WorldWideScience

Sample records for hormone receptor mrna

  1. Dexamethasone increases growth hormone (GH)-releasing hormone (GRH) receptor mRNA levels in cultured rat anterior pituitary cells.

    Science.gov (United States)

    Tamaki, M; Sato, M; Matsubara, S; Wada, Y; Takahara, J

    1996-06-01

    To examine the effects of glucocorticoid (GC) on growth hormone (GH)-releasing hormone (GRH) receptor gene expression, a highly-sensitive and quantitative reverse-transcribed polymerase chain reaction (RT-PCR) method was used in this study. Rat anterior pituitary cells were isolated and cultured for 4 days. The cultured cells were treated with dexamethasone for 2, 6, and 24 h. GRH receptor mRNA levels were determined by competitive RT-PCR using a recombinant RNA as the competitor. Dexamethasone significantly increased GRH receptor mRNA levels at 5 nM after 6- and 24 h-incubations, and the maximal effect was found at 25 nM. The GC receptor-specific antagonist, RU 38486 completely eliminated the dexamethasone-induced enhancement of GRH receptor mRNA levels. Dexamethasone did not alter the mRNA levels of beta-actin and prolactin at 5 nM for 24 h, whereas GH mRNA levels were significantly increased by the same treatment. The GH response to GRH was significantly enhanced by the 24-h incubation with 5 nM dexamethasone. These findings suggest that GC stimulates GRH receptor gene expression through the ligand-activated GC receptors in the rat somatotrophs. The direct effects of GC on the GRH receptor gene could explain the enhancement of GRH-induced GH secretion.

  2. Stability of Human Follicle-Stimulating Hormone Receptor mRNA in Stably Transfected Cells

    Institute of Scientific and Technical Information of China (English)

    朱长虹; 田红

    2001-01-01

    In order to assess the impact of mRNA degradation on steady state levels of follicle-stimulating hormone receptor (FSHR) mRNA and on regulation of FSHR gene expression, the stability and half-life of FSHR mRNA were determined in transfected cells expressing recombinant FSHR. Time-dependent changes in FSHR mRNA content were determined by nuclease protection-solution hybridization assay (NPA) or by qualitative reverse transcription-competitive polymerase chain reaction (RT-PCR) in cultured hFSHR-YI cells, cell lines stably transfected with a human FSHR cDNA. FSHR mRNA content remained constant during 8 h control incubations of hFSHR-Y1 cells (NPA, 2.9±0.3 μg/mg RNA; RT-PCR, 2.7±0.3 μg/mg RNA). Actinomycin D (ActD, 5 μg/ml) inhibited mRNA synthesis, as assessed by incorporation of [3 H]uridine into total RNA, by 90 % within 1 h in hFSHR-Y1 cells. No effect of ActD on cellular morphology or viability was observed. ActD caused a time-dependent decrease in FSHR mRNA content in hFSHR-Y1 cell lines with a lag time of 1 h. There were no significant differences in the rate of FSHR mRNA degradation between the two methods of mRNA quantification. The half-life of hFSHR mRNA was 3.6±0.2 h by NPA and 3.1±0.1 h by RT-PCR. The results indicated that degradation of mRNA was an important process in maintenance of steady state expression of the FSHR gene in cells stably expressing recombinant receptor.

  3. Expression of growth hormone receptor and its mRNA in hepatic cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Wang; Shuang Chen; Jie Wang; Qing-Jia Ou; Chao Liu; Shu-Sen Zheng; Mei-Hai Deng; Xiao-Ping Liu

    2003-01-01

    AIM: To investigate the expression of growth hormone receptor (GHR) and mRNA of GHR in cirrhotic livers of rats with the intension to find the basis for application of recombinant human growth hormone (rhGH) to patients with liver cirrhosis.METHODS: Hepatic cirrhosis was induced in SpragueDawley rats by administration of thioacetamide intraperitoneally for 9-12 weeks. Collagenase Ⅳ was perfused in situ for isolation of hepatocytes. The expression of GHR and its mRNA in cirrhotic livers was studied with radio-ligand binding assay, RT-PCR and digital image analysis.RESULTS: One class of specific growth hormone-binding site, GHR, was detected in hepatocytes and hepatic tissue of cirrhotic livers. The binding capacity of GHR (RT, fmol/mg protein) in rat cirrhotic liver tissue (30.8±1.9) was significantly lower than that in normal control (74.9±3.9) at the time point of the ninth week after initiation of induction of cirrhosis (n=10, P<0.05), and it decreased gradually along with the accumulation of collagen in the process of formation and development of liver cirrhosis (P<0.05). The number of binding sites (×10 4/cell) of GHR on rat cirrhotic hepatocytes (0.86±0.16) was significantly lower than that (1.28±0.24)in control (n= 10, P<0.05). The binding affinity of GHR among liver tissue, hepatocytes of various groups had no significant difference (P>0.05). The expression of GHR mRNA (riOD,pixel) in rat cirrhotic hepatic tissues (23.3±3.1) was also significantly lower than that (29.3±3.4) in normal control (n=10, P<0.05).CONCLUSION: The growth hormone receptor was expressed in a reduced level in liver tissue of cirrhotic rats,and lesser expression of growth hormone receptors was found in a later stage of cirrhosis. The reduced expression of growth hormone receptor was partly due to its decreased expression on cirrhotic hepatocytes and the reduced expression of its mRNA in cirrhotic liver tissue.

  4. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  5. Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1

    Directory of Open Access Journals (Sweden)

    Hwa Young Ahn

    2015-12-01

    Full Text Available BackgroundExpression of hepatic cholesterol 7α-hydroxylase (CYP7A1 is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP. In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1.MethodsWe injected thyroid hormone (triiodothyronine, T3 to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR. Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA were also performed using human hepatoma cell lineResultsInitial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor β/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding.ConclusionWe found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1.

  6. Hormonal regulation of vasotocin receptor mRNA in a seasonally breeding songbird.

    Science.gov (United States)

    Grozhik, Anya V; Horoszko, Christopher P; Horton, Brent M; Hu, Yuchen; Voisin, Dene A; Maney, Donna L

    2014-03-01

    Behaviors associated with breeding are seasonally modulated in a variety of species. These changes in behavior are mediated by sex steroids, levels of which likewise vary with season. The effects of androgens on behaviors associated with breeding may in turn be partly mediated by the nonapeptides vasopressin (VP) and oxytocin (OT) in mammals, and vasotocin (VT) in birds. The effects of testosterone (T) on production of these neuropeptides have been well-studied; however, the regulation of VT receptors by T is not well understood. In this study, we investigated steroid-dependent regulation of VT receptor (VTR) mRNA in a seasonally breeding songbird, the white-throated sparrow (Zonotrichia albicollis). We focused on VTR subtypes that have been most strongly implicated in social behavior: V1a and oxytocin-like receptor (OTR). Using in situ hybridization, we show that T-treatment of non-breeding males altered V1a and OTR mRNA expression in several regions associated with seasonal reproductive behaviors. For example, T-treatment increased V1a mRNA expression in the medial preoptic area, bed nucleus of the stria terminalis, and ventromedial hypothalamus. T-treatment also affected both V1a and OTR mRNA expression in nuclei of the song system; some of these effects depended on the presence or absence of a chromosomal rearrangement that affects singing behavior, plasma T, and VT immunolabeling in this species. Overall, our results strengthen evidence that VT helps mediate the behavioral effects of T in songbirds, and suggest that the chromosomal rearrangement in this species may affect the sensitivity of the VT system to seasonal changes in T.

  7. Mixture effects of levonorgestrel and ethinylestradiol: estrogenic biomarkers and hormone receptor mRNA expression during sexual programming.

    Science.gov (United States)

    Säfholm, Moa; Jansson, Erika; Fick, Jerker; Berg, Cecilia

    2015-04-01

    Synthetic progesterone (progestins) and estrogens are widely used pharmaceuticals. Given that their simultaneous unintentional exposure occurs in wildlife and also in human infants, data on mixture effects of combined exposures to these hormones during development is needed. Using the Xenopus (Silurana) tropicalis test system we investigated mixture effects of levonorgestrel (LNG) and ethinylestradiol (EE2) on hormone sensitive endpoints. After larval exposure to LNG (0.1nM), or EE2 (0.1nM) singly, or in combination with LNG (0.01, 0.1, 1.0nM), the gonadal sex ratio was determined histologically and hepatic mRNA levels of genes encoding vitellogenin (vtg beta1) and the estrogen (esr1, esr2), progesterone (ipgr) and androgen (ar) receptors were quantified using quantitative PCR. All EE2-exposed groups showed female-biased sex ratios and increased vtg beta1 mRNA levels compared with the controls. Compared with the EE2-alone group (positive control) there were no significant alterations in vtg beta1 levels or in sex ratios in the co-exposure groups. Exposure to LNG-alone caused an increase in ar mRNA levels in females, but not in males, compared to the controls and the co-exposed groups, indicating that co-exposure to EE2 counteracted the LNG-induced ar levels. No treatment related impacts on the mRNA expression of esr1, esr2, and ipgr in female tadpoles were found, suggesting that these endpoints are insensitive to long-term exposure to estrogen or progestin. Due to the EE2-induced female-biased sex ratios, the mRNA expression data for the low number of males in the EE2-exposed groups were not statistically analyzed. In conclusion, our results suggest that induced vtg expression is a robust biomarker for estrogenic activity in exposure scenarios involving both estrogens and progestins. Developmental exposure to LNG caused an induction of hepatic ar mRNA expression that was antagonized by combined exposure to EE2 and LNG. To our knowledge this is the first study to

  8. Effect of recombinant growth hormone on expression of growth hormone receptor, insulin-like growth factor mRNA and serum level of leptin in growing pigs

    Institute of Scientific and Technical Information of China (English)

    XU; Qingfu; (胥清富); ZHAO; Zhihui; (赵志辉); NI; Yingdong; (倪迎冬); ZHAO; Ruqian; (赵茹茜); CHEN; Jie; (陈杰)

    2003-01-01

    Sixteen Large White × Landrace castrated male pigs were allotted into treatment and control group. The treatment group was injected intramuscularly with recombinant porcine growth hormone (rpGH, 4 mg@d-1) and the control group with vehicle for 28 days. Animals were slaughtered 4 h after final injection for liver, longissimus dorsi (LD) muscle and blood sampling. Serum concentration of insulin-like growth factor 1 (IGF-I) and leptin were determined by RIA. The total RNA was extracted from tissues to measure the abundance of growth hormone receptor (GHR), IGF-I mRNA by RT-PCR with 18S rRNA internal standard. Results showed that rpGH enhanced the average daily weight gain by 26.1% (P 0.05) and IGF-I mRNA (P > 0.05) in LD between GH treated and control group was found. These results suggest that rpGH can up-regulate hepatic GHR and IGF-I gene expression and improve animal growth. However the effect of rpGH on GHR and IGF-I gene expression are tissue-specific.

  9. Sequence-specific binding of a hormonally regulated mRNA binding protein to cytidine-rich sequences in the lutropin receptor open reading frame.

    Science.gov (United States)

    Kash, J C; Menon, K M

    1999-12-21

    In previous studies, a lutropin receptor mRNA binding protein implicated in the hormonal regulation of lutropin receptor mRNA stability was identified. This protein, termed LRBP-1, was shown by RNA gel electrophoretic mobility shift assay to specifically interact with lutropin receptor RNA sequences. The present studies have examined the specificity of lutropin receptor mRNA recognition by LRBP-1 and mapped the contact site by RNA footprinting and by site-directed mutagenesis. LRBP-1 was partially purified by cation-exchange chromatography, and the mRNA binding properties of the partially purified LRBP-1 were examined by RNA gel electrophoretic mobility shift assay and hydroxyl-radical RNA footprinting. These data showed that the LRBP-1 binding site is located between nucleotides 203 and 220 of the receptor open reading frame, and consists of the bipartite polypyrimidine sequence 5'-UCUC-X(7)-UCUCCCU-3'. Competition RNA gel electrophoretic mobility shift assays demonstrated that homoribopolymers of poly(rC) were effective RNA binding competitors, while poly(rA), poly(rG), and poly(rU) showed no effect. Mutagenesis of the cytidine residues contained within the LRBP-1 binding site demonstrated that all the cytidines in the bipartite sequence contribute to LRBP-1 binding specificity. Additionally, RNA gel electrophoretic mobility supershift analysis showed that LRBP-1 was not recognized by antibodies against two well-characterized poly(rC) RNA binding proteins, alphaCP-1 and alphaCP-2, implicated in the regulation of RNA stability of alpha-globin and tyrosine hydroxylase mRNAs. In summary, we show that partially purified LRBP-1 binds to a polypyrimidine sequence within nucleotides 203 and 220 of lutropin receptor mRNA with a high degree of specificity which is indicative of its role in posttranscriptional control of lutropin receptor expression.

  10. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator

    Science.gov (United States)

    Moore, Brandon C.; Forouhar, Sara; Kohno, Satomi; Botteri, Nicole L.; Hamlin, Heather J.; Guillette, Louis J.

    2011-01-01

    Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses. PMID:22154572

  11. Cloning of the growth hormone receptor and its muscle-specific mRNA expression in black Muscovy duck (Cairina moschata).

    Science.gov (United States)

    Ji, W; Sun, G; Duan, X; Dong, B; Bian, Y

    2016-04-01

    The cDNA sequence of the growth hormone receptor (GHR) from the black Muscovy duck was obtained and compared to the mRNA expression of growth hormone (GH) in the breast and leg muscles during 2-13 weeks of age using quantitative RT-PCR. The cDNA sequence of the Muscovy duck GHR gene is 1903 bp in length, with an 1830 bp coding region that encodes 609 amino acids. It exhibits > 92.9% homology with the poultry GHR cDNA and amino acid sequences. Overall, GHR mRNA expression was the highest at 2 weeks and the lowest at 13 weeks of age, exhibiting different profiles in different muscles. In the breast muscles, the GHR mRNA level declined sharply at 2-4 weeks, maintained at a plateau at 4-10 weeks and decreased slightly at 10-13 weeks. In the leg muscles, a gradual and slow decrease was observed during the whole period of 2-13 weeks. Robust extra-pituitary GH mRNA expression was detected in the muscles and the expression profile was highly correlated with that of GHR mRNA, in contrast to the inverse correlation between the pituitary GH and tissue GHR levels shown previously. These data suggest that the locally synthesised GH in the muscles, rather than the pituitary GH, is more closely associated with GHR and may be more critical for the regulation of muscle growth and contribute to the tissue-specific effects of GH.

  12. Effects of cysteamine on mRNA levels of growth hormone and its receptors and growth in orange-spotted grouper (Epinephelus coioides).

    Science.gov (United States)

    Li, Yun; Liu, Xiaochun; Zhang, Yong; Ma, Xilan; Lin, Haoran

    2013-06-01

    Effects of cysteamine (CS) on growth hormone (GH) mRNA, two types of growth hormone receptor (GHR) mRNAs and growth rate in orange-spotted grouper (Epinephelus coioides) were investigated. CS could cause a modification in the structure of somatostatin, which is the most important neuroendocrine inhibitor of basal and stimulated growth hormone synthesis and release, and renders it nonimmunoreactive probably through interaction with the disulfide bonds. In the present study, cysteamine hydrochloride (CSH) enhanced the level of pituitary GH mRNA in a dose-dependent manner through attenuating or deleting the inhibiting action of somatostatin on GH mRNA expression. CSH at relatively low doses (from 1 to 3 mg/g diet) enhanced the levels of two types of GHR mRNAs in dose-dependent manner, whereas the stimulation induced by CSH declined from the peak at higher dose of CSH (4 mg/g diet). It might be attributed to the variation in GH-induced up-regulation of GHRs at different doses of GH. Feeding of CSH could induce remarkable enhancement of growth rate in orange-spotted grouper. In addition, the stimulatory effect of CSH could be potentiated by the additive effect of luteinizing hormone-releasing hormone analog (LHRH-A). Compared with individual treatments, combined feeding of CSH and LHRH-A caused more efficient elevation of growth rate after 8 weeks of feeding. CSH and LHRH-A individually and in combination remarkably increased the levels of GH and GHR mRNAs compared with the control. The combined administration of CSH and LHRH-A in diet was most effective to enhance the level of GH and GHR1 mRNA. The morphological characteristics of the experimental fish were evaluated. Compared with control, the ratios of muscle RNA/DNA, condition factors (CF) and feed conversion efficiency (FCE) were significantly enhanced in the treated groups, while the highest values were observed in the combined treatment. All the results suggested that CSH (1-3 mg/g diet) is an effective

  13. Ovarian hormone modulates 5-hydroxytryptamine 3 receptors mRNA expression in rat colon with restraint stress-induced bowel dysfunction

    Institute of Scientific and Technical Information of China (English)

    Tian-Jin Li; Bao-Ping Yu; Wei-Guo Dong; He-Sheng Luo; Long Xu; Mu-Qi Li

    2004-01-01

    AIM: To examine the effects of ovarian hormone on the expression of 5-hydroxytryptamine 3 receptors (5-HT3R)in rat colon of restraint stress-induced bowel dysfunction.METHODS: Twenty-four female Sprague-Dawley rats were randomly dMded into three groups of 8 each: sham operation,ovariectomy (OVX) and ovariectomy with estrogen (E2) andprogesterone (P) replacement therapy (OVX+E2+P). The rats were subjected to 1-h restraint stress 4 wk after operation. The changes of defecation were monitored by collection of fecal pellets. The gonadal steroids were measured in duplicate by radioimmunoassay (RTA). The expression of 5-HT3R mRNA in the colon was studied by RT-PCR. RESULTS: Compared with sham group and OVX+E2+P group, OVX group showed increase in fecal pellets and decrease in the time of vitreous pellets excretion (P<0.01).Serum levels of E2 and P were suppressed in OVX group and restored following treatment with ovarian steroids (P<0.01), and the levels of 5-HT3R mRNA in the colon of ovariectomized rats were significantly increased, the expression of 5-HT3R mRNA was significantly decreased in hormone replacement therapy group (P<0.01).CONCLUSION: Ovarian hormone plays a role in the regulation of 5-HT3R expressions in restraint stress-induced bowel dysfunction of rats. The interactions between ovarian steroids and gastrointestinal tract may have major pathophysiologicalimplications in 5-HT-related disorders, such as irritable bowel syndrome (IBS).

  14. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus.

    Science.gov (United States)

    Mahoney, Megan M; Padmanabhan, Vasantha

    2010-09-01

    Bisphenol-A (BPA) and methoxychlor (MXC), two endocrine-disrupting chemicals (EDCs) with estrogenic and antiandrogenic effects, disrupt the reproductive system. BPA has profound effects on luteinizing hormone (LH) surge amplitude, and MXC has profound effects on on LH surge timing in sheep. The neural mechanisms involved in the differential disruption of the LH surge by these two EDCs remain to be elucidated. We tested the hypothesis that the differential effects of BPA and MXC on LH surge system involved changes in hypothalamic gonadotropin-releasing hormone (GnRH) and estrogen receptors (ESR), ESR1 and ESR2, mRNA expression. Pregnant sheep were given daily injections of cottonseed oil (controls), MXC, or BPA (5mg/kg/day) from day 30 to 90 of gestation (term 147d). Offspring from these animals were euthanized as adults, during the late follicular phase following synchronization of estrus with prostaglandin F(2alpha), just before the expected onset of preovulatory LH surge and changes in mRNA expression of hypothalamic GnRH, ESR1, and ESR2 quantified following in situ hybridization. GnRH mRNA expression was significantly lower in both groups of EDC-treated females compared to controls. ESR1 expression was increased in prenatal BPA- but not MXC-treated females in medial preoptic area relative to controls. In contrast, ESR2 expression was reduced in the medial preoptic area of both EDC-treated groups. Differences in expression of ESR1/ESR2 receptors may contribute to the differential effects of BPA and MXC on the LH surge system. These findings provide support that prenatal exposure to EDCs alters the neural developmental trajectory leading to long-term reproductive consequences in the adult female.

  15. Calciotrophic hormones and hyperglycemia modulate vitamin D receptor and 25 hydroxyy vitamin D 1-α hydroxylase mRNA expression in human vascular smooth muscle cells.

    Science.gov (United States)

    Somjen, D; Knoll, E; Sharon, O; Many, A; Stern, N

    2015-04-01

    Estrogen receptors (ERα and ERβ), the vitamin D receptor (VDR) and 25 hydroxyy vitamin D 1-α hydroxylase (1OHase) mRNA are expressed in vascular smooth muscle cells (VSMC). In these cells estrogenic hormones modulate cell proliferation as measured by DNA synthesis (DNA). In the present study we determined whether or not the calciotrophic hormones PTH 1-34 (PTH) and less- calcemic vitamin D analog QW as well as hyperglycemia can regulate DNA synthesis and CK. E2 had a bimodal effect on VSMC DNA synthesis, such that proliferation was inhibited at 30nM but stimulated at 0.3nM. PTH at 50nM increased, whereas QW at 10nM inhibited DNA synthesis. Hyperglycemia inhibited the effects on high E2, QW and PTH on DNA only. Both QW and PTH increased ERα mRNA expression, but only PTH increased ERβ expression. Likewise, both PTH and QW stimulated VDR and 1OHase expression and activity. ERβ, VDR and 1OHase expression and activity were inhibited by hyperglycemia, but ERα expression was unaffected by hyperglycemia. In conclusion, calcitrophic hormones modify VSMC growth and concomitantly affect ER expression in these cells as well as the endogenous VSMC vitamin D system elements, including VDR and 1OHase. Some of the later changes may likely participate in growth effects. Of importance in the observation is that several regulatory effects are deranged in the presence of hyperglycemia, particularly the PTH- and vitamin D-dependent up regulation of VDR and 1OHase in these cells. The implications of these effects require further studies. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  16. Alternative splicing of follicle-stimulating hormone receptor pre-mRNA: cloning and characterization of two alternatively spliced mRNA transcripts

    NARCIS (Netherlands)

    R. Kraaij (Robert); M. Verhoef-Post (Miriam); J.A. Grootegoed (Anton); A.P.N. Themmen (Axel)

    1998-01-01

    textabstractGlycoprotein hormone receptors contain a large extracellular domain that is encoded by multiple exons, facilitating the possibility of expressing alternatively spliced transcripts. We have cloned two new splice variants of the rat follicle-stimulating hormon

  17. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal.

    Science.gov (United States)

    Martinez, Bridget; Soñanez-Organis, José G; Vázquez-Medina, José Pablo; Viscarra, Jose A; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2013-12-15

    Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.

  18. Effects of endocannabinoid 1 and 2 (CB1; CB2) receptor agonists on luteal weight, circulating progesterone, luteal mRNA for luteinizing hormone (LH) receptors, and luteal unoccupied and occupied receptors for LH in vivo in ewes.

    Science.gov (United States)

    Tsutahara, Nicole M; Weems, Yoshie S; Arreguin-Arevalo, J Alejandro; Nett, Torrance M; LaPorte, Magen E; Uchida, Janelle; Pang, Janelle; McBride, Tonya; Randel, Ronald D; Weems, Charles W

    2011-02-01

    Thirty to forty percent of ruminant pregnancies are lost during the first third of gestation due to inadequate progesterone secretion. During the estrous cycle, luteinizing hormone (LH) regulates progesterone secretion by small luteal cells (SLC). Loss of luteal progesterone secretion during the estrous cycle is increased via uterine secretion of prostaglandin F(2α) (PGF(2α)) starting on days 12-13 post-estrus in ewes with up to 4-6 pulses per day. Prostaglandin F(2α) is synthesized from arachidonic acid, which is released from phospholipids by phospholipase A2. Endocannabinoids are also derived from phospholipids and are associated with infertility. Endocannabinoid-induced infertility has been postulated to occur primarily via negative effects on implantation. Cannabinoid (CB) type 1 (CB1) or type 2 (CB2) receptor agonists and an inhibitor of the enzyme fatty acid amide hydrolase, which catabolizes endocannabinoids, decreased luteal progesterone, prostaglandin E (PGE), and prostaglandin F(2α) (PGF(2α)) secretion by the bovine corpus luteum in vitro by 30 percent. The objective of the experiment described herein was to determine whether CB1 or CB2 receptor agonists given in vivo affect circulating progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors during the estrous cycle of ewes. Treatments were: Vehicle, Methanandamide (CB1 agonist; METH), or 1-(4-chlorobenzoyl)-5-methoxy-1H-indole-3-acetic acid morpholineamide (CB2 agonist; IMMA). Ewes received randomized treatments on day 10 post-estrus. A single treatment (500 μg; N=5/treatment group) in a volume of 1 ml was given into the interstitial tissue of the ovarian vascular pedicle adjacent to the luteal-containing ovary. Jugular venous blood was collected at 0 h and every 6-48 h for the analysis of progesterone by radioimmunoassay (RIA). Corpora lutea were collected at 48 h, weighed, bisected, and frozen in liquid nitrogen until analysis of unoccupied and

  19. Adrenocorticotrophic hormone (ACTH) stimulation of sheep fetal adrenal cortex can occur without increased expression of ACTH receptor (ACTH-R) mRNA

    DEFF Research Database (Denmark)

    Carter, A M; Petersen, Y M; Towstoless, M

    2002-01-01

    In the present study, it was hypothesized that the adrenocorticotrophin hormone receptor (ACTH-R) would be up-regulated in the adrenal gland of the sheep fetus following infusion of physiological amounts of ACTH, as shown for adrenal cortical cells in culture. In chronically catheterized sheep, a...

  20. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA.

    Directory of Open Access Journals (Sweden)

    Stephen H Munroe

    Full Text Available The α-thyroid hormone receptor gene (TRα codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3' end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30 located downstream of the alternative 3'splice site of TRα2 mRNA and antisense to the 3'UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing.

  1. Effect of growth hormone on steroid concentrations and mRNA expression of their receptor, and selected egg-specific protein genes in the chicken oviduct during pause in laying induced by fasting.

    Science.gov (United States)

    Socha, J K; Sechman, A; Mika, M; Hrabia, A

    2017-10-01

    This study was undertaken to examine the effect of growth hormone (GH) treatment during pause in laying on (1) the concentration of steroids in blood plasma and oviduct tissues, (2) the expression of mRNA of steroid receptors, and (3) the mRNA expression of selected egg-specific proteins in the chicken oviduct. A pause in egg laying was induced by food deprivation for 5 d, followed by feeding every other day, and then feeding daily from Day 10 onward. Birds were divided into three groups: control (n = 18) fed ad libitum, subjected to pause in laying (n = 18), and subjected to pause in laying and injected every day with 200 μg/kg BW of chicken GH (chGH; n = 18). The oviduct was isolated from hens of each group on Days 6 (when the oviduct was regressed), 13 (during oviduct recrudescence), and 17 or 20 (rejuvenated oviduct) of the experiment. Fasting caused a decrease in plasma concentrations of progesterone (P4), testosterone, and estradiol on Day 6 and a reduction in tissue concentrations of these steroids on Days 6 and 13. Fasting also caused an increased relative expression of estrogen receptor α and β (ERα, ERβ) and progesterone receptor (PR) in the magnum and shell gland on Day 6, increased ERα and PR in the magnum on Days 13 and 17 or 20, and increased androgen receptor (AR) mRNA in the magnum on Days 6 and 13 and in the shell gland on Day 13. A fasting-induced elevation in ovocalyxin-36 mRNA expression on Day 6 and a decrease in avidin mRNA on Days 6 and 13 and in ovocleidin-116 on Day 13 were also observed (P avidin in the magnum on Day 6, and ERα in the shell gland on Day 13. The gene expression of ovalbumin on Days 6 and 13, ovocalyxin-36 and ovocleidin-116 on Day 6 was decreased in chGH-treated chickens. In contrast, the expression of ovalbumin on Day 17 or 20 was increased (P egg proteins indicate that GH might be the regulator of the secretory activity of the hen oviduct. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Molecular cloning of growth hormone receptor (GHR) from common carp (Cyprinus carpio L. ) and identification of its two forms of mRNA transcripts

    Institute of Scientific and Technical Information of China (English)

    SUN Xiaofeng; GUO Qionglin; HU Wei; WANG Yaping; ZHU Zuoyan

    2006-01-01

    The cDNA of growth hormone receptor (GHR) was cloned from the liver of 2-year common carp ( Cyprinus carpio L. ) by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE). Its open reading frame (ORF) of 1806 nucleotides is translated into a putative peptide of 602 amino acids, including an extracellular ligand-binding domain of 244 amino acids (aa), a single transmembrane domain of 24 aa and an intracellular signal-transduction domain of 334 aa. Sequence analysis indicated that common carp GHR is highly homologous to goldfish (Carassius auratus) GHR at both gene and protein levels. Using a pair of gene-specific primers, a GHR fragment was amplified from the cDNA of 2-year common carp, a 224 bp product was identified in liver and a 321 bp product in other tissues. The sequencing of the products and the partial genomic DNA indicated that the difference in product size was the result of a 97 bp intron that alternatively spliced. In addition, the 321 bp fragment could be amplified from all the tissues of 4-month common carp including liver, demonstrating the occurrence of the alternative splicing of this intron during the development of common carp. Moreover, a semi-quantitative RT-PCR was performed to analyze the expression level of GHR in tissues of 2-year common carp and 4-month common carp. The result revealed that in the tissues of gill, thymus and brain, the expression level of GHR in 2-year common carp was significantly lower than that of 4-month common carp.

  3. In situ hybridization of gonadotropin releasing hormone receptor mRNA in rat pancreas%大鼠胰腺促性腺激素释放激素受体mRNA的原位杂交

    Institute of Scientific and Technical Information of China (English)

    蒲若蕾; 黄威权; 吉秋合; 姚兵; 孙岚; 张荣庆; 王雷

    2001-01-01

    AIM To study whether gonadotropin releasing hormone receptor (GnRHR) mRNA exists in rat pancreas and its cellular localization. METHODS In situ hybridization with digoxigenin-labeled oligonucleotide probes was adopted. RESULTS Pancreatic endocrine islet cells, exocrine glandular cells and exocrine duct epithelial cells were all found to have GnRHR mRNA hybridization signals. The signals distributed in cytoplasm of all positive cells with negative nucli. CONCLUSION Both of the exocrine and endocrine cells of the pancrea can produce GnRH recepor. GnRH is also a kind of digestive hormone produced by pancrea and is responsible for modulating the exocrine and endocrine function.%目的 研究大鼠胰腺促性腺激素释放激素(GnRH)受体mRNA的存在及细胞定位. 方法 采用原位杂交组织化学法. 结果 胰脏的外分泌部腺上皮细胞、胰导管上皮细胞及内分泌部胰岛细胞内均可检测到较强的GnRH受体mRNA杂交信号. 杂交阳性信号物质均分布在胞质内,胞核呈阴性. 结论 大鼠胰脏内、外分泌部均能合成GnRH受体. GnRH也是一种消化激素,它由胰脏自身合成,又作用于胰脏,可能参与胰脏内、外分泌功能的调节.

  4. Hormone receptors in breast cancer

    NARCIS (Netherlands)

    Suijkerbuijk, K. P M; van der Wall, E.; van Diest, P. J.

    2016-01-01

    Steroid hormone receptors are critical for the growth and development of breast tissue as well as of breast cancer. The importance of the role estrogens in breast cancer has been delineated for more than 100 years. The analysis of its expression has been used not only to classify breast cancers but

  5. Effects of sex and pregnancy hormones on growth hormone and prolactin receptor gene expression in insulin-producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Petersen, Elisabeth D.; Nielsen, Jens Høiriis

    1993-01-01

    of islet cells to these hormones is regulated on the receptor level, GH and PRL receptor gene expression was studied in pancreata from male rats and virgin, pregnant, and lactating female rats and in cultured islets and insulinoma cells (RIN-5AH) in response to various hormones. The mRNA levels were...... quantitated by ribonuclease protection assay, using probes specific for mRNA encoding, extracellular and intracellular domains of the GH receptor, and short and long forms of the PRL receptor, respectively. Specific transcripts for the GH receptor were present in pancreas, islets, and RIN-5AH cells...

  6. Ontogeny of pituitary growth hormone and growth hormone mRNA in the chicken.

    Science.gov (United States)

    McCann-Levorse, L M; Radecki, S V; Donoghue, D J; Malamed, S; Foster, D N; Scanes, C G

    1993-01-01

    The changes in pituitary growth hormone (GH) mRNA levels have been determined by Northern blot analysis and laser densitometry during embryonic development and posthatch growth of white Leghorn cockerels. Pituitary GH mRNA levels were observed to progressively increase between 18 days of embryonic development to a maximum at 4 weeks of age (posthatch). Subsequently, pituitary GH mRNA levels declined between 4 and 8 weeks of age, and between 12 weeks of age and adulthood. Pituitary GH contents showed increases during embryonic development and posthatch growth that paralleled the rise in GH mRNA. The decline in pituitary GH mRNA levels between 4 weeks of age and adulthood occurs when GH secretion has been observed previously to decline.

  7. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, Stine Gry

    2011-01-01

    concentrations of AMH, inhibin-B, progesterone and estradiol. Androgen Receptor mRNA expression in granulosa cells, and the FF content of androgens, both showed a highly significant positive association with to the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated significantly...... with the expression of AMHR2, but did not correlate with any of the hormones in the FF. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the FF levels of androgen and FSHR expression...

  8. The gastrointestinal tract as target of steroid hormone action: quantification of steroid receptor mRNA expression (AR, ERalpha, ERbeta and PR) in 10 bovine gastrointestinal tract compartments by kinetic RT-PCR.

    Science.gov (United States)

    Pfaffl, M W; Lange, I G; Meyer, H H D

    2003-02-01

    We have examined the tissue-specific mRNA expression pattern of androgen receptor (AR), both estrogen receptor (ER) subtypes ERalpha and ERbeta and progestin receptor (PR) in 10 bovine gastrointestinal compartments. Goal of this study was to evaluate the deviating tissue sensitivities and the influence of the estrogenic active preparation Ralgro on the compartment-specific expression regulation. Ralgro contains Zeranol which shows strong estrogenic and anabolic effects. Eight heifers were treated for 8 weeks with Ralgro at different dosages (0, 1, 3, and 10 times). To quantify the very low abundant steroid receptor mRNA transcripts sensitive and reliable real-time (kinetic) reverse transcription (RT)-PCR quantification methods were validated on the LightCycler. Expression results indicate the existence of AR and both ER subtypes in all 10 gastrointestinal compartments. PR receptor was expressed at very low abundancy. Gastrointestinal tissues exhibit a specific ERalpha and ERbeta expression pattern with high expression levels for both subtypes in rectum, colon and ileum. With increasing Zeranol concentrations a significant down-regulation for ERalpha and ERbeta was observed in jejunum (Pcancer. The different expression patterns of ERalpha and ERbeta can be regarded as support of the hypothesis that the subtype proteins may have different biological functions in the gastrointestinal tract. AR and PR seem to be not estrogen dependent.

  9. Molecular cloning, genomic organization, and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals

    DEFF Research Database (Denmark)

    Hauser, F; Nothacker, H P; Grimmelikhuijzen, C J

    1997-01-01

    Using oligonucleotide probes derived from consensus sequences for glycoprotein hormone receptors, we have cloned an 831-amino acid residue-long receptor from Drosophila melanogaster that shows a striking structural homology with members of the glycoprotein hormone (thyroid-stimulating hormone (TSH...... until after pupation. Adult male flies express high levels of receptor mRNA, but female flies express about 6 times less. The expression pattern in embryos and larvae suggests that the receptor is involved in insect development. This is the first report on the molecular cloning of a glycoprotein hormone...

  10. EFFECTS OF CYSTEAMINE ON mRNA LEVELS OF GROWTH HORMONE AND ITS RECEPTORS IN ORANGE-SPOTTED GROUPER EPINEPHELUS COIOIDES%半胱胺对斜带石斑鱼(Epinephelus coioides)生长激素及其受体mRNA水平的影响

    Institute of Scientific and Technical Information of China (English)

    李云; 蔡生力

    2011-01-01

    In present research, we found that cysteamine hydrochloride (CSH) administrated in diet could significantly enhance growth of orange-spotted grouper Epinephelus coioides. Both CSH administrated through diet and injection could enhance the levels of growth hormone (GH) mRNA and two types of growth hormone receptors (GHR) mRNA in or- ange-spotted grouper in a dose-dependent manner. In addition, changes of the levels of two GHRs mRNA induced by the injection of CSH at different doses/hours were investigated. Injection of CSH at 20 gg/g b.w. could only enhance gGHR2 mRNA level significantly; in contrast the medium dose of CSH (50gg/g b.w.) could significantly enhance two types of GHR mRNA levels. Furthermore, two hours after injection of CSH at 50gg/g b.w., the levels of two GHR mRNA were increased significantly and gGHR2 mRNA level was much higher than that of gGHR1, gGHR2 mRNA level reached maximum 6 hours after injection, while gGHR1 got to the peak value 12 hours after injection. So, gGHR2 seemed more sensitive to the stimulation induced by the injection of CSH.%以海水硬骨鱼类斜带石斑鱼为研究对象,通过投喂和腹腔注射半胱胺盐酸盐(CSH),研究半胱胺对斜带石斑鱼生长激素(GH)及其受体(GHR)mRNA水平的影响,以初步揭示半胱胺促进斜带石斑鱼生长的作用机理。结果表明,长期投喂CSH可以显著提高斜带石斑鱼的相对体重增长率。投喂和腹腔注射不同剂量的CSH均能明显促进斜带石斑鱼脑垂体GHmRNA水平及肝脏2种gGHRmRNA水平,且促进效果与CSH浓度呈剂量依存关系。本研究还就CSH对斜带石斑鱼2种不同类型GHR作用的剂量效应和时间效应进行了初步探讨。通过注射不同剂量

  11. Nuclear hormone receptors in podocytes

    Directory of Open Access Journals (Sweden)

    Khurana Simran

    2012-09-01

    Full Text Available Abstract Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses.

  12. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne;

    2015-01-01

    BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival...... in epithelial ovarian cancer. METHODS: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer...... in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer....

  13. Growth hormone-releasing factor regulates growth hormone mRNA in primary cultures of rat pituitary cells.

    OpenAIRE

    Gick, G G; Zeytin, F N; BRAZEAU, P.; Ling, N C; Esch, F S; Bancroft, C

    1984-01-01

    A peptide with high intrinsic activity for specifically stimulating the secretion of immunoreactive growth hormone (GH; somatotropin) has been characterized and reproduced by total synthesis. This peptide, human pancreatic growth hormone-releasing factor, 44-amino-acid form (hpGRF1-44-NH2), was isolated from a tumor localized in the pancreas of a patient with acromegaly. We report here the effect of this growth hormone-releasing factor (GRF) on GH release and the GH mRNA levels in monolayer c...

  14. Differential gene expression of growth hormone (GH)-releasing hormone (GRH) and GRH receptor in various rat tissues.

    Science.gov (United States)

    Matsubara, S; Sato, M; Mizobuchi, M; Niimi, M; Takahara, J

    1995-09-01

    Growth hormone (GH)-releasing hormone (GRH) acts on specific receptors in the anterior pituitary to stimulate the synthesis and release of GH. Recent reports suggest that GRH is also synthesized in extrahypothalamic tissues. To evaluate the potential roles of extrahypothalamic GRH, we studied the gene expression of GRH and GRH receptors in various rat tissues by reverse transcribed (RT)-polymerase chain reaction (PCR). Total RNA was extracted from twenty-three rat organs and RT-PCR was performed with GRH and GRH receptor primers. Highly-sensitive RT-PCR-Southern blotting showed that GRH and GRH receptor mRNA coexist in the widespread tissues (14 of 25 tissues). GRH mRNA was relatively abundant in the cerebral cortex, brain stem, testis, and placenta, while GRH receptor mRNA was abundant in renal medulla and renal pelvis. Northern blot hybridization using poly A+ RNA indicated that the transcript of GRH receptor gene found in the renal medulla was similar to the longer transcript (about 4 Kb) of pituitary GRH receptor in the size. These results suggest that GRH plays a potential role not only in the neuroendocrine axis, but also in the autocrine and paracrine systems in extrahypothalamic tissues.

  15. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    Science.gov (United States)

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-12-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions.

  16. Myometrial oxytocin receptor mRNA concentrations at preterm and term delivery - the influence of external oxytocin.

    Science.gov (United States)

    Liedman, Ragner; Hansson, Stefan Rocco; Igidbashian, Sarah; Akerlund, Mats

    2009-03-01

    The hormonal system for induction of term and preterm labour is not fully understood. Therefore, we investigated myometrial gene expressions for neurohypophyseal hormones and their receptors, prostaglandin F(2alpha) and ovarian steroid receptors in women delivered by Caesarean section. Myometrial tissue for real time PCR was collected from 39 women delivered at term before and after the onset of labour and preterm. Women delivered electively at term had significantly higher oxytocin receptor mRNA expressions (2.52 +/- 0.37 oxytocin receptor/actin; median +/- SEM) than those delivered with ongoing labour at term (1.01 +/- 0.34; p = 0.015) and those at preterm (1.08 +/- 0.25; p = 0.004). Sub-analyses revealed that the difference at term pregnancies solely was related to patients receiving oxytocin during labour (p = 0.007). These patients had higher oxytocin peptide mRNA levels than those without labour at term (p = 0.009). PGF(2alpha) receptor mRNA concentrations were 27.80 +/- 3.55, 11.46 +/- 2.87 and 19.54 +/- 5.52 PGF receptor/actin, respectively, for the groups. Women without labour at term had higher concentration than those with labour (p = 0.005). Our results suggest that oxytocin, its receptor and the PGF(2alpha) receptor are involved in the regulation of labour through a paracrine mechanism.

  17. Antisense mRNA for NPY-Y1 receptor in the medial preoptic area increases prolactin secretion

    Directory of Open Access Journals (Sweden)

    N.A. Silveira

    1999-09-01

    Full Text Available We investigated the participation of neuropeptide Y-Y1 receptors within the medial preoptic area in luteinizing hormone, follicle-stimulating hormone and prolactin release. Four bilateral microinjections of sense (control or antisense 18-base oligonucleotides of messenger ribonucleic acid (mRNA (250 ng corresponding to the NH2-terminus of the neuropeptide Y1 receptor were performed at 12-h intervals for two days into the medial preoptic area of ovariectomized Wistar rats (N = 16, weighing 180 to 200 g, treated with estrogen (50 µg and progesterone (25 mg two days before the experiments between 8.00 and 10:00 a.m. Blockade of Y1 receptor synthesis in the medial preoptic area by the antisense mRNA did not change plasma luteinizing hormone or follicle-stimulating hormone but did increase prolactin from 19.6 ± 5.9 ng/ml in the sense group to 52.9 ± 9.6 ng/ml in the antisense group. The plasma hormones were measured by radioimmunoassay and the values are reported as mean ± SEM. These data suggest that endogenous neuropeptide Y in the medial preoptic area has an inhibitory action on prolactin secretion through Y1 receptors.

  18. Genetic features of thyroid hormone receptors

    Indian Academy of Sciences (India)

    Maha Rebaï; Imen Kallel; Ahmed Rebaï

    2012-12-01

    Thyroid hormone receptors (TR) are prototypes of nuclear transcription factors that regulate the expression of target genes. These receptors play an important role in many physiological processes. Moreover, a dysfunction of these proteins is often implicated in several human diseases and malignancies. Here we report genetic variations and alterations of the TRs that have been described in the literature as well as their potential role in the development of some human diseases including cancers. The functional effects of some mutations and polymorphisms in TRs on disease susceptibility, especially on cancer risk, are now established. Therefore, further investigations are needed in order to use these receptors as therapeutic targets or as biological markers to decide on appropriate forms of treatment.

  19. Downregulation of LH receptor mRNA in the rat uterus.

    Science.gov (United States)

    Kasahara, Yoshimitsu; Kitahara, Yoshikazu; Nakamura, Kazuto; Minegishi, Takashi

    2012-05-01

    We detected luteinizing hormone receptor (LHR) mRNA in the immature rat uterus by northern blotting and downregulation of this receptor mRNA after pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG) treatment. After administration of hCG, the mRNA levels in the rat uterus declined to an extremely low level from Days 1 to 3 and then rebounded and reached higher than pretreatment values at Day 4. At Day 5 the levels were 3-fold higher than the control levels. The cultured uterus displayed an hCG concentration-dependent increase in cAMP production in the medium. Immunohistochemical experiments showed that these receptor proteins were expressed in the epithelial cells of the endometrium. These results suggest that functional LHRs are present in the immature rat uterus and are downregulated by signals resulting from hCG treatment. These data may support the idea that LH acts on the uterus to inhibit contraction at ovulation. Although the precise role of the LHR in the uterus remains unknown, this study may provide a model with which to investigate the regulation of LHR.

  20. Expression of growth hormone and growth hormone receptor in fibroadenomas of the breast.

    Science.gov (United States)

    Lenicek, Tanja; Kasumović, Dino; Stajduhar, Emil; Dzombeta, Tihana; Jukić, Zoran; Kruslin, Bozo

    2013-06-01

    Fibroadenoma is the most prevalent benign breast tumor. It consists of epithelial and stromal components. In general, breast tumors are highly hormonally dependent and growth hormone by its physiology may have a possible oncogenic potential. Therefore, the aim of this study was to determine the expression of growth hormone and growth hormone receptor in epithelial and stromal components of fibroadenomas. Study group included 30 randomly chosen fibroadenomas from female patients aged between 18 and 69 years. The expression of growth hormone and growth hormone receptor was defined in both histologic components of fibroadenomas. Growth hormone was expressed in 96.7% of both epithelial and stromal components of fibroadenomas, with stronger expression in the stromal component. The same percentage of positive reaction (96.7%) was obtained in the epithelial component of fibroadenomas for growth hormone receptor expression. Only 6.7% of stromal components tested for growth hormone receptor were positive. The high expression of growth hormone and growth hormone receptor in fibroadenoma tissue indicates their possible role in the pathogenesis of this tumor. Follow up of patients with high expression of growth hormone and growth hormone receptor may be suggested.

  1. Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway.

    Science.gov (United States)

    Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus

    2009-10-01

    Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.

  2. Nuclear hormone receptors put immunity on sterols.

    Science.gov (United States)

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.

  3. Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status : a large prospective cohort study

    NARCIS (Netherlands)

    Ritte, Rebecca; Lukanova, Annekatrin; Berrino, Franco; Dossus, Laure; Tjonneland, Anne; Olsen, Anja; Overvad, Thure Filskov; Overvad, Kim; Clavel-Chapelon, Francoise; Fournier, Agnes; Fagherazzi, Guy; Rohrmann, Sabine; Teucher, Birgit; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Sieri, Sabina; Panico, Salvatore; Tumino, Rosario; Vineis, Paolo; Ramon Quiros, Jose; Buckland, Genevieve; Sanchez, Maria-Jose; Amiano, Pilar; Chirlaque, Maria-Dolores; Ardanaz, Eva; Sund, Malin; Lenner, Per; Bueno-de-Mesquita, Bas; van Gils, Carla H.; Peeters, Petra H. M.; Krum-Hansen, Sanda; Gram, Inger Torhild; Lund, Eiliv; Khaw, Kay-Tee; Wareham, Nick; Allen, Naomi E.; Key, Timothy J.; Romieu, Isabelle; Rinaldi, Sabina; Siddiq, Afshan; Cox, David; Riboli, Elio; Kaaks, Rudolf

    2012-01-01

    Introduction: Associations of hormone-receptor positive breast cancer with excess adiposity are reasonably well characterized; however, uncertainty remains regarding the association of body mass index (BMI) with hormone-receptor negative malignancies, and possible interactions by hormone replacement

  4. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  5. Endocrine therapy use among elderly hormone receptor-pos...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Clinical guidelines recommend that women with hormone-receptor positive breast cancer receive endocrine therapy (selective estrogen receptor modulators or aromatase...

  6. Regulation of corticotropin releasing hormone receptor type 1 messenger RNA level in Y-79 retinoblastoma cells: potential implications for human stress response and immune/inflammatory reaction

    Directory of Open Access Journals (Sweden)

    N. C. Vamvakopoulos

    1996-01-01

    Full Text Available We report the regulation of type 1 receptor mRNA in Y-79 human retinoblastoma cells, grown in the absence or presence of pharmacological levels of phorbol esters, forskolin, glucocorticoids and their combinations. To control for inducibility and for assessing the sensitivity of the Y-79 system to glucocorticoids, corticotropin releasing hormone mRNA levels were measured in parallel. All treatments stimulated corticotropin releasing hormone receptor type 1 gene expression relative to baseline. A weak suppression of corticotropin releasing hormone mRNA level was observed during dexamethasone treatment. The cell line expressed ten-fold excess of receptor to ligand mRNA under basal conditions. The findings predict the presence of functional phorbol ester, cyclic AMP and glucocorticoid response elements in the promoter region of corticotropin releasing hormone receptor type 1 gene and support a potential role for its product during chronic stress and immune/inflammatory reaction.

  7. The thyroid hormone receptors modulate the skin response to retinoids.

    Directory of Open Access Journals (Sweden)

    Laura García-Serrano

    Full Text Available BACKGROUND: Retinoids play an important role in skin homeostasis and when administered topically cause skin hyperplasia, abnormal epidermal differentiation and inflammation. Thyroidal status in humans also influences skin morphology and function and we have recently shown that the thyroid hormone receptors (TRs are required for a normal proliferative response to 12-O-tetradecanolyphorbol-13-acetate (TPA in mice. METHODOLOGY/PRINCIPAL FINDINGS: We have compared the epidermal response of mice lacking the thyroid hormone receptor binding isoforms TRα1 and TRβ to retinoids and TPA. Reduced hyperplasia and a decreased number of proliferating cells in the basal layer in response to 9-cis-RA and TPA were found in the epidermis of TR-deficient mice. Nuclear levels of proteins important for cell proliferation were altered, and expression of keratins 5 and 6 was also reduced, concomitantly with the decreased number of epidermal cell layers. In control mice the retinoid (but not TPA induced parakeratosis and diminished expression of keratin 10 and loricrin, markers of early and terminal epidermal differentiation, respectively. This reduction was more accentuated in the TR deficient animals, whereas they did not present parakeratosis. Therefore, TRs modulate both the proliferative response to retinoids and their inhibitory effects on skin differentiation. Reduced proliferation, which was reversed upon thyroxine treatment, was also found in hypothyroid mice, demonstrating that thyroid hormone binding to TRs is required for the normal response to retinoids. In addition, the mRNA levels of the pro-inflammatory cytokines TNFα and IL-6 and the chemotactic proteins S1008A and S1008B were significantly elevated in the skin of TR knock-out mice after TPA or 9-cis-RA treatment and immune cell infiltration was also enhanced. CONCLUSIONS/SIGNIFICANCE: Since retinoids are commonly used for the treatment of skin disorders, these results demonstrating that TRs

  8. Regulation of corticotropin releasing hormone receptor type 1 messenger RNA level in Y-79 retinoblastoma cells: potential implications for human stress response and immune/inflammatory reaction

    OpenAIRE

    Vamvakopoulos, N C; Sioutopoulou, T. O.; Mamuris, Z.; Marcoulatos, P.; Avgerinos, P. C.

    1996-01-01

    We report the regulation of type 1 receptor mRNA in Y-79 human retinoblastoma cells, grown in the absence or presence of pharmacological levels of phorbol esters, forskolin, glucocorticoids and their combinations. To control for inducibility and for assessing the sensitivity of the Y-79 system to glucocorticoids, corticotropin releasing hormone mRNA levels were measured in parallel. All treatments stimulated corticotropin releasing hormone receptor type 1 gene expression relative to baseline....

  9. Luteinizing hormone-releasing hormone receptor antagonist may reduce postmenopausal flushing

    NARCIS (Netherlands)

    Gastel, P. van; Zanden, M. van der; Telting, D.; Filius, M.; Bancsi, L.; Boer, H. de

    2012-01-01

    OBJECTIVE: Hormone therapy (HT) is the most effective treatment of postmenopausal (PMP) flushing; however, its use is often contraindicated. As an alternative option, we explored the efficacy of the luteinizing hormone-releasing hormone (LHRH) receptor antagonist cetrorelix in women with severe PMP

  10. Thyroid Hormone Receptor beta Mediates Acute Illness-Induced Alterations in Central Thyroid Hormone Metabolism

    NARCIS (Netherlands)

    A. Boelen; J. Kwakkel; O. Chassande; E. Fliers

    2009-01-01

    Acute illness in mice profoundly affects thyroid hormone metabolism in the hypothalamus and pituitary gland. It remains unknown whether the thyroid hormone receptor (TR)-beta is involved in these changes. In the present study, we investigated central thyroid hormone metabolism during lipopolysacchar

  11. Asp330 and Tyr331 in the C-terminal cysteine-rich region of the luteinizing hormone receptor are key residues in hormone-induced receptor activation

    NARCIS (Netherlands)

    M.W.P. Bruysters (Martijn); M. Verhoef-Post (Miriam); A.P.N. Themmen (Axel)

    2008-01-01

    textabstractThe luteinizing hormone (LH) receptor plays an essential role in male and female gonadal function. Together with the follicle-stimulating hormone (FSH) and thyroid stimulating hormone (TSH) receptors, the LH receptor forms the family of glycoprotein hormone receptors. All glycoprotein ho

  12. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  13. Multiple exportins influence thyroid hormone receptor localization.

    Science.gov (United States)

    Subramanian, Kelly S; Dziedzic, Rose C; Nelson, Hallie N; Stern, Mary E; Roggero, Vincent R; Bondzi, Cornelius; Allison, Lizabeth A

    2015-08-15

    The thyroid hormone receptor (TR) undergoes nucleocytoplasmic shuttling and regulates target genes involved in metabolism and development. Previously, we showed that TR follows a CRM1/calreticulin-mediated nuclear export pathway. However, two lines of evidence suggest TR also follows another pathway: export is only partially blocked by leptomycin B (LMB), a CRM1-specific inhibitor; and we identified nuclear export signals in TR that are LMB-resistant. To determine whether other exportins are involved in TR shuttling, we used RNA interference and fluorescence recovery after photobleaching shuttling assays in transfected cells. Knockdown of exportins 4, 5, and 7 altered TR shuttling dynamics, and when exportins 5 and 7 were overexpressed, TR distribution shifted toward the cytosol. To further assess the effects of exportin overexpression, we examined transactivation of a TR-responsive reporter gene. Our data indicate that multiple exportins influence TR localization, highlighting a fine balance of nuclear import, retention, and export that modulates TR function.

  14. Evidence of Receptor-Mediated Elimination of Erythropoietin by Analysis of Erythropoietin Receptor mRNA Expression in Bone Marrow and Erythropoietin Clearance During Anemia

    OpenAIRE

    Nalbant, Demet; SALEH, Mohammad; Goldman, Frederic D.; Widness, John A.; Veng-Pedersen, Peter

    2010-01-01

    Erythropoietin (Epo) is the primary hormone that stimulates erythroid proliferation and differentiation through its cell surface receptor (EpoR) on erythroid progenitor cells. Previous studies have suggested that the bone marrow plays an important role in Epo's elimination. The changes in the EpoR mRNA levels and Epo's clearance in the bone marrow of 11 newborn lambs were studied to elucidate the role of EpoR in Epo's clearance under anemic conditions. Epo mRNA levels were measured by real-ti...

  15. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    Science.gov (United States)

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  16. Introduction to the general principles of hormone-receptor interactions.

    Science.gov (United States)

    Levey, G S; Robinson, A G

    1982-07-01

    This review presents a concise overview of the historical development of receptor theory and the molecular mechanisms of action of the three broad classes of hormones, steroids, tyrosine derivatives, and polypeptides. Key terms required for understanding the basic terminology and concepts currently utilized in membrane receptor research are defined. The basic information should enable the reader to critically assess and understand more detailed discussions of hormone-receptor interactions and their application to clinical medicine.

  17. Epiphyseal growth plate growth hormone receptor signaling is decreased in chronic kidney disease-related growth retardation.

    Science.gov (United States)

    Troib, Ariel; Landau, Daniel; Kachko, Leonid; Rabkin, Ralph; Segev, Yael

    2013-11-01

    Linear growth retardation in children with chronic kidney disease (CKD) has been ascribed to insensitivity to growth hormone. This resistance state has been attributed to impaired growth hormone signaling through the JAK2/STAT5 pathway in liver and skeletal muscle leading to reduced insulin-like growth factor-I (IGF-I). Here we determine whether systemic and growth plate alterations in growth hormone signaling contribute to CKD-induced linear growth retardation using partially nephrectomized and pair-fed control 20-day-old rats. Serum growth hormone did not change in rats with CKD, yet serum IGF-I levels were decreased and growth retarded. The tibial growth plate hypertrophic zone was wider and vascularization at the primary ossification center was reduced in CKD. This was associated with a decrease in growth plate vascular endothelial growth factor (VEGF) mRNA and immunostainable VEGF and IGF-I levels. Growth plate growth hormone receptor and STAT5 protein levels were unchanged, while JAK2 was reduced. Despite comparable growth hormone and growth hormone receptor levels in CKD and control rats, relative STAT5 phosphorylation was significantly depressed in CKD. Of note, the mRNA of SOCS2, an inhibitor of growth hormone signaling, was increased. Thus, linear growth impairment in CKD can in part be explained by impaired long bone growth plate growth hormone receptor signaling through the JAK2/STAT5 pathway, an abnormality that may be caused by an increase in SOCS2 expression.

  18. Fast evolution of growth hormone receptor in primates and ruminants

    Institute of Scientific and Technical Information of China (English)

    HOU Zhenfang; LI Ying; ZHANG Yaping

    2005-01-01

    Pituitary growth hormone (GH) evolves very slowly in most of mammals, but the evolutionary rates appear to have increased markedly on two occasions during the evolution of primates and ruminants. To investigate the evolutionary pattern of growth hormone receptor (GHR), we sequenced the extracellular domain of GHR genes from four primate species. Our results suggested that GHR in mammal also shows an episodic evolutionary pattern, which is consistent with that observed in pituitary growth hormone. Further analysis suggested that this pattern of rapid evolution observed in primates and ruminants is likely the result of coevolution between pituitary growth hormone and its receptor.

  19. The reciprocal regulation of stress hormones and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Istvan eMody

    2012-01-01

    Full Text Available Stress-derived steroid hormones regulate the expression and function of GABAA receptors (GABAARs. Changes in GABAAR subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABAAR subunit expression, stress hormones can also be metabolized to neuroactive derivatives which can alter the function of GABAARs. Neurosteroids allosterically modulate GABAARs at concentrations comparable to those during stress. In addition to the actions of stress-derived steroid hormones on GABAARs, GABAARs reciprocally regulate the production of stress hormones. The stress response is mediated by the hypothalamic-pituitary-adrenal (HPA axis, the activity of which is governed by corticotropin releasing hormone (CRH neurons. The activity of CRH neurons is largely controlled by robust GABAergic inhibition. Recently, it has been demonstrated that CRH neurons are regulated by neurosteroid-sensitive, GABAAR δ subunit-containing receptors representing a novel feedback mechanism onto the HPA axis. Further, it has been demonstrated that neurosteroidogenesis and neurosteroid actions on GABAAR δ subunit-containing receptors on CRH neurons are necessary to mount the physiological response to stress. Here we review the literature describing the effects of steroid hormones on GABAARs as well as the importance of GABAARs in regulating the production of steroid hormones. This review incorporates what we currently know about changes in GABAARs following stress and the role in HPA axis regulation.

  20. Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis.

