WorldWideScience

Sample records for horizontal sub-surface flow

  1. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  2. Efficiency of a Horizontal Sub-Surface Flow Constructed Wetland Treatment System in an Arid Area

    Directory of Open Access Journals (Sweden)

    Abeer Albalawneh

    2016-02-01

    Full Text Available The main objective of this study was to evaluate the performance and treatment efficiency of the Horizontal Sub-Surface Flow Constructed Wetland treatment system (HSF-CW in an arid climate. Seventeen sub-surface, horizontal-flow HSF-CW units have been operated for approximately three years to improve the quality of partially-treated municipal wastewater. The studied design parameters included two sizes of volcanic tuff media (i.e., fine or coarse, two different bed dimensions (i.e., long and short, and three plantation types (i.e., reed, kenaf, or no vegetation as a control. The effluent Biological Oxygen Demand (BOD5, Chemical Oxygen Demand (COD, Total Suspended Solid (TSS, and phosphorus from all of the treatments were significantly lower as compared to the influent and demonstrated a removal efficiency of 55%, 51%, 67%, and 55%, respectively. There were significant increases in Electrical Conductivity (EC, sulfate, and calcium in the effluent of most HSF-CWs due to evaporative concentration and mineral dissolution from the media. The study suggests that unplanted beds with either fine or coarse media are the most suitable combinations among all of the studied designs based on their treatment efficiency and less water loss in arid conditions.

  3. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  4. Nitrogen Transformation and Removal in Horizontal Surface Flow ...

    African Journals Online (AJOL)

    The potential use of Constructed Mangrove Wetlands (CMWs) as a cheaper, effective and appropriate method for Nitrogen removal from domestic sewage of coastal zone in peri-urban cities was investigated from August 2007 to. September, 2008. Field investigations were made on horizontal surface flow constructed ...

  5. Characterization of horizontal air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional

  6. UASB followed by Sub-Surface Horizontal Flow Phytodepuration for the Treatment of the Sewage Generated by a Small Rural Community

    Directory of Open Access Journals (Sweden)

    Massimo Raboni

    2014-10-01

    Full Text Available The paper presents the results of an experimental process designed for the treatment of the sewage generated by a rural community located in the north-east of Brazil. The process consists of a preliminary mechanical treatment adopting coarse screens and grit traps, followed by a biological treatment in a UASB reactor and a sub-surface horizontal flow phytodepuration step. The use of a UASB reactor equipped with a top cover, as well as of the phytodepuration process employing a porous medium, showed to present important health advantages. In particular, there were no significant odor emissions and there was no evidence of the proliferation of insects and other disease vectors. The plant achieved the following mean abatement efficiencies: 92.9% for BOD5, 79.2% for COD and 94% for Suspended Solids. With regard to fecal indicators average efficiencies of 98.8% for fecal coliforms and 97.9% for fecal enterococci were achieved. The UASB reactor showed an important role in achieving this result. The research was also aimed at evaluating the optimal operating conditions for the UASB reactor in terms of hydraulic load and organic volumetric loading. The achieved results hence indicated that the process may be highly effective for small rural communities in tropical and sub-tropical areas.

  7. Flow structure from a horizontal cylinder coincident with a free surface in shallow water flow

    Directory of Open Access Journals (Sweden)

    Kahraman Ali

    2012-01-01

    Full Text Available Vortex formation from a horizontal cylinder coincident with a free surface of a shallow water flow having a depth of 25.4 [mm] was experimentally investigated using the PIV technique. Instantaneous and time-averaged flow patterns in the wake region of the cylinder were examined for three different cylinder diameter values under the fully developed turbulent boundary layer condition. Reynolds numbers were in the range of 1124£ Re£ 3374 and Froude numbers were in the range of 0.41 £ Fr £ 0.71 based on the cylinder diameter. It was found that a jet-like flow giving rise to increasing the flow entrainment between the core and wake regions depending on the cylinder diameter was formed between the lower surface of the cylinder and bottom surface of the channel. Vorticity intensity, Reynolds stress correlations and the primary recirculating bubble lengths were grown to higher values with increasing the cylinder diameter. On the other hand, in the case of the lowest level of the jet-like flow emanating from the beneath of the smallest cylinder, the variation of flow characteristics were attenuated significantly in a shorter distance. The variation of the reattachment location of the separated flow to the free-surface is a strong function of the cylinder diameter and the Froude number.

  8. A droplet entrainment model for horizontal segregated flows

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Thomas, E-mail: T.Hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) – Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hänsch, Susann [Imperial College, Department of Mechanical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2015-05-15

    Highlights: • We further developed the flow morphology detection model AIAD. • An advanced droplet entrainment model was introduced. • The new approach is applied against HAWAC experiments. - Abstract: One limitation in simulating horizontal segregated flows is that there is no treatment of droplet formation mechanisms at wavy surfaces. For self-generating waves and slugs, the interfacial momentum exchange and the turbulence parameters have to be modeled correctly. Furthermore, understanding the mechanism of droplet entrainment for heat and mass transfer processes is of great importance in the chemical and nuclear industry. The development of general computational fluid dynamics models is an essential precondition for the application of CFD codes to the modeling of flow related phenomena. The new formulation for the interfacial drag at the free surface and turbulence parameters within the algebraic interfacial area density model (AIAD) represents one step toward a more physical description of free surface flows including less empiricism. The AIAD approach allows the use of different physical models depending on the local fluid morphology inside a macro-scale multi-fluid framework. A further step of improving the modeling of free interfaces lies within the consideration of droplet entrainment mechanisms. In this paper a new sub-grid entrainment model is proposed, which assumes that due to liquid turbulence the interface gets rough and wavy leading to the formation of droplets. Therefore, the droplet entrainment model requires the consideration of an additional droplet phase, which is described with an own set of balance equations in the spirit of the particle model. Two local key factors determine the rate of droplet entrainment: the liquid turbulent kinetic energy as well as the outward velocity gradient of the liquid relative to the interface motion. The new droplet entrainment approach is included into CFD simulations for attempting to reproduce existing

  9. Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces

    Science.gov (United States)

    Ibrahim, F. S.; Hady, F. M.

    1990-06-01

    The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.

  10. Water Entry and Exit of Horizontal Cylinder in Free Surface Flow

    International Nuclear Information System (INIS)

    Hafsia, Zouhaier; Maalel, Khlifa; Mnasri, Chokri; Mohamed, Omri

    2009-01-01

    This paper describes two-dimensional numerical simulations of the water entry and exit of horizontal circular cylinder at constant velocity. The deformation of free surface is described by Navier-Stokes (N S) equations of incompressible and viscous fluid with additional transport equation of the volume-of-fluid (VOF). The motion of the cylinder is modeled by the associated momentum source term implemented in the Phoenicis (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series) code. The domain is discretized by a fixed Cartesian grid using a finite volume method and the cylinder is represented and cut cell method. The simulated results are compared with the numerical results of Lin (2007). This comparison shows good agreement in terms of free surface evolution for water exit and sinking. However, for water entry, the jet flow simulated by Lin is not reproduced. The free surface deformation around the cylinder in downward direction is accurately predicted

  11. Theoretical study of evaporation heat transfer in horizontal microfin tubes: stratified flow model

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H; Wang, Y S [Kyushu Univ., Inst. for Materials Chemistry and Engineering, Kasuga, Fukuoka (Japan)

    2004-08-01

    The stratified flow model of evaporation heat transfer in helically grooved, horizontal microfin tubes has been developed. The profile of stratified liquid was determined by a theoretical model previously developed for condensation in horizontal microfin tubes. For the region above the stratified liquid, the meniscus profile in the groove between adjacent fins was determined by a force balance between the gravity and surface tension forces. The thin film evaporation model was applied to predict heat transfer in the thin film region of the meniscus. Heat transfer through the stratified liquid was estimated by using an empirical correlation proposed by Mori et al. The theoretical predictions of the circumferential average heat transfer coefficient were compared with available experimental data for four tubes and three refrigerants. A good agreement was obtained for the region of Fr{sub 0}<2.5 as long as partial dry out of tube surface did not occur. (Author)

  12. An Experimental Study of Oil / Water Flow in Horizontal Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Elseth, Geir

    2001-07-01

    The purpose of this thesis is to study the behaviour of the simultaneous flow of oil and water in horizontal pipes. In this connection, two test facilities are used. Both facilities have horizontal test sections with inner pipe diameters equal to 2 inches. The largest facility, called the model oil facility, has reservoirs of 1 m{sub 3} of each medium enabling flow rates as high as 30 m{sub 3}/h, which corresponds to mixture velocities as high as 3.35 m/s. The flow rates of oil and water can be varied individually producing different flow patterns according to variations in mixture velocity and input water cut. Two main classes of flows are seen, stratified and dispersed. In this facility, the main focus has been on stratified flows. Pressure drops and local phase fractions are measured for a large number of flow conditions. Among the instruments used are differential pressure transmitters and a traversing gamma densitometer, respectively. The flow patterns that appear are classified in flow pattern maps as functions of either mixture velocity and water cut or superficial velocities. From these experiments a smaller number of stratified flows are selected for studies of velocity and turbulence. A laser Doppler anemometer (LDA) is applied for these measurements in a transparent part of the test section. To be able to produce accurate measurements a partial refractive index matching procedure is used. The other facility, called the matched refractive index facility, has a 0.2 m{sub 3} reservoir enabling mainly dispersed flows. Mixture velocities range from 0.75 m/s to 3 m/s. The fluids in this facility are carefully selected to match the refractive index of the transparent part of the test section. A full refractive index matching procedure is carried out producing excellent optical conditions for velocity and turbulence studies by LDA. In addition, pressure drops and local phase fractions are measured. (author)

  13. The formation of sporadic E layers by a vortical perturbation excited in a horizontal wind shear flow

    Directory of Open Access Journals (Sweden)

    G. G. Didebulidze

    2008-06-01

    Full Text Available The formation of the mid-latitude sporadic E layers (E<sub>s> layers by an atmospheric vortical perturbation excited in a horizontal shear flow (horizontal wind with a horizontal linear shear is investigated. A three-dimensional atmospheric vortical perturbation (atmospheric shear waves, whose velocity vector is in the horizontal plane and has a vertical wavenumber k<sub>z>≠0, can provide a vertical shear of the horizontal wind. The shear waves influence the vertical transport of heavy metallic ions and their convergence into thin and dense horizontal layers. The proposed mechanism takes into account the dynamical influence of the shear wave velocity in the horizontal wind on the vertical drift velocity of the ions. It also can explain the multi-layer structure of E<sub>s> layers. The pattern of the multi-layer structure depends on the value of the shear-wave vertical wavelength, the ion-neutral collision frequency and the direction of the background horizontal wind. The modelling of formation of sporadic E layers with a single and a double peak is presented. Also, the importance of shear wave coupling with short-period atmospheric gravity waves (AGWs on the variations of sporadic E layer ion density is examined and discussed.

  14. Visualization of Two Phase Flow in a Horizontal Flow with Electrical Resistance Tomography based on Extended Kalman Filter

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Malik, Nauman Muhammad; Khambampati, Anil Kumar; Rashid, Ahmar; Kim, Sin; Kim, Kyung Youn

    2008-01-01

    For the visualization of the phase distribution in two phase flows, the electrical resistance tomography (ERT) technique is introduced. In ERT, the internal resistivity distribution is reconstructed based on the known sets of the injected currents and measured voltages on the surface of the object. The physical relationship between the internal resistivity and the surface voltages is governed by a partial differential equation with appropriate boundary conditions. This paper considers the estimation of the phase distribution with ERT in two phase flow in a horizontal flow using extended Kalman filter. To evaluate the reconstruction performance of the proposed algorithm, the experiments simulated two phase flows in a horizontal flow were carried out. The experiments with two phase flow phantom were done to suggest a practical implication of this research in detecting gas bubble in a feed water pipe of heat transfer systems

  15. Mass transfer in horizontal flow channels with thermal gradients

    International Nuclear Information System (INIS)

    Bendrich, G.; Shemilt, L.W.

    1997-01-01

    Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)

  16. Prediction of evaporation heat transfer coefficient based on gas-liquid two-phase annular flow regime in horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yueshe, E-mail: wangys@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yanling, Wang [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, G -X [Mechanical Engineering Department, The University of Akron, Akron, OH 44325-3903 (United States); Honda, Hiroshi [Kyushu University, 337 Kasuya-machi, Kasuya-gun, Kukuoka 811-2307 (Japan)

    2009-10-15

    A physical model of gas-liquid two-phase annular flow regime is presented for predicting the enhanced evaporation heat transfer characteristics in horizontal microfin tubes. The model is based on the equivalence of a periodical distortion of the disturbance wave in the substrate layer. Corresponding to the stratified flow model proposed previously by authors, the dimensionless quantity Fr{sub 0} = G/[gd{sub e}{rho}{sub v}({rho}{sub l} - {rho}{sub v})]{sup 0.5} may be used as a measure for determining the applicability of the present theoretical model, which was used to restrict the transition boundary between the stratified-wavy flow and the annular/intermittent flows. Comparison of the prediction of the circumferential average heat transfer coefficient with available experimental data for four tubes and three refrigerants reveals that a good agreement is obtained or the trend is better than that of the previously developed stratified flow model for Fr{sub 0} > 4.0 as long as the partial dry out of tube does not occur. Obviously, the developed annular model is applicable and reliable for evaporation in horizontal microfin tubes under the case of high heat flux and high mass flux.

  17. The model coupling fluid flow in reservoir with flow in horizontal wellbore

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangping; Jiang, Zhixiang [RIPED-TEXACO Horizontal Well Technology Laboratory (United States)

    1998-12-31

    Three-dimensional pressure distributions of oil flow in a reservoir with horizontal well were derived, and a new formula to calculate pressure drop along the horizontal wellbore was developed based on the principle of conservation of matter and momentum. The formula considers the effect of influx into the horizontal wellbore from the reservoir on pressure drop in the wellbore. A mathematical model to couple fluid flow in the reservoir with flow in the horizontal wellbore is presented. Model results and experimental data showed good correspondence. Results showed the influence of pressure drop on well performance. 13 refs., 2 tabs., 7 figs.

  18. Investigations on flow reversal in stratified horizontal flow

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2005-01-01

    The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing

  19. Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow

    Science.gov (United States)

    Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.

    2011-12-01

    Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference

  20. Bubble shape in horizontal and near horizontal intermittent flow

    International Nuclear Information System (INIS)

    Gu, Hanyang; Guo, Liejin

    2015-01-01

    Highlights: • The bubble shapes in intermittent flows are presented experimentally. • The nose-tail inversion phenomenon appears at a low Froude number in downward pipe. • Transition from plug to slug flow occurs when the bubble tail changes from staircase pattern to hydraulic jump. - Abstract: This paper presents an experimental study of the shape of isolated bubbles in horizontal and near horizontal intermittent flows. It is found that the shapes of the nose and body of bubble depend on the Froude number defined by gas/liquid mixture velocity in a pipe, whereas the shape of the back of bubble region depends on both the Froude number and bubble length. The photographic studies show that the transition from plug to slug flow occurs when the back of the bubble changes from staircase pattern to hydraulic jump with the increase of the Froude number and bubble length. The effect of pipe inclination on characteristics of bubble is significant: The bubble is inversely located in a downwardly inclined pipe when the Froude number is low, and the transition from plug flow to slug flow in an upward inclined pipe is more ready to occur compared with that in a downwardly inclined pipe

  1. Flow mapping for ESS horizontal target

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.; Kikura, H.; Taishi, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Flow behaviour for ESS horizontal target is studied experimentally using two dimensional water model. A velocity field of stationary flow in reaction zone has been obtained. Three dimensional effect was also studied as a spanwise flow structure. (author) 3 figs., 3 refs.

  2. Flow boiling heat transfer enhancement on copper surface using Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sujith Kumar, C.S., E-mail: sujithdeepam@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Suresh, S., E-mail: ssuresh@nitt.edu [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Aneesh, C.R., E-mail: aneeshcr87@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Santhosh Kumar, M.C., E-mail: santhoshmc@nitt.edu [Department of Physics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Praveen, A.S., E-mail: praveen_as_1215@yahoo.co.in [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Raji, K., E-mail: raji.kochandra@gmail.com [School of Nano Science and Technology, National Institute of Technology, Calicut 673601, Kerala (India)

    2015-04-15

    Graphical abstract: - Highlights: • Fe–Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings were coated on the copper using spray pyrolysis. • Effect of Fe doping on porosity was determined using AFM. • Effect of Fe doping on hydrophilicity was determined. • Higher enhancement in CHF was obtained for 7.2 at% Fe doped coated sample. - Abstract: In the present work, flow boiling experiments were conducted to study the effect of spray pyrolyzed Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings over the copper heater blocks on critical heat flux (CHF) and boiling heat transfer coefficient. Heat transfer studies were conducted in a mini-channel of overall dimension 30 mm × 20 mm × 0.4 mm using de-mineralized water as the working fluid. Each coated sample was tested for two mass fluxes to explore the heat transfer performance. The effect of Fe addition on wettability and porosity of the coated surfaces were measured using the static contact angle metre and the atomic force microscope (AFM), and their effect on flow boiling heat transfer were investigated. A significant enhancement in CHF and boiling heat transfer coefficient were observed on all coated samples compared to sand blasted copper surface. A maximum enhancement of 52.39% and 44.11% in the CHF and heat transfer coefficient were observed for 7.2% Fe doped TiO{sub 2}–Al{sub 2}O{sub 3} for a mass flux of 88 kg/m{sup 2} s.

  3. Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream

    Directory of Open Access Journals (Sweden)

    I.L. Animasaun

    2017-12-01

    Full Text Available Geometrically, the upper pointed surface of an aircraft and bonnet of a car are examples of upper horizontal surfaces of a paraboloid of revolution (uhspr. The motion of these objects strongly depends on the boundary layer that is formed within the immediate space on it. However, each of these surfaces is neither a horizontal/vertical nor cone/wedge and neither a cone nor a wedge. This article presents the motion of 2-dimensional Blasius flow of Carreau fluid on the surface of such object. The case in which the reaction between the Carreau fluid and catalyst at the surface produces significant temperature differences which consequently set up buoyancy-driven flows within the boundary layer is investigated. Single first-order Arrhenius kinetics is adopted to model the reaction on the surface of the catalyst situated on uhspr which initiates the free convection. Suitable similarity variables are applied to non-dimensionalized, parameterized and reduce the governing partial differential equations to a coupled ordinary differential equations (BVP. The BVP is solved numerically using the shooting technique. Temperature distribution in the flow of viscoelastic Carreau fluid is greater than that of a Newtonian fluid. Local heat transfer rate decreases faster when the Carreau fluid is characterized as shear-thinning. Maximum concentration is guaranteed at a small value of power-law index n and large value of thickness parameter. Keywords: Viscoelastic-Carreau fluid, Catalitic surface, Paraboloid of revolution, Numerical method, Uhspr, Boundary layer analysis

  4. Two-phase flow patterns in horizontal rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Ron’shin Fedor

    2016-01-01

    Full Text Available The two-phase flow in a short horizontal channel of rectangular cross-section of 1 × 19 mm2 has been studied experimentally. Five conventional two-phase flow patterns have been detected (bubble, churn, stratified, annular and jet and transitions between them have been determined. It is shown that a change in the width of the horizontal channels has a substantial effect on the boundaries between the flow regimes.

