clauses are very convenient to work with and the formalism can be extended to general form of first order languages. Towards this end we build a Hilbert space of H-interpretations and a corresponding non commutative von Neumann algebra of bounded linear operators. We demonstrate the expressive power of the language by casting quantum communication protocols as Horn clauses.

  13. Speed and direction response profiles of neurons in macaque MT and MST show modest constraint line tuning.

    Science.gov (United States)

    Duijnhouwer, Jacob; Noest, André J; Lankheet, Martin J M; van den Berg, Albert V; van Wezel, Richard J A

    2013-01-01

    Several models of heading detection during smooth pursuit rely on the assumption of local constraint line tuning to exist in large scale motion detection templates. A motion detector that exhibits pure constraint line tuning responds maximally to any 2D-velocity in the set of vectors that can be decomposed into the central, or classic, preferred velocity (the shortest vector that still yields the maximum response) and any vector orthogonal to that. To test this assumption, we measured the firing rates of isolated middle temporal (MT) and medial superior temporal (MST) neurons to random dot stimuli moving in a range of directions and speeds. We found that as a function of 2D velocity, the pooled responses were best fit with a 2D Gaussian profile with a factor of elongation, orthogonal to the central preferred velocity, of roughly 1.5 for MST and 1.7 for MT. This means that MT and MST cells are more sharply tuned for speed than they are for direction; and that they indeed show some level of constraint line tuning. However, we argue that the observed elongation is insufficient to achieve behavioral heading discrimination accuracy on the order of 1-2 degrees as reported before.

  14. Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia.

    Science.gov (United States)

    Tsui, Albert K Y; Marsden, Philip A; Mazer, C David; Adamson, S Lee; Henkelman, R Mark; Ho, J J David; Wilson, David F; Heximer, Scott P; Connelly, Kim A; Bolz, Steffen-Sebastian; Lidington, Darcy; El-Beheiry, Mostafa H; Dattani, Neil D; Chen, Kevin M; Hare, Gregory M T

    2011-10-18

    Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.

  15. Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension.

    Science.gov (United States)

    Howard, Mary F; Poeppel, David

    2010-11-01

    Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3-7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response.

  16. Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn

    Directory of Open Access Journals (Sweden)

    Géranton Sandrine M

    2008-09-01

    Full Text Available Abstract Background Regulation of pain states is, in part, dependent upon plastic changes in neurones within the superficial dorsal horn. There is also compelling evidence that pain states are under the control of descending projections from the brainstem. While a number of transcription factors including Methyl-CpG-binding protein 2 (MeCP2, Zif268 and Fos have been implicated in the regulation of dorsal horn neurone sensitization following injury, modulation of their activity by descending controls has not been investigated. Results Here, we describe how descending controls regulate MeCP2 phosphorylation (P-MeCP2, known to relieve transcriptional repression by MeCP2, and Zif268 and Fos expression in the rat superficial dorsal horn, after CFA injection into the hind paw. First, we report that CFA significantly increased P-MeCP2 in Lamina I and II, from 30 min post injection, with a maximum reached after 1 h. The increase in P-MeCP2 paralleled that of Zif268 and Fos, and P-MeCP2 was expressed in large sub-populations of Zif268 and Fos expressing neurones. Serotonergic depletion of the lumbar spinal cord with 5,7 di-hydroxytryptamine creatinine sulphate (5,7-DHT reduced the inflammation evoked P-MeCP2 in the superficial dorsal horn by 57%, and that of Zif268 and Fos by 37.5% and 30% respectively. Although 5,7-DHT did not change primary thermal hyperalgesia, it significantly attenuated mechanical sensitivity seen in the first 24 h after CFA. Conclusion We conclude that descending serotonergic pathways play a crucial role in regulating gene expression in the dorsal horn and mechanical sensitivity associated with an inflammatory pain state.

  17. In vitro and in vivo responses of saccular and caudal nucleus neurons in the grassfrog (Rana temporaria)

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Walkowiak, W

    1999-01-01

    We present results from in vitro and in vivo studies of response properties of neurons in the saccular and caudal nuclei in the frog. In the in vitro studies the saccular nerve of the isolated brain was stimulated with electrical pulses. In the in vivo experiments, the neurons were stimulated...... by dorso-ventral vibrations of the intact animal. We identified six response types: (1) primary-like cells with short latencies and follow repetition rates up to 100 Hz; (2) phasic cells responding only to the first pulse in a train; (3) bursting cells firing several spikes in response to any stimulation......; (4) late responders with very long latencies; (5) integrator cells showing facilitated responses, and (6) inhibitory cells inhibited by saccular nerve stimulation.The cells have comparable sensitivity and frequency characteristics to the primary fibres (BF 10-80 Hz, thresholds from 0.01 cm/s2...

  18. Developmental maturation of ionotropic glutamate receptor subunits in rat vestibular nuclear neurons responsive to vertical linear acceleration.