    Science.gov (United States)

    Barnard, Joanna C; Williams, Allan J; Rabier, Bénédicte; Chassande, Olivier; Samarut, Jacques; Cheng, Sheue-Yann; Bassett, J H Duncan; Williams, Graham R

    2005-12-01

    Childhood hypothyroidism causes growth arrest with delayed ossification and growth-plate dysgenesis, whereas thyrotoxicosis accelerates ossification and growth. Thyroid hormone (T(3)) regulates chondrocyte proliferation and is essential for hypertrophic differentiation. Fibroblast growth factors (FGFs) are also important regulators of chondrocyte proliferation and differentiation, and activating mutations of FGF receptor-3 (FGFR3) cause achondroplasia. We investigated the hypothesis that T(3) regulates chondrogenesis via FGFR3 in ATDC5 cells, which undergo a defined program of chondrogenesis. ATDC5 cells expressed two FGFR1, four FGFR2, and one FGFR3 mRNA splice variants throughout chondrogenesis, and expression of each isoform was stimulated by T(3) during the first 6-12 d of culture, when T(3) inhibited proliferation by 50%. FGFR3 expression was also increased in cells treated with T(3) for 21 d, when T(3) induced an earlier onset of hypertrophic differentiation and collagen X expression. FGFR3 expression was reduced in growth plates from T(3) receptor alpha-null mice, which exhibit skeletal hypothyroidism, but was increased in T(3) receptor beta(PV/PV) mice, which display skeletal thyrotoxicosis. These findings indicate that FGFR3 is a T(3)-target gene in chondrocytes. In further experiments, T(3) enhanced FGF2 and FGF18 activation of the MAPK-signaling pathway but inhibited their activation of signal transducer and activator of transcription-1. FGF9 did not activate MAPK or signal transducer and activator of transcription-1 pathways in the absence or presence of T(3). Thus, T(3) exerted differing effects on FGFR activation during chondrogenesis depending on which FGF ligand stimulated the FGFR and which downstream signaling pathway was activated. These studies identify novel interactions between T(3) and FGFs that regulate chondrocyte proliferation and differentiation during chondrogenesis.

  1. Cloning of partial putative gonadotropin hormone receptor sequence from fish

    Indian Academy of Sciences (India)

    G Kumaresan; T Venugopal; A Vikas; T J Pandian; S M Athavan

    2000-03-01

    A search for the presence of mariner-like elements in the Labeo rohita genome by polymerase chain reaction led to the amplification of a partial DNA sequence coding for a putative transmembrane domain of gonadotropin hormone receptor. The amplified DNA sequence shows a high degree of homology to the available turkey and human luteinizing and follicle stimulating hormone receptor coding sequences. This is the first report on cloning such sequences of piscine origin.

  2. Thyroid Hormone Receptor alpha Modulates Lipopolysaccharide-Induced Changes in Peripheral Thyroid Hormone Metabolism

    NARCIS (Netherlands)

    J. Kwakkel; O. Chassande; H.C. van Beeren; E. Fliers; W.M. Wiersinga; A. Boelen

    2010-01-01

    Acute inflammation is characterized by low serum T-3 and T-4 levels accompanied by changes in liver type 1 deiodinase (D1), liver D3, muscle D2, and muscle D3 expression. It is unknown at present whether thyroid hormone receptor alpha (TR alpha) plays a role in altered peripheral thyroid hormone met

  3. Adrenergic receptor control mechanism for growth hormone secretion.

    Science.gov (United States)

    Blackard, W G; Heidingsfelder, S A

    1968-06-01

    The influence of catecholamines on growth hormone secretion has been difficult to establish previously, possibly because of the suppressive effect of the induced hyperglycemia on growth hormone concentrations. In this study, an adrenergic receptor control mechanism for human growth hormone (HGH) secretion was uncovered by studying the effects of alpha and beta receptor blockade on insulin-induced growth hormone elevations in volunteer subjects. Alpha adrenergic blockade with phentolamine during insulin hypoglycemia, 0.1 U/kg, inhibited growth hormon elevations to 30-50% of values in the same subjects during insulin hypoglycemia without adrenergic blockade. More complete inhibition by phentolamine could not be demonstrated at a lower dose of insulin (0.05 U/kg). Beta adrenergic blockade with propranolol during insulin hypoglycemia significantly enhanced HGH concentrations in paired experiments. The inhibiting effect of alpha adrenergic receptor blockade on HGH concentrations could not be attributed to differences in blood glucose or free fatty acid values; however, more prolonged hypoglycemia and lower plasma free fatty acid values may have been a factor in the greater HGH concentrations observed during beta blockade. In the absence of insulin induced hypoglycemia, neither alpha nor beta adrenergic receptor blockade had a detectable effect on HGH concentrations. Theophylline, an inhibitor of cyclic 3'5'-AMP phosphodiesterase activity, also failed to alter plasma HGH concentrations. These studies demonstrate a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on growth hormone secretion.

  4. 非甲状腺疾病大鼠中枢甲状腺功能及受体α1 mRNA水平与认知能力的研究%Relationship between cognitive ability and both thyroid function and mRNA level of thyroid hormone receptor α1 in brain tissue of rats with nonthyroidal illness syndrome

    Institute of Scientific and Technical Information of China (English)

    袁大华; 王群

    2010-01-01

    目的 研究非甲状腺疾病综合征(NTIS)大鼠认知能力、中枢甲状腺功能及甲状腺激素受体αl(TRαl)mRNA表达的变化. 方法 19只成年SD大鼠按随机数字表法分为正常组(n=9)和NTIS组(n=10).腹腔注射四氯化碳(CCl_4,用玉米油按1:6稀释)0.15 mL,使大鼠肝纤维化制作NTIS模型,正常组注射等量生理盐水.采用Morris水迷宫试验检测大鼠的记忆认知能力:放免法测定血清甲状腺激素(T_3、T_4、FT_3、FT_4、rT_3、TSH)和脑组织甲状腺激素(T_3、T_4、rT_3)浓度;采用荧光定量RT-PCR法测定脑组织中TRα1 mRNA水平. 结果 2组大鼠定向航行试验及空间探索试验结果比较差异无统计学意义(P>0.05);NTIS组大鼠血清T_3、T_4、FT_3、FT_4浓度低于正常组,差异有统计学意义(P0.05). 结论 肝纤维化大鼠具有典型的NTIS表现;NTIS大鼠认知能力、中枢甲状腺功能无明显异常,脑组织TRα1 mRNA表达无明显变化.%Objective To explore the changes of cognitive ability and thyroid function and mRNA level of thyroid hormone receptor α1(TRα1)in the brain tissues of rats with nonthyroidal illness syndrome (NTIS). Methods Nineteen adull male SD rats were randomly divided into normal control (n=9)and NTIS(n=10)groups.The NTIS model,its liver been fiberized was induced by intraperitoneal injecting 0.15 mL carbon tetrachloride([CCL4],[1:6,diluted by com oil])3 times per week with duration of 8 weeks.The normal control group was injected equal sodium.Morris water-maze task was employed to test the cognitive memory ability of the rats;the concentrations of T_3,T_4, FT_3,FT_4,rT_3 and TSH in the blood serum and T_3,T_4 and rT_3 in the brain tissue were detected by using radioimmunoassay(RIA);the mRNA level of TRα1 was detected by fluorescent quantitative RT-PCR. Resuits Morris water-maze task showed no significant difference in congnitive ability between NTIS and control groups (P>0.05).The concentrations of T_4,FT_3,FT_4 and T_3 in

  5. Zip1, Zip2, and Zip8 mRNA expressions were associated with growth hormone level during the growth hormone provocation test in children with short stature.

    Science.gov (United States)

    Sun, Ping; Wang, Shifu; Jiang, Yali; Tao, Yanting; Tian, Yuanyuan; Zhu, Kai; Wan, Haiyan; Zhang, Lehai; Zhang, Lianying

    2013-10-01

    Short stature of children is affected by multiple factors. One of them is growth hormone (GH) deficiency. Growth hormone therapy can increase the final height of children with growth hormone deficiency. Zinc is found to induce dimerization and to enhance the bioactivity of human GH. Two gene families have been identified involved in zinc homeostasis. Previous studies in our laboratory have shown that Zip1, Zip2, Zip6, and ZnT1 mRNA were associated with zinc level in established human breast cancer in nude mice model; Zip8 was significantly lower in zinc-deficient Wistar rats in kidney. In this study, five zinc transporters: Zip1, Zip2, Zip6, Zip8, and ZnT1 were chosen. We aimed to investigate the mRNA expression of zinc transporters and to explore the relationship between zinc transporters and growth hormone in short stature children. Growth hormone provocation test is used to confirm the diagnosis of growth hormone deficiency. Six short children for the test were enrolled. At the same time, 15 sex- and age-matched normal children were enrolled as control. The expression levels of zinc transporters in peripheral blood mononuclear cells were determined by quantitative real-time PCR. Zip1 and Zip2 mRNA expression positively correlated with growth hormone level (r = 0.5133, P = 0.0371; r = 0.6719, P = 0.0032); Zip8 mRNA expression negatively correlated with growth hormone level (r = -0.5264, P = 0.0285) during the test in short stature children. The average expression level of Zip2 was significantly higher and Zip6, Zip8 mRNA levels were significantly lower in short stature children than in health controls at 0 min (P < 0.05, P < 0.05).

  6. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  7. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications

    Science.gov (United States)

    PONIEWIERSKA-BARAN, AGATA; SCHNEIDER, GABRIELA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2016-01-01

    Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS. PMID:26983595

  8. Expression of anti-Mullerian hormone receptor on the appendix testis in connection with urological disorders

    Institute of Scientific and Technical Information of China (English)

    Kornél Kistamás; Olga Ruzsnavszky; Andrea Telek; Lívia Kosztka; Ilona Kovács; Beatrix Dienes; László Csernoch

    2013-01-01

    The female internal sex organs develop from the paramesonephric (Mullerian) duct.In male embryos,the regression of the Mullerian duct is caused by the anti-Mullerian hormone (AMH),which plays an important role in the process of testicular descent.The physiological remnant of the Mullerian duct in males is the appendix testis (AT).In our previous study,we presented evidence for the decreased incidence of AT in cryptorchidism with intraoperative surgery.In this report,the expression of the anti-Mullerian hormone receptor type 2 (AMHR2),the specific receptor of AMH,on the AT was investigated in connection with different urological disorders,such as hernia inguinalis,torsion of AT,cysta epididymis,varicocele,hydrocele testis and various forms of undescended testis.The correlation between the age of the patients and the expression of the AMHR2 was also examined.Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were used to detect the receptor's mRNA and protein levels,respectively.We demonstrate that AMHR2 is expressed in the ATs.Additionally,the presence of this receptor was proven at the mRNA and protein levels.The expression pattern of the receptor correlated with neither the examined urological disorders nor the age of the patients;therefore,the function of the AT remains obscure.

  9. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Billestrup, N.; Moeldrup, A.; Serup, P.; Nielsen, J.H. (Hagedorn Research Lab., Gentofte (Denmark)); Mathews, L.S.; Norstedt, G. (Karolinska Inst., Huddinge (Sweden))

    1990-09-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, the authors have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and to contain a specific GH receptor mRNA that was not expressed in the parent cell line. The expression of GH receptors in one clone (1.24) selected for detailed analysis was increased 2.6-fold compared to untransfected cells. The increased GH receptor expression was accompanied by an increased responsiveness to GH. Thus, the maximal GH-stimulated increase of insulin biosynthesis was 4.1-fold in 1.24 cells compared to 1.9-fold in the nontransfected RIN5-AH cells. The expression of the transfected receptor was stimulated 1.6- and 2.3-fold when cells were cultured in the presence of 25 or 50 {mu}M Zn{sup 2+} was associated with an increased magnitude of GH-stimulated insulin biosynthesis. A close stoichiometric relationship between the level of receptor expression and the level of GH-stimulated insulin biosynthesis was observed. They conclude from these results that the hepatic GH receptor is able to mediate the effect of GH on insulin biosynthesis in RIN5-AH cells.

  10. Role of ghrelin on testosterone secretion and the mRNA expression of androgen receptors in adult rat testis.

    Science.gov (United States)

    Wang, Lin; Fang, Fugui; Li, Yunsheng; Zhang, Yunhai; Pu, Yong; Zhang, XiaoYong

    2011-06-01

    The present study was designed to determine the effects of ghrelin on in vivo and in vitro secretion of testosterone (T) and the expression of androgen receptor (AR) mRNA in the adult rat testis. The distribution of growth hormone secretagogue receptors (GHS-R(1a)) in the testis was also investigated. GHS-R(1a) immunoreactivity presented mainly in Sertoli and Leydig cells, primary spermatocytes, and secondary spermatocytes. Adult rats that were intracerebroventricularly (i.c.v.) administrated different dosages (1 nmol and 3 nmol) of ghrelin could significantly inhibit the secretion of T. The experession of AR mRNA in the testis was also notably reduced with 3 nmol ghrelin. Additionaly, in vitro exposure of the Leydig cells to increasing concentrations of ghrelin resulted in no obvious changes of T secretion in the culture media and AR mRNA expression of Leydig cells. Overall, our data demonstrate that the i.c.v. injection of ghrelin plays a physiological role in T secretion and AR mRNA expression in the testis, further confirming the reproductive role of ghrelin.

  11. Glutamine and glutamic acid enhance thyroid-stimulating hormone β subunit mRNA expression in the rat pars tuberalis.

    Science.gov (United States)

    Aizawa, Sayaka; Sakai, Takafumi; Sakata, Ichiro

    2012-03-01

    Thyroid-stimulating hormone (TSH)-producing cells of the pars tuberalis (PT) display distinct characteristics that differ from those of the pars distalis (PD). The mRNA expression of TSHβ and αGSU in PT has a circadian rhythm and is inhibited by melatonin via melatonin receptor type 1; however, the detailed regulatory mechanism for TSHβ expression in the PT remains unclear. To identify the factors that affect PT, a microarray analysis was performed on laser-captured PT tissue to screen for genes coding for receptors that are abundantly expressed in the PT. In the PT, we found high expression of the KA2, which is an ionotropic glutamic acid receptor (iGluR). In addition, the amino acid transporter A2 (ATA2), also known as the glutamine transporter, and glutaminase (GLS), as well as GLS2, were highly expressed in the PT compared to the PD. We examined the effects of glutamine and glutamic acid on TSHβ expression and αGSU expression in PT slice cultures. l-Glutamine and l-glutamic acid significantly stimulated TSHβ expression in PT slices after 2- and 4-h treatments, and the effect of l-glutamic acid was stronger than that of l-glutamine. In contrast, treatment with glutamine and glutamic acid did not affect αGSU expression in the PT or the expression of TSHβ or αGSU in the PD. These results strongly suggest that glutamine is taken up by PT cells through ATA2 and that glutamic acid locally converted from glutamine by Gls induces TSHβ expression via the KA2 in an autocrine and/or paracrine manner in the PT.

  12. Diverse growth hormone receptor gene mutations in Laron syndrome.

    OpenAIRE

    Berg, M.A.; Argente, J.; Chernausek, S; Gracia, R.; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo,S.P.; Francke, U.

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR g...

  13. Receptors for thyrotropin-releasing hormone, thyroid-stimulating hormone, and thyroid hormones in the macaque uterus: effects of long-term sex hormone treatment.

    Science.gov (United States)

    Hulchiy, Mariana; Zhang, Hua; Cline, J Mark; Hirschberg, Angelica Lindén; Sahlin, Lena

    2012-11-01

    Thyroid gland dysfunction is associated with menstrual cycle disturbances, infertility, and increased risk of miscarriage, but the mechanisms are poorly understood. However, little is known about the regulation of these receptors in the uterus. The aim of this study was to determine the effects of long-term treatment with steroid hormones on the expression, distribution, and regulation of the receptors for thyrotropin-releasing hormone (TRHR) and thyroid-stimulating hormone (TSHR), thyroid hormone receptor α1/α2 (THRα1/α2), and THRβ1 in the uterus of surgically menopausal monkeys. Eighty-eight cynomolgus macaques were ovariectomized and treated orally with conjugated equine estrogens (CEE; n = 20), a combination of CEE and medroxyprogesterone acetate (MPA; n = 20), or tibolone (n = 28) for 2 years. The control group (OvxC; n = 20) received no treatment. Immunohistochemistry was used to evaluate the protein expression and distribution of the receptors in luminal epithelium, glands, stroma, and myometrium of the uterus. Immunostaining of TRHR, TSHR, and THRs was detected in all uterine compartments. Epithelial immunostaining of TRHR was down-regulated in the CEE + MPA group, whereas in stroma, both TRHR and TSHR were increased by CEE + MPA treatment as compared with OvxC. TRHR immunoreactivity was up-regulated, but THRα and THRβ were down-regulated, in the myometrium of the CEE and CEE + MPA groups. The thyroid-stimulating hormone level was higher in the CEE and tibolone groups as compared with OvxC, but the level of free thyroxin did not differ between groups. All receptors involved in thyroid hormone function are expressed in monkey uterus, and they are all regulated by long-term steroid hormone treatment. These findings suggest that there is a possibility of direct actions of thyroid hormones, thyroid-stimulating hormone and thyrotropin-releasing hormone on uterine function.

  14. Interventional effect of triiodothyronineon thyroid hormone receptor mRNA expression during the differentiation of human embryonic brain-derived neural stem cells%三碘甲状腺原氨酸对人神经干细胞分化过程中甲状腺激素受体表达的干预效应

    Institute of Scientific and Technical Information of China (English)

    刘春蓉; 李兰英; 刘奔; 臧晓怡; 陈祖培

    2007-01-01

    甲状腺原氨酸诱导后表达量逐渐下降,至2周时达最低,此后表达量有所回升,但仍低于神经干细胞状态(F=32.49,P=0.008).甲状腺激素受体α2mRNA表达变化趋势与甲状腺激素受体α1相同.甲状腺激素受体β1mRNA在神经干细胞状态时表达量最低,三碘甲状腺原氨酸诱导后表达量逐渐升高,2周时达最高,且超过同时间点甲状腺激素受体α1的表达(t=15.64,P=0.001),至诱导3周时表达水平降至最低.甲状腺激素受体α3mRNA在三碘甲状腺原氨酸诱导后呈下降趋势,2周时接近干细胞状态(F=51.94,P=0.378),此后又降至较低水平.结论:三碘甲状腺原氨酸能诱导神经干细胞分化为神经元、少突胶质细胞和星形胶质细胞,且分化过程中甲状腺激素受体mRNA存在不同时间顺序的表达.%BACKGROUND: Triiodothyronine (T3) is an important regulation factor at the critical period of brain development. It maybe control the successive differentiation during the development of central nervous system (CNS).OBJECTIVE: To monitor the differentiation of neural stem cells (NSCs) induced by T3 and the thyroid hormone receptor (TR) mRNA expression changes.DESIGN: Open experiment.SETTING: Department of Pathology, Tianjin Medical College of Chinese People's Armed Police Force; Institute of Endocrinology of Tianjin Medical University.MATERIALS: This study was carried out in the Tianjin Medical University between January 2003 and March 2005.Ten-to-twelve-week-old aborted fetuses were obtained from the General Hospital of Tianjin Medical University with the approval of the local ethical committee. Informed consents were obtained from the mothers and their relatives.METHODS: ①Under the aseptic condition, the bilateral cortex of human fetal brain was removed and dissociated by brief mechanical trituration in D-Hanks. Then, 20 μg/L bFGF and 30 nmol/L T3 were used to induce the proliferation of NSCs and inoculated to poly-L-lysine-coated 24-well plate

  15. Effects of decabromodiphenyl ether (BDE-209) on mRNA transcription of thyroid hormone pathway and spermatogenesis associated genes in Chinese rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Li, Wei; Zhu, Lifei; Zha, Jinmiao; Wang, Zijian

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants, which are ubiquitous environmental contaminant found in both abiotic and biotic environmental samples. Deca-BDE (BDE-209) is the principal component, which is currently used worldwide. In this study, the effect of BDE-209 on the mRNA levels of thyroid hormone (TH) related genes and spermatogenesis associated genes were determined from larvae and adult rare minnow (Gobiocypris rarus) exposed to concentrations 0.01, 0.1, 1, and 10 μg/L for 21 days. The results showed that the type II deiodinase (dio2) and sodium iodide symporter (nis) mRNA levels were significantly up-regulated in the larvae at 10 μg/L treatment. In adult, histopathological observations showed that liver of female fish were degenerated at 10 μg/L treatment, and inhibition of spermatogenesis were observed in testis of male fish. In addition, the thyroid hormone receptor α (trα), dio2, and nis mRNA levels in the liver of male and female fish were significantly up-regulated, whereas dio2 and nis mRNA levels were significantly down-regulated in the brain. These results indicate that exposure to BDE-209 could result in tissue-specific alternations of TH-related genes expression in adults. Moreover, the mRNA levels of the testis-specific apoptosis genes, the spermatogenesis-associated 4 (spata4) and spermatogenesis-associated 17 (spata17), were down-regulated at 10 μg/L treatment in testis of male fish. Our results suggest that BDE-209 may pose threat to normal thyroid and reproductive function in fish.

  16. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J. (UWA); (St. Vincent); (Queensland)

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  17. Expression of hippocampal adrenergic receptor mRNA in a rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Jianbin Zhang; Lingling Wang; Xinjun Wang; Jingfeng Jiang; Xiaoren Xiang; Tianjun Wang

    2011-01-01

    Adrenergic receptor dysfunction is suggested as a potential cause of hippocampal vulnerability to stress-related pathology. We examined mRNA expression of adrenergic receptor (AR) subtypes α1-AR, α2-AR, and β1-AR in hippocampal subregions (CA1, CA3, dentate gyrus) using in situ hybridization in a depression model induced by chronic unpredictable mild stress and social isolation. α1-AR mRNA expression was significantly increased in the CA3 and dentate gyrus, β1-AR mRNA was significantly increased in the CA1, and α2-AR mRNA remained unchanged in all regions of depression rats compared with controls. Thus, different AR subtypes exhibit a differing pattern of mRNA expression in various hippocampal subregions following depression.

  18. [Effects of steroid hormones on nicotinic acetylcholine receptor channel kinetics].

    Science.gov (United States)

    Nurowska, E; Dworakowska, B; Dołowy, K

    2000-01-01

    Classically steroid hormones acts through genomic mechanism. In the last period there is more evidence that some steroid hormones exert fast (in order of seconds) effects on membrane receptors. In the presented work we analysed the effects of some steroid hormones on muscle acetylcholine receptor (AChR) channel kinetics. We divided steroid hormone on two groups which exert different effects. The first group including hydrocortisone (HC), corticosterone (COR), dexamethasone decrease the mean open time increasing the number of openings in bursts. The effects do not depend on agonist concentration. Some effects of HC and COR are voltage-dependent. The mechanism of such voltage dependent action caused by steroids hormones that are uncharged molecules, is unknown. Some experiments suggest however that an agonist molecule is involved in the mechanism of steroid action. The second group consists of progesterone, some of its derivatives and deoxycorticosterone. For this group the most evident effect was decrease in the probability of openings without a decrease in the mean open time. The effect depends on agonist concentration, suggesting an involvement of an agonist molecule in the mechanism. For this hormones an involvement of an charged agonist molecule does not however induce a voltage dependency. Most probably two groups of steroids acts on different part of the AChR. The localization of a steroid action site can be crucial for inducing voltage dependency.

  19. Cloning and tissue distribution of the chicken type 2 corticotropin-releasing hormone receptor.

    Science.gov (United States)

    de Groef, Bert; Grommen, Sylvia V H; Mertens, Inge; Schoofs, Liliane; Kühn, Eduard R; Darras, Veerle M

    2004-08-01

    We report the cloning of the complete coding sequence of the putative chicken type 2 corticotropin-releasing hormone receptor (CRH-R2) by rapid amplification of cDNA ends (RACE). The chicken CRH-R2 is a 412-amino acid 7-transmembrane G protein-coupled receptor, showing 87% identity to the Xenopus laevis and Oncorhynchus keta CRH-R2s, and 78-80% to mammalian CRH-R2s. The distribution of CRH-R2 mRNA was studied by RT-PCR analysis and compared to CRH-R1 distribution. Both CRH-R1 and CRH-R2 mRNA are expressed in the main chicken brain parts. In peripheral organs, CRH-R1 mRNA shows a more restricted distribution, whereas CRH-R2 mRNA is expressed in every tissue investigated, indicating that a number of actions of CRH and/or CRH-like peptides remain to be discovered in the chicken as well as in other vertebrates.

  20. Characterization of luteinizing hormone and luteinizing hormone receptor and their indispensable role in the ovulatory process of the medaka.

    Directory of Open Access Journals (Sweden)

    Katsueki Ogiwara

    Full Text Available The molecular properties and roles of luteinizing hormone (Lh and its receptor (Lhcgrbb have not been studied for the medaka (Oryzias latipes, which is an excellent animal model for ovulation studies. Here, we characterized the medaka Lh/Lhcgrbb system, with attention to its involvement in the ovulatory process of this teleost fish. In the medaka ovary, follicle-stimulating hormone receptor mRNA was expressed in small and medium-sized follicles, while lhcgrbb mRNA was expressed in the follicle layers of all growing follicles. Experiments using HEK 293T cells expressing medaka Lhcgrbb in vitro revealed that gonadotropin from pregnant mare's serum and medaka recombinant Lh (rLh bound to the fish Lhcgrbb. The fish gonadotropin subunits Gtha, Fshb, and Lhb were essentially expressed at fairly constant levels in the pituitary of the fish during a 24-h spawning cycle. Using medaka rLh, we developed a follicle culture system that allowed us to follow the whole process of oocyte maturation and ovulation in vitro. This follicle culture method enabled us to determine that the Lh surge for the preovulatory follicle occurred in vivo between 19 and 15 h before ovulation. The present study also showed that oocyte maturation and ovulation were delayed several hours in vitro compared with in vivo. Treatment of large follicles with medaka rLh in vitro significantly increased the expression of Mmp15, which was previously demonstrated to be crucial for ovulation in the fish. These findings demonstrate that Lh/Lhcgrbb is critically involved in the induction of oocyte maturation and ovulation.

  1. Expression of luteinizing hormone/chorionic gonadotropin receptor in the rat pineal gland.

    Science.gov (United States)

    Itoh, Masanori T; Hosaka, Takeshi; Takahashi, Noriyuki; Ishizuka, Bunpei

    2006-08-01

    Luteinizing hormone (LH) influences the secretion of melatonin (N-acetyl-5-methoxytryptamine) from the pineal gland. The present study examined the possible presence of LH/chorionic gonadotropin (CG) receptor in the pineal gland of adult female rats. Reverse transcriptase-polymerase chain reaction analyses demonstrated that LH/CG receptor mRNA is expressed in the pineal gland. Western blotting showed that the pineal gland, like the ovary, contains an 80 kDa receptor protein. Immunohistochemistry revealed that LH/CG receptor, arylalkylamine N-acetyltransferase (a regulatory enzyme in melatonin biosynthesis) and serotonin (a melatonin precursor) are localized primarily to the same cells of the pineal gland. We further found that the levels of pineal LH/CG receptor protein in normal cycling female rats change significantly during the estrous cycle, being lowest at early metestrus. These results demonstrate that LH/CG receptor is expressed in the pineal gland, primarily in melatonin-synthesizing cells, namely pinealocytes. Furthermore, it is suggested that LH influences pineal melatonin secretion through binding to this receptor. In addition, LH/CG receptor levels in the pineal gland are regulated during the estrous cycle under normal physiological conditions.

  2. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    Science.gov (United States)

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  3. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Lu, Changxue; Cheng, Sheue-Yann

    2010-03-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis.

  4. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...

  5. Ischemic heart disease induces upregulation of endothelin receptor mRNA in human coronary arteries

    DEFF Research Database (Denmark)

    Wackenfors, Angelica; Emilson, Malin; Ingemansson, Richard;

    2004-01-01

    and controls using real-time polymerase chain reaction (real-time PCR). In addition, the suitability of organ culture as a model mimicking endothelin receptor changes in cardiovascular disease was evaluated by in vitro pharmacology and real-time PCR. Endothelin ETA and ETB receptor mRNA levels were......Endothelin has been implicated in the pathogenesis of ischemic heart disease and congestive heart failure. The aims were to quantify endothelin type A (ETA) and type B (ETB) receptor mRNA levels in human coronary arteries from patients with ischemic heart disease, congestive heart failure...

  6. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    Science.gov (United States)

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  7. The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation

    Directory of Open Access Journals (Sweden)

    Yue Yin

    2014-03-01

    Full Text Available The growth hormone secretagogue receptor (GHSR, also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed.

  8. Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunsheng, E-mail: liuchunshengidid@126.com [State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing (China); Wang, Qiangwei [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Liang, Kang; Liu, Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhou, Bingsheng [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Zhang, Xiaowei; Liu, Hongling [State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing (China); Giesy, John P. [Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3 (Canada); Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Yu, Hongxia, E-mail: yuhx@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing (China)

    2013-03-15

    Highlights: ► TDCPP or TPP exposure caused developmental toxicity. ► Receptor-centered PCR array was developed. ► TDCPP or TPP exposure altered mRNA expression in receptor-centered network. -- Abstract: Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) are frequently detected in biota, including fish. However, knowledge of the toxicological and molecular effects of these currently used flame retardants is limited. In the present study, an in vivo screening approach was developed to evaluate effects of TDCPP and TPP on developmental endpoints and receptor-associated expression of mRNA in zebrafish embryos/larvae. Exposure to TDCPP or TPP resulted in significantly smaller rates of hatching and survival, in dose- and time-dependent manners. The median lethal concentration (LC{sub 50}) was 7.0 mg/L for TDCPP and 29.6 mg/L for TPP at 120 hour post-fertilization (hpf). Real-time PCR revealed alterations in expression of mRNAs involved in aryl hydrocarbon receptors (AhRs)-, peroxisome proliferator-activated receptor alpha (PPARα)-, estrogenic receptors (ERs)-, thyroid hormone receptor alpha (TRα)-, glucocorticoid receptor (GR)-, and mineralocorticoid receptor (MR)-centered gene networks. Exposure to positive control chemicals significantly altered abundances of mRNA in corresponding receptor-centered gene networks, a result that suggests that it is feasible to use zebrafish embryos/larvae to evaluate effects of chemicals on mRNA expression in these gene networks. Exposure to TDCPP altered transcriptional profiles in all six receptor-centered gene networks, thus exerting multiple toxic effects. TPP was easily metabolized and its potency to change expression of mRNA involved in receptor-centered gene networks was weaker than that of TDCPP. The PPARα- and TRα-centered gene networks might be the primary pathways affected by TPP. Taken together, these results demonstrated that TDCPP and TPP could alter mRNA expression of genes involved in

  9. Relationship between expression of somatostatin receptors subtype 2 mRNA and estrogen and progesterone receptors in breast cancer

    Institute of Scientific and Technical Information of China (English)

    曾希志; 姚榛祥

    2003-01-01

    Objectives To observe the expression of somatostatin receptor subtype 2 (SSTR2) mRNA, and investigate the relationship between the expression of SSTR2 mRNA and the expressions of estrogen and progesterone receptors (ERs and PRs) in benign and malignant breast tissues.Methods Samples from a total of 23 breast carcinomas, 16 mammary hyperplasias, and 9 mammary fibroadenomas were analyzed. SSTR2 mRNA expression was examined by in situ hybridization using multiphase oligoprobes. ER and PR expressions were detected by immunohistochemical staining. A computerized image analysis system was utilized to estimate the relative content of SSTR2 mRNA.Results The rate of expression (87.0%) and relative content (0.47) of SSTR2 mRNA in breast cancer were higher than those in benign breast tissue (64%,0.26) (P<0.05). SSTR2 mRNA expression was closely correlated with ER and PR expressions in breast cancer (P<0.05). SSTR2 mRNA was also positively correlated with ER expression in benign breast tissues.Conclusions SSTR2 mRNA expression is higher or in benign breast tissues than in malignant ones. There is a significant positive correlation between SSTR2 mRNA and ER and PR expressions. Combined antiestrogen and somatostatin analogue in treatment of ER-positive breast cancers should be further investigated.

  10. Nanostructured sensors containing immobilized nuclear receptors for thyroid hormone detection.

    Science.gov (United States)

    Bendo, Luana; Casanova, Monise; Figueira, Ana Carolina M; Polikarpov, Igor; Zucolotto, Valtencir

    2014-05-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptors (NRs) superfamily, being encoded by two genes: TRa and TRbeta. In this paper, the ligand-binding domain (LBD) of the TRbeta1 isoform was immobilized on the surface of nanostructured electrodes for TR detection. The platforms containing TRbeta1-LBD were applied to the detection of specific ligand agonists, including the natural hormones T3 (triiodothyronine) and T4 (thyroxine), and the synthetic agonists TRIAC (3,5,3'-triiodothyroacetic acid) and GC-1 [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl phenoxy) acetic acid]. Detection was performed via impedance spectroscopy. The biosensors were capable of distinguishing between the thyroid hormones T3 and T4, and/or the analogues TRIAC and GC-1 at concentrations as low as 50 nM. The detection and separation of thyroid hormones and analogue ligands by impedance techniques represents an innovative tool in the field of nanomedicine because it allows the design of inexpensive devices for the rapid and real-time detection of distinct ligand/receptor systems.

  11. Expression of functional growth hormone receptor in a mouse L cell line infected with recombinant vaccinia virus

    NARCIS (Netherlands)

    Strous, G J; van Kerkhof, P; Verheijen, C; Rossen, J W; Liou, W; Slot, J W; Roelen, C A; Schwartz, A L

    1994-01-01

    The growth hormone receptor is a member of a large family of receptors including the receptors for prolactin and interleukins. Upon binding to one molecule of growth hormone two growth hormone receptor polypeptides dimerize. We have expressed the rabbit growth hormone receptor DNA in transfected mou

  12. Hormone therapy modulates ET(A) mRNA expression in the aorta of ovariectomised New Zealand White rabbits

    DEFF Research Database (Denmark)

    Pedersen, Susan Helene; Nielsen, Lars Bo; Pedersen, Nina Gros

    2009-01-01

    ) + NETA, CEE + MPA or placebo. The thoracic aorta and the epicardial coronary artery were used for mRNA expression and myograph analyses, respectively. RESULTS: E(2) and CEE alone significantly reduced ET-1 receptor subtype A (ET(A)) mRNA expression compared with placebo treatment. The E(2)-induced...... reduction in ET(A) mRNA expression persisted with the co-administration of NETA, but the CEE induced reduction in ET(A) mRNA expression was not maintained with the co-administration of MPA. Treatment with CEE alone significantly increased endotelin-1 converting enzyme (ECE) mRNA expression and CEE combined...... with MPA reduced prepro-endothelin-1 (ppET-1) mRNA expression when compared with placebo. ET-1 receptor subtype B mRNA expression and ET-1 induced vasocontraction was unaffected by treatment. CONCLUSIONS: E(2) and CEE treatment exert potentially beneficial vascular effects through regulation of the ET(A...

  13. Effect of nutrition on plasma lipid profile and mRNA levels of ovarian genes involved in steroid hormone synthesis in Hu sheep during luteal phase.

    Science.gov (United States)

    Ying, S J; Xiao, S H; Wang, C L; Zhong, B S; Zhang, G M; Wang, Z Y; He, D Y; Ding, X L; Xing, H J; Wang, F

    2013-11-01

    Ovarian steroid hormones regulate follicular growth and atresia. This study aims to determine whether key ovarian sterol-regulatory genes are differentially expressed in Hu sheep under different short-term nutritional regimens. Estrus was synchronized using intravaginal progestagen sponges. The ewes were assigned randomly to 3 groups. On d 6 to 12 of their estrous cycle, the control (CON) group received a maintenance diet (1.0×M), the supplemented (SUP) group received 1.5×M, and the restricted (R) group received 0.5×M. On d 7 to 12, blood samples were taken. The sheep were slaughtered at the end of the treatment, and their organs and ovaries were collected. The plasma concentrations of urea (P2.5 mm. Follicle size affected the mRNA expression of very low density lipoprotein receptor (VLDLR), estrogen receptor 2 (ESR2), FSH receptor (FSHR), CYP17A1, and CYP19A1 (P<0.05). In conclusion, we suggest that a potential mechanism by which short-term negative energy balance inhibits follicular growth may involve responses to disrupted reproductive hormone concentrations and influenced the intrafollicular expression of CYP17A1, CYP19A1, and ESR1. This result may be due to increased plasma urea and lipid concentrations.

  14. Resistance to Thyroid Hormone due to defective thyroid receptor alpha

    OpenAIRE

    Moran, Carla; Chatterjee, Krishna

    2015-01-01

    This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.beem.2015.07.007 Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, ...

  15. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves' disease.

    Science.gov (United States)

    Brand, Oliver J; Barrett, Jeffrey C; Simmonds, Matthew J; Newby, Paul R; McCabe, Christopher J; Bruce, Christopher K; Kysela, Boris; Carr-Smith, Jackie D; Brix, Thomas; Hunt, Penny J; Wiersinga, Wilmar M; Hegedüs, Laszlo; Connell, John; Wass, John A H; Franklyn, Jayne A; Weetman, Anthony P; Heward, Joanne M; Gough, Stephen C L

    2009-05-01

    Graves' disease (GD) is a common autoimmune disease (AID) that shares many of its susceptibility loci with other AIDs. The thyroid stimulating hormone receptor (TSHR) represents the primary autoantigen in GD, in which autoantibodies bind to the receptor and mimic its ligand, thyroid stimulating hormone, causing the characteristic clinical phenotype. Although early studies investigating the TSHR and GD proved inconclusive, more recently we provided convincing evidence for association of the TSHR region with disease. In the current study, we investigated a combined panel of 98 SNPs, including 70 tag SNPs, across an extended 800 kb region of the TSHR to refine association in a cohort of 768 GD subjects and 768 matched controls. In total, 28 SNPs revealed association with GD (P associations at rs179247 (chi(2) = 32.45, P = 8.90 x 10(-8), OR = 1.53, 95% CI = 1.32-1.78) and rs12101255 (chi(2) = 30.91, P = 1.95 x 10(-7), OR = 1.55, 95% CI = 1.33-1.81), both located in intron 1 of the TSHR. Association of the most associated SNP, rs179247, was replicated in 303 GD families (P = 7.8 x 10(-4)). In addition, we provide preliminary evidence that the disease-associated genotypes of rs179247 (AA) and rs12101255 (TT) show reduced mRNA expression ratios of flTSHR relative to two alternate TSHR mRNA splice variants.

  16. Thyroid hormone may regulate mRNA abundance in liver by acting on microRNAs.

    Directory of Open Access Journals (Sweden)

    Hongyan Dong

    Full Text Available MicroRNAs (miRNAs are extensively involved in diverse biological processes. However, very little is known about the role of miRNAs in mediating the action of thyroid hormones (TH. Appropriate TH levels are known to be critically important for development, differentiation and maintenance of metabolic balance in mammals. We induced transient hypothyroidism in juvenile mice by short-term exposure to methimazole and perchlorate from post natal day (PND 12 to 15. The expression of miRNAs in the liver was analyzed using Taqman Low Density Arrays (containing up to 600 rodent miRNAs. We found the expression of 40 miRNAs was significantly altered in the livers of hypothyroid mice compared to euthyroid controls. Among the miRNAs, miRs-1, 206, 133a and 133b exhibited a massive increase in expression (50- to 500-fold. The regulation of TH on the expression of miRs-1, 206, 133a and 133b was confirmed in various mouse models including: chronic hypothyroid, short-term hyperthyroid and short-term hypothyroid followed by TH supplementation. TH regulation of these miRNAs was also confirmed in mouse hepatocyte AML 12 cells. The expression of precursors of miRs-1, 206, 133a and 133b were examined in AML 12 cells and shown to decrease after TH treatment, only pre-mir-206 and pre-mir-133b reached statistical significance. To identify the targets of these miRNAs, DNA microarrays were used to examine hepatic mRNA levels in the short-term hypothyroid mouse model relative to controls. We found transcripts from 92 known genes were significantly altered in these hypothyroid mice. Web-based target predication software (TargetScan and Microcosm identified 14 of these transcripts as targets of miRs-1, 206, 133a and 133b. The vast majority of these mRNA targets were significantly down-regulated in hypothyroid mice, corresponding with the up-regulation of miRs-1, 206, 133a and 133b in hypothyroid mouse liver. To further investigate target genes, miR-206 was over-expressed in

  17. Steroidal Hormone Receptor Expression in Male Breast Cancer

    Directory of Open Access Journals (Sweden)

    Fatemeh Homaei-Shandiz

    2014-01-01

    Full Text Available Introduction: The etiology of male breast cancer is unclear, but hormonal levels may play a role in development of this disease. It seems that the risk of male breast cancer related to increased lifelong exposure to estrogen or reduced androgen. The aim of this study was to investigate the expression of the steroid hormone receptors including estrogen receptor (ER and progesterone receptor (PR in Iranian cases with male breast cancer. Methods: This is a prospective review of 18 cases of male breast cancer in in Omid Hospital, Mashhad, North East of Iran, between October 2001 and October 2006. ER and PR were measured by immunohistochemistry. Clinicopathologic features and family history were obtained by interview. Data were analyzed with SPSS 13 using descriptive statistics.  Results: The median age was 63.2 year. All the cases were infiltrating ductal carcinoma. A high rate of expression of ER (88.8% and PR (66.6% was found in the studied cases. Conclusion: Cancers of the male breast are significantly more likely than cancers of the female breast to express hormonal receptors.

  18. Thyroid hormones and thyroid hormone receptors: Effects of thyromimetics on reverse cholesterol transport

    Institute of Scientific and Technical Information of China (English)

    Matteo; Pedrelli; Camilla; Pramfalk; Paolo; Parini

    2010-01-01

    Reverse cholesterol transport (RCT) is a complex process which transfers cholesterol from peripheral cells to the liver for subsequent elimination from the body via feces. Thyroid hormones (THs) affect growth, develop- ment, and metabolism in almost all tissues. THs exert their actions by binding to thyroid hormone receptors (TRs). There are two major subtypes of TRs, TRα and TRβ, and several isoforms (e.g. TRα1, TRα2, TRβ1, and TRβ2). Activation of TRα1 affects heart rate, whereas activation of TRβ1 has po...

  19. Immunohistochemical localization of sex hormone receptors in two Raillietina tapeworms.

    Science.gov (United States)

    Chen, L; Sun, Y M; Mu, L; Zeng, Y; Li, H Y; Yang, T H

    2017-03-08

    Sex hormone receptors play critical roles in development and reproduction. However, it is not known whether they exist in Raillietina tapeworms, and if they do, whether they have a similar function to that in vertebrates. We examined the immunohistochemical distributions of androgen receptors (ARs), estrogen receptors (ERs), and progesterone receptors (PRs) in the tissues of two tapeworm species: Raillietina echinobothrida and Raillietina tetragona. Immunopositive ARs were found in the entire reproductive system of R. echinobothrida, including the testes, ovaries, and oocysts, and weakly immunopositive ERs and PRs were found in the testes, ovaries, and oocysts. Immunopositive ARs were also found throughout the entire reproductive system of R. tetragona, including the testes, ovaries, and oocysts, and weakly immunopositive ERs were in the testes and oocysts; the PRs were distributed in an immunonegative manner. The results show that androgens and their receptors play critical roles in reproductive system development in the two tapeworms. The immunoreactivity and tissue localizations of the sex hormone receptors suggest that, in both species, they have similar functions as in vertebrates, and modulate reproduction.

  20. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  1. Changes in mRNA for metabotropic glutamate receptors after transient cerebral ischaemia

    DEFF Research Database (Denmark)

    Rosdahl, D; Seitzberg, D A; Christensen, Thomas;

    1994-01-01

    Using a rat 4-vessel occlusion model of cerebral ischaemia we studied the changes in the mRNA level for the metabotropic receptor subtypes mGluR1 alpha, mGluR1 beta, mGluR2, mGluR3, mGluR4, and mGluR5 by means of in situ hybridization with oligonucleotides. After 24 hours of reperfusion the mRNA ...

  2. The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    匡洪宇; 邹伟; 刘丹; 史榕荇; 程丽华; 殷慧清; 刘晓民

    2003-01-01

    Objective To evaluate the potential role of insulin-like growth factor-1 receptor mRNA(IGF-IR mRNA) in the onset and development of retinopathy in diabetic rats.Methods A diabetic model was duplicated in Wistar rats. The early changes in the retina were examined using light and transmission electron microscopy. Expression of IGF-IR mRNA was analyzed using in situ hybridization.Results Weak expression of IGF-IR mRNA(5%) was found in retinas of normal rats, but was significantly increased (15% and 18%) in the retinas of diabetic rats after 3 and 6 months of diabetes (P<0.01). In situ hybridization and morphological study demonstrated that there was a positive correlation between IGF-IR mRNA expression and retinal changes at various stages.Conclusion Increased IGF-IR mRNA might play an important role in the onset and development of diabetic retinopathy.

  3. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  4. Dynein light chain binding to a 3′-untranslated sequence mediates parathyroid hormone mRNA association with microtubules

    Science.gov (United States)

    Epstein, Eyal; Sela-Brown, Alin; Ringel, Israel; Kilav, Rachel; King, Stephen M.; Benashski, Sharon E.; Yisraeli, Joel K.; Silver, Justin; Naveh-Many, Tally

    2000-01-01

    The 3′-untranslated region (UTR) of mRNAs binds proteins that determine mRNA stability and localization. The 3′-UTR of parathyroid hormone (PTH) mRNA specifically binds cytoplasmic proteins. We screened an expression library for proteins that bind the PTH mRNA 3′-UTR, and the sequence of 1 clone was identical to that of the dynein light chain LC8, a component of the dynein complexes that translocate cytoplasmic components along microtubules. Recombinant LC8 binds PTH mRNA 3′-UTR, as shown by RNA electrophoretic mobility shift assay. We showed that PTH mRNA colocalizes with microtubules in the parathyroid gland, as well as with a purified microtubule preparation from calf brain, and that this association was mediated by LC8. To our knowledge, this is the first report of a dynein complex protein binding an mRNA. The dynein complex may be the motor that is responsible for transporting mRNAs to specific locations in the cytoplasm and for the consequent is asymmetric distribution of translated proteins in the cell. PMID:10683380

  5. Angiotensin II receptor mRNA expression and vasoconstriction in human coronary arteries

    DEFF Research Database (Denmark)

    Wackenfors, Angelica; Pantev, Emil; Emilson, Malin;

    2004-01-01

    Angiotensin II is a potent vasoconstrictor that is implicated in the pathogenesis of hypertension, heart failure and atherosclerosis. In the present study, angiotensin II receptor mRNA expression levels were quantified by real-time polymerase chain reaction and the vasocontractile responses...... to angiotensin II were characterised by in vitro pharmacology in endothelium-denuded human coronary arteries. Angiotensin II type 1 (AT(1)) and type 2 (AT(2)) receptor mRNA expression levels were significantly down-regulated in arteries from patients with heart failure as compared to controls. The angiotensin II...

  6. Osteopontin negatively regulates parathyroid hormone receptor signaling in osteoblasts.

    Science.gov (United States)

    Ono, Noriaki; Nakashima, Kazuhisa; Rittling, Susan R; Schipani, Ernestina; Hayata, Tadayoshi; Soma, Kunimichi; Denhardt, David T; Kronenberg, Henry M; Ezura, Yoichi; Noda, Masaki

    2008-07-11

    Systemic hormonal control exerts its effect through the regulation of local target tissues, which in turn regulate upstream signals in a feedback loop. The parathyroid hormone (PTH) axis is a well defined hormonal signaling system that regulates calcium levels and bone metabolism. To understand the interplay between systemic and local signaling in bone, we examined the effects of deficiency of the bone matrix protein osteopontin (OPN) on the systemic effects of PTH specifically within osteoblastic cell lineages. Parathyroid hormone receptor (PPR) transgenic mice expressing a constitutively active form of the receptor (caPPR) specifically in cells of the osteoblast lineage have a high bone mass phenotype. In these mice, OPN deficiency further increased bone mass. This increase was associated with conversion of the major intertrabecular cell population from hematopoietic cells to stromal/osteoblastic cells and parallel elevations in histomorphometric and biochemical parameters of bone formation and resorption. Treatment with small interfering RNA (siRNA) for osteopontin enhanced H223R mutant caPPR-induced cAMP-response element (CRE) activity levels by about 10-fold. Thus, in addition to the well known calcemic feedback system for PTH, local feedback regulation by the bone matrix protein OPN also plays a significant role in the regulation of PTH actions.

  7. Homologous and heterologous regulation of pituitary receptors for ghrelin and growth hormone-releasing hormone.

    Science.gov (United States)

    Luque, Raúl M; Kineman, Rhonda D; Park, Seungjoon; Peng, Xiao-Ding; Gracia-Navarro, Francisco; Castaño, Justo P; Malagon, María M

    2004-07-01

    Secretion of GH by pituitary somatotropes is primarily stimulated by the hypothalamic GHRH through the activation of a specific G protein-coupled receptor, GHRH receptor (GHRH-R). GH is also released in response to ghrelin, a peptide produced in the stomach, hypothalamus, and pituitary that activates somatotropes via a distinct G protein-coupled receptor, referred to as the GH secretagogue receptor (GHS-R). Here, we have analyzed the expression of both GHRH-R and GHS-R (by multiplex RT-PCR) in porcine pituitary cell cultures, after acute (4 h) treatment with GHRH or ghrelin as well as with other regulators of somatotropes (somatostatin, dexamethasone). Exposure of cultures to GHRH decreased GHRH-R mRNA content and also diminished GHS-R transcript levels. Likewise, ghrelin down-regulated both GHS-R and GHRH-R expression. Interestingly, administration of the activator of adenylate cyclase, forskolin, decreased GHRH-R mRNA levels but had no effect on GHS-R, thus suggesting a distinct contribution of the various intracellular signals operating in somatotropes to the regulation of the expression of these receptors. Accordingly, an atypical activator of adenylate cyclase in the pig somatotrope is low-dose (10(-13) m) somatostatin, which also suppressed GHRH-R mRNA levels without altering GHS-R expression. Finally, dexamethasone did not modify GHRH-R or GHS-R expression. In summary, our data show for the first time that ghrelin, as well as GHRH, mediates homologous and heterologous down-regulation of their own receptor synthesis. However, our results also indicate that the expression of porcine GHRH-R and GHS-R is regulated by distinct signals that may differ from those reported in other mammalian species.

  8. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    Science.gov (United States)

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  9. Genetic models for the study of luteinizing hormone receptor function

    Directory of Open Access Journals (Sweden)

    Prema eNarayan

    2015-09-01

    Full Text Available The luteinizing hormone/chorionic gonadotropin receptor, LHCGR, is essential for fertility in men and women. LHCGR binds luteinizing hormone (LH as well as the highly homologous chorionic gonadotropin (CG. Signaling from LHCGR is required for steroidogenesis and gametogenesis in males and females and for sexual differentiation in the male. The importance of LHCGR in reproductive physiology is underscored by the large number of naturally occurring inactivating and activating mutations in the receptor that result in reproductive disorders. Consequently, several genetically modified mouse models have been developed for the study of LHCGR function. They include targeted deletion of LH and LHCGR that mimic inactivating mutations in hormone and receptor, expression of a constitutively active mutant in LHCGR that mimics activating mutations associated with familial male-limited precocious puberty and transgenic models of LH and hCG overexpression. This review summarizes the salient findings from these models and their utility in understanding the physiological and pathological consequences of loss and gain of function in LHCGR signaling.

  10. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Pilar Gil-Ibáñez

    Full Text Available The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3 to its nuclear receptors (TR to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development.

  11. Receptors and effects of gut hormones in three osteoblastic cell lines

    Directory of Open Access Journals (Sweden)

    Wilson Peter JM

    2011-07-01

    Full Text Available Abstract Background In recent years the interest on the relationship of gut hormones to bone processes has increased and represents one of the most interesting aspects in skeletal research. The proportion of bone mass to soft tissue is a relationship that seems to be controlled by delicate and subtle regulations that imply "cross-talks" between the nutrient intake and tissues like fat. Thus, recognition of the mechanisms that integrate a gastrointestinal-fat-bone axis and its application to several aspects of human health is vital for improving treatments related to bone diseases. This work analysed the effects of gut hormones in cell cultures of three osteoblastic cell lines which represent different stages in osteoblastic development. Also, this is the first time that there is a report on the direct effects of glucagon-like peptide 2, and obestatin on osteoblast-like cells. Methods mRNA expression levels of five gut hormone receptors (glucose-dependent insulinotropic peptide [GIP], glucagon-like peptide 1 [GLP-1], glucagon-like peptide 2 [GLP-2], ghrelin [GHR] and obestatin [OB] were analysed in three osteoblastic cell lines (Saos-2, TE-85 and MG-63 showing different stages of osteoblast development using reverse transcription and real time polymerase chain reaction. The responses to the gut peptides were studied using assays for cell viability, and biochemical bone markers: alkaline phosphatase (ALP, procollagen type 1 amino-terminal propeptides (P1NP, and osteocalcin production. Results The gut hormone receptor mRNA displayed the highest levels for GIP in Saos-2 and the lowest levels in MG-63, whereas GHR and GPR39 (the putative obestatin receptor expression was higher in TE-85 and MG-63 and lower in Saos-2. GLP-1 and GLP-2 were expressed only in MG-63 and TE-85. Treatment of gut hormones to cell lines showed differential responses: higher levels in cell viability in Saos-2 after GIP, in TE-85 and MG-63 after GLP-1, GLP-2, ghrelin and

  12. Neuronal histamine and expression of corticotropin-releasing hormone, vasopressin and oxytocin in the hypothalamus: relative importance of H1 and H2 receptors.

    Science.gov (United States)

    Kjaer, A; Larsen, P J; Knigge, U; Jørgensen, H; Warberg, J

    1998-08-01

    Centrally administered histamine (HA) stimulates the secretion of the pro-opiomelanocortin-derived peptides ACTH and beta-endorphin as well as prolactin. The effect of HA on secretion of these adenohypophysial hormones is indirect and may involve activation of hypothalamic neurons containing corticotropin-releasing hormone (CRH), arginine-vasopressin (AVP) or oxytocin (OT). We studied the effect of activating central HA receptors by central infusion of HA, HA agonists or antagonists on expression of CRH, AVP and OT mRNA in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Intracerebroventricular infusion of HA (270 nmol), the H1-receptor agonist 2-thiazolylethylamine or the H2-receptor agonist 4-methylhistamine increased the level of CRH mRNA in the PVN, and OT mRNA in the SON. In contrast, none of these compounds had any effect on expression of AVP mRNA in the PVN or SON. Administration of the H1-receptor antagonist mepyramine or the H2-receptor antagonist cimetidine had no effect on basal expression of CRH, AVP or OT mRNA in the PVN and/or SON except for a slight inhibitory effect of cimetidine on CRH mRNA expression in the PVN. Pretreatment with mepyramine or cimetidine before HA administration inhibited the HA-induced increase in OT mRNA levels but had no effect on the HA-induced increase in CRH mRNA levels in the PVN. We conclude that HA stimulates hypothalamic CRH and OT neurons by increasing mRNA levels, and this effect seems to be mediated via activation of both HA H1 and H2 receptors.

  13. Metabolic hormones regulate basal and growth hormone-dependent igf2 mRNA level in primary cultured coho salmon hepatocytes: effects of insulin, glucagon, dexamethasone, and triiodothyronine.

    Science.gov (United States)

    Pierce, A L; Dickey, J T; Felli, L; Swanson, P; Dickhoff, W W

    2010-03-01

    Igf1 and Igf2 stimulate growth and development of vertebrates. Circulating Igfs are produced by the liver. In mammals, Igf1 mediates the postnatal growth-promoting effects of growth hormone (Gh), whereas Igf2 stimulates fetal and placental growth. Hepatic Igf2 production is not regulated by Gh in mammals. Little is known about the regulation of hepatic Igf2 production in nonmammalian vertebrates. We examined the regulation of igf2 mRNA level by metabolic hormones in primary cultured coho salmon hepatocytes. Gh, insulin, the glucocorticoid agonist dexamethasone (Dex), and glucagon increased igf2 mRNA levels, whereas triiodothyronine (T(3)) decreased igf2 mRNA levels. Gh stimulated igf2 mRNA at physiological concentrations (0.25x10(-9) M and above). Insulin strongly enhanced Gh stimulation of igf2 at low physiological concentrations (10(-11) M and above), and increased basal igf2 (10(-8) M and above). Dex stimulated basal igf2 at concentrations comparable to those of stressed circulating cortisol (10(-8) M and above). Glucagon stimulated basal and Gh-stimulated igf2 at supraphysiological concentrations (10(-7) M and above), whereas T(3) suppressed basal and Gh-stimulated igf2 at the single concentration tested (10(-7) M). These results show that igf2 mRNA level is highly regulated in salmon hepatocytes, suggesting that liver-derived Igf2 plays a significant role in salmon growth physiology. The synergistic regulation of igf2 by insulin and Gh in salmon hepatocytes is similar to the regulation of hepatic Igf1 production in mammals.

  14. Hair-cycle-dependent expression of parathyroid hormone-related protein and its type I receptor: evidence for regulation at the anagen to catagen transition.

    Science.gov (United States)

    Cho, Yong Mee; Woodard, Grant L; Dunbar, Maureen; Gocken, Todd; Jimènez, Juan A; Foley, John

    2003-05-01

    The humoral hypercalcemia factor parathyroid hormone-related protein is a paracrine-signaling molecule that regulates the development of several organ systems, including the skin. In pathologic circumstances such as hypercalcemia and in development, parathyroid hormone-related protein signaling appears to be mediated by the type I parathyroid hormone/parathyroid hormone-related protein receptor. In order to clarify the role of the ligand and receptor pair in cutaneous biology, gene expression was monitored in a series of murine skin samples ranging from embryonic day 14 to 2 y with in situ hybridization and RNase protection. In all samples, high levels of parathyroid hormone-related protein transcripts were exclusively expressed in the developing and adult hair follicle but were not observed in the interfollicular epidermis. In the adult, parathyroid hormone-related protein mRNA expression was dynamically regulated as a function of the murine hair cycle in a way similar to other signaling molecules that regulate the anagen to catagen transition. PTH receptor transcripts were abundantly expressed in the developing dermis. In the adult skin, PTH receptor mRNA was markedly reduced, but again demonstrated hair-cycle-dependent expression. The dorsal skin of the keratin 14-parathyroid hormone-related protein mouse was used to evaluate the impact of overexpression of the peptide on the murine hair cycle. All types of hair were 30-40% shorter in adult keratin 14-parathyroid hormone-related protein mice as compared with wild-type littermates. This appeared to result from a premature entry into the catagen phase of the hair cycle. Finally, the relationship between parathyroid hormone-related protein signaling and other growth factors that regulate the hair cycle was examined by cross-breeding experiments employing keratin 14-parathyroid hormone-related protein mice and fibroblast growth factor-5-knockout mice. It appears that parathyroid hormone-related protein and

  15. Drosophila glutamate receptor mRNA expression and mRNP particles.

    Science.gov (United States)

    Ganesan, Subhashree; Karr, Julie E; Featherstone, David E

    2011-01-01

    The processes controlling glutamate receptor expression early in synaptogenesis are poorly understood. Here, we examine glutamate receptor (GluR) subunit mRNA expression and localization in Drosophila embryonic/larval neuromuscular junctions (NMJs). We show that postsynaptic GluR subunit gene expression is triggered by contact from the presynaptic nerve, approximately halfway through embryogenesis. After contact, GluRIIA and GluRIIB mRNA abundance rises quickly approximately 20-fold, then falls within a few hours back to very low levels. Protein abundance, however, gradually increases throughout development. At the same time that mRNA levels decrease following their initial spike, GluRIIA, GluRIIB, and GluRIIC subunit mRNA aggregates become visible in the cytoplasm of postsynaptic muscle cells. These mRNA aggregates do not colocalize with eIF4E, but nevertheless presumably represent mRNP particles of unknown function. Multiplex FISH shows that different GluR subunit mRNAs are found in different mRNPs. GluRIIC mRNPs are most common, followed by GluRIIA and then GluRIIB mRNPs. GluR mRNP density is not increased near NMJs, for any subunit; if anything, GluR mRNP density is highest away from NMJs and near nuclei. These results reveal some of the earliest events in postsynaptic development and provide a foundation for future studies of GluR mRNA biology.