  5. An Analysis of Saturated Film Boiling Heat Transfer from a Vertical Slab with Horizontal Bottom Surface

    OpenAIRE

    茂地, 徹; 山田, たかし

    1997-01-01

    The film boiling heat transfer from a vertical slab with horizontal bottom surface to saturated liquids was analyzed theoretically. Bromley's solution for the vertical surface was modified to accommodate the continuity of the vapor mass flow rate around the lower corner of the vertical slab. The thickness of the vapor film covering the vertical surface of the slab was increased owing to the inflow of vapor generated under the horizontal bottom surface and resulted in a decrease in the heat tr...

  6. Flow Vaporization of CO{sub 2} in Microchannel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Jostein

    2002-07-01

    Carbon dioxide is receiving renewed interest as an efficient and environmentally safe refrigerant in a number of applications, including mobile air conditioning and heat pump systems, and hot water heat pumps. Compact heat exchangers for CO{sub 2} systems are designed with small-diameter tubing. The purpose of this study is therefore to provide a better basis for understanding and predicting heat transfer and pressure drop during flow vaporization of CO{sub 2} in microchannels. The ''unusual'' properties of carbon dioxide give heat transfer and two-phase flow characteristics that are very different from those of conventional refrigerants. Examples of these differences are the much higher pressure, the resulting high vapour density, a very low surface tension, and a low liquid viscosity. High pressure and low surface tension has a major effect on nucleate boiling characteristics, and earlier test data have shown a clear dominance of nucleate boiling even at very high mass flux. Heat transfer tests were conducted in a rig using a flat, extruded aluminium microchannel tube of 540 mm length with 25 channels of 0.81 mm diameter. The horizontal test tube was heated by a water jacket in order to get representative boundary conditions for air-to-refrigerant heat transfer (''fluid heating''). Constant heat flux conditions do not simulate these boundary conditions well, and may give unrealistic behaviour especially in relation to dryout and post-dryout heat transfer. Systematic tests at constant heat flux with single-phase CO{sub 2} flow on the inside generated data that were used in the derivation of a model for water-side beat transfer coefficient. A regression based on these data gave a calibrated equation for water-side heat transfer on the form NuNu(Re,Pr). This equation was then used in later experiments to subtract water-side thermal resistance from the measured overall resistance (1/UA), thereby finding the internal heat

  7. Experiment and numerical simulation of bubbly two-phase flow across horizontal and inclined rod bundles

    International Nuclear Information System (INIS)

    Serizawa, A.; Huda, K.; Yamada, Y.; Kataoka, I.

    1997-01-01

    Experimental and numerical analyses were carried out on vertically upward air-water bubbly two-phase flow behavior in both horizontal and inclined rod bundles with either in-line or staggered array. The inclination angle of the rod bundle varied from 0 to 60 with respect to the horizontal. The measured phase distribution indicated non-uniform characteristics, particularly in the direction of the rod axis when the rods were inclined. The mechanisms for this non-uniform phase distribution is supposed to be due to: (1) Bubble segregation phenomenon which depends on the bubble size and shape: (2) bubble entrainment by the large scale secondary flow induced by the pressure gradient in the horizontal direction which crosses the rod bundle; (3) effects of bubble entrapment by vortices generated in the wake behind the rods which travel upward along the rod axis; and (4) effect of bubble entrainment by local flows sliding up along the front surface of the rods. The liquid velocity and turbulence distributions were also measured and discussed. In these speculations, the mechanisms for bubble bouncing at the curved rod surface and turbulence production induced by a bubble were discussed, based on visual observations. Finally, the bubble behaviors in vertically upward bubbly two-phase flow across horizontal rod bundle were analyzed based on a particle tracking method (one-way coupling). The predicted bubble trajectories clearly indicated the bubble entrapment by vortices in the wake region. (orig.)

  8. Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress

    KAUST Repository

    Paterson, C.; Wilson, S. K.; Duffy, B. R.

    2014-01-01

    large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a

  9. Thermal behavior of horizontally mixed surfaces on Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  10. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO<sub>2sub> detection techniques and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee H. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Dobeck, Laura M. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Repasky, Kevin S. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Nehrir, Amin R. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Humphries, Seth D. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Barr, Jamie L. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Keith, Charlie J. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Shaw, Joseph A. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Rouse, Joshua H. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Cunningham, Alfred B. [Montana State Univ., Bozeman, MT (United States). Dept. of Civil Engineering; Benson, Sally M. [Stanford Univ., CA (United States). Global Climate and Energy Project; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Lewicki, Jennifer L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Wells, Arthur W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Diehl, J. Rodney [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Strazisar, Brian R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Fessenden, Julianna E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Div. of Earth and Environmental Sciences; Rahn, Thom A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Div. of Earth and Environmental Sciences; Amonette, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barr, Jon L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pickles, William L. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Jacobson, James D. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Silver, Eli A. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Male, Erin J. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Rauch, Henry W. [Univ. of West Virginia, Morgantown, WV (United States). Dept. of Geology and Geography; Gullickson, Kadie S. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Trautz, Robert [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Kharaka, Yousif [U.S. Geological Survey, Menlo Park, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Wielopolski, Lucien [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2010-03-01

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO<sub>2sub> transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO<sub>2sub> release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO<sub>2sub> transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO<sub>2sub> from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U. S. Geological Survey investigated movement of CO<sub>2sub> through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.

  11. Research for rolling effects on flow pattern of gas-water flow in horizontal tubes

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2007-01-01

    The flow pattern transition of two-phase flow is caused by the inertial force resulted from rolling and incline of horizontal tubes under rolling state. an experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state, which rolling period is 15 second and rolling angle is 10 degrees, and a pattern flow picture is shown. It was found that there are two flow patterns in one rolling period under some gas flux and water flux. (authors)

  12. Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2012-01-01

    Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.

  13. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, 2

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Hirata, Masaru.

    1977-01-01

    The sodium vapor deposition onto a horizontal flat plate above liquid sodium surface was studied. The analysis was performed by assuming that the sodium mist is emitted into the main flow without condensation and then grows up in the main flow and drops on the sodium surface. The effects of growth of sodium mist to the system were investigated. The model of the phenomena is the sodium deposition onto a horizontal flat plate which is placed above the sodium surface with the medium cover gas. One-dimensional analysis can be done. The rate of deposition is greatly reduced when the temperature of the flat plate is lowered. For the analysis of this phenomena, it is assumed that the sodium mist grows by condensation. One of results is that the real state may be the state between the state that the condensation of mist is made in the boundary layer and the state that the mist is condensed in the main flow. Others are that there is no effect of sodium mist condensation on the rate of deposition, and that the rate of the vaporization of sodium is given by the original and the modified model. (Kato, T.)

  14. Impact of sub-horizontal discontinuities and vertical heterogeneities on recharge processes in a weathered crystalline aquifer in southern India

    Science.gov (United States)

    Nicolas, Madeleine; Selles, Adrien; Bour, Olivier; Maréchal, Jean-Christophe; Crenner, Marion; Wajiduddin, Mohammed; Ahmed, Shakeel

    2017-04-01

    In the face of increasing demands for irrigated agriculture, many states in India are facing water scarcity issues, leading to severe groundwater depletion. Because perennial water resources in southern India consist mainly of crystalline aquifers, understanding how recharge takes place and the role of preferential flow zones in such heterogeneous media is of prime importance for successful and sustainable aquifer management. Here we investigate how vertical heterogeneities and highly transmissive sub-horizontal discontinuities may control groundwater flows and recharge dynamics. Recharge processes in the vadose zone were examined by analysing the propagation of an infiltration front and mass transfers resulting from the implementation of a managed aquifer recharge (MAR) structure. Said structure was set up in the Experimental Hydrogeological Park in Telangana (Southern India), a well-equipped and continuously monitored site, which is periodically supplied with surface water deviated from the nearby Musi river, downstream of Hyderabad. An initial volume balance equation was applied to quantify the overall inputs from the MAR structure into the groundwater system, which was confirmed using a chloride mass balance approach. To understand how this incoming mass is then distributed within the aquifer, we monitored the evolution of water volumes in the tank, and the resulting lateral propagation front observed in the surrounding borehole network. Borehole logs of temperature and conductivity were regularly performed to identify preferential flow paths. As a result we observed that mass transfers take place in the way of preferential lateral flow through the most transmissive zones of the profile. These include the interface between the lower portion of the upper weathered horizon (the saprolite) and the upper part of the underlying fissured granite, as well as the first flowing fractures. This leads to a rapid lateral transfer of recharge, which allows quick

  15. Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Marwan, Norbert; Kurths, Jürgen

    2013-09-01

    Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary and challenging problem of paramount importance. We design a new multisector conductance sensor and systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals of different flow patterns. We then infer multivariate recurrence networks from these experimental data and investigate local cross-network properties for each constructed network. Our results demonstrate that a cross-clustering coefficient from a multivariate recurrence network is very sensitive to transitions among different flow patterns and recovers quantitative insights into the flow behavior underlying horizontal oil-water flows. These properties render multivariate recurrence networks particularly powerful for investigating a horizontal oil-water two-phase flow system and its complex interacting components from a network perspective.

  16. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  17. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias

    2008-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow

  18. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hohne, Thomas; Prasser, Horst-Michael; Suhnel, Tobias

    2007-01-01

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Rossendorf. The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronized with the high-speed camera system. CFD post test simulations of stratified flows were performed using the code ANSYS CFX. The Euler- Euler two fluid model with the free surface option was applied on grids of minimum 4.10 5 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. (authors)

  19. Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)], E-mail: c.vallee@fzd.de; Hoehne, Thomas; Prasser, Horst-Michael; Suehnel, Tobias [Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2008-03-15

    For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4 x 10{sup 5} control volumes. The turbulence was modelled separately for each phase using the k-{omega}-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow.

  20. Analytical solution of velocity for ammonia-water horizontal falling-film flow

    International Nuclear Information System (INIS)

    Zhang, Qiang; Gao, Yide

    2016-01-01

    Highlights: • We built a new falling-film flow model that analyzed the film flow characteristics. • We have obtained a new formula of film thickness over the horizontal tube. • We derived analysis solution to analyze the effect of inertial force to velocity in the entrance region of liquid film. • It described the characters of the ammonia-waterfalling-film film over the horizontal tube. • It is good for falling-film absorption, generation and evaporation to optimizing the design parameters and further improving the capabilities. - Abstract: A new horizontal tube falling film velocity model was built and calculated to analyze the problem of film flow conditions. This model also analyzed the film thickness distribution in horizontal tube falling film flow and considered the effect of the inertial force on velocity. The film thickness and velocity profile can be obtained based on the principle of linear superposition, a method of separation of variables that introduces the effect of variable inertial force on the velocity profile in the process of falling-film absorption. The film flow condition and the film thickness distribution at different fluid Reynolds numbers (Re) and tube diameters were calculated and compared with the results of the Crank–Nicolson numerical solution under the same conditions. The results show that the film flow condition out of a horizontal tube and that the film thickness increases with the fluid Re. At a specific Re and suitable tube diameter, the horizontal tube reaches a more uniform film. Finally, the analysis results have similar trend with the experimental and numerical predicted data in literature.

  1. Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress

    KAUST Repository

    Paterson, C.

    2014-09-14

    © 2014 © The Author, 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com. The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal direction round a large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a solution corresponding to a rivulet flowing down at least part of one side of the cylinder. We consider both a rivulet with constant non-zero contact angle but slowly varying width (that is, de-pinned contact lines) and a rivulet with constant width but slowly varying contact angle (that is, pinned contact lines), and show that they have qualitatively different behaviour. When shear is present, a rivulet with constant non-zero contact angle can never run all the way from the top to the bottom of the cylinder, and so we consider the scenario in which an infinitely wide two-dimensional film of uniform thickness covers part of the upper half of the cylinder and \\'breaks\\' into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently narrow rivulet with constant width can run all the way from the top to the bottom of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and so we consider the scenario in which the contact lines of a wide rivulet de-pin on the lower half of the cylinder.

  2. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL FINS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2005-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal fins. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...

  3. Mixed convection boundary-layer flow from a horizontal circular cylinder with a constant surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Nazar, R.; Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2004-02-01

    The laminar mixed convection boundary-layer flow of a viscous and incompressible fluid past a horizontal circular cylinder, which is maintained at a constant heat flux and is placed in a stream flowing vertically upward has been theoretically studied in this paper. The solutions for the flow and heat transfer characteristics are evaluated numerically for different values of the mixed convection parameter {lambda} with the Prandtl number Pr = 1 and 7, respectively. It is found, as for the case of a heated or cooled cylinder, considered by Merkin [5], that assisting flow delays separation of the boundary-layer and can, if the assisting flow is strong enough, suppress it completely. The opposing flow, on the other side, brings the separation point nearer to the lower stagnation point and for sufficiently strong opposing flows there will not be a boundary-layer on the cylinder. (orig.)

  4. Surface flow measurements from drones

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  5. A mechanistic determination of horizontal flow regime bound using void wave celerity

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.W. [Ajou Univ., Suwon (Korea, Republic of)

    1995-09-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.

  6. A mechanistic determination of horizontal flow regime bound using void wave celerity

    International Nuclear Information System (INIS)

    Park, J.W.

    1995-01-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed

  7. Numerical simulation of two-phase flow in horizontal interconnected subchannels

    International Nuclear Information System (INIS)

    Shourki, M.; Carver, M.B.; Tahir, A.

    1985-01-01

    Different subchannel computer codes have been successfully used for the thermal-hydraulic analysis of coolant flow in vertical fuel channels. None of these methods, however, is suitable for two-phase flow in horizontal fuel channels, such as those of the CANDU nuclear reactors, due to the lack of appropriate constitutive relationships that can correctly account for the gravity separation effects. A transverse vapor drift model that accounts for the combined effect of gravity separation and turbulent diffusion has been incorporated into the existing subchannel computer code SAGA. Although the basic structure of the code remains similar to SAGA III, some modifications in both the mathematical formulation and numerical solution have been incorporated. These modifications resulted in significant improvements in the code's ability to model horizontal two-phase subchannel flow. The new version of the code was tested and found to be capable of simulating the complex exchange phenomenon between adjacent horizontal subchannels caused by the interaction of turbulent diffusion, pressure gradient, and gravity-induced cross flows. The code predictions were compared with experimental data obtained from two different sources and showed good agreement

  8. Falling film flow, heat transfer and breakdown on horizontal tubes

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1980-11-01

    Knowledge of falling film flow and heat transfer characteristics on horizontal tubes is required in the assessment of certain CANDU reactor accident sequences for those CANDU reactors which use moderator dump as one of the shut-down mechanisms. In these reactors, subsequent cooling of the calandria tubes is provided by falling films produced by sprays. This report describes studies of falling film flow and heat transfer characteristics on horizontal tubes. Analyses using integral methods are given for laminar and turbulent flow, ignoring and accounting for momentum effects in the film. Preliminary experiments on film flow stability on horizontal tubes are described and various mechanisms of film breakdown are examined. The work described in this report shows that in LOCA with indefinitely delayed ECI in the NPD or Douglas Point (at 70 percent power) reactors, the falling films on the calandria tubes will not be disrupted by any of the mechanisms considered, provided that the pressure tubes do not sag onto the calandria tubes. However, should the pressure tubes sag onto the calandria tubes, film disruption will probably occur

  9. Complex networks from experimental horizontal oil–water flows: Community structure detection versus flow pattern discrimination

    International Nuclear Information System (INIS)

    Gao, Zhong-Ke; Fang, Peng-Cheng; Ding, Mei-Shuang; Yang, Dan; Jin, Ning-De

    2015-01-01

    We propose a complex network-based method to distinguish complex patterns arising from experimental horizontal oil–water two-phase flow. We first use the adaptive optimal kernel time–frequency representation (AOK TFR) to characterize flow pattern behaviors from the energy and frequency point of view. Then, we infer two-phase flow complex networks from experimental measurements and detect the community structures associated with flow patterns. The results suggest that the community detection in two-phase flow complex network allows objectively discriminating complex horizontal oil–water flow patterns, especially for the segregated and dispersed flow patterns, a task that existing method based on AOK TFR fails to work. - Highlights: • We combine time–frequency analysis and complex network to identify flow patterns. • We explore the transitional flow behaviors in terms of betweenness centrality. • Our analysis provides a novel way for recognizing complex flow patterns. • Broader applicability of our method is demonstrated and articulated

  10. Two-phase flow through small branches in a horizontal pipe with stratified flow

    International Nuclear Information System (INIS)

    Smoglie, C.

    1985-02-01

    In the field of reactor safety the occurrence of a small break in a horizontal primary coolant pipe is of great importance. This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HS) [de

  11. Magnitude and sign correlations in conductance fluctuations of horizontal oil water two-phase flow

    International Nuclear Information System (INIS)

    Zhu, L; Jin, N D; Gao, Z K; Zong, Y B; Zhai, L S; Wang, Z Y

    2012-01-01

    In experiment we firstly define five typical horizontal oil-water flow patterns. Then we introduce an approach for analyzing signals by decomposing the original signals increment into magnitude and sign series and exploring their scaling properties. We characterize the nonlinear and linear properties of horizontal oil-water two-phase flow, which relate to magnitude and sign series respectively. We find that the joint distribution of different scaling exponents can effectively identify flow patterns, and the detrended fluctuation analysis (DFA) on magnitude and sign series can represent typical horizontal oil-water two-phase flow dynamics characteristics. The results indicate that the magnitude and sign decomposition method can be a helpful tool for characterizing complex dynamics of horizontal oil-water two-phase flow.

  12. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90 0 sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions

  13. Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate

    Science.gov (United States)

    Jin, Heng; Liu, Yong; Li, Huajun; Fu, Qiang

    2017-08-01

    Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.