    Science.gov (United States)

    Lai, Suk-King; Lai, Chun-Hong; Tse, Yiu-Chung; Yung, Ken K L; Shum, Daisy K Y; Chan, Ying-Shing

    2008-12-01

    We investigated the maturation profile of subunits of ionotropic glutamate receptors in vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the vertical plane. The otolithic origin of Fos expression in these neurons was confirmed as a marker of functional activation when labyrinthectomized and/or stationary control rats contrasted by showing sporadically scattered Fos-labeled neurons in the vestibular nuclei. By double immunohistochemistry for Fos and one of the receptor subunits, otolith-related neurons that expressed either alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate or N-methyl-d-aspartate subunits were first identified in the medial vestibular nucleus, spinal vestibular nucleus and Group x by postnatal day (P)7, and in the lateral vestibular nucleus and Group y by P9. No double-labeled neurons were found in the superior vestibular nucleus. Within each vestibular subnucleus, these double-labeled neurons constituted approximately 90% of the total Fos-labeled neurons. The percentage of Fos-labeled neurons expressing the GluR1 or NR2A subunit showed developmental invariance in all subnuclei. For Fos-labeled neurons expressing the NR1 subunit, similar invariance was observed except that, in Group y, these neurons decreased from P14 onwards. For Fos-labeled neurons expressing the GluR2, GluR2/3, GluR4 or NR2B subunit, a significant decrease was found by the adult stage. In particular, those expressing the GluR4 subunit showed a two- to threefold decrease in the medial vestibular nucleus, spinal vestibular nucleus and Group y. Also, those expressing the NR2B subunit showed a twofold decrease in Group y. Taken together, the postsynaptic expression of ionotropic glutamate receptor subunits in different vestibular subnuclei suggests that glutamatergic transmission within subregions plays differential developmental roles in the coding of gravity-related vertical spatial information.

  19. Hard bottom substrate monitoring Horns Rev offshore wind farm. Annual status report. 2004

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.; Pedersen, John

    2005-05-15

    Elsam and Eltra have built the offshore demonstration wind farm at Horns Rev in the North Sea. Elsam is the owner and is responsible for the operation of the wind farm. Eltra is responsible for the connection of the wind farm to the national onshore grid. In the summer months of 2002, Elsam constructed the world's largest offshore wind farm at the Danish west coast. The wind farm is located 14-20 km into the North Sea, west of Blaevands Huk. The first wind turbine foundation was in place in March 2002 and the last mono-pile was in place in August 2002 for a total of 80. The construction work was completed with the last connecting cables sluiced down in September 2002. All the wind turbines were in production in December 2002. The expected impact from the wind farm will primarily be an alternation of habitats due to the introduction of hard bottom substrates as wind mono-piles and scour protections. A continuous development in the epifouling communities will be expected together with an introduction of new or alien species in the area. The indigenous benthic community in the area of Horn Rev can be characterised by infauna species belonging to the Goniadella-Spisula community. This community is typical of sandbanks in the North Sea area, although communities in such areas are very variable and site specific. Character species used as indicators for environmental changes in the Horns Rev area are the bristle worms Goniadella bobretzkii, Ophelia borealis, Psione remota and Orbinia sertulata and the mussels Goodallia triangularis and Spisula solida. In connection with the implementation of the monitoring programme concerning the ecological impact of the introduction of hard substrate related to the Horns Rev Wind Farm, surveys on hard bottom substrates were initialised in March 2003 with monitoring conducted in September 2003 and March and September 2004. This report describes the results from surveys on hard substrates in 2004. (au)

  20. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  1. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  2. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

    DEFF Research Database (Denmark)

    Christensen, Mark Holm; Ishibashi, Masaru; Nielsen, Michael Linnemann

    2014-01-01

    The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved...... in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7–P15), nicotine induced larger...... intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15–P34). Nicotine increased neuronal firing of cholinergic cells...

  3. Cutaneous horn and thermal keratosis in erythema AB igne

    Directory of Open Access Journals (Sweden)

    Sood Apra

    2002-01-01

    Full Text Available A 46 - year - old Kashmiri lady developed erythema ab igne on both legs. She subsequently developed multiple keratoses and a cutaneous horn in the involved skin. An uncommon association of these three clinical conditions is being presented.

  4. Genetic Deletion of Neuronal PPARγ Enhances the Emotional Response to Acute Stress and Exacerbates Anxiety: An Effect Reversed by Rescue of Amygdala PPARγ Function.

    Science.gov (United States)

    Domi, Esi; Uhrig, Stefanie; Soverchia, Laura; Spanagel, Rainer; Hansson, Anita C; Barbier, Estelle; Heilig, Markus; Ciccocioppo, Roberto; Ubaldi, Massimo

    2016-12-14

    PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone and is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes. Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety, but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγNestinCre), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (WT), but not in PPARγNestinCre knock-out (KO) mice. Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala (AMY) and the hippocampus (HIPP) of PPARγNestinCre KO mice compared with WT mice. No differences were found between WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that, in both regions, PPARγ colocalizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response and that the AMY is a key substrate for the anxiolytic effect of PPARγ. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) is a classical target for antidiabetic therapies with thiazolidinedione compounds. PPARγ agonists such as rosiglitazone and pioglitazone are in clinical use for the treatment of insulin resistance. PPARγ has recently attracted

  5. Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response

    Directory of Open Access Journals (Sweden)

    Hofmann Sandra L

    2007-11-01

    Full Text Available Abstract Background The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1, and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7–9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis. Results A total of 267 genes were significantly (approximately 2-fold up- or downregulated over the course of the disease. Immediate early genes (Arc, Cyr61, c-fos, jun-b, btg2, NR4A1 were among the first genes upregulated during the presymptomatic period whereas immune response genes dominated at later time points. Chemokine ligands and protease inhibitors were among the most transcriptionally responsive genes. Neuronal survival factors (IGF-1 and CNTF and a negative regulator of neuronal apoptosis (DAP kinase-1 were upregulated late in the course of the disease. Few genes were downregulated; these included the α2 subunit of the GABA-A receptor, a component of cortical and hippocampal neurons, and Hes5, a transcription factor i