  16. Expression of luteinizing hormone receptors in the mouse penis.

    Science.gov (United States)

    Kokk, Kersti; Kuuslahti, Marianne; Keisala, Tiina; Purmonen, Sami; Kaipia, Antti; Tammela, Teuvo; Orro, Helen; Simovart, Helle-Evi; Pöllänen, Pasi

    2011-01-01

    The role of luteinizing hormone (LH) in the regulation of normal reproductive functions in males and females is quite well established. Besides the expression of LH receptors in the target cells in gonads, it has been found in several extragonadal organs. There is no information about the expression of LH receptors in the penis up to now. The aim of the present study is to investigate the expression of the LH receptor in the mouse penis to see if LH effects are possible in the penis. BALB/c mice were used as donors of normal penis and testis tissue. Immunocytochemistry, Western blotting, and quantitative reverse transcriptase polymerase chain reactions (RT-PCRs) were used for the detection of the LH receptor. Positive immunoreaction for LH receptors was present in the nuclei of urethral epithelium and endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis. Western blotting experiments demonstrated the presence of LH antigen at M(r) = 97.4 and 78 kd. Quantitative RT-PCRs confirmed the expression of LH receptor in the penis. Our results show that LH receptor is expressed in the body of the mouse penis; thus, it may directly regulate functions of penile tissue.

  17. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, L.M.; Catt, K.J. (National Inst. of Health, Bethesda, MD (United States))

    1991-10-01

    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNA in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.

  18. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Kyren A. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122 (Australia); Zhao, Zhe; Knower, Kevin C. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); To, Sarah Q. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia); Chand, Ashwini L. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Clyne, Colin D., E-mail: Colin.clyne@princehenrys.org [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia)

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  19. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M.; Ishii, S. (Waseda Univ., Tokyo (Japan))

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  20. The bovine chemokine receptors and their mRNA abundance in mononuclear phagocytes

    Directory of Open Access Journals (Sweden)

    Ashley George

    2010-07-01

    Full Text Available Abstract Background The chemokine and chemokine receptor families play critical roles in both the healthy and diseased organism mediating the migration of cells. The chemokine system is complex in that multiple chemokines can bind to one chemokine receptor and vice versa. Although chemokine receptors have been well characterised in humans, the chemokine receptor repertoire of cattle is not well characterised and many sequences are yet to be experimentally validated. Results We have identified and sequenced bovine homologs to all identified functional human chemokine receptors. The bovine chemokine receptors show high levels of similarity to their human counterparts and similar genome arrangements. We have also characterised an additional bovine chemokine receptor, not present in the available genome sequence of humans or the more closely related pigs or horses. This receptor shows the highest level of similarity to CCR1 but shows significant differences in regions of the protein that are likely to be involved in ligand binding and signalling. We have also examined the mRNA abundance levels of all identified bovine chemokine receptors in mononuclear phagocytic cells. Considerable differences were observed in the mRNA abundance levels of the receptors, and interestingly the identified novel chemokine receptor showed differing levels of mRNA abundance to its closest homolog CCR1. The chemokine receptor repertoire was shown to differ between monocytes, macrophages and dendritic cells. This may reflect the differing roles of these cells in the immune response and may have functional consequences for the trafficking of these cells in vivo. Conclusions In summary, we have provided the first characterisation of the complete bovine chemokine receptor gene repertoire including a gene that is potentially unique to cattle. Further study of this receptor and its ligands may reveal a specific role of this receptor in cattle. The availability of the bovine

  1. Androgen receptor gene mutations in hormone-refractory prostate cancer.

    Science.gov (United States)

    Wallén, M J; Linja, M; Kaartinen, K; Schleutker, J; Visakorpi, T

    1999-12-01

    Prostate cancer is considered to be one of the most hormone-dependent human malignancies. As a key mediator of hormonal response, the androgen receptor (AR) is believed to have an important role in the progression of prostate cancer. Mutations in the coding region of the AR gene have been found in both untreated and hormone-refractory prostate cancer, but the frequency of such mutations at different stages of the disease is poorly documented and even contradictory results have been published. In the present study, the frequency of AR gene mutations was determined in 30 locally recurrent and two metastatic hormone-refractory prostate tumours using the polymerase chain reaction (PCR), non-radioactive single strand conformation polymorphism (SSCP), and sequencing. The length of the polymorphic CAG repeat, which is inversely correlated with the ability of the AR to activate transcription, was also analysed as well as the GGC repeat. Twelve samples were known to contain an AR gene amplification. Altogether, one point mutation (Gly(674)-->Ala) and one microsatellite mutation (CAG(20)-->CAG(18)) were found, both in cancers containing the AR gene amplification. The mean lengths of the polymorphic CAG and GGC repeats were similar to those observed in the normal population. These results favour the view that mutations in the AR gene are rare in hormone-refractory prostate cancer and do not play an important role, at least, in local relapse. Instead, the amplification and consequent overexpression of the wild-type AR gene seem to be the most common alteration involving the AR in hormone-refractory prostate cancer.

  2. Growth hormone-dependent phosphorylation of tyrosine 333 and/or 338 of the growth hormone receptor

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1995-01-01

    Many signaling pathways initiated by ligands that activate receptor tyrosine kinases have been shown to involve the binding of SH2 domain-containing proteins to specific phosphorylated tyrosines in the receptor. Although the receptor for growth hormone (GH) does not contain intrinsic tyrosine...

  3. Discovery & development of small molecule allosteric modulators of glycoprotein hormone receptors

    Directory of Open Access Journals (Sweden)

    Selvaraj G Nataraja

    2015-09-01

    Full Text Available Glycoprotein hormones, follicle-stimulating hormone (FSH, luteinizing hormone (LH, and thyroid stimulating hormone (TSH are heterodimeric proteins with a common subunit and hormone-specific subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G-protein coupled receptors (GPCR. FSH receptor (FSHR and LH receptor (LHR are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women & men respectively. TSH receptor (TSHR is expressed in thyroid cells and regulates the secretion of T3 & T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSH receptor and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical

  4. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode

    Energy Technology Data Exchange (ETDEWEB)

    Wray, S.; Grant, P.; Gainer, H. (National Institute of Neurological Disorders and Stroke, Bethesda, MD (USA))

    1989-10-01

    In situ hybridization histochemistry and immunocytochemistry were used to study the prenatal expression of luteinizing hormone-releasing hormone (LHRH) cells in the mouse. Cells expressing LHRH mRNA and peptide product were first detected on embryonic day 11.5 (E11.5) in the olfactory pit. On E12.5, the majority of LHRH cells were located on tracks extending from the olfactory pit to the base of the telencephalon. From E12.5 to E15.5, LHRH cells were detected in a rostral-to-caudal gradient in forebrain areas. Prior to E12.5, cells expressing LHRH mRNA were not detected in forebrain areas known to contain LHRH cells in postnatal animals. Quantitation of cells expressing LHRH mRNA showed that the number of labeled cells on E12.5 (approximately 800) equaled the number of LHRH cells in postnatal animals, but more than 90% of these cells were located in nasal regions. Between E12.5 and E15.5, the location of LHRH cells shifted. The number of LHRH cells in the forebrain increased, while the number of LHRH cells in nasal regions decreased over this same period. These findings establish that cells first found in the olfactory pit and thereafter in forebrain areas express the LHRH gene and correspond to the position of LHRH immunopositive cells found at these developmental times. To further examine the ontogeny of the LHRH system, immunocytochemistry in combination with (3H)thymidine autoradiography was used to determine when LHRH cells left the mitotic cycle. We show that LHRH neurons exhibit a discrete time of birth, suggesting that they arise as a single neuronal population between E10.0 and E11.0. Postnatal LHRH neurons were birth-dated shortly after differentiation of the olfactory placode and before LHRH mRNA was expressed in cells in the olfactory pit.

  5. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    Science.gov (United States)

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted.

  6. Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression.

    Science.gov (United States)

    Decherf, Stéphanie; Seugnet, Isabelle; Kouidhi, Soumaya; Lopez-Juarez, Alejandra; Clerget-Froidevaux, Marie-Stéphanie; Demeneix, Barbara A

    2010-03-01

    The type 4 melanocortin receptor MC4R, a key relay in leptin signaling, links central energy control to peripheral reserve status. MC4R activation in different brain areas reduces food intake and increases energy expenditure. Mice lacking Mc4r are obese. Mc4r is expressed by hypothalamic paraventricular Thyrotropin-releasing hormone (TRH) neurons and increases energy usage through activation of Trh and production of the thyroid hormone tri-iodothyronine (T(3)). These facts led us to test the hypothesis that energy homeostasis should require negative feedback by T(3) on Mc4r expression. Quantitative PCR and in situ hybridization showed hyperthyroidism reduces Mc4r mRNA levels in the paraventricular nucleus. Comparative in silico analysis of Mc4r regulatory regions revealed two evolutionarily conserved potential negative thyroid hormone-response elements (nTREs). In vivo ChIP assays on mouse hypothalamus demonstrated association of thyroid hormone receptors (TRs) with a region spanning one nTRE. Further, in vivo gene reporter assays revealed dose-dependent T(3) repression of transcription from the Mc4r promoter in mouse hypothalamus, in parallel with T(3)-dependent Trh repression. Mutagenesis of the nTREs in the Mc4r promoter demonstrated direct regulation by T(3), consolidating the ChIP results. In vivo shRNA knockdown, TR over-expression approaches and use of mutant mice lacking specific TRs showed that both TRalpha and TRbeta contribute to Mc4r regulation. T(3) repression of Mc4r transcription ensures that the energy-saving effects of T(3) feedback on Trh are not overridden by MC4R activation of Trh. Thus parallel repression by T(3) on hypothalamic Mc4r and Trh contributes to energy homeostasis.

  7. Memory time-course: mRNA 5-HT1A and 5-HT7 receptors.

    Science.gov (United States)

    Perez-Garcia, Georgina; Meneses, Alfredo

    2009-08-24

    In an attempt to clarify conflicting results about serotonin (5-hydroxytryptamine, 5-HT) 5-HT(1A) and 5-HT(7) receptors in memory formation, their mRNA expression was determined by RT-PCR in key brain areas for explicit and implicit memory. The time-course (0-120 h) of autoshaped responses was progressive and mRNA 5-HT(1A) or 5-HT(7) receptors expression monotonically augmented or declined in prefrontal cortex, hippocampus and raphe nuclei, respectively. At 24-48 h acutely 8-OH-DPAT (0.062 mg/kg) administration enhanced memory and attenuated mRNA 5-HT(1A)memory; however both combinations suppressed or up-regulated mRNA expression 5-HT(1A) or 5-HT(7) receptors. In contrast, AS19 (5.0 mg/kg) facilitated memory consolidation, decreased or increased hippocampal 5-HT(7) and 5-HT(1A) receptors expression. Together these data revealed that, when both 5-HT(1A) and 5-HT(7) receptors were stimulated by 8-OHDPAT under memory consolidation, subtle changes emerged, not evident at behavioral level though detectable at genes expression. Notably, high levels of efficient memory were maintained even when serotonergic tone, via either 5-HT(1A) or 5-HT(7) receptor, was down- or up-regulated. Nevertheless, WAY100635 plus SB-269970 impaired memory consolidation and suppressed their expression. Considering that serotonergic changes are prominent in AD patients with an earlier onset of disease the present approach might be useful in the identification of functional changes associated to memory formation, memory deficits and reversing or even preventing these deficits.

  8. Riboswitches as hormone receptors: hypothetical cytokinin-binding riboswitches in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Downes Brian

    2010-10-01

    Full Text Available Abstract Background Riboswitches are mRNA elements that change conformation when bound to small molecules. They are known to be key regulators of biosynthetic pathways in both prokaryotes and eukaryotes. Presentation of the Hypothesis The hypothesis presented here is that riboswitches function as receptors in hormone perception. We propose that riboswitches initiate or integrate signaling cascades upon binding to classic signaling molecules. The molecular interactions for ligand binding and gene expression control would be the same as for biosynthetic pathways, but the context and the cadre of ligands to consider is dramatically different. The hypothesis arose from the observation that a compound used to identify adenine binding RNA sequences is chemically similar to the classic plant hormone, or growth regulator, cytokinin. A general tenet of the hypothesis is that riboswitch-binding metabolites can be used to make predictions about chemically related signaling molecules. In fact, all cell permeable signaling compounds can be considered as potential riboswitch ligands. The hypothesis is plausible, as demonstrated by a cursory review of the transcriptome and genome of the model plant Arabidopsis thaliana for transcripts that i contain an adenine aptamer motif, and ii are also predicted to be cytokinin-regulated. Here, one gene, CRK10 (for Cysteine-rich Receptor-like Kinase 10, At4g23180, contains an adenine aptamer-related sequence and is down-regulated by cytokinin approximately three-fold in public gene expression data. To illustrate the hypothesis, implications of cytokinin-binding to the CRK10 mRNA are discussed. Testing the hypothesis At the broadest level, screening various cell permeable signaling molecules against random RNA libraries and comparing hits to sequence and gene expression data bases could determine how broadly the hypothesis applies. Specific cases, such as CRK10 presented here, will require experimental validation of direct

  9. Correlation of expression of preprothyrotropin-releasing hormone and receptor with rat testis development

    Institute of Scientific and Technical Information of China (English)

    李臻; 张远强; 刘新平; 许若军

    2002-01-01

    Objective To investigate the expression regulation of thyrotrophin-releasing hormone (TRH) and TRH receptor (TRH-R), and their role in the development of rat testis.Methods Oligonucleotide primers were designed from the sequences of rat hypothalamus prepro TRH (ppTRH) and pituitary TRH-R cDNA for reverse transcription polymerase chain reaction (RT-PCR). Specific fragments of ppTRH and TRH-R cDNA were cloned and sequenced. Expression plasmids containing ppTRH and TRH-R genes were then constructed, and expression was found in E.coli DH5-α. ppTRH and TRH-R mRNA in the testis was quantitated in RNA samples prepared from rats at different developmental stages by real time quantitative RT-PCR.Results The quantitative analyses demonstrated that no ppTRH and TRH mRNA could be detected at the earliest stage (day 8). ppTRH and TRH mRNA signals were detected on day 15 and increased progressively on days 20, 35, 60 and 90. Conclusion Our results suggest that rat testis could specifically express TRH and TRH-R, and the transcriptions of ppTRH and TRH-R genes in the rat testis were development-dependent. The acquirement of expressed products for ppTRH and TRH-R can be used for further research on the physiological significance of TRH and TRH-R expression in rat testis.

  10. Adherence and discontinuation of oral hormonal therapy in patients with hormone receptor positive breast cancer.

    Science.gov (United States)

    Ayres, Lorena Rocha; Baldoni, André de Oliveira; Borges, Anna Paula de Sá; Pereira, Leonardo Régis Leira

    2014-02-01

    Oral treatment in women with breast cancer has been increasingly used. However, a potentially negative side of oral medication is poor patient adherence and/or discontinuation, which reduces the treatment effectiveness, accelerating progression of the disease and reducing the patient survival rate. To compare the rates of adherence and/or discontinuation and the methodologies used to assess these outcomes. It was conducted an integrative review of original articles published from 2000 to 2012, in which their primary outcome was to quantify medication adherence and/or discontinuation of oral hormonal therapy in patients with hormone receptor positive breast cancer. Original studies were searched in the PubMed/MEDLINE, Scopus, Embase and SciELO databases. The Medical Subject Heading was used to define descriptors. The descriptor "breast neoplasms" was used in all combinations. Each of the descriptors "medication adherence" and "patient compliance" were combined with each of the following descriptors "tamoxifen", "aromatase inhibitors", "selective estrogen receptor modulators", or the terms "letrozole", "anastrozole", and "exemestane". Twenty-four original articles were included. Our study showed a wide range of adherence and discontinuation rates, ranging from 45-95.7 and 12-73 %, respectively. Regarding the methodological development of the selected articles, a high prevalence (87.5 %) of prospective and/or retrospective longitudinal studies was found. In addition, there was a high prevalence of studies using a database (70.8 %). Among some of the studies, it was shown that patient adherence to hormonal therapy gradually reduces, while discontinuation increases during the treatment. It was observed a great diversity among rates of adherence and/or discontinuation of hormonal therapy for breast cancer, which may be due to a lack of methodology standardization. Therefore, adequate and validated methods to ensure reliability of the results and allow comparison in the

  11. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic β-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel;

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic β-cells, and to examine this in relation to β-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP......Fatty acid-induced damage in pancreatic β-cells is assumed to play an important role in the development of type 2 diabetes. Lactogens (prolactin, placental lactogen and growth hormone) improve β-cell survival via STAT5 activation but the molecular targets are incompletely characterized. The aim...

  12. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic ß-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel;

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic ß-cells, and to examine this in relation to ß-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP......Fatty acid-induced damage in pancreatic ß-cells is assumed to play an important role in the development of type 2 diabetes. Lactogens (prolactin, placental lactogen and growth hormone) improve ß-cell survival via STAT5 activation but the molecular targets are incompletely characterized. The aim...

  13. HDAC3 regulates stability of estrogen receptor α mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Oie, Shohei; Matsuzaki, Kazuya; Yokoyama, Wataru; Murayama, Akiko; Yanagisawa, Junn, E-mail: junny@agbi.tsukuba.ac.jp

    2013-03-08

    Highlights: ► HDAC inhibitors decrease the stability of ERα mRNA in MCF-7 cells. ► HDAC3 is involved in maintaining ERα mRNA stability in MCF-7 cells. ► ERα mRNA instability by knockdown of HDAC3 reduces the estrogen-dependent proliferation of ERα-positive MCF-7 cells. ► HDAC3 specific inhibitor will be one of new drugs for ERα-positive breast cancers. -- Abstract: Estrogen receptor alpha (ERα) expression is a risk factor for breast cancer. HDAC inhibitors have been demonstrated to down-regulate ERα expression in ERα-positive breast cancer cell lines, but the molecular mechanisms are poorly understood. Here, we showed that HDAC inhibitors decrease the stability of ERα mRNA, and that knockdown of HDAC3 decreases the stability of ERα mRNA and suppresses estrogen-dependent proliferation of ERα-positive MCF-7 breast cancer cells. In the Oncomine database, expression levels of HDAC3 in ERα-positive tumors are higher than those in ERα-negative tumors, thus suggesting that HDAC3 is necessary for ERα mRNA stability, and is involved in the estrogen-dependent proliferation of ERα-positive tumors.

  14. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    Science.gov (United States)

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  15. Regulation of the glucocorticoid receptor mRNA levels in the gills of Atlantic salmon (Salmo salar during smoltification

    Directory of Open Access Journals (Sweden)

    MAZURAIS D.

    1998-07-01

    Full Text Available The regulation of the Glucocorticoid Receptor (GR transcript was investigated in the gills of Atlantic salmon (Salmo salar during the parr-smolt transformation. Sampling of parr and smolt fish was performed between December and July and in particular during the smoltification period occurring in spring. Quantification of GR transcripts revealed differences between the two groups in March and at the beginning of April. During these dates, the amounts of GR mRNA in parr gills were respectively three and two fold lower than those measured in smolts. In order to determine which factors are responsible for these differences, we studied the long-term effects of prolactin and Cortisol treatments on GR transcript in the gills of presmolt fish. The plasma levels of these two hormones respectively drop and rise during smoltification. Contrary to Cortisol long-term treatment which did not modify the amount of gill GR transcript, short-term treatment induced a significant decrease within 12 hours. Prolactin long-term treatment caused a significant increase of GR transcript abundance after 13 days of implant treatment. This result is unexpected with regard to those obtained in the smoltification analysis but is in agreement with previous studies performed in mammary gland revealing a positive control of PRL on GR in epithelial cells. Our data suggest that the regulation of the GR transcript during the parr-smolt transformation probably involves several hormonal factors.

  16. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    Science.gov (United States)

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  17. Expression of ET(A) and ET(B) receptor mRNA in human cerebral arteries

    DEFF Research Database (Denmark)

    Hansen-Schwartz, J; Szok, D; Edvinsson, L

    2002-01-01

    The vascular effects of endothelins (ET) are in mammals mediated via two receptor subtypes, endothelin A (ET(A), mainly constrictive) and endothelin B (ET(B), mainly dilating) receptors. We have examined the presence of ET(A) and ET(B) receptor mRNA using the reverse transcription polymerase chain...... reaction (RT-PCR) in both normal human cerebral arteries and cerebral arteries from patients with cerebrovascular disease. Two vessel preparations were studied: macroscopic arteries and microvessels, the latter obtained through a sensitive separation method. In endothelial cells both ET(A) and ET......(B) receptor mRNA was detected. In almost all samples from normal cerebral arteries only ET(A) receptor mRNA was detected, whereas in vessel samples from patients with cerebrovascular disease as well as cerebral neoplasms, additional ET(B) receptor mRNA was detected significantly more frequently...

  18. Superovulation and expression of follicle-stimulating hormone receptor in young rabbit females

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-06-01

    Full Text Available To optimise the use of juvenile in vitro embryo transfer technologies in young rabbit females, superovulation was performed in New Zealand White young rabbit females at different ages and the expression mode of follicle-stimulating hormone receptor (FSHR was explored using real-time quantitative polymerase chain reaction, and in vitro maturation (IVM together with fertilisation (IVF was conducted immediately after superovulation. The results showed that (1 the age factor significantly affected superovulation in young rabbit females, with 60 d as an optimal age; (2 the mRNA level of FSHR exhibited a rising trend, though it was lower at 30 to 40 d of age; (3 the maturation rate of the oocytes from 60 d old rabbits was significantly higher than in those from 50 d old rabbits; (4 the fertilisation rate of oocytes was not significantly different among rabbits 50, 60 and 70 d old.

  19. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Huang, Ya-Hui [Medical Research Central, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Chen, Wei-Jan [First Cardiovascular Division, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Lin, Kwang-Huei, E-mail: khlin@mail.cgu.edu.tw [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China)

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  20. Evolution of minimal specificity and promiscuity in steroid hormone receptors.

    Directory of Open Access Journals (Sweden)

    Geeta N Eick

    Full Text Available Most proteins are regulated by physical interactions with other molecules; some are highly specific, but others interact with many partners. Despite much speculation, we know little about how and why specificity/promiscuity evolves in natural proteins. It is widely assumed that specific proteins evolved from more promiscuous ancient forms and that most proteins' specificity has been tuned to an optimal state by selection. Here we use ancestral protein reconstruction to trace the evolutionary history of ligand recognition in the steroid hormone receptors (SRs, a family of hormone-regulated animal transcription factors. We resurrected the deepest ancestral proteins in the SR family and characterized the structure-activity relationships by which they distinguished among ligands. We found that that the most ancient split in SR evolution involved a discrete switch from an ancient receptor for aromatized estrogens--including xenobiotics--to a derived receptor that recognized non-aromatized progestagens and corticosteroids. The family's history, viewed in relation to the evolution of their ligands, suggests that SRs evolved according to a principle of minimal specificity: at each point in time, receptors evolved ligand recognition criteria that were just specific enough to parse the set of endogenous substances to which they were exposed. By studying the atomic structures of resurrected SR proteins, we found that their promiscuity evolved because the ancestral binding cavity was larger than the primary ligand and contained excess hydrogen bonding capacity, allowing adventitious recognition of larger molecules with additional functional groups. Our findings provide an historical explanation for the sensitivity of modern SRs to natural and synthetic ligands--including endocrine-disrupting drugs and pollutants--and show that knowledge of history can contribute to ligand prediction. They suggest that SR promiscuity may reflect the limited power of

  1. Evolution of minimal specificity and promiscuity in steroid hormone receptors.

    Science.gov (United States)

    Eick, Geeta N; Colucci, Jennifer K; Harms, Michael J; Ortlund, Eric A; Thornton, Joseph W

    2012-01-01

    Most proteins are regulated by physical interactions with other molecules; some are highly specific, but others interact with many partners. Despite much speculation, we know little about how and why specificity/promiscuity evolves in natural proteins. It is widely assumed that specific proteins evolved from more promiscuous ancient forms and that most proteins' specificity has been tuned to an optimal state by selection. Here we use ancestral protein reconstruction to trace the evolutionary history of ligand recognition in the steroid hormone receptors (SRs), a family of hormone-regulated animal transcription factors. We resurrected the deepest ancestral proteins in the SR family and characterized the structure-activity relationships by which they distinguished among ligands. We found that that the most ancient split in SR evolution involved a discrete switch from an ancient receptor for aromatized estrogens--including xenobiotics--to a derived receptor that recognized non-aromatized progestagens and corticosteroids. The family's history, viewed in relation to the evolution of their ligands, suggests that SRs evolved according to a principle of minimal specificity: at each point in time, receptors evolved ligand recognition criteria that were just specific enough to parse the set of endogenous substances to which they were exposed. By studying the atomic structures of resurrected SR proteins, we found that their promiscuity evolved because the ancestral binding cavity was larger than the primary ligand and contained excess hydrogen bonding capacity, allowing adventitious recognition of larger molecules with additional functional groups. Our findings provide an historical explanation for the sensitivity of modern SRs to natural and synthetic ligands--including endocrine-disrupting drugs and pollutants--and show that knowledge of history can contribute to ligand prediction. They suggest that SR promiscuity may reflect the limited power of selection within real

  2. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    Science.gov (United States)

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues.

  3. The androgen receptor in hormone-refractory prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Hai-Lei Mao; Zhi-Qi Zhu; Charlie Degui Chen

    2009-01-01

    Advanced prostate cancer is responsive to hormone therapy that interferes with androgen receptor (AR) signalling.However,the effect is short-lived,as nearly all tumours progress to a hormone-refractory (HR) state,a lethal stage of the disease.Intuitively,the AR should not be involved because hormone therapy that blocks or reduces AR activity is not effective in treating HR turnouts.However,there is still a consensus that AR plays an essential role in HR prostate cancer (HRPC) because AR signalling is still functional in HR tumours.AR signalling can be activated in HR turnouts through several mechanisms.First,activation of intracellular signal transduction pathways can sensitize the AR to castrate levels of androgens.Also,mutations in the AR can change AR ligand specificity,thereby allowing it to be activated by non-steroids or anti-androgens.Finally,overexpression of the wild-type AR sensitizes itself to low concentrations of androgens.Therefore,drugs targeting AR signalling could still be effective in treating HRPC.

  4. Influence of estrogen receptor alpha and progesterone receptor polymorphisms on the effects of hormone therapy on mammographic density.

    NARCIS (Netherlands)

    Duijnhoven, F.J.B. van; Peeters, P.H.; Warren, R.M.; Bingham, S.; Uitterlinden, A.G.; Noord, P.A.H. van; Monninkhof, E.M.; Grobbee, D.E.; Gils, C.H. van

    2006-01-01

    Postmenopausal hormone therapy increases mammographic density, a strong breast cancer risk factor, but effects vary across women. We investigated whether the effect of hormone therapy use is modified by polymorphisms in the estrogen receptor (ESR1) and progesterone receptor (PGR) genes in the Dutch

  5. Targeted expression of human FSH receptor Asp567Gly mutant mRNA in testis of transgenic mice: role of human FSH receptor promoter

    Institute of Scientific and Technical Information of China (English)

    VerenaNordhoff; JorgGromoll; LucaFoppiani; C.MarcLuetjens; StefanSchlatt; ElenaKostova; IlpoHuhtaniemi; EberhardNieschlag; ManuelaSimoni

    2003-01-01

    Aim:To specifically express the Asp567Gly human follicle-stimulating hormone receptor (FSHR) under the control of its promoter to evaluate the phenotypic consequences in the presence of normal pituitary function.Methods:We produced transgenic mice overexpressing the Asp567Gly human FSHR under the control of a 1.5kb 5’-flanking region fragment of its promoter.Results: Mice were phenotypically normal and fertile.In males,mRNA could be detected in the testis and the brain, indicating that the 1.5kb promoter fragment drives expression not only in the gonads. The testis weight/body weight ratio and the testosterone levels in transgenic and non-transgenic littermates were similar. By in situ hybridisation we found that the transgenic FSHR was highly expressed in Sertoli cells,spermatocytes and round spermatids. However, a radioligand receptor assay failed to show a significant difference in total FSHR binding sites in testis homogenates of transgenic and wild type animals, suggesting that the transgenic FSHR is probably not translated into functional receptor protein. Conclusion: A 1.5kb 5"-region of the human FSHR drives mRNA expression of the transgene in the testis but leads to ectopic expression in germ cells and in the brain. No phenotypic consequences could be documented due to the lack of protein expression.

  6. Genomic organization of a receptor from sea anemones, structurally and evolutionary related to glycoprotein hormone receptors from mamals

    DEFF Research Database (Denmark)

    Vibede, N; Hauser, Frank; Williamson, M

    1998-01-01

    glycoprotein hormone receptors, indicating that the cnidarian and mammalian receptor genes are evolutionarily related. As with the mammalian receptor genes, the sea anemone receptor gene does not contain introns in the region coding for the transmembrane and intracellular domains. Southern blot analyses show...

  7. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  8. Amygdala kindling increases fear responses and decreases glucocorticoid receptor mRNA expression in hippocampal regions.

    Science.gov (United States)

    Kalynchuk, Lisa E; Meaney, Michael J

    2003-12-01

    Amygdala kindling dramatically increases fearful behavior in rats. Because kindling-induced fear increases in magnitude as rats receive more stimulations, kindling provides an excellent model for studying the nature and neural mechanisms of fear sensitization. In the present experiment, we studied whether the development of kindling-induced fear is related to changes in glucocorticoid receptor (GR) mRNA expression in various brain regions. Rats received 20, 60 or 100 amygdala kindling stimulations or 100 sham stimulations. One day after the final stimulation, their fearful behavior was assessed in an unfamiliar open field. Then, the rats were sacrificed and their brains were processed for in situ hybridization of GR mRNA expression. We found that compared with the sham-stimulated rats, the rats that received 60 or 100 kindling stimulations were significantly more fearful in the open field and also had significantly less GR mRNA expression in the dentate gyrus and CA1 subfield of the hippocampus. Importantly, the changes in fearful behavior were significantly correlated with the changes in GR mRNA expression. These results suggest that alterations in GR mRNA expression in hippocampal regions may play a role in the development of kindling-induced fear.

  9. Exogenous glucagon-like peptide-2 (GLP-2) augments GLP-2 receptor mRNA and maintains proglucagon mRNA levels in resected rats

    DEFF Research Database (Denmark)

    Koopmann, Matthew C; Nelson, David W; Murali, Sangita G;

    2008-01-01

    BACKGROUND: Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent proglucagon-derived hormone that stimulates intestinal adaptive growth. Our aim was to determine whether exogenous GLP-2 increases resection-induced adaptation without diminishing endogenous proglucagon and GLP-2 receptor...... augments adaptive growth and digestive capacity of the residual small intestine in a rat model of mid-small bowel resection by increasing plasma GLP-2 concentrations and GLP-2 receptor expression without diminishing endogenous proglucagon expression....

  10. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    Science.gov (United States)

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hormone and metabolic factors associated with leptin mRNA expression in pre- and postmenopausal women.

    Science.gov (United States)

    Fajardo, Martha E; Malacara, Juan M; Martínez-Rodríguez, Herminia G; Barrera-Saldaña, Hugo A

    2004-06-01

    Recent information has extended leptin's action, beyond the control of appetite, to various sites of metabolic regulation. To better understand leptin's role we studied its production in subcutaneous and visceral fat compartments before and after menopause. During elective abdominal surgery, biopsies of subcutaneous and omental tissues were taken from 20 women at pre- (BMI 28.4 +/- 4.5 kg/m2) and 10 at postmenopause (BMI 30.6 +/- 7.7 kg/m2). In both groups serum leptin levels were similar, and highly correlated with BMI. In subcutaneous adipose tissue, leptin mRNA expression was significantly higher in pre- than in postmenopausal women (50.4 +/- 20.5 amol/microg total RNA versus 34.5 +/- 24.9 amol/microg total RNA, respectively). Leptin mRNA expression in subcutaneous tissue was independently correlated with fasting glucose (R = 0.89, P < 0.006) at premenopause, and with serum estradiol (R = 0.77, P < 0.04) at postmenopause. Leptin mRNA expression in visceral fat was correlated with DHEAS (R = 0.86, P < 0.001), at premenopause. These results indicate that in both compartments, leptin production is sensitive to different but overlapping stimuli, conveying information about energy availability to central and peripheral sites under different conditions of estrogen exposure.

  12. Unsaturated fatty acids prevent desensitization of the human growth hormone secretagogue receptor by blocking its internalization

    NARCIS (Netherlands)

    P.J.D. Delhanty (Patric); A. Kerkwijk (Anke); M. Huisman (Martijn); B. van de Zande (Bedette); M. Verhoef-Post (Miriam); C. Gauna (Carlotta); L.J. Hofland (Leo); A.P.N. Themmen (Axel); A-J. van der Lely (Aart-Jan)

    2010-01-01

    textabstractThe composition of the plasma membrane affects the responsiveness of cells to metabolically important hormones such as insulin and vasoactive intestinal peptide. Ghrelin is a metabolically regulated hormone that activates the G protein-coupled receptor GH secretagogue receptor type 1a (G

  13. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    DEFF Research Database (Denmark)

    Wang, X; Uhler, M D; Billestrup, N;

    1992-01-01

    The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels ...

  14. Progesterone Receptor and Prostaglandins Mediate Luteinizing Hormone-Induced Changes in Messenger RNAs for ADAMTS Proteases in Theca Cells of Bovine Periovulatory Follicles

    Science.gov (United States)

    WILLIS, ERIN L.; BRIDGES, PHILLIP J.; FORTUNE, JOANNE E.

    2017-01-01

    SUMMARY Little is known about the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of extracellular proteases in ovarian follicles of non-rodent species, particularly in theca cells. In the present study, temporal changes in the abundance of mRNA encoding four ADAMTS subtypes and hormonal regulation of mRNA encoding two subtypes were investigated in theca interna cells during the periovulatory period in cattle. Gonadotropin-releasing hormone (GnRH) was injected into animals to induce a luteinizing hormone (LH)/follicle-stimulating hormone (FSH) surge, and follicles were obtained at 0 hr post-GnRH (preovulatory) or at 6, 12, 18, or 24 hr (periovulatory). ADAMTS1, -2, -7, and -9 transcript abundance was then determined in the isolated theca interna. ADAMTS1 and -9 mRNA levels were up-regulated at 24 hr post-GnRH, whereas ADAMTS2 mRNA was higher at r12–24 hr post-GnRH and ADAMTS7 mRNA increased transiently at 12 hr post-GnRH compared to other time points. Subsequent in vitro experiments using preovulatory theca interna (0 hr post-GnRH) showed that application of LH in vitro can mimic the effects of the gonadotropin surge on mRNAs encoding ADAMTS1 and -9 and that progesterone/progesterone receptor and/or prostaglandins may regulate the levels of mRNA encoding ADAMTS1 and -9 in theca interna, downstream of the LH surge. Time- and subtype-specific changes in ADAMTS mRNA abundance in vivo, and their regulation in vitro by hormones, indicate that ADAMTS family members produced by theca cells may play important roles in follicle rupture and the accompanying tissue remodeling in cattle. PMID:27879029

  15. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    Science.gov (United States)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  16. Molecular cloning, characterization, tissue distribution and mRNA expression changes during the hibernation and reproductive periods of estrogen receptor alpha (ESR1) in Chinese alligator, Alligator sinensis.

    Science.gov (United States)

    Zhang, Ruidong; Hu, Yuehong; Wang, Huan; Yan, Peng; Zhou, Yongkang; Wu, Rong; Wu, Xiaobing

    2016-10-01

    Chinese alligator, Alligator sinensis, is a critically endangered reptile species unique to China. Little is known about the mechanism of growth- and reproduction-related hormones gene expression in Chinese alligator. Estrogens play important roles in regulating multiple reproduction- and non-reproduction-related functions by binding to their corresponding receptors. Here, the full-length cDNA of estrogen receptor alpha (ERα/ESR1) was cloned and sequenced from Chinese alligator for the first time, which comprises 1764bp nucleotides and encodes a predicted protein of 587 amino acids. Phylogenetic analysis of ESR1 showed that crocodilians and turtles were the sister-group of birds. The results of real-time quantitative PCR indicated that the ESR1 mRNA was widely expressed in the brain and peripheral tissues. In the brain and pituitary gland, ESR1 was most highly transcribed in the cerebellum. But in other peripheral tissues, ESR1 mRNA expression level was the highest in the ovary. Compared with hibernation period, ESR1 mRNA expression levels were increased significantly in the reproductive period (P0.05). The ESR1 mRNA expression levels changes during the two periods of different tissues suggested that ESR1 might play an important role in mediation of estrogenic multiple reproductive effects in Chinese alligator. Furthermore, it was the first time to quantify ESR1 mRNA level in the brain of crocodilians, and the distribution and expression of ESR1 mRNA in the midbrain, cerebellum and medulla oblongata was also reported for the first time in reptiles.

  17. Reconstruction of HaSNPV with helicoverpa hormone receptor 3

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to develop a more efficient virus for controlling the cotton bollworm Helicoverpa armigera,Helicoverpa hormone receptor 3 (HHR3), which is involved in the ecdysteroid regulatory pathway, was used to genetically modify wild HaSNPV. HaSNPV-HHR3 budded virus and occlusion body virus were constructed in three steps: preparation of pFastBacHaPhpP10-HHR3 donor plasmid, transposition of HHR3 into the HaBacHZ8 bacmid, and transfection of HzAM1 cells to get HaSNPV-HHR3 virus. HHR3was proved to be expressed in the HaSNPV-HHR3 virus infected HzAM1 cells by immunoblotting. Results of bioassay indicated that the body weight of the HaSNPV-HHR3 infected larvae was lower than the larvae infected with wild virus and uninfected normal larvae, which suggests that HaSNPV-HHR3 delayed larval growth.

  18. Diverse growth hormone receptor gene mutations in Laron syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.A.; Francke, U. (Stanford Univ. School of Medicine, CA (United States)); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. (Univ. Autonoma, Madrid (Spain)); Chernausek, S. (Children' s Hospital Medical Center, Cincinnati, OH (United States)); Guevara-Aguirre, J. (Institute of Endocrinology, Metabolism, and Reproduction, Quito (Ecuador)); Hopp, M. (Univ. of Witwatersrand, Johannesburg (South Africa)); Rosenbloom, A.; Argente, J. (Univ. of Florida, Gainesville (United States)); Toledo, S.P.A. (Univ. of Sao Paulo (Brazil))

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  19. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  20. Dual activities of odorants on olfactory and nuclear hormone receptors.

    Science.gov (United States)

    Pick, Horst; Etter, Sylvain; Baud, Olivia; Schmauder, Ralf; Bordoli, Lorenza; Schwede, Torsten; Vogel, Horst

    2009-10-30

    We have screened an odorant compound library and discovered molecules acting as chemical signals that specifically activate both G-protein-coupled olfactory receptors (ORs) on the cell surface of olfactory sensory neurons and the human nuclear estrogen receptor alpha (ER) involved in transcriptional regulation of cellular differentiation and proliferation in a wide variety of tissues. Hence, these apparent dual active odorants induce distinct signal transduction pathways at different subcellular localizations, which affect both neuronal signaling, resulting in odor perception, and the ER-dependent transcriptional control of specific genes. We demonstrate these effects using fluorescence-based in vitro and cellular assays. Among these odorants, we have identified synthetic sandalwood compounds, an important class of molecules used in the fragrance industry. For one estrogenic odorant we have also identified the cognate OR. This prompted us to compare basic molecular recognition principles of odorants on the two structurally and apparent functionally non-related receptors using computational modeling in combination with functional assays. Faced with the increasing evidence that ORs may perform chemosensory functions in a number of tissues outside of the nasal olfactory epithelium, the unraveling of these molecular ligand-receptor interaction principles is of critical importance. In addition the evidence that certain olfactory sensory neurons naturally co-express ORs and ERs may provide a direct functional link between the olfactory and hormonal systems in humans. Our results are therefore useful for defining the structural and functional characteristics of ER-specific odorants and the role of odorant molecules in cellular processes other than olfaction.

  1. Effects of muscle type, castration, age, and compensatory growth rate on androgen receptor mRNA expression in bovine skeletal muscle.

    Science.gov (United States)

    Brandstetter, A M; Pfaffl, M W; Hocquette, J F; Gerrard, D E; Picard, B; Geay, Y; Sauerwein, H

    2000-03-01

    The effect of testosterone on sexual dimorphism is evident by differential growth of forelimb and neck muscles in bulls and steers. Divergent hormone sensitivites may account for the differential growth rates of individual muscles. Therefore, the objective of this study was to compare androgen receptor (AR) expression in three different muscles of bulls and steers at various ages and growth rates. Thirty Montbéliard bulls and 30 steers were assigned to four slaughter age groups. Four or five animals of each sex were slaughtered at 4 and 8 mo of age. Animals in the remaining two slaughter groups (12 and 16 mo) were divided into groups of either restricted (R) or ad libitum (AL) access to feed. Five animals of each sex and diet were slaughtered at the end of the restricted intake period at 12 mo of age. To simulate compensatory growth, the remaining animals (R and AL) were allowed ad libitum access to feed until slaughter at 16 mo of age. Total RNA was extracted from samples of semitendinosus (ST), triceps brachii (TB), and splenius (SP) muscles. Androgen receptor mRNA was quantified in 200-ng total RNA preparations using an internally standardized reverse transcription (RT) PCR assay. Data were analyzed using 18S ribosomal RNA concentrations as a covariable. Steers had higher AR mRNA levels per RNA unit than bulls (P muscles (P muscle with increasing age. Between 4 and 12 mo of age, AR mRNA levels increased (P muscle AR expression, but steers exhibiting compensatory growth had higher AR mRNA levels than AL steers (P muscle-specific and may be modulated by circulating testicular hormones. These data suggest that the regulation of AR expression may be linked to allometric muscle growth patterns in cattle and compensatory gain in steers.

  2. Expression of neuropeptide receptor mRNA during osteoblastic differentiation of mouse iPS cells.

    Science.gov (United States)

    Nagao, Satomi; Goto, Tetsuya; Kataoka, Shinji; Toyono, Takashi; Joujima, Takaaki; Egusa, Hiroshi; Yatani, Hirofumi; Kobayashi, Shigeru; Maki, Kenshi

    2014-12-01

    Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, β2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and β2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor β2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and β2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process.

  3. Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination.

    Science.gov (United States)

    Refetoff, Samuel; Dumitrescu, Alexandra M

    2007-06-01

    At least six major steps are required for secreted thyroid hormone (TH) to exert its action on target tissues. Mutations interfering with three of these steps have been so far identified. The first recognized defect, which causes resistance to TH, involves the TH receptor beta gene and has been given the acronym RTH. Occurring in approximately 1 per 40,000 newborns, more than 1000 affected subjects, from 339 families, have been identified. The gene defect remains unknown in 15% of subjects with RTH. Two novel syndromes causing reduced sensitivity to TH were recently identified. One, producing severe psychomotor defects in > 100 males from 26 families, is caused by mutations in the cell-membrane transporter of TH, MCT8; the second, affecting the intracellular metabolism of TH in four individuals from two families, is caused by mutations in the SECISBP2 gene, which is required for the synthesis of selenoproteins, including TH deiodinases.

  4. Prostate-Derived Ets Transcription Factor Overexpression is Associated with Nodal Metastasis, Hormone Receptor Positivity in Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Simon Turcotte

    2007-10-01

    Full Text Available Prostate-derived Ets transcription factor (PDEF has recently been associated with invasive breast cancer, but no expression profile has been defined in clinical specimens. We undertook a comprehensive PDEF transcriptional expression study of 86 breast cancer clinical specimens, several cell lines, normal tissues. PDEF expression profile was analyzed according to standard clinicopathologic parameters, compared with hormonal receptor, HER-2/neu status, to the expression of the new tumor biomarker Dikkopf-1 (DKK1. Wide ranging PDEF overexpression was observed in 74% of tested tumors, at higher levels than the average expression found in normal breasts. High PDEF expression was associated with hormone receptor positivity (P < .001, moderate to good differentiation (less than grade III, P = .01, dissemination to axillary lymph nodes (P = .002. PDEF was an independent risk factor for nodal involvement (multivariate analysis, odds ratio 1.250, P = .002. It was expressed in a different subgroup compared to DKK1-expressing tumors (P < .001. Our data imply that PDEF mRNA expression could be useful in breast cancer molecular staging. Further insights into PDEF functions at the protein level, possible links with hormone receptors biology, bear great potential for new therapeutic avenues.

  5. Effects of estradiol, sex, and season on estrogen receptor alpha mRNA expression and forebrain morphology in adult green anole lizards.

    Science.gov (United States)

    Beck, L A; Wade, J

    2009-05-19

    Steroid hormones, especially estradiol, facilitate reproductive behaviors in male and female rodents and birds. In green anole lizards estradiol facilitates receptivity in females but, unlike in some other species, is not the activating hormone for courtship and copulatory behavior in males. Instead, testicular androgens directly facilitate male courtship and copulation. Yet, activity of the estradiol synthesizing enzyme aromatase is higher in the brain of male than female green anoles, and it is increased during the breeding compared to the non-breeding season. The functional relevance of these differences in local estradiol production is unknown. They might prime the male forebrain to facilitate production of appropriate sexual behaviors, perhaps by modifying morphology of relevant brain regions. In addition, we recently reported increased expression of estrogen receptor alpha (ERalpha) in selected brain regions in females compared to males [Beck LA, Wade J (2009b) Sexually dimorphic estrogen receptor alpha mRNA expression in the preoptic area and ventromedial hypothalamus of green anole lizards. 55:398-403]. Thus, it is possible that the hormone serves to downregulate its receptor in males to inhibit the expression of estradiol-dependent receptive behaviors. To begin to address these ideas, the present study examines the effects of estradiol treatment, sex, and season on forebrain morphology and ERalpha mRNA abundance in three regions important for anole reproductive behavior-the preoptic area, ventromedial amygdala, and ventromedial hypothalamus. While a number of effects of sex and season on forebrain morphology were detected, direct effects of estradiol treatment on these measures were minimal. ERalpha expression was greatest in the ventromedial hypothalamus, and a large female-biased sex difference was detected in this area alone; it resulted from estradiol-treated animals. These results indicate a sex- and region-specific mechanism by which estradiol can

  6. Changes of glucocorticoid receptor mRNA expression in basolateral amygdale-kindled rats

    Institute of Scientific and Technical Information of China (English)

    BAO Guan-shui; CHENG Xu-qin; HUA Yin; WANG Zhe-dong; LIU Zhen-guo

    2011-01-01

    Background Glucocorticoid receptor (GR) is believed to be a major factor in brain maturation and in modulation of a series of brain activity.Hippocampal neurons are abundant in glucocorticoid receptor,and there is significant change in GR expression under certain pathological state.Epilepsy is a special pathological state of the central nervous system.This study aimed to explore the role of GR in epilepsy by observing the change and functions of GR in hippocampus with a basolateral amygdale-electrical kindled rat epilepsy model.Methods Firstly,we established the basolateral amygdale-electrical kindled rat epilepsy model.Then GR mRNA expression in the hippocampus was assayed by semi-quantitative reverse transcription-PCR in this experiment.In addition,the processes of epileptic seizures were observed and electroencephalograms were recorded.One-way analysis of variance (ANOVA) was employed for comparing means of multiple groups,followed Fisher's least significant difference (LSD) for paired comparison.Results The rats were successfully kindled after an average of (13.50±3.99) times electrical stimulation,in which it was showed that GR mRNA expression reduced obviously as compared with the control group and the sham groups (P<0.001).The down-regulation of GR mRNA expression was abated or reversed by some anti-epilepsy drugs (P <0.001 compared with the epilepsy group),accompanied by attenuation of seizures and improvement of electroencephalograms.Conclusions Down-regulation of hippocampal GR mRNA expression may be related to the kindling.Anti-epilepsy drugs exposure can retard this change.

  7. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    Science.gov (United States)

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  8. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis.

    Science.gov (United States)

    Ferrandon, Sébastien; Feinstein, Timothy N; Castro, Marian; Wang, Bin; Bouley, Richard; Potts, John T; Gardella, Thomas J; Vilardaga, Jean-Pierre

    2009-10-01

    Cell signaling mediated by the G protein-coupled parathyroid hormone receptor type 1 (PTHR) is fundamental to bone and kidney physiology. It has been unclear how the two ligand systems--PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine--can effectively operate with only one receptor and trigger different durations of the cAMP responses. Here we analyze the ligand response by measuring the kinetics of activation and deactivation for each individual reaction step along the PTHR signaling cascade. We found that during the time frame of G protein coupling and cAMP production, PTHrP(1-36) action was restricted to the cell surface, whereas PTH(1-34) had moved to internalized compartments where it remained associated with the PTHR and Galpha(s), potentially as a persistent and active ternary complex. Such marked differences suggest a mechanism by which PTH and PTHrP induce differential responses, and these results indicate that the central tenet that cAMP production originates exclusively at the cell membrane must be revised.

  9. Interspecies comparison of renal cortical receptors for parathyroid hormone and parathyroid hormone-related protein

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, J.J.; Goumas, D.; Wu, T.L.; Stewart, A.F. (West Haven Veterans Administration Medical Center, CT (USA))

    1991-03-01

    Parathyroid hormone (PTH) and PTH-related proteins (PTHrP) interact with a common receptor in rat bone cells and in canine renal membranes with similar affinity, but PTHrP are substantially less potent than PTH in stimulating adenylate cyclase in canine renal membranes; in contrast, PTH and PTHrP are equipotent in stimulating adenylate cyclase in rat bone cells. This discrepancy has been largely viewed as reflecting differences in the relative efficiency of signal transduction of PTHrP between bone and kidney assay systems. To test the alternative (but not mutually exclusive) hypothesis that these differences could reflect interspecies differences in PTH receptors, we have characterized the bioactivity of amino-terminal PTHrP and PTH in rat and human renal cortical membranes (RCM) and compared them to results we previously reported in canine RCM. The stability of PTH and PTHrP peptides under binding and adenylate cyclase assay conditions was greater than 80% for each species. Competitive inhibition of ({sup 125}I)(Tyr36)hPTHrP-(1-36)NH{sub 2} binding to rat RCM by bPTH-(1-34) and (Tyr36)hPTHrP-(1-36)NH{sub 2} yielded nearly identical binding dissociation constants (3.7 and 3.6 nM, respectively), and binding to human RCM demonstrated slightly greater potency for PTHrP (0.5 nM) than for PTH (0.9 nM). Similarly, adenylate cyclase stimulating activity was equivalent for the two peptides in rat RCM, but PTHrP was twofold more potent than PTH in human RCM. Covalent photoaffinity labeling of protease-protected rat RCM yielded an apparent 80 kD receptor protein, and cross-linking of human RCM labeled an 85 kD receptor, indistinguishable in size from the canine renal PTH receptor. We conclude that rat, canine, and human renal cortical PTH receptors exhibit species specificity.

  10. Distinct prognostic values of four-Notch-receptor mRNA expression in ovarian cancer.

    Science.gov (United States)

    Zhou, Xinling; Teng, Lingling; Wang, Min

    2016-05-01

    Notch signaling pathway includes ligands and Notch receptors, which are frequently deregulated in several human malignancies including ovarian cancer. Aberrant activation of Notch signaling has been linked to ovarian carcinogenesis and progression. In the current study, we used the "Kaplan-Meier plotter" (KM plotter) database, in which updated gene expression data and survival information from a total of 1306 ovarian cancer patients were used to access the prognostic value of four Notch receptors in ovarian cancer patients. Hazard ratio (HR), 95 % confidence intervals, and log-rank P were calculated. Notch1 messenger RNA (mRNA) high expression was not found to be correlated to overall survival (OS) for all ovarian cancer, as well as in serous and endometrioid cancer patients followed for 20 years. However, Notch1 mRNA high expression is significantly associated with worsen OS in TP53 wild-type ovarian cancer patients, while it is significantly associated with better OS in TP53 mutation-type ovarian cancer patients. Notch2 mRNA high expression was found to be significantly correlated to worsen OS for all ovarian cancer patients, as well as in grade II ovarian cancer patients. Notch3 mRNA high expression was found to be significantly correlated to better OS for all ovarian cancer patients, but not in serous cancer patients and endometrioid cancer patients. Notch4 mRNA high expression was not found to be significantly correlated to OS for all ovarian cancer patients, serous cancer patients, and endometrioid cancer patients. These results indicate that there are distinct prognostic values of four Notch receptors in ovarian cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of ovarian cancer and for developing tools to more accurately predict their prognosis. Based on our results, Notch1 could be a potential drug target of TP53 wild-type ovarian cancer and Notch2 could be a potential drug

  11. AU-RICH ELEMENTS IN THE 3′-UTR REGULATE THE STABILITY OF THE 141 AMINO ACID ISOFORM OF PARATHYROID HORMONE-RELATED PROTEIN mRNA

    Science.gov (United States)

    Luchin, Alexander I.; Nadella, Murali V.P.; Thudi, Nanda K.; Dirksen, Wessel P.; Gulati, Parul; Fernandez, Soledad A.; Rosol, Thomas J.

    2012-01-01

    We demonstrated previously that parathyroid hormone-related protein (PTHrP) 1-141 mRNA is the least stable of three isoforms and is the only isoform that is stabilized by TGF-β. In order to understand how PTHrP mRNA is stabilized by TGF-β, we first sought to elucidate the mechanism(s) that are responsible for the instability of PTHrP isoform 1-141 mRNA. The 3′-UTR of isoform 1-141 contains four AU-rich elements (AREs), which are known to mediate mRNA degradation. We utilized a luciferase reporter system to test whether these four AREs are responsible for the short half-life of PTHrP 1-141 mRNA. Our results demonstrated that ARE elements in the 3′-UTR of PTHrP 1-141 mRNA play a significant role in regulation of the stability of the mRNA. It is known that AREs mediate their effects on mRNA stability through a number of ARE-binding proteins that recruit the exosome, a complex of exonucleases that degrades the mRNA. We identified tristetraproline (TTP) as an RNA-binding protein that may be involved in ARE-mediated degradation of PTHrP 1-141 mRNA. PMID:22960231

  12. AU-rich elements in the 3'-UTR regulate the stability of the 141 amino acid isoform of parathyroid hormone-related protein mRNA.

    Science.gov (United States)

    Luchin, Alexander I; Nadella, Murali V P; Thudi, Nanda K; Dirksen, Wessel P; Gulati, Parul; Fernandez, Soledad A; Rosol, Thomas J

    2012-11-25

    We demonstrated previously that parathyroid hormone-related protein (PTHrP) 1-141 mRNA is the least stable of three isoforms and is the only isoform that is stabilized by TGF-β. In order to understand how PTHrP mRNA is stabilized by TGF-β, we first sought to elucidate the mechanism(s) that are responsible for the instability of PTHrP isoform 1-141 mRNA. The 3'-UTR of isoform 1-141 contains four AU-rich elements (AREs), which are known to mediate mRNA degradation. We utilized a luciferase reporter system to test whether these four AREs are responsible for the short half-life of PTHrP 1-141 mRNA. Our results demonstrated that ARE elements in the 3'-UTR of PTHrP 1-141 mRNA play a significant role in regulation of the stability of the mRNA. It is known that AREs mediate their effects on mRNA stability through a number of ARE-binding proteins that recruit the exosome, a complex of exonucleases that degrades the mRNA. We identified tristetraproline (TTP) as an RNA-binding protein that may be involved in ARE-mediated degradation of PTHrP 1-141 mRNA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.

    Science.gov (United States)

    Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W

    1997-07-07

    RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.

  14. CHHBP: a newly identified receptor of crustacean hyperglycemic hormone.

    Science.gov (United States)

    Li, Ran; Tian, Jin-Ze; Zhuang, Cui-Heng; Zhang, Yi-Chen; Geng, Xu-Yun; Zhu, Li-Na; Sun, Jin-Sheng

    2016-04-15

    Crustacean hyperglycemic hormone (CHH) is a neurohormone found only in arthropods that plays a pivotal role in the regulation of hemolymph glucose levels, molting and stress responses. Although it was determined that a membrane guanylyl cyclase (GC) acts as the CHH receptor in the Y-organ during ecdysteroidogenesis, the identity of the CHH receptor in the hepatopancreas has not been established. In this study, we identified CHH binding protein (CHHBP), as a potential receptor by screening the annotated unigenes from the transcriptome of ITALIC! Eriocheir sinensis, after removal of the eyestalk. Analysis of the binding affinity between CHH and CHHBP provided direct evidence that CHH interacts with CHHBP in a specific binding mode. Subsequent analysis showed that CHHBP is expressed primarily in the hepatopancreas where it localizes to the cell membrane. In addition, real-time PCR analysis showed that ITALIC! CHHBPtranscript levels gradually increase in the hepatopancreas following eyestalk ablation. RNAi-mediated suppression of ITALIC! CHHBPexpression resulted in decreased glucose levels. Furthermore, the reduction of blood glucose induced by ITALIC! CHHBPRNAi reached the same level as that observed in the eyestalk ablation group, suggesting that CHHBP is involved in glucose metabolism regulated by CHH. In addition, compared with the control group, injection of CHH was unable to rescue the decreased glucose levels in ITALIC! CHHBPRNAi crabs. CHH induced transport of 2-NBDG to the outside of cells, with indispensable assistance from CHHBP. Taken together, these findings suggest that CHHBP acts as one type of the primary signal processor of CHH-mediated regulation of cellular glucose metabolism. © 2016. Published by The Company of Biologists Ltd.

  15. SIRTUIN 1 (SIRT1) AND STEROID HORMONE RECEPTOR ACTIVITY IN CANCER

    Science.gov (United States)

    Moore, R.L.; Dai, Y.; Faller, D.V.