  14. Counter-current flow in a vertical to horizontal tube with obstructions

    Energy Technology Data Exchange (ETDEWEB)

    Tye, P.; Matuszkiewicz, A.; Teyssedou, A. [Institut de Genie Nucleaire, Quebec (Canada)] [and others

    1995-09-01

    This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.

  15. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  16. Study of gas-water flow in horizontal rectangular channels

    Science.gov (United States)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.

  17. Using Differential Transform Method and Padé Approximant for Solving MHD Flow in a Laminar Liquid Film from a Horizontal Stretching Surface

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Rashidi

    2010-01-01

    Full Text Available The purpose of this study is to approximate the stream function and temperature distribution of the MHD flow in a laminar liquid film from a horizontal stretching surface. In this paper DTM-Padé method was used which is a combination of differential transform method (DTM and Padé approximant. The DTM solutions are only valid for small values of independent variables. Comparison between the solutions obtained by the DTM and the DTM-Padé with numerical solution (fourth-order Runge–Kutta revealed that the DTM-Padé method is an excellent method for solving MHD boundary-layer equations.

  18. Mechanistic multidimensional analysis of horizontal two-phase flows

    International Nuclear Information System (INIS)

    Tselishcheva, Elena A.; Antal, Steven P.; Podowski, Michael Z.

    2010-01-01

    The purpose of this paper is to discuss the results of analysis of two-phase flow in horizontal tubes. Two flow situations have been considered: gas/liquid flow in a long straight pipe, and similar flow conditions in a pipe with 90 deg. elbow. The theoretical approach utilizes a multifield modeling concept. A complete three-dimensional two-phase flow model has been implemented in a state-of-the-art computational multiphase fluid dynamics (CMFD) computer code, NPHASE. The overall model has been tested parametrically. Also, the results of NPHASE simulations have been compared against experimental data for a pipe with 90 deg. elbow.

  19. Numerical simulation of two-phase flow in horizontal interconnected subchannels

    International Nuclear Information System (INIS)

    Shoukri, M.; Tahir, A.; Carver, M.B.

    1983-01-01

    Different subchannel computer codes have been successfully used for the thermal-hydraulic analysis of coolant flow in vertical fuel channels. However, none of these methods is suitable for two-phase flow in horizontal fuel channels, such as those of the CANDU nuclear reactors, due to the lack of appropriate constitutive relationships that can correctly account for the gravity separation effects. This paper describes the incorporation of a transverse vapour drift model which accounts for the combined effect of gravity separation and turbulent diffusion into the existing subchannel computer code SAGA. Although the basic structure of the code remains similar to SAGA III some modifications in both the mathematical formulation and numerical solution have been incorporated. These modifications resulted in significant improvements in the code's ability in modelling horizontal two-phase subchannel flow. The new version of the code was tested and found to be capable of simulating the complex exchange phenomenon between adjacent horizontal subchannels caused by the interaction of turbulent diffusion, pressure gradient as well as gravity induced cross flows. The code predictions were compared with experimental data obtained from two different sources and showed good agreement

  20. Modelling Nitrogen Transformation in Horizontal Subsurface Flow ...

    African Journals Online (AJOL)

    A mathematical model was developed to permit dynamic simulation of nitrogen interaction in a pilot horizontal subsurface flow constructed wetland receiving effluents from primary facultative pond. The system was planted with Phragmites mauritianus, which was provided with root zone depth of 75 cm. The root zone was ...

  1. STRATEGIES IN SEISMIC INFERENCE OF SUPERGRANULAR FLOWS ON THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Jishnu; Hanasoge, Shravan M. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai-400005 (India)

    2016-08-01

    Observations of the solar surface reveal the presence of flows with length scales of around 35 Mm, commonly referred to as supergranules. Inferring the subsurface flow profile of supergranules from measurements of the surface and photospheric wavefield is an important challenge faced by helioseismology. Traditionally, the inverse problem has been approached by studying the linear response of seismic waves in a horizontally translationally invariant background to the presence of the supergranule; following an iterative approach that does not depend on horizontal translational invariance might perform better, since the misfit can be analyzed post iterations. In this work, we construct synthetic observations using a reference supergranule and invert for the flow profile using surface measurements of travel times of waves belonging to modal ridges f (surface gravity) and p {sub 1} through p {sub 7} (acoustic). We study the extent to which individual modes and their combinations contribute to infer the flow. We show that this method of nonlinear iterative inversion tends to underestimate the flow velocities, as well as inferring a shallower flow profile, with significant deviations from the reference supergranule near the surface. We carry out a similar analysis for a sound-speed perturbation and find that analogous near-surface deviations persist, although the iterations converge faster and more accurately. We conclude that a better approach to inversion would be to expand the supergranule profile in an appropriate basis, thereby reducing the number of parameters being inverted for and appropriately regularizing them.

  2. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  3. A study on the instability criterion for the stratified flow in horizontal pipe at cocurrent flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyung [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a theoretical approach of the instability criterion from stratified to nonstratified flow in horizontal pipe at cocurrent flow conditions. The new theoretical instability criterion for the stratified and nonstratified flow transition in horizontal pipe has been developed by hyperbolic equations in two-phase flow. Critical flow condition criterion and onset of slugging at cocurrent flow condition correspond to zero and imaginary characteristics which occur when the hyperbolicity of a stratified two-phase flow is broken, respectively. Through comparison between results predicted by the present flow is broken, respectively. Through comparison between results predicted by the present theory and the Kukita et al. [1] experimental data of pipes, it is shown that they are in good agreement with data. 4 refs., 2 figs. (Author)

  4. Natural convection heat transfer from a horizontal wavy surface in a porous enclosure

    International Nuclear Information System (INIS)

    Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.

    1997-01-01

    The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase φ, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0 degree and 350 degree. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system

  5. Void fraction in horizontal bulk flow boiling at high flow qualities

    International Nuclear Information System (INIS)

    Collado, Fancisco J.; Monne, Carlos; Pascau, Antonio

    2008-01-01

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities (≤0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality (≤0.2)

  6. Transition from slug to annular flow in horizontal air-water flow

    International Nuclear Information System (INIS)

    Reismann, J.; John, H.; Seeger, W.

    1981-11-01

    The transition from slug to annular flow in horizontal air-water and steam-water flow was investigated. Test sections of 50; 66.6 and 80 mm ID were used. The system pressure was 0.2 and 0.5 MPa in the air-water experiments and 2.5; 5; 7.5 and 10 MPa in the steam-water experiments. For flow pattern detection local impedance probes were used. This method was compared in a part of the experiments with differential pressure and gamma-beam measurements. The flow regime boundary is shifting strongly to smaller values of the superficial gas velocity with increasing pressure. Correlations from literature fit unsatisfactorily the experimental results. A new correlation is presented. (orig.) [de

  7. Particle re-entrainment from a powder deposit in an horizontal air flow

    International Nuclear Information System (INIS)

    Alloul, L.; Witschger, O.; Alloul, L.; Renoux, A.; Le Dur, D.; Monnatte, J.

    2000-01-01

    Particle re-entrainment from surfaces to turbulent air flow is an important subject in many different fields like nuclear safety, environmental air pollution, sediment transport by wind, surface contamination in semiconductor operations. Theoretical and experimental studies have been numerous and cover different aspects of the phenomena. Although a number of theoretical works have been devoted for describing the mechanisms of detachment of primary spherical particles form flat smooth surfaces in a turbulent flow, experimental data are still needed in order to comparison. Moreover, the knowledge of the effect of parameters related to the deposit (monolayer, multilayer, cone-like pile), the powder particles (particle-size distribution, adhesive properties), the surface (roughness,...),the airflow (velocity, acceleration, turbulence) or the environment (humidity,...) is still in an elementary stage. The main objective of our work is to contribute to the understanding and quantification of the parameters that govern the particle re-entrainment from a powder deposit in an turbulent horizontal airflow. Therefore, a new experimental facility called BISE (french acronym for wind tunnel for studying particle re-entrainment by airflow) has been designed and built in our laboratory. (authors)

  8. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

  9. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL ABSORBER STRIPS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... collector fluid, and by increased collector tilt and inlet temperature, the flow distribution gets worse resulting in a decreased collector efficiency and an increased risk of boiling in the upper part of the collector panel. Keywords: Solar collector; Flow distribution; Computational Fluid Dynamics (CFD...

  10. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D. [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  11. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S D; Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M [Australian National Univ., Canberra, ACT (Australia)

    1997-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  12. COMPARISON OF SOLAR SURFACE FLOWS INFERRED FROM TIME-DISTANCE HELIOSEISMOLOGY AND COHERENT STRUCTURE TRACKING USING HMI/SDO OBSERVATIONS

    International Nuclear Information System (INIS)

    Švanda, Michal; Roudier, Thierry; Rieutord, Michel; Burston, Raymond; Gizon, Laurent

    2013-01-01

    We compare measurements of horizontal flows on the surface of the Sun using helioseismic time-distance inversions and coherent structure tracking of solar granules. Tracking provides two-dimensional horizontal flows on the solar surface, whereas the time-distance inversions estimate the full three-dimensional velocity flows in the shallow near-surface layers. Both techniques use Helioseismic and Magnetic Imager observations as input. We find good correlations between the various measurements resulting from the two techniques. Further, we find a good agreement between these measurements and the time-averaged Doppler line-of-sight velocity, and also perform sanity checks on the vertical flow that resulted from the three-dimensional time-distance inversion.

  13. The complexity of identifying Ryu-Takayanagi surfaces in AdS{sub 3}/CFT{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bao, N.; Chatwin-Davies, A. [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States)

    2016-11-07

    We present a constructive algorithm for the determination of Ryu-Takayanagi surfaces in AdS{sub 3}/CFT{sub 2} which exploits previously noted connections between holographic entanglement entropy and max-flow/min-cut. We then characterize its complexity as a polynomial time algorithm.

  14. Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Ghamdi, A.A.; Al-Hazmi, F.S.; Faidah, Adel S.

    2009-01-01

    The measured data of global solar radiation on a horizontal surface, as well as the number of sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover, for Jeddah (latitude 21 deg. 42'37''N, longitude 39 deg. 11'12''E), Saudi Arabia for the period 1996-2006 are analyzed. The data are divided into two sets. The sub-data set 1 (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and various meteorological parameters. The nonlinear Angstroem type model developed by Sen and the trigonometric function model proposed by Bulut and Bueyuekalaca are also evaluated. New empirical constants for these two models have been obtained for Jeddah. The sub-data set 2 (2005, 2006) are then used to evaluate the derived correlations. Comparisons between measured and calculated values of H have been performed. It is indicated that, the Sen and Bulut and Bueyuekalaca models satisfactorily describe the horizontal global solar radiation for Jeddah. All the proposed correlations are found to be able to predict the annual average of daily global solar radiation with excellent accuracy. Therefore, the long term performance of solar energy devices can be estimated.

  15. Effect of surface roughness on heat transfer from horizontal immersed tubes in a fluidized bed

    International Nuclear Information System (INIS)

    Grewal, N.S.; Saxena, S.C.

    1979-01-01

    Experimental results of the total heat transfer coefficient between 12.7 mm dia copper tubes with four different rough surfaces and glass beads of three different sizes as taken in a 0.305 m x 0.305 m square fluidized bed as a function of fluidizing velocity are reported. The comparison of results for the rough and technically smooth tubes suggests that the heat transfer coefficient strongly depends on the ratio of pitch (P/sub f/) to the average particle diameter (d/sub p/), where P/sub f/ is the distance between the two corresponding points on consecutive threads or knurls. By the proper choice of (P/sub f//d/sub p/) ratio, the maximum total heat transfer coefficient for V-thread tubes (h/sub w/fb) can be increased by as much as 40 percent over the value for a smooth tube with the same outside diameter. However, for values of (P/sub f//d/sub p/) less than 0.95, the maximum heat transfer coefficient for the V-thread rough tubes is smaller than the smooth tube having the same outside diameter. The qualitative variation of the heat transfer coefficient for rough tubes with (P/sub f//d) is explained on the basis of the combined effect of contact geometry between the solid particles and the heat transfer surface, and the solids renewal rate at the surface. The present findings are critically compared with somewhat similar investigations from the literature on the heat transfer from horizontal or vertical rough tubes and tubes with small fins

  16. Effect of hydrogen flow on growth of 3C-SiC heteroepitaxial layers on Si(111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guoguo [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhang, Feng, E-mail: fzhang@semi.ac.cn [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Niu, Yingxi; Yang, Fei [Electrical Engineering New Materials and Microelectronics Department, State Grid Smart Grid Research Institute, Beijing 100192 (China); Liu, Xingfang; Wang, Lei; Zhao, Wanshun [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Sun, Guosheng [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Dongguan Tianyu Semiconductor, Inc., Dongguan 523000 (China); Zeng, Yiping [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-10-30

    Highlights: • 3C-SiC thin films of preferential orientation along with Si(111) substrates were obtained using home-made horizontal LPCVD with different H{sub 2} flow rate ranging from15 to 30 slm. • High H{sub 2} flow rate will inhibit the out-diffusion of silicon atoms from silicon substrates effectively. Transformation and the mechanism of void formation are discussed based on our model. • The variation of growth rate and n-type doping with increasing H{sub 2} flow rate is researched and the influencing mechanism is discussed. - Abstract: 3C-SiC thin films were grown on Si(111) substrates at 1250 °C by horizontal low pressure chemical vapor deposition (LPCVD). We performed an exhaustive study on the effect of H{sub 2} flow rate on the crystalline quality, surface morphologies, growth rate, n-type doping of 3C-SiC thin films and the voids at the interface. The films show epitaxial nature with high crystal quality and surface morphology increase obviously with increasing H{sub 2} flow rate. The growth rate and n-type doping are also dependent on H{sub 2} flow rate. The properties of the voids at the interface are discussed based on the cross-sectional scanning electron microscope characterization. Transformation of voids with increasing H{sub 2} flow rate are attributed to higher 3C-SiC film growth rate and H{sub 2} etching rate. The mechanism of void formation is discussed based on our model, too. The results demonstrate that H{sub 2} flow rate plays a very important role in the heteroepitaxial growth of 3C-SiC films.

  17. Void fraction in horizontal bulk flow boiling at high flow qualities

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Fancisco J.; Monne, Carlos [Dpto. de Ingenieria Mecanica, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain); Pascau, Antonio [Dpto. de Ciencia de los Materiales y Fluidos, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-04-15

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities ({<=}0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality ({<=}0.2). (author)

  18. Mixed convection flow past a horizontal plate

    Directory of Open Access Journals (Sweden)

    Savić Lj.

    2005-01-01

    Full Text Available The mixed convection flow past a horizontal plate being aligned through a small angle of attack to a uniform free stream will be considered in the limit of large Reynolds number and small Richardson number. Even a small angle of inclination of the wake is sufficient for the buoyancy force to accelerate the flow in the wake which causes a velocity overshoot in the wake. Moreover a hydrostatic pressure difference across the wake induces a correction to the potential flow which influences the inclination of the wake. Thus the wake and the correction of the potential flow have to be determined simultaneously. However, it turns out that solutions exist only if the angle of attack is sufficiently large. Solutions are computed numerically and the influence of the buoyancy on the lift coefficient is determined.

  19. Horizontal stratified flow model for the 1-D module of WCOBRA/TRAC-TF2: modeling and validation

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Frepoli, C.; Ohkawa, K., E-mail: liaoj@westinghouse.com [Westinghouse Electric Company LLC, LOCA Integrated Services I, Cranberry Twp, Pennsylvania (United States)

    2011-07-01

    For a two-phase flow in a horizontal pipe, the individual phases may separate by gravity. This horizontal stratification significantly impacts the interfacial drag, interfacial heat transfer and wall drag of the two phase flow. For a PWR small break LOCA, the horizontal stratification in cold legs is a highly important phenomenon during loop seal clearance, boiloff and recovery periods. The low interfacial drag in the stratified flow directly controls the time period for the loop clearance and the level of residual water in the loop seal. Horizontal stratification in hot legs also impacts the natural circulation stage of a small break LOCA. In addition, the offtake phenomenon and cold leg condensation phenomenon are also affected by the occurrence of horizontal stratification in the cold legs. In the 1-D module of the WCOBRA/TRAC-TF2 computer code, a horizontal stratification criterion was developed by combining the Taitel-Dukler model and the Wallis-Dobson model, which approximates the viscous Kelvin-Helmholtz neutral stability boundary. The objective of this paper is to present the horizontal stratification model implemented in the code and its assessment against relevant data. The adequacy of the horizontal stratification transition criterion is confirmed by examining the code-predicted flow regime in a horizontal pipe with the measured data in the flow regime map. The void fractions (or liquid level) for the horizontal stratified flow in cold leg or hot leg are predicted with a reasonable accuracy. (author)

  20. Flow distribution in a solar collector panel with horizontally inclined absorber strips

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2007-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontally inclined strips. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid...... dynamics (CFD) calculations. Further, experimental investigations of a 12.5 m(2) solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...... rate, properties of solar collector fluid, solar collector fluid inlet temperature and collector tilt angle are shown. The flow distribution through the absorber fins is uniform if high flow rates are used. By decreased flow rate and decreased content of glycol in the glycol/water mixture used as solar...

  1. Design and numerical simulation on an auto-cumulative flowmeter in horizontal oil-water two-phase flow.

    Science.gov (United States)

    Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang

    2017-11-01

    In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.

  2. Method for confirming flow pattern of gas-water flow in horizontal tubes under rolling state

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2008-01-01

    An experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state. It was found that the pressure drop of two phase flow was with an obvious periodical characteristic. The flow pattern of the gas-water flow was distinguished according to the characteristics of the pressure drop in this paper. It was proved that the characteristics of the pressure drop can distinguish the flow pattern of gas-water flow correctly through comparing with the result of careful observation and high speed digital camera. (authors)

  3. Convection flow study within a horizontal fluid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available Experimental investigation of convective processes within horizontal evaporating liquid layer under shear–stress of gas flow is presented. It is found the structures of the convection, which move in opposite direction relative to each other. First convective structure moves in reverse direction with the flow of gas, and the second convective structure moves towards the gas flow. Convection flow within the liquid layer is registered with help of PIV technique. Average evaporation flow rate of Ethanol liquid layer under Air gas flow is measured. Influence of the gas velocity, at a constant temperature of 20 °C, on the evaporation flow rate has been studied.

  4. Theoretical investigation of flow regime for boiling water two-phase flow in horizontal rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhang Chunwei; Qiu Suizheng; Yan Mingyu; Wang Bulei; Nie Changhua

    2005-01-01

    The flow regime transition criteria for the boiling water two-phase flow in horizontal rectangular narrow channels (1 x 20 mm, 2 x 20 mm) were theoretically explored. The discernible flow patterns were bubble, intermittent slug, churn, annular and steam-water separation flow. By using two-fluid model, equations of conservation of momentum were established for the two-phase flow. New flow-regime criteria were obtained and agreed well with the experiment data. (authors)

  5. Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF{sub 4} at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Zhou, Yang [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Shao, Tao, E-mail: st@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Xie, Qing [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003 (China); Xu, Jiayu [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wenjin [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-08-30

    Highlights: • Increase in hydrophobicity on PMMA is achieved after the DBD treatment in CF{sub 4}, and the water contact angle can increase from 68° to 100° after treatment. • Nanosecond-pulse DBD is used for the surface treatment and the power density is about 114.8 mW/cm{sup 2}. • The effects of applied voltage, CF{sub 4} flow, and time on plasma treatment are investigated. • Plasma treatment causes morphological change, significantly increases the roughness of the surface, and introduces fluorine-containing groups into the polymethylmethacrylate surface. • Hydrophobic behavior of the treated PMMA surface is slightly affected by the aging effect. - Abstract: Nanosecond-pulse dielectric barrier discharge (DBD) can provide non-thermal plasmas with extremely high energy and high density, which can result in a series of complicated physical and chemical reactions in the surface treatment of polymers. Therefore, in this paper, hydrophobic treatment of polymethylmethacrylate (PMMA) surface is conducted by nanosecond-pulse DBD in carbon tetrafluoride (CF{sub 4}) at atmospheric pressure. Investigations on surface morphology and chemical composition before and after the DBD treatment in CF{sub 4} are conducted with the contact angle measurement, atomic force microscope, Fourier transform infrared spectroscopy, and X-ray photoelectron spectrometer. The effects of the applied voltage, CF{sub 4} flow rate, and treatment time on the hydrophobic modification are studied. Results show that the contact angles of the treated PMMA surface increases with the applied voltage, and it could be greatly affected by the CF{sub 4} flow rate and the treatment time. The water contact angle can increase from 68° to 100° after the treatment. Furthermore, both surface morphology and chemical composition of the PMMA samples are changed. Both the increase of the surface roughness and the occurrence of fluorine-containing functional groups on the PMMA surface treated by DBD in CF{sub

  6. Liquid flow deposited spinel (Ni,Mn){sub 3}O{sub 4} thin films for microbolometer applications

    Energy Technology Data Exchange (ETDEWEB)

    Le, Duc Thang, E-mail: ducthang36@skku.edu [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jeon, Chang Jun; Lee, Kui Woong; Jeong, Young Hun; Yun, Ji Sun [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Yoon, Dae Ho, E-mail: dhyoon@skku.edu [School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jeong Ho, E-mail: goedc@kicet.re.kr [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

    2015-03-01

    Highlights: • Highly quality (Ni,Mn){sub 3}O{sub 4} thin films were grown using liquid flow deposited (LFD) technique. • It is possible to deposit multi–component manganite–oxide thin films by LFD at low temperatures. • Nickel–manganite films showed a good negative temperature coefficient (NTC) characteristic. • Liquid flow deposited (Ni,Mn){sub 3}O{sub 4} thin films are very potential for microbolometer applications. - Abstract: A liquid flow deposition (LFD) technique was initially used for the fabrication of single-component Mn{sub 3}O{sub 4} thin films onto Si wafer substrates at a range of substrate temperatures of 30–80 °C, with the introduction of an oxidizing reagent (H{sub 2}O{sub 2}). As a result, solid thin films were well formed from an aqueous solution. An X-ray diffraction (XRD) analysis showed typical characteristics of hausmannite Mn{sub 3}O{sub 4} with a spinel tetragonal phase. Field-emission scanning electron microscopy (FE-SEM) observations revealed nano-sized grains arranged uniformly on a dense and smooth surface for all of the as-deposited films. On the other hand, the LFD method was then extended to prepare two-component nickel–manganite films according to the binary chemical composition of Ni{sub x}Mn{sub 3−x}O{sub 4} with x = 0.02–0.2. The as-grown nickel–manganite films showed a surface with a good quality with a spherical bead-like architecture when x ≤ 0.10, while a conversion from spherical grains into highly porous nanowalls in the microstructure was noted in films when x ≥ 0.12. These results signify that it is possible to fabricate various multi-component manganite-oxide thin films at a low temperature. In addition, the dependences of the room-temperature electrical resistivity (ρ) and the temperature coefficient of resistance (TCR) on the Ni substitution level (x) were investigated on films annealed at 400 °C.

  7. A comparative pressure analysis of air flow between horizontal and V-Tail of UAV MALE of NACA0012H with speed variation

    Directory of Open Access Journals (Sweden)

    Riza Rahmat

    2018-01-01

    Full Text Available NACA0012H is an airfoil type that could be used for Unmanned Aerial Vehicle Medium Altitude Long Endurance. This experiment was used to analyze stress in the surface of Tail of UAV MALE that was caused by air flow. The experiment was conducted using Computational Fluid Dynamics Software. Two designs of tail, horizontal and V-tail, were considered to simulate pressure occurred on the surface of leading edge, chamber and trailing edge. The simulation was developed varying the speed of the UAV MALE. The results showed that pressure occurred on the surface of horizontal tail higher than pressure on the V-tail.

  8. Solidification of salt solutions on a horizontal surface

    International Nuclear Information System (INIS)

    Braga, S.L.; Viskanta, R.

    1990-01-01

    The freezing of water-salt solutions on a horizontal wall is investigated experimentally and theoretically. The growth of the solid-liquid region is observed for NaCl - H sub(2)O and N H sub(4)Cl - H sub(2)O systems under different temperature and concentration conditions. A unidirectional mathematical model is used to predict the solidification process. The transport of heat is by diffusion, and convection is absent. The mass diffusion is neglected and the growth of crystal is governed by the transport of heat. In all experiments, the solution salt concentration is smaller than the eutectic composition, and the wall temperature is higher than the eutectic temperature. The predicted temperature and salt concentration profiles, as well as the interface position, are compared with experimental data. (author)

  9. Condensation Analysis of Steam/Air Mixtures in Horizontal Tubes

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Bae, Sung Won; Kim, Moo Hwan

    2008-01-01

    Perhaps the most common flow configuration in which a convective condensation occurs is a flow in a horizontal circular tube. This configuration is encountered in air-conditioning and refrigeration condensers as well as condensers in Rankine power cycles. Although a convective condensation is also sometimes contrived to occur in a co-current vertical downward flow, a horizontal flow is often preferred because the flow can be repeatedly passed through the heat exchanger core in a serpentine fashion without trapping liquid or vapor in the return bends. Many researchers have investigated a in-tube condensation for horizontal heat exchangers. However, almost all of them obtained tube section-averaged data without a noncondensable gas. Recently, Wu and Vierow have experimentally studied the condensation of steam in a horizontal heat exchanger with air present. In order to measure the condenser tube inner surface temperatures and to calculate the local heat fluxes, they developed an innovative thermocouple design that allowed for nonintrusive measurements. Here we developed a theoretical model using the heat and mass analogy to analyze a steam condensation with a noncondensable gas in horizontal tubes

  10. Boolean logic analysis for flow regime recognition of gas–liquid horizontal flow

    International Nuclear Information System (INIS)

    Ramskill, Nicholas P; Wang, Mi

    2011-01-01

    In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air–water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime

  11. Investigation of Two-Phase Flow in Short Horizontal Mini Channel Height of 1 MM

    Directory of Open Access Journals (Sweden)

    Ron’shin Fedor

    2016-01-01

    Full Text Available The experiments with two-phase flow in the short horizontal rectangular minichannel with the height of 1 mm and width of 29 mm have been carried out using water and gas nitrogen. The five two-phase flow patterns have been recognized in the minichannel: churn, stratified, annular, bubble, and jet. These regimes are plotted on a graph and the boundaries between them determine precisely. The height of a horizontal minichannels has a significant role on boundaries between the flow regimes.

  12. Slug flow in horizontal pipes with transpiration at the wall

    Science.gov (United States)

    Loureiro, J. B. R.; Silva Freire, A. P.

    2011-12-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  13. Slug flow in horizontal pipes with transpiration at the wall

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: jbrloureiro@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  14. Slug flow in horizontal pipes with transpiration at the wall

    International Nuclear Information System (INIS)

    Loureiro, J B R; Freire, A P Silva

    2011-01-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  15. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces

    Directory of Open Access Journals (Sweden)

    MA Basunia

    2012-12-01

    Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.

  16. Characterization of the slug flow formation in vertical-to-horizontal channels with obstructions

    International Nuclear Information System (INIS)

    Onder, E.N.

    2004-01-01

    This thesis presents the results of the work carried out to study the formation of slugs under conditions of vertical-to-horizontal counter-current flow with obstructions. A flow instability is the mechanism proposed for the formation of slugs in a co-current flow. However, to the best of author's knowledge no work has been carried out for the formation of slugs in a vertical-to-horizontal counter-current flow with obstructions. Despite the existence of a few studies on counter-current vertical-to-horizontal slug flow with obstructions, it is in particular of great importance in the area of nuclear reactor safety analysis of a CANDU reactor. A test section manufactured of 63.5 mm inner diameter (ID) plexiglass was used for this work. The test section consists of 2022 mm long vertical and 3327 mm long horizontal legs connected by a 90 o PVC elbow. The horizontal leg contains flanges in which an orifice may be installed. These flanges are located at the distance of 1110 mm and 2217 mm from the elbow. The experiments were carried out to study the frequency of the formation of slugs, the slug propagation velocity and the averaged void fraction of slugs. We also carried out experiments for the characterisation of the propagation of waves. This allowed us to obtain the initial conditions required by the present model in order to predict the formation of slugs. In this model, the initial profile of waves was used to start calculations. Therefore, the aim of these experiments was to obtain the initial profile of these waves. The comparison of the experimental data collected at the onset of flooding with that collected at the onset of slugging shows that the results are very close to each other. This reflects the fact that flooding is simultaneously accompanied by the formation of slugs in the horizontal leg. We found that, for a given liquid flow rate, the gas flow rate, necessary to form the slugs as well as to provoke flooding, decreases as the severity of the

  17. Experimental investigation and CFD validation of Horizontal Air/Water slug flow

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas

    2007-01-01

    For the investigation of co-current two-phase flows at atmospheric pressure and room temperature, the Horizontal Air/Water Channel (HAWAC) was built at Forschungszentrum Dresden-Rossendorf (FZD). At the channel inlet, a special device provides adjustable and well-defined inlet boundary conditions and therefore very good CFD validation possibilities. The HAWAC facility is designed for the application of optical measurement techniques, which deliver the high resolution required for CDF validation. Therefore, the 8 m long acrylic glass test-section with rectangular cross-section provides good observation possibilities. High-speed video observation was applied during slug flow. The camera images show the generation of slug flow from the inlet of the test-section. Parallel to the experiments, CFD calculations were carried out. The aim of the numerical simulations is to validate the prediction of slug flow with the existing multiphase flow models built in the commercial code ANSYS CFX. The Euler-Euler two-fluid model with the free surface option was applied to a grid of 600,000 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare well in terms of slug formation, and breaking. The qualitative agreement between calculation and experiment is encouraging, while quantitative comparison show that further model improvement is needed. (author)

  18. Effect of completion geometry and phasing on single-phase liquid flow behaviour in horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, H.; Sarica, C.; Brill, P. [Tulsa Unov., OK (United States)

    1998-12-31

    The effects of completion geometries and the phasing and density of injection openings in horizontal wells was studied. A total of 1,257 tests were conducted for no fluid injections, no main flow at the test section inlet, and with fluid injection for Reynolds numbers ranging from 4,000 to 60,000 and for influx to main flow rate ratios ranging from 1/5 to 1/2000. Results demonstrated the dramatic effects of completion geometry, phasing density, Reynolds number and main flow rate on the pressure behaviour and therefore on the production behaviour of the well. A general friction factor expression for horizontal wells with multiple injection openings was developed based on the conservation of mass and momentum and using a commercial Computational Fluid Dynamics (CFD) computer program to determine the length of the flow developing region in a horizontal well. A field example is presented to show the importance of using the proper friction factor correlation to calculate the pressure drop in a horizontal well. 32 refs., 4 tabs., 20 figs.

  19. Flow Through A Horizontal Porous Channel With A Harmonic ...

    African Journals Online (AJOL)

    In this research work we provide a finite element solution to the problem of the flow through a horizontal channel with a harmonic pressure gradient. Results obtained shows that the velocity and temperature increases with time and that a turning point occurs in the temperature profile due to the viscous dissipation effect.

  20. Ebullition, Plant-Mediated Transport, and Subsurface Horizontal Water Flow Dominate Methane Transport in an Arctic Sphagnum Bog

    Science.gov (United States)

    Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.

  1. Two-phase flow and pressure drop in T-junctions with horizontal run and vertical branch

    International Nuclear Information System (INIS)

    Katsaounis, A.

    1987-01-01

    Visual observations of single- and two-phase dividing flow and pressure drop measurements were performed in T-junctions with horizontal run and vertical branch. Both tees used were geometrically similar, in a scale of 1:4. The measurements were performed for plug/slug and stratified flow pattern regime in horizontal tube. Based on the single-phase form-resistance pressure drop correlation of Gardel a corresponded calculation model was developed for the two-phase flow verified by the own measurements. (orig.) [de

  2. Design and Analysis of Horizontal Axial Flow Motor Shroud

    Science.gov (United States)

    Wang, Shiming; Shen, Yu

    2018-01-01

    The wind turbine diffuser can increase the wind energy utilization coefficient of the wind turbine, and the addition of the shroud to the horizontal axis wind turbine also plays a role of accelerating the flow of the condensate. First, the structure of the shroud was designed and then modeled in gambit. The fluent software was used to establish the mathematical model for simulation. The length of the shroud and the opening angle of the shroud are analyzed to determine the best shape of the shroud. Then compared the efficiency with or without the shroud, through the simulation and the experiment of the water tank, it is confirmed that the horizontal axis of the shroud can improve the hydrodynamic performance.

  3. Free-Surface flow dynamics and its effect on travel time distribution in unsaturated fractured zones - findings from analogue percolation experiments

    Science.gov (United States)

    Noffz, Torsten; Kordilla, Jannes; Dentz, Marco; Sauter, Martin

    2017-04-01

    Flow in unsaturated fracture networks constitutes a high potential for rapid mass transport and can therefore possibly contributes to the vulnerability of aquifer systems. Numerical models are generally used to predict flow and transport and have to reproduce various complex effects of gravity-driven flow dynamics. However, many classical volume-effective modelling approaches often do not grasp the non-linear free surface flow dynamics and partitioning behaviour at fracture intersections in unsaturated fracture networks. Better process understanding can be obtained by laboratory experiments, that isolate single aspects of the mass partitioning process, which influence travel time distributions and allow possible cross-scale applications. We present a series of percolation experiments investigating partitioning dynamics of unsaturated multiphase flow at an individual horizontal fracture intersection. A high precision multichannel dispenser is used to establish gravity-driven free surface flow on a smooth and vertical PMMA (poly(methyl methacrylate)) surface at rates ranging from 1.5 to 4.5 mL/min to obtain various flow modes (droplets; rivulets). Cubes with dimensions 20 x 20 x 20 cm are used to create a set of simple geometries. A digital balance provides continuous real-time cumulative mass bypassing the network. The influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes is shown in single-inlet experiments. Droplet and rivulet flow are delineated and a transition zone exhibiting mixed flow modes can be determined. Furthermore, multi-inlet setups with constant total inflow rates are used to reduce variance and the effect of erratic free-surface flow dynamics. Investigated parameters include: variable aperture widths df, horizontal offsets dv of the vertical fracture surface and alternating injection methods for both droplet and rivulet flow. Repetitive structures with several horizontal fractures extend arrival times

  4. Hydraulic investigation on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Hu Chen; Gu Hanyang

    2015-01-01

    The formation and control of free surface are the most essential parts in the studies of windowless target in ACCELERATOR-DRIVEN sub-critical system (ADS). Water model experiments and 360° full scale three dimensional simulations were conducted. The experimental study demonstrates that the free surface is significantly affected by the inlet flow velocity and outlet pressure. The length of free surface decreases in the second order with the increase of inlet flow velocity, while it decreases linearly with the outlet pressure. The structure and feature of flow field were investigated. The results show that the free surface is vulnerable to the vortex movement. Transient simulations were performed with volume of fluid (VOF) method, large eddy simulation (LES) and the pressure implicit with splitting of operators (PISO) algorithm. The simulation results agree qualitatively well with the experimental data related to both free surface flow and flow field. These simulation models and methods are proved to be applicable in the hydraulic simulations of liquid heavy metal target. (authors)

  5. Micro/nanostructures formation by femtosecond laser surface processing on amorphous and polycrystalline Ni{sub 60}Nb{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Edwin, E-mail: edwin.peng@huskers.unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Tsubaki, Alfred; Zuhlke, Craig A. [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Wang, Meiyu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Bell, Ryan [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Lucis, Michael J. [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Anderson, Troy P.; Alexander, Dennis R. [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Gogos, George; Shield, Jeffrey E. [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2017-02-28

    Highlights: • Femtosecond laser processing of glass-forming Ni{sub 60}Nb{sub 40} produce surface structures. • Cross sectioning, imaging, & TEM sample preparation with dual-beam SEM. • Low laser fluence surface structures’ form by ablation. • High laserfluence surface structures form by ablation and fluid flow. - Abstract: Femtosecond laser surface processing is a technology that can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophilicity/superhydrophobicity. In this study, two unique classes of surface structures, below surface growth (BSG) and above surface growth (ASG) mounds, were formed by femtosecond laser surface processing on amorphous and polycrystalline Ni{sub 60}Nb{sub 40} with two different grain sizes. Cross sectional imaging of these mounds revealed thermal evidence of the unique formation processes for each class of surface structure. BSG mounds formed on all three substrates using the same laser parameters had similar surface morphology. The microstructures in the mounds were unaltered compared with the substrate before laser processing, suggesting their formation was dominated by preferential valley ablation. ASG mounds had similar morphology when formed on the polycrystalline Ni{sub 60}Nb{sub 40} substrates with 100 nm and 2 μm grain size. However, the ASG mounds had significantly wider diameter and higher peak-to-valley heights when the substrate was amorphous Ni{sub 60}Nb{sub 40}. Hydrodynamic melting was primarily responsible for ASG mound formation. On amorphous Ni{sub 60}Nb{sub 40} substrates, the ASG mounds are most likely larger due to lower thermal diffusivity. There was clear difference in growth mechanism of femtosecond laser processed BSG and ASG mounds, and grain size does not appear to be a factor.