    2013-01-01

    Sirtuins, which are class III NAD-dependent histone deacetylases (HDACs) that regulate a number of physiological processes, play important roles in the regulation of metabolism, aging, oncogenesis and cancer progression. More recently, a role for the sirtuins in the regulation of steroid hormone receptor signaling is emerging. In this mini-review, we will summarize current research into the regulation of estrogen, androgen, progesterone, mineralocorticoid and glucocorticoid signaling by sirtuins in cancer. Sirtuins can regulate steroid hormone signaling through a variety of molecular mechanisms, including acting as co-regulatory transcription factors, deacetylating histones in the promoters of genes with nuclear receptor binding sites, directly deacetylating steroid hormone nuclear receptors, and regulating pathways which modify steroid hormone receptors through phosphorylation. Furthermore, disruption of sirtuin activity may be an important step in the development of steroid hormone-refractory cancers. PMID:22159506

  16. Thyroid-Stimulating Hormone Receptor Antibodies in Pregnancy: Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Ines Bucci

    2017-06-01

    Full Text Available Graves’ disease is the most common cause of thyrotoxicosis in women of childbearing age. Approximately 1% of pregnant women been treated before, or are being treated during pregnancy for Graves’ hyperthyroidism. In pregnancy, as in not pregnant state, thyroid-stimulating hormone (TSH receptor (TSHR antibodies (TRAbs are the pathogenetic hallmark of Graves’ disease. TRAbs are heterogeneous for molecular and functional properties and are subdivided into activating (TSAbs, blocking (TBAbs, or neutral (N-TRAbs depending on their effect on TSHR. The typical clinical features of Graves’ disease (goiter, hyperthyroidism, ophthalmopathy, dermopathy occur when TSAbs predominate. Graves’ disease shows some peculiarities in pregnancy. The TRAbs disturb the maternal as well as the fetal thyroid function given their ability to cross the placental barrier. The pregnancy-related immunosuppression reduces the levels of TRAbs in most cases although they persist in women with active disease as well as in women who received definitive therapy (radioiodine or surgery before pregnancy. Changes of functional properties from stimulating to blocking the TSHR could occur during gestation. Drug therapy is the treatment of choice for hyperthyroidism during gestation. Antithyroid drugs also cross the placenta and therefore decrease both the maternal and the fetal thyroid hormone production. The management of Graves’ disease in pregnancy should be aimed at maintaining euthyroidism in the mother as well as in the fetus. Maternal and fetal thyroid dysfunction (hyperthyroidism as well as hypothyroidism are in fact associated with several morbidities. Monitoring of the maternal thyroid function, TRAbs measurement, and fetal surveillance are the mainstay for the management of Graves’ disease in pregnancy. This review summarizes the biochemical, immunological, and therapeutic aspects of Graves’ disease in pregnancy focusing on the role of the TRAbs in maternal and

  17. Sex steroid and thyroid hormone receptor expressions in the thyroid of the American alligator (Alligator mississippiensis) during different life stages.

    Science.gov (United States)

    Bermudez, Dieldrich S; Skotko, Jeremy P; Ohta, Yasuhiko; Boggs, Ashley S P; Iguchi, Taisen; Guillette, Louis J

    2011-06-01

    The expression of estrogen receptors, ESR1 (ERα) and ESR2 (ERβ), and androgen receptors (AR) in the thyroid gland has been reported in few vertebrate species other than a few mammals. This study reports the presence of sex steroid hormone receptors and thyroid receptors (ERα, ERβ, AR, TRα, and TRβ) in the thyroid gland of the American alligator at several life stages. It provides a semiquantification and distribution of ERα in the thyroid follicle cells using an immunohistochemical approach as well as reports quantitative differences in mRNA expression of ERα, ERβ, TRα, TRβ, and AR in the same tissue using quantitative real time-PCR (Q-PCR) with primers designed specifically for alligators. The thyroid tissue of the American alligator expresses ERα, ERβ, and AR at all of the life stages examined here although no statistically significant differences were observed between male and female in thyroid mRNA expression for any of the genes analyzed. No sexual dimorphism was observed in ERα immunostaining. No statistical analysis across life stages were performed due to confounding factor of season. Copyright © 2011 Wiley-Liss, Inc.

  18. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...

  19. Ischemic heart disease down-regulates angiotensin type 1 receptor mRNA in human coronary arteries

    DEFF Research Database (Denmark)

    Wackenfors, Angelica; Emilson, Malin; Ingemansson, Richard;

    2004-01-01

    Angiotensin II is important in the development of cardiovascular disease. In the present study, angiotensin II receptor mRNA levels were quantified by real-time polymerase chain reaction (real-time PCR) in human coronary arteries from patients with ischemic heart disease and controls. Furthermore......, the suitability of artery culture for studying angiotensin receptor changes was evaluated by in vitro pharmacology and real-time PCR. The angiotensin type 1 (AT1) receptor mRNA levels were down-regulated in human coronary arteries from patients with ischemic heart disease as compared to controls (P

  20. Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein

    DEFF Research Database (Denmark)

    Muñoz, A; Zenke, M; Gehring, U

    1988-01-01

    mutations present in the carboxy-terminal half of P75gag-v-erbA co-operate in abolishing hormone binding, and that the ligand-binding domain resides in a position analogous to that of steroid receptors. Furthermore, a point mutation that is located between the putative DNA and ligand-binding domains of P75......To identify and characterize the hormone-binding domain of the thyroid hormone receptor, we analyzed the ligand-binding capacities of proteins representing chimeras between the normal receptor and P75gag-v-erbA, the retrovirus-encoded form deficient in binding ligand. Our results show that several......gag-v-erbA and that renders it biologically inactive fails to affect hormone binding by the c-erbA protein. These results suggest that the mutation changed the ability of P75gag-v-erbA to affect transcription since it also had no effect on DNA binding. Our data also suggest that hormone...

  1. Molecular effects of leptin on peroxisome proliferator activated receptor gamma (PPAR-γ) mRNA expression in rat's adipose and liver tissue.

    Science.gov (United States)

    Abbasi, A; Moghadam, A A; Kahrarian, Z; Abbsavaran, R; Yari, K; Alizadeh, E

    2017-08-15

    Leptin is a 16-kDa peptide hormone secreted by adipose tissue that participates in the regulation of energy homeostasis. The aim of this study was to determine the effect of leptin injection on mRNA expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and comparison of PPAR-γ mRNA expression in rat's adipose and liver tissue. Twenty adult male rats were divided into the following groups: Group 1asa control (n=10) that did not receive any treatment. Group 2as a treatment (n=10) that received leptin (30 µg ⁄ kg BW) intraperitoneally (ip) for two successive days. Blood samples were taken before and one day after second leptin injection for triglyceride (TG), Free Fatty Acid (FFA), HLD-cholesterol, and LDL-cholesterol measurement. Total RNA was extractedfrom the adipose tissue and liver tissues of rats.  Adipose and liver tissue cells' cDNA was synthesized to characterize the expression of PPAR-γ. Gene expression of PPAR-γ mRNA was tested by RT- PCR technique. Results show leptin decreases expression of PPAR-γ on rat. Low levels of PPAR-γ mRNA were detected in adipose and liver tissues of treatment rats in comparison to control group. In treatment group, the level of PPAR-γ mRNA in liver tissue was very lower than the adipose tissue. The levels of HDL and FFA in treatment rats were increased whereas serum levels TG, VLDL and LDL were not changed. It is concluded that leptin signal with suppressing of PPAR-γ mRNA expression in rat's adipose and liver tissues can result in lipolysis instead of lipogenesis.

  2. Optimizing subcutaneous injection of the gonadotropin-releasing hormone receptor antagonist degarelix.

    Science.gov (United States)

    Barkin, Jack; Burton, Shelley; Lambert, Carole

    2016-02-01

    The gonadotropin-releasing hormone (GnRH) receptor antagonist degarelix has several unique characteristics compared to luteinizing hormone-releasing hormone (LHRH) analogs used in the management of prostate cancer. Notable differences of GnRH receptor antagonists include no flare reaction, and a more rapid suppression of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and prostate-specific antigen (PSA) compared to LHRH analogs. Despite emerging evidence supporting the use of GnRH receptor antagonists over the more widely used LHRH analogs in the management of prostate cancer, physicians may be reluctant to prescribe degarelix. They may be concerned about patient complaints about injection-site reactions (ISRs). The subcutaneous injection of degarelix has been associated with a higher rate of ISRs compared with the intramuscular injections of LHRH analogs. This "How I Do It" article describes techniques and strategies that have been developed by physicians and nurses to reduce the discomfort associated with the subcutaneous delivery of degarelix.

  3. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator.

    Science.gov (United States)

    Takeshita, A; Yen, P M; Misiti, S; Cardona, G R; Liu, Y; Chin, W W

    1996-08-01

    Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that regulate target gene transcription. The conserved carboxy-terminal region of the ligand-binding domain (AF-2) has been thought to play a critical role in mediating ligand-dependent transactivation by the interaction with coactivator(s). Using bacterially-expressed TR as a probe, far-Western-based expression cDNA library screening identified cDNAs that encode, in part, the recently reported partial steroid receptor coactivator-1 (SRC-1) sequence. Additional work, including 5' RACE, has characterized a full-length cDNA that encodes a approximately 160 kD protein as a putative thyroid hormone receptor coactivator (F-SRC-1). In vitro binding studies show that F-SRC-1 binds to a variety of nuclear hormone receptors in a ligand-dependent manner, along with TBP and TFIIB, suggesting that F-SRC-1 may play a role as a bridging molecule between nuclear hormone receptors and general transcription factors. Interestingly, AF-2 mutants also retain ligand-dependent interaction with F-SRC-1. Although F-SRC-1 recognizes the ligand-induced conformational changes of nuclear hormone receptors, our observations suggest that F-SRC-1 may bind directly with subregion(s) in nuclear hormone receptors other than the AF-2 region.

  4. Infertility in Female Mice with a Gain-of-Function Mutation in the Luteinizing Hormone Receptor Is Due to Irregular Estrous Cyclicity, Anovulation, Hormonal Alterations, and Polycystic Ovaries

    National Research Council Canada - National Science Library

    Hai, Lan; McGee, Stacey R; Rabideau, Amanda C; Paquet, Marilène; Narayan, Prema

    2015-01-01

    The luteinizing hormone receptor, LHCGR, is essential for fertility in males and females, and genetic mutations in the receptor have been identified that result in developmental and reproductive defects...

  5. Melanin concentrating hormone receptor 1 (MCHR1) antagonists - Still a viable approach for obesity treatment?

    DEFF Research Database (Denmark)

    Högberg, T.; Frimurer, T.M.; Sasmal, P.K.

    2012-01-01

    Obesity is a global epidemic associated with multiple severe diseases. Several pharmacotherapies have been investigated including the melanin concentrating hormone (MCH) and its receptor 1. The development of MCHR1 antagonists are described with a specific perspective on different chemotypes...

  6. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Science.gov (United States)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  7. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...... receptors have been cloned and for many receptors the endogenous ligand has been identified. In this review, we will give an update about the current knowledge of all Drosophila neuropeptide and protein hormone receptors, and discuss their phylogenetic relationships. Udgivelsesdato: 2006-Feb...

  8. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    Science.gov (United States)

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor.

  9. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    Science.gov (United States)

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  10. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  11. Multiple Novel Signals Mediate Thyroid Hormone Receptor Nuclear Import and Export*

    OpenAIRE

    Mavinakere, Manohara S.; Powers, Jeremy M.; Subramanian, Kelly S.; Roggero, Vincent R.; Allison, Lizabeth A.

    2012-01-01

    Thyroid hormone receptor (TR) is a member of the nuclear receptor superfamily that shuttles between the cytosol and nucleus. The fine balance between nuclear import and export of TR has emerged as a critical control point for modulating thyroid hormone-responsive gene expression; however, sequence motifs of TR that mediate shuttling are not fully defined. Here, we characterized multiple signals that direct TR shuttling. Along with the known nuclear localization signal in the hinge domain, we ...

  12. During hormone depletion or tamoxifen treatment of breast cancer cells the estrogen receptor apoprotein supports cell cycling through the retinoic acid receptor α1 apoprotein.

    Science.gov (United States)

    Salazar, Marcela D; Ratnam, Maya; Patki, Mugdha; Kisovic, Ivana; Trumbly, Robert; Iman, Mohamed; Ratnam, Manohar

    2011-02-07

    Current hormonal adjuvant therapies for breast cancer including tamoxifen treatment and estrogen depletion are overall tumoristatic and are severely limited by the frequent recurrence of the tumors. Regardless of the resistance mechanism, development and progression of the resistant tumors requires the persistence of a basal level of cycling cells during the treatment for which the underlying causes are unclear. In estrogen-sensitive breast cancer cells the effects of hormone depletion and treatment with estrogen, tamoxifen, all-trans retinoic acid (ATRA), fulvestrant, estrogen receptor α (ER) siRNA or retinoic acid receptor α (RARα) siRNA were studied by examining cell growth and cycling, apoptosis, various mRNA and protein expression levels, mRNA profiles and known chromatin associations of RAR. RARα subtype expression was also examined in breast cancer cell lines and tumors by competitive PCR. Basal proliferation persisted in estrogen-sensitive breast cancer cells grown in hormone depleted conditioned media without or with 4-hydroxytamoxifen (OH-Tam). Downregulating ER using either siRNA or fulvestrant inhibited basal proliferation by promoting cell cycle arrest, without enrichment for ErbB2/3+ overexpressing cells. The basal expression of RARα1, the only RARα isoform that was expressed in breast cancer cell lines and in most breast tumors, was supported by apo-ER but was unaffected by OH-Tam; RAR-β and -γ were not regulated by apo-ER. Depleting basal RARα1 reproduced the antiproliferative effect of depleting ER whereas its restoration in the ER depleted cells partially rescued the basal cycling. The overlapping tamoxifen-insensitive gene regulation by apo-ER and apo-RARα1 comprised activation of mainly genes promoting cell cycle and mitosis and suppression of genes involved in growth inhibition; these target genes were generally insensitive to ATRA but were enriched in RAR binding sites in associated chromatin regions. In hormone-sensitive breast

  13. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism.

    Science.gov (United States)

    Castro, Marián; Nikolaev, Viacheslav O; Palm, Dieter; Lohse, Martin J; Vilardaga, Jean-Pierre

    2005-11-01

    Parathyroid hormone (PTH) and its related receptor (PTHR) are essential regulators of calcium homeostasis and bone physiology. PTH activates PTHR by interacting with a ligand-binding site localized within the N-terminal extracellular domain (the N-domain) and the domain comprising the seven transmembrane helices and the connecting extracellular loops (the J-domain). PTH binding triggers a conformational switch in the receptor, leading to receptor activation and subsequent cellular responses. The process of receptor activation occurs rapidly, within approximately 1 s, but the binding event preceding receptor activation is not understood. By recording FRET between tetramethyl-rhodamine in PTH(1-34) and GFP in the N-domain of the receptor, we measured the binding event in real time in living cells. We show that the association time course between PTH(1-34) and PTHR involves a two-step binding process where the agonist initially binds the receptor with a fast time constant (tau approximately 140 ms) and then with slower kinetics (tau approximately 1 s). The fast and slow phases were assigned to hormone association to the receptor N- and J domains, respectively. Our data indicate that the slow binding step to the J-domain coincides with a conformational switch in the receptor, also monitored by FRET between the enhanced cyan fluorescent protein and the enhanced yellow fluorescent protein in the PTHR sensor, PTHR enhanced cyan fluorescent protein/enhanced yellow fluorescent protein (PTHR(CFP/YFP)). These data suggest that the conformational change that switches the receptor into its active state proceeds in a sequential manner, with the first rapid binding step event preceding receptor activation by PTH(1-34).

  14. Effect of Heat Stress on the Expression of GABA Receptor mRNA in the HPG Axis of Wenchang Chickens

    Directory of Open Access Journals (Sweden)

    LJ Xie

    Full Text Available ABSTRACT We investigated the effect of heat stress (HS on the expression of the GABA receptor in the hypothalamic-pituitary-gonadal (HPG axis of Wenchang chickens. Real-time quantitative RT-PCR (qRT-PCR was used to quantify the GABA receptor mRNA levels along the HPG axis of chickens under HS (40±0.5 °C for 1-6 weeks. Our results showed that the expression of GABAA and GABAB receptor at the mRNAs levels in the tissues of HPG axis exhibited fluctuation and variability. After HS, the mRNA level of GABAA receptor was significantly reduced in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but significantly increased in the pituitary of 1-, 4-, and 5-week-old chickens. The GABAB receptor mRNA level significantly declined in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but was significantly upregulated in the pituitary and testis of 1- and 2-week-old chickens. At other time points, the expressions of GABAA receptor and GABAB receptor showed no significant differences compared with control group. These results indicated that the levels of GABAA receptor and GABAB receptor mRNAs varied in different tissues of the HPG axis in chickens of different ages, displaying temporal and spatial variations. GABA receptor behaved as a positively-regulated gene by HS, i.e., its mRNA was increased by HS; similarly, it was a negatively-regulated gene by HS, when its expression was reduced by HS.

  15. The vitamin D receptor localization and mRNA expression in ram testis and epididymis.

    Science.gov (United States)

    Jin, Hui; Huang, Yang; Jin, Guang; Xue, Yanrong; Qin, Xiaowei; Yao, Xiaolei; Yue, Wenbing

    2015-02-01

    The objectives of present study were to investigate the presence of vitamin D receptor (VDR) in testis and epididymis of ram by polymerase chain reaction (PCR), to locate VDR in testis and epididymis by immunohistochemistry and to compare difference of VDR expression between testis and epididymis before and after sexual maturation by Real time-PCR and Western blot. The results showed that VDR exists in the testis and epididymis of ram while VDR protein in testis and epididymis was localized in Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells and principal cells. For the adult ram, the amounts of VDR mRNA and VDR protein were less (p ram, the result showed the same trend (p 0.05) between adult and prepubertal. In conclusion, VDR exists in testis and epididymis of ram, suggesting 1α,25-(OH)(2)VD(3) may play a role in ram reproduction.

  16. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    DEFF Research Database (Denmark)

    Billestrup, N; Allevato, G; Norstedt, G

    1994-01-01

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated...... a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to mediate GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH...

  17. Molecular identification of the insect adipokinetic hormone receptors

    DEFF Research Database (Denmark)

    Staubli, Frank; Jørgensen, Thomas J D; Cazzamali, Giuseppe

    2002-01-01

    The insect adipokinetic hormones (AKHs) are a large family of peptide hormones that are involved in the mobilization of sugar and lipids from the insect fat body during energy-requiring activities such as flight and locomotion, but that also contribute to hemolymph sugar homeostasis. Here, we have...

  18. Molecular cloning and tissue distribution of a short form chicken leptin receptor mRNA.

    Science.gov (United States)

    Liu, Xiaojun; Dunn, I C; Sharp, P J; Boswell, T

    2007-04-01

    In mammals, alternative splicing of the leptin receptor (LEPR) produces several C-terminal truncated isoforms that are believed to play a role in the transport, cellular internalisation and degradation of the hormone leptin. The chicken leptin receptor (chLEPR) is similar to its mammalian counterparts in terms of its intron/exon structure and conserved motifs. However, it is unknown whether the chLEPR also undergoes alternative splicing. To test this, structural analysis of intron 19 of the chLEPR, equivalent to the intron in which alternative splicing occurs in mammals, was combined with 3'-rapid amplification of cDNA ends (3'-RACE) to search for chLEPR splice variants. A 44-amino acid alternative exon 20 was identified that is spliced to generate a short isoform of the chLEPR (chLEPR-SF). Comparative sequence analysis of intron 19 identified two regions that are highly conserved between the chicken and mammals, indicating their possible importance as intronic elements in the regulation of alternative splicing of the LEPR in vertebrates. Tissue expression of the chLEPR-SF was lower and more restricted than that of the chLEPR long isoform. Collectively these data demonstrate that the chLEPR is alternatively spliced to produce at least one short isoform, as is the case in mammals.

  19. Effects of adrenal hormones on the expression of adiponectin and adiponectin receptors in adipose tissue, muscle and liver.

    Science.gov (United States)

    de Oliveira, Cristiane; Iwanaga-Carvalho, Carla; Mota, João F; Oyama, Lila M; Ribeiro, Eliane B; Oller do Nascimento, Cláudia M

    2011-11-01

    Adiponectin, an insulin-sensitive hormone that is primarily synthesized in adipose tissue, exerts its effects by binding to two receptors, adipoR1 and adipoR2. Little is known regarding the effects of glucocorticoids on the expression of adiponectin receptors. Male Wistar rats were bilaterally adrenalectomized and treated with dexamethasone (0.2 mg/100 g) twice daily for 3 days. To analyze the potential effects of glucocorticoids, rats received two daily injections of the glucocorticoid receptor antagonist (RU-486, 5.0 mg) over the course of 3 days. Additionally, 3T3-L1 adipocytes and C2C12 myotubes were treated with dexamethasone, adrenaline or RU-486. The gene expression of adiponectin, adipoR1 and adipoR2 was determined by real-time PCR, and protein secretion was examined by Western blotting using lysates from retroperitoneal, epididymal and subcutaneous adipose tissue depots, liver and muscle. In rats, excess glucocorticoids increased the levels of insulin in serum and decreased serum adiponectin concentrations, whereas adrenalectomy decreased the mRNA expression of adiponectin (3-fold) and adipoR2 (7-fold) in epididymal adipose tissue and increased adipoR2 gene expression in muscle (3-fold) compared to control group sham-operated. Dexamethasone treatment did not reverse the effects of adrenalectomy, and glucocorticoid receptor blockade did not reproduce the effects of adrenalectomy. In 3T3-L1 adipocytes, dexamethasone and adrenaline both increased adipoR2 mRNA levels, but RU-486 reduced adipoR2 gene expression in vitro. Dexamethasone treatment induces a state of insulin resistance but does not affect adiponectin receptor expression in adipose tissue. However, the effects of catecholamines on insulin resistance may be due to their effects on adipoR2. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Mutation analysis underlying the downregulation of the thyroid hormone receptor β1 gene in the Chinese breast cancer population

    Directory of Open Access Journals (Sweden)

    Ling YQ

    2015-10-01

    Full Text Available Yaqin Ling,1 Xiaoling Ling,2 Lu Fan,1 Yong Wang,3,* Qing Li1,* 1Department of Pathophysiology, College of Basic Medical, Lanzhou University, 2Medical Oncology, Lanzhou University First Hospital, 3Department of Gastroenterology, Lanzhou General Hospital of Lanzhou Military Command of PLA, Lanzhou, Gansu Province, People’s Republic of China *These authors contributed equally to this work Purpose: There are a growing number of reports suggesting that the aberrant expression and mutation of the thyroid hormone receptor β1 (TRβ1 gene is associated with the development of human neoplasms. However, its exact role in the pathogenesis of breast cancer remains elusive. In the present study, we analyzed the mRNA expression and mutations of the TRβ1 gene in the Chinese breast cancer population.Methods: The expression of TRβ1 mRNA was examined by real-time quantitative reverse transcription polymerase chain reaction, and mutations in the TRβ1 gene in the hotspot region that spans exons 7–10 were analyzed by polymerase chain reaction single-strand conformation polymorphism and automated DNA sequencing.Results: TRβ1 mRNA expression was significantly reduced in all 105 breast cancer specimens examined. A total of 20 samples showed truncating mutations within the exons 7–10 of the TRβ1 gene, where eight cases harbored a frame shift mutation (five cases of c.850insA in exon 7 and three cases c.1028delA in exon 8, whereas missense mutations were observed in 12 breast cancer cases. The 20 cases with mutation in the TRβ1 gene showed a reduction in TRβ1 mRNA expression compared with that observed in matched normal tissues. The mutation was also correlated with menopausal stage and estrogen receptor status.Conclusion: The findings of the present study suggest that the aberrant expression and mutations of the TRβ1 gene are associated with the development of breast cancer and that the ­mutations in the TRβ1 gene partly serve as the underlying

  1. mRNA expression of pattern recognition receptors and their signaling mediators in healthy and diseased gingival tissues

    OpenAIRE

    2014-01-01

    Background: Gingivitis and periodontitis are initiated by inflammation caused by microorganisms. Pathogen-associated molecular patterns (PAMPs) from these microorganisms are recognized through various toll-like receptors (TLRs) and NOD-like receptors (NLRs). In this study, we have chosen five TLRs and two NLRs as representatives taking part in the recognition and inflammation process, along with a few of their signaling mediators including CD14, MYD88, and TRIF to compare their mRNA expressio...

  2. In vivo regulation of hepatic LDL receptor mRNA in the baboon. Differential effects of saturated and unsaturated fat.

    Science.gov (United States)

    Fox, J C; McGill, H C; Carey, K D; Getz, G S

    1987-05-25

    The effects of diets enriched with cholesterol and different fats upon plasma lipoproteins and hepatic low density lipoprotein (LDL) receptor mRNA levels were studied in a group of 18 normal baboons. Animals were fed diets containing 1% cholesterol and 25% fat as either coconut oil, peanut oil, or olive oil for a period of 20 weeks. Plasma total cholesterol, high density lipoprotein (HDL) cholesterol, beta-lipoprotein (LDL + very low density lipoprotein) cholesterol, apolipoprotein B and apolipoprotein A-I were measured in samples obtained at 4-week intervals. All three diet groups demonstrated a statistically significant increase in plasma cholesterol as compared to base line throughout the experiment. Hepatic LDL receptor (LDL-R) mRNA levels were quantified by dot blot hybridization in serial liver biopsies. Animals fed saturated fat sustained a significant reduction in hepatic LDL-R mRNA as compared to those fed either monounsaturated or polyunsaturated fat. A strong negative correlation between LDL-R mRNA and plasma total cholesterol (r = -0.71), HDL cholesterol (r = -0.76), and plasma apo A-I (r = -0.77) was observed only in those animals fed coconut oil. Weak negative correlations between LDL-R mRNA and other plasma parameters did not achieve statistical significance. We conclude that saturated and unsaturated oils may influence plasma cholesterol levels in part through differential effects on LDL receptor biosynthesis in baboons.

  3. Expression of CC Chemokine Ligand 20 and CC Chemokine Receptor 6 mRNA in Patients with Psoriasis Vulgaris

    Institute of Scientific and Technical Information of China (English)

    吴艳; 李家文

    2004-01-01

    Summary: In order to explore the possible role of CC chemokine ligand 20 (CCL20) and its receptor CC chemokine receptor 6 (CCR6) in the pathogenesis of psoriasis, the expression levels of mRNA of them in psoriatic lesions were investigated. The skin biopsies were collected from skin lesions in 35 cases of psoriasis vulgaris and 18 normal controls. RT-PCR was used to semi-quantitatively analyze the mRNA expression of CCL20 and CCR6 in the psoriatic lesions and the normal skin tissues.The results showed that the mRNA of CCL20 and CCR6 was present in every specimen. The expression levels of CCL20 mRNA in skin lesions were 1. 1397±0. 0521, which were greatly higher than those in normal controls (0.8681±0.0308) (P<0. 001). The expression levels of CCR6 mRNA in skin lesions were 1.1103±0.0538, significantly higher than in the controls (0.9131±0.0433, P<0. 001). These findings indicate that up-regulated expression of CCL20 and CCR6 mRNA might be related to the pathogenesis of psoriasis.

  4. Down-regulation of transforming growth factor-β type II receptor (TGF-βRII protein and mRNA expression in cervical cancer

    Directory of Open Access Journals (Sweden)

    Gariglio Patricio

    2008-01-01

    Full Text Available Abstract Background Cervical carcinogenesis is a multistep process initiated by "high risk" human papillomaviruses (HR-HPV, most commonly HPV16. The infection per se is, however, not sufficient to induce malignant conversion. Transforming Growth Factor β (TGF-β inhibits epithelial proliferation and altered expression of TGF-β or its receptors may be important in carcinogenesis. One cofactor candidate to initiate neoplasia in cervical cancer is the prolonged exposure to sex hormones. Interestingly, previous studies demonstrated that estrogens suppress TGF-β induced gene expression. To examine the expression of TGF-β2, TGF-βRII, p15 and c-myc we used in situ RT-PCR, real-time PCR and immunohistochemistry in transgenic mice expressing the oncogene E7 of HPV16 under control of the human Keratin-14 promoter (K14-E7 transgenic mice and nontransgenic control mice treated for 6 months with slow release pellets of 17β-estradiol. Results Estrogen-induced carcinogenesis was accompanied by an increase in the incidence and distribution of proliferating cells solely within the cervical and vaginal squamous epithelium of K14-E7 mice. TGF-β2 mRNA and protein levels increased in K14-E7 transgenic mice as compared with nontransgenic mice and further increased after hormone-treatment in both nontransgenic and transgenic mice. In contrast, TGF-βRII mRNA and protein levels were decreased in K14-E7 transgenic mice compared to nontransgenic mice and these levels were further decreased after hormone treatment in transgenic mice. We also observed that c-myc mRNA levels were high in K14-E7 mice irrespective of estrogen treatment and were increased in estrogen-treated nontransgenic mice. Finally we found that p15 mRNA levels were not increased in K14-E7 mice. Conclusion These results suggest that the synergy between estrogen and E7 in inducing cervical cancer may in part reflect the ability of both factors to modulate TGF-β signal transduction.

  5. Effects of ghrelin on Kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinising hormone secretion in the female rat.

    Science.gov (United States)

    Forbes, Sarah; Li, Xiao Feng; Kinsey-Jones, James; O'Byrne, Kevin

    2009-08-28

    The orexigenic gut peptide ghrelin negatively modulates the hypothalamic-pituitary-gonadal (HPG) axis. Hyperghrelinaemia results during negative energy balance, a state often associated with delayed puberty and disrupted fertility, whilst exogenous ghrelin suppresses pulsatile luteinising hormone (LH) secretion. The recent identification of kisspeptin (Kiss1) and its G protein-coupled receptor (GPR)54 (Kiss1r) as an essential component of the HPG axis controlling gonadotrophin secretion raises the possibility that kisspeptin-Kiss1r signalling may play a critical role in the transduction of ghrelin-induced suppression of LH. Ovariectomised oestrogen-replaced rats were implanted with intravenous catheters and blood samples collected for detection of LH pulses prior to and after intravenous administration of ghrelin (3nM/250 microl) or saline (250 microl) during ad libitum feeding or after overnight fasting. Quantitative RT-PCR was used to determine Kiss1 and Kiss1r mRNA levels in brain punches of the key hypothalamic sites regulating gonadotrophin secretion, the medial preoptic area (mPOA) and arcuate nucleus (ARC), collected 6h following administration of ghrelin. Ghrelin significantly lowered LH pulse frequency in fed rats, an effect significantly enhanced by food deprivation. Fasting, ghrelin or their combination down-regulated Kiss1, without affecting Kiss1r, expression in the mPOA, and affected the expression of neither in the ARC. Considering the pivotal role for kisspeptin signalling in the activation of the HPG axis, the ability of ghrelin to down-regulate Kiss1 expression in mPOA may be a contributing factor in ghrelin-related suppression of pulsatile LH secretion.

  6. Ontogeny of growth hormone receptor gene expression in tissue of growth-selected strains of broiler chickens.

    Science.gov (United States)

    Mao, J N; Burnside, J; Postel-Vinay, M C; Pesek, J D; Chambers, J R; Cogburn, L A

    1998-01-01

    The purpose of this study was to determine the relationship between genetic selection for growth traits and tissue expression of the chicken growth hormone receptor (cGHR) gene. Two different populations of broiler chickens were studied. One population consisted of strain (S) 80, selected for 14 generations for high 9-week body weight (BW), and its progenitor, S90 (a 1950's strain). The second population consisted of S21, selected for 10 generations for high 4-week BW and low abdominal fat, and its progenitor S20 (a 1970's strain). Tissue (liver, fat, breast and leg muscle) and blood samples were collected from six birds/strain at 2-week intervals between 1 and 11 weeks of age. An RNase protection assay was developed to measure mRNA levels of full-length cGHR (3.2 and 4.3 kb) transcripts and chicken glyceraldehyde 3-phosphate dehydrogenase (for normalization) in total RNA prepared from tissue. Analysis of the area-under-curve (AUC) was used for strain comparisons of certain developmental profiles (BW, plasma hormones and tissue cGHR mRNA). The BW AUC showed that the growth rates are different (P S20 > S80 > S90). Both slow-growing strains (S90 and S80) had a higher (P growing strains (S20 and S21). The plasma T3 AUC was highest (P S20 > S80 > S90). However, the developmental increase in cGHR mRNA in liver and fat was similar among these different populations of growth-selected broiler chickens. Steady-state levels of cGHR mRNA increased in a developmental manner in the liver (5-fold at 9 weeks of age) and abdominal fat (4.5-fold at 11 weeks of age) of all strains. In contrast, there was no developmental increase or strain difference in cGHR mRNA levels in breast and leg muscle. There is a discrepancy between GH-binding activity in liver and plasma, which is different among strains, and steady-state levels of tissue cGHR mRNA which are similar among strains. These observations suggest that the cGHR is under translational or post-translational regulation which would

  7. Antidepressant drug exposure is associated with mRNA levels of tyrosine receptor kinase B in major depressive disorder.

    Science.gov (United States)

    Bayer, T A; Schramm, M; Feldmann, N; Knable, M B; Falkai, P

    2000-08-01

    1. Recent studies have provided support for the notion that the high affinity neurotrophin receptor tyrosine receptor kinase B (trk B) may be involved in the treatment of depression. 2. Using a quantitative RT-PCR approach trk B mRNA levels were determined in brain material from cerebellum, temporal cortex, and frontal cortex of control specimen and patients with major depressive disorder, schizophrenia and bipolar disorder (15 subjects each). 3. Interestingly, elevated trk B mRNA levels were found in cerebellum (3.6-fold) in patients with major depressive disorder, reaching statistical significance (p=0.03). 4. The major depressive disorder-on drugs group differed from controls (p=0.006) in the cerebellum. 5. Since only patients with major depressive disorder received antidepressants, elevated trk B mRNA levels are possibly related to drug treatment.

  8. Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels

    DEFF Research Database (Denmark)

    Theander Grünfeld, Heidi; Bonefeld-Jørgensen, Eva Cecilie

    2004-01-01

    Nine widely distributed pesticides were recently demonstrated to posses potential estrogenic properties in oestrogen receptor (ER) transactivation and/or E-screen assays. We tested the effect of these nine pesticides on the human ERα and ERβ mRNA steady state levels in the mamma cancer fibroblast...

  9. Caffeine Bitterness is Related to Daily Caffeine Intake and Bitter Receptor mRNA Abundance in Human Taste Tissue.

    Science.gov (United States)

    Lipchock, Sarah V; Spielman, Andrew I; Mennella, Julie A; Mansfield, Corrine J; Hwang, Liang-Dar; Douglas, Jennifer E; Reed, Danielle R

    2017-01-01

    We investigated whether the abundance of bitter receptor mRNA expression from human taste papillae is related to an individual's perceptual ratings of bitter intensity and habitual intake of bitter drinks. Ratings of the bitterness of caffeine and quinine and three other bitter stimuli (urea, propylthiouracil, and denatonium benzoate) were compared with relative taste papilla mRNA abundance of bitter receptors that respond to the corresponding bitter stimuli in cell-based assays ( TAS2R4, TAS2R10, TAS2R38, TAS2R43, and TAS2R46). We calculated caffeine and quinine intake from a food frequency questionnaire. The bitterness of caffeine was related to the abundance of the combined mRNA expression of these known receptors, r = 0.47, p = .05, and self-reported daily caffeine intake, t(18) = 2.78, p = .012. The results of linear modeling indicated that 47% of the variance among subjects in the rating of caffeine bitterness was accounted for by these two factors (habitual caffeine intake and taste receptor mRNA abundance). We observed no such relationships for quinine but consumption of its primary dietary form (tonic water) was uncommon. Overall, diet and TAS2R gene expression in taste papillae are related to individual differences in caffeine perception.

  10. 3,5-Diiodothyronine in vivo maintains euthyroidal expression of type 2 iodothyronine deiodinase, growth hormone, and thyroid hormone receptor beta1 in the killifish.

    Science.gov (United States)

    García-G, C; López-Bojorquez, L; Nuñez, J; Valverde-R, C; Orozco, A

    2007-08-01

    Until recently, 3,5-diiodothyronine (3,5-T(2)) has been considered an inactive by-product of triiodothyronine (T(3)) deiodination. However, studies from several laboratories have shown that 3,5-T(2) has specific, nongenomic effects on mitochondrial oxidative capacity and respiration rate that are distinct from those due to T(3). Nevertheless, little is known about the putative genomic effects of 3,5-T(2). We have previously shown that hyperthyroidism induced by supraphysiological doses of 3,5-T(2) inhibits hepatic iodothyronine deiodinase type 2 (D2) activity and lowers mRNA levels in the killifish in the same manner as T(3) and T(4), suggesting a pretranslational effect of 3,5-T(2) (Garcia-G C, Jeziorski MC, Valverde-R C, Orozco A. Gen Comp Endocrinol 135: 201-209, 2004). The question remains as to whether 3,5-T(2) would have effects under conditions similar to those that are physiological for T(3). To this end, intact killifish were rendered hypothyroid by administering methimazole. Groups of hypothyroid animals simultaneously received 30 nM of either T(3), reverse T(3), or 3,5-T(2). Under these conditions, we expected that, if it were bioactive, 3,5-T(2) would mimic T(3) and thus reverse the compensatory upregulation of D2 and tyroid receptor beta1 and downregulation of growth hormone that characterize hypothyroidism. Our results demonstrate that 3,5-T(2) is indeed bioactive, reversing both hepatic D2 and growth hormone responses during a hypothyroidal state. Furthermore, we observed that 3,5-T(2) and T(3) recruit two distinct populations of transcription factors to typical palindromic and DR4 thyroid hormone response elements. Taken together, these results add further evidence to support the notion that 3,5-T(2) is a bioactive iodothyronine.

  11. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated ...

  12. Aberrant Monoaminergic System in Thyroid Hormone Receptor-β Deficient Mice as a Model of Attention-Deficit/Hyperactivity Disorder

    OpenAIRE

    Ookubo, Masanori; Sadamatsu, Miyuki; Yoshimura, Atsushi; SUZUKI, Satoru; Kato, Nobumasa; Kojima, Hideto; Yamada, Naoto; Kanai, Hirohiko

    2015-01-01

    Background: Thyroid hormone receptors are divided into 2 functional types: TRα and TRβ. Thyroid hormone receptors play pivotal roles in the developing brain, and disruption of thyroid hormone receptors can produce permanent behavioral abnormality in animal models and humans. Methods: Here we examined behavioralchanges, regional monoamine metabolism, and expression of epigenetic modulatory proteins, including acetylated histone H3 and histone deacetylase, in the developing brain of TRα-disrupt...

  13. The diversity of abnormal hormone receptors in adrenal Cushing's syndrome allows novel pharmacological therapies

    Directory of Open Access Journals (Sweden)

    Lacroix A.

    2000-01-01

    Full Text Available Recent studies from several groups have indicated that abnormal or ectopic expression and function of adrenal receptors for various hormones may regulate cortisol production in ACTH-independent hypercortisolism. Gastric inhibitory polypeptide (GIP-dependent Cushing's syndrome has been described in patients with either unilateral adenoma or bilateral macronodular adrenal hyperplasia; this syndrome results from the large adrenal overexpression of the GIP receptor without any activating mutation. We have conducted a systematic in vivo evaluation of patients with adrenal Cushing's syndrome in order to identify the presence of abnormal hormone receptors. In macronodular adrenal hyperplasia, we have identified, in addition to GIP-dependent Cushing's syndrome, other patients in whom cortisol production was regulated abnormally by vasopressin, ß-adrenergic receptor agonists, hCG/LH, or serotonin 5HT-4 receptor agonists. In patients with unilateral adrenal adenoma, the abnormal expression or function of GIP or vasopressin receptor has been found, but the presence of ectopic or abnormal hormone receptors appears to be less prevalent than in macronodular adrenal hyperplasia. The identification of the presence of an abnormal adrenal receptor offers the possibility of a new pharmacological approach to control hypercortisolism by suppressing the endogenous ligands or by using specific antagonists for the abnormal receptors.

  14. Thyroid hormone regulation of brain gene expression: role of thyroid hormone receptors

    OpenAIRE

    Gil-Ibáñez, Pilar

    2014-01-01

    Tesis doctoral inédita, leída en la Universidad Autónoma de Madrid. Facultad de Medicina. Departamento de Bioquímica. Fecha de lectura: 13 de junio, 2014 Thyroid hormones are important during development of the mammalian brain. They are involved in neuronal and glial cell differentiation and migration, axonal myelination, and synaptogenesis. The effects of thyroid hormones on brain development ...

  15. Morphine and endomorphins differentially regulate micro-opioid receptor mRNA in SHSY-5Y human neuroblastoma cells.

    Science.gov (United States)

    Yu, Xin; Mao, Xin; Blake, Allan D; Li, Wen Xin; Chang, Sulie L

    2003-08-01

    A sensitive quantitative-competitive reverse transcriptase-polymerase chain reaction method was developed to measure micro-opioid receptor (MOR) mRNA expression in SHSY-5Y neuroblastoma cells. Differentiation of SHSY-5Y cells with either retinoic acid (RA) or 12-o-tetradecanoyl-phorbol-13-acetate (TPA) significantly increased MOR mRNA levels. Morphine treatment (10 microM) for 24 h decreased MOR mRNA levels in control, as well as RA- and TPA-differentiated cells. In contrast, chronic exposure to the opioid peptides endomorphin-1 or endomorphin-2 significantly increased MOR mRNA levels in undifferentiated and RA-differentiated cells. An opioid antagonist, naloxone, reversed the morphine and endomorphin-1 and -2 effects on MOR mRNA levels in undifferentiated SHSY-5Y cells, but naloxone had differential reversing effects on the agonists' regulation of MOR mRNA in RA- or TPA-differentiated cells. To investigate whether the changes in MOR mRNA expression paralleled changes in MOR receptor function, intracellular cAMP accumulation in SHSY-5Y cells was measured. After chronic treatment with morphine, forskolin-induced cAMP levels in SHSY-5Y cells were significantly higher than those of untreated control cells. In contrast, forskolin-induced cAMP accumulation levels were lower in cells treated with endomorphin-1 or -2 than in untreated control cells. Together, our studies indicate that the opioid alkaloid morphine and the opioid peptides endomorphin-1 and -2 differentially regulate MOR mRNA expression and MOR function in SHSY-5Y cells.

  16. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.

    Science.gov (United States)

    Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.

  17. Final Report [Regulated mRNA Decay in Arabidopsis: A global analysis of differential control by hormones and the circadian clock

    Energy Technology Data Exchange (ETDEWEB)

    Green, Pamela J.

    2010-03-18

    The long-term goal of this research was to better understand the influence of mRNA stability on gene regulation, particularly in response to hormones and the circadian clock. The primary aim of this project was to examine this using DNA microarrays, small RNA analysis and other approaches. We accomplished these objectives, although we were only able to detect small changes in mRNA stability in response to these stimuli. However, the work also contributed to a major breakthrough allowing the identification of small RNAs on a genomic scale in eukaryotes. Moreover, the project prompted us to develop a new way to analyze mRNA decay genome wide. Thus, the research was hugely successful beyond our objectives.

  18. Effects of Progestin and Antiprogestin on the Expression of FSH Receptor and LH Receptor mRNA in Porcine Granulosa and Thecal Cells

    Institute of Scientific and Technical Information of China (English)

    吴尔若; 刘德瑜; 赵金来; 吴燕婉

    2000-01-01

    In order to investigate the mechanism of progestin and antiprogestin in the regula-tion of ovarian steroidogenesis, a dual-chamber culture system was prepared with the amnion membrane of human placenta. Isolated porcine granulosa and thecal cells from 4~6 mm-diameter follicles were grown on both sides of the amnion, respectively, and co-cultured with or without LNG and RU486. After 48 h incubation, the mRNAs of FSH receptor (FSH-R) and LH receptor (LH-R) of both cells were observed by in situ hybridization. The results showed that granulosa cells expressed both FSH-R mR-NA and LH-R mRNA, while thecal cells expressed LH-R mRNA only. Under the stimulation of FSH, both LNG and RU486 increased FSH-R mRNA expression of granulosa cells. Under the stimulation of LH, LNG enhanced LH-R mRNA expres-sion of thecal cells;while RU486 decreased its expression. When granulosa and thecal cells were exposed to FSH and LH both, the actions of LNG and RU 486 in thecal cells showed the same result as that stimulated by LH alone. In granulosa cells LNG de-creased LH-R mRNA expression, while RU486 increased its expression. These data suggest that; (1) granulosa cells expressed FSH-R mRNA significantly; (2) both the progestin and antiprogestin directly acted on the mRNA expression of gonadotropin re-ceptors of ovarian cells, but effects were different; (3) the response of granulosa or thecal cells to the action of LNG and RU486 was not the same. The mechanism needs to be further investigated.

  19. 17β-Estradiol Regulation of the mRNA Expression of T-type Calcium Channel subunits: Role of Estrogen Receptor α and Estrogen Receptor β

    Science.gov (United States)

    Bosch, Martha A.; Hou, Jingwen; Fang, Yuan; Kelly, Martin J.; Rønnekleiv., Oline K.

    2009-01-01

    Low voltage-activated (T-type) calcium channels are responsible for burst firing and transmitter release in neurons and are important for exocytosis and hormone secretion in pituitary cells. T-type channels contain an α1 subunit, of which there are three subtypes, Cav3.1, 3.2 and 3.3, and each subtype has distinct kinetic characteristics. Although 17β-estradiol modulates T-type calcium channel expression and function, little is known about the molecular mechanisms involved. Presently, we used real-time PCR quantification of RNA extracted from hypothalamic nuclei and pituitary in vehicle and E2-treated C57BL/6 mice to elucidate E2-mediated regulation of Cav3.1, 3.2 and 3.3 subunits. The three subunits were expressed in both the hypothalamus and the pituitary. E2 treatment increased the mRNA expression of Cav3.1 and 3.2, but not Cav3.3, in the medial preoptic area and the arcuate nucleus. In the pituitary, Cav3.1 was increased with E2-treatment and Cav3.2 and 3.3 were decreased. In order to examine whether the classical estrogen receptors (ERs) were involved in the regulation, we used ERα- and ERβ-deficient C57BL/6 mice and explored the effects of E2 on T-type channel subtypes. Indeed, we found that the E2-induced increase in Cav3.1 in the hypothalamus was dependent on ERα, whereas the E2 effect on Cav3.2 was dependent on both ERα and ERβ. However, the E2-induced effects in the pituitary were dependent on only the expression of ERα. The robust E2-regulation of the T-type calcium channels could be an important mechanism by which E2 increases the excitability of hypothalamic neurons and modulates pituitary secretion. PMID:19003958

  20. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available The evolutionary trajectories of growth hormone-releasing hormone (GHRH receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP receptor (PRPR. In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2 had the highest expression in brain, and interestingly, X. laevis(GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  1. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  2. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    Directory of Open Access Journals (Sweden)

    Thomas L. Shaak

    2013-01-01

    Full Text Available DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects.

  3. Hormones

    Science.gov (United States)

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  4. Analysis of Paired Primary-Metastatic Hormone-Receptor Positive Breast Tumors (HRPBC Uncovers Potential Novel Drivers of Hormonal Resistance.

    Directory of Open Access Journals (Sweden)

    Luis Manso

    Full Text Available We sought to identify genetic variants associated with disease relapse and failure to hormonal treatment in hormone-receptor positive breast cancer (HRPBC. We analyzed a series of HRPBC with distant relapse, by sequencing pairs (n = 11 of tumors (primary and metastases at >800X. Comparative genomic hybridization was performed as well. Top hits, based on the frequency of alteration and severity of the changes, were tested in the TCGA series. Genes determining the most parsimonious prognostic signature were studied for their functional role in vitro, by performing cell growth assays in hormonal-deprivation conditions, a setting that mimics treatment with aromatase inhibitors. Severe alterations were recurrently found in 18 genes in the pairs. However, only MYC, DNAH5, CSFR1, EPHA7, ARID1B, and KMT2C preserved an independent prognosis impact and/or showed a significantly different incidence of alterations between relapsed and non-relapsed cases in the TCGA series. The signature composed of MYC, KMT2C, and EPHA7 best discriminated the clinical course, (overall survival 90,7 vs. 144,5 months; p = 0.0001. Having an alteration in any of the genes of the signature implied a hazard ratio of death of 3.25 (p<0.0001, and early relapse during the adjuvant hormonal treatment. The presence of the D348N mutation in KMT2C and/or the T666I mutation in the kinase domain of EPHA7 conferred hormonal resistance in vitro. Novel inactivating mutations in KMT2C and EPHA7, which confer hormonal resistance, are linked to adverse clinical course in HRPBC.

  5. Increased interferon alpha receptor 2 mRNA levels is associated with renal cell carcinoma metastasis

    Directory of Open Access Journals (Sweden)

    Yamanishi Tomonori

    2007-08-01

    Full Text Available Abstract Background Interferon-α (IFN-α is one of the central agents in immunotherapy for renal cell carcinoma (RCC and binds to the IFN-α receptor (IFNAR. We investigated the role of IFNAR in RCC. Methods We quantified IFNAR mRNA expression in paired tumor and non-tumor samples from the surgical specimens of 103 consecutive patients with RCC using a real-time reverse transcription polymerase chain reaction (RT-PCR, and IFNAR2 protein using Western blotting. Results The absolute level of IFNAR1 and IFNAR2 mRNAs in tumor and non-tumor tissues did not correlate with the malignant and metastatic profiles. The relative yields of the PCR product from the tumor tissue to that from the corresponding non-tumor tissue (T/N for the expression of IFNAR mRNAs were calculated. While the T/N ratio of IFNAR1 did not correlate with any factor, a high T/N ratio of IFNAR2 correlated with poor differentiation (P P P P P Conclusion IFNAR2 is associated with the progression of RCC.

  6. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation.

    Science.gov (United States)

    Okazaki, Makoto; Ferrandon, Sebastien; Vilardaga, Jean-Pierre; Bouxsein, Mary L; Potts, John T; Gardella, Thomas J

    2008-10-28

    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1-34), but not PTH-related protein, PTHrP(1-36), or M-PTH(1-14) (M = Ala/Aib(1),Aib(3),Gln(10),Har(11),Ala(12),Trp(14),Arg(19)), binds to the PTHR in a largely GTPgammaS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R(0)), distinct from the GTPgammaS-sensitive conformation (RG). We examined the effects in vitro and in vivo of introducing the M substitutions, which enhance interaction to the J domain, into PTH analogs extended C-terminally to incorporate residues involved in the N domain interaction. As compared with PTH(1-34), M-PTH(1-28) and M-PTH(1-34) bound to R(0) with higher affinity, produced more sustained cAMP responses in cells, formed more stable complexes with the PTHR in FRET and subcellular localization assays, and induced more prolonged calcemic and phosphate responses in mice. Moreover, after 2 weeks of daily injection in mice, M-PTH(1-34) induced larger increases in trabecular bone volume and greater increases in cortical bone turnover, than did PTH(1-34). Thus, the putative R(0) PTHR conformation can form highly stable complexes with certain PTH ligand analogs and thereby mediate surprisingly prolonged signaling responses in bone and/or kidney PTH target cells. Controlling, via ligand analog design, the selectivity with which a PTH ligand binds to R(0), versus RG, may be a strategy for optimizing signaling duration time, and hence therapeutic efficacy, of PTHR agonist ligands.

  7. EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments.

    Science.gov (United States)

    Baud, V; Chissoe, S L; Viegas-Péquignot, E; Diriong, S; N'Guyen, V C; Roe, B A; Lipinski, M

    1995-03-20

    Proteins with seven transmembrane segments (7TM) define a superfamily of receptors (7TM receptors) sharing the same topology: an extracellular N-terminus, three extramembranous loops on either side of the plasma membrane, and a cytoplasmic C-terminal tail. Upon ligand binding, cytoplasmic portions of the activated receptor interact with heterotrimeric G-coupled proteins to induce various second messengers. A small group, recently recognized on the basis of homologous primary amino acid sequences, comprises receptors to hormones of the secretin/vasoactive intestinal peptide/glucagon family, parathyroid hormone and parathyroid hormone-related peptides, growth hormone-releasing factor, corticotropin-releasing factor, and calcitonin. A cDNA, extracted from a neuroectodermal cDNA library, was predicted to encode a new 886-amino-acid protein with three distinct domains. The C-terminal third contains the seven hydrophobic segments and characteristic residues that allow the protein to be readily aligned with the various hormone receptors in the family. Six egf-like modules, at the N-terminus of the predicted mature protein, are separated from the transmembrane segments by a serine/threonine-rich domain, a feature reminiscent of mucin-like, single-span, integral membrane glycoproteins with adhesive properties. Because of its unique characteristics, this putative egf module-containing, mucin-like hormone receptor has been named EMR1. Southern analysis of a panel of somatic cell hybrids and fluorescence in situ hybridization have assigned the EMR1 gene to human chromosome 19p13.3.

  8. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  9. A RNA transcript (Heg) in mononuclear cells is negatively correlated with CD14 mRNA and TSH receptor autoantibodies

    DEFF Research Database (Denmark)

    Habekost, G.; Bratholm, P.; Christensen, Niels Juel

    2008-01-01

    ) patients with early and untreated Graves' disease; and (iii) patients with Graves' disease studied after treatment. In 18 normal subjects and in 20 patients with treated Graves' disease CD14 mRNA was negatively correlated with Heg (P ... receptor autoantibodies were negatively correlated (P ...During a study of gene expression of foxp3 in blood mononuclear cells we observed a DNA product of an unknown RNA fragment. The area of this peak correlated with CD14 mRNA in a small group of subjects. The sequence was localized to chromosome 1. We tested the hypothesis that gene expression...

  10. Localization of interleukin-6 receptor mRNA in the pregnant and non-pregnant mouse uterus.

    Science.gov (United States)

    Hondo, Eiichi; Kokubu, Keiji; Kato, Kahori; Kiso, Yasuo

    2005-12-01

    To understand roles of interleukin 6 (IL-6) family cytokines for pregnancy in mice, localization of IL-6 receptor (IL-6R) mRNA was investigated in non- and early pregnant uteri by in situ hybridization. IL-6R mRNA was expressed in all non-pregnant uteri and in pregnant uteri from the third day (Day 3) to the sixth day of pregnancy (Day 6; the day of plug = Day 1). IL-6R mRNA signals were detected in non-pregnant mice in the luminal and glandular epithelium. Signal strength varied according to the sexual cycle. There was no correlation between the signal strength of the IL-6R mRNA and the serum concentrations of progesterone and 17beta-estradiol, which show a monophasic rise in the non-pregnant sexual cycle. In pregnant mice, slight signals were detectable in the luminal and glandular epithelium on Day 3. IL-6R mRNA messages increased with progression towards Day 4, however, localization changed drastically on Day 5. Stromal cells abruptly expressed their mRNA on Day 5, and these cells strongly expressed it on Day 6. The function of IL-6R in the luminal and glandular epithelium might be different from that in the stroma during the implantation period. In addition, few signals were identified in the stromal cells adjacent to the luminal epithelium on Day 6. This suggests that there are two types of stromal cells on Day 6 in mice.

  11. Involvement of second messengers in the signaling pathway of vitellogenesis-inhibiting hormone and their effects on vitellogenin mRNA expression in the whiteleg shrimp, Litopenaeus vannamei.

    Science.gov (United States)

    Bae, Sun-Hye; Okutsu, Tomoyuki; Tsutsui, Naoaki; Kang, Bong Jung; Chen, Hsiang-Yin; Wilder, Marcy N

    2017-05-15

    We incubated fragments of Litopenaeus vannamei ovary to investigate second messengers involved in the regulation of vitellogenin (vg) mRNA levels. The use of 100nM recombinant vitellogenesis-inhibiting hormone (VIH) (corresponding to recombinant L. vannamei sinus gland peptide-G: rLiv-SGP-G) significantly reduced vg mRNA expression in sub-adults after 8h incubation to less than 20% of the control. The concentration of intracellular cyclic guanosine monophosphate (cGMP) increased 3.2-fold relative to the control after 2h incubation with rLiv-SGP-G. However, it reached levels 18-fold relative to the control after 0.5h incubation with rLiv-SGP-G where 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor) was also added. Moreover, vg mRNA expression was significantly reduced to less than 50% of the control after 24h incubation with 1μM A23187 (a calcium ionophore). Thus, rLiv-SGP-G and calcium ionophore reduced vg mRNA expression in in vitro-cultured ovary, and cGMP may be involved in the signaling pathway of VIH. Overall, the above results suggest that vg mRNA expression might be inhibited in vitro by increasing intracellular cGMP and Ca(2+) in L. vannamei ovary. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves' disease

    DEFF Research Database (Denmark)

    Brand, Oliver J; Barrett, Jeffrey C; Simmonds, Matthew J;

    2009-01-01

    Graves' disease (GD) is a common autoimmune disease (AID) that shares many of its susceptibility loci with other AIDs. The thyroid stimulating hormone receptor (TSHR) represents the primary autoantigen in GD, in which autoantibodies bind to the receptor and mimic its ligand, thyroid stimulating...... hormone, causing the characteristic clinical phenotype. Although early studies investigating the TSHR and GD proved inconclusive, more recently we provided convincing evidence for association of the TSHR region with disease. In the current study, we investigated a combined panel of 98 SNPs, including 70...

  13. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands.

    Science.gov (United States)

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-08-28

    Quantitative structure - activity relationships (QSARs) for binding affinity of thyroid hormone receptors based on attributes of molecular structure extracted from simplified molecular input-line entry systems (SMILES) are established using the CORAL software (http://www.insilico.eu/coral). The half maximal inhibitory concentration (IC50) is used as the measure of the binding affinity of thyroid hormone receptors. Molecular features which are statistically reliable promoters of increase and decrease for IC50 are suggested. The examples of modifications of molecular structure which lead to the increase or to the decrease of the endpoint are represented. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Influence of estradiol, progesterone, and nutrition on concentrations of gonadotropins and GnRH receptors, and abundance of mRNA for GnRH receptors and gonadotropin subunits in pituitary glands of beef cows.

    Science.gov (United States)

    Looper, M L; Vizcarra, J A; Wettemann, R P; Malayer, J R; Braden, T D; Geisert, R D; Morgan, G L

    2003-01-01

    Nutritionally induced anovulatory cows (n = 28) were used to determine the effect of steroids on regulation of synthesis and secretion of gonadotropins. Anovulatory cows were ovariectomized and received intravaginal inserts containing estradiol (E2), progesterone (P4), E2 and P4 (E2P4), or a sham intravaginal insert (C) for 7 d. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were quantified in serum and E2 and P4 were quantified in plasma. Cows were exsanguinated within 1 to 2 h after removal of intravaginal inserts and pituitary glands were collected and stored at -80 degrees C until messenger ribonucleic acid (mRNA) for gonadotropin-releasing hormone receptor (GnRH-R) and gonadotropin subunits, pituitary content of GnRH-R, and LH and FSH were quantified. Pituitary glands from five proestrous cows were harvested to compare gonadotropin characteristics between ovariectomized, anovulatory cows and intact cows. Plasma concentrations of E2 were greater (P nutritionally induced anovulatory cows was increased (P nutritionally induced anovulatory cows with progesterone and estradiol may cause pulsatile secretion of LH.

  15. Osteoprotegerin and breast cancer risk by hormone receptor subtype

    DEFF Research Database (Denmark)

    Fortner, Renée T; Sarink, Danja; Schock, Helena

    2017-01-01

    BACKGROUND: Circulating osteoprotegerin (OPG), a member of the receptor activator of nuclear factor kappa-B (RANK) axis, may influence breast cancer risk via its role as the decoy receptor for both the RANK ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Circul...

  16. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes

    Energy Technology Data Exchange (ETDEWEB)

    Schvartz, I.; Hazum, E.

    1987-12-15

    The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, (azidobenzoyl-D-Lys6)GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors.

  17. EVALUATION OF STEROID HORMONES AND THEIR RECEPTORS IN DEVELOPMENT AND PROGRESSION OF RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Nigel Bennett

    2014-06-01

    Full Text Available Steroid hormones and their receptors have important roles in normal kidney biology, and alterations in their expression and function help explain the differences in development of kidney diseases, such as nephrotic syndrome and chronic kidney disease. The distinct gender difference in incidence of renal cell carcinoma (RCC, with males having almost twice the incidence as females globally, also suggests a role for sex hormones or their receptors in RCC development and progression. There was a peak in interest in evaluating the roles of androgen and estrogen receptors in RCC pathogenesis in the late 20th century, with some positive outcomes for RCC therapy that targeted estrogen receptors, especially for metastatic disease. Since that time, however, there have been few studies that look at use of steroid hormone modulators for RCC, especially in the light of new therapies such as the tyrosine kinase inhibitors and new immune therapies, which are having some success for treatment of metastatic RCC. This review summarises past and current literature and attempts to stimulate renewed interest in research into the steroid hormones and their receptors, which might be used to effect, for example, in combination with the other newer targeted therapies for RCC.

  18. Bacteria and Toll-like receptor and cytokine mRNA expression profiles associated with canine arthritis.

    Science.gov (United States)

    Riggio, Marcello P; Lappin, David F; Bennett, David

    2014-08-15

    The major forms of inflammatory canine arthritis are immune-mediated arthritis (IMA) and septic arthritis (SA), although some cases of cruciate disease (CD) are associated with significant levels of synovitis. In this study, the bacteria associated with canine arthritis were identified and mRNA expression levels of Toll-like receptors (TLRs) and pro-inflammatory cytokines determined. Of the 40 synovial fluid samples analysed, bacteria were isolated from 12 samples by culture (2 CD, 10 SA) and detected in 4 samples (3 CD, 1 SA) using culture-independent methods. Statistically significant increases in TLR2, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-12 mRNA expression were seen in all disease groups compared to normal controls. All disease groups had decreased mRNA expression of other TLRs compared to normal controls, but this did not reach statistical significance. Synovial fluid cell counts revealed that the highest number and proportion of mononuclear cells and neutrophils were found in the IMA and SA samples, respectively. Age had an effect on the TLR and cytokine mRNA expression profiles: TNF-α (p=0.043) and IL-12 (p=0.025) mRNA expression was increased and TLR4 mRNA expression was reduced (p=0.033) in dogs up to 4 years of age compared to older animals. In the 10 SA samples from which bacteria were isolated, statistically significant increases in TLR2, TLR7, TNF-α and IL-6 mRNA expression were observed. It is concluded that canine arthritis is associated with increased mRNA levels of pro-inflammatory cytokines, which could in some cases be mediated by bacteria through activation of TLR2.

  19. Anorexigenic and Orexigenic Hormone Modulation of Mammalian Target of Rapamycin Complex 1 Activity and the Regulation of Hypothalamic Agouti-Related Protein mRNA Expression

    Directory of Open Access Journals (Sweden)

    Kenneth R. Watterson

    2012-03-01

    Full Text Available Activation of mammalian target of rapamycin 1 (mTORC1 by nutrients, insulin and leptin leads to appetite suppression (anorexia. Contrastingly, increased AMP-activated protein kinase (AMPK activity by ghrelin promotes appetite (orexia. However, the interplay between these mechanisms remains poorly defined. The relationship between the anorexigenic hormones, insulin and leptin, and the orexigenic hormone, ghrelin, on mTORC1 signalling was examined using S6 kinase phosphorylation as a marker for changes in mTORC1 activity in mouse hypothalamic GT1-7 cells. Additionally, the contribution of AMPK and mTORC1 signalling in relation to insulin-, leptin- and ghrelin-driven alterations to mouse hypothalamic agouti-related protein (AgRP mRNA levels was examined. Insulin and leptin increase mTORC1 activity in a phosphoinositide-3-kinase (PI3K- and protein kinase B (PKB-dependent manner, compared to vehicle controls, whereas increasing AMPK activity inhibits mTORC1 activity and blocks the actions of the anorexigenic hormones. Ghrelin mediates an AMPK-dependent decrease in mTORC1 activity and increases hypothalamic AgRP mRNA levels, the latter effect being prevented by insulin in an mTORC1-dependent manner. In conclusion, mTORC1 acts as an integration node in hypothalamic neurons for hormone-derived PI3K and AMPK signalling and mediates at least part of the assimilated output of anorexigenic and orexigenic hormone actions in the hypothalamus.

  20. Concentrations of the adrenocorticotropic hormone, corticosterone and sex steroid hormones and the expression of the androgen receptor in the pituitary and adrenal glands of male turkeys (Meleagris gallopavo) during growth and development.

    Science.gov (United States)

    Kiezun, J; Kaminska, B; Jankowski, J; Dusza, L

    2015-01-01

    Androgens take part in the regulation of puberty and promote growth and development. They play their biological role by binding to a specific androgen receptor (AR). The aim of this study was to evaluate the expression of AR mRNA and protein in the pituitary and adrenal glands, to localize AR protein in luteinizing hormone (LH)-producing pituitary and adrenocortical cells, to determine plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone and the concentrations of corticosterone, testosterone (T), androstenedione (A4) and oestradiol (E2) in the adrenal glands of male turkeys at the age of 4, 8, 12, 16, 20, 24 and 28weeks. The concentrations of hormones and the expression of AR varied during development. The expression of AR mRNA and protein in pituitary increased during the growth. The increase of AR mRNA levels in pituitary occurred earlier than increase of AR protein. The percentage of pituitary cells expressing ARs in the population of LH-secreting cells increased in week 20. It suggests that AR expression in LH-producing pituitary cells is determined by the phase of development. The drop in adrenal AR mRNA and protein expression was accompanied by an increase in the concentrations of adrenal androgens. Those results could point to the presence of a compensatory mechanism that enables turkeys to avoid the potentially detrimental effects of high androgen concentrations. Our results will expand our knowledge of the role of steroids in the development of the reproductive system of turkeys from the first month of age until maturity. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Insulin-like growth factor 1 (IGF-1) regulates prolactin, growth hormone, and IGF-1 receptor expression in the pituitary gland of the gilthead sea bream Sparus aurata.

    Science.gov (United States)

    Mohammed-Geba, Khaled; Martos-Sitcha, J A; Galal-Khallaf, A; Mancera, J M; Martínez-Rodríguez, G

    2016-02-01

    The role of insulin-like growth factor 1 (IGF-1) on regulation of growth hormone (GH) and prolactin (PRL) as well as the possible involvement of IGF-1 receptor subtype a (IGF-1Ra) mRNA was assessed in juvenile specimens of Sparus aurata. IGF-1Ra was successfully cloned, and active receptor domains were localized in its mRNA precursor. Also, phylogenetic analysis of the protein sequence indicated a closer proximity to IGF-1Ra isoform found in zebrafish and other teleosts, than to the isoform IGF-1Rb. The most abundant presence of IGF-1Ra mRNA was detected in white muscle, whereas head kidney showed the lowest gene expression among 24 different studied tissues. Pituitaries of juvenile specimens of S. aurata were incubated in vitro with different doses of IGF-1 (0, 1, 100, and 1000 ng mL(-1)) during a period of 10 h. Total RNA with a high quality could be obtained from these pituitaries. PRL mRNA expression significantly increased with increasing IGF-1 doses. Similarly, IGF-1Ra mRNA increased its expression in response to IGF-1. However, GH mRNA levels decreased in a dose-dependent manner after IGF-1 treatment. The contradictory responses of GH and PRL expressions to IGF-1 in our experiment are possibly mediated by IGF-1Ra presence on the somatotrophs and prolactotrophs. The increase in IGF-1Ra mRNA levels may be related to the proper activation of the PI3-K/Akt signal transduction pathways which are normally involved in GH and PRL regulation.

  2. A new mutation in the thyroid hormone receptor gene of a Chinese family with resistance to thyroid hormone

    Institute of Scientific and Technical Information of China (English)

    DONG Qian; GONG Chun-xiu; GU Yi; SU Chang

    2011-01-01

    Background Resistance to thyroid hormone (RTH) is a dominant inherited syndrome of reduced tissue responsiveness to thyroid hormone. It is usually due to mutations located at the ligand-binding domain and adjacent hinge region of the thyroid hormone receptor β(TRβ). We report the clinical and laboratory characteristics and the genetic analysis of a patient with this rare disorder and his family members.Methods The clinical presentations and changes of thyroid function tests (TFTs) including magnetic resonance imaging (MRI) of pituitary and other laboratory tests were analysed. TFTs of his family's members were detected as well. Direct DNA sequencing of the TRβ gene was done for those with abnormal TFTs.Results The RTH child had goiter, irritability, aggressiveness, and sudoresis. His TFTs showed high levels of circulating free thyroid hormones (FT4 and FT3) and normal thyroid-stimulating hormone (TSH) concentrations. He felt worse when treated as hyperthyroidism (Grave disease) with thiamazole and his clinical presentations got improved obviously when treated as RTH with bromocriptine without obvious advert effect. We identified a novel missense mutation, A317D, located in exon 9 of the gene of this boy and his mother. His mother had not any clinical presentation, but having abnormal TFTs results.Conclusions This patient reported here was concordant with the criteria of RTH. The feature is dysfunction of hypothalamus-pituitary-thyroid axis. A novel mutation was found in the TRβ, A317D, of this family. This research verified the phenomena that there is a clinical heterogeneity within the same mutation of different RTH patients.

  3. Repeated exposure to cat urine induces complex behavioral, hormonal, and c-fos mRNA responses in Norway rats ( Rattus norvegicus)

    Science.gov (United States)

    Yin, Baofa; Gu, Chen; Lu, Yi; Hegab, Ibrahim M.; Yang, Shengmei; Wang, Aiqin; Wei, Wanhong

    2017-08-01

    Prey species show specific adaptations that allow recognition, avoidance, and defense against predators. This study was undertaken to investigate the processing of a chronic, life-threatening stimulus to Norway rats ( Rattus norvegicus). One hundred forty-four Norway rats were tested by repeated presentation of cat urine for 1 h at different days in a defensive withdrawal apparatus. Rats exposed to urine for short periods showed significantly larger defensive behavioral and medial hypothalamic c-fos messenger RNA (mRNA) responses than other groups. These defensive responses habituated shortly after the presentation of cat urine. Serum levels of adrenocorticotropic hormone and corticosterone increased significantly when animals were repeatedly exposed to cat urine. However, the hormonal responses took longer to habituate than the behavioral and molecular responses did. We conclude that the behavioral and c-fos mRNA responses are "primed" for habituation to repeated exposures to cat urine, while the hormonal responses show "resistance." The results support our hypothesis that the strongest anti-predator responses at three levels would occur during short-term exposure to cat urine and that these responses would subsequently disappear on prolonged exposure. This study assists understanding the way in which the different levels of defensive responses are integrated and react during chronic stress.

  4. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    2015-02-05

    Feb 5, 2015 ... Key words: Breast cancer, human epidermal growth factor receptor 2/neu, immunohistochemistry, ... therapy.[6‑8] Of all these prognostic and predictive factors, ... one of the biggest private medical laboratories in Nigeria.

  5. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice

    OpenAIRE

    Mavalli, Mahendra D.; DiGirolamo, Douglas J; FAN, Yong; Riddle, Ryan C.; Kenneth S Campbell; van Groen, Thomas; Frank, Stuart J; Sperling, Mark A.; Esser, Karyn A.; Bamman, Marcas M.; Clemens, Thomas L.

    2010-01-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions ...

  6. Aberrant splicing of androgenic receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ris-Stalpers, C.; Kuiper, G.G.J.M.; Faber, P.W.; van Rooij, H.C.J.; Degenhart, H.J.; Trapman, J.; Brinkmann, A.O. (Erasmus Univ., Rotterdam (Netherlands)); Schweikert, H.U. (Univ. of Bonn (Germany)); Zegers, N.D. (Medical Biological Laboratory-Organization for Applied Scientific Research, Rijswijk (Netherlands)); Hodgins, M.B. (Glasgow Univ. (United Kingdom))

    1990-10-01

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symtpoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. The authors report a G {r arrow} T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46, XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely abolishes normal RNA splicing at the exon 4/intron 4 boundary and results in the activation of a cryptic splice donor site in exon 4, which leads to the deletion of 123 nucleotides from the mRNA. Translation of the mutant mRNA results in an androgen receptor protein {approx}5 kDa smaller than the wild type. This mutated androgen receptor protein was unable to bind androgens and unable to activate transcription of an androgen-regulated reporter gene construct. This mutation in the human androgen receptor gene demonstrates the importance of an intact steroid-binding domain for proper androgen receptor functioning in vivo.

  7. Photoaffinity labelling of the rat liver nuclear thyroid hormone receptor with (/sup 125/I)triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    David-Inouye, Y.; Somack, R.; Nordeen, S.K.; Apriletti, J.W.; Baxter, J.D.; Eberhardt, N.L.

    1982-11-01

    (/sup 125/I)Triiodothyronine (T3) was used as a photoreactive probe for the thyroid hormone nuclear receptor in photoaffinity labelling experiments. Autoradiograms of photolysis products electrophoresed on either one or two-dimensional gels showed that (/sup 125/I)T3 covalently, but nonspecifically, labelled many proteins in the partially purified receptor preparations used. However, one of these proteins with an estimated molecular weight of 47,000 and an isoelectric point of approximately 6.2 +/- 0.5 pH units appears to be the thyroid hormone receptor, since, in contrast to the other proteins, its photoinduced labelling was blocked by concentrations of T3 and thyroxine (T4) similar to those that inhibit binding of (/sup 125/I)T3 by the receptor in equilibrium binding assays. In addition, the isoelectric point of the photolabelled protein agrees with that determined in separate equilibrium isoelectric focusing studies. These results indicate that (/sup 125/)T3 can serve as a photoreactive probe for the thyroid hormone nuclear receptor, and they suggest that this receptor is a single polypeptide chain of molecular weight 47,000 with an isoelectric point of 6.2 +/- 0.5 pH units.

  8. Photoaffinity labelling of the rat liver nuclear thyroid hormone receptor with (/sup 125/I)triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    David-Inouye, Y. (Univ. of California, San Francisco); Somack, R; Nordeen, S.K.; Apriletti, J.W.; Baxter, J.D.; Eberhardt, N.L.

    1982-11-01

    (/sup 125/I)Triiodothyronine (T/sub 3/) was used as a photoreactive probe for the thyroid hormone nuclear receptor in photoaffinity labelling experiments. Autoradiograms of photolysis products electrophoresed on either one or two-dimensional gels showed that (/sup 125/I)T/sub 3/ covalently, but nonspecifically, labelled many proteins in the partially purified receptor preparations used. However, one of these proteins with an estimated molecular weight of 47,000 and an isoelectric point of approximately 6.2 +/- 0.5 pH units appears to be the thyroid hormone receptor, since, in contrast to the other proteins, its photoinduced labelling was blocked by concentrations of T/sub 3/ and thyroxine (T/sub 4/) similar to those that inhibit binding of (/sup 125/I)T/sub 3/ by the receptor in equilibrium binding assays. In addition, the isoelectric point of the photolabelled protein agrees with that determined in separate equilibrium isoelectric focusing studies. These results indicate that (/sup 125/I)T/sub 3/ can serve as a photoreactive probe for the thyroid hormone nuclear receptor, and they suggest that this receptor is a single polypeptide chain of molecular weight 47,000 with an isoelectric point of 6.2 +/- 0.5 pH units.

  9. EGF receptor inhibitors increase ErbB3 mRNA and protein levels in breast cancer cells

    DEFF Research Database (Denmark)

    Grøvdal, Lene Melsæther; Kim, Jiyoung; Holst, Mikkel Roland

    2012-01-01

    to EGFR inhibitor treatment in ErbB2 overexpressing breast cancer cells. We found that gefitinib treatment increased ErbB3 expression, both at protein and mRNA levels. ErbB3 expression was upregulated not only by gefitinib but also by a panel of different EGFR inhibitors, suggesting that inhibition......The potential benefits of drugs directly targeting the ErbB receptors for cancer therapy have led to an extensive development within this field. However, the clinical effects of ErbB receptor-targeting drugs in cancer treatment are limited due to a high frequency of resistance. It has been reported...... that, when inhibiting the epidermal growth factor receptor (EGFR) with the tyrosine kinase inhibitor gefitinib, increased activation of ErbB3 via MET, or by re-localization of ErbB3 mediates cell survival. Here we show further evidence that members of the ErbB receptor family facilitate resistance...

  10. A novel first exon directs hormone-sensitive transcription of the pig prolactin receptor

    Science.gov (United States)

    Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation.We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcri...

  11. Insulin-like growth factor II mRNA, peptides, and receptors in a thoracopulmonary malignant small round cell tumor

    DEFF Research Database (Denmark)

    Nielsen, F C; Orskov, C; Haselbacher, G;

    1994-01-01

    Insulin-like growth factor-(IGF) II and IGF-I and IGF-II/mannose 6-phosphate receptors were expressed in a thoracopulmonary malignant small round cell tumor (MSRCT) from a 14-year-old boy. Northern analysis showed that the MSRCT expresses multiple IGF-II mRNA of 6.0, 4.8, 4.2, and 2.2 kilobase from...

  12. An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation.

    Science.gov (United States)

    Pérez-García, Georgina; Gonzalez-Espinosa, Claudia; Meneses, Alfredo

    2006-04-25

    Despite the compelling support for 5-hydroxytryptamine (5-HT) receptors participation in learning and memory in mammal species, the molecular basis had been largely absent from any discussion of its mechanistic underpinnings. Here, we report that reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that there was a higher level of expression of the investigated 5-HT receptor mRNAs in autoshaping-trained relative to untrained groups. Actually, pharmacological naïve untrained and autoshaping-trained rats showed significant differences, the latter groups expressing, in decreasing order, 5-HT1A memory consolidation, we combined selective 5-HT7 receptors stimulation or blockade in the same animals, and brain areas individually analyzed. 5-HT7 receptors were strongly expressed in all the three brain areas of vehicle-trained rats relative to untrained group. The potential selective 5-HT7 receptor agonist AS 19 enhanced memory consolidation, attenuated mRNA receptors expression, and the facilitatory memory effect was reversed by SB-269970. Finally, pharmacological stimulation of 5-HT7 receptors reversed scopolamine- or dizocilpine-induced amnesia and receptor down-regulation.

  13. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana

    DEFF Research Database (Denmark)

    Hansen, Karina K; Hauser, Frank; Cazzamali, Giuseppe

    2006-01-01

    Cockroaches have long been used as insect models to investigate the actions of biologically active neuropeptides. Here, we describe the cloning and functional expression in Chinese hamster ovary cells of an adipokinetic hormone (AKH) G protein-coupled receptor from the cockroach Periplaneta...

  14. Analysis of Agonist and Antagonist Effects on Thyroid Hormone Receptor Conformation by Hydrogen/Deuterium Exchange

    NARCIS (Netherlands)

    Figueira, A C M; Saidemberg, D M; Telles de Souza, Paulo; Martínez, L; Scanlan, T S; Baxter, J D; Skaf, M S; Palma, M S; Webb, P M; Polikarpov, I

    2011-01-01

    Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains i

  15. On the Denaturation Mechanisms of the Ligand Binding Domain of Thyroid Hormone Receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Telles de Souza, P C; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of t

  16. Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R and its ligand the tuberoinfundibular peptide of 39 residues (TIP39 by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH and parathyroid hormone related protein (PTHrP are compared with the complex to examine their interactions. Findings In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation. Conclusions A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.

  17. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5AH...

  18. On the denaturation mechanisms of the ligand binding domain of thyroid hormone receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Souza, Paulo C T; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics simulations to investigate unfolding of the LBDs of t

  19. On the Denaturation Mechanisms of the Ligand Binding Domain of Thyroid Hormone Receptors

    NARCIS (Netherlands)

    Martínez, Leandro; Telles de Souza, P C; Garcia, Wanius; Batista, Fernanda A H; Portugal, Rodrigo V; Nascimento, Alessandro S; Nakahira, Marcel; Lima, Luis M T R; Polikarpov, Igor; Skaf, Munir S

    2010-01-01

    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of t

  20. Trialkyltin rexinoid-X receptor agonists selectively potentiate thyroid hormone induced programs of xenopus laevis metamorphosis

    NARCIS (Netherlands)

    Mengeling, Brenda J.; Murk, Albertinka J.; Furlow, J.D.

    2016-01-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the

  1. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1994-01-01

    Growth hormone (GH) has recently been shown to activate the GH receptor (GHR)-associated tyrosine kinase JAK2. In the present study, regions of the GHR required for JAK2 association with GHR were identified. GH-dependent JAK2 association with GHR was detected in Chinese hamster ovary (CHO) cells...

  2. Analysis of Agonist and Antagonist Effects on Thyroid Hormone Receptor Conformation by Hydrogen/Deuterium Exchange

    NARCIS (Netherlands)

    Figueira, A C M; Saidemberg, D M; Telles de Souza, Paulo; Martínez, L; Scanlan, T S; Baxter, J D; Skaf, M S; Palma, M S; Webb, P M; Polikarpov, I

    Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains

  3. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja

    2016-01-01

    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic devel...

  4. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    Science.gov (United States)

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  5. The mRNA Expression Status of Dopamine Receptor D2, Dopamine Receptor D3 and DARPP-32 in T Lymphocytes of Patients with Early Psychosis

    Directory of Open Access Journals (Sweden)

    Yin Cui

    2015-11-01

    Full Text Available Peripheral blood lymphocytes are an attractive tool because there is accumulating evidence indicating that lymphocytes may be utilized as a biomarker in the field of psychiatric study as they could reveal the condition of cells distributed in the brain. Here, we measured the mRNA expression status of dopamine receptor D2 (DRD2, DRD3, and dopamine and cyclic adenosine 3′,5′-monophosphate regulated phosphoprotein-32 (DARPP-32 in T lymphocytes of patients with early psychosis by quantitative real-time polymerase chain reaction (q-PCR and explored the relationships between their mRNA levels and the psychopathological status of patients. The present study demonstrated that the mRNA expression levels of DRD3 in T lymphocytes were significantly different among controls, and in patients with psychotic disorder not otherwise specified (NOS and schizophrenia/schizophreniform disorder. However, no significant differences in mRNA expression levels of DRD2 and DARPP-32 were found among the three groups. We found a significant positive correlation between the DRD2 mRNA level and the score of the excited factor of the Positive and Negative Syndrome Scale (PANSS in patients with schizophrenia/schizophreniform disorder. These findings suggest that DRD3 mRNA levels may serve as a potential diagnostic biomarker differentiating patients with early psychosis from controls.

  6. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sustarsic, Elahu G. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Junnila, Riia K. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Kopchick, John J., E-mail: kopchick@ohio.edu [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH (United States)

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  7. The effect of fasting and refeeding on mRNA expression of PepT1 and gastrointestinal hormones regulating digestion and food intake in zebrafish (Danio rerio).

    Science.gov (United States)

    Koven, William; Schulte, Patricia

    2012-12-01

    In vertebrates, a significant part of ingested protein is absorbed as di- and tripeptides through a brush border membrane proton/oligopeptide transporter protein called PepT1. The aim of the present study was to determine the effect of short-term food deprivation and refeeding in adult zebrafish (Danio rerio) on gastrointestinal mRNA expression of PepT1 as well as on the satiety hormones cholecystokinin (CCK), gastrin-releasing peptide (GRP) and ghrelin (GHR) in order to elucidate a potential mechanism driving compensatory growth. Sixty adult zebrafish were stocked in a 40-L aquarium and fed daily a commercial flake diet to satiation for 10 days where the digestive tracts (DT) of sampled fish (n = 5) were dissected out. Samplings were repeated following 1, 2 and 5 days of food deprivation and after 1, 2 and 5 days of refeeding. The RNA was extracted from all sampled DTs and analyzed by quantitative real-time PCR for the mRNA expression of PepT1, rRNA 18S, CCK, GRP and GHR. PepT1 mRNA expression increased with successive refeedings reaching a level approximately 8 times higher than pre-fast levels. CCK, GRP and GHR mRNA levels also decreased during fasting, but increased only to pre-fasting levels with refeeding. Overall, the results suggest that PepT1 may be a contributing mechanism to compensatory growth that could influence CCK secretion and GRP and GHR activity.

  8. Recombinant growth hormone enhances muscle myosin heavy-chain mRNA accumulation and amino acid accrual in humans.

    OpenAIRE

    Fong, Y; M. Rosenbaum; Tracey, K J; Raman, G.; Hesse, D G; Matthews, D. E.; Leibel, R. L.; Gertner, J M; Fischman, D. A.; Lowry, S F

    1989-01-01

    A potentially lethal complication of trauma, malignancy, and infection is a progressive erosion of muscle protein mass that is not readily reversed by nutritional support. Growth hormone is capable of improving total body nitrogen balance, but its role in myofibrillar protein synthesis in humans is unknown. The acute, in situ muscle protein response to an infusion of methionyl human growth hormone was investigated in the limbs of nutritionally depleted subjects during a period of intravenous ...

  9. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    Energy Technology Data Exchange (ETDEWEB)

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  10. Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-08-05

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation.

  11. Parathyroid hormone-related protein and glucocorticoid receptor beta are regulated by cortisol in the kidney of male mice.

    Science.gov (United States)

    Yoo, Yeong-Min; Baek, Myung-Gi; Jung, Eui-Man; Yang, Hyun; Choi, Kyung-Chul; Yu, Frank H; Jeung, Eui-Bae

    2011-10-24

    Parathyroid hormone-related protein (PTHrP) is a peptide growth factor produced in a wide range of tissues from brain and parathyroid, to kidney and uterus. The purpose of this study was to determine whether the adrenal cortical hormones, hydrocortisone (cortisol), modulate PTHrP expression and glucocorticoid receptor (GR)β in mice kidney. Changes in PTHrP gene expression were determined by real-time PCR and its protein level was examined by Western blot analysis. In addition, expression of renal PTHrP protein was localized by immunohistochemistry. Effects of RU486 on the expression levels of GRα/β or PTHrP gene in the kidneys were analyzed by Western blot analysis. We found that renal expression levels of PTHrP mRNA were higher in males than in females up to 9weeks of age. Using immunohistochemistry, we observed higher levels of PTHrP expression within the cortex than in the medulla in both male and female mice, and this expression was localized in the epithelial cells of the renal proximal tubules. Treatment of 4-week-old mice with aldosterone and cortisol for three days showed larger increases in both PTHrP mRNA and protein levels in males compared with females. The expression of GRβ in male, but not female, kidneys was significantly upregulated after treatment with cortisol, but not after treatment with aldosterone. Inhibition of glucocorticoid signaling by pre-treatment with a GR antagonist prior to cortisol administration largely abolished this cortisol-dependent increase in PTHrP and GRβ expressions. These results suggest that PTHrP expression and GRβ in the kidneys of male mice may be regulated by cortisol. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. FEATURES OF LOCAL mRNA SYNTHESIS FOR SOME CC- AND CXC-CHEMOKINES AND THEIR RECEPTORS IN ENDOMETRIAL HYPERPLASIA

    Directory of Open Access Journals (Sweden)

    N. V. Kipich

    2011-01-01

    Full Text Available Аbstract.  Endometrial  hyperplasia  (EH  represents  an  excessive  increase  in  thickness  and  volume  of proliferating endometrium accompanied by altered glandular structure. This disorder is higly prevalent among women in their premenopausal period. There exist only scarce data concerning possible role of chemokines and their receptors in EH pathogenesis and clinical course. Hence, the aim of our study was to analyze mRNA expression  of  several  key  chemokines  and  their  receptors  in  endometrial  tissue  samples  from  EH  patients. This work included sixty-three women with disturbed menstrual  cycle  and/or  pathological  changes  of endometrium, as assessed by sonographic studies. The patients were 32 to 61 years old (a mean of 48.4±0.6 years. The levels of mRNA expression were determined by  gene-specific  PCR  in  a  semiquantitative  manner,  whereas promoter genotypes of matrix metalloproteinases (ММР1 -16071G/2G and ММР3 -11715А/6A were identified by means of allele-specific PCR. Results of the study included a significant increase of mRNA for MIP-1α, eotaxin 2, along with decreased amounts of mRNA for CCR-3 (a specific receptor for eotaxins, in polyps developing from hyperplastic endometrium. MIP-1α synthesis fades away with increasing age. An increased level of MIP-1β was shown in prolonged and recurrent disturbances of menstrual cycle, whereas elevation of MIP-1α and CXCR-1 was registered in cases of multiple pregnancies. In threatening abortions, an increase of MIP-1β gene expression was revealed. Hence, the local chemokine system reacts to inflammatory and hemorrhagic complications with increased mRNA expression of certain chemokine genes. Determination of the chemokine mRNA levels, as well as their receptors in patients with endometrial hyperplasia may reflect a general background of this disorder. (Med. Immunol., 2011, vol. 13, N 2-3, pp 189-196

  13. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    Science.gov (United States)

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  14. Effectiveness and tolerability of fulvestrant in postmenopausal women with hormone receptor-positive breast cancer.

    Science.gov (United States)

    Jones, Stephen E; Pippen, John

    2005-04-01

    Fulvestrant, an estrogen receptor antagonist that downregulates the estrogen receptor but has no known agonist effects, has been evaluated in 2 randomized trials involving postmenopausal women with hormone receptor-positive, progressive advanced-stage breast cancer after disease progression with antiestrogen therapy. These phase III studies, from which data were reported separately and in a planned combined analysis, showed that fulvestrant 250 mg per month intramuscularly was at least as effective as anastrozole 1 mg per day orally with respect to the primary endpoint of time to progression as well as secondary efficacy endpoints, which included objective response, clinical benefit, and survival. Both trials showed that patients treated with fulvestrant had a significantly longer duration of response, and a retrospective analysis found that pretreatment with fulvestrant did not preclude response to third-line hormonal therapy. More recently, fulvestrant was shown to be active as first-line hormonal therapy for advanced-stage breast cancer, with overall efficacy similar to that of tamoxifen in patients with hormone receptor-positive disease. Fulvestrant has been well tolerated in comparative trials published to date, translating into low study withdrawal rates and maintenance of quality of life. The incidence of adverse events was similar between the treatment arms in both trials of fulvestrant versus anastrozole, but it was notably lower for fulvestrant relative to tamoxifen in the first-line setting. In light of the results of comparative phase III trials, fulvestrant is effective and well tolerated in the treatment of postmenopausal women with hormone receptor-positive advanced-stage breast cancer.

  15. Thyroid Hormone Receptors Predict Prognosis in BRCA1 Associated Breast Cancer in Opposing Ways.

    Directory of Open Access Journals (Sweden)

    Sabine Heublein

    Full Text Available Since BRCA1 associated breast cancers are frequently classified as hormone receptor negative or even triple negative, the application of endocrine therapies is rather limited in these patients. Like hormone receptors that bind to estrogen or progesterone, thyroid hormone receptors (TRs are members of the nuclear hormone receptor superfamily. TRs might be interesting biomarkers - especially in the absence of classical hormone receptors. The current study aimed to investigate whether TRs may be specifically expressed in BRCA1 associated cancer cases and whether they are of prognostic significance in these patients as compared to sporadic breast cancer cases. This study analyzed TRα and TRβ immunopositivity in BRCA1 associated (n = 38 and sporadic breast cancer (n = 86. Further, TRs were studied in MCF7 (BRCA1 wildtype and HCC3153 (BRCA1 mutated cells. TRβ positivity rate was significantly higher in BRCA1 associated as compared to sporadic breast cancers (p = 0.001. The latter observation remained to be significant when cases that had been matched for clinicopathological criteria were compared (p = 0.037. Regarding BRCA1 associated breast cancer cases TRβ positivity turned out to be a positive prognostic factor for five-year (p = 0.007 and overall survival (p = 0.026 while TRα positivity predicted reduced five-year survival (p = 0.030. Activation of TRβ resulted in down-modulation of CTNNB1 while TRα inhibition reduced cell viability in HCC3153. However, only BRCA1 wildtype MCF7 cells were capable of rapidly degrading TRα1 in response to T3 stimulation. Significantly, this study identified TRβ to be up-regulated in BRCA1 associated breast cancer and revealed TRs to be associated with patients' prognosis. TRs were also found to be expressed in triple negative BRCA1 associated breast cancer. Further studies need to be done in order to evaluate whether TRs may become interesting targets of endocrine therapeutic approaches, especially when

  16. Expression of thyroid stimulating hormone receptor in differentiated thyroid carcinoma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    李清怀

    2013-01-01

    Objective To explore the expression of thyroid stimulating hormone (TSH) receptor in differentiated thyroid carcinoma and its clinical significance.Methods Seventy-four patients with differentiated thyroid carcinoma treated in our department from January 2009 to January 2011were selected as the observation group,and 28 patients with nodular goiter were selected as the control group.Expression of TSH receptor in the two groups were detected by immunohistochemistry.Results The positive rate of TSH receptor expression in the observation group was55.4 (41/74) ,significantly lower than that of the control

  17. Molecular identification of the first insect ecdysis triggering hormone receptors

    DEFF Research Database (Denmark)

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael

    2002-01-01

    The Drosophila Genome Project website (www.flybase.org) contains an annotated gene sequence (CG5911), coding for a G protein-coupled receptor. We cloned the cDNA corresponding to this sequence and found that the gene has not been correctly predicted. The corrected gene CG5911 has five introns and...

  18. Regional variation in aortic AT1b receptor mRNA abundance is associated with contractility but unrelated to atherosclerosis and aortic aneurysms.

    Directory of Open Access Journals (Sweden)

    Aruna Poduri

    Full Text Available BACKGROUND: Angiotensin II (AngII, the main bioactive peptide of the renin angiotensin system, exerts most of its biological actions through stimulation of AngII type 1 (AT1 receptors. This receptor is expressed as 2 structurally similar subtypes in rodents, termed AT1a and AT1b. Although AT1a receptors have been studied comprehensively, roles of AT1b receptors in the aorta have not been defined. METHODOLOGY/RESULTS: We initially compared the regional distribution of AT1b receptor mRNA with AT1a receptor mRNA in the aorta. mRNA abundance of both subtypes increased from the proximal to the distal aorta, with the greatest abundance in the infra-renal region. Corresponding to the high mRNA abundance for both receptors, only aortic rings from the infra-renal aorta contracted in response to AngII stimulation. Despite the presence of both receptor transcripts, deletion of AT1b receptors, but not AT1a receptors, diminished AngII-induced contractility. To determine whether absence of AT1b receptors influenced aortic pathologies, we bred AT1b receptor deficient mice into an LDL receptor deficient background. Mice were fed a diet enriched in saturated fat and infused with AngII (1,000 ng/kg/min. Parameters that could influence development of aortic pathologies, including systolic blood pressure and plasma cholesterol concentrations, were not impacted by AT1b receptor deficiency. Absence of AT1b receptors also had no effect on size of aortic atherosclerotic lesions and aortic aneurysms in both the ascending and abdominal regions. CONCLUSIONS/SIGNIFICANCE: Regional abundance of AT1b receptor mRNA coincided with AngII-induced regional contractility, but it was not associated with AngII-induced aortic pathologies.

  19. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.; Miller, Laurence J.; Xu, H. Eric (Van Andel); (Mayo)

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.

  20. Detection of Messenger RNA for Gonadotropin-Releasing Hormone (GnRH) but not for GnRH Receptors in Rat Pancreas

    Institute of Scientific and Technical Information of China (English)

    王雷; 谢莉萍; 黄威权; 张荣庆

    2001-01-01

    Although gonadotropin-releasing hormone (GnRH), GnRH-like molecule, and GnRH receptor (GnRH-R) have been reported to exist in several tissues other than brain or anterior pituitary, there are no reports concerning GnRH or GnRH-R gene expression in a normal pancreatic gland. In order to define the production of GnRH as well as GnRH-R in the pancreatic gland, we examined their gene expression in various developmental stages of rat pancreas using the reverse transcriptase-polymerase chain reaction (RT-PCR).GnRH mRNA transcripts were found in pancreas of male and female rats at different ages, expressing at about the same level, whereas GnRH-R mRNA transcripts could not be detected in any rat pancreatic gland samples. These results suggest a possible biological role of GnRH in rodent pancreas.

  1. Targeting the Diuretic Hormone Receptor to Control the Cotton Leafworm, Spodoptera littoralis

    Science.gov (United States)

    Apone, Fabio; Ruggiero, Alessandra; Tortora, Assunta; Tito, Annalisa; Grimaldi, Maria Rosaria; Arciello, Stefania; Andrenacci, Davide; Lelio, Ilaria Di; Colucci, Gabriella

    2014-01-01

    The cotton leafworm, Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae), is one of the most devastating pests of crops worldwide. Several types of treatments have been used against this pest, but many of them failed because of the rapid development of genetic resistance in the different insect populations. G protein coupled receptors have vital functions in most organisms, including insects; thus, they are appealing targets for species-specific pest control strategies. Among the insect G protein coupled receptors, the diuretic hormone receptors have several key roles in development and metabolism, but their importance in vivo and their potential role as targets of novel pest control strategies are largely unexplored. With the goal of using DHR genes as targets to control S. littoralis, we cloned a corticotropin-releasing factor-like binding receptor in this species and expressed the corresponding dsRNA in tobacco plants to knock down the receptor activity in vivo through RNA interference. We also expressed the receptor in mammalian cells to study its signaling pathways. The results indicate that this diuretic hormone receptor gene has vital roles in S. littoralis and represents an excellent molecular target to protect agriculturallyimportant plants from this pest. PMID:25368043

  2. Expression of a glycosylphosphatidylinositol-anchored ligand, growth hormone, blocks receptor signalling.

    Science.gov (United States)

    Guesdon, François; Kaabi, Yahia; Riley, Aiden H; Wilkinson, Ian R; Gray, Colin; James, David C; Artymiuk, Peter J; Sayers, Jon R; Ross, Richard J

    2012-12-01

    We have investigated the interaction between GH (growth hormone) and GHR (GH receptor). We previously demonstrated that a truncated GHR that possesses a transmembrane domain but no cytoplasmic domain blocks receptor signalling. Based on this observation we investigated the impact of tethering the receptor's extracellular domain to the cell surface using a native lipid GPI (glycosylphosphatidylinositol) anchor. We also investigated the effect of tethering GH, the ligand itself, to the cell surface and demonstrated that tethering either the ecGHR (extracellular domain of GHR) or the ligand itself to the cell membrane via a GPI anchor greatly attenuates signalling. To elucidate the mechanism for this antagonist activity, we used confocal microscopy to examine the fluorescently modified ligand and receptor. GH-GPI was expressed on the cell surface and formed inactive receptor complexes that failed to internalize and blocked receptor activation. In conclusion, contrary to expectation, tethering an agonist to the cell surface can generate an inactive hormone receptor complex that fails to internalize.

  3. Five gonadotrophin-releasing hormone receptors in a teleost fish: isolation, tissue distribution and phylogenetic relationships.

    Science.gov (United States)

    Moncaut, Natalia; Somoza, Gustavo; Power, Deborah M; Canário, Adelino V M

    2005-06-01

    Gonadotrophin-releasing hormone (GnRH) is the main neurohormone controlling gonadotrophin release in all vertebrates, and in teleost fish also of growth hormone and possibly of other adenohypophyseal hormones. Over 20 GnRHs have been identified in vertebrates and protochoordates and shown to bind cognate G-protein couple receptors (GnRHR). We have searched the puffer fish, Fugu rubripes, genome sequencing database, identified five GnRHR genes and proceeded to isolate the corresponding complementary DNAs in European sea bass, Dicentrachus labrax. Phylogenetic analysis clusters the European sea bass, puffer fish and all other vertebrate receptors into two main lineages corresponding to the mammalian type I and II receptors. The fish receptors could be subdivided in two GnRHR1 (A and B) and three GnRHR2 (A, B and C) subtypes. Amino acid sequence identity within receptor subtypes varies between 70 and 90% but only 50-55% among the two main lineages in fish. All European sea bass receptor mRNAs are expressed in the anterior and mid brain, and all but one are expressed in the pituitary gland. There is differential expression of the receptors in peripheral tissues related to reproduction (gonads), chemical senses (eye and olfactory epithelium) and osmoregulation (kidney and gill). This is the first report showing five GnRH receptors in a vertebrate species and the gene expression patterns support the concept that GnRH and GnRHRs play highly diverse functional roles in the regulation of cellular functions, besides the "classical" role of pituitary function regulation.

  4. The Parathyroid Hormone Family of Ligands and Receptors

    Directory of Open Access Journals (Sweden)

    Damian G. D'Souza

    2015-07-01

    Full Text Available The PTH family of ligands and receptors have a wide range of vital functions from calcium homeostasis to tissue and bone development from the embryo to adult. This family has undergone whole genome duplication events predating vertebrate evolution, indicating more primitive and ancient functions other than skeletal development. The N-terminal region of the ligands, have been widely studied by biophysical and functional analysis, resulting in the discovery of key characteristics essential for ligand-receptor activation being elucidated. Multi-substituted amino acid analogs with differential binding affinities and either antagonistic or agonistic signalling potencies have been created based on these findings allowing for improvement on potential therapies affected by the PTH system in skeletal and embryonic development. The PTH family has diversely evolved to cover a wide range of pivotal pathways crucial to growth and development throughout all animal life.

  5. Changes in the expression of estrogen receptor mRNA in the utero-vaginal junction containing sperm storage tubules in laying hens after repeated artificial insemination.

    Science.gov (United States)

    Das, Shubash Chandra; Nagasaka, Naohiro; Yoshimura, Yukinori

    2006-03-01

    The objective was to determine whether expression of estrogen receptor (ER) mRNA in the utero-vaginal junction (UVJ) of laying hens was altered after repeated artificial insemination (AI). Semi-quantitative RT-PCR was used to determine the expression of mRNA of the two types of receptor, ERalpha and ERbeta. Only ERalpha mRNA was expressed in all segments of the oviducts of both virgin and artificially inseminated birds, whereas ERbeta mRNA was expressed in ovarian follicles but not in the oviduct. The expression of ERalpha mRNA in the UVJ was significantly decreased after repeated AI, whereas that in the uterus was not significantly different between virgin and inseminated birds. Since estrogen may be involved in maintaining the sperm storage function of sperm storage tubules, the decreased expression of ERalpha mRNA in the UVJ after repeated AI may contribute to reduced fertility in these birds.

  6. Nuclear hormone receptor co-repressors: Structure and function

    OpenAIRE

    2012-01-01

    Co-repressor proteins, such as SMRT and NCoR, mediate the repressive activity of unliganded nuclear receptors and other transcription factors. They appear to act as intrinsically disordered “hub proteins” that integrate the activities of a range of transcription factors with a number of histone modifying enzymes. Although these co-repressor proteins are challenging targets for structural studies due to their largely unstructured character, a number of structures have recently been determined ...

  7. AT1a Receptor Has Interacted with Angiotensin-converting Enzymes 2 mRNA Expression in Mouse Brainstem

    Institute of Scientific and Technical Information of China (English)

    Zhanyi Lin; Shuguang Lin

    2008-01-01

    Objectives To examine in vivo interactions between angiotensin Ⅱ(Ang Ⅱ) AT1a receptor (AT1aR),angiotensin-converting enzymes (ACE) and ACE2 using small hairpin RNA (shRNA) gene-silencing methods in mice brainstem nucleus ttactus solitarius (NTS).Methods C57BL mice (n=8) were used as animal model.Method of microinjection in the nucleus of NTS was adopted.After ten days,mice were killed and their brain tissue were fixed and sectioned.The expression levels of AT1 aR,ACE and ACE2 mRNA at both sides of NTS were examined by in situ hybridization.Based on compared t-test,the changing for mRNA expression was examined.Results After the expression of AT1aR mRNA was significantly inhibited (61.6%±6.8% ) by AT1aR-shRNA,it was associated with decreases in ACE2 mRNA expression from (1.05±0.12) μCi/mg to (0.74±0.09) μCi/mg (29.0%±14.5%,P<0.01) on the same side of the brainstem.ACE mRNA expression was consistent at both sides (0.50 μCi/mg±0.09 μCi/mg and 0.53 μCi/mg±0.08 μCi/mg),with insignificant difference (P>0.05).Condusions The gene silencing result showed that there were interactions between brainstem AT1aR and ACE2.ACE mRNA expression was not altered by RNA interference treatment at AT1aR.

  8. Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms.

    Science.gov (United States)

    Chrousos, G P; Renquist, D; Brandon, D; Eil, C; Pugeat, M; Vigersky, R; Cutler, G B; Loriaux, D L; Lipsett, M B

    1982-03-01

    The concentrations of total and protein-unbound plasma cortisol of New World monkeys are higher than those of Old World primates and prosimians. The urinary free-cortisol excretion also is increased markedly. However, there is no physiologic evidence of increased cortisol effect. These findings suggest end-organ resistance to glucocorticoids. This was confirmed by showing that the hypothalamic-pituitary adrenal axis is resistant to suppression by dexamethasone. To study this phenomenon, glucocorticoid receptors were examined in circulating mononuclear leukocytes and cultured skin fibroblasts from both New and Old World species. The receptor content is the same in all species, but the New World monkeys have a markedly decreased binding affinity for dexamethasone. Thus, the resistance of these species to the action of cortisol is due to the decreased binding affinity of the glucocorticoid receptor. This presumed mutation must have occurred after the bifurcation of Old and New World primates (approximately 60 x 10(6) yr ago) and before the diversion of the New World primates from each other (approximately 15 x 10(6) yr ago).

  9. Estradiol potentiation of gonadotropin-releasing hormone responsiveness in the anterior pituitary is mediated by an increase in gonadotropin-releasing hormone receptors

    Energy Technology Data Exchange (ETDEWEB)

    Menon, M.; Peegel, H.; Katta, V.

    1985-02-15

    In order to investigate the mechanism by which 17 beta-estradiol potentiates the action of gonadotropin-releasing hormone on the anterior pituitary in vitro, cultured pituitary cells from immature female rats were used as the model system. Cultures exposed to estradiol at concentrations ranging from 10(-10) to 10(-6) mol/L exhibited a significant augmentation of luteinizing hormone release in response to a 4-hour gonadotropin-releasing hormone (10 mumol/L) challenge at a dose of 10(-9) mol/L compared to that of control cultures. The estradiol augmentation of luteinizing hormone release was also dependent on the duration of estradiol exposure. When these cultures were incubated with tritium-labeled L-leucine, an increase in incorporation of radiolabeled amino acid into total proteins greater than that in controls was observed. A parallel stimulatory effect of estradiol on iodine 125-labeled D-Ala6 gonadotropin-releasing hormone binding was observed. Cultures incubated with estradiol at different concentrations and various lengths of time showed a significant increase in gonadotropin-releasing hormone binding capacity and this increase was abrogated by cycloheximide. Analysis of the binding data showed that the increase in gonadotropin-releasing hormone binding activity was due to a change in the number of gonadotropin-releasing hormone binding sites rather than a change in the affinity. These results suggest that (1) estradiol treatment increases the number of pituitary receptors for gonadotropin-releasing hormone, (2) the augmentary effect of estradiol on luteinizing hormone release at the pituitary level might be mediated, at least in part, by the increase in the number of binding sites of gonadotropin-releasing hormone, and (3) new protein synthesis may be involved in estradiol-mediated gonadotropin-releasing hormone receptor induction.

  10. Development of GR/MR Chimeric Receptors and Their Response to Steroid Hormones

    Institute of Scientific and Technical Information of China (English)

    Huang Qiman; Yang Qunying; Elisabeth Martinez; Guo Sandui

    2000-01-01

    We have established an effective and reliable technique of developing GR/MR chimeric receptors by DNA homologous recombination. To develop the method we transformed several different E. coli strains with a linearized plasmid containing full length of mGR(mouse GR) and hormone binding domain(HBD) of rMR(rat MR), the linear DNA undergoes recombination due to the homology of the mGR and the rMR and recircularize , and propagation in E. coli. PCR was performed to screen correct construction in which fusion between GR and MR took place. The constructs were digested with appropriate restriction endonucleases to test probable fusion sites of GR and HBD of MR. Precise fusion sites of GR and MR for constructs AB1157 # 2 , AB1157 # 18, AB 1157 # 22, AB1157 # 32, CMK603 # 6 were verified by DNA sequencing. Trans fection of COS- 7 cells with the constructs and subsequent treatment of transfected COS-7 cells with steroid hormones were carried out, the results showed that the constructs gave response to tested hormones. The study suggested that the GR/MR chimeric receptors can give rise to fusion proteins and their interactive function between hormone and receptor.

  11. Effects of lamprey PQRFamide peptides on brain gonadotropin-releasing hormone concentrations and pituitary gonadotropin-β mRNA expression.

    Science.gov (United States)

    Daukss, Dana; Gazda, Kristen; Kosugi, Takayoshi; Osugi, Tomohiro; Tsutsui, Kazuyoshi; Sower, Stacia A

    2012-06-01

    Within the RFamide peptide family, PQRFamide peptides that include neuropeptide FF and AF possess a C-terminal Pro-Gln-Arg-Phe-NH(2) motif. We previously identified PQRFamide peptides, lamprey PQRFa, PQRFa-related peptide (RP)-1 and -RP-2 by immunoaffinity purification in the brain of lamprey, one of the most ancient vertebrate species [13]. Lamprey PQRFamide peptide precursor mRNA was expressed in regions predicted to be involved in neuroendocrine regulation in the hypothalamus. However, the putative function(s) of lamprey PQRFamide peptides (PQRFa, PQRFa-RP-1 and PQRFa-RP-2) were not examined nor was the distribution of PQRFamide peptides examined in other tissues besides the brain. The objective of this study was to determine tissue distribution of lamprey PQRFamide peptide precursor mRNA, and to examine the effects of PQRFamide peptides on brain gonadotropin-releasing hormone (GnRH)-I, -II, and -III protein concentrations, and pituitary gonadotropin (GTH)-β mRNA expression in adult lampreys. Lamprey PQRFamide peptide precursor mRNA was expressed in the eye and the brain. Lamprey PQRFa at 100 μg/kg increased brain concentrations of lamprey GnRH-II compared with controls. PQRFa, PQRFa-RP-1 and PQRFa-RP-2 did not significantly change brain protein concentrations of either lamprey GnRH-I, -III, or lamprey GTH-β mRNA expression in the pituitary. These data suggest that one of the PQRFamide peptides may act as a neuroregulator of at least the lamprey GnRH-II system in adult female lamprey.

  12. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    Science.gov (United States)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  13. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor.

    Science.gov (United States)

    Di Florio, Alessia; Sancho, Veronica; Moreno, Paola; Delle Fave, Gianfranco; Jensen, Robert T

    2013-03-01

    Foregut neuroendocrine tumors [NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor (EGFR) by growth factors, gastrointestinal (GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid,BON, the somatostatinoma QGP-1 and the rat islet tumor,Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr(1068) EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs.

  14. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    -repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated...

  15. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  16. Actions of NPY, and its Y1 and Y2 receptors on pulsatile growth hormone secretion during the fed and fasted state.

    Science.gov (United States)

    Huang, Lili; Tan, Hwee Y; Fogarty, Matthew J; Andrews, Zane B; Veldhuis, Johannes D; Herzog, Herbert; Steyn, Frederik J; Chen, Chen

    2014-12-01

    The hypothalamic NPY system plays an important role in regulating food intake and energy expenditure. Different biological actions of NPY are assigned to NPY receptor subtypes. Recent studies demonstrated a close relationship between food intake and growth hormone (GH) secretion; however, the mechanism through which endogenous NPY modulates GH release remains unknown. Moreover, conclusive evidence demonstrating a role for NPY and Y-receptors in regulating the endogenous pulsatile release of GH does not exist. We used genetically modified mice (germline Npy, Y1, and Y2 receptor knock-out mice) to assess pulsatile GH secretion under both fed and fasting conditions. Deletion of NPY did not impact fed GH release; however, it reversed the fasting-induced suppression of pulsatile GH secretion. The recovery of GH secretion was associated with a reduction in hypothalamic somatotropin release inhibiting factor (Srif; somatostatin) mRNA expression. Moreover, observations revealed a differential role for Y1 and Y2 receptors, wherein the postsynaptic Y1 receptor suppresses GH secretion in fasting. In contrast, the presynaptic Y2 receptor maintains normal GH output under long-term ad libitum-fed conditions. These data demonstrate an integrated neural circuit that modulates GH release relative to food intake, and provide essential information to address the differential roles of Y1 and Y2 receptors in regulating the release of GH under fed and fasting states.

  17. Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay

    Science.gov (United States)

    Park, Ok Hyun; Park, Joori; Yu, Mira; An, Hyoung-Tae; Ko, Jesang; Kim, Yoon Ki

    2016-01-01

    Glucocorticoid (GC) receptor (GR) has been shown recently to bind a subset of mRNAs and elicit rapid mRNA degradation. However, the molecular details of GR-mediated mRNA decay (GMD) remain unclear. Here, we demonstrate that GMD triggers rapid degradation of target mRNAs in a translation-independent and exon junction complex-independent manner, confirming that GMD is mechanistically distinct from nonsense-mediated mRNA decay (NMD). Efficient GMD requires PNRC2 (proline-rich nuclear receptor coregulatory protein 2) binding, helicase ability, and ATM-mediated phosphorylation of UPF1 (upstream frameshift 1). We also identify two GMD-specific factors: an RNA-binding protein, YBX1 (Y-box-binding protein 1), and an endoribonuclease, HRSP12 (heat-responsive protein 12). In particular, using HRSP12 variants, which are known to disrupt trimerization of HRSP12, we show that HRSP12 plays an essential role in the formation of a functionally active GMD complex. Moreover, we determine the hierarchical recruitment of GMD factors to target mRNAs. Finally, our genome-wide analysis shows that GMD targets a variety of transcripts, implicating roles in a wide range of cellular processes, including immune responses.

  18. Effects of sex steroid hormones on neuromedin S and neuromedin U2 receptor expression following experimental traumatic brain injury.

    Science.gov (United States)

    Khaksari, Mohammad; Maghool, Fatemeh; Asadikaram, Gholamreza; Hajializadeh, Zahra

    2016-10-01

    Neuroprotective effects of female gonadal steroids are mediated through several pathways involving multiple peptides and receptors after traumatic brain injury (TBI). Two of these peptides are including the regulatory peptides neuromedin U (NMU) and neuromedin S (NMS), and their common receptor neuromedin U2 receptor (NMUR2). This study investigates the effects of physiological doses of estradiol and progesterone on brain edema, NMS and NMU as well as NMUR2 expression following TBI. Ovariectomized female rats were given high-and low-dose of female sex steroid hormones through implantation of capsules for a week before trauma. The brain NMUR2 expression, prepro-NMS expression, NMU content, and water content (brain edema) were evaluated 24 hr after TBI induced by Marmarou's method. Percentage of brain water content in high- and low-dose estradiol, and in high- and low- dose progesterone was less than vehicle (P<0.01). Results show high expression of prepro-NMS in high dose progesterone (TBI-HP) rats compared to the high dose estrogen (TBI-HE), as well as vehicle (P<0.01). NMU content in low-dose progesterone (TBI-LP) group was more than that of vehicle group (P<0.001). Furthermore a difference in NMU content observed between TBI-HP compared to TBI-HE, and vehicle (P<0.05). The NMUR2 mRNA expression revealed an upregulation in TBI-HP rats compared to the TBI-HE group (P<0.001). Findings indicate that progesterone attenuates brain edema and induces an increase in NMS and its receptor which may mediate the anti-edematous effect of progesterone after TBI.

  19. Differential between Protein and mRNA Expression of CCR7 and SSTR5 Receptors in Crohn's Disease Patients

    Directory of Open Access Journals (Sweden)

    Nathalie Taquet

    2009-01-01

    Full Text Available Crohn's disease (CD is a multifactorial chronic inflammatory bowel disease of unknown cause. The aim of the present study was to explore if mRNA over-expression of SSTR5 and CCR7 found in CD patients could be correlated to respective protein expression. When compared to healthy donors, SSTR5 was over-expressed 417 ± 71 times in CD peripheral blood mononuclear cells (PBMCs. Flow cytometry experiments showed no correlation between mRNA and protein expression for SSTR5 in PBMCs. In an attempt to find a reason of such a high mRNA expression, SSTR5 present on CD PBMCs were tested and found as biologically active as on healthy cells. In biopsies of CD intestinal tissue, SSTR5 was not over-expressed but CCR7, unchanged in PBMCs, was over-expressed by 10 ± 3 times in the lamina propria. Confocal microscopy showed a good correlation of CCR7 mRNA and protein expression in CD intestinal biopsies. Our data emphasize flow and image cytometry as impossible to circumvent in complement to molecular biology so to avoid false interpretation on receptor expressions. Once confirmed by further large-scale studies, our preliminary results suggest a role for SSTR5 and CCR7 in CD pathogenesis.

  20. Studies on Androgen Receptor mRNA expression in Pancreas, Hypothalamus and Ovary of Androgen Sterilized Rats

    Institute of Scientific and Technical Information of China (English)

    Li WANG; Jing-wen HOU; Li-min LU; Jin YU; Sui-qi GUI

    2004-01-01

    Objective To investigate the androgen receptor (AR) mRNA expression in pancreas,hypothalamus and ovary of androgen sterilized rats (ASR)Methods ASR model was established by subcutaneous injection of testosterone propionate to SD female rats at the age of 9 days. Around the age of 106 days (proestrus),all rats were killed, serum △ 4-andronestedione (△ 4-A), total testosterone (TT), free testosterone (FT), insulin (Ins) and C-peptide (C-P)were measured by radioimmunoassay (RIA). Total RNA in pancreas, hypothalamus and ovary were extracted and the amount of AR mRNA was quantitatedly analyzed by RT-PCR with single base mutant template as inner standard. Results Serum concentrations of△ 4-A, TT, FT, Ins and C-P in ASR model rats were significantly higher than those in control group (P<0. 05, P<0. 01). The expression of AR mRNA in pancreas, hypothalamus and ovary increased significantly (P<0. 05,P<0. 01) of model rats as compared with control group. Conclusion The elevated serum androgen levels in ASR model could enhance the expression of AR mRNA levels in pancreas, hypothalamus and ovary, which further induce hyperinsulinemia and anovulation.

  1. Expression of NK1 receptor at the protein and mRNA level in the porcine female reproductive system.

    Science.gov (United States)

    Bukowski, R

    2014-01-01

    The presence and distribution of substance P (SP) receptor NK1 was studied in the ovary, the oviduct and the uterus (uterine horn and cervix) of the domestic pig using the methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry. The expression of NK1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the protein level by the detection of 46 kDa protein band in immunoblot. Immunohistochemical staining revealed the cellular distribution of NK1 receptor protein. In the ovary NKI receptor was present in the wall of arterial blood vessels, as well as in ovarian follicles of different stages of development. In the tubular organs the NK1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium. The study confirmed the presence of NK1 receptor in the tissues of the porcine female reproductive tract which clearly points to the possibility that SP can influence porcine ovary, oviduct and uterus.

  2. Co-induction of hepatic IGF-I and progranulin mRNA by growth hormone in tilapia, Oreochromis mossambiccus

    Science.gov (United States)

    Like IGF-I, progranulin (pgrn) is a growth factor involved in tumorigenesis and wound healing. We report here the identification and characterization of pgrn cDNA in tilapia and the regulation of its expression by growth hormone(GH). The tilapia pgrn cDNA was cloned by RT-PCR ampliWcation, using g...

  3. Ancient origins of metazoan gonadotropin-releasing hormone and their receptors revealed by phylogenomic analyses.

    Science.gov (United States)

    Plachetzki, David C; Tsai, Pei-San; Kavanaugh, Scott I; Sower, Stacia A

    2016-08-01

    The discovery of genes related to gonadotropin-releasing hormones (GnRH) and their receptors from diverse species has driven important advances in comparative endocrinology. However, our view of the evolutionary histories and nomenclature of these gene families has become inconsistent as several different iterations of GnRH and receptor relationships have been proposed. Whole genome sequence data are now available for most of the major lineages of animals, and an exhaustive view of the phylogenies of GnRH and their receptors is now possible. In this paper, we leverage data from publically available whole genome sequences to present a new phylogenomic analysis of GnRH and GnRH receptors and the distant relatives of each across metazoan phylogeny. Our approach utilizes a phylogenomics pipeline that searches data from 36 whole genome sequences and conducts phylogenetic analyses of gene trees. We provide a comprehensive analysis of the major groupings of GnRH peptides, related hormones and their receptors and provide some suggestions for a new nomenclature. Our study provides a framework for understanding the functional diversification of this family of neuromodulatory peptides and their receptors.