  6. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  7. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  8. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Science.gov (United States)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  9. A test section design to simulate horizontal two-phase air-water flow

    International Nuclear Information System (INIS)

    Faccini, Jose Luiz H.; Cesar, Silvia B.G.; Coutinho, Jorge A.; Freitas, Sergio Carlos; Addor, Pedro N.

    2002-01-01

    In this work an air-water two-phase flow horizontal test section assembling at Nuclear Engineering Institute (IEN) is presented. The test section was designed to allow four-phase flow patterns to be simulated: bubble flow, stratified flow, wave flow and slug flow. These flow patterns will be identified by non-conventional ultrasonic techniques which have been developed to meet this particular application. Based on the separated flow and drift-flux models the test section design steps are shown. A description of the test section and its instrumentation and data acquisition system is also provided. (author)

  10. Measurement of the interaction between the flow and the free surface of a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji [Univ. of Tokyo, Ibaraki (Japan); Schmidl, W.D.; Philip, O.G. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow.

  11. Measurement of the interaction between the flow and the free surface of a liquid

    International Nuclear Information System (INIS)

    Okamoto, Koji; Schmidl, W.D.; Philip, O.G.

    1995-01-01

    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow

  12. Two-phase flow through small branches in a horizontal pipe with stratified flow

    International Nuclear Information System (INIS)

    Smoglie, C.

    1984-12-01

    This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HP) [de

  13. An extension of theoretical analysis for the onset of slugging criterion in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Lee, Byung Ryung

    1997-02-01

    This paper presents an experimental and theoretical investigation of interfacial friction factor, wave height and transition criterion from wavy to slug flow in a long horizontal air-water countercurrent stratified flow condition. A series of experiments have been conducted in adiabatic countercurrent stratified flow with the round pipe and rectangular duct test section to develop the interfacial friction factor and the criterion of onset of slugging in horizontal air-water countercurrent stratified flow. An adiabatic semi-empirical correlation for interfacial friction factor has been developed based on the surface roughness concept. A comparison of the measured data in this study and of other investigators with the predictions of the present correlation shows that the agreement is within ±30% error, and that the present correlation is applicable to a broader range of water flow rate than the correlations of previous investigators. The theories which can calculate the wave height and criteria of onset of slug flow in a stratified wavy flow regime have been developed based on the concept of total energy conservation and also wave theory. This theoretical criteria agree better with the measured data than the other criteria available in the literature, but the criteria range about 92∼107% of the measured data. An empirical formula for the criterion has been also developed and compared with the formula in the literatures. Comparison between the measured data and the predictions of the present theory shows that the agreement is within ±8%

  14. Numerically predicting horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1993-01-01

    A comparison between numerical calculations with use of commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degrees C and 23 degrees C for the low heat dissipation and high dissipation, respectively. The temperature predictions using helium as a fill gas are lower than the experimental data for the low and medium heat dissipation levels. The temperature predictions are 1 degrees C and 6 degrees C lower than the experimental data for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degrees C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include a experimental uncertainity in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This works demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects, such as axial heat transfer through the spent fuel rods, will be increasingly important as the amount of dissipated heat increases

  15. Numerically predicting horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1992-01-01

    A comparison between numerical calculations with use of commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degree C and 23 degree C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower than the experimental data for the low and medium heat dissipation levels. The temperature predictions are 1 degree C and 6 degree C lower than the experimental data for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degree C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects, such as axial heat transfer through the spent fuel rods, will be increasingly important as the amount of dissipated heat increases

  16. Asymptotic stability of shear-flow solutions to incompressible viscous free boundary problems with and without surface tension

    Science.gov (United States)

    Tice, Ian

    2018-04-01

    This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.

  17. Granular flow considerations in the design of a cascade solid breeder reaction chamber

    International Nuclear Information System (INIS)

    Walton, O.R.

    1983-10-01

    Both horizontally and vertically oriented rotating chambers with granular material held on the inner surface by centrifugal action are examined. Modifications to the condition for controlled quasi-static flow on an incline plane, phi/sub w/ 0 +- 10 0 for ceramic particles and metal surfaces. For vertical orientations the maximum half-angle of the top cone is slightly less than the wall friction angle phi/sub w/ while the lower portion can have a half angle as large as (90 0 - phi/sub w). Percolation of fines through shearing granular solids is briefly discussed and recommended experimental and calculational studies to obtain a better understanding of this behavior are described

  18. Stratification of bubbly horizontal flows: modeling and experimental validation

    International Nuclear Information System (INIS)

    Bottin, M.

    2010-01-01

    Hot films and optical probes enabled the acquisition of measurements in bubbly flows at 5, 20 and 40 diameters from the inlet of the vein on the METERO facility which test section is a horizontal circular pipe of 100 mm inner diameter. The distribution of the different phases, the existence of coalescence and sedimentation mechanisms, the influence of the liquid and gas flow rates, the radial and axial evolutions are analyzed thanks to fast camera videos and numerous and varied experimental results (void fraction, bubbles sizes, interfacial area, mean and fluctuating velocities and turbulent kinetic energy of the liquid phase). Some models, based on the idea that the flow reaches an equilibrium state sufficiently far from the inlet of the pipe, were developed to simulate mean interfacial area and turbulent kinetic energy transports in bubbly flows. (author)

  19. Experimental investigation and physical description of stratified flow in horizontal channels

    International Nuclear Information System (INIS)

    Staebler, T.

    2007-05-01

    The interaction between a liquid film and turbulent gas flows plays an important role in many technical applications (e.g. in hydraulic engineering, process engineering and nuclear engineering). The local kinematic and turbulent time-averaged flow quantities for counter-current stratified flows (supercritical and subcritical flows with and without flow reversal) have been measured for the first time. Therefore, the method of Particle Image Velocimetry was applied. By using fluorescent particles in combination with an optical filter it was possible to determine the flow quantities of the liquid phase up to the free surface. Additionally, the gaseous phase was investigated by using the scattering of light of conventional particles. With a further measurement technique the void fraction distribution along the channel height has been determined. For this purpose, a single-tip conductivity probe was developed. Furthermore, water delivery rates and pressure losses along the test section were measured over a wide range of parameters. The measurements also revealed new details on the hysteresis effect after the occurrence of flow reversal. The experimental findings were used to develop and validate a statistical model in which the liquid phase is considered to be an agglomeration of interacting particles. The statistical consideration of the particle interactions delivers a differential equation which can be used to predict the local void fraction distribution with the local turbulent kinematic energies of the liquid phase. Beyond that, an additional statistical description is presented in which the probability density functions of the local void fraction are described by beta-functions. Both theoretical approaches can be used for numerical modelling whereas the statistical model can be used to describe the phase interactions and the statistical description to describe the turbulent fluctuations of the local void fraction. Thus, this work has made available all necessary

  20. Horizontal two phase flow pattern identification by neural networks

    International Nuclear Information System (INIS)

    Crivelaro, Kelen Cristina Oliveira; Seleghim Junior, Paulo; Hervieu, Eric

    1999-01-01

    A multiphase fluid can flow according to several flow regimes. The problem associated with multiphase systems are basically related to the behavior of macroscopic parameters, such as pressure drop, thermal exchanges and so on, and their strong correlation to the flow regime. From the industrial applications point of view, the safety and longevity of equipment and systems can only be assured when they work according to the flow regimes for which they were designed to. This implies in the need to diagnose flow regimes in real time. The automatic diagnosis of flow regimes represents an objective of extreme importance, mainly for applications on nuclear and petrochemical industries. In this work, a neural network is used in association to a probe of direct visualization for the identification of a gas-liquid flow horizontal regimes, developed in an experimental circuit. More specifically, the signals produced by the probe are used to compose a qualitative image of the flow, which is promptly sent to the network for the recognition of the regimes. Results are presented for different transitions among the flow regimes, which demonstrate the extremely satisfactory performance of the diagnosis system. (author)

  1. Experimental investigation on the droplet entrainment from interfacial waves in air-water horizontal stratified flow

    International Nuclear Information System (INIS)

    Bae, Byeong Geon; Yun, Byong Jo; Kim, Kyoung Du

    2014-01-01

    It was mainly due to the fact that droplet entrainment affects the Peak Cladding Temperature (PCT) of the nuclear fuel rod in the Postulated accident conditions of NPP. Recently, droplet entrainment in the horizontally arranged primary piping system for the NPP is of interest because it affects directly the steam binding phenomena in the steam generators. Pan and Hanratty correlation is the only applicable one for the droplet entrainment rate model for horizontal flow. Moreover, there are no efforts for the model development on the basis of the droplet entrainment principal and physics phenomena. More recently, Korea Atomic Energy Research Institute (KAERI) proposed a new mechanistic droplet generation model applicable in the horizontal pipe for the SPACE code. However, constitutive relations in this new model require three model coefficients which have not yet been decided. The purpose of present work is determining three model coefficients by visualization experiment. For these model coefficients, the major physical parameters regarding the interfacial disturbance wave should be measured in this experiments. There are the wave slope, liquid fraction, wave hypotenuse length, wave velocity, wave frequency, and wavelength in the major physical parameters. The experiment was conducted at an air water horizontal rectangular channel with the PIV system. In this study, the experimental conditions were stratified-way flow during the droplet generation. Three coefficients were determined based on several data related to the interfacial wave. Additionally, we manufactured the parallel wire conductance probe to measure the fluctuating water level over time, and compared the wave height measured by the parallel wire conductance probe and image processing from images taken by high speed camera. Experimental investigation was performed for droplet entrainment from phase interface wave in an air-water stratified flow. In the experiments, we measured major physical parameters

  2. A study of Two-Phase Flow Regime Maps in Vertical and Horizontal Pipes

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Kang, Doo Hyuk

    2007-10-01

    A safety analysis code to design a pressurized water reactor and to obtain the licences including entire proprietary rights is under development in domestic research and development project. The purpose and scope of this report is to develop the flow regimes related models for inter-phase friction, wall frictions, wall heat transfer, and inter-phase heat and mass transfer in two-phase three-field equations. In order to choose choose the flow regime criteria, we have investigated various exiting best-estimate T/H codes in this chapter 2. They are the RELAP5-3D, TRAC-M, CATHARE, MARS codes. Around 500 references used in these codes have been collected and reviewed. Also we have investigated eleven papers in detail. In chapter 3, based on the selected flow regimes, the flow regime maps for a gas-liquid flow in horizontal and vertical tubes have decided including the mechanisms of flow regime transition regions. Conclusively, the process will be presented for choosing the best flow regime maps which occur in gas-liquid two-phase flow in horizontal and vertical pipes. We will look forward to decide the constitutive relations based upon the flow regime maps that are determined in this works. The constitutive relations will be used for the code under development

  3. Steady particulate flows in a horizontal rotating cylinder

    Science.gov (United States)

    Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.

  4. Modifications of Carbonate Fracture Hydrodynamic Properties by CO <sub>2sub> -Acidified Brine Flow

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-15

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel

  5. Axisymmetric, Ventilated Supercavitation in Unsteady, Horizontal Flow

    Science.gov (United States)

    Kawakami, Ellison; Lee, Seung-Jae; Arndt, Roger

    2012-11-01

    Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, an artificial supercavity is required until the vehicle can reach conditions at which a natural supercavity can be sustained. Previous studies at Saint Anthony Falls Laboratory (SAFL) focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling under waves. A study has been carried out at SAFL to investigate the effects of unsteady flow on axisymmetric supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. The supercavity volume varied with cavitation number and a possible relationship between the two is being explored. (Supported by ONR)

  6. Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting.

    Science.gov (United States)

    Zam, Azhar; Dsouza, Roshan; Subhash, Hrebesh M; O'Connell, Marie-Louise; Enfield, Joey; Larin, Kirill; Leahy, Martin J

    2013-09-01

    We propose the use of correlation mapping optical coherence tomography (cmOCT) to deliver additional biometrics associated with the finger that could complement existing fingerprint technology for law enforcement applications. The current study extends the existing fingerprint paradigm by measuring additional biometrics associated with sub-surface finger tissue such as sub-surface fingerprints, sweat glands, and the pattern of the capillary bed to yield a user-friendly cost effective and anti-spoof multi-mode biometric solution associated with the finger. To our knowledge no other method has been able to capture sub-surface fingerprint, papillary pattern and horizontal vessel pattern in a single scan or to show the correspondence between these patterns in live adult human fingertip. Unlike many current technologies this approach incorporates 'liveness' testing by default. The ultimate output is a biometric module which is difficult to defeat and complements fingerprint scanners that currently are used in border control and law enforcement applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Theoretical and experimental studies on transient heat transfer for forced convection flow of helium gas over a horizontal cylinder

    International Nuclear Information System (INIS)

    Liu Qiusheng; Katsuya Fukuda; Zhang Zheng

    2005-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder (heater) was theoretically and experimentally studied. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the cylinder becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat flux shows difference from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over horizontal cylinders under wide experimental conditions. The platinum cylinders with diameters of 1.0 mm, 0.7 mm, and 2.0 mm were used as test heaters and heated by electric current with an exponential increase of Q 0exp (t/τ) . The gas flow velocities ranged from 2 to 10 m/s, the gas temperatures ranged from 303 to 353 K, and the periods ranged from 50 ms to 20 s. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. The transient heat transfer coefficients show significant dependence on

  8. Horizontal liquid film-mist two phase flow, (1)

    International Nuclear Information System (INIS)

    Akagawa, Koji; Sakaguchi, Tadashi; Fujii, Terushige; Nakatani, Yoji; Nakaseko, Kosaburo.

    1979-01-01

    The characteristics of liquid film in annular spray flow, the generation of droplets from liquid film and the transport of droplets to a wall are the important matters in the planning and design of nuclear reactor cooling system and the channels of steam generators. The study on the liquid film spray flow is scarce, and its characteristics are not yet elucidated. The purpose of this series of studies is to clarify the characteristics of liquid film, the generation, diffusion and distribution of droplets and pressure loss in the liquid film spray flow composed of the liquid film on the lower wall and spraying gas flow in a rectangular, horizontal channel. In this paper, the concentration distribution and the diffusion coefficient of droplets on a cross section in the region of flow completion are reported. The experimental apparatuses and the experimental method, the flow rate of droplets and the velocity distribution of gas phase, the concentration distribution and the diffusion coefficient of droplets, and the diameter of generated droplets are explained. The equation for the concentration distribution of droplets using dimensionless characteristic value was derived. The mean diffusion coefficient of droplets was constant on a cross section, and the effects of gravity and turbulent diffusion can be evaluated. (Kako, I.)

  9. Assessment of horizontal in-tube condensation models using MARS code. Part I: Stratified flow condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon, E-mail: sjhong90@fnctech.com [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Ju-Yeop; Seul, Kwang-Won [Korea Institute of Nuclear Safety, 19 Kuseong-dong, Yuseong-gu, Daejon (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer This study collected 11 horizontal in-tube condensation models for stratified flow. Black-Right-Pointing-Pointer This study assessed the predictive capability of the models for steam condensation. Black-Right-Pointing-Pointer Purdue-PCCS experiments were simulated using MARS code incorporated with models. Black-Right-Pointing-Pointer Cavallini et al. (2006) model predicts well the data for stratified flow condition. Black-Right-Pointing-Pointer Results of this study can be used to improve condensation model in RELAP5 or MARS. - Abstract: The accurate prediction of the horizontal in-tube condensation heat transfer is a primary concern in the optimum design and safety analysis of horizontal heat exchangers of passive safety systems such as the passive containment cooling system (PCCS), the emergency condenser system (ECS) and the passive auxiliary feed-water system (PAFS). It is essential to analyze and assess the predictive capability of the previous horizontal in-tube condensation models for each flow regime using various experimental data. This study assessed totally 11 condensation models for the stratified flow, one of the main flow regime encountered in the horizontal condenser, with the heat transfer data from the Purdue-PCCS experiment using the multi-dimensional analysis of reactor safety (MARS) code. From the assessments, it was found that the models by Akers and Rosson, Chato, Tandon et al., Sweeney and Chato, and Cavallini et al. (2002) under-predicted the data in the main condensation heat transfer region, on the contrary to this, the models by Rosson and Meyers, Jaster and Kosky, Fujii, Dobson and Chato, and Thome et al. similarly- or over-predicted the data, and especially, Cavallini et al. (2006) model shows good predictive capability for all test conditions. The results of this study can be used importantly to improve the condensation models in thermal hydraulic code, such as RELAP5 or MARS code.

  10. Electroluminescence from completely horizontally oriented dye molecules

    Energy Technology Data Exchange (ETDEWEB)

    Komino, Takeshi [Education Center for Global Leaders in Molecular System for Devices, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Sagara, Yuta [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Tanaka, Hiroyuki [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Oki, Yuji [Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Department of Electronics, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Nakamura, Nozomi [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Fujimoto, Hiroshi [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Fukuoka i" 3-Center for Organic Photonics and Electronics Research (i3-OPERA), Fukuoka 819-0388 (Japan); and others

    2016-06-13

    A complete horizontal molecular orientation of a linear-shaped thermally activated delayed fluorescent guest emitter 2,6-bis(4-(10Hphenoxazin-10-yl)phenyl)benzo[1,2-d:5,4-d′] bis(oxazole) (cis-BOX2) was obtained in a glassy host matrix by vapor deposition. The orientational order of cis-BOX2 depended on the combination of deposition temperature and the type of host matrix. Complete horizontal orientation was obtained when a thin film with cis-BOX2 doped in a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host matrix was fabricated at 200 K. The ultimate orientation of guest molecules originates from not only the kinetic relaxation but also the kinetic stability of the deposited guest molecules on the film surface during film growth. Utilizing the ultimate orientation, a highly efficient organic light-emitting diode with the external quantum efficiency of 33.4 ± 2.0% was realized. The thermal stability of the horizontal orientation of cis-BOX2 was governed by the glass transition temperature (T{sub g}) of the CBP host matrix; the horizontal orientation was stable unless the film was annealed above T{sub g}.