  4. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi

    2002-01-01

    involvement, distant metastasis, extrathyroidal invasion and tumor-node-metastasis (TNM) classification. RESULTS: A statistically significant correlation between the length of THRA1 and thyroid hormone receptor-alpha1 expression was observed in both cell lines and primary thyroid cancers. Thyroid tumors...... that displayed higher than average thyroid hormone receptor-alpha1 expression had expanded THRA1 microsatellites and were less aggressive as judged by TNM ranking. A statistically significant correlation was also found between low thyroid hormone receptor-alpha1 expression and more aggressive thyroid cancer...

  5. High expression of follicle stimulating hormone receptor in testicular tissue of idiopathic azoospermic patients with severe spermatogenic defects

    Institute of Scientific and Technical Information of China (English)

    Wang Liquan; Huang Hefeng; Jin Fan; Zhou Caiyun; Qian Yuli; Chen Jianhua

    2014-01-01

    Background Follicle stimulating hormone is necessary for normal reproduction in men.The biochemical actions of follicle stimulating hormone result from binding to the follicle stimulating hormone receptor in the plasma membrane of Sertoli cells.Here,we investigated the expression of the follicle stimulating hormone receptor in different testicular histological phenotypes of patients with idiopathic azoospermia.Methods Fifty-seven cases of idiopathic azoospermia were classified into three groups according to the results of testicular biopsy:patients with hypospermatogenesis,patients with maturation arrest,and patients with Sertoli cell-only syndrome.Thirteen azoospermic patients identified by testicular biopsy as being capable of completing spermatogenesis acted as the control group.Immunohistochemistry and real-time quantitative reverse-transcriptase polymerase chain reaction were performed in each case,and the serum hormone level was also measured in all patients.Results The serum follicle stimulating hormone level in patients with Sertoli cell-only syndrome was significantly higher than in patients with hypospermatogenesis,maturation arrest,and complete spermatogenesis (P<0.01).The serum follicle stimulating hormone level in patients with maturation arrest was significantly higher than in patients with hypospermatogenesis and complete spermatogenesis (P<0.05).There was no difference in serum follicle stimulating hormone levels in patients with hypospermatogenesis and complete spermatogenesis.The follicle stimulating hormone receptor expression level of testicular samples with Sertoli cell-only syndrome was significantly higher than in those with hypospermatogenesis,maturation arrest,and complete spermatogenesis (P<0.05),but no significant difference was observed among hypospermatogenesis,maturation arrest,and complete spermatogenesis testicular samples.Conclusions Different serum follicle stimulating hormone levels and follicle stimulating hormone receptor

  6. Estradiol regulates alternative splicing of estrogen receptor-alpha mRNA in differentiated NG108-15 neuronal cells.

    Science.gov (United States)

    Aizawa, Shu; Yamamuro, Yutaka

    2008-03-26

    The biological actions of estrogen are mostly conveyed through interaction with two different types of estrogen receptor (ER), ER-alpha and ER-beta. With regard to ER-alpha, an alternatively spliced form and its translated product, truncated estrogen receptor product-1 (TERP-1), have been identified in the rat pituitary. TERP-1 has the ability to inhibit the ER binding to DNA response element by forming hetero-dimers with the wild-type ER. Furthermore, TERP-1 expression increased concurrently with serum estrogen levels. Although estrogen also plays important roles in the central nervous system, the existence and regulatory mechanism of alternatively spliced ER-alpha mRNA expression has remained unclear. The present study evaluated the expression of the alternatively spliced form of the ER-alpha gene, and examined the influence of a representative ER ligand, 17beta-estradiol (E2), on the expression in differentiated NG108-15 neuronal cells. A real-time RT-PCR analysis using primer sets designed to amplify from exons 3 to 4, exons 4 to 5, exons 5 to 6, exons 6 to 7, and exons 7 to 8 of the mouse ER-alpha gene revealed the existence of alternatively spliced ER-alpha mRNA and its putative transcription initiation site, located between exon 4 and exon 5. Although E2 had no apparent effect on the overall expression of ER-alpha mRNA, it reduced the incidence of the alternatively spliced form of ER-alpha. The down-regulation by E2 predominantly arose via binding to nuclear ERs. The present study demonstrated that alternatively spliced ER-alpha mRNA is expressed in differentiated NG108-15 neuronal cells, and provides evidence for the functional up-regulation of ER-alpha via the ligand-binding activation of ERs.

  7. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Shibuya, Kenichi; Nagata, Masayasu; Tanikawa, Natsu; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.

  8. Distribution of genes for parathyroid hormone (PTH)-related peptide, Indian hedgehog, PTH receptor and patched in the process of experimental spondylosis in mice.

    Science.gov (United States)

    Nakase, Takanobu; Ariga, Kenta; Meng, Wenxiang; Iwasaki, Motoki; Tomita, Tetsuya; Myoui, Akira; Yonenobu, Kazuo; Yoshikawa, Hideki

    2002-07-01

    Little is known about the molecular mechanisms underlying the process of spondylosis. The authors determined the extent of genetic localization of major regulators of chondrogenesis such as Indian hedgehog (Ihh) and parathyroid hormone (PTH)-related peptide (PTHrP) and their receptors during the development of spondylosis in their previously established experimental mouse model. Experimental spondylosis was induced in 5-week-old ICR mice. The cervical spines were chronologically harvested, and histological sections were prepared. Messenger (m) RNA for PTHrP, Ihh, PTH receptor (PTHR; a receptor for PTHrP), patched (Ptc; a receptor for Ihh), bone morphogenetic protein (BMP)-6, and collagen type X (COL10; a marker for mature chondrocyte) was localized in the tissue sections by performing in situ hybridization. In the early stage, mRNA for COL10, Ihh, and BMP-6 was absent; however, mRNA for PTHrP, PTHR, and Ptc was detected in the anterior margin of the cervical discs. In the late stage, evidence of COL10 mRNA began to be detected, and transcripts for Ihh, PTHrP, and BMP-6 were localized in hypertrophic chondrocytes adjacent to the bone-forming area in osteophyte. Messenger RNA for Ptc and PTHR continued to localize at this stage. In control mice, expression of these genes was absent. The localization of PTHrP, Ihh, BMP-6, and the receptors PTHR and Ptc demonstrated in the present experimental model indicates the possible involvement of molecular signaling by PTHrP (through the PTHR), Ihh (through the Ptc), and BMP-6 in the regulation of chondrocyte maturation leading to endochondral ossification in spondylosis.

  9. Cloning of growth hormone, somatolactin, and their receptor mRNAs, their expression in organs, during development, and on salinity stress in the hermaphroditic fish, Kryptolebias marmoratus.

    Science.gov (United States)

    Rhee, Jae-Sung; Kim, Bo-Mi; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2012-04-01

    Salinity is an important parameter that affects survival and metabolism in fish. In fish, pituitary growth hormone (GH) regulates physiological functions including adaptation to different salinity as well as somatic growth. GH is stimulated by growth hormone-releasing hormone (GHRH) and exerts its function via binding to growth hormone receptor (GHR). As Kryptolebias marmoratus is a euryhaline fish, this species would be a useful model species for studying the adaptation to osmotic stress conditions. Here, we cloned GH, -GHR, somatolactin (SL), and somatolactin receptor (SLR) genes, and analyzed their expression patterns in different tissues and during early developmental stages by using real-time RT-PCR. We also further examined expression of them after acclimation to different salinity. Tissue distribution studies revealed that Km-GH and -SL mRNAs were remarkably expressed in brain and pituitary, whereas Km-GHR and -SLR mRNAs were predominantly expressed in liver, followed by gonad, muscle, pituitary, and brain. During embryonic developmental stages, the expression of their mRNA was increased at stage 3 (9 dpf). The Km-GH and -SL mRNA transcripts were constantly elevated until stage 5 (5h post hatch), whereas Km-GHR and -SLR mRNA levels decreased at this stage. After we transferred K. marmoratus from control (12 psu) to hyper-osmotic condition (hyperseawater, HSW; 33 psu), Km-GH, -SL, and GHR mRNA levels were enhanced. In hypo-osmotic conditions like freshwater (FW), Km-GH and -SL expressions were modulated 24 h after exposure, and Km-SLR transcripts were significantly upregulated. This finding suggests that Km-GH and -SL may be involved in the osmoregulatory mechanism under hyper-osmotic as well as hypo-osmotic stress. This is the first report on transcriptional modulation and relationship of GH, GHR, SL, and SLR during early development and after salinity stress. This study will be helpful to a better understanding on molecular mechanisms of adaptation response

  10. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Caracciolo

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  11. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    Science.gov (United States)

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. ELABELA: a hormone essential for heart development signals via the apelin receptor.

    Science.gov (United States)

    Chng, Serene C; Ho, Lena; Tian, Jing; Reversade, Bruno

    2013-12-23

    We report here the discovery and characterization of a gene, ELABELA (ELA), encoding a conserved hormone of 32 amino acids. Present in human embryonic stem cells, ELA is expressed at the onset of zebrafish zygotic transcription and is ubiquitous in the naive ectodermal cells of the embryo. Using zinc-finger-nuclease-mediated gene inactivation in zebrafish, we created an allelic series of ela mutants. ela null embryos have impaired endoderm differentiation potential marked by reduced gata5 and sox17 expression. Loss of Ela causes embryos to develop with a rudimentary heart or no heart at all, surprisingly phenocopying the loss of the apelin receptor (aplnr), which we show serves as Ela's cognate G protein-coupled receptor. Our results reveal the existence of a peptide hormone, ELA, which, together with APLNR, forms an essential signaling axis for early cardiovascular development.

  13. Normal morphology and hormone receptor expression in the male California sea lion (Zalophus californianus) genital tract.

    Science.gov (United States)

    Colegrove, Kathleen M; Gulland, Frances M D; Naydan, Diane K; Lowenstine, Linda J

    2009-11-01

    Histomorphology and estrogen alpha (ER alpha), and progesterone receptor (PR) expression were evaluated in free-ranging stranded male California sea lions (Zalophus californianus). Hormone receptor expression was evaluated using an immunohistochemical technique with monoclonal antibodies. Estrogen and PRs were identified in the efferent ductules, prostate gland, corpus cavernosa, corpus spongiosium, penile urethra, and in the epithelium and stroma of both the penis and prepuce. In some tissues, ER alpha expression was more intense in the stroma, emphasizing the importance of the stroma in hormone-mediated growth and differentiation of reproductive organs. To our knowledge, this is the first study to localize ER alpha and PR to the epithelium of the glans penis. The results of this investigation add to the general knowledge of male California sea lion reproduction and suggest that estrogens could have a role in the function of the male reproductive tract.

  14. Effect of Compound Recipe Gengniankang (更年康) on Senile Sexual Hormone and Expression of Estrogen Receptor in Bone of Climacteric Female Rats

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To compare the therapeutic effect of Compound Recipe Gengniankang (更年康,GNK) with that of hormone replacement treatment (HRT) on climacteric female rats with osteoporosis, and to investigate the roles of estrogen and estrogen receptors in the mechanism of osteoporosis. Methods: Climac-teric female rats with osteoporosis were chosen and divided into three groups (GNK group, HRT group and control group). Apoptosis of ovarian granulose cells was measured by terminal-deoxynucleotidyl transferae mediated nick end labeling (TUNEL) assay. Serum level of estrdiol (E2), follicle stimulating hormone (FSH), luteinizing hormone (LH) were determined by the method of radioimmunoassay (RIA). Reverse transcriptase polymerase chain reaction (RT-PCT) technology was used to evaluate the expression of estrogen receptor (ER) in bone. Bone mineral density (BMD) was measured by double energy X-ray absorption (DEXA). Results: In the climacteric rats, BMD, serum E2, ER mRNA expression in bone decreased remarkably, and serum FSH, LH and apoptosis of ovarian granulose cells increased obviously. After treating with GNK, all the indexes were reversed except serum E2. The increase of E2 was not significant. Conclusion:GNK is effective on climacteric osteoporosis female rats. Its role is performed not by increasing serum E2 but by enhancing ER in the bone and inhibiting apoptosis of ovarian granulose cells. GNK can deter further exhaustion of ovarian function.

  15. In vivo intra-luteal implants of prostaglandin (PG) E1 or E2 (PGE1, PGE2) prevent luteolysis in cows. II: mRNA for PGF2α, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4 prostanoid receptors in luteal tissue.

    Science.gov (United States)

    Weems, Yoshie S; Bridges, Phillip J; Jeoung, Myoungkun; Arreguin-Arevalo, J Alejandro; Nett, Torrance M; Vann, Rhonda C; Ford, Stephen P; Lewis, Andrew W; Neuendorff, Don A; Welsh, Thomas H; Randel, Ronald D; Weems, Charles W

    2012-01-01

    Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every 4h inhibited luteolysis in ewes by altering luteal mRNA for luteinizing hormone (LH) receptors and unoccupied and occupied luteal LH receptors. However, estradiol-17β or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in cows, but infusion of estradiol+PGE(2) inhibited luteolysis. In contrast, intra-luteal implants containing PGE(1) or PGE(2) in Angus or Brahman cows also inhibited the decline in circulating progesterone, mRNA for LH receptors, and loss of unoccupied and occupied receptors for LH to prevent luteolysis. The objective of this experiment was to determine how intra-luteal implants of PGE(1) or PGE(2) alter mRNA for prostanoid receptors and how this could influence luteolysis in Brahman or Angus cows. On day-13 Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Corpora lutea slices were analyzed for mRNA for prostanoid receptors (FP, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4) by RT-PCR. Day-13 Angus cow luteal tissue served as pre-luteolytic controls. mRNA for FP receptors decreased in day-19 Vehicle controls compared to day-13 Vehicle controls regardless of breed. PGE(1) and PGE(2) up-regulated FP gene expression on day-19 compared to day-19 Vehicle controls regardless of breed. EP1 mRNA was not altered by any treatment. PGE(1) and PGE(2) down-regulated EP2 and EP4 mRNA compared to day-19 Vehicle controls regardless of breed. PGE(1) or PGE(2) up-regulated mRNA EP3B receptor subtype compared to day-19 Vehicle control cows regardless of breed. The similarities in relative gene expression profiles induced by PGE(1) and PGE(2) support their agonistic effects. We conclude that both PGE(1) and PGE(2) may prevent luteolysis by altering expression of mRNA for prostanoid

  16. [Rare abnormalities of parathyroid gland function and parathyroid hormone receptor action].

    Science.gov (United States)

    Krysiak, Robert; Bartecka, Anna; Okopień, Bogusław

    2014-01-01

    The parathyroid glands, located near or within the posterior surface of the thyroid gland and secreting parathyroid hormone, are essential organs for the regulation of calcium and phosphate metabolism. As they are necessary to sustain life and maintain homeostasis, undetected or misdiagnosed parathyroid disorders may pose a significant threat to health outcomes, as their presence may increase morbidity and mortality in affected individuals. The clinical picture of some disorders associated with abnormal parathyroid hormone secretion and receptor action is sometimes complicated by coexisting abnormalities, and in these cases establishing the correct diagnosis is challenging. The remarkable progress of recent years in the area of hormonal assessment, imaging procedures and molecular biology, has resulted in a great improvement in the identification, differentiation and treatment of various parathyroid disorders and has made it possible to identify several new clinical entities. In this paper, we discuss the present state-of-art on the etiopathogenesis, clinical manifestations, diagnosis and treatment of chosen rare abnormalities of parathyroid gland function and parathyroid hormone receptor action.

  17. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma.

    Science.gov (United States)

    Herzig, Stephan; Hedrick, Susan; Morantte, Ianessa; Koo, Seung-Hoi; Galimi, Francesco; Montminy, Marc

    2003-11-13

    Fasting triggers a series of hormonal cues that promote energy balance by inducing glucose output and lipid breakdown in the liver. In response to pancreatic glucagon and adrenal cortisol, the cAMP-responsive transcription factor CREB activates gluconeogenic and fatty acid oxidation programmes by stimulating expression of the nuclear hormone receptor coactivator PGC-1 (refs 2-5). In parallel, fasting also suppresses lipid storage and synthesis (lipogenic) pathways, but the underlying mechanism is unknown. Here we show that mice deficient in CREB activity have a fatty liver phenotype and display elevated expression of the nuclear hormone receptor PPAR-gamma, a key regulator of lipogenic genes. CREB inhibits hepatic PPAR-gamma expression in the fasted state by stimulating the expression of the Hairy Enhancer of Split (HES-1) gene, a transcriptional repressor that is shown here to be a mediator of fasting lipid metabolism in vivo. The coordinate induction of PGC-1 and repression of PPAR-gamma by CREB during fasting provides a molecular rationale for the antagonism between insulin and counter-regulatory hormones, and indicates a potential role for CREB antagonists as therapeutic agents in enhancing insulin sensitivity in the liver.

  18. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Billestrup, N.; Allevato, G.; Moldrup, A. [Hagedorn Research Lab., Gentofte (Denmark)] [and others

    1994-12-31

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to medite GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH-stimulated metabolic effects such as protein synthesis and lipolysis. Furthermore, this mutant GH receptor internalized rapidly following GH binding. Another truncated GH receptor lacking all but five amino acids of the cytoplasmic domain could not mediate any effects of GH nor did it internalize. Deletion of the proline-rich region or changing the four prolines to alanines also resulted in a GH receptor deficient in signaling. Mutation of phenylalanine 346 to alanine resulted in a GH receptor which did not internalize rapidly; however, this mutant GH receptor was capable of mediating GH-stimulated transcription as well as metabolic effects. These results indicate that the intracellular part of the GH receptor can be divided into at least three functional domains: (1) for transcriptional activity, two domains are involved, one located in the C-terminal 184 amino acids and the other in the proline-rich domain; (2) for metabolic effects, a domain located in or near the proline-rich region is of importance; and (3) for internalization, phenylalanine 346 is necessary. 28 refs., 1 fig.

  19. Regional distribution of putative NPY Y*U1 receptors and neurons expressing Y*U1 mRNA in forebrain areas of the rat central nervous system

    DEFF Research Database (Denmark)

    Larsen, Philip J.; Sheikh, Søren P.; Jakobsen, Cherine R.

    1993-01-01

    Anatomi, neurobiologi, neuropeptide Y, NPY analogues, receptor autoradiography, in situ hybridization histochemistry, Y*U1 mRNA, Y*U1 andY*U2 receptors, rat......Anatomi, neurobiologi, neuropeptide Y, NPY analogues, receptor autoradiography, in situ hybridization histochemistry, Y*U1 mRNA, Y*U1 andY*U2 receptors, rat...

  20. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M; Park, Sang-Youl; Weiner, Joshua J; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C; Jensen, Davin R; Yong, Eu-Leong; Volkman, Brian F; Cutler, Sean R; Zhu, Jian-Kang; Xu, H Eric; (NU Sinapore); (Van Andel); (MCW); (UCR); (Chinese Aca. Sci.)

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

  1. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  2. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    Directory of Open Access Journals (Sweden)

    Cohen Cynthia

    2010-09-01

    Full Text Available Abstract Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA and prostate-specific acid phosphatase (PSAP are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC, female breast carcinoma (FBC, and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%, focally positive in one of thirty MBC (3.3%, and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82. Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions.

  3. A Naturally Occurring Isoform Inhibits Parathyroid Hormone Receptor Trafficking and Signaling

    OpenAIRE

    Alonso, Ver?nica; Ardura, Juan A; WANG Bin; Sneddon, W Bruce; Peter A Friedman

    2010-01-01

    Parathyroid hormone (PTH) regulates calcium homeostasis and bone remodeling through its cognitive receptor (PTHR). We describe here a PTHR isoform harboring an in-frame 42-bp deletion of exon 14 (?e14-PTHR) that encodes transmembrane domain 7. ?e14-PTHR was detected in human kidney and buccal epithelial cells. We characterized its topology, cellular localization, and signaling, as well as its interactions with PTHR. The C-terminus of the ?e14-PTHR is extracellular, and cell surface expression...

  4. Receptors of Hypothalamic-Pituitary-Ovarian-Axis Hormone in Uterine Myomas

    Directory of Open Access Journals (Sweden)

    Danuta Plewka

    2014-01-01

    Full Text Available In this study the expression of GnRH, FSH, LH, ER-α, ER-β, and PR receptors was examined in uterine myomas of women in reproductive and perimenopausal age. In cases of GnRH and tropic hormones a membranous and cytoplasmic immunohistochemical reaction was detected, in cases of ER-α and PR the reaction was located in cell nucleus, and in the case of ER-β it manifested also a cytoplasmic location. In some of the examined cases the expression was detected in endometrium, myocytes, and endothelium of blood vessels, in uterine glands and myoma cells. In myometrium the level of GnRH and LH receptors increases with age, whereas the level of progesterone and both estrogen receptors decreases. In myomas of women in reproductive age, independently of their size, expression of GnRH, FSH, and LH receptors was more pronounced than in myometrium. In women of perimenopausal age, independently of myoma size, expression of LH and estrogen α receptors was higher while expression of GnRH receptors was lower than in myometrium. FSH receptor expression was not observed. Expression of estrogen receptor β was not affected by age of the woman or size of myoma. Analysis of obtained results indicates on existing in small myomas local feedback axis between GnRH-LH-progesterone.

  5. Involvement of Ghrelin-Growth Hormone Secretagogue Receptor System in Pathoclinical Profiles of Digestive System Cancer

    Institute of Scientific and Technical Information of China (English)

    Zhigang WANG; Weigang WANG; Wencai QIU; Youben FAN; Jun ZHAO; Yu WANG; Qi ZHENG

    2007-01-01

    Ghrelin receptor has been shown to be expressed along the human gastrointestinal tract.Recent studies showed that ghrelin and a synthetic ghrelin receptor agonist improved weight gain and lean body mass retention in a rat model of cancer cachexia by acting on ghrelin receptor, that is, growth hormone secretagogue receptor (GHS-R). This study aims to explore the expression and the distribution of ghrelin receptor in human gastrointestinal tract cancers and to investigate the possible involvement of the ghrelin-GHS-R system in human digestive cancers. Surgical human digestive cancer specimens were obtained from various portions of the gastrointestinal tract from different patients. The expression of ghrelin receptor in these tissues was detected by tissue microarray technique. Our results showed that ghrelin receptor was expressed in cancers throughout the gastrointestinal tract, mainly in the cytoplasm of mucosal layer cells.Its expression level possibly correlated with organ type, histological grade, tumor-nodes-metastases stage,and nutrition status (weight loss) of the patients. For the first time, we identified the distribution of ghrelin receptor in digestive system cancers. Our results implied that the ghrelin-GHS-R system might be involved in the pathoclinical profiles of digestive cancers.

  6. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  7. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion

    Institute of Scientific and Technical Information of China (English)

    Ying YANG; Li-bin ZHOU; Shang-quan LIU; Jing-feng TANG; Feng-yin LI; Rong-ying LI; Huai-dong SONG; Ming-dao CHEN

    2005-01-01

    Aim: To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion.Methods: Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagonlike peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexinl, orexin2,neuromedin-B, neuropeptide Y (NPY) 1 and NPY5, neurotensin (NT) 1, NT2, NT3,and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin,orexin A and orexin B at a cohort of concentrations for different lengths of time,and GnRH in medium was determined by radioimmunoassay (RIA). Results:Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexinl, neuromedin-B, NPY1,NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Conclusion: Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  8. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Chui Sun; Sinha, Rohit Anthony [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore); Ota, Sho; Katsuki, Masahito [Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Yen, Paul Michael, E-mail: paul.yen@duke-nus.edu.sg [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore)

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.

  9. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors.

    Science.gov (United States)

    Clegg, Deborah; Hevener, Andrea L; Moreau, Kerrie L; Morselli, Eugenia; Criollo, Alfredo; Van Pelt, Rachael E; Vieira-Potter, Victoria J

    2017-02-17

    With increased life expectancy, women will spend over three decades of life post-menopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions. Copyright © 2017 Endocrine Society.

  10. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm.

    Science.gov (United States)

    Vilardaga, Jean-Pierre; Romero, Guillermo; Friedman, Peter A; Gardella, Thomas J

    2011-01-01

    The parathyroid hormone (PTH) receptor type 1 (PTHR), a G protein-coupled receptor (GPCR), transmits signals to two hormone systems-PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine-to regulate different biological processes. PTHR responds to these hormonal stimuli by activating heterotrimeric G proteins, such as G(S) that stimulates cAMP production. It was thought that the PTHR, as for all other GPCRs, is only active and signals through G proteins on the cell membrane, and internalizes into a cell to be desensitized and eventually degraded or recycled. Recent studies with cultured cell and animal models reveal a new pathway that involves sustained cAMP signaling from intracellular domains. Not only do these studies challenge the paradigm that cAMP production triggered by activated GPCRs originates exclusively at the cell membrane but they also advance a comprehensive model to account for the functional differences between PTH and PTHrP acting through the same receptor.

  11. Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: A cohort study

    NARCIS (Netherlands)

    Ritte, R.; Lukanova, A.; Tjonneland, A.; Olsen, A.; Overvad, K.; Mesrine, S.; Fagherazzi, G.; Dossus, L.; Teucher, B.; Duijnhoven, van F.J.B.

    2013-01-01

    Associations of breast cancer overall with indicators of exposures during puberty are reasonably well characterized; however, uncertainty remains regarding the associations of height, leg length, sitting height and menarcheal age with hormone receptor-defined malignancies. Within the European Prospe

  12. Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer : A cohort study

    NARCIS (Netherlands)

    Ritte, Rebecca; Lukanova, Annekatrin; Tjonneland, Anne; Olsen, Anja; Overvad, Kim; Mesrine, Sylvie; Fagherazzi, Guy; Dossus, Laure; Teucher, Birgit; Steindorf, Karen; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Mattiello, Amalia; Tumino, Rosario; Sacerdote, Carlotta; Ramon Quiros, Jose; Buckland, Genevieve; Molina-Montes, Esther; Chirlaque, Maria-Dolores; Ardanaz, Eva; Amiano, Pilar; Bueno-de-Mesquita, Bas; van Duijnhoven, Franzel; van Gils, Carla H.; Peeters, Petra H. M.; Wareham, Nick; Khaw, Kay-Tee; Key, Timothy J.; Travis, Ruth C.; Krum-Hansen, Sanda; Gram, Inger Torhild; Lund, Eiliv; Sund, Malin; Andersson, Anne; Romieu, Isabelle; Rinaldi, Sabina; McCormack, Valerie; Riboli, Elio; Kaaks, Rudolf

    2013-01-01

    Associations of breast cancer overall with indicators of exposures during puberty are reasonably well characterized; however, uncertainty remains regarding the associations of height, leg length, sitting height and menarcheal age with hormone receptor-defined malignancies. Within the European Prospe

  13. Studies on SSTR2 mRNA expression and its correlation to steroid receptors in human benign and malignant breast lesions

    Institute of Scientific and Technical Information of China (English)

    ZENG Xizhi(曾希志); YAO Zhenxiang(姚榛祥)

    2002-01-01

    Objective:This sudy was designed to observe somatostatin receptor subtype 2 (SSTR2) Mrna expression, and investigate the correlations between SSTR2 Mrna expression and steroid receptors in benign and malignant lesions of the breast. Methods: A total of 23 breast carcinomas,16 mammary hyperplasia and 9 mammary adenofibroma samples were analysed. The SSTR2 Mrna expression was examined by in situ hybridization using multiphase oligoprobes.The ER and PR were detected by immunohistochemical staining. A computerized image analysis system was utilized to estimate the relative contents of SSTR2 Mrna. Results: The positive rates of expression (87.0%) and relative contents (0.47) of SSTR2 Mrna in breast cancer were higher than those in benign breast lesions(64%,0.26) respectively( P<0.05). SSTR2 Mrna expression was closely correlated with ER and PR in breast cancer( P<0. 05), A positive correlation between SSTR2 Mrna expression and ER was also found in benign breast lesions. Conclusions: SSTR2 Mrna expressed both in benign and in malignant breast lesions, but higher in malignant than in benign ones. There was a significant positive correlation of SSTR2 Mrna expression with ER or PR. The results suggest that conbined treatment with an antiestrogen and a somatostatin analogue for ER-positive breast cancer is feasible.

  14. Corticotropin-releasing hormone, its binding protein and receptors in human cervical tissue at preterm and term labor in comparison to non-pregnant state

    Directory of Open Access Journals (Sweden)

    Byström Birgitta

    2006-05-01

    Full Text Available Abstract Background Preterm birth is still the leading cause of neonatal morbidity and mortality. The level of corticotropin-releasing hormone (CRH is known to be significantly elevated in the maternal plasma at preterm birth. Although, CRH, CRH-binding protein (CRH-BP, CRH-receptor 1 (CRH-R1 and CRH-R2 have been identified both at mRNA and protein level in human placenta, deciduas, fetal membranes, endometrium and myometrium, no corresponding information is yet available on cervix. Thus, the aim of this study was to compare the levels of the mRNA species coding for CRH, CRH-BP, CRH-R1 and CRH-R2 in human cervical tissue and myometrium at preterm and term labor and not in labor as well as in the non-pregnant state, and to localize the corresponding proteins employing immunohistochemical analysis. Methods Cervical, isthmic and fundal (from non-pregnant subjects only biopsies were taken from 67 women. Subjects were divided in 5 groups: preterm labor (14, preterm not in labor (7, term labor (18, term not in labor (21 and non-pregnant (7. Real-time RT-PCR was employed for quantification of mRNA levels and the corresponding proteins were localized by immunohistochemical analysis. Results The levels of CRH-BP, CRH-R1 and CRH-R2 mRNA in the pregnant tissues were lower than those in non-pregnant subjects. No significant differences were observed between preterm and term groups. CRH-BP and CRH-R2 mRNA and the corresponding proteins were present at lower levels in the laboring cervix than in the non-laboring cervix, irrespective of gestational age. In most of the samples, with the exception of four myometrial biopsies the level of CRH mRNA was below the limit of detection. All of these proteins could be detected and localized in the cervix and the myometrium by immunohistochemical analysis. Conclusion Expression of CRH-BP, CRH-R1 and CRH-R2 in uterine tissues is down-regulated during pregnancy. The most pronounced down-regulation of CRH-BP and CRH-R2

  15. The expression of several reproductive hormone receptors can be modified by perfluorooctane sulfonate (PFOS) in adult male rats.

    Science.gov (United States)

    López-Doval, S; Salgado, R; Lafuente, A

    2016-07-01

    This study was undertaken to evaluate the possible role of several reproductive hormone receptors on the disruption of the hypothalamic-pituitary-testis (HPT) axis activity induced by perfluorooctane sulfonate (PFOS). The studied receptors are the gonadotropin-releasing hormone receptor (GnRHr), luteinizing hormone receptor (LHr), follicle-stimulating hormone receptor (FSHr), and the androgen receptor (Ar). Adult male rats were orally treated with 1.0; 3.0 and 6.0 mg of PFOS kg(-1) d(-1) for 28 days. In general terms, PFOS can modify the relative gene and protein expressions of these receptors in several tissues of the reproductive axis. At the testicular level, apart from the expected inhibition of both gene and protein expressions of FSHr and Ar, PFOS also stimulates the GnRHr protein and the LHr gene expression. The receptors of the main hormones involved in the HPT axis may have an important role in the disruption exerted by PFOS on this axis.

  16. Nucleotide sequence of a growth-related mRNA encoding a member of the prolactin-growth hormone family.

    OpenAIRE

    Linzer, D I; Nathans, D

    1984-01-01

    As part of the proliferative response to serum, mouse 3T3 cells produce a set of growth-related mRNAs identified by hybridization to cloned cDNAs. One of these mRNAs, which is about 1 kilobase long, appears within a few hours after stimulation of resting cells with serum or platelet-derived growth factor and reaches a high level during the transition from the G1 to the S phase of growth. This mRNA is translated in vitro into a protein of approximately 25 kilodaltons. The corresponding cloned ...

  17. A case of cervical cancer expressed three mRNA variant of Hyaluronan-mediated motility receptor

    Science.gov (United States)

    Villegas-Ruíz, Vanessa; Salcedo, Mauricio; Zentella-Dehesa, Alejandro; de Oca, Edén V Montes; Román-Basaure, Edgar; Mantilla-Morales, Alejandra; Dávila-Borja, Víctor M; Juárez-Méndez, Sergio

    2014-01-01

    Cervical cancer is the second malignancy in Mexico, little is known about the prognostic factors associated with this disease. Several cellular components are important in their transformation and progression. Alternative mRNA splice is an important mechanism for generating protein diversity, nevertheless, in cancer unknown mRNA diversity is expressed. Hyaluronan-mediated motility receptor (HMMR, RHAMM, CD168) is a family member of proteins, hyaluronan acid dependent, and has been associated with different malignant processes such as: angiogenesis, cell invasiveness, proliferation, metastasis and poor outcome in some tumors. In the present study we identified expression of HMMR in cervical cancer by means of RT-PCR and sequencing. Our results indicate co-expression of two HMMR variants in all samples, and one case expressed three alternative HMMR splice transcripts. These results showed the heterogeneity of mRNA transcripts of HMMR that could express in cancer and the expression of HMMR could be marker of malignancy in CC. PMID:24966934

  18. Study of V2 vasopressin receptor hormone binding site using in silico methods.

    Science.gov (United States)

    Sebti, Yeganeh; Sardari, Soroush; Sadeghi, Hamid Mir Mohammad; Ghahremani, Mohammad Hossein; Innamorati, Giulio

    2015-01-01

    The antidiuretic effect of arginine vasopressin (AVP) is mediated by the vasopressin V2 receptor. The docking study of AVP as a ligand to V2 receptor helps in identifying important amino acid residues that might be involved in AVP binding for predicting the lowest free energy state of the protein complex. Whereas previous researchers were not able to detect the exact site of the ligand-receptor binding, we designed the current study to identify the vasopressin V2 receptor hormone binding site using bioinformatic methods. The 3D structure of nonapeptide hormone vasopressin was extracted from Protein Data Bank. Since no suitable template resembling V2 receptor was found, an ab initio approach was chosen to model the protein receptor. Using protein docking methods such as Hex protein-protein docking, the model of V2 receptor was docked to the peptide ligand AVP to identify possible binding sites. The residues that involved in binding site are W293, W296, D297, A300, and P301. The lowest free energy state of the protein complex was predicted after mutation in the above residues. The amount of gained energies permits us to compare the mutant forms with native forms and help to asses critical changes such as positive and negative mutations followed by ranking the best mutations. Based on the mutation/docking predictions, we found some mutants such as W293D and A300E possess positively inducing effect in ligand binding and some of them such as A300R present negatively inducing effect in ligand binding.

  19. Agonist-regulated Cleavage of the Extracellular Domain of Parathyroid Hormone Receptor Type 1*

    Science.gov (United States)

    Klenk, Christoph; Schulz, Stefan; Calebiro, Davide; Lohse, Martin J.

    2010-01-01

    The receptor for parathyroid hormone (PTHR) is a main regulator of calcium homeostasis and bone maintenance. As a member of class B of G protein-coupled receptors, it harbors a large extracellular domain, which is required for ligand binding. Here, we demonstrate that the PTHR extracellular domain is cleaved by a protease belonging to the family of extracellular metalloproteinases. We show that the cleavage takes place in a region of the extracellular domain that belongs to an unstructured loop connecting the ligand-binding parts and that the N-terminal 10-kDa fragment is connected to the receptor core by a disulfide bond. Cleaved receptor revealed reduced protein stability compared with noncleaved receptor, suggesting degradation of the whole receptor. In the presence of the agonistic peptides PTH(1–34), PTH(1–14), or PTH(1–31), the processing of the PTHR extracellular domain was inhibited, and receptor protein levels were stabilized. A processed form of the PTHR was also detected in human kidney. These findings suggest a new model of PTHR processing and regulation of its stability. PMID:20080964

  20. Agonist-regulated cleavage of the extracellular domain of parathyroid hormone receptor type 1.

    Science.gov (United States)

    Klenk, Christoph; Schulz, Stefan; Calebiro, Davide; Lohse, Martin J

    2010-03-19

    The receptor for parathyroid hormone (PTHR) is a main regulator of calcium homeostasis and bone maintenance. As a member of class B of G protein-coupled receptors, it harbors a large extracellular domain, which is required for ligand binding. Here, we demonstrate that the PTHR extracellular domain is cleaved by a protease belonging to the family of extracellular metalloproteinases. We show that the cleavage takes place in a region of the extracellular domain that belongs to an unstructured loop connecting the ligand-binding parts and that the N-terminal 10-kDa fragment is connected to the receptor core by a disulfide bond. Cleaved receptor revealed reduced protein stability compared with noncleaved receptor, suggesting degradation of the whole receptor. In the presence of the agonistic peptides PTH(1-34), PTH(1-14), or PTH(1-31), the processing of the PTHR extracellular domain was inhibited, and receptor protein levels were stabilized. A processed form of the PTHR was also detected in human kidney. These findings suggest a new model of PTHR processing and regulation of its stability.

  1. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  2. Family history and breast cancer hormone receptor status in a Spanish cohort.

    Directory of Open Access Journals (Sweden)

    Xuejuan Jiang

    Full Text Available BACKGROUND: Breast cancer is a heterogenous disease that impacts racial/ethnic groups differently. Differences in genetic composition, lifestyles, reproductive factors, or environmental exposures may contribute to the differential presentation of breast cancer among Hispanic women. MATERIALS AND METHODS: A population-based study was conducted in the city of Santiago de Compostela, Spain. A total of 645 women diagnosed with operable invasive breast cancer between 1992 and 2005 participated in the study. Data on demographics, breast cancer risk factors, and clinico-pathological characteristics of the tumors were collected. Hormone receptor negative tumors were compared with hormone receptor postive tumors on their clinico-pathological characteristics as well as risk factor profiles. RESULTS: Among the 645 breast cancer patients, 78% were estrogen receptor-positive (ER+ or progesterone receptor-positive (PR+, and 22% were ER-&PR-. Women with a family history of breast cancer were more likely to have ER-&PR- tumors than women without a family history (Odds ratio, 1.43; 95% confidence interval, 0.91-2.26. This association was limited to cancers diagnosed before age 50 (Odds ratio, 2.79; 95% confidence interval, 1.34-5.81. CONCLUSIONS: An increased proportion of ER-&PR- breast cancer was observed among younger Spanish women with a family history of the disease.

  3. The Nuclear Hormone Receptor PPARγ as a Therapeutic Target in Major Diseases

    Directory of Open Access Journals (Sweden)

    Martina Victoria Schmidt

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor γ (PPARγ belongs to the nuclear hormone receptor superfamily and regulates gene expression upon heterodimerization with the retinoid X receptor by ligating to peroxisome proliferator response elements (PPREs in the promoter region of target genes. Originally, PPARγ was identified as being essential for glucose metabolism. Thus, synthetic PPARγ agonists, the thiazolidinediones (TZDs, are used in type 2 diabetes therapy as insulin sensitizers. More recent evidence implied an important role for the nuclear hormone receptor PPARγ in controlling various diseases based on its anti-inflammatory, cell cycle arresting, and proapoptotic properties. In this regard, expression of PPARγ is not restricted to adipocytes, but is also found in immune cells, such as B and T lymphocytes, monocytes, macrophages, dendritic cells, and granulocytes. The expression of PPARγ in lymphoid organs and its modulation of macrophage inflammatory responses, lymphocyte proliferation, cytokine production, and apoptosis underscore its immune regulating functions. Moreover, PPARγ expression is found in tumor cells, where its activation facilitates antitumorigenic actions. This review provides an overview about the role of PPARγ as a possible therapeutic target approaching major, severe diseases, such as sepsis, cancer, and atherosclerosis.

  4. Seasonal variation in the gonadotropin-releasing hormone response to kisspeptin in sheep: possible kisspeptin regulation of the kisspeptin receptor.

    Science.gov (United States)

    Li, Qun; Roa, Alexandra; Clarke, Iain J; Smith, Jeremy T

    2012-01-01

    Kisspeptin signaling in the hypothalamus appears critical for the onset of puberty and driving the reproductive axis. In sheep, reproduction is seasonal, being activated by short days and inhibited by long days. During the non-breeding (anestrous) season, gonadotropin-releasing hormone (GnRH) and gonadotropin secretion is reduced, as is the expression of Kiss1 mRNA in the brain. Conversely, the luteinizing hormone response to kisspeptin during this time is greater. To determine whether the GnRH response to kisspeptin is increased during anestrus, we utilized hypophysial portal blood sampling. In anestrus ewes, the GnRH and LH responses to kisspeptin were greater compared to the breeding season (luteal phase). To ascertain whether this difference reflects a change in Kiss1r, we measured its expression on GnRH neurons using in situ hybridization. The level of Kiss1r was greater during the non-breeding season compared to the breeding season. To further examine the mechanism underlying this change in Kiss1r, we examined Kiss1r/GnRH expression in ovariectomized ewes (controlling for sex steroids) during the breeding and non-breeding seasons, and also ovariectomized non-breeding season ewes with or without estradiol replacement. In both experiments, Kiss1r expression on GnRH neurons was unchanged. Finally, we examined the effect of kisspeptin treatment on Kiss1r. Kiss1r expression on GnRH neurons was reduced by kisspeptin infusion. These studies indicate the kisspeptin response is indeed greater during the non-breeding season and this may be due in part to increased Kiss1r expression on GnRH neurons. We also show that kisspeptin may regulate the expression of its own receptor.

  5. Parathyroid hormone receptor recycling: role of receptor dephosphorylation and beta-arrestin.

    Science.gov (United States)

    Chauvin, Stephanie; Bencsik, Margaret; Bambino, Tom; Nissenson, Robert A

    2002-12-01

    The recovery of PTH receptor (PTHR) function after acute homologous receptor desensitization and down-regulation in bone and kidney cells has been attributed to receptor recycling. To determine the role of receptor dephosphorylation in PTHR recycling, we performed morphological and functional assays on human embryonic kidney 293 cells stably expressing wild-type (wt) or mutant PTHRs. Confocal microscopy and ligand binding assays revealed that the wt PTHR is rapidly recycled back to the plasma membrane after removal of the agonist. Receptors that were engineered to either lack the sites of phosphorylation or to resemble constitutively phosphorylated receptors were able to recycle back to the plasma membrane with the same kinetics as the wt PTHR. The PTHR was found to be dephosphorylated by an enzyme apparently distinct from protein phosphatases 1 or 2A. The PTHR and beta-arrestin-2-green fluorescent protein (GFP) were found to stably colocalize during PTHR internalization, whereas after agonist removal and during receptor recycling, the colocalization slowly disappeared. Experiments using phosphorylation-deficient PTHRs and a dominant-negative form of beta-arrestin showed that beta-arrestin does not regulate the efficiency of PTHR recycling. These studies indicate that, unlike many G protein-coupled receptors, PTHR recycling does not require receptor dephosphorylation or its dissociation from beta-arrestin.

  6. Integrated mRNA and miRNA transcriptome reveal a cross-talk between developing response and hormone signaling for the seed kernels of Siberian apricot

    Science.gov (United States)

    Niu, Jun; Wang, Jia; An, Jiyong; Liu, Lili; Lin, Zixin; Wang, Rui; Wang, Libing; Ma, Chao; Shi, Lingling; Lin, Shanzhi

    2016-01-01

    Recently, our transcriptomic analysis has identified some functional genes responsible for oil biosynthesis in developing SASK, yet miRNA-mediated regulation for SASK development and oil accumulation is poorly understood. Here, 3 representative periods of 10, 30 and 60 DAF were selected for sRNA sequencing based on the dynamic patterns of growth tendency and oil content of developing SASK. By miRNA transcriptomic analysis, we characterized 296 known and 44 novel miRNAs in developing SASK, among which 36 known and 6 novel miRNAs respond specifically to developing SASK. Importantly, we performed an integrated analysis of mRNA and miRNA transcriptome as well as qRT-PCR detection to identify some key miRNAs and their targets (miR156-SPL, miR160-ARF18, miR164-NAC1, miR171h-SCL6, miR172-AP2, miR395-AUX22B, miR530-P2C37, miR393h-TIR1/AFB2 and psi-miRn5-SnRK2A) potentially involved in developing response and hormone signaling of SASK. Our results provide new insights into the important regulatory function of cross-talk between development response and hormone signaling for SASK oil accumulation. PMID:27762296

  7. Putative pacemakers in the eyestalk and brain of the crayfish Procambarus clarkii show circadian oscillations in levels of mRNA for crustacean hyperglycemic hormone.

    Directory of Open Access Journals (Sweden)

    Janikua Nelson-Mora

    Full Text Available Crustacean hyperglycemic hormone (CHH synthesizing cells in the optic lobe, one of the pacemakers of the circadian system, have been shown to be present in crayfish. However, the presence of CHH in the central brain, another putative pacemaker of the multi-oscillatory circadian system, of this decapod and its circadian transcription in the optic lobe and brain have yet to be explored. Therefore, using qualitative and quantitative PCR, we isolated and cloned a CHH mRNA fragment from two putative pacemakers of the multi-oscillatory circadian system of Procambarus clarkii, the optic lobe and the central brain. This CHH transcript synchronized to daily light-dark cycles and oscillated under dark, constant conditions demonstrating statistically significant daily and circadian rhythms in both structures. Furthermore, to investigate the presence of the peptide in the central brain of this decapod, we used immunohistochemical methods. Confocal microscopy revealed the presence of CHH-IR in fibers and cells of the protocerebral and tritocerebal clusters and neuropiles, particularly in some neurons located in clusters 6, 14, 15 and 17. The presence of CHH positive neurons in structures of P. clarkii where clock proteins have been reported suggests a relationship between the circadian clockwork and CHH. This work provides new insights into the circadian regulation of CHH, a pleiotropic hormone that regulates many physiological processes such as glucose metabolism and osmoregulatory responses to stress.

  8. Mouse adipose tissue-derived adult stem cells expressed osteogenic specific transcripts of osteocalcin and parathyroid hormone receptor during osteogenesis.

    Science.gov (United States)

    Teotia, P K; Hussein, K E-D; Park, K-M; Hong, S-H; Park, S-M; Park, I-C; Yang, S-R; Woo, H-M

    2013-10-01

    Adult mesenchymal stem cells (MSCs) have potential to differentiate into various lineages, replacing cells during normal turnover and tissue regeneration to replace damaged or lost adult tissues during osteoporosis and arthritis, or traumatic injuries. We investigated the osteogenic signature in mouse adipose tissue (AD)- and bone marrow (BM)-derived MSCs. MSCs from adipose tissue and bone marrow were compared for osteogenic endogenous mRNA markers by reverse-transcription polymerase chain reaction (RT-PCR). Cellular proliferation and immunophenotype analyzed by flow cytometry revealed that mouse AD-MSCs and BM-MSCs shared similar characteristics. Isolated AD-MSC and BM-MSC showed high proliferation rates and fibroblast morphology. Flow cytometry revealed positive markers for mesenchyme, but negative for primitive hematopoietic and endothelial cells. At day 21, Alizarin red S and Von-kossa staining of differentiated cells showed high calcium deposits compared with undifferentiated cells. After 21 days of osteogenic differentiation, AD-MSCs expressed osteocalcin and parathyroid hormone (PTH) compared with undifferentiated cells. Osteogenic-specific transcript of osteocalcin (OC), bone gamma carboxyglutamate protein, and PTH receptor (PTHr) were detected only in differentiated not undifferentiated cells. Undifferentiated BM-MSCs, expressed all markers at low intensity, which amplified during differentiation. Our findings suggest that the OC and PTHr can be used as differentiation markers for osteogenesis of mouse AD-MSC. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers.

    Directory of Open Access Journals (Sweden)

    Yao-Tseng Chen

    Full Text Available BACKGROUND: Cancer/testis (CT antigens are protein antigens normally expressed only in germ cells of testis, and yet are expressed in a proportion of a wide variety of human cancers. CT antigens can elicit spontaneous immune responses in cancer patients with CT-positive cancers, and CT antigen-based therapeutic cancer vaccine trials are ongoing for "CT-rich" tumors. Although some previous studies found breast cancer to be "CT-poor", our recent analysis identified increased CT mRNA transcripts in the ER-negative subset of breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive immunohistochemical study to investigate the protein expression of eight CT genes in 454 invasive ductal carcinomas, including 225 ER/PR/HER2-negative (triple-negative carcinomas. We found significantly more frequent expression of all eight CT antigens in ER-negative cancers, and five of them--MAGEA, CT7, NY-ESO-1, CT10 and CT45, were expressed in 12-24% of ER-negative cancers, versus 2-6% of ER-positive cancers (p2 cm. CONCLUSIONS/SIGNIFICANCE: CT antigens are preferentially expressed in hormone receptor-negative and high-grade breast cancer. Considering the limited treatment options for ER/PR/HER2 triple-negative breast cancer, the potential of CT-based immunotherapy should be explored.

  10. Origin of an ancient hormone/receptor couple revealed by resurrection of an ancestral estrogen.

    Science.gov (United States)

    Markov, Gabriel V; Gutierrez-Mazariegos, Juliana; Pitrat, Delphine; Billas, Isabelle M L; Bonneton, François; Moras, Dino; Hasserodt, Jens; Lecointre, Guillaume; Laudet, Vincent

    2017-03-01

    The origin of ancient ligand/receptor couples is often analyzed via reconstruction of ancient receptors and, when ligands are products of metabolic pathways, they are not supposed to evolve. However, because metabolic pathways are inherited by descent with modification, their structure can be compared using cladistic analysis. Using this approach, we studied the evolution of steroid hormones. We show that side-chain cleavage is common to most vertebrate steroids, whereas aromatization was co-opted for estrogen synthesis from a more ancient pathway. The ancestral products of aromatic activity were aromatized steroids with a side chain, which we named "paraestrols." We synthesized paraestrol A and show that it effectively binds and activates the ancestral steroid receptor. Our study opens the way to comparative studies of biologically active small molecules.

  11. Complex control of GABA(A receptor subunit mRNA expression: variation, covariation, and genetic regulation.

    Directory of Open Access Journals (Sweden)

    Megan K Mulligan

    Full Text Available GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents--C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel--Gabra1, Gabrb2, and Gabrg2--and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3' UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal, even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer

  12. Orange-spotted grouper (Epinephelus coioides) adiponectin receptors: molecular characterization, mRNA expression, and subcellular location.

    Science.gov (United States)

    Qin, Chaobin; Wang, Bin; Sun, Caiyun; Jia, Jirong; Li, Wensheng

    2014-03-01

    Adiponectin is an abundantly secreted adipokine from adipose tissue in mammals, which plays important roles in the regulation of glucose and lipid metabolism. The biological function of adiponectin is mediated by at least two receptors (AdipoR1 and AdipoR2). Although both of them were identified in mammals, there are few researches about adiponectin and its receptors in teleosts. In this study, two types of adiponectin receptors have been isolated and characterized in the orange-spotted grouper (Epinephelus coioides). The cDNAs of grouper AdipoR1 and AdipoR2 are 1444 and 2034 bp in length, encoding proteins of 376 amino acids and 375 amino acids, respectively. Multiple alignment results showed that there was a variable region at the N-terminal of AdipoR1/R2, which has never been reported. Both AdipoR1 and AdipoR2 were found to be widely expressed in various tissues of grouper. Compared to AdipoR2, AdipoR1 expressed at higher levels in the nervous system and pituitary gland, but at lower levels in some peripheral tissues, including heart, liver, adipose tissue, stomach, intestine and especially gonad. Fasting and refeeding experiments showed that the mRNA expressions of AdipoR1/R2 were up-regulated by fasting in the muscle and adipose tissue of grouper, and restored rapidly to normal levels after refeeding. However, the mRNA expressions of AdipoR1/R2 in the hypothalamus and liver of grouper were insensitive to fasting. By indirect immunofluorescence, we demonstrated that grouper AdipoR1/R2 were integral membrane proteins; the C-terminals were extracellular, while the N-terminals were intracellular.

  13. Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer.

    Science.gov (United States)

    Sparano, Joseph A; Wang, Molin; Zhao, Fengmin; Stearns, Vered; Martino, Silvana; Ligibel, Jennifer A; Perez, Edith A; Saphner, Tom; Wolff, Antonio C; Sledge, George W; Wood, William C; Fetting, John; Davidson, Nancy E

    2012-12-01

    Obesity has been associated with inferior outcomes in operable breast cancer, but the relation between body mass index (BMI) and outcomes by breast cancer subtype has not been previously evaluated. The authors evaluated the relation between BMI and outcomes in 3 adjuvant trials coordinated by the Eastern Cooperative Oncology Group that included chemotherapy regimens with doxorubicin and cyclophosphamide, including E1199, E5188, and E3189. Results are expressed as hazard ratios (HRs) from Cox proportional hazards models (HR >1 indicates a worse outcome). All P values are 2-sided. When evaluated as a continuous variable in trial E1199, increasing BMI within the obese (BMI, ≥ 30 kg/m(2)) and overweight (BMI, 25-29.9 kg/m(2)) ranges was associated with inferior outcomes in hormone receptor-positive, human epidermal growth receptor 2 (HER-2)/neu-negative disease for disease-free survival (DFS; P = .0006) and overall survival (OS; P = .0007), but not in HER-2/neu-overexpressing or triple-negative disease. When evaluated as a categorical variable, obesity was associated with inferior DFS (HR, 1.24; 95% confidence interval [CI], 1.06-1.46; P = .0008) and OS (HR, 1.37; 95% CI, 1.13-1.67; P = .002) in hormone receptor-positive disease, but not other subtypes. In a model including obesity, disease subtype, and their interaction, the interaction term was significant for OS (P = .02) and showed a strong trend for DFS (P = .07). Similar results were found in 2 other trials (E5188, E3189). In a clinical trial population that excluded patients with significant comorbidities, obesity was associated with inferior outcomes specifically in patients with hormone receptor-positive operable breast cancer treated with standard chemohormonal therapy. Copyright © 2012 American Cancer Society.

  14. Characterization of pituitary growth hormone and its receptor in the green iguana (Iguana iguana).

    Science.gov (United States)

    Ávila-Mendoza, José; Carranza, Martha; Pérez-Rueda, Ernesto; Luna, Maricela; Arámburo, Carlos

    2014-07-01

    Pituitary growth hormone (GH) has been studied in most vertebrate groups; however, only a few studies have been carried out in reptiles. Little is known about pituitary hormones in the order Squamata, to which the green iguana (gi) belongs. In this work, we characterized the hypophysis of Iguana iguana morphologically. The somatotrophs (round cells of 7.6-10 μm containing 250- to 300-nm secretory granules where the giGH is stored) were found, by immunohistochemistry and in situ hybridization, exclusively in the caudal lobe of the pars distalis, whereas the lactotrophs were distributed only in the rostral lobe. A pituitary giGH-like protein was obtained by immuno-affinity chromatography employing a heterologous antibody against chicken GH. giGH showed molecular heterogeneity (22, 44, and 88 kDa by SDS-PAGE/Western blot under non-reducing conditions and at least four charge variants (pIs 6.2, 6.5, 6.9, 7.4) by isoelectric focusing. The pituitary giGH cDNA (1016 bp), amplified by PCR and RACE, encodes a pre-hormone of 218 aa, of which 190 aa correspond to the mature protein and 28 aa to the signal peptide. The giGH receptor cDNA was also partially sequenced. Phylogenetic analyses of the amino acid sequences of giGH and giGHR homologs in vertebrates suggest a parallel evolution and functional relationship between the GH and its receptor.

  15. Formation of a Ternary Complex among NHERF1, β-Arrestin, and Parathyroid Hormone Receptor*

    Science.gov (United States)

    Klenk, Christoph; Vetter, Thorsten; Zürn, Alexander; Vilardaga, Jean-Pierre; Friedman, Peter A.; Wang, Bin; Lohse, Martin J.

    2010-01-01

    β-Arrestins are crucial regulators of G-protein coupled receptor (GPCR) signaling, desensitization, and internalization. Despite the long-standing paradigm that agonist-promoted receptor phosphorylation is required for β-arrestin2 recruitment, emerging evidence suggests that phosphorylation-independent mechanisms play a role in β-arrestin2 recruitment by GPCRs. Several PDZ proteins are known to interact with GPCRs and serve as cytosolic adaptors to modulate receptor signaling and trafficking. Na+/H+ exchange regulatory factors (NHERFs) exert a major role in GPCR signaling. By combining imaging and biochemical and biophysical methods we investigated the interplay among NHERF1, β-arrestin2, and the parathyroid hormone receptor type 1 (PTHR). We show that NHERF1 and β-arrestin2 can independently bind to the PTHR and form a ternary complex in cultured human embryonic kidney cells and Chinese hamster ovary cells. Although NHERF1 interacts constitutively with the PTHR, β-arrestin2 binding is promoted by receptor activation. NHERF1 interacts directly with β-arrestin2 without using the PTHR as an interface. Fluorescence resonance energy transfer studies revealed that the kinetics of PTHR and β-arrestin2 interactions were modulated by NHERF1. These findings suggest a model in which NHERF1 may serve as an adaptor, bringing β-arrestin2 into close proximity to the PTHR, thereby facilitating β-arrestin2 recruitment after receptor activation. PMID:20656684

  16. Formation of a ternary complex among NHERF1, beta-arrestin, and parathyroid hormone receptor.

    Science.gov (United States)

    Klenk, Christoph; Vetter, Thorsten; Zürn, Alexander; Vilardaga, Jean-Pierre; Friedman, Peter A; Wang, Bin; Lohse, Martin J

    2010-09-24

    β-Arrestins are crucial regulators of G-protein coupled receptor (GPCR) signaling, desensitization, and internalization. Despite the long-standing paradigm that agonist-promoted receptor phosphorylation is required for β-arrestin2 recruitment, emerging evidence suggests that phosphorylation-independent mechanisms play a role in β-arrestin2 recruitment by GPCRs. Several PDZ proteins are known to interact with GPCRs and serve as cytosolic adaptors to modulate receptor signaling and trafficking. Na(+)/H(+) exchange regulatory factors (NHERFs) exert a major role in GPCR signaling. By combining imaging and biochemical and biophysical methods we investigated the interplay among NHERF1, β-arrestin2, and the parathyroid hormone receptor type 1 (PTHR). We show that NHERF1 and β-arrestin2 can independently bind to the PTHR and form a ternary complex in cultured human embryonic kidney cells and Chinese hamster ovary cells. Although NHERF1 interacts constitutively with the PTHR, β-arrestin2 binding is promoted by receptor activation. NHERF1 interacts directly with β-arrestin2 without using the PTHR as an interface. Fluorescence resonance energy transfer studies revealed that the kinetics of PTHR and β-arrestin2 interactions were modulated by NHERF1. These findings suggest a model in which NHERF1 may serve as an adaptor, bringing β-arrestin2 into close proximity to the PTHR, thereby facilitating β-arrestin2 recruitment after receptor activation.

  17. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Directory of Open Access Journals (Sweden)

    Marc R Van Gilst

    2005-02-01

    Full Text Available Mammalian nuclear hormone receptors (NHRs, such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs, precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  18. Hormonal regulation of c-KIT receptor and its ligand: implications for human infertility?

    Science.gov (United States)

    Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia

    2014-09-01

    The c-KIT, a tyrosine kinase receptor, and its ligand the stem cell factor (SCF) play an important role in the production of male and female gametes. The interaction of SCF with c-KIT is required for germ cell survival and growth, and abnormalities in the activity of the SCF/c-KIT system have been associated with human infertility. Recently, it was demonstrated that gonadotropic and sex steroid hormones, among others, regulate the expression of SCF and c-KIT in testicular and ovarian cells. Therefore, the hormonal (de)regulation of SCF/c-KIT system in the testis and ovary may be a cause underpinning infertility. In the present review, we will discuss the effects of hormones modulating the expression levels of SCF and c-KIT in the human gonads. In addition, the implications of hormonal regulation of SCF/c-KIT system for germ cell development and fertility will be highlighted. Copyright © 2014. Published by Elsevier GmbH.

  19. Identification of a novel modulator of thyroid hormone receptor-mediated action.

    Directory of Open Access Journals (Sweden)

    Bernhard G Baumgartner

    Full Text Available BACKGROUND: Diabetes is characterized by reduced thyroid function and altered myogenesis after muscle injury. Here we identify a novel component of thyroid hormone action that is repressed in diabetic rat muscle. METHODOLOGY/PRINCIPAL FINDINGS: We have identified a gene, named DOR, abundantly expressed in insulin-sensitive tissues such as skeletal muscle and heart, whose expression is highly repressed in muscle from obese diabetic rats. DOR expression is up-regulated during muscle differentiation and its loss-of-function has a negative impact on gene expression programmes linked to myogenesis or driven by thyroid hormones. In agreement with this, DOR enhances the transcriptional activity of the thyroid hormone receptor TR(alpha1. This function is driven by the N-terminal part of the protein. Moreover, DOR physically interacts with TR( alpha1 and to T(3-responsive promoters, as shown by ChIP assays. T(3 stimulation also promotes the mobilization of DOR from its localization in nuclear PML bodies, thereby indicating that its nuclear localization and cellular function may be related. CONCLUSIONS/SIGNIFICANCE: Our data indicate that DOR modulates thyroid hormone function and controls myogenesis. DOR expression is down-regulated in skeletal muscle in diabetes. This finding may be of relevance for the alterations in muscle function associated with this disease.

  20. Divergent roles for thyroid hormone receptor β isoforms in the endocrine axis and auditory system

    Science.gov (United States)

    Abel, E. Dale; Boers, Mary-Ellen; Pazos-Moura, Carmen; Moura, Egberto; Kaulbach, Helen; Zakaria, Marjorie; Lowell, Bradford; Radovick, Sally; Liberman, M. Charles; Wondisford, Fredric

    1999-01-01

    Thyroid hormone receptors (TRs) modulate various physiological functions in many organ systems. The TRα and TRβ isoforms are products of 2 distinct genes, and the β1 and β2 isoforms are splice variants of the same gene. Whereas TRα1 and TRβ1 are widely expressed, expression of the TRβ2 isoform is mainly limited to the pituitary, triiodothyronine-responsive TRH neurons, the developing inner ear, and the retina. Mice with targeted disruption of the entire TRβ locus (TRβ-null) exhibit elevated thyroid hormone levels as a result of abnormal central regulation of thyrotropin, and also develop profound hearing loss. To clarify the contribution of the TRβ2 isoform to the function of the endocrine and auditory systems in vivo, we have generated mice with targeted disruption of the TRβ2 isoform. TRβ2-null mice have preserved expression of the TRα and TRβ1 isoforms. They develop a similar degree of central resistance to thyroid hormone as TRβ-null mice, indicating the important role of TRβ2 in the regulation of the hypothalamic-pituitary-thyroid axis. Growth hormone gene expression is marginally reduced. In contrast, TRβ2-null mice exhibit no evidence of hearing impairment, indicating that TRβ1 and TRβ2 subserve divergent roles in the regulation of auditory function. PMID:10430610

  1. Measurement of the expression levels of BLyS and its receptors mRNA in patients with systemic lupus erythematosus

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To measure the expression levels of BLyS and its receptors mRNA in peripheral blood mononuclear cells(PBMC) using real-time fluorescence quantitative polymerase chain reaction(RFQ-PCR) method and to investigate the relationship between BLyS and its receptors mRNA expression and systemic lupus erythematosus (SLE). Methods: Specific primers and TaqMan probe were designed, and RFQ-PCR was performed. According to the standard curve of plasmid DNA, the level of BLyS and its receptors mRNA expression in 23 patients with SLE and 23 healthy subjects were determined. The ratio of the copy number of BLyS mRNA to that of β2-microgluobulin (β2M) mRNA and the ratio of the copy number of BLyS receptors mRNA to that of β2M mRNA were regarded as indicator for the levels of BLyS and BLyS mRNA expression. Results: The concentration of RFQ-PCR was in the range of 10 - 109 pg/ml,and the coefficient of variation values for both intra-experimental and inter-experimental reproducibility ranged from 2.40% to 10.12% and from 4.26% to 12.29%, respectively. In 23 SLE patients, the level of BLyS and its receptors(BCMA, TACI, BAFF-R) mRNA were in the ranges of 1.27~ 1.49, 0.64~0.77, 0.83~ 1.05 and 0.98~ 1.37, respectively. The mean values were 1.38±0.07, 0.70±0.04,0.91 ±0.06 and 1.15±0.12, respectively. In 23 healthy donors, the levels of BLyS and its receptors(BCMA, TACI, BAFF-R) mRNA were: 0.60 ~ 1.0, 0.55 ~ 0.80, 0.54 ~ 0.74 and 0.54 ~ 0.77, respectively. The mean values were 0.83 ± 0.13, 0.68 ± 0.08, 0.65 ±0.07 and 0.68 ± 0.06, respectively. Conclusion: This results suggest that BLyS, TACI and BAFF-R might be involved in the pathogenesis of SLE and the mRNA expression levels might be used as new markers for the diagnosis of SLE.

  2. Increased levels of endothelin ETB receptor mRNA in human omental arteries after organ culture

    DEFF Research Database (Denmark)

    Möller, S; Adner, M; Edvinsson, L

    1998-01-01

    1. Using competitive reverse transcription-polymerase chain reaction (RT-PCR) and in vitro pharmacology, smooth muscle endothelin ETB receptor expression was studied in segments of human omental artery, fresh and after organ culture for 1 and 5 days. 2. The competitive RT-PCR assay used in the pr...

  3. Expression level of nuclear steroid hormone receptors in endometrium influence on female reproductive function

    Directory of Open Access Journals (Sweden)

    N. V. Avramenko

    2015-10-01

    Full Text Available Background. In recent years, rate of hyperplastic processes of reproductive system that relate to the common genital pathology in women of all age groups increased and ranges from 17 to 59% of all gynecological pathology. Recent studies have shown that the functional state of the endometrium is determined by the number of endometrial tissue receptors to corresponding steroid hormones. Objective. To explore the state of steroid hormones receptors in endometrial hyperplasia in compare with ultrasound, hysteroscopy and histological and hormonal background data research to improve diagnosis and recovery endometrium state. Methods: medical history analysis, clinical laboratory analysis, ultrasound diagnostics, hysteroscopy, histological methods. Hormones levels (FSH, LH, prolactin, estradiol, free testosterone, and expression of estrogen and progesterone receptors in the stroma and glands was evaluated by Histochemical score. Results. 50 women of 23–52 years with hyperplasia of endometrim, were divided into 3 randomized groups: I – 20 women with primary infertility, II – 13 women with secondary infertility, III – 17 women without infertility. Early sexual activity was almost twice as often observed in the first two groups of women (respectively 61.54%, 60.00% against 29.41% in the third group. Gynecological history was weighed almost all three groups of women with chronic bilateral salpingoophoritis, obesity (I gr. – 85%, II in December. – 76.92%, III gr. – 76.47%. Uterine leiomyoma found in every second woman III gr. – 9 (52.94%, p <0.05, 3 women (15%. At primary infertility there was US endometrial hyperplasia in every from four women, endometrial thickness less than the corresponding day of the cycle, which may indicate a lack of estrogen effect on the endometrium. In secondary infertility hyperplasia was detected in 14.29% of cases, in the third group – 7.14%. Estrogen (more and progesterone (less receptors level inhibition on

  4. Infertility in Female Mice with a Gain-of-Function Mutation in the Luteinizing Hormone Receptor Is Due to Irregular Estrous Cyclicity, Anovulation, Hormonal Alterations, and Polycystic Ovaries1

    National Research Council Canada - National Science Library

    Lan Hai; Stacey R. McGee; Amanda C. Rabideau; Marilène Paquet; Prema Narayan

    2015-01-01

    ABSTRACT The luteinizing hormone receptor, LHCGR, is essential for fertility in males and females, and genetic mutations in the receptor have been identified that result in developmental and reproductive defects...

  5. Reliable PCR quantitation of estrogen, progesterone and ERBB2 receptor mRNA from formalin-fixed, paraffin-embedded tissue is independent of prior macro-dissection

    DEFF Research Database (Denmark)

    Tramm, Trine; Hennig, Guido; Kyndi, Marianne

    2013-01-01

    Gene expression analysis on messenger RNA (mRNA) purified from formalin-fixed, paraffin-embedded tissue is increasingly used for research purposes. Tissue heterogeneity may question specificity and interpretation of results from mRNA isolated from a whole slide section, and thresholds for minimal...... tumor content in the paraffin block or macrodissection are used to avoid contamination from non-neoplastic tissue. The aim was to test if mRNA from tissue surrounding breast cancer affected quantification of estrogen receptor α (ESR1), progesterone receptor (PGR) and human epidermal growth factor...... + 1,083 blocks), were determined by quantitative reverse transcription polymerase chain reaction for all samples, as well as by microarray for 133 validation samples. In the training set, agreement between high vs. low mRNA expression from whole slide and tumor-enriched sections was absolute for ESR1...

  6. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    Science.gov (United States)

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  7. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    DEFF Research Database (Denmark)

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.

    2016-01-01

    Most multicellular animals belong to two evolutionary lineages, the Proto- and Deuterostomia, which diverged 640-760 million years (MYR) ago. Neuropeptide signaling is abundant in animals belonging to both lineages, but it is often unclear whether there exist evolutionary relationships between...... the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin......, and AKH/corazonin-related peptide (ACP) are the ligands in Protostomia. AKH is a well-studied insect neuropeptide that mobilizes lipids and carbohydrates from the insect fat body during flight. In our present paper, we show that AKH is not only widespread in insects, but also in other Ecdysozoa...

  8. Growth Hormone Receptor Antagonist Treatment Reduces Exercise Performance in Young Males

    DEFF Research Database (Denmark)

    Goto, K.; Doessing, S.; Nielsen, R.H.

    2009-01-01

    period, they exercised to determine exercise performance and hormonal and metabolic responses. Participants: Twenty healthy males participated in the study. Intervention: Subjects were treated with the GHR antagonist (n = 10; 10 mg/d) or placebo (n = 10). After the treatment period, they performed...... a maximal oxygen uptake ((V) over dotO(2max)) test and a prolonged exercise test, consisting of 60 min of submaximal cycling followed by exercise to fatigue at 90% of (V) over dotO(2max). Main Outcome Measures: (V) over dotO(2max) was measured before and after the treatment period. Hormonal and metabolic......Context: The effects of GH on exercise performance remain unclear. Objective: The aim of the study was to examine the effects of GH receptor (GHR) antagonist treatment on exercise performance. Design: Subjects were treated with the GHR antagonist pegvisomant or placebo for 16 d. After the treatment...

  9. Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression.

    Science.gov (United States)

    Cui, Lin; Lv, Can; Zhang, Jiannan; Mo, Chunheng; Lin, Dongliang; Li, Juan; Wang, Yajun

    2017-06-05

    Melanin-concentrating hormone (MCH) is a neuropeptide expressed in the brain and exerts its actions through interaction with the two known G protein-coupled receptors, namely melanin-concentrating hormone receptor 1 and 2 (MCHR1 and MCHR2) in mammals. However, the information regarding the expression and functionality of MCH and MCHR(s) remains largely unknown in birds. In this study, using RT-PCR and RACE PCR, we amplified and cloned a MCHR1-like receptor, which is named cMCHR4 according to its evolutionary origin, and a MCHR2 from chicken brain. The cloned cMCHR4 was predicted to encode a receptor of 367 amino acids, which shares high amino acid identities with MCHR4 of ducks (90%), western painted turtles (85%), and coelacanths (77%), and a comparatively low identity to human MCHR1 (58%) and MCHR2 (38%), whereas chicken MCHR2 encodes a putative C-terminally truncated receptor and is likely a pseudogene. Using cell-based luciferase reporter assays or Western blot, we further demonstrated that chicken (and duck) MCHR4 could be potently activated by chicken MCH1-19, and its activation can elevate calcium concentration and activate MAPK/ERK and cAMP/PKA signaling pathways, indicating an important role of MCHR4 in mediating MCH actions in birds. Quantitative real-time PCR revealed that both cMCH and cMCHR4 mRNA are expressed in various brain regions including the hypothalamus, and cMCH expression in the hypothalamus of 3-week-old chicks could be induced by 36-h fasting, indicating that cMCH expression is correlated with energy balance. Taken together, characterization of chicken MCH and MCHR4 will aid to uncover the conserved roles of MCH across vertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Luteotropic and luteolytic factors regulate mRNA and protein expression of progesterone receptor isoforms A and B in the bovine endometrium.

    Science.gov (United States)

    Rekawiecki, Robert; Kowalik, Magdalena Karolina; Kotwica, Jan

    2014-12-17

    The aim of the present study was to examine the effects of luteotropic and luteolytic factors on the mRNA and protein levels of progesterone receptor isoforms A (PGRA) and B (PGRB) in the bovine endometrium. Endometrial slices from Days 6-10 and 17-20 of the oestrous cycle were treated with LH (100ngmL-1), oestradiol (E2; 1×10-8M), prostaglandin (PG) E2 (1×10-6M) and PGF2? (1×10-6M) and the nitric oxide donor NONOate (1×10-4M); these treatments lasted for 6h for mRNA expression analysis and 24h for protein expression analysis. On Days 6-10 of the oestrous cycle PGRAB (PGRAB; the entire PGRA mRNA sequence is common to the PGRB mRNA sequence) mRNA expression in endometrial slices was enhanced by E2 treatment (PPGRB mRNA expression was increased by LH (PPPPGRAB mRNA expression increased after E2 (P2 (PPGRB mRNA expression was increased by PGE2 (P2? (PPPPPP2? (P2 (P2? (P<0.001). These data suggest that luteotropic and luteolytic factors affect PGRA and PGRB mRNA and protein levels, and this may regulate the effects of progesterone on endometrial cells.

  11. The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Yue Wu

    2012-06-01

    Full Text Available Salicylic acid (SA is an essential hormone in plant immunity, but its receptor has remained elusive for decades. The transcriptional coregulator NPR1 is central to the activation of SA-dependent defense genes, and we previously found that Cys521 and Cys529 of Arabidopsis NPR1's transactivation domain are critical for coactivator function. Here, we demonstrate that NPR1 directly binds SA, but not inactive structural analogs, with an affinity similar to that of other hormone-receptor interactions and consistent with in vivo Arabidopsis SA concentrations. Binding of SA occurs through Cys521/529 via the transition metal copper. Mechanistically, our results suggest that binding of SA causes a conformational change in NPR1 that is accompanied by the release of the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. While NPR1 is already known as a link between the SA signaling molecule and defense-gene activation, we now show that NPR1 is the receptor for SA.

  12. Molecular cloning and functional analysis of Chinese sturgeon (Acipenser sinensis) growth hormone receptor

    Institute of Scientific and Technical Information of China (English)

    LIAO ZhiYong; CHEN XiaoLi; WU MingJiang

    2009-01-01

    A full length cDNA encoding the growth hormone receptor (GHR) of Chinese sturgeon was cloned in order to investigate the mechanism of growth hormone in regulating the growth of Chinese sturgeon.The open reading frame of the cloned Chinese sturgeon growth hormone receptor (csGHR) cDNA encodes a trans-membrane protein of 611 amino acids containing all the characteristic motifs of GHR. By sequence alignment, substitutions of amino acid residues highly conserved in other species were identified. Using the CHO cell culture system, the function of csGHR and the biological significance of the amino acid substitution in csGHR were examined. The promoter of serine protease inhibitor 2.1(Spi2.1) was trana-activated upon stimulation of seabream GH (sbGH) in the csGHR-expressing CHO cells. Furthermore, CHO cells stably expressing csGHR were stimulated to proliferate by sbGH. In agreement with our previous report, Chinese sturgeon growth hormone-binding protein (csGHBP) was detected in the culture medium of CHO cells stably expressing csGHR. Mutation of Asp residue in the ligand binding motif in csGHR to Glu significantly enhanced csGHR's biological function, whereas mutation of Asp residue to Ala decreased its biological function. The results demonstrated that the cloned csGHR was of full biological function and the csGHBP could be generated through proteolysis of csGHR. These findings might provide new insights into thoroughly understanding the regulatory mechanism of Chinese sturgeon growth.

  13. Molecular cloning and functional analysis of Chinese sturgeon (Acipenser sinensis) growth hormone receptor

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A full length cDNA encoding the growth hormone receptor (GHR) of Chinese sturgeon was cloned in order to investigate the mechanism of growth hormone in regulating the growth of Chinese sturgeon. The open reading frame of the cloned Chinese sturgeon growth hormone receptor (csGHR) cDNA encodes a trans-membrane protein of 611 amino acids containing all the characteristic motifs of GHR. By sequence alignment, substitutions of amino acid residues highly conserved in other species were identified. Using the CHO cell culture system, the function of csGHR and the biological significance of the amino acid substitution in csGHR were examined. The promoter of serine protease inhibitor 2.1 (Spi2.1) was trans-activated upon stimulation of seabream GH (sbGH) in the csGHR-expressing CHO cells. Furthermore, CHO cells stably expressing csGHR were stimulated to proliferate by sbGH. In agreement with our previous report, Chinese sturgeon growth hormone-binding protein (csGHBP) was detected in the culture medium of CHO cells stably expressing csGHR. Mutation of Asp residue in the ligand binding motif in csGHR to Glu significantly enhanced csGHR’s biological function, whereas mutation of Asp residue to Ala decreased its biological function. The results demonstrated that the cloned csGHR was of full biological function and the csGHBP could be generated through proteolysis of csGHR. These findings might provide new insights into thoroughly understanding the regulatory mechanism of Chinese sturgeon growth.

  14. 促性腺激素释放激素及多巴胺对斜带石斑鱼生长激素分泌及其mRNA表达的调控%Stimulatory effects of gonadotropin-releasing hormone and dopamine on growth hormone release and growth hormone mRNA expression in Epinephelus coioides

    Institute of Scientific and Technical Information of China (English)

    冉雪琴; 李文笙; 林浩然

    2004-01-01

    研究斜带石斑鱼生长激素分泌及其mRNA表达的调控规律对于性别分化的控制、临床药物的选择,以及石斑鱼的增养殖等均具有重要的理论意义和实践意义.本文应用静态孵育系统,采用放射免疫测定法和化学发光液相杂交实验,研究GnRH和DA对斜带石斑鱼GH分泌、GH mRNA合成的调控作用.100 nmol/L sGnRH作用斜带石斑鱼脑垂体碎片1~24 h,明显促进GH的释放和GH mRNA的合成,并具有时间依存性;10 nmol/L~1μmol/L sGnRH作用1 h能明显促进斜带石斑鱼脑垂体释放GH,促进GH mRNA的合成,表现出明显的剂量效应.100 nmol/L、1μmol/L mGnRH作用1 h以一定的剂量依存方式促进GH的释放、促进GH mRNA的合成,但mGnRH的效应比相应剂量的sGnRH的作用弱.APO为DA受体的非选择性激动剂,不同剂量APO对斜带石斑鱼脑垂体碎片的作用结果显示,10 nmol/L~lμmol/L APO以剂量依存方式促进斜带石斑鱼脑垂体碎片释放GH、促进GH mRNA的合成;1μmol/L APO作用12 h以上明显促进GH的释放和GH mRNA的合成,并随时间的延长而增加.与sGnRH对斜带石斑鱼GH释放、GH mRNA合成的作用相比,APO的作用较弱.本文研究结果证实GnRH和DA能促进斜带石斑鱼脑垂体GH释放和GH mRNA合成.%Gonadotropin-releasing hormone (GnRH) and dopamine (DA) can stimulate growth hormone (GH) release, but their effects on GH mRNA synthesis are controversial and deficient in fish. Orange-spotted grouper (Epinephelus coioides) is a hermaphroditic marine fish with sex reversal. Few data are available concerning the regulation of GH in grouper. In the present study, the effects of GnRH and DA on GH release and GH mRNA expression were determined using pituitary fragments of orange-spotted grouper under static culture conditions. After incubation from 1 h to 24 h, salmon GnRH (sGnRH, 100 nmol/L) stimulated the release of GH and increased the level of GH mRNA time-dependently. The minimum duration of s

  15. Morphological and Hormonal Identiifcation of Porcine Atretic Follicles and Relationship Analysis of Hormone Receptor Levels During Granulosa Cell Apoptosis In vivo

    Institute of Scientific and Technical Information of China (English)

    YU De-bing; YU Min-li; LIN Fei; JIANG Bao-chun; YANG Li-na; WANG Si-yu; ZHAO Ying; WNAG Zheng-chao

    2014-01-01

    Recent reports have demonstrated that follicular atresia is initiated or caused by granulosa cell apoptosis followed by theca cell degeneration in mammalian ovaries, but the mechanism of follicular atresia is still to be elucidated. Therefore, our present study was designed to examine our hypothesis that the changes of follicular microenvironment induce the granulosa cell apoptosis during pocrine follicular atresia in vivo. We ifrstly isolated intact porcine antral follicles and identiifed them into three groups, healthy follicles (HF), early atretic follicles (EAF) and progressed atretic follicles (PAF) through morphology and histology. To further conifrm their status, we detected hormone levels in follicular lfuids and the expression level of apoptosis gene Bax in granulosa cells. The rate of progesterone (P) and estradiol (E2) was increased with the expression of Bax, indicating hormone can be used as a marker of granulosa cell apoptosis or follicular atresia. Finally, we analyzed the expression level of hormone receptor genes in granulosa cells and their relationship with follicular atresia. In PAF, the expression of Progesterone receptor (PGR) was increased signiifcantly while estradiol receptor (ER) had no notable changes, which suggesting the increased-PGR accelerated the effect of P-stimulated granulosa cell apoptosis. The dramatic increasing of androgen receptor (AR) expression in PAF and the obvious increase of tumor necrosis factor-αreceptor (TNFR) in EAF indicated that there are different pathways regulating granulosa cell apoptosis during follicular atresia. Together, our results suggested that different pathways of granulosa cell apoptosis was induced by changing the follicular microenvironment during follicular atresia.

  16. Pre-translational regulation of luteinizing hormone receptor in follicular somatic cells of cattle

    Science.gov (United States)

    Marsters, P.; Kendall, N.R.; Campbell, B.K.

    2015-01-01

    Differential regulation of LHR in theca cells (TC) and granulosa cells (GC) is important for normal follicular development. Unlike TC, GC only acquire LH-responsiveness during the later stages of antral follicle development. This study tested the hypothesis that differential LH-responsiveness in these two cell types may be due, in part, to shifts in cellular patterns of alternatively spliced LHR mRNA transcripts which may not be obvious from analysis of total LHR gene expression. It also further explored the role of translation inhibition by an LHR binding protein (LHBP), normally associated with the production of endogenous cholesterol. LHR mRNA variation arises as a result of the alternative splicing of two variable deletion sites (VDS) designated 5′ VDS and 3′ VDS, and it was proposed that differences in cell sensitivity to LH may be due in part to variations in the pattern of the mRNA expression of the receptor variants. The outcomes of the present study support a dynamic multi-facetted regulation of LHR during pre-translation. Not only did the ratio between variants change during antral follicle growth and in vitro cell differentiation but also between TC and GC. Regulation could also be linked to LH concentration feedback mechanisms as the absence of LH caused cultured TC to markedly up-regulate amounts of LHR mRNA. In both TC and GC, LHR mRNA was greatly reduced after treatment to block mevalonate production in the de novo cholesterol pathway, adding further support for a regulatory mechanism linked to enriched cellular amounts of mevalonate kinase. PMID:26507944

  17. HER-2,P53 and Hormonal Receptors Protein Expression as Predictive Factors in Breast Cancer Prognosis

    Institute of Scientific and Technical Information of China (English)

    seyed Mohanmmad Rabiee Hashemi; Somayeh Rabiee Hashemi

    2008-01-01

    Breast cancer is a heterogeneous disease with vari-able biological and clinical characteristics. We conducted a study to evaluate P53,HER-2/neu and hormonal receptor expression as predictors of prognosis in breast cancer. METHODS In a prospective study, we recruited 81 consecutive patients with primary operable breast cancer who were treated with mastectomy followed by locoregional radiotherapy or che-motherapy and studied the presence of P53,HER-2/neu and hormonal receptors(ER/PR) expression in tumor tissues by im-munohistochemical staining. Associations between these markers expression and clinical outcomes, including local and regional recurrence and metastasis were evaluated. Statistical analysis was performed with the SPSS software. RESUITS The mean time of follow-up was (47.3±4.6)months. Expression of P53, HER-2/neu, Estrogen receptors and progester-one receptors were observed in 31.1%, 38.5%, 31.8%and 51.7%ofthe patients, respectively. P53,HER-2/neu and Negative ER status were potent predictors of local-regional recurrence(P=0.034,0.038,0.044,respectively).Also HER-2/neu,Negative ER and Negative PR status were strong predictors of metastasis(P=0.001,0.042,0.054,respectively).CONCLUSION OP53 and HER-2/neu expression and also steroid receptors status(ER/PR status)have an important role in predict-ing the outcome of breast cancer and thus may be of value in se-lecting suitable therapeutic strategy and determining prognosis in these patients.

  18. Induction of hepatic carbonyl reductase/20{beta}-hydroxysteroid dehydrogenase mRNA in rainbow trout downstream from sewage treatment works-Possible roles of aryl hydrocarbon receptor agonists and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, E., E-mail: eva.albertsson@zool.gu.se [Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Goeteborg (Sweden); Larsson, D.G.J. [Department of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Foerlin, L. [Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Goeteborg (Sweden)

    2010-05-05

    Carbonyl reductase/20{beta}-hydroxysteroid dehydrogenase (CR/20{beta}-HSD) serves both as a key enzyme in the gonadal synthesis of maturing-inducing hormone in salmonids, and as an enzyme protecting against certain reactive oxygen species. We have previously shown that mRNA of the hepatic CR/20{beta}-HSD B isoform is increased in rainbow trout caged downstream from a Swedish sewage treatment plant. Here, we report an increase of both the A as well as B form in fish kept downstream from a second sewage treatment plant. The two mRNAs were also induced in fish hepatoma cells in vitro after exposure to effluent extract. This indicates that the effects observed in vivo could be a direct effect on the liver, i.e. the mRNA induction does not require a signal from any other organ. When fish were exposed in vivo to several effluents treated with more advanced methods (ozone, moving bed biofilm reactor or membrane bioreactor) the expression of hepatic mRNA CR/20{beta}-HSD A and B was significantly reduced. Their abundance did not parallel the reduction of estrogen-responsive transcripts, in agreement with our previous observations that ethinylestradiol is not a potent inducer. Treatment with norethisterone, methyltestosterone or hydrocortisone in vivo did not induce the hepatic CR/20{beta}-HSD A and B mRNA expression. In contrast, both isoforms were markedly induced by the aryl hydrocarbon receptor agonist {beta}-naphthoflavone as well as by the pro-oxidant herbicide paraquat. We hypothesize that the induction of CR/20{beta}-HSD A and B by sewage effluents could be due to anthropogenic contaminants stimulating the aryl hydrocarbon receptor and/or causing oxidative stress.

  19. Lower levels of cannabinoid 1 receptor mRNA in female eating disorder patients: association with wrist cutting as impulsive self-injurious behavior.

    Science.gov (United States)

    Schroeder, Marc; Eberlein, Christian; de Zwaan, Martina; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge

    2012-12-01

    The cannabinoid 1 (CB 1) receptor as the primary mediator of the endocannabinoid (EC) system was found to play a role in eating disorders (EDs), depression, anxiety, and suicidal behavior. The CB 1 receptor is assumed to play a crucial role in the central reward circuitry with impact on body weight and personality traits like novelty-seeking behavior. In a previous study we found higher levels of CB 1 receptor mRNA in patients with anorexia nervosa (AN) and bulimia nervosa (BN) compared to healthy control women (HCW). The aim of the present study was to investigate the possible influence of the EC and the CB 1 receptor system on wrist cutting as self-injurious behavior (SIB) in women with EDs (n=43; AN: n=20; BN: n=23). Nine ED patients with repetitive wrist cutting (AN, n=4; BN, n=5) were compared to 34 ED patients without wrist cutting and 26 HCW. Levels of CB 1 receptor mRNA were determined in peripheral blood samples using quantitative real-time PCR. ED patients with self-injurious wrist cutting exhibited significantly lower CB 1 receptor mRNA levels compared with ED patients without wrist cutting and HCW. No significant differences were found between ED patients without a history of wrist cutting and HCW. Furthermore, a negative association was detected between CB 1 receptor mRNA levels and Beck Depression Inventory (BDI) scores. To our knowledge, this is the first study reporting a down-regulation of CB 1 receptor mRNA in patients with EDs and wrist cutting as SIB. Due to the small sample size, our results should be regarded as preliminary and further studies are warranted to reveal the underlying mechanisms.

  20. Effect of acute exposure to cadmium on the expression of heat-shock and hormone-nuclear receptor genes in the aquatic midge Chironomus riparius

    Energy Technology Data Exchange (ETDEWEB)

    Planello, R.; Martinez-Guitarte, J.L. [Grupo de Biologia y Toxicologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, UNED, Senda del Rey 9, 28040 Madrid (Spain); Morcillo, G., E-mail: gmorcillo@ccia.uned.es [Grupo de Biologia y Toxicologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-03-01

    Cadmium is a widespread and highly toxic pollutant of particular ecotoxicological relevance for aquatic ecosystems where it accumulates. To identify biomarkers for ecotoxicity monitoring, the effect of cadmium on the expression of different genes related to the stress response as well as to the ecdysone hormone-signalling pathway was studied in the aquatic larvae of Chironomus riparius (Diptera, Chironomidae), a standard test organism in aquatic toxicology testing. Reverse Transcription Polymerase Chain Reaction (RT-PCR) was used to evaluate the effects of acute and short-term cadmium exposures (10 mM CdCl{sub 2}, 12 h and 24 h) on the expression of hsp70, hsc70, hsp90 and hsp40 genes, as well as on that of the ecdysone hormonal-receptor genes (EcR and usp). A significant 3-fold increase in the level of hsp70 gene transcripts was induced by the treatment, whereas neither the other stress genes tested (hsp90 and hsp40) nor the constitutive form of hsp70, hsc70, was affected in the larvae exposed to cadmium. These results show that hsp70 is differentially activated to other environmentally regulated heat-shock genes, and constitutes a biomarker of exposure to this toxic metal. In addition, we also found that cadmium is able to alter the expression of the ecdysone receptor gene (EcR), whose mRNA level is significantly increased whereas usp levels remained unaltered. This finding, evidenced for the first time in invertebrates, supports the view that cadmium has the ability to mimic the effect of the hormone by the activation of the ecdysone nuclear receptor, which may partly explain the endocrine disruption capability that has been previously suggested for this toxic metal. Our research adds to the growing evidence implicating heavy metals, and cadmium in particular, as potential endocrine disruptive agents and may have significant implications for ecological risk assessment of endocrine-disrupting compounds in invertebrates.

  1. Estrogen receptor activation by tobacco smoke condensate in hormonal therapy-resistant breast cancer cells.

    Science.gov (United States)

    Niwa, Toshifumi; Shinagawa, Yuri; Asari, Yosuke; Suzuki, Kanae; Takanobu, Junko; Gohno, Tatsuyuki; Yamaguchi, Yuri; Hayashi, Shin-Ichi

    2017-01-01

    The relationship between tobacco smoke and breast cancer incidence has been studied for many years, but the effect of smoking on hormonal therapy has not been previously reported. We investigated the effect of smoking on hormonal therapy by performing in vitro experiments. We first prepared tobacco smoke condensate (TSC) and examined its effect on estrogen receptor (ER) activity. The ER activity was analyzed using MCF-7-E10 cells into which the estrogen-responsive element (ERE)-green fluorescent protein (GFP) reporter gene had been stably introduced (GFP assay) and performing an ERE-luciferase assay. TSC significantly activated ERs, and upregulated its endogenous target genes. This activation was inhibited by fulvestrant but more weakly by tamoxifen. These results suggest that the activation mechanism may be different from that for estrogen. Furthermore, using E10 estrogen depletion-resistant cells (EDR cells) established as a hormonal therapy-resistant model showing estrogen-independent ER activity, ER activation and induction of ER target genes were significantly higher following TSC treatment than by estradiol (E2). These responses were much higher than those of the parental E10 cells. In addition, the phosphorylation status of signaling factors (ERK1/2, Akt) and ER in the E10-EDR cells treated with TSC increased. The gene expression profile induced by estrogenic effects of TSC was characterized by microarray analysis. The findings suggested that TSC activates ER by both ligand-dependent and -independent mechanisms. Although TSC constituents will be metabolized in vivo, breast cancer tissues might be exposed for a long period along with hormonal therapy. Tobacco smoke may have a possibility to interfere with hormonal therapy for breast cancer, which may have important implications for the management of therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Expression of the androgen receptor in the testes and the concentrations of gonadotropins and sex steroid hormones in male turkeys (Meleagris gallopavo) during growth and development.

    Science.gov (United States)

    Kiezun, J; Leska, A; Kaminska, B; Jankowski, J; Dusza, L

    2015-04-01

    Androgens, including testosterone (T) and androstenedione (A4), are essential for puberty, fertility and sexual functions. The biological activity of those hormones is mediated via the androgen receptor (AR). The regulation of androgen action in birds is poorly understood. Therefore, the present study analysed mRNA and protein expression of AR in the testes, plasma concentrations of the luteinizing hormone (LH), follicle-stimulating hormone (FSH), T, A4 and oestradiol (E2), as well as the levels of T, A4 and E2 in testicular homogenates of male turkeys (Meleagris gallopavo) at the age of 4, 8, 12, 16, 20, 24 and 28weeks. Plasma concentrations of LH and FSH, as well as plasma and testicular levels of T and A4 began to increase at 20weeks of age. The lowest plasma levels of E2 were noted at 20weeks relative to other growth stages. The 20th week of life seems to be the key phase in the development of the reproductive system of turkeys. The AR protein was found in the nuclei of testicular cells in all examined growth stages. Higher expression of AR protein in the testes beginning at 20weeks of age was accompanied by high plasma concentrations of LH and high plasma and testicular levels of androgens. This relationship seems to be necessary to regulate male sexual function.

  3. Intrathecal administration of roscovitine attenuates cancer pain and inhibits the expression of NMDA receptor 2B subunit mRNA.

    Science.gov (United States)

    Zhang, Rui; Liu, Yue; Zhang, Juan; Zheng, Yaguo; Gu, Xiaoping; Ma, Zhengliang

    2012-07-01

    Cancer pain is one of the most severe chronic pains. The mechanisms underlying cancer pain are still unclear. Because of the pain-relieving effects of Cdk5 (Cyclin-dependent kinase 5) antagonist roscovitine in inflammation pain models, we tested whether roscovitine would induce antihyperalgesia in cancer pain. Our previous study showed that the NR2B (N-methyl-D-aspartate receptor 2B) in the spinal cord participates in bone cancer pain in mice. In this study, we used a mouse model of bone cancer pain to investigate whether roscovitine could attenuate bone cancer pain by regulating the expression level of NR2B mRNA in spinal cord. C3H/HeJ mice were inoculated into the intramedullary space of the right femur with Osteosarcoma cells to induce ongoing bone cancer pain behaviors. At day 14 after operation, inoculation of Osteosarcoma cells significantly enhanced mechanical allodynia and thermal hyperalgesia, which was attenuated by intrathecal administration of different doses of roscovitine. Correlated with the pain behaviors changes, RT-PCR experiments in our study revealed that there was a marked increase in the expression of NR2B mRNA in spinal cord after operation, which was attenuated by intrathecal administration of roscovitine. These results suggest that roscovitine may be a useful adjunct therapy for bone cancer pain, and NR2B in spinal cord may participate in this effect. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Novel growth hormone receptor mutation in a Chinese patient with Laron syndrome.

    Science.gov (United States)

    Hui, Hamilton N T; Metherell, Louise A; Ng, K L; Savage, Martin O; Camacho-Hübner, Cecilia; Clark, Adrian J L

    2005-02-01

    Laron syndrome, growth hormone (GH) insensitivity syndrome, caused by a mutation of the GH receptor (GHR) gene, is extremely rare in the Chinese population. We report a Chinese girl diagnosed with Laron syndrome at age 1.9 years with height -4.9 SDS, basal GH 344 mIU/ml, IGF-I <12 ng/ml, IGFBP-3 <0.2 mg/ml, and undetectable GHBP. A novel mutation of the GHR, not previously described, was identified at the donor splice site of intron 6.

  5. Guipi decoction effects on brain somatostatin levels and receptor mRNA expression in rats with spleen deficiency

    Institute of Scientific and Technical Information of China (English)

    Huinan Qian; Le Wang; Libo Shen; Xueqin Hu

    2008-01-01

    BACKGROUND:Somatostatin is abundant in the hypothalamus,cerebral cortex,limbic system,and mesencephalon.Somatostatin mRNA expression in the brain of rats with spleen deficiency is noticeably reduced,as well as attenuation of cognitive function. OBJECTIVE:To observe the interventional effect of Guipi decoction on somatostatin level and somatostatin receptor 1(SSTRI)mRNA expression in different encephalic regions of rats with spleen deficiency,and to compare the interventional effects of Guipi decoction,Chaihu Shugan powder,and Tianwang Buxin pellet. DESIGN:A randomized controlled observation. SETTING:Basic Medical College,Beijing University of Traditional Chinese Medicine.MATERIALS:Fifty adult Wistar male rats,of clean grade,weighing(160 ± 10)g,were provided by Beijing Weitong Lihua Laboratory Animal Technology Co.,Ltd.The protocol was performed in accordance with ethical guidelines for the use and care of animals.Somatostatin 1 polyclonal anti-rabbit antibody and SSTR1 in situ hybridization kit were provided by Department of Neuroanatomy,Shanghai Second Military Medical University of Chinese PLA.The drug for developing rat models of spleen deficiency was composed of Dahuang,Houpu and Zhishi,and prepared at 2:1:1.Guipi decoction,Chaihu Shugan powder,and Tianwang Buxin pellet recipes were made according to previous studies.METHODS:This study was performed at the Basic Medical College,Beijing University of Traditional Chinese Medicine from March 2002 to March 2005.The rats were randomly divided into 5 groups,with 10 rats in each group:normal,model,Guipi decoction,Chaihu Shugan powder,and Tianwang Buxin pelletgroups.Rat models of the latter 4 groups were developed by methods of purgation with bitter and cold nature drugs,improper diet,and overstrain.The rats received 7.5 g/kg of the drugs each morning and were fasted every other day,but were allowed free access to water at all times,The rats were forced to swim in 25℃ water until fatigued.Rats in the normal group

  6. Distribution and hormonal regulation of membrane progesterone receptors β and γ in ciliated epithelial cells of mouse and human fallopian tubes

    Directory of Open Access Journals (Sweden)

    Thurin-Kjellberg Ann

    2009-08-01

    Full Text Available Abstract Background The controlled beating of cilia of the fallopian tube plays an important role in facilitating the meeting of gametes and subsequently transporting the fertilized egg to its implantation site. Rapid effects of progesterone on ciliary beat frequency have been reported in the fallopian tubes of cows, but the identity of the receptors mediating this non-genomic action of progesterone is not known. We recently identified a member of the non-genomic membrane progesterone receptor family, mPR gamma, as a candidate for mediating these actions of progesterone. Here, we investigated the possible presence of a related receptor, mPR beta, in the fallopian tubes of mice and women as well as the possible hormonal regulation of mPR beta and gamma. Methods Western blot and immunohistochemistry with specific antibodies were used to characterize the expression and cellular localization of the mPRs in mouse and human tissues. Taqman (Quantitative Polymerase Chain Reaction assays were used to quantify mRNA levels in the fallopian tubes of two different mouse models after injections with different hormones and specific antagonists. Results In the fallopian tubes of both mouse and human, the expression of mPR beta and mPR gamma proteins was exclusively found in the ciliated cells. Whereas mPR beta was found on the cilia, mPR gamma was localized at the base of the same ciliated cells, as previously reported. In gonadotropin-primed mice, both mPRs genes were down-regulated after an injection with progesterone. Treatment with estradiol rapidly down-regulated the level of mPR beta mRNA and protein in immature mice. The mPR gamma protein was down-regulated around the time of ovulation in cycling women, similar to the regulation observed in mice stimulated to ovulate via gonadotropin injections. Conclusion Our findings show the presence and hormonal regulation of two distinct mPRs associated with the cilia of the fallopian tubes in both mice and women

  7. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    Science.gov (United States)

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo.

  8. Evolution of parathyroid hormone receptor family and their ligands in vertebrate

    Directory of Open Access Journals (Sweden)

    Jason S.W. eOn

    2015-03-01

    Full Text Available The presence of the parathyroid hormones in vertebrates, including PTH, PTH-related peptide (PTHrP and tuberoinfundibular peptide of 39 residues (TIP39, has been proposed to be the result of two rounds of whole genome duplication in the beginning of vertebrate diversification. Bioinformatics analyses, in particular chromosomal synteny study and the characterization of the PTH ligands and their receptors from various vertebrate species, provide evidence that strongly supports this hypothesis. In this mini-review, we summarize recent advances in studies regarding the molecular evolution and physiology of the PTH ligands and their receptors, with particular focus on non-mammalian vertebrates. In summary, the PTH family of peptides probably predates early vertebrate evolution, indicating a more ancient existence as well as a function of these peptides in invertebrates.

  9. Effect of thyrotrophin releasing hormone on opiate receptors of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, A.M.; Shchurin, M.R.

    1987-01-01

    It has recently been shown that the hypothalamic thyrotropin releasing hormone (TRH) has the properties of a morphine antagonist, blocking its inhibitory action on respiration and, to a lesser degree, its analgesic action. This suggests that the antagonistic effects of TRH are mediated through its interaction with opiate receptors. The aim of this paper is to study this hypothesis experimentally. Tritium-labelled enkephalins in conjunction with scintillation spectroscopy were used to assess the receptor binding behavior. The results indicate the existence of interconnections between the opiate systems and TRH. Although it is too early to reach definite conclusions on the mechanisms of this mutual influence and its physiological significance it can be tentatively suggested that TRH abolishes the pharmacological effects of morphine by modulating the functional state of opiate reception.

  10. Impact of estrogen receptor gene polymorphisms and mRNA levels on obesity and lipolysis--a cohort study.

    Science.gov (United States)

    Nilsson, Maria; Dahlman, Ingrid; Jiao, Hong; Gustafsson, Jan-Ake; Arner, Peter; Dahlman-Wright, Karin

    2007-12-04

    The estrogen receptors alpha and beta (ESR1, ESR2) have been implicated in adiposity, lipid metabolism and feeding behaviour. In this report we analyse ESR1 and ESR2 gene single nucleotide polymorphisms (SNPs) for association with obesity. We also relate adipose tissue ESR1 mRNA levels and ESR1 SNPs to adipocyte lipolysis and lipogenesis phenotypes. 23 ESR1 and 11 ESR2 tag-SNPs, covering most of the common haplotype variation in each gene according to HAPMAP data, were analysed by Chi2 for association with obesity in a cohort comprising 705 adults with severe obesity and 402 lean individuals. Results were replicated in a cohort comprising 837 obese and 613 lean subjects. About 80% of both cohorts comprised women and 20% men. Adipose tissue ESR1 mRNA was quantified in 122 women and related to lipolysis and lipogenesis by multiple regression. ESR1 SNPs were analysed for association with adipocyte lipolysis and lipogenesis phenotypes in 204 obese women by simple regression. No ESR1 SNP was associated with obesity. Five ESR2 SNPs displayed nominal significant allelic association with obesity in women and one in men. The two ESR2 SNPs associated with obesity with nominal P value obesity was observed. There was an inverse correlation between ESR1 mRNA levels in abdominal subcutaneous (sc) adipose tissue and basal lipolysis, as well as responsiveness to adrenoceptor agonists independent of age and BMI (P value 0.009-0.045). ESR1 rs532010 was associated with lipolytic sensitivity to noradrenaline (nominal P value 0.012), and ESR1 rs1884051 with responsiveness to the non-selective beta-adrenoceptor agonist isoprenaline (nominal P value 0.05). These associations became non-significant after Bonferroni correction. ESR1 gene alleles are unlikely to be a major cause of obesity in women. A minor importance of ESR2 on severe obesity cannot be excluded. The inverse correlation between ESR1 mRNA levels and lipolytic responsiveness to adrenoceptor agonists implies that low adipose

  11. Impact of estrogen receptor gene polymorphisms and mRNA levels on obesity and lipolysis – a cohort study

    Science.gov (United States)

    Nilsson, Maria; Dahlman, Ingrid; Jiao, Hong; Gustafsson, Jan-Åke; Arner, Peter; Dahlman-Wright, Karin

    2007-01-01

    Background The estrogen receptors α and β (ESR1, ESR2) have been implicated in adiposity, lipid metabolism and feeding behaviour. In this report we analyse ESR1 and ESR2 gene single nucleotide polymorphisms (SNPs) for association with obesity. We also relate adipose tissue ESR1 mRNA levels and ESR1 SNPs to adipocyte lipolysis and lipogenesis phenotypes. Methods 23 ESR1 and 11 ESR2 tag-SNPs, covering most of the common haplotype variation in each gene according to HAPMAP data, were analysed by Chi2 for association with obesity in a cohort comprising 705 adults with severe obesity and 402 lean individuals. Results were replicated in a cohort comprising 837 obese and 613 lean subjects. About 80% of both cohorts comprised women and 20% men. Adipose tissue ESR1 mRNA was quantified in 122 women and related to lipolysis and lipogenesis by multiple regression. ESR1 SNPs were analysed for association with adipocyte lipolysis and lipogenesis phenotypes in 204 obese women by simple regression. Results No ESR1 SNP was associated with obesity. Five ESR2 SNPs displayed nominal significant allelic association with obesity in women and one in men. The two ESR2 SNPs associated with obesity with nominal P value obesity was observed. There was an inverse correlation between ESR1 mRNA levels in abdominal subcutaneous (sc) adipose tissue and basal lipolysis, as well as responsiveness to adrenoceptor agonists independent of age and BMI (P value 0.009–0.045). ESR1 rs532010 was associated with lipolytic sensitivity to noradrenaline (nominal P value 0.012), and ESR1 rs1884051 with responsiveness to the non-selective beta-adrenoceptor agonist isoprenaline (nominal P value 0.05). These associations became non-significant after Bonferroni correction. Conclusion ESR1 gene alleles are unlikely to be a major cause of obesity in women. A minor importance of ESR2 on severe obesity cannot be excluded. The inverse correlation between ESR1 mRNA levels and lipolytic responsiveness to adrenoceptor

  12. The expression of insulin-like growth factor-Ⅰ mRNA and polypeptide in rat osteoblasts with exposure to parathyroid hormone

    Institute of Scientific and Technical Information of China (English)

    张克勤; 陈家伟; 王美莲; 汪承亚; 李光富; 郑肇熙; 赵人铮

    2003-01-01

    Objective To investigate the insulin-like growth factor-Ⅰ (IGF-Ⅰ) gene and polypeptide expression in cultured rat osteoblast (ROB) and the role of IGF-Ⅰ in mediating the cell-to-cell communication by mimicking the pharmacokinetics of parathyroid hormone (PTH).Methods The ROB was cultured with three kinds of treatment: (1) Control (Ctr), the cells were cultured without PTH during the first 6 hours and the subsequent 42 hours in a 48-hour cycle; (2) Intermittent exposure to PTH (Itm), the cells were cultured with PTH during the first 6 hours, but without PTH in the subsequent 42 hours; and (3) Continuous exposure to PTH (Ctu), the cells were cultured with PTH during the first 6 hours and the subsequent 42 hours.Results The bone-forming activities of ROB were increased in Itm and inhibited in Ctu. The IGF-Ⅰ mRNA content in Itm cells was elevated only during the first 6 hours and that in Ctu cells was elevated at any time during an incubation cycle. The free IGF-Ⅰ concentration in the medium of Itm cells was generally higher and that of the Ctu cells was generally lower compared with those of the Ctr cells. The IGF-Ⅰ antibody significantly reduced the alkaline phosphatase activity within the cells of Ctr and Itm.Conclusions PTH rapidly and constantly stimulates the IGF-Ⅰ gene transcription of osteoblast. There was an obvious discrepancy between the IGF-Ⅰ mRNA content within the osteoblast and the free IGF-Ⅰ level around the osteoblast in either mode of PTH action. The IGF-Ⅰ might be important for osteoblast-osteoblast communication and bone-forming activity, not only in intermittent PTH administration, but also in the physiological functioning of osteoblasts.

  13. The combination of insulin and growth hormone upregulates growth hormone receptor in septic rats%胰岛素联合生长激素上调脓毒症大鼠肝生长激素受体的表达

    Institute of Scientific and Technical Information of China (English)

    殷红珍; 虞文魁; 陈启仪; 李宁; 朱维铭; 李维勤; 高涛; 张娟娟; 习丰产

    2013-01-01

    Objective:To observe the effect of insulin combined with growth hormone to growth hormone receptor in the septic rats. Methods:An hour after intraperitoneal injection of lipopolysaccha-ride (1 mg/kg) ,the survival SD rats would be conclued into our experiment. 56 septic rats were randomly divided into seven groups. Liver was collected after the experiment. Liver growth hormone receptor mRNA and protein content were detected. Results:When compared with the growth hormone group, the growth hormone receptor mRNA and protein content in the liver in group of insulin combined with growth hormone was significantly higher. After blocking PI3K, the expression and content in PI3K group were significantly lowerer. Conclusion:The insulin combined with growth hormone can increase the level of growth hormone receptor, and this may be related to the ubiquitin-proteasome. The PI3K pathway may join this process.%目的:观察脓毒症大鼠在胰岛素联合生长激素治疗前后生长激素受体的变化. 方法:将56只造模成功大鼠随机分为七组,即对照组、脓毒症组、胰岛素组、生长激素组、联合组、LY294002组和MG-132组.于给药24 h后留取肝组织标本,检测生长激素受体mRNA和蛋白含量. 结果:联合组较生长激素组脓毒症大鼠肝生长激素受体mRNA和蛋白含量增加.阻断PI3K和泛素蛋白酶体途径后,生长激素受体mRNA和生长激素受体蛋白均较联合组表达减少. 结论:脓毒症时,胰岛素可通过P13K信号上调肝细胞的生长激素受体水平,其作用可能与泛素蛋白酶体有关.

  14. Thyroid hormone and reproduction: regulation of estrogen receptors in goldfish gonads.

    Science.gov (United States)

    Nelson, Erik R; Allan, Euan R O; Pang, Flora Y; Habibi, Hamid R

    2010-09-01

    There is increasing evidence that thyroid hormones influence reproduction in vertebrates. However, little information is available on the mechanisms by which this happens. As a first step in determining these mechanisms, we test the hypothesis that the estrogen receptor subtypes (ERalpha, ERbeta-1, and ERbeta-2) are regulated by the thyroid hormone, (T(3)), in the gonads of goldfish. All three subtypes were down-regulated by T(3) in the testis or ovary. We also found evidence that T(3) decreased pituitary gonadotropin expression and decreased transcript for gonadal aromatase. Collectively, it appears that T(3) acts to diminish estrogen signaling by (1) decreasing pituitary LH expression and thus steroidogenesis, (2) down-regulating gonadal aromatase expression and thus decreasing estrogen synthesis from androgens, and (3) decreasing sensitivity to estrogen by down-regulating the ER subtypes. Goldfish are seasonal breeders, spawning once a year, and thus have two distinct periods of growth: somatic and reproductive. Circulating thyroid hormone levels have been found to increase just after spawning. Therefore, we propose that this may be an endocrine mechanism that goldfish use to switch their energy expenditure from reproductive to growth efforts in the goldfish. (c) 2010 Wiley-Liss, Inc.

  15. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor.

    Science.gov (United States)

    Iwasaki, Yusaku; Dezaki, Katsuya; Kumari, Parmila; Kakei, Masafumi; Yada, Toshihiko

    2015-08-01

    Vagal afferent nerves sense meal-related gastrointestinal and pancreatic hormones and convey their information to the brain, thereby regulating brain functions including feeding. We have recently demonstrated that postprandial insulin directly acts on the vagal afferent neurons. Plasma concentrations of orexigenic ghrelin and anorexigenic insulin show reciprocal dynamics before and after meals. The present study examined interactive effects of ghrelin and insulin on vagal afferent nerves. Cytosolic Ca(2+) concentration ([Ca(2+)]i) in isolated nodose ganglion (NG) neurons was measured to monitor their activity. Insulin at 10(-7)M increased [Ca(2+)]i in NG neurons, and the insulin-induced [Ca(2+)]i increase was inhibited by treatment with ghrelin at 10(-8)M. This inhibitory effect of ghrelin was attenuated by [D-Lys(3)]-GHRP-6, an antagonist of growth hormone-secretagogue receptor (GHSR). Des-acyl ghrelin had little effect on insulin-induced [Ca(2+)]i increases in NG neurons. Ghrelin did not affect [Ca(2+)]i increases in response to cholecystokinin (CCK), a hormone that inhibits feeding via vagal afferent neurons, indicating that ghrelin selectively counteracts the insulin action. These results demonstrate that ghrelin via GHSR suppresses insulin-induced activation of NG neurons. The action of ghrelin to counteract insulin effects on NG might serve to efficiently inform the brain of the systemic change between fasting-associated ghrelin-dominant and fed-associated insulin-dominant states for the homeostatic central regulation of feeding and metabolism.

  16. Characterization of parathyroid hormone/parathyroid hormone-related protein receptor and signaling in hypercalcemic Walker 256 tumor cells.

    Science.gov (United States)

    Esbrit, P; Benítez-Verguizas, J; de Miguel, F; Valín, A; García-Ocaña, A

    2000-07-01

    Parathyroid hormone (PTH)-related protein (PTHrP) is the main factor responsible for humoral hypercalcemia of malignancy. Both PTH and PTHrP bind to the common type I PTH/PTHrP receptor (PTHR), thereby activating phospholipase C and adenylate cyclase through various G proteins, in bone and renal cells. However, various normal and transformed cell types, including hypercalcemic Walker 256 (W256) tumor cells, do not produce cAMP after PTHrP stimulation. We characterized the PTHrP receptor and the signaling mechanism upon its activation in the latter cells. Scatchard analysis of PTHrP-binding data in W256 tumor cells revealed the presence of high affinity binding sites with an apparent K(d) of 17 nM, and a density of 90 000 sites/cell. In addition, W256 tumor cells immunostained with an anti-PTHR antibody, recognizing its extracellular domain. Furthermore, reverse transcription followed by PCR, using primers amplifying two different regions in the PTHR cDNA corresponding to the N- and C-terminal domains, yielded products from W256 tumor cell RNA which were identical to the corresponding products obtained from rat kidney RNA. Consistent with our previous findings on cAMP production, 1 microM PTHrP(1-34), in contrast to 10 microg/ml cholera toxin or 1 microM isoproterenol, failed to affect protein kinase A activity in W256 tumor cells. However, in these cells we found a functional PTHR coupling to G(alpha)(q/11), whose presence was demonstrated in these tumor cell membranes by Western blot analysis. Our findings indicate that W256 tumor cells express the PTHR, which seems to be coupled to G(alpha)(q/11). Taken together with previous data, these results support the hypothesis that a switch from the cAMP pathway to the phospholipase C-intracellular calcium pathway, associated with PTHR activation, occurs in malignant cells.

  17. Vitamin D3 differentially regulates parathyroid hormone/parathyroid hormone-related peptide receptor expression in bone and cartilage.

    Science.gov (United States)

    Amizuka, N; Kwan, M Y; Goltzman, D; Ozawa, H; White, J H

    1999-02-01

    Transcription of the mouse parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR) gene is controlled by promoters P1 and P2. We performed transcript-specific in situ hybridization and found that P2 is the predominant promoter controlling PTHR gene expression in bone and cartilage. Treatment with 1alpha, 25-dihydroxyvitamin D3 (D3) in vivo specifically downregulated P2-specific transcripts in osteoblasts, but not in chondrocytes, under conditions where it enhanced bone resorption. Treatment of the osteoblastic cell line MC3T3-E1 with D3 in vitro reduced expression of both P2-specific transcripts and PTHR protein. This effect was not blocked by cycloheximide, indicating that D3 inhibits PTHR expression by downregulating transcription of the P2 promoter. A similar inhibitory effect of D3 was not observed in the chondrocytic cell line CFK2. Gene-transfer experiments showed that P2, but not P1, is active in both MC3T3-E1 and CFK2 cells, and that D3 specifically inhibited P2 promoter activity in MC3T3-E1, but not in CFK2 cells. Inhibition of P2 activity by D3 required promoter sequences lying more that 1.6 kb upstream of the P2 transcription start site. Thus, the P2 promoter controls PTHR gene expression in both osteoblasts and chondrocytes. D3 downregulates PTHR gene transcription in a cell-specific manner by inhibiting P2 promoter activity in osteoblasts, but not in chondrocytes.

  18. Developing in vitro reporter gene assays to assess the hormone receptor activities of chemicals frequently detected in drinking water.

    Science.gov (United States)

    Sun, Hong; Si, Chaozong; Bian, Qian; Chen, Xiaodong; Chen, Liansheng; Wang, Xinru

    2012-08-01

    The present study intended to develop receptor-mediated luciferase reporter gene assays to evaluate and compare the estrogen receptor (ER), androgen receptor (AR) and thyroid hormone receptor (TR) activities of target chemicals. Di-2-ethylhexyl-phthalate (DEHP), chlorpyrifos (CPF), 2,4-dichlorophenoxyacetic acid (2,4-D) and bisphenol A (BPA) are some of the most common contaminants in drinking water and are frequently detected in China and worldwide. The chemicals were tested at concentrations of 0.1, 1, 10 and 100 times their maximum contaminant level in drinking water. The results showed that BPA possessed various activities on ER, AR and TR. DEHP and CPF could suppress 17β-estradiol or testosterone activity with different potencies, and DEHP possessed weaker anti-thyroid hormone activity. 2,4-D showed no agonist or antagonist activity against these hormone receptors, but it significantly enhanced the activity of testosterone through AR. Furthermore, the mixture of DEHP and CPF exhibited stronger ER and AR antagonist activities than each single component alone, but their combined effects were less than the expected effects based on the additive model. These results implied that the transcription activation mediated by hormone receptors was the potential endocrine-disrupting mechanism of the test chemicals. Our study also provided useful tools for evaluation of their endocrine disrupting activity.

  19. The normal genital tract of the female California sea lion (Zalophus californianus): cyclic changes in histomorphology and hormone receptor distribution.