  11. The evaluation of validity of the RELAP5/Mod3 flow regime map for horizontal small diameter tubes at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N. [St. Petersburg State Technical Univ. (Russian Federation); Banati, J. [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    RELAP5/MOD3 code was developed for Western type power water reactors with vertical steam generators. Thus, this code should be validated also for WWER design with horizontal steam generators. In application for horizontal steam generators the situation with two-phase flow inside small diameter tubes is possible when the first circuit pressure drops in accident below the pressure level in the boiling water. It is known that computer codes have not always modelled correctly the two-phase flow inside horizontal tubes at low pressures (less than 4-6 MPa). It may be the result of erroneous prediction of the flow regime. Correct prediction of the flow regime is especially important for the fully or partly stratified flow in horizontal tubes. The aim of this study is the attempt of verification of the flow regime map, which is used in the RELAP5/MOD3 computer code for two-phase flow in horizontal small diameter tubes. `Small diameter tube` means according RELAP5/MOD3 that the inner diameter of the tube is less (or equal) than 0.018 m. The inner tube diameter in horizontal steam generators is equal 0.013 m. (orig.). 19 refs.

  12. The evaluation of validity of the RELAP5/Mod3 flow regime map for horizontal small diameter tubes at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N [St. Petersburg State Technical Univ. (Russian Federation); Banati, J [Lappeenranta Univ. of Technology (Finland)

    1998-12-31

    RELAP5/MOD3 code was developed for Western type power water reactors with vertical steam generators. Thus, this code should be validated also for WWER design with horizontal steam generators. In application for horizontal steam generators the situation with two-phase flow inside small diameter tubes is possible when the first circuit pressure drops in accident below the pressure level in the boiling water. It is known that computer codes have not always modelled correctly the two-phase flow inside horizontal tubes at low pressures (less than 4-6 MPa). It may be the result of erroneous prediction of the flow regime. Correct prediction of the flow regime is especially important for the fully or partly stratified flow in horizontal tubes. The aim of this study is the attempt of verification of the flow regime map, which is used in the RELAP5/MOD3 computer code for two-phase flow in horizontal small diameter tubes. `Small diameter tube` means according RELAP5/MOD3 that the inner diameter of the tube is less (or equal) than 0.018 m. The inner tube diameter in horizontal steam generators is equal 0.013 m. (orig.). 19 refs.

  13. Oxidation behaviour of ferritic stainless steel grade Crofer 22 APU at 700 °C in flowing Ar−75%CO{sub 2}−12%H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Shariff, Nurul Atikah; Othman, Norinsan Kamil [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Jalar, Azman [Institute of Micro Engineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    The oxidation of Ferritic Stainless Steel (FSS) grade Crofer 22 APU has been investigated. FSS alloys were exposed to isothermal conditions in a horizontal tube furnace at a 700 °C in flowing Ar−75%CO{sub 2}−12%H{sub 2}O at a pressure of approximately 1 atm. The results showed that the growth of non protective Fe{sub 2}O{sub 3} and spinel was observed after 50 h exposure in the presence of 12% H{sub 2}O. The weight was increased significantly with time of exposure. The formation of different oxides is presented on the interface of the specimen such as MnCr{sub 2}O{sub 4}, Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} were revealed by X-ray diffraction and supported by EDAX analysis. FSS did not form a protective Cr{sub 2}O{sub 3} layer due to water vapour accelerates the kinetics oxidation. Data of microstructure observation is presented and discussed in this paper in term of water vapour effects.

  14. SIPSON--simulation of interaction between pipe flow and surface overland flow in networks.

    Science.gov (United States)

    Djordjević, S; Prodanović, D; Maksimović, C; Ivetić, M; Savić, D

    2005-01-01

    The new simulation model, named SIPSON, based on the Preissmann finite difference method and the conjugate gradient method, is presented in the paper. This model simulates conditions when the hydraulic capacity of a sewer system is exceeded, pipe flow is pressurized, the water flows out from the piped system to the streets, and the inlets cannot capture all the runoff. In the mathematical model, buried structures and pipelines, together with surface channels, make a horizontally and vertically looped network involving a complex interaction of flows. In this paper, special internal boundary conditions related to equivalent inlets are discussed. Procedures are described for the simulation of manhole cover loss, basement flooding, the representation of street geometry, and the distribution of runoff hydrographs between surface and underground networks. All these procedures are built into the simulation model. Relevant issues are illustrated on a set of examples, focusing on specific parameters and comparison with field measurements of flooding of the Motilal ki Chal catchment (Indore, India). Satisfactory agreement of observed and simulated hydrographs and maximum surface flooding levels is obtained. It is concluded that the presented approach is an improvement compared to the standard "virtual reservoir" approach commonly applied in most of the models.

  15. Unsteady Flow in a Horizontal Double-Sided Symmetric Thin Liquid Films

    Directory of Open Access Journals (Sweden)

    Joseph G. ABDULAHAD

    2017-06-01

    Full Text Available In this paper a mathematical model is constructed to describe a two dimensional incompressible flow in a symmetric horizontal thin liquid film for unsteadies flow. We apply the Navier-Stokes equations with specified boundary conditions and we obtain the equation of the film thickness by using the similarity method in which we can isolate the explicit time dependence and then the shape of the film will depend on one variable only.

  16. An analysis direct-contact condensation in horizontal cocurrent stratified flow of steam and cold water

    International Nuclear Information System (INIS)

    Lee, Suk Ho; Kim, Hho Jung

    1992-01-01

    The physical benchmark problem on the direct-contact condensation under the horizontal cocurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was performed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range. (Author)

  17. Horizontal Air-Water Flow Analysis with Wire Mesh Sensor

    International Nuclear Information System (INIS)

    De Salve, M; Monni, G; Panella, B

    2012-01-01

    A Wire Mesh Sensor, based on the measurement of the local instantaneous conductivity of the two-phase mixture, has been used to characterize the fluid dynamics of the gas–liquid interface in a horizontal pipe flow. Experiments with a pipe of a nominal diameter of 19.5 mm and total length of 6 m, have been performed with air/water mixtures, at ambient conditions. The flow quality ranges from 0.00016 to 0.22 and the superficial velocities range from 0.1 to 10.5 m/s for air and from 0.02 to 1.7 m/s for water; the flow pattern is stratified, slug/plug and annular. A sensor (WMS200) with an inner diameter of 19.5 mm and a measuring matrix of 16×16 points equally distributed over the cross-section has been chosen for the measurements. From the analysis of the Wire Mesh Sensor digital signals the average and the local void fraction are evaluated and the flow patterns are identified with reference to space, time and flow rate boundary conditions.

  18. Local studies in horizontal gas-liquid slug flow

    International Nuclear Information System (INIS)

    Sharma, S.; Lewis, S.; Kojasoy, G.

    1998-01-01

    The local axial velocity profile development in a horizontal air-water slug flow-pattern was experimentally investigated by simultaneously using two hot-film anemometers. One of the probes was exclusively used as phase identifier while the other probe was traversed for local velocity measurements. It was shown that the velocity rapidly develops into asymmetric but nearly fully-developed profiles within the liquid slugs whereas the velocity never develops into quasi-fully-developed profiles within the liquid layer underneath passing gas slugs. Transient nature of velocity at a given location was demonstrated. (author)

  19. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Weihang Kong

    2016-08-01

    Full Text Available Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM. Firstly, using the finite element method (FEM, the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  20. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    Science.gov (United States)

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-08-24

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  1. Condensation of refrigerants in horizontal, spirally grooved microfin tubes: Numerical analysis of heat transfer in the annular flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Nozu, S; Honda, H

    2000-02-01

    A method is presented for estimating the condensation heat transfer coefficient in a horizontal, spirally grooved microfin tube. Based on the flow observation study performed by the authors, a laminar film condensation model in the annular flow regime is proposed. The model assumes that all the condensate flow occurs through the grooves. The condensate film is segmented into thin and thick film regions. In the thin film region formed on the fin surface, the condensate is assumed to be drained by the combined surface tension and vapor shear forces. In the thick film region formed in the groove, on the other hand, the condensate is assumed to be driven by the vapor shear force. The present and previous local heat transfer data including four fluids (CFC11, HCFC22, HCFC123, and HFCl34a) and three microfin tubes are found to agree with the present predictions to a mean absolute deviation of 15.1%.

  2. Design configurations affecting flow pattern and solids accumulation in horizontal free water and subsurface flow constructed wetlands.

    Science.gov (United States)

    Pedescoll, A; Sidrach-Cardona, R; Sánchez, J C; Carretero, J; Garfi, M; Bécares, E

    2013-03-01

    The aim of this study was to evaluate the effect of different horizontal constructed wetland (CW) design parameters on solids distribution, loss of hydraulic conductivity over time and hydraulic behaviour, in order to assess clogging processes in wetlands. For this purpose, an experimental plant with eight CWs was built at mesocosm scale. Each CW presented a different design characteristic, and the most common CW configurations were all represented: free water surface flow (FWS) with different effluent pipe locations, FWS with floating macrophytes and subsurface flow (SSF), and the presence of plants and specific species (Typha angustifolia and Phragmites australis) was also considered. The loss of the hydraulic conductivity of gravel was greatly influenced by the presence of plants and organic load (representing a loss of 20% and c.a. 10% in planted wetlands and an overloaded system, respectively). Cattail seems to have a greater effect on the development of clogging since its below-ground biomass weighed twice as much as that of common reed. Hydraulic behaviour was greatly influenced by the presence of a gravel matrix and the outlet pipe position. In strict SSF CW, the water was forced to cross the gravel and tended to flow diagonally from the top inlet to the bottom outlet (where the inlet and outlet pipes were located). However, when FWS was considered, water preferentially flowed above the gravel, thus losing half the effective volume of the system. Only the presence of plants seemed to help the water flow partially within the gravel matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Mixed convection between horizontal plates and consequences for chemical vapor deposition flows

    International Nuclear Information System (INIS)

    Chiu, K.C.

    1986-01-01

    To simulate the fluid dynamics of VD systems, mixed convection between horizontal plates (AR = width/height = 10) heated from below was studied by laser Doppler anemometry in a range 1368 < Ra < 8300 and 15 < R3 < 170. The entrance effects were characterized by two lengths: one for the onset of bouyancy-driven instability, and one for the full development of longitudinal convection rolls. Explicit expressions for both entrance lengths are given in terms of Ra and Re. In addition, unsteady longitudinal convection rolls were observed. These are discussed in terms of the admixture of transverse convection rolls and/or contributions from upstream turbulence. For the fully developed region it is shown analytically that the transverse velocities of the longitudinal convection rolls, v and w, are independent of the forced flow and are identical to those of the two-dimensional Rayleigh-Benard convection rolls. These fundamental results serve as a base for the discussion of horizontal CVD flows. The entrance and sidewall effects are found to have pronounced influences on the flow patterns observed in CVD (AR = 2) reactors

  4. Vertical Subsurface Flow Mixing and Horizontal Anisotropy in Coarse Fluvial Aquifers: Structural Aspects

    Science.gov (United States)

    Huggenberger, P.; Huber, E.

    2014-12-01

    Detailed descriptions of the subsurface heterogeneities in coarse fluvial aquifer gravel often lack in concepts to distinguish between the essence and the noise of a permeability structure and the ability to extrapolate site specific hydraulic information at the tens to several hundred meters scale. At this scale the heterogeneity strongly influences the anisotropies of the flow field and the mixing processes in groundwater. However, in many hydrogeological models the complexity of natural systems is oversimplified. Understanding the link between the dynamics of the surface processes of braided-river systems and the resulting subsurface sedimentary structures is the key to characterizing the complexity of horizontal and vertical mixing processes in groundwater. From the different depositional elements of coarse braided-river systems, the largest permeability contrasts can be observed in the scour-fills. Other elements (e.g. different types of gravel sheets) show much smaller variabilities and could be considered as a kind of matrix. Field experiments on the river Tagliamento (Northeast Italy) based on morphological observation and ground-penetrating radar (GPR) surveys, as well as outcrop analyses of gravel pit exposures (Switzerland) allowed us to define the shape, sizes, spatial distribution and preservation potential of scour-fills. In vertical sections (e.g. 2D GPR data, vertical outcrop), the spatial density of remnant erosional bounding surfaces of scours is an indicator for the dynamics of the braided-river system (lateral mobility of the active floodplain, rate of sediment net deposition and spatial distribution of the confluence scours). In case of combined low aggradation rate and low lateral mobility the deposits may be dominated by a complex overprinting of scour-fills. The delineation of the erosional bounding surfaces, that are coherent over the survey area, is based on the identification of angular discontinuities of the reflectors. Fence diagrams

  5. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    International Nuclear Information System (INIS)

    Merzougui, Abdelkrim; Mekias, Hocine; Guechi, Fairouz

    2007-01-01

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number α and for various values of the inclination angle β between the horizontal bottom and the inclined wall

  6. A waveless two-dimensional flow in a channel against an inclined wall with surface tension effect

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Abdelkrim [Departement de Mathematiques, Faculte des sciences, Universite Mohamed Boudiaf, M' sila, 28000 (Algeria); Mekias, Hocine [Departement de Mathematiques, Faculte des sciences, Universite Farhat Abbas Setif 19000 (Algeria); Guechi, Fairouz [Departement de Mathematiques, Faculte des sciences, Universite Farhat Abbas Setif 19000 (Algeria)

    2007-11-23

    Surface tension effect on a two-dimensional channel flow against an inclined wall is considered. The flow is assumed to be steady, irrotational, inviscid and incompressible. The effect of surface tension is taken into account and the effect of gravity is neglected. Numerical solutions are obtained via series truncation procedure. The problem is solved numerically for various values of the Weber number {alpha} and for various values of the inclination angle {beta} between the horizontal bottom and the inclined wall.

  7. Visualization of two-phase gas-liquid flow regimes in horizontal and slightly-inclined circular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Livia Alves [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: livia@lasme.coppe.ufrj.br; Cunha Filho, Jurandyr; Su, Jian [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Program], Emails: cunhafilho@lasme.coppe.ufrj.br, sujian@lasme.coppe.ufrj.br; Faccini, Jose Luiz Horacio [Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: faccini@ien.gov.br

    2010-07-01

    In this paper a flow visualization study was performed for two-phase gas-liquid flow in horizontal and slightly inclined tubes. The test section consists of a 2.54 cm inner diameter stainless steel circular tube, followed by a transparent acrylic tube with the same inner diameter. The working fluids were air and water, with liquid superficial velocities ranging from 0:11 to 3:28 m/s and gas superficial velocities ranging from 0:27 to 5:48 m/s. Flow visualization was executed for upward flow at 5 deg and 10 deg and downward flow at 2:5 deg, 5 deg and 10 deg, as well as for horizontal flow. The visualization technique consists of a high-speed digital camera that records images at rates of 125 and 250 frames per second of a concurrent air-water mixture through a transparent part of the tube. From the obtained images, the flow regimes were identified (except for annular flow), observing the effect of inclination angles on flow regime transition boundaries. Finally, the experimental results were compared with empirical and theoretical flow pattern maps available in literature. (author)

  8. The root flow of horizontal axis wind turbine blades : Experimental analysis and numerical validation

    NARCIS (Netherlands)

    Akay, B.

    2016-01-01

    Despite a long research history in the field of wind turbine aerodynamics, horizontal axis wind turbine (HAWT) blade's root flow aerodynamics is among the least understood topics. In this thesis work, a detailed investigation of the root flow is performed to gain a better insight into the features

  9. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  10. Experimental measurements of the cavitating flow after horizontal water entry

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thang Tat; Thai, Nguyen Quang; Phuong, Truong Thi [Institute of Mechanics (IMECH), Vietnam Academy of Science and Technology (VAST), 264—Doi Can, Ba Dinh, Hanoi (Viet Nam); Hai, Duong Ngoc, E-mail: ntthang@imech.vast.vn, E-mail: dnhai@vast.vn, E-mail: nqthai@imech.vast.vn, E-mail: ttphuong@imech.vast.vn [Graduate University of Science and Technology (GUST), VAST, 18—Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2017-10-15

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles. (paper)

  11. Towards quantifying horizontal stresses of free-polling pneumatic rubber tyres on road surfaces

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available out in which the horizontal stresses on a relatively rough-textured (RT) test surface were compared with those on a relatively smooth (S) test surface, representing nominal positive textured road surfaces and nominal smooth (zero texture) road surfaces...

  12. Investigation of Na-CO{sub 2} Reaction with Initial Reaction in Various Reacting Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Park, Gunyeop; Kim, Soo Jae; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Wi, Myung-Hwan [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The reaction products that cause oxidation and erosion are threaten the heat transfer tubes so that it is necessary to investigate Na-CO{sub 2} reaction according to various experimental parameter. Unlike SWR, Na-CO{sub 2} reaction is more complex to deal with reaction kinetics. Since a comprehensive understanding of Na-CO{sub 2} reaction mechanism is crucial for the safety analysis, the reaction phenomenon under the various conditions was investigated. The current issue is to make a database for developing computational code for CO{sub 2} gas leak situation because it is experimentally difficult to analyze the actual accident situation. Most studies on Na-CO{sub 2} interaction reports that chemical reaction is getting vigorous as temperature increased and reactivity is sensitive as temperature change between 400 .deg. C and 600 .deg. C. Therefore, temperature range is determined based on the operating condition (450 - 500 .deg. C) of KALIMER-600 employed as supercritical CO{sub 2} brayton cycle energy conversion system for Na-CO{sub 2} heat exchanger. And next parameter is sodium surface area which contact between sodium and CO{sub 2} when CO{sub 2} is injected into sodium pool in the accident situation. So, the fundamental surface reaction is experimentally studied in the range of 8 - 12cm{sup 2}. Additionally, it has been reported in recent years that CO{sub 2} Flow rate affects reactivity less significantly and CO{sub 2} flow rate is assumed that 5 SLPM (standard liter per minute) is suitable as a basis for a small leakage. The finally selected control parameters is sodium temperature and reacting surface area with constant CO{sub 2} flow rate. Na-CO{sub 2} reaction test is performed for investigating risk of potential accident which contacts with liquid sodium and CO{sub 2}. Amount of reaction is saturated as time passed because of kept a balance between production of solid phase reaction products and amount of diffusivity. These results contribute to make a

  13. Convection Study by PIV Method Within Horizontal Liquid Layer Evaporating Into Inert Gas Flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available The paper is devoted to the experimental study of convection in a horizontal evaporating liquid layer (ethanol of limited size under the action of gas flow (air. The two-dimensional velocity field in the liquid layer is obtained using the PIV method. The existence of a vortex convective flow within a liquid layer directed towards the gas flow has been revealed.

  14. Core-annular flow through a horizontal pipe : Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference

  15. Experimental studies on the evaporative heat transfer and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward in smooth and micro-fin tubes with outer diameter of 5 mm for an inclination angle of 45

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Min; Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea); Kim, Yong Jin [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2010-08-15

    Heat transfer characteristics show different tendency according to the tube orientations such as horizontal, vertical, and inclined positions. In this study, evaporative heat transfer characteristics and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward are investigated in inclined smooth and micro-fin tubes. Smooth and micro-fin tubes with outer diameter of 5 mm and length of 1.44 m with inclination angle of 45 were chosen as test tubes. Average inner diameters of test tubes are 4.0 mm (smooth tube) and 4.13 mm (micro-fin tube). The tests were conducted at mass fluxes from 212 to 656 kg/m{sup 2} s, saturation temperatures from -10 to 30 C and heat fluxes from 15 to 60 kW/m{sup 2} for CO{sub 2}. In addition, for CO{sub 2}/propane mixtures, the test was carried out at inlet temperatures from -10 to 30 C for several compositions (75/25, 50/50, 25/75 wt%) with the same mass fluxes, heat fluxes applied for CO{sub 2}. Heat transfer coefficients in inclined tube are approximately 1.8-3 times higher than those in horizontal tube and the average pressure drop of inclined tube exists between that of horizontal and vertical tubes. (author)

  16. Experimental data for the slug two-phase flow characteristics in horizontal pipeline

    Directory of Open Access Journals (Sweden)

    Abdalellah O. Mohmmed

    2018-02-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled “Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe” (Al-Kayiem et al., 2017 [1] which presents an experimental investigation of the slug velocity and slug body length for air-water tow phase flow in horizontal pipe. Here, in this article, the experimental set-up and the major instruments used for obtaining the computed data were explained in details. This data will be presented in the form of tables and videos.

  17. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    Science.gov (United States)

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  18. A comparative pressure analysis of air flow between horizontal and V-Tail of UAV MALE of NACA0012H with speed variation

    OpenAIRE

    Riza Rahmat; Kurniawan Dicky; Wicaksono Arif Budi

    2018-01-01

    NACA0012H is an airfoil type that could be used for Unmanned Aerial Vehicle Medium Altitude Long Endurance. This experiment was used to analyze stress in the surface of Tail of UAV MALE that was caused by air flow. The experiment was conducted using Computational Fluid Dynamics Software. Two designs of tail, horizontal and V-tail, were considered to simulate pressure occurred on the surface of leading edge, chamber and trailing edge. The simulation was developed varying the speed of the UAV M...

  19. Large-eddy simulation of open channel flow with surface cooling

    International Nuclear Information System (INIS)

    Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.

    2014-01-01

    Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the

  20. Effect of nitrogen flow rate on structural, morphological and optical properties of In-rich In{sub x}Al{sub 1−x}N thin films grown by plasma-assisted dual source reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, M., E-mail: alizadeh_kozerash@yahoo.com [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ganesh, V.; Goh, B.T. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Dee, C.F.; Mohmad, A.R. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahman, S.A., E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-15

    Highlights: • In-rich In{sub x}Al{sub 1−x}N films were grown by Plasma-aided reactive evaporation. • Effect of nitrogen flow rate on the films properties was investigated. • The band gap of the films was varied from 1.17 to 0.90 eV. • By increasing N{sub 2} flow rate the In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. • At higher N{sub 2} flow rate agglomeration of the particles is highly enhanced. - Abstract: In-rich In{sub x}Al{sub 1−x}N thin films were deposited on quartz substrate at various nitrogen flow rates by plasma-assisted dual source reactive evaporation technique. The elemental composition, surface morphology, structural and optical properties of the films were investigated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectrophotometer and photoluminescence (PL) measurements. XPS results revealed that the indium composition (x) of the In{sub x}Al{sub 1−x}N films increases from 0.90 to 0.97 as the nitrogen flow rate is increased from 40 to 100 sccm, respectively. FESEM images of the surface and cross-sectional microstructure of the In{sub x}Al{sub 1−x}N films showed that by increasing the N{sub 2} flow rate, the grown particles are highly agglomerated. Raman and XRD results indicated that by increasing nitrogen flow rate the In-rich In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. It was found that band gap energy of the films are in the range of 0.90–1.17 eV which is desirable for the application of full spectra solar cells.

  1. Flow Distribution Measurement Feasibility in Supercritical CO<sub>2sub>

    Energy Technology Data Exchange (ETDEWEB)

    Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Supercritical CO<sub>2sub> (sCO<sub>2sub>) is a fluid of interest for advanced power cycles that can reach thermal to electric energy conversion efficiencies of 50% or higher. Of particular interest for fossil-fired natural gas is the Allam cycle that captures nearly all CO<sub>2sub> emissions and exports it as a fluid stream where it may be of value. The combustion process conditions are unlike any before realized with 90-95% CO<sub>2sub> concentration, temperatures around 1000°C, and pressures near 300 bar. This work outlines the experimental feasibility of flow measurements to acquire the first known data in pure sCO<sub>2sub> at similar but reduced temperature and pressure conditions.

  2. An experimental study of gravity-driven countercurrent two-phase flow in horizontal and inclined channels

    International Nuclear Information System (INIS)

    Lillibridge, K.H.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.

    1994-01-01

    Countercurrent two-phase flow in horizontal and inclined channels, connecting a sealed liquid-filled reservoir to the atmosphere, is experimentally studied. This type of gravity-driven countercurrent two-phase flow can occur during the operation of passive safety coolant injection systems of advanced reactors. It can also occur in the pressurizer surge line of pressurized water reactors during severe accidents when the hot leg becomes voided. Four distinct flow regimes are identified: (a) stratified countercurrent, which mainly occurs when the channel is horizontal; (b) intermittent stratified-slug; (c) oscillating, which occurs when the angle of inclination is ≥30 deg; and (d) annular countercurrent. The characteristics of each regime and their sensitivity to important geometric parameters are examined. The superficial velocities in the stratified countercurrent and oscillating regimes are empirically correlated

  3. Interfacial condensation heat transfer for countercurrent steam-water wavy flow in a horizontal circular pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.

  4. Lateral Mixing Mechanisms in Vertical and Horizontal Interconnected Subchannel Two-Phase Flows

    International Nuclear Information System (INIS)

    Gencay, Sarman; Teyssedou, Alberto; Tye, Peter

    2002-01-01

    A lateral mixing model based on equal volume exchange between two laterally interconnected subchannels is presented. The following mixing mechanisms are taken into account in this model: (a) diversion cross flow, caused by the lateral pressure difference between adjacent subchannels; (b) turbulent void diffusion, which is governed by the lateral void fraction difference between the subchannels; (c) void drift, responsible for the tendency of the vapor phase to drift toward unobstructed regions; and (d) buoyancy drift, which takes into account the effect of gravity in horizontal flows. Experimental two-phase air-water data obtained using two test sections having different geometries and orientations are used to determine the diffusion coefficients required by the mixing model. Under the absence of diversion crossflow, i.e., negligible lateral pressure difference between the subchannels, it is observed that the diffusion coefficient increases with increasing average void fraction in the subchannels. Moreover, for vertical flows turbulent void diffusion seems to be considerably affected by the geometry of the subchannels. For horizontal flows under nonsymmetric inlet void fraction conditions, even though the interconnected subchannels have the same geometry, different turbulent void diffusion and void drift coefficients are required to satisfy the conditions of hydrodynamic equilibrium. In the present study this condition is achieved by introducing a new void drift coefficient expressed as a correction term applied to the turbulent void drift term

  5. Corrosion in Supercritical carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark

    2013-12-10

    separately to high purity CO{sub 2}. Task 3: Evaluation of surface treatments on the corrosion performance of alloys in supercritical CO{sub 2}: Surface treatments can be very beneficial in improving corrosion resistance. Shot peening and yttrium and aluminum surface treatments will be investigated. Shot peening refines the surface grain sizes and promotes protective Cr-oxide layer formation. Both yttrium and aluminum form highly stable oxide layers (Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), which can get incorporated in the growing Fe-oxide layer to form an impervious complex oxide to enhance corrosion resistance. Task 4: Study of flow-assisted corrosion of select alloys in supercritical CO{sub 2} under a selected set of test conditions: To study the effects of flow-assisted corrosion, tests will be conducted in a supercritical CO{sub 2} flow loop. An existing facility used for supercritical water flow studies at the proposing university will be modified for use in this task. The system is capable of flow velocities up to 10 m/s and can operate at temperatures and pressures of up to 650°C and 20 MPa, respectively. All above tasks will be performed in conjunction with detailed materials characterization and analysis using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), x-ray diffraction (XRD), Auger electron spectroscopy (AES) techniques, and weight change measurements. Inlet and outlet gas compositions will be monitored using gas chromatography-mass spectrometry (GCMS).

  6. Flooding characteristics of gas-liquid two-phase flow in a horizontal U bend pipe

    International Nuclear Information System (INIS)

    Sakaguchi, T.; Hosokawa, S.; Fujii, Y.

    1995-01-01

    For next-generation nuclear reactors, hybrid safety systems which consist of active and passive safety systems have been planned. Steam generators with horizontal U bend pipelines will be used as one of the passive safety systems. It is required to clarify flow characteristics, especially the onset of flooding, in the horizontal U bend pipelines in order to examine their safety. Flooding in vertical pipes has been studied extensively. However, there is little study on flooding in the horizontal U bend pipelines. It is supposed that the onset of flooding in the horizontal U bend pipelines is different from that in vertical pipes. On the other hand, liquid is generated due to condensation of steam in pipes of the horizontal steam generators at the loss of coolant accident because the steam generators will be used as a condenser of a cooling system of steam from the reactor. It is necessary to simulate this situation by the supply of water at the middle of horizontal pipe. In the present paper, experiments were carried out using a horizontal U bend pipeline with a liquid supply section in the midway of pipeline. The onset of flooding in the horizontal U bend pipeline was measured. Effects of the length of horizontal pipe and the radius of U bend on the onset of flooding were discussed

  7. Flooding characteristics of gas-liquid two-phase flow in a horizontal U bend pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, T.; Hosokawa, S.; Fujii, Y. [Kobe Univ. (Japan)] [and others

    1995-09-01

    For next-generation nuclear reactors, hybrid safety systems which consist of active and passive safety systems have been planned. Steam generators with horizontal U bend pipelines will be used as one of the passive safety systems. It is required to clarify flow characteristics, especially the onset of flooding, in the horizontal U bend pipelines in order to examine their safety. Flooding in vertical pipes has been studied extensively. However, there is little study on flooding in the horizontal U bend pipelines. It is supposed that the onset of flooding in the horizontal U bend pipelines is different from that in vertical pipes. On the other hand, liquid is generated due to condensation of steam in pipes of the horizontal steam generators at the loss of coolant accident because the steam generators will be used as a condenser of a cooling system of steam from the reactor. It is necessary to simulate this situation by the supply of water at the middle of horizontal pipe. In the present paper, experiments were carried out using a horizontal U bend pipeline with a liquid supply section in the midway of pipeline. The onset of flooding in the horizontal U bend pipeline was measured. Effects of the length of horizontal pipe and the radius of U bend on the onset of flooding were discussed.

  8. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    International Nuclear Information System (INIS)

    Wu, Hao; Dong, Feng

    2014-01-01

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model

  9. Unsteady flow of an incompressible fluid in a horizontal porous medium with suction

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1988-04-01

    A theoretical analysis of two-dimensional unsteady flow in a porous medium bounded by a horizontal wall is presented as a perturbation on a basic flow. It is assumed that the perturbation is occasioned by a sudden suction at the wall. Even for a highly permeable medium the characteristic Reynolds number in porous media flow is usually small and asymptotic solutions are developed by the Laplace transform technique. It is observed that the perturbed shear stress at the wall decays exponentially with time. (author). 5 refs

  10. Surface Ocean CO<sub>2sub> Atlas (SOCAT) gridded data products

    Digital Repository Service at National Institute of Oceanography (India)

    Sabine, C.L.; Hankin, S.; Koyuk, H.; Bakker, D.C.E.; Pfeil, B.; Olsen, A; Metzl, N.; Kozyr, A; Fassbender, A; Manke, A; Malczyk, J.; Akl, J.; Alin, S.R.; Bellerby, R.G.J.; Borges, A; Boutin, J.; Brown, P.J.; Cai, W.-J.; Chavez, F.P.; Chen, A.; Cosca, C.; Feely, R.A.; Gonzalez-Davila, M.; Goyet, C.; Hardman-Mountford, N.; Heinze, C.; Hoppema, M.; Hunt, C.W.; Hydes, D.; Ishii, M.; Johannessen, T.; Key, R.M.; Kortzinger, A.; Landschutzer, P.; Lauvset, S.K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A.M.; Padin, X.A.; Park, G.-H.; Paterson, K.; Perez, F.F.; Pierrot, D.; Poisson, A.; Rios, A.F.; Salisbury, J.; Santana-Casiano, J.M.; Sarma, V.V.S.S.; et al.

    As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO<sub>2sub>) data set, the international marine carbon science community developed the Surface Ocean CO<sub>2...

  11. Flow control inside a molten Zn pot for improving surface quality of zinc plated strips

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [Samsung Techwin Co., Ltd. (Korea); Koh, M.S.; Kim, S. [Pohang University of Science and Technology Graduate School, Pohang (Korea)

    2001-10-01

    The flow fields inside a molten Zn pot of continuous hot-chip galvanizing process were investigated experimentally. With varying several parameters including the strip speed V{sub s}, flow rate Q of induction heater, scrapper location and baffle configuration, instantaneous velocity fields were measured using a PIV velocity field measurement technique. Inside the strip region, counter-clockwise rotating flow is dominant. The general flow pattern inside the strip region is nearly not influenced by the trip speed V{sub 2}, flow rate Q and the scrapper location. In the exit region, the flow separated from the moving strip due to the existence of a stabilizing roll ascends to the free surface, for the cases of no scrapper and scrapper detached form the roll. On the other hand, the ascending flow to the free surface is decreased, as the flow rate Q of induction heater increases. By installing a baffle around the uprising strip, the flow moving up to the stabilizing roll decreases. In addition, B-type baffle is better than A-type baffle in reducing speed of flow around the stabilizing rolls. However, the flow ascended to the free surface is largely influenced by changing the flow rate Q, and the scrapper location, irrespective of the baffle type. (author). 14 refs., 11 figs.

  12. Effects of Al{sub 2}O{sub 3} nanoparticles deposition on critical heat flux of R-123 in flow boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Bin; Bang, In Cheol [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2015-06-15

    In this study, R-123 flow boiling experiments were carried out to investigate the effects of nanoparticle deposition on heater surfaces on flow critical heat flux (CHF) and boiling heat transfer. It is known that CHF enhancement by nanoparticles results from porous structures that are very similar to layers of Chalk River unidentified deposit formed on nuclear fuel rod surfaces during the reactor operation period. Although previous studies have investigated the surface effects through surface modifications, most studies are limited to pool boiling conditions, and therefore, the effects of porous surfaces on flow boiling heat transfer are still unclear. In addition, there have been only few reports on suppression of wetting for decoupled approaches of reasoning. In this study, bare and Al{sub 2}O{sub 3} nanoparticle-coated surfaces were prepared for the study experiments. The CHF of each surface was measured with different mass fluxes of 1,600 kg/m{sup 2}s, 1,800 kg/m{sup 2}s, 2,100 kg/m{sup 2}s, 2,400 kg/m{sup 2}s, and 2,600 kg/m{sup 2}s. The nanoparticle-coated tube showed CHF enhancement up to 17% at a mass flux of 2,400 kg/m{sup 2}s compared with the bare tube. The factors for CHF enhancement are related to the enhanced rewetting process derived from capillary action through porous structures built-up by nanoparticles while suppressing relative wettability effects between two sample surfaces as a highly wettable R-123 refrigerant was used as a working fluid.

  13. Onset of entrainment and degree of dispersion in dual continuous horizontal oil-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Al-Wahaibi, Talal [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, P.C. 123 (Oman); Angeli, Panagiota [Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2009-04-15

    The transition from stratified to dual continuous oil-water flow (where each phase retains its continuity but there is dispersion of one phase into the other) as well as the dispersed phase fractions in the layers of the dual continuous pattern, were studied experimentally. Transition to this pattern from stratified flow occurs when drops of one phase appear into the other (onset of entrainment). The studies were carried out in a 38 mm ID horizontal stainless steel test section using two different inlet geometries, a T- and a Y-junction. The patterns were visualized through a transparent acrylic section located at 7 m from the inlet using a high speed video camera. Phase distribution measurements in a pipe cross section were obtained just before the acrylic section with a local impedance probe and the results were used to calculate the volume fraction of each phase entrained into the other. The onset of entrainment was found to occur at lower superficial water velocities as the oil superficial velocities increased. However, the inlet geometry did not affect significantly the transition line. During dual continuous flow, the dispersion of one phase into the opposite was found to extend further away from the interface with increasing water superficial velocity for a certain oil superficial velocity. An increase in the superficial water velocity increased the entrained fraction of water in oil (E{sub w/o}) but there was no trend with the oil velocity. Similarly, an increase in the superficial oil velocity increased the fraction of oil drops in water (E{sub o/w}) but the water velocity had no clear effect. The entrainment fractions were affected by the inlet geometry, with the T-inlet resulting in higher entrainment than the Y-inlet, perhaps because of the increased mixing induced by the T-inlet. The difference between the two inlets increased as the oil and water velocities increased. (author)

  14. Post-Dryout Heat Transfer to a Refrigerant Flowing in Horizontal Evaporator Tubes

    Science.gov (United States)

    Mori, Hideo; Yoshida, Suguru; Kakimoto, Yasushi; Ohishi, Katsumi; Fukuda, Kenichi

    Studies of the post-dryout heat transfer were made based on the experimental data for HFC-134a flowing in horizontal smooth and spiral1y grooved (micro-fin) tubes and the characteristics of the post-dryout heat transfer were c1arified. The heat transfer coefficient at medium and high mass flow rates in the smooth tube was lower than the single-phase heat transfer coefficient of the superheated vapor flow, of which mass flow rate was given on the assumption that the flow was in a thermodynamic equilibrium. A prediction method of post-dryout heat transfer coefficient was developed to reproduce the measurement satisfactorily for the smooth tube. The post dryout heat transfer in the micro-fin tube can be regarded approximately as a superheated vapor single-phase heat transfer.

  15. Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2016-05-01

    Full Text Available Due to the high nonlinearity of the three-dimensional (3-D unsaturated-saturated water flow equation, using a fully 3-D numerical model is computationally expensive for large scale applications. A new unsaturated-saturated water flow model is developed in this paper based on the vertical/horizontal splitting (VHS concept to split the 3-D unsaturated-saturated Richards’ equation into a two-dimensional (2-D horizontal equation and a one-dimensional (1-D vertical equation. The horizontal plane of average head gradient in the triangular prism element is derived to split the 3-D equation into the 2-D equation. The lateral flow in the horizontal plane of average head gradient represented by the 2-D equation is then calculated by the water balance method. The 1-D vertical equation is discretized by the finite difference method. The two equations are solved simultaneously by coupling them into a unified nonlinear system with a single matrix. Three synthetic cases are used to evaluate the developed model code by comparing the modeling results with those of Hydrus1D, SWMS2D and FEFLOW. We further apply the model to regional-scale modeling to simulate groundwater table fluctuations for assessing the model applicability in complex conditions. The proposed modeling method is found to be accurate with respect to measurements.

  16. Improved GaSb surfaces using a (NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}S0{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Murape, D.M., E-mail: Davison.Murape@live.nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Eassa, N.; Nyamhere, C.; Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Betz, R. [Department of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Coetsee, E.; Swart, H.C. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300 (South Africa); Botha, J.R.; Venter, A. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height ({phi}{sub b}) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at -0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb-O, present on the as-received material is effectively removed on treating with ([(NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}]+S) and (NH{sub 4}){sub 2}S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is {<=}8.5 nm.

  17. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  18. Flow and heat distribution analysis of different transformer sub-stations

    International Nuclear Information System (INIS)

    Hasini, H; Shuaib, N H; Yogendran, S B; Toh, K B

    2013-01-01

    This paper describes CFD investigation on the flow and heat transfer in transformers at different sub-station buildings. The analysis aimed to determine the cooling capability of the existing transformer building employing natural ventilation system to dissipate heat sufficiently when new dry-type transformer operating under full load condition is used. The transformer and building models were developed based on the actual transformer configuration in operation at three different locations in Malaysia. The calculation was carried out on three different types of sub-stations namely stand-alone, attach-to-building and underground. The effect of natural ventilation speed and building volume on the transformer surfaces temperature are also investigated. It was predicted that the existing sub-station configuration is able to dissipate heat produced from the dry type transformer by using its natural ventilation system regardless of the sub-station types. However, the smallest building case shows relatively high surrounding temperature

  19. Numerical simulation of secondary flow in bubbly turbulent flow in sub-channel

    International Nuclear Information System (INIS)

    Ikeno, Tsutomu; Kataoka, Isao

    2009-01-01

    Secondary flow in bubbly turbulent flow in sub-channel was simulated by using an algebraic turbulence stress model. The mass, momentum, turbulence energy and bubble diffusion equations were used as fundamental equation. The basis for these equations was the two-fluid model: the equation of liquid phase was picked up from the equation system theoretically derived for the gas-liquid two-fluid turbulent flow. The fundamental equation was transformed onto a generalized coordinate system fitted to the computational domain in sub-channel. It was discretized for the SIMPLE algorism using the finite-volume method. The shape of sub-channel causes a distortion of the computational mesh, and orthogonal nature of the mesh is sometimes broken. An iterative method to satisfy a requirement for the contra-variant velocity was introduced to represent accurate symmetric boundary condition. Two-phase flow at a steady state was simulated for different magnitude of secondary flow and void fraction. The secondary flow enhanced the momentum transport in sub-channel and accelerated the liquid phase in the rod gap. This effect was slightly mitigated when the void fraction increased. The acceleration can contribute to effective cooling in the rod gap. The numerical result implied a phenomenon of industrial interest. This suggested that experimental approach is necessary to validate the numerical model and to identify the phenomenon. (author)

  20. Two-phase flow in short horizontal rectangular microchannels with a height of 300 μm

    Science.gov (United States)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in a narrow short horizontal channel with a rectangular cross section is studied experimentally. The channel has a width of 10, 20, or 30 mm and a height of 300 μm. The specifics of formation of such two-phase flows are investigated. It is demonstrated that the regions of bubble and churn flow regimes grow and constrain the region of jet flow as the channel gets wider. The boundaries of the regions of annular and stratified flow regimes remain almost unaltered.

  1. Simulation of horizontal pipe two-phase slug flows using the two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2005-07-01

    Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)

  2. Experimental Study of Flow Boiling Heat Transfer in a Horizontal Microfin Tube

    OpenAIRE

    Yu, Jian; Koyama, Shigeru; Momoki, Satoru

    1995-01-01

    An experimental study on flow boiling heat transfer in a horizontal microfin tube is conducted with pure refrigerants HFC134a, HCFC123 and HCFC22 using a water-heated double-tube type test section. The test microfin tube is a copper tube having the following dimensions: 8.37mm mean inside diameter, 0.168mm fin height, 60fin number and 18 degree of helix angle. The local heat transfer coefficients for both counter and parallel flows are measured in a range of heat flux of 1 to 93W/m^2, mass ve...

  3. Decontamination of large horizontal concrete surfaces outdoors

    International Nuclear Information System (INIS)

    Barbier, M.M.; Chester, C.V.

    1980-01-01

    A study is being conducted of the resources and planning that would be required to clean up an extensive contamination of the outdoor environment. As part of this study, an assessment of the fleet of machines needed for decontaminating large outdoor surfaces of horizontal concrete will be attempted. The operations required are described. The performance of applicable existing equipment is analyzed in terms of area cleaned per unit time, and the comprehensive cost of decontamination per unit area is derived. Shielded equipment for measuring directional radiation and continuously monitoring decontamination work are described. Shielding of drivers' cabs and remote control vehicles is addressed

  4. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    Science.gov (United States)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  5. Natural convective flows in a horizontal channel provided with heating isothermal blocks: Effect of the inter blocks spacing

    International Nuclear Information System (INIS)

    Bakkas, M.; Hasnaoui, M.; Amahmid, A.

    2010-01-01

    A numerical study of laminar steady natural convection induced in a two dimensional horizontal channel provided with rectangular heating blocks, periodically mounted on its lower wall, is carried out. The blocks' surface temperature, T H ' , is maintained constant and the former are connected with adiabatic surfaces. The upper wall of the channel is maintained cold at a temperature T C ' H ' . Fluid flow, temperature fields and heat transfer rates are presented for different combinations of the governing parameters which are the Rayleigh number (10 2 ≤Ra≤2x10 6 ), the blocks' spacing (1/4≤C=l ' /H ' ≤1), the blocks' height (1/8≤B=h ' /H ' ≤1/2) and the relative width of the blocks (A=(L ' -l ' )/H ' =1/2). The results obtained in the case of air (Pr = 0.72) show that the flow structure and the heat transfer are significantly influenced by the control parameters. It is found that there are situations where the increase of the blocks' spacing leads to a reduction of heat transfer.

  6. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    Science.gov (United States)

    2015-12-31

    classification of liquid–vapor structures into flow patterns is useful for predicting heat transfer rates and, ultimately, system performance. Most flow and...Here, ~x represents the spa- tial variables, x and y, and t is time. This normalization assigns εð~x; tÞ to be zero for only vapor (εg) and one for...tube surface [17,22]. As in stratified wavy flow, interfacial waves were also present in stratified wavy transitional flow. The waves were more fre

  7. A new approach to define surface/sub-surface transition in gravel beds

    Science.gov (United States)

    Haynes, Heather; Ockelford, Anne-Marie; Vignaga, Elisa; Holmes, William

    2012-12-01

    The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (σ g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion.

  8. Investigation of straitified and countercurrent flows in horizontal piping during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bourteele, J.P.

    1980-06-01

    The ECTHOR program consists in a loop having as objective to study the flow regimes in horizontal pipings (stratification, countercurrent flows) in conditions representative of small break transients within commercial PWR. The ECTHOR tests are in process. Experimental results are already available and are presented in this paper: scaling problem, U tube experiments, hot leg experiments, high pressure tests

  9. Pattern transitions of oil-water two-phase flow with low water content in rectangular horizontal pipes probed by terahertz spectrum.

    Science.gov (United States)

    Feng, Xin; Wu, Shi-Xiang; Zhao, Kun; Wang, Wei; Zhan, Hong-Lei; Jiang, Chen; Xiao, Li-Zhi; Chen, Shao-Hua

    2015-11-30

    The flow-pattern transition has been a challenging problem in two-phase flow system. We propose the terahertz time-domain spectroscopy (THz-TDS) to investigate the behavior underlying oil-water flow in rectangular horizontal pipes. The low water content (0.03-2.3%) in oil-water flow can be measured accurately and reliably from the relationship between THz peak amplitude and water volume fraction. In addition, we obtain the flow pattern transition boundaries in terms of flow rates. The critical flow rate Qc of the flow pattern transitions decreases from 0.32 m3 h to 0.18 m3 h when the corresponding water content increases from 0.03% to 2.3%. These properties render THz-TDS particularly powerful technology for investigating a horizontal oil-water two-phase flow system.

  10. Features of two-phase flow patterns in horizontal rectangular microchannels of height 50 μm

    Directory of Open Access Journals (Sweden)

    Ron’shin Fedor

    2016-01-01

    Full Text Available The horizontal microchannel with the height of 50 micrometres and width of 40 mm of a rectangular cross-section has been used to study two-phase flow. The classical patterns of two-phase flow in the channel (bubble, stratified, churn, jet, and annular have been detected. Experimental information allows us to define the characteristics of the regimes and to determine precisely the boundaries between the patterns of the two-phase flows.

  11. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  12. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Caselles-Osorio, Aracelly [Environmental Engineering Division, Hydraulics, Coastal and Environmental Engineering Department, Technical University of Catalonia, c/Jordi Girona 1-3, Modul D-1, 08034 Barcelona (Spain); Department of Biology, Atlantic University, Km 7 Higway Old Colombia Port, Barranquilla (Colombia); Garcia, Joan [Environmental Engineering Division, Hydraulics, Coastal and Environmental Engineering Department, Technical University of Catalonia, c/Jordi Girona 1-3, Modul D-1, 08034 Barcelona (Spain)]. E-mail: joan.garcia@upc.edu

    2007-03-15

    In this study, we tested the effect of a physico-chemical pretreatment on contaminant removal efficiency in two experimental horizontal subsurface-flow constructed wetlands (SSF CWs). One SSF CW was fed with settled urban wastewater, whereas the other with the same wastewater after it had undergone a physico-chemical pretreatment. The SSF CWs were operated with three different hydraulic retention times. During the experiments the effluent concentrations of COD, ammonia N and sulfate were very similar, and, therefore, the physico-chemical pretreatment did not improve the quality of the effluents. COD removal efficiency (as percentage or mass surface removal rate) was slightly greater in the SSF CW fed with pretreated wastewater. Ammonia N removal efficiency was, in general, similar in both SSF CWs and very high (80-90%). At the end of the experiments it was observed that in the SSF CW fed with settled wastewater the hydraulic conductivity decreased by a 20%. - A physico-chemical pretreatment may help to reduce the risk of clogging of subsurface-flow constructed wetlands.

  13. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands

    International Nuclear Information System (INIS)

    Caselles-Osorio, Aracelly; Garcia, Joan

    2007-01-01

    In this study, we tested the effect of a physico-chemical pretreatment on contaminant removal efficiency in two experimental horizontal subsurface-flow constructed wetlands (SSF CWs). One SSF CW was fed with settled urban wastewater, whereas the other with the same wastewater after it had undergone a physico-chemical pretreatment. The SSF CWs were operated with three different hydraulic retention times. During the experiments the effluent concentrations of COD, ammonia N and sulfate were very similar, and, therefore, the physico-chemical pretreatment did not improve the quality of the effluents. COD removal efficiency (as percentage or mass surface removal rate) was slightly greater in the SSF CW fed with pretreated wastewater. Ammonia N removal efficiency was, in general, similar in both SSF CWs and very high (80-90%). At the end of the experiments it was observed that in the SSF CW fed with settled wastewater the hydraulic conductivity decreased by a 20%. - A physico-chemical pretreatment may help to reduce the risk of clogging of subsurface-flow constructed wetlands

  14. Surface degradation of Li{sub 1–x}Ni{sub 0.80}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes: Correlating charge transfer impedance with surface phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Pereira, N.; Faenza, N.; Amatucci, G. G. [Energy Storage Research Group, Department of Materials Science and Engineering, Rutgers University, North Brunswick, New Jersey 08902 (United States); Mukherjee, P.; Cosandey, F. [Department of Materials Science and Engineering, Rutgers University, North Brunswick, New Jersey 08902 (United States); Quackenbush, N. F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Schlueter, C.; Lee, T.-L. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Yang, W. L. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Piper, L. F. J., E-mail: lpiper@binghamton.edu [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States)

    2016-06-27

    The pronounced capacity fade in Ni-rich layered oxide lithium ion battery cathodes observed when cycling above 4.1 V (versus Li/Li{sup +}) is associated with a rise in impedance, which is thought to be due to either bulk structural fatigue or surface reactions with the electrolyte (or combination of both). Here, we examine the surface reactions at electrochemically stressed Li{sub 1–x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} binder-free powder electrodes with a combination of electrochemical impedance spectroscopy, spatially resolving electron microscopy, and spatially averaging X-ray spectroscopy techniques. We circumvent issues associated with cycling by holding our electrodes at high states of charge (4.1 V, 4.5 V, and 4.75 V) for extended periods and correlate charge-transfer impedance rises observed at high voltages with surface modifications retained in the discharged state (2.7 V). The surface modifications involve significant cation migration (and disorder) along with Ni and Co reduction, and can occur even in the absence of significant Li{sub 2}CO{sub 3} and LiF. These data provide evidence that surface oxygen loss at the highest levels of Li{sup +} extraction is driving the rise in impedance.

  15. Simulation of YBa{sub 2}Cu{sub 3}O{sub 7}/MgO surface growth

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadizadeh, M.R. [Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Karegar Ave., P.O. Box 14395-547, Tehran (Iran); Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran); Safari, N.; Kia, M.; Savaloni, H. [Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Karegar Ave., P.O. Box 14395-547, Tehran (Iran)

    2006-09-15

    For surface growth simulation of YBa{sub 2}Cu{sub 3}O{sub 7} on MgO substrate, binding energies between each two different Y, Ba, Cu, O, and Mg atoms were calculated by ab initio pseudopotential density functional theory approach. Then, simulation of YBa{sub 2}Cu{sub 3}O{sub 7} growth was performed by a simple two dimensional model based on the ballistic aggregation of hard discs. By increasing the substrate temperature, the atomic layers distribution is more condensed and the nanometric surface roughness decreases. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. On the coupled unsaturated–saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    Directory of Open Access Journals (Sweden)

    X. Liang

    2017-03-01

    established with special consideration of the coupled unsaturated–saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace–finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant in unconfined aquifers affected from above by the unsaturated flow process.

  17. First-principles study of the (001) surface of cubic Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan Xu [Computational Materials Science Center, National Institute for Materials Science, Tsukuba 305-0044 (Japan); Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2008-06-15

    We have theoretically investigated basic properties of the (001) surface of cubic Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) by the plane-wave pseudopotential method within the local-density approximation. For the BaSrO{sub 2}-terminated surface, the surface-layer Sr atoms move inward and the surface-layer Ba atoms move outward. Moreover, the displacement of the surface-layer Sr atoms is much larger than the surface-layer Ba atoms. The rumpling of the BaSrO{sub 2}-terminated surface is much larger than that of the Ti{sub 2}O{sub 4}-terminated one. The surface state appears in the band structure of the Ti{sub 2}O{sub 4}-terminated surface of BST. Based on the results of the calculated grand thermodynamic potential, only the BaSrO{sub 2}-terminated surface can exist in the (001) surface of cubic BST. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Laboratory Study of Topographic Effects on the Near-surface Tornado Flow Field

    Science.gov (United States)

    Razavi, Alireza; Sarkar, Partha P.

    2018-03-01

    To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 m s^{-1} , with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50-60 m s^{-1} ) and EF3 (61-75 m s^{-1}) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and - 6 and 47% for the valley, respectively.

  19. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-01-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods

  20. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  1. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  2. Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.

    Science.gov (United States)

    Schmitt, M; Grub, J; Heib, F

    2015-06-01

    Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Critical investigations and model development on countercurrent flow of gas and liquid in horizontal and vertical channels

    International Nuclear Information System (INIS)

    Mewes, D.; Beckmann, H.

    1989-01-01

    Countercurrent flow of steam and water occurs in the horizontal and vertical lines of a PWR in case of a LOCA. In order to predict the emergency core cooling behaviour in case of a large or small break LOCA it is important to calculate the volumetric flow rate of water which will get to the reactor core. Theoretical and experimental results of countercurrent flow in horizontal and vertical channels given by publication and reports are critically reviewed for the purpose of a more physical understanding of the flow phenomena. The influence of geometry, pressure and other boundary conditions are emphasized. The existing models which are developed to calculate the onset of flooding are based on experimental results of small test facilities. The applicability of these models to large geometries and high pressures as well as the consideration of condensation and entrainment are investigated. (orig./HP) [de

  4. Reconstruction of a constructed wetland with horizontal subsurface flow after 18 years of operation.

    Science.gov (United States)

    Hudcová, Tereza; Vymazal, Jan; Dunajský, Michal Kriška

    2013-01-01

    The constructed wetland (CW) for 326 PE with horizontal subsurface flow at Kotenčice, Central Bohemia, Czech Republic, was built in 1994. Despite the relatively high efficiency of the CW, the filtration beds suffered from clogging, and therefore it was decided in 2011 to rebuild the whole system. The new treatment system was built as an experimental system consisting of four different combinations of horizontal and vertical beds. The major aim of the design was to determine the best hybrid combination which then could be used in the future for refurbishment of older horizontal flow CWs or for the new systems. The mechanical pretreatment consists of mechanical bar screens, a new Imhoff tank, and the original settling tank which has been converted into the accumulation tank from where the wastewater is pumped into the wetlands. The filters are planted with Phragmites australis, Phalaris arundinacea, Iris pseudacorus, Iris sibirica, Glyceria maxima and Lythrum salicaria in order to evaluate and compare various plant species' effect on the treatment process. The new technology includes a tertiary treatment which consists of a greenhouse with a photo-reactor for the cultivation of algae and hydroponic systems (residual nutrients removal), sludge reed-beds and a composting field.

  5. Surface composition of Cd{sub 1–x}Fe(Mn){sub x}Te{sub 1–y}Se{