    Science.gov (United States)

    Colegrove, Kathleen M; Gulland, Frances M D; Naydan, Diane K; Lowenstine, Linda J

    2009-11-01

    Changes in reproductive tract histomorphology, and estrogen (ERalpha) and progesterone receptor (PR) expression throughout the breeding cycle were evaluated in free-ranging stranded female California sea lions (Zalophus californianus). Hormone receptor expression in the ovaries, uterus, cervix, and vagina was evaluated using an immunohistochemical technique with monoclonal antibodies. During a large portion of the cycle, ovaries contained both a corpora lutea (CL) and follicles in varying stages of development. In the periods of pupping and estrus during June and July, and in the spring morphologic features of the endometrium suggested estrogen influence. There were areas of squamous differentiation in the pseudostratified columnar epithelium of the cervix and vagina in some animals during estrus and in the spring. Estrogen receptor immunohistochemical scores were highest during pupping and estrus and in the spring and lowest during embryonic diapause. Cyclic changes in uterine PR expression throughout the cycle were minimal. Both ERalpha and PR were expressed in epithelial and stromal cells throughout the cervix and vagina, however, receptor expression was typically higher in the stroma. Stromal cell hormone receptors may play an important role in epithelial responses to circulating sex hormones. The results of this investigation add to the general knowledge of California sea lion reproduction and establish baseline information on reproductive tract hormone receptors that will aid in determining the factors involved in urogenital cancer development in sea lions.

  20. Thyroid Hormone Receptor α1 Follows a Cooperative CRM1/Calreticulin-mediated Nuclear Export Pathway*

    Science.gov (United States)

    Grespin, Matthew E.; Bonamy, Ghislain M. C.; Roggero, Vincent R.; Cameron, Nicole G.; Adam, Lindsay E.; Atchison, Andrew P.; Fratto, Victoria M.; Allison, Lizabeth A.

    2008-01-01

    The thyroid hormone receptor α1 (TRα) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T3). Previously, we have shown that TRα, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRα is its ability to exit the nucleus through the nuclear pore complex. TRα export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRα. We show that, in addition to shuttling in heterokaryons, TRα shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRα directly interacts with calreticulin, and point to the intriguing possibility that TRα follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRα from the nucleus to cytoplasm. PMID:18641393

  1. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    Science.gov (United States)

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm.

  2. RETRACTION: Challenges of combined everolimus/endocrine therapy in hormone receptor-positive metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Camillo Porta

    2014-06-01

    Full Text Available To our readers:With deep regrets, we inform our Readers that the article Challenges of combined everolimus/endocrine therapy in hormone receptor-positive metastatic breast cancer (DOI: http://dx.doi.org/10.4081/oncol.2014.236, which has been published Ahead of Print in the first issue of Oncology Reviews (2014, contains verbatim text plagiarized from another paper.1The manuscript must be considered as retracted. On behalf of the Editorial Board of Oncology Reviews, I apologize to the Author of the manuscript whose text was plagiarized by Y. Abubakr and Y. Albushra that this was not picked up in the peer review process. I also apologize to the affected journal for the violation of copyright due to plagiarism. Oncology Reviews is uncompromising in its commitment to scientific integrity. When credible evidence of misconduct is brought to our attention, our commitment to the scientific record and to our readership requires immediate notification. Oncology Reviews is increasingly employing sophisticated software to detect plagiarism. Other journals use similar tools. Authors should be aware that most journals routinely employ plagiarism detection software, and that any plagiarism is likely to be detected.Camillo Porta, Editor-in-Chief Oncology Reviews Reference 1. André F. Enhancing effectiveness of endocrine therapy in hormone receptor-positive advanced breast cancer. Medscape Education Oncology. CME Released: 05/24/2013; Valid for credit through 05/24/2014. http://www.medscape.org/viewarticle/804496

  3. Identification and characterization of growth hormone receptors in snakehead fish (Ophiocephalus argus cantor) liver.

    Science.gov (United States)

    Sun, X; Zhu, S; Chan, S S; Toresson, G; Cheng, C H

    1997-12-01

    The specific binding of 125I-labeled fish growth hormone (GH) to hepatic membranes prepared from several freshwater fish was assessed. A high level of growth hormone receptor (GHR) was detected on the hepatic membranes of the snakehead fish (Ophiocephalus argus Cantor). Scatchard analysis of the binding data showed a single class of high affinity binding site with a binding affinity (Ka) of 1.45 +/- 0.23 x 10(9) M-1 and a binding capacity (Bmax) of 198 +/- 57 fmol/mg protein. The binding was specific for fish GH and was saturable. In addition, the specific binding was temperature- and time-dependent, reaching a steady state after 16 hr of incubation at 25 degrees . The molecular weight of GHR as measured by Sephadex G-200 column chromatography and Western blot analysis using a monoclonal antibody (Mab263) against GHR was found to be 200-400 and 90-93 kDa, respectively. Two bands at 65 and 89 kDa were identified in ligand crosslinking studies of membrane receptors. A sensitive teleost GH radioreceptor assay (RRA) was developed, using recombinant fish GH and a membrane preparation from snakehead fish liver, capable of measuring bioactive GH in fish sera or other samples.

  4. Effect of two human growth hormone receptor antagonists on glomerulosclerosis in streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Shui-xian SHEN; Li-hua ZHU; En-bi WANG; Zeng-can YE; Jun LIN; Li-he GUO; Fei-hong LUO; Xi-hong LIU; Xin FANG

    2004-01-01

    AIM: To explore the feasibility of human growth hormone (hGH) receptor antagonist in the treatment of end-stage diabetic renal complications. METHODS: Two hGH mutants, hGHA1 (Cys-hGH-dell-4, G120R, K168A, E174A,C182S, de1186-191) and hGHA2 (hGH-H21A, G120R, E174A) were expressed in E coli. The IC50 (Mean±SD)values for the mutants for inhibiting 125I-hGH binding to rabbit growth hormone receptor were (65±10) ng for hGHA1, (27±5.6) ng for hGHA2, and (10±0.6) ng for wild type hGH, respectively. RESULTS: After treatment for 12 weeks, the renal histology analysis showed that treatment with hGHA2 at 4 mg/kg body weight daily markedly suppressed glomerulosclerosis in streptozotocin-induced diabetic Sprague-Dawley (SD) rats; hGHA1 at the same dosage slightly increased the renal damage compared with saline; while wild type hGH at 1 U/kg body weight daily severely worsened the glomerulo-sclerosis in diabetic SD rats. CONCLUSION: The data indicated that hGHA2 inhibited the end-stage glomerulosclerosis in diabetic rats, but hGHA1 mildly increased the glomerulosclerosis.

  5. Pegvisomant: a growth hormone receptor antagonist used in the treatment of acromegaly.

    Science.gov (United States)

    Tritos, Nicholas A; Biller, Beverly M K

    2017-02-01

    To review published data on pegvisomant and its therapeutic role in acromegaly. Electronic searches of the published literature were conducted using the keywords: acromegaly, growth hormone (GH) receptor (antagonist), pegvisomant, therapy. Relevant articles (n = 141) were retrieved and considered for inclusion in this manuscript. Pegvisomant is a genetically engineered, recombinant growth hormone receptor antagonist, which is effective in normalizing serum insulin-like growth factor 1 (IGF-1) levels in the majority of patients with acromegaly and ameliorating symptoms and signs associated with GH excess. Pegvisomant does not have direct antiproliferative effects on the underlying somatotroph pituitary adenoma, which is the etiology of GH excess in the vast majority of patients with acromegaly. Therefore, patients receiving pegvisomant monotherapy require regular pituitary imaging in order to monitor for possible increase in tumor size. Adverse events in patients on pegvisomant therapy include skin rashes, lipohypertrophy at injection sites, and idiosyncratic liver toxicity (generally asymptomatic transaminitis that is reversible upon drug discontinuation), thus necessitating regular patient monitoring. Pegvisomant is an effective therapeutic agent in patients with acromegaly who are not in remission after undergoing pituitary surgery. It mitigates excess GH action, as demonstrated by IGF-1 normalization, but has no direct effects on pituitary tumors causing acromegaly. Regular surveillance for possible tumor growth and adverse effects (hepatotoxicity, skin manifestations) is warranted.

  6. Ghrelin and the growth hormone secretagogue receptor in growth and development.

    Science.gov (United States)

    Chanoine, J-P; De Waele, K; Walia, P

    2009-04-01

    The pancreas is a major source of ghrelin in the perinatal period, whereas gastric production progressively increases after birth. Loss of function of the genes for ghrelin or for the constitutively activated growth hormone secretagogue receptor (GHSR) does not affect birth weight and early postnatal growth. However, ghrl(-/-) or ghsr(-/-) mice fed a high fat diet starting soon after weaning are resistant to diet-induced obesity, suggesting that ghrelin affects the maturation of the metabolic axes involved in energy balance. In addition, animal and human studies suggest that GHSR plays a physiological role in linear growth. In mice, absence of the GHSR gene is associated with lower insulin-like growth factor 1 concentrations and lower body mass in adult animals, independently of food intake. In humans, a mutation of the GHSR gene that impairs the constitutive activity of the receptor was found in two families with short stature. Administration of acylated ghrelin to rat pups directly does not affect weight gain. In contrast, administration of ghrelin to pregnant or lactating rats results in greater fetal weight and postnatal weight gain, respectively, suggesting that maternal ghrelin may stimulate perinatal growth. These data point toward a physiological role for ghrelin and GHSR in growth and/or in the maturation of hormonal systems involved in the regulation of energy balance.

  7. Genome inventory and analysis of nuclear hormone receptors in Tetraodon nigroviridis

    Indian Academy of Sciences (India)

    Raghu Prasad Rao Metpally; Ramakrishnan Vigneshwar; Ramanathan Sowdhamini

    2007-01-01

    Nuclear hormone receptors (NRs) form a large superfamily of ligand-activated transcription factors, which regulate genes underlying a wide range of (patho) physiological phenomena. Availability of the full genome sequence of Tetraodon nigroviridis facilitated a genome wide analysis of the NRs in fish genome. Seventy one NRs were found in Tetraodon and were compared with mammalian and fish NR family members. In general, there is a higher representation of NRs in fish genomes compared to mammalian ones. They showed high diversity across classes as observed by phylogenetic analysis. Nucleotide substitution rates show strong negative selection among fish NRs except for pregnane X receptor (PXR), estrogen receptor (ER) and liver X receptor (LXR). This may be attributed to crucial role played by them in metabolism and detoxification of xenobiotic and endobiotic compounds and might have resulted in slight positive selection. Chromosomal mapping and pairwise comparisons of NR distribution in Tetraodon and humans led to the identification of nine syntenic NR regions, of which three are common among fully sequenced vertebrate genomes. Gene structure analysis shows strong conservation of exon structures among orthologoues. Whereas paralogous members show different splicing patterns with intron gain or loss and addition or substitution of exons played a major role in evolution of NR superfamily.

  8. Bilateral Changes of Cannabinoid Receptor Type 2 Protein and mRNA in the Dorsal Root Ganglia of a Rat Neuropathic Pain Model

    OpenAIRE

    2013-01-01

    Cannabinoid receptor type 2 (CB2R) plays a critical role in nociception. In contrast to cannabinoid receptor type 1 ligands, CB2R agonists do not produce undesirable central nervous system effects and thus promise to treat neuropathic pain that is often resistant to medical therapy. In the study presented here, we evaluated the bilateral distribution of the CB2R protein and messenger RNA (mRNA) in rat dorsal root ganglia (DRG) after unilateral peripheral nerve injury using immunohistochemistr...

  9. Interactions between N-Ethylmaleimide-sensitive factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus.

    NARCIS (Netherlands)

    Xiong, H.; Cassé, F.; Zhou, M.; Xiong, Z.Q.; Joels, M.; Martin, S.; Krugers, H.J.

    2016-01-01

    Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptor (AMPAR) availability in the synapse, which is important for synaptic plasticity and memory formation.

  10. Interactions between N-Ethylmaleimide-Sensitive Factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus

    NARCIS (Netherlands)

    Xiong, Hui; Cassé, Frédéric; Zhou, Ming; Xiong, Zhi-Qi; Joels, Marian; Martin, Stéphane; Krugers, Harm J

    Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptor (AMPAR) availability in the synapse, which is important for synaptic plasticity and memory formation.

  11. Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice

    DEFF Research Database (Denmark)

    Brooks, Nicole E; Hjortebjerg, Rikke; Henry, Brooke E;

    2016-01-01

    of Fgf21, Fgfr1, and Klb mRNA in white adipose tissue (AT), brown AT, and liver were evaluated by reverse transcription quantitative PCR. RESULTS: As expected, bGH mice had increased body weight (p=3.70E(-8)) but decreased percent fat mass (p=4.87E(-4)). Likewise, GHR-/- mice had decreased body weight (p...... was to quantify circulating FGF21 and tissue specific expression of Fgf21, Fgfr1, and Klb in mice with modified GH action. Based on previous studies, we hypothesized that bovine GH transgenic (bGH) mice will be FGF21 resistant and GH receptor knockout (GHR-/-) mice will have normal FGF21 action. DESIGN: Seven......-month-old male bGH mice (n=9) and wild type (WT) controls (n=10), and GHR-/- mice (n=8) and WT controls (n=8) were used for all measurements. Body composition was determined before dissection, and tissue weights were measured at the time of dissection. Serum FGF21 levels were evaluated by ELISA. Expression...

  12. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Tang, Yuan [Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Yanzheng Street, Chongqing 400038 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye; Zhao, Bao-Quan [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2012-02-15

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  13. Patterns of resource utilization and cost for postmenopausal women with hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer in Europe.

    Science.gov (United States)

    Jerusalem, Guy; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Ricci, Jean-François; Andre, Fabrice

    2015-10-24

    Healthcare resource utilization in breast cancer varies by disease characteristics and treatment choices. However, lack of clarity in guidelines can result in varied interpretation and heterogeneous treatment management and costs. In Europe, the extent of this variability is unclear. Therefore, evaluation of chemotherapy use and costs versus hormone therapy across Europe is needed. This retrospective chart review (N = 355) examined primarily direct costs for chemotherapy versus hormone therapy in postmenopausal women with hormone-receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) advanced breast cancer across 5 European countries (France, Germany, The Netherlands, Belgium, and Sweden). Total direct costs across the first 3 treatment lines were approximately €10,000 to €14,000 lower for an additional line of hormone therapy-based treatment versus switching to chemotherapy-based treatment. Direct cost difference between chemotherapy-based and hormone therapy-based regimens was approximately €1900 to €2500 per month. Chemotherapy-based regimens were associated with increased resource utilization (managing side effects; concomitant targeted therapy use; and increased frequencies of hospitalizations, provider visits, and monitoring tests). The proportion of patients taking sick leave doubled after switching from hormone therapy to chemotherapy. These results suggest chemotherapy is associated with increased direct costs and potentially with increased indirect costs (lower productivity of working patients) versus hormone therapy in HR+, HER2- advanced breast cancer.

  14. Autocrine role of estrogens in the augmentation of luteinizing hormone receptor formation in cultured rat granulosa cells.

    Science.gov (United States)

    Kessel, B; Liu, Y X; Jia, X C; Hsueh, A J

    1985-06-01

    The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate

  15. β-catenin regulates parathyroid hormone/parathyroid hormone-related protein receptor signals and chondrocyte hypertrophy through binding to the intracellular C-terminal region of the receptor.

    Science.gov (United States)

    Yano, Fumiko; Saito, Taku; Ogata, Naoshi; Yamazawa, Toshiko; Iino, Masamitsu; Chung, Ung-il; Kawaguchi, Hiroshi

    2013-02-01

    To investigate the underlying mechanisms of action and functional relevance of β-catenin in chondrocytes, by examining the role of β-catenin as a novel protein that interacts with the intracellular C-terminal portion of the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor type 1 (PTHR-1). The β-catenin-PTHR-1 binding region was determined with deletion and mutagenesis analyses of the PTHR1 C-terminus, using a mammalian two-hybrid assay. Physical interactions between these 2 molecules were examined with an in situ proximity ligation assay and immunostaining. To assess the effects of gain- and loss-of-function of β-catenin, transfection experiments were performed to induce overexpression of the constitutively active form of β-catenin (ca-β-catenin) and to block β-catenin activity with small interfering RNA, in cells cotransfected with either wild-type PTHR1 or mutant forms (lacking binding to β-catenin). Activation of the G protein α subunits G(αs) and G(αq) in the cells was determined by measurement of the intracellular cAMP accumulation and intracellular Ca(2+) concentration, while activation of canonical Wnt pathways was assessed using a TOPflash reporter assay. In differentiated chondrocytes, β-catenin physically interacted and colocalized with the cell membrane-specific region of PTHR-1 (584-589). Binding of β-catenin to PTHR-1 caused suppression of the G(αs)/cAMP pathway and enhancement of the G(αq)/Ca(2+) pathway, without affecting the canonical Wnt pathway. Inhibition of Col10a1 messenger RNA (mRNA) expression by PTH was restored by overexpression of ca-β-catenin, even after blockade of the canonical Wnt pathway, and Col10a1 mRNA expression was further decreased by knockout of β-catenin (via the Cre recombinase) in chondrocytes from β-catenin-floxed mice. Mutagenesis analyses to block the binding of β-catenin to PTHR1 caused an inhibition of chondrocyte hypertrophy markers. β-catenin binds to the PTHR-1 C-tail and switches

  16. Influence of moonlight on mRNA expression patterns of melatonin receptor subtypes in the pineal organ of a tropical fish.

    Science.gov (United States)

    Park, Yong-Ju; Park, Ji-Gweon; Takeuchi, Yuki; Hur, Sung-Pyo; Lee, Young-Don; Kim, Se-Jae; Takemura, Akihiro

    2014-04-01

    The goldlined spinefoot, Siganus guttatus, is a lunar-synchronized spawner, which repeatedly releases gametes around the first quarter moon during the reproductive season. A previous study reported that manipulating moonlight brightness at night disrupted synchronized spawning, suggesting involvement of this natural light source in lunar synchronization. The present study examined whether the mRNA expression pattern of melatonin receptor subtypes MT1 and Mel1c in the pineal organ of the goldlined spinefoot is related to moonlight. Real-time quantitative polymerase chain reaction analysis revealed that the abundance of MT1 and Mel1c mRNA at midnight increased during the new moon phase and decreased during the full moon phase. Exposing fish to moonlight intensity during the full moon period resulted in a decrease in Mel1c mRNA abundance within 1h. Fluctuations in the melatonin receptor genes according to changes in the moon phase agreed with those of melatonin levels in the blood. These results indicate that periodic changes in cues from the moon influence melatonin receptor mRNA expression levels. The melatonin-melatonin receptor system may play a role in predicting the moon phase through changes in night brightness.

  17. mRNA expression profile of prostaglandin D2 receptors in rat trigeminovascular system, and effect of prostaglandins in rat migraine models

    DEFF Research Database (Denmark)

    Sekeroglu, A.; Jansen-Olesen, I.; Gupta, S.

    2015-01-01

    Background: Prostaglandin D2 (PGD2) is a strong vasodilator of extracerebral arteries, but causes only mild headache in healthy volunteers. Aims: 1.) To elucidate the mRNA expression profile of DP1, DP2 receptors and PGD2 synthase (L-PGDS) in the trigeminovascular system (TVS); and other pain...

  18. Identification of a novel mutation in the human growth hormone receptor gene (GHR) in a patient with Laron syndrome.

    Science.gov (United States)

    Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed

    2007-07-01

    Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.

  19. CORRELATION OF PARATHYROID HORMONE-1 RECEPTOR EXPRESSION TO BONE METASTASIS OF BREAST CARCINOMA PATIENTS

    Directory of Open Access Journals (Sweden)

    P. A. Tusta-Adiputra

    2014-01-01

    Full Text Available Background: Bone metastasis is a common complication of metastasis of breast cancer and it is a unique pathobiology process. The Parathyroid Hormone-related Peptide (PTHrP is a protein which has an important role in breast cancer cells to invade and infiltrate bones or bone marrow and accelerate angiogenetic process. The objective of this study is to reveal the relationship of PTHrP receptor named Parathyroid Hormone-1 Receptor (PTH1R expression to bone metastasis in breast cancer patients. Methods: This was an analytical cross-sectional study, applying a non probability consecutive sampling. Samples were divided into two groups, i.e. one group of breast cancer metastasis to bone (+others and another group with non-bone metastasis. Patients were collected from an existed data base (from medical record, cancer register, histopathology, since 2007. The specimen paraffin blocks were re-examined using IHC technique for PTHrP receptor. The data were analyzed and tested with Chi-Square (X2, otherwise it would be tested using Fisher Exact Test. Each group would be allocated minimal of 17 patients/samples. Results: The Chi-Square test failed to show the association between PTH1R expression in breast cancer patients with bone metastasis (p=0.295. The relative prevalence result for positive PTH1R expression was 1.48. There was no proof that positive PTH1R expression was an associated factor for bone metastasis (95% confidence interval. Conclusion: PTH1R expression is not a factor associated with bone metastasis in breast cancer patients. 

  20. Functional Authentication of a Novel Gastropod Gonadotropin-Releasing Hormone Receptor Reveals Unusual Features and Evolutionary Insight

    OpenAIRE

    Kavanaugh, Scott I.; Tsai, Pei-San

    2016-01-01

    A gonadotropin-releasing hormone (GnRH)-like molecule was previously identified in a gastropod, Aplysia californica, and named ap-GnRH. In this study, we cloned the full-length cDNA of a putative ap-GnRH receptor (ap-GnRHR) and functionally authenticated this receptor as a bona fide ap-GnRHR. This receptor contains two potential translation start sites, each accompanied by a Kozak sequence, suggesting the translation of a long and a short form of the receptor is possible. The putative ap-GnRH...

  1. Requirement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor for selected GH-stimulated function

    DEFF Research Database (Denmark)

    Lobie, P E; Allevato, G; Norstedt, G

    1995-01-01

    We have examined the involvement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor in the cellular response to GH. Stable Chinese hamster ovary (CHO) cell clones expressing a receptor with tyrosine residues at position 333 and 338 of the receptor substituted for phenylalanine (...... acetyltransferase cDNA expression driven by the GH-responsive region of the SPI 2.1 gene) was not affected by Y333F,Y338F substitution. Thus we provide the first experimental evidence that specific tyrosine residues of the GH receptor are required for selected cellular responses to GH....

  2. Effects of tributyltin on mRNA expressions of thyroid hormone response genes in Xenopus tropicalis tadpoles%三丁基锡对热带爪蟾蝌蚪甲调基因mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    曹庆珍; 朱攀; 袁静; 张小利; 刘俊奇; 黄民生; 施华宏

    2011-01-01

    treatment group after 96 h of exposure. These results suggest that TBT can result in the changes of multiple mRNA ex pressions and show high tissue-specific differences. These mRNA are involved in the synthesis, transportations, transformations and actions, which indicate that TBT shows thyroid hormone disrupting effects. The changes of related mRNA expressions indicate that TBT might disrupt the thyroid hormone system of tadpoles by binding with retinoid X receptor. Therefore, biomar kers are not only cost-effective and sensitive endpoints in screening the thyroid disrupting chemi cals but also useful in identifying the mode of action of contaminants.

  3. Distribution of serotonin 2A and 2C receptor mRNA expression in the cervical ventral horn and phrenic motoneurons following spinal cord hemisection.

    Science.gov (United States)

    Basura, G J; Zhou, S Y; Walker, P D; Goshgarian, H G

    2001-06-01

    Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states.

  4. Mitochondria and the insect steroid hormone receptor (EcR): A complex relationship.

    Science.gov (United States)

    Vafopoulou, Xanthe; Steel, Colin G H

    2016-10-01

    The actions of the insect steroid molting hormones, ecdysteroids, on the genome of target cells has been well studied, but little is known of their extranuclear actions. We previously showed in Rhodnius prolixus that much of the ecdysteroid receptor (EcR) resides in the cytoplasm of various cell types and undergoes shuttling between nucleus and cytoplasm with circadian periodicity, possibly using microtubules as tracks for translocation to the nucleus. Here we report that cytoplasmic EcR appears to be also involved in extranuclear actions of ecdysteroids by association with the mitochondria. Western blots of subcellular fractions of brain lysates revealed that EcR is localized in the mitochondrial fraction, indicating an intimate association of EcR with mitochondria. Confocal laser microscopy and immunohistochemistry using anti-EcR revealed abundant co-localization of EcR with mitochondria in brain neurons and their axons, especially intense in the subplasmalemmal region, raising the possibility of EcR involvement in mitochondrial functions in subplasmalemmal microdomains. When mitochondria are dispersed by disruption of microtubules with colchicine, EcR remains associated with mitochondria showing strong receptor association with mitochondria. Treatment in vitro with ecdysteroids of brains of developmentally arrested R. prolixus (containing neither ecdysteroids nor EcR) induces EcR and abundant co-localization with mitochondria in neurons, concurrently with a sharp increase of the mitochondrial protein COX 1, suggesting involvement of EcR in mitochondrial function. These findings align EcR with various vertebrate steroid receptors, where actions of steroid receptors on mitochondria are widely known and suggest that steroid receptors across distant phyla share similar functional attributes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium.

    Science.gov (United States)

    Rytved, K A; Nielsen, R

    1999-01-01

    We examined the effect of prostaglandin E2 (PGE2) on antidiuretic hormone (ADH)-dependent Na+ transport and cAMP production in isolated frog skin epithelium. ADH caused an increase in transepithelial Na+ transport and a decrease in cellular potential, indicating an increase in apical Na+ permeability. Subsequent addition of PGE2 decreased Na+ transport and repolarised the cells. The PGE2 receptor EP1/3-selective analogue sulprostone and the PGE2 receptor EP2/3-selective analogue misoprostol were able to mimic the effect of PGE2. ADH increased cellular cAMP levels, whereas PGE2, sulprostone and misoprostol were able to reduce the ADH-dependent cAMP production. Measurements of intracellular Ca2+ concentration ([Ca2+]i) revealed that it was unaffected by both PGE2 and sulprostone. The inhibitory effect of PGE2 on ADH-dependent Na+ transport was also observed in Ca2+-depleted epithelia. We conclude that ADH stimulates transepithelial Na+ transport by increasing cellular cAMP levels, whereas PGE2 inhibits ADH-dependent Na+ transport by activating EP3-type receptors, which decrease cellular cAMP levels. We have found no evidence that [Ca2+]i is involved in the regulation of ADH-dependent Na+ transport by PGE2.

  6. Usefulness of liquid-based cytology in hormone receptor analysis of breast cancer specimens.

    Science.gov (United States)

    Nishimura, Rieko; Aogi, Kenjiro; Yamamoto, Tamami; Takabatake, Daisuke; Takashima, Seiki; Teramoto, Norihiro; Kagawa, Akihiro; Morita, Sachiko

    2011-02-01

    Immunohistochemical (IHC) analysis of the hormone receptor (HR) in breast cancer cytology is an important issue nowadays. Several studies have shown discrepancy in the HR status between the primary tumor and metastases. Cytology can be used for patients with metastatic disease. Although cytological assessment of HR is an excellent method, it has not been routinely used because of the difficulty in consistently preparing multiple good quality slides. Liquid-based cytology (LBC) preparation is considered as the key to resolving the aforementioned problem; however, few studies have reported the HR assessment in breast cancer using LBC. Therefore, the HR status of LBC slides from 82 breast cancers was compared with that of the corresponding surgical specimens. The HR assay in both the LBC slides and surgical specimens was conducted by IHC using an autostainer. For the IHC staining, the protocol recommended by the manufacturer for paraffin-embedded sections was used for both the cytology and histology specimens. The HR results of the cytology agreed with those of the histology in 80 of the 82 cases (accuracy rate, 98%) for estrogen receptor, and in 78 of the 82 cases (accuracy rate, 95%) for progesterone receptor. The overall accuracy of the HR status on the cytology and the histology was 99% in 81 of the 82 cases. In conclusion, in HR analysis of breast cancers, LBC followed by IHC using an autostainer was useful for the standard processing of cytological specimens and showed a good correlation with the results of analysis on the histology specimens.

  7. Chemotherapy-induced prospective memory impairment in breast cancer patients with different hormone receptor expression

    Science.gov (United States)

    Li, Wen; Gan, Chen; Lv, Yue; Wang, Shanghu; Cheng, Huaidong

    2017-01-01

    Abstract This study aimed to investigate prospective memory impairment in patients with breast cancer with different expression of hormone receptors, including the estrogen receptor (ER) and the progesterone receptor (PR). A total of 120 patients with breast cancer who underwent chemotherapy following surgery were divided into 2 groups. The A group included 60 patients with ER−/PR− status, and the B group included 60 patients with ER+/PR+ status. After 6 cycles of postoperative adjuvant chemotherapy, all patients were administered neuropsychological and prospective memory tests, such as the Mini-Mental State Examination (MMSE), verbal fluency test (VFT), and digit span test (DST), as well as examination of event-based prospective memory (EBPM) and time-based prospective memory (TBPM). As the neuropsychological background test results showed, there were no significant differences in MMSE, DST, and TBPM scores (∗:P > 0.05) between patients with breast cancer in the ER−/PR− and ER+/PR+ groups, while the VFT and EBPM scores were significantly greater in patients with breast cancer with ER+/PR+ status than in those with ER−/PR− status (∗∗: P memory impairment. PMID:28353608

  8. High-throughput screening of novel antagonists on melanin-concentrat-ing hormone receptor-1

    Institute of Scientific and Technical Information of China (English)

    Jian-hua YAN; Qun-yi LI; Jean A BOUTIN; M Pierre RENARD; Yi-xiang DING; Xiao-jiang HAO; Wei-min ZHAO; Ming-wei WANG

    2008-01-01

    Aim: To find new antagonists on human melanin-concentrating hormone recep-tor- 1 (MCHR-1) through high-throughput screening (HTS) of a diverse com-pound library. Methods: MCHR-1, [3H]SNAP7941, and FlashBlue G-protein-coupled receptor beads were used to measure the receptor-binding activities of various compounds based on scintillation proximity assay (SPA) technology. The guanosine 5' (γ-[35S]thio) triphosphate ([35S]GTPγS) binding assay was sub-sequently applied to functionally characterize the "hits" identified by the HTS campaign. Results: Of the 48 240 compounds screened with the SPA method, 12 hits were confirmed to possess MCHR-1 binding activities, 8 were function-ally studied subsequently with the [35S]GTPγS binding assay, and only 1 com-pound (NC 127816) displayed moderate human MCHR- 1 binding affinity (Ki=115.7 nmol/L) and relatively potent antagonism (KB=23.8 nmol/L). This compound shares a novel scaffold (1-ethoxy-2H-2-aza-1-phospha-naphthalene 1-oxide) with 3 other analogs in the group. Conclusion: Considering the marked difference in molecular shape and electrostatic status between NC127816 and the structures reported elsewhere, we anticipate that its derivatives may repre-sent a new class of potent MCHR-1 modulators.

  9. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    Science.gov (United States)

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  10. 大鼠垂体促性腺激素细胞内cAMP的改变对LHβ mRNA表达的影响%Effect of the changes of cAMP in pituitary gonadotropic hormone (GTH)cells on the expression of LH mRNA in rats

    Institute of Scientific and Technical Information of China (English)

    王新; 赖小平; 谭建华; 韦旭斌

    2012-01-01

    目的 分析大鼠LHβ mRNA表达的促性腺激素释放激素(GnRH)受体后信号转导机制.方法 将体外培养的大鼠腺垂体促性腺激素(GTH)细胞用cAMP的兴奋剂FSK或抑制剂SQ22536处理后,再用高频GnRH脉冲刺激,然后用实时荧光定量PCR法测定细胞LHβ mRNA的Ct值,并与空白组比较.结果 LHβ mRNA的Ct值随着GTH细胞cAMP含量的增高而显著降低,随着cAMP含量的降低而显著增高.结论 cAMP是高频GnRH脉冲刺激所引起的LHβ mRNA表达的受体后的信号转导途径.%Objective Try to analyze the gonadotropin-releasing hormone (GnRH) post-receptor signal transduc-tion mechanism of the expression of LHp mRNA in Rats. Methods The gonadotropic hormone (GTH) cells of rat adenohypophysis was stimulated by GnRH impulse at high frequency after cAMP in them was excited by forskolin (FSK) or inhibited by SQ 22536. The Ct value of LHp mRNA was detected by real-time quantitative polymerase chain reaction, and was compared with that of the blank control group. Results The Ct value of LHp mRNA was significantly falling with the rise of cAMP in GTH cells and significantly rising with the falling of cAMP. Conclusions The cells stimulated by GnRH impulse at high frequency respond to LH pmRNA and cAMP is the post-receptor signal transduction pathway.

  11. Aldosterone and thyroid hormone modulation of alpha 1-, beta 1-mRNA, and Na,K-pump sites in rabbit distal colon epithelium. Evidence for a novel mechanism of escape from the effect of hyperaldosteronemia.

    Science.gov (United States)

    Wiener, H; Nielsen, J M; Klaerke, D A; Jørgensen, P L

    1993-05-01

    Aldosterone and thyroid hormone regulation of Na,K-pump biosynthesis has been examined in the distal colon epithelium of rabbits. Qualitative analysis of alpha-subunit isoform distribution (alpha 1, alpha 2, alpha 3) detected only the alpha 1-mRNA in the distal colon epithelium and outer renal medulla, while all three isoforms were observed in rabbit brain. A low-sodium diet led to a rise in serum aldosterone from 0.6 nM to 1.4-1.9 nM and an increase of alpha 1-mRNA to 162%, beta 1-mRNA to 120%, and the number of Na,K-pump units as determined by specific [3H]-ouabain binding to 182% of control by the second day of the diet. While aldosterone levels remained elevated, a spontaneous decrease in serum levels of T3 and T4 to 50-60% of control from the third day of the diet was followed by downregulation of beta 1-mRNA to 55-67%, alpha 1-mRNA to 63-105%, and of [3H]-ouabain binding to 103% of control, suggesting that a reduced rate of synthesis of the beta 1-subunit is rate limiting for Na,K-pump biosynthesis. Substitution with T3 (10 micrograms/kg) at the seventh day with transient restoration of serum T3 to control levels, led to rapid accumulation of beta 1-mRNA to 152%, of alpha 1-mRNA to 135%, and of the number of Na,K-pump units to 153% of control. This is consistent with thyroid hormone having a permissive role for the aldosterone stimulation of Na,K-pump biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Watson, Christopher J.; Turkenburg, Johan P. [The University of York, Heslington, York YO10 5DD (United Kingdom); Jiráček, Jiří [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Brzozowski, Andrzej M., E-mail: marek.brzozowski@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  13. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    Directory of Open Access Journals (Sweden)

    Dam Phuongan

    2011-06-01

    Full Text Available Abstract Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH receptor (LHR expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours. Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are

  14. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer.

    Science.gov (United States)

    Ha, S; Iqbal, N J; Mita, P; Ruoff, R; Gerald, W L; Lepor, H; Taneja, S S; Lee, P; Melamed, J; Garabedian, M J; Logan, S K

    2013-08-22

    Integration of cellular signaling pathways with androgen receptor (AR) signaling can be achieved through phosphorylation of AR by cellular kinases. However, the kinases responsible for phosphorylating the AR at numerous sites and the functional consequences of AR phosphorylation are only partially understood. Bioinformatic analysis revealed AR serine 213 (S213) as a putative substrate for PIM1, a kinase overexpressed in prostate cancer. Therefore, phosphorylation of AR serine 213 by PIM1 was examined using a phosphorylation site-specific antibody. Wild-type PIM1, but not catalytically inactive PIM1, specifically phosphorylated AR but not an AR serine-to-alanine mutant (S213A). In vitro kinase assays confirmed that PIM1 can phosphorylate AR S213 in a ligand-independent manner and cell type-specific phosphorylation was observed in prostate cancer cell lines. Upon PIM1 overexpression, AR phosphorylation was observed in the absence of hormone and was further increased in the presence of hormone in LNCaP, LNCaP-abl and VCaP cells. Moreover, phosphorylation of AR was reduced in the presence of PIM kinase inhibitors. An examination of AR-mediated transcription showed that reporter gene activity was reduced in the presence of PIM1 and wild-type AR, but not S213A mutant AR. Androgen-mediated transcription of endogenous PSA, Nkx3.1 and IGFBP5 was also decreased in the presence of PIM1, whereas IL6, cyclin A1 and caveolin 2 were increased. Immunohistochemical analysis of prostate cancer tissue microarrays showed significant P-AR S213 expression that was associated with hormone refractory prostate cancers, likely identifying cells with catalytically active PIM1. In addition, prostate cancers expressing a high level of P-AR S213 were twice as likely to be from biochemically recurrent cancers. Thus, AR phosphorylation by PIM1 at S213 impacts gene transcription and is highly prevalent in aggressive prostate cancer.

  15. Serotonin 2A and 2C receptor biosynthesis in the rodent striatum during postnatal development: mRNA expression and functional linkage to neuropeptide gene regulation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-11-01

    The present study was designed to determine if there are region-specific differences in serotonin (5-HT) neurotransmission and 5-HT receptor expression that may limit the stimulatory effects of the 5-HT releaser p-chloroamphetamine (pCA) on striatal neuropeptide gene expression to the posterior striatum (P-STR) during postnatal maturation. Sprague-Dawley rat brains from postnatal days (PND) 1-35 were processed for 5-HT(2A) and 5-HT(2C) receptor mRNA expression by in situ hybridization and monoamine analysis by HPLC. Within the P-STR, 5-HT(2A) receptor mRNA expression reached young adult (PND 35) levels by PND 3, while levels in the A-STR were significantly less (range: 1.43 +/- 0.219-6. 36 +/- 0.478) than P-STR (5.36 +/- 0.854-12.11 +/- 1.08) at each respective age throughout the time course. 5-HT(2C) receptor mRNA expression reached young adult levels at PND 7 in the A-STR and by PND 3 in the P-STR. At each PND age 5-HT(2C) receptor mRNA levels within the P-STR were significantly less (6.23 +/- 1.02-12.32 +/- 0.427) than the A-STR (7.31 +/- 1.65-26.84 +/- 2.24). 5-HT content increased across the developmental time course within the P-STR (5.01 +/- 0.327-15.7 +/- 1.03 ng/mg protein) and A-STR (2.97 +/- 0. 223-11.2 +/- 0.701 ng/mg protein). Four hours following injection (i. p.) of pCA (10 mg/kg), preprotachykinin (PPT) mRNA levels increased 89% in the P-STR but not the anterior (A-STR) striatum of the 3-week-old rat, which were prevented by preinjection (30 min, i.p.) of the 5-HT(2) receptor antagonist ritanserin (1 mg/kg). Together, these data suggest that faster maturity of 5-HT(2A) receptor expression in the P-STR may be sufficient to convey the region-specific acute stimulatory effects of pCA on PPT mRNA transcription in the developing rodent striatum. These results provide further evidence that the influence of 5-HT on neuropeptide gene expression is far stronger in caudal vs. rostral striatal regions during postnatal development.

  16. Taltirelin is a superagonist at the human thyrotropin-releasing hormone receptor

    Directory of Open Access Journals (Sweden)

    Nanthakumar eThirunarayanan

    2012-10-01

    Full Text Available Taltirelin (TAL is a thyrotropin-releasing hormone (TRH analog that is approved for use in humans in Japan. In this study, we characterized TAL binding to and signaling by the human TRH receptor (TRH-R in a model cell system. We found that TAL exhibited lower binding affinities than TRH and lower signaling potency via the inositol-1,4,5-trisphosphate/calcium pathway than TRH. However, TAL exhibited higher intrinsic efficacy than TRH in stimulating inositol-1,4,5-trisphosphate second messenger generation. This is the first study that elucidates the pharmacology of TAL at TRH-R and shows that TAL is a superagonist at TRH-R. We suggest the superagonism exhibited by TAL may in part explain its higher activity in mediating CNS effects in humans compared to TRH.

  17. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation.

    Science.gov (United States)

    Ono, Wanida; Sakagami, Naoko; Nishimori, Shigeki; Ono, Noriaki; Kronenberg, Henry M

    2016-04-12

    Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide (PTHrP) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C (Nfic). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP-PPR system during root morphogenesis and tooth eruption.

  18. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications.

    Science.gov (United States)

    Kopchick, John J; List, Edward O; Kelder, Bruce; Gosney, Elahu S; Berryman, Darlene E

    2014-04-05

    The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer.

  19. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  20. Hormone-receptor positive breast cancer: highlights from the 39(TH) San Antonio Breast Cancer Symposium.

    Science.gov (United States)

    Zucchini, Giorgia; Montemurro, Filippo

    2017-06-01

    The San Antonio Breast Cancer Symposium is considered one of the most influential international meetings focusing on breast cancer management, covering several areas of study from basic research to clinical practice topics. a number of oral presentations addressing hormone receptor-positive breast cancer brought new data about critical subjects like the optimal duration of adjuvant endocrine therapy, new prognostic markers and their potential role in guiding adjuvant treatment choices, new insights into genomic alterations acquired during the metastatic process, and pharmacologic strategies to overcome resistance to endocrine therapy. This article aims at summarizing some of the presentations that, in our opinion, are expected to have an impact on clinical practice and research programs in this patient population.

  1. Reproductive factors and hormone receptor status among very young (<35 years) breast cancer patients.

    Science.gov (United States)

    Jia, Xiaoqing; Liu, Guangyu; Mo, Miao; Cheng, Jingyi; Shen, Zhenzhou; Shao, Zhimin

    2015-09-15

    The prognosis for breast cancer occurs in young women is usually poor. The impact of different reproductive factors on disease characteristics is still largely unknown. We analyzed 261 patients aged ≤35 years old who were treated at the Cancer Hospital of Fudan University, Shanghai, China. The relationships between certain reproductive factors (age at menarche, parity, number of children, breastfeeding, history of abortion, age at first full-term pregnancy and oral contraceptive (OC) use) and disease characteristics were evaluated. Compared with patients who experienced fewer full-term pregnancies (menarche was ≥15 years exhibited a greater chance of PR-positive tumors (64.8%) (P = 0.036) compared with those whose age of menarche was menarche are more possible to exhibit hormone receptor-positive tumors. Additionally, patients who have taken OCs are more likely to present with advanced disease.

  2. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat

    Directory of Open Access Journals (Sweden)

    Jean Z. Lin

    2015-11-01

    Full Text Available The functional conversion of white adipose tissue (WAT into a tissue with brown adipose tissue (BAT-like activity, often referred to as “browning,” represents an intriguing strategy for combating obesity and metabolic disease. We demonstrate that thyroid hormone receptor (TR activation by a synthetic agonist markedly induces a program of adaptive thermogenesis in subcutaneous WAT that coincides with a restoration of cold tolerance to cold-intolerant mice. Distinct from most other browning agents, pharmacological TR activation dissociates the browning of WAT from activation of classical BAT. TR agonism also induces the browning of white adipocytes in vitro, indicating that TR-mediated browning is cell autonomous. These data establish TR agonists as a class of browning agents, implicate the TRs in the browning of WAT, and suggest a profound pharmacological potential of this action.

  3. The growth hormone receptor gene-disrupted mouse fails to respond to an intermittent fasting diet.

    Science.gov (United States)

    Arum, Oge; Bonkowski, Michael S; Rocha, Juliana S; Bartke, Andrzej

    2009-12-01

    The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long lived; and this longevity is not responsive to 30% caloric restriction, in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction, we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting diet. The intermittent fasting diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction, we postulate that GHR-KO mice would be resistant to any manner of dietary restriction; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan extending potential of an intervention.

  4. Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis

    Institute of Scientific and Technical Information of China (English)

    BINDU D PAUL; YUN-BO SHI

    2003-01-01

    The biological effects of thyroid hormone(T3)are mediated by the thyroid hormone receptor(TR).Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3.T3 regulates a series of orchestrated developmental changes,which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog.T3 is presumed to bind to TRs,which in turn recruit coactivators,leading to gene activation.The best-studied coactivators belong to the p 160 or SRC family.Members of this family include SRC 1/NCoA- 1,SRC2/TIF2/GRIP 1,and SRC3/pCIP/ACTR/AIB- 1/RAC-3/TRAM- 1.These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP.Here,we studied the expression patterns of these coactivators during various stages of development.Amongst the coactivators cloned in Xenopus laevis,SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis,and SRC2 and p300 are expressed throughout postembryonic development with little change in their expression levels.These results support the view that these coactivators participate in gene regulation by TR during metamorphosis.

  5. The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors.

    Science.gov (United States)

    Safi, Rachid; Bertrand, Stéphanie; Marchand, Oriane; Duffraisse, Marilyne; de Luze, Amaury; Vanacker, Jean-Marc; Maraninchi, Marie; Margotat, Alain; Demeneix, Barbara; Laudet, Vincent

    2004-02-01

    Neotenic amphibians such as the axolotl (Ambystoma mexicanum) are often unable to undergo metamorphosis under natural conditions. It is thought that neoteny represents a deviation from the standard course of amphibian ontogeny, affecting the thyroid axis at different levels from the central nervous system to peripheral organs. Thyroid hormone receptors (TRs) that bind the thyroid hormone (TH) T(3) have been described in axolotl. However, the full sequences of TR were needed to better characterize the TH response and to be able to assess their functional capacity at the molecular level. We report that each of the alpha and beta axolotl TRs bind both DNA and TH, and they activate transcription in response to TH in a mammalian cell-based transient transfection assay. Moreover, both TRs are expressed in axolotl tissues. Interestingly, each TR gene generates alternatively spliced isoforms, harboring partial or total deletions of the ligand-binding domain, which are expressed in vivo. Further, we found that in the axolotl, TH regulates the expression of stromelysin 3 and collagenase 3, which are TH target genes in Xenopus. Taken together, these results suggest that axolotl TRs are functional and that the molecular basis of neoteny in the axolotl is not linked to a major defect in TH response in peripheral tissues.

  6. Structure-activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor.

    Science.gov (United States)

    Ren, Xiao-Min; Zhang, Yin-Feng; Guo, Liang-Hong; Qin, Zhan-Fen; Lv, Qi-Yan; Zhang, Lian-Ying

    2015-02-01

    Perfluoroalkyl compounds (PFCs) have been shown to disrupt thyroid functions through thyroid hormone receptor (TR)-mediated pathways, but direct binding of PFCs with TR has not been demonstrated. We investigated the binding interactions of 16 structurally diverse PFCs with human TR, their activities on TR in cells, and the activity of perfluorooctane sulfonate (PFOS) in vivo. In fluorescence competitive binding assays, most of the 16 PFCs were found to bind to TR with relative binding potency in the range of 0.0003-0.05 compared with triiodothyronine (T3). A structure-binding relationship for PFCs was observed, where fluorinated alkyl chain length longer than ten, and an acid end group were optimal for TR binding. In thyroid hormone (TH)-responsive cell proliferation assays, PFOS, perfluorohexadecanoic acid, and perfluorooctadecanoic acid exhibited agonistic activity by promoting cell growth. Furthermore, similar to T3, PFOS exposure promoted expression of three TH upregulated genes and inhibited three TH downregulated genes in amphibians. Molecular docking analysis revealed that most of the tested PFCs efficiently fit into the T3-binding pocket in TR and formed a hydrogen bond with arginine 228 in a manner similar to T3. The combined in vitro, in vivo, and computational data strongly suggest that some PFCs disrupt the normal activity of TR pathways by directly binding to TR.

  7. Egg size-dependent expression of growth hormone receptor accompanies compensatory growth in fish.

    Science.gov (United States)

    Segers, F H I D; Berishvili, G; Taborsky, B

    2012-02-07

    Large egg size usually boosts offspring survival, but mothers have to trade off egg size against egg number. Therefore, females often produce smaller eggs when environmental conditions for offspring are favourable, which is subsequently compensated for by accelerated juvenile growth. How this rapid growth is modulated on a molecular level is still unclear. As the somatotropic axis is a key regulator of early growth in vertebrates, we investigated the effect of egg size on three key genes belonging to this axis, at different ontogenetic stages in a mouthbrooding cichlid (Simochromis pleurospilus). The expression levels of one of them, the growth hormone receptor (GHR), were significantly higher in large than in small eggs, but remarkably, this pattern was reversed after hatching: young originating from small eggs had significantly higher GHR expression levels as yolk sac larvae and as juveniles. GHR expression in yolk sac larvae was positively correlated with juvenile growth rate and correspondingly fish originating from small eggs grew faster. This enabled them to catch up fully in size within eight weeks with conspecifics from larger eggs. This is the first evidence for a potential link between egg size, an important maternal effect, and offspring gene expression, which mediates an adaptive adjustment in a relevant hormonal axis.

  8. Non-mammalian models reveal the role of alternative ligands for thyroid hormone receptors.

    Science.gov (United States)

    Orozco, Aurea; Lazcano, Iván; Hernández-Puga, Gabriela; Olvera, Aurora

    2017-03-04

    Thyroid hormones, or THs, are well-known regulators of a wide range of biological processes that occur throughout the lifespan of all vertebrates. THs act through genomic mechanisms mediated by thyroid hormone receptors (TRs). The main product of the thyroid gland is thyroxine or T4, which can be further transformed by different biochemical pathways to produce at least 15 active or inactive molecules. T3, a product of T4 outer-ring deiodination, has been recognized as the main bioactive TH. However, growing evidence has shown that other TH derivatives are able to bind to, and/or activate TRs, to induce thyromimetic effects. The compiled data in this review points to at least two of these TR alternative ligands: TRIAC and T2. Taking this into account, non-mammalian models have proven to be advantageous to explore new TH derivatives with potential novel actions, prompting a re-evaluation of the role and mechanism of action of TR alternative ligands that were previously believed to be inactive. The functional implications of these ligands across different vertebrates may require us to reconsider current established notions of thyroid physiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Egg size-dependent expression of growth hormone receptor accompanies compensatory growth in fish

    Science.gov (United States)

    Segers, F. H. I. D.; Berishvili, G.; Taborsky, B.

    2012-01-01

    Large egg size usually boosts offspring survival, but mothers have to trade off egg size against egg number. Therefore, females often produce smaller eggs when environmental conditions for offspring are favourable, which is subsequently compensated for by accelerated juvenile growth. How this rapid growth is modulated on a molecular level is still unclear. As the somatotropic axis is a key regulator of early growth in vertebrates, we investigated the effect of egg size on three key genes belonging to this axis, at different ontogenetic stages in a mouthbrooding cichlid (Simochromis pleurospilus). The expression levels of one of them, the growth hormone receptor (GHR), were significantly higher in large than in small eggs, but remarkably, this pattern was reversed after hatching: young originating from small eggs had significantly higher GHR expression levels as yolk sac larvae and as juveniles. GHR expression in yolk sac larvae was positively correlated with juvenile growth rate and correspondingly fish originating from small eggs grew faster. This enabled them to catch up fully in size within eight weeks with conspecifics from larger eggs. This is the first evidence for a potential link between egg size, an important maternal effect, and offspring gene expression, which mediates an adaptive adjustment in a relevant hormonal axis. PMID:21752823

  10. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling.

    Science.gov (United States)

    McGarvey, Jennifer C; Xiao, Kunhong; Bowman, Shanna L; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W Bruce; Ardura, Juan A; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A; Friedman, Peter A

    2016-05-20

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor.

  11. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling*

    Science.gov (United States)

    McGarvey, Jennifer C.; Xiao, Kunhong; Bowman, Shanna L.; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W. Bruce; Ardura, Juan A.; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A.; Friedman, Peter A.

    2016-01-01

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor. PMID:27008860

  12. The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels.

    Directory of Open Access Journals (Sweden)

    Mattias Vesterlund

    Full Text Available Growth Hormone is essential for the regulation of growth and the homeostatic control of intermediary metabolism. GH actions are mediated by the Growth Hormone Receptor; a member of the cytokine receptor super family that signals chiefly through the JAK2/STAT5 pathway. Target tissue responsiveness to GH is under regulatory control to avoid excessive and off-target effects upon GHR activation. The suppressor of cytokine signalling 2 (SOCS is a key regulator of GHR sensitivity. This is clearly shown in mice where the SOCS2 gene has been inactivated, which show 30-40% increase in body length, a phenotype that is dependent on endogenous GH secretion. SOCS2 is a GH-stimulated, STAT5b-regulated gene that acts in a negative feedback loop to downregulate GHR signalling. Since the biochemical basis for these actions is poorly understood, we studied the molecular function of SOCS2. We demonstrated that SOCS2 is part of a multimeric complex with intrinsic ubiquitin ligase activity. Mutational analysis shows that the interaction with Elongin B/C controls SOCS2 protein turnover and affects its molecular activity. Increased GHR levels were observed in livers from SOCS2⁻/⁻ mice and in the absence of SOCS2 in in vitro experiments. We showed that SOCS2 regulates cellular GHR levels through direct ubiquitination and in a proteasomally dependent manner. We also confirmed the importance of the SOCS-box for the proper function of SOCS2. Finally, we identified two phosphotyrosine residues in the GHR to be responsible for the interaction with SOCS2, but only Y487 to account for the effects of SOCS2. The demonstration that SOCS2 is an ubiquitin ligase for the GHR unveils the molecular basis for its physiological actions.

  13. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  14. ICON 2013: Practical consensus recommendations for hormone receptor-positive Her2-negative advanced or metastatic breastcancer

    Directory of Open Access Journals (Sweden)

    P M Parikh

    2014-01-01

    Full Text Available The management of hormone receptor-positive Her2-negative breast cancer patients with advanced or metastatic disease is a common problem in India and other countries in this region. This expert group used data from published literature, practical experience, and opinion of a large group of academic oncologists, to arrive at practical consensus recommendations for use by the community oncologists.

  15. Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits.

    Science.gov (United States)

    Guadaño-Ferraz, A; Benavides-Piccione, R; Venero, C; Lancha, C; Vennström, B; Sandi, C; DeFelipe, J; Bernal, J

    2003-01-01

    Brain development and function are dependent on thyroid hormone (T3), which acts through nuclear hormone receptors. T3 receptors (TRs) are transcription factors that activate or suppress target gene expression in a hormone-dependent or -independent fashion. Two distinct genes, TRalpha and TRbeta, encode several receptor isoforms with specific functions defined in many tissues but not in the brain. Mutations in the TRbeta gene cause the syndrome of peripheral resistance to thyroid hormone; however, no alterations of the TRalpha gene have been described in humans. Here we demonstrate that mice lacking the TRalpha1 isoform display behavioral abnormalities of hippocampal origin, as shown by the open field and fear conditioning tests. In the open field test mutant mice revealed less exploratory behavior than wild-type mice. In the contextual fear conditioning test mutant mice showed a significantly higher freezing response than wild-type controls when tested 1 week after training. These findings correlated with fewer GABAergic terminals on the CA1 pyramidal neurons in the mutant mice. Our results indicate that TRalpha1 is involved in the regulation of hippocampal structure and function, and raise the possibility that deletions or mutations of this receptor isoform may lead to behavioral changes or even psychiatric syndromes in humans.

  16. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling

    DEFF Research Database (Denmark)

    Adams, T E; Hansen, J A; Starr, R;

    1998-01-01

    Four members (SOCS-1, SOCS-2, SOCS-3, and CIS) of a family of cytokine-inducible, negative regulators of cytokine receptor signaling have recently been identified. To address whether any of these genes are induced in response to growth hormone (GH), serum-starved 3T3-F442A fibroblasts were...

  17. ICON 2013: practical consensus recommendations for hormone receptor-positive Her2-negative advanced or metastatic breastcancer.

    Science.gov (United States)

    Parikh, P M; Gupta, S; Dawood, S; Rugo, H; Bhattacharyya, G S; Agarwal, A; Chacko, R; Sahoo, T P; Babu, G; Agarwal, S; Munshi, A; Goswami, C; Smruti, B K; Bondarde, S; Desai, C; Rajappa, S; Somani, N; Singh, M; Nimmagadda, R; Pavitran, K; Mehta, A; Parmar, V; Desai, S; Nair, R; Doval, D

    2014-01-01

    The management of hormone receptor-positive Her2-negative breast cancer patients with advanced or metastatic disease is a common problem in India and other countries in this region. This expert group used data from published literature, practical experience, and opinion of a large group of academic oncologists, to arrive at practical consensus recommendations for use by the community oncologists.

  18. Molecular cloning and tissue distribution of mRNA encoding porcine 5-HT7 receptor and its comparison with the structure of other species.

    Science.gov (United States)

    Bhalla, Pankaj; Saxena, Pramod R; Sharma, Hari S

    2002-09-01

    The effects of 5-hydroxytriptamine (5-HT, serotonin) are mediated via five main receptor types of which the 5-HT7 receptor is the most recently characterised member. The 5-HT7 receptor has been shown to participate in mediating cranial blood vessels dilatation that may result in migraine headache. We report here the cDNA cloning, sequencing and tissue distribution of porcine 5-HT7 receptor and illustrate its comparison with corresponding receptor of known species. Employing a combination of reverse transcriptase and inverse polymerase chain reaction we amplified and sequenced a full length cDNA from the porcine cerebral cortex. The deduced amino acid sequence comparison confirmed that the cloned porcine receptor belongs to 5-HT7 receptor as described for human and other species and showing overall homology of 92-96%. The expression of 5-HT7 receptor mRNA was observed in porcine central (cerebral cortex, trigeminal ganglion and cerebellum) as well as in peripheral (pulmonary and coronary arteries, superior vena cava and saphenous vein) tissues. The established cDNA sequence and tissue distribution of porcine 5-HT7 receptor will be helpful in exploring the role of this receptor in pathophysiological processes and to predict as a potential therapeutic target for antimigraine drug development.

  19. Reliable PCR quantitation of estrogen, progesterone and ERBB2 receptor mRNA from formalin-fixed, paraffin-embedded tissue is independent of prior macro-dissection

    DEFF Research Database (Denmark)

    Tramm, Trine; Hennig, Guido; Kyndi, Marianne

    2013-01-01

    receptor 2 (ERBB2), by comparing gene expression from whole slide and tumor-enriched sections, and correlating gene expression from whole slide sections with corresponding immunohistochemistry. Gene expression, based on mRNA extracted from a training set (36 paraffin blocks) and two validation sets (133...... and ERBB2, and 83 % for PGR. Overall agreements, when comparing mRNA expression to immunohistochemistry, were 100 % (ERBB2), 89 % (ESR1) and 83 % (PGR), which was confirmed in the validation sets. Percentage of tumor in the sections did not influence the results. In conclusion, reliable quantification...

  20. The Expression of Toll-like Receptor 2 and 4 mRNA in Local Tissues of Model of Oropharyngeal Candidiasis in Mice

    Institute of Scientific and Technical Information of China (English)

    张少如; 李家文; 贾雪松; 邬炎卿

    2004-01-01

    To investigate the expression of Toll-like receptor (TLR) 2 and 4 mRNA in local tissues of model of oropharyngeal candidiasis in mice and to explore the potential role of TLR2 and TLR4 in earlier period of immune response, a murine model of oropharyngeal candidiasis inoculated by cotton wool balls saturated with candida albicans was established. Mice were sacrificed at the indicated time points and the oropharyngeal tissues were excised. The expression of TLR2 and TLR4 mRNA was detected by RT-PCR. The results showed that low level of TLR2/4 mRNA could be detected in oropharyngeal tissues, but they were markedly up-regulated 6 h after inoculation, peaking after12-24 h. Tissue TLR4 mRNA was gradually down-regulated 24-48 h, while TLR2 mRNA levels remained high up to the 72nd h. These data suggested that oropharyngeal infection of Candida albicans could result in up-regulation of TLR2/4 mRNA expression in local tissues, which might play important roles in earlier period of immune response.

  1. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies.

  2. mRNA Expression of Chemokine Receptors on Peripheral Blood Mononuclear Cells and Correlation with Clinical Features in Systemic Lupus Erythematosus Patients

    Institute of Scientific and Technical Information of China (English)

    Yu-mei Li; Zhi-qiang Chen; Xu Yao; Ai-zhen Yang; An-sheng Li; Dong-ming Liu; Juan-qin Gong

    2010-01-01

    Objective To investigate the expressions of chemokine receptors and interleukin (1L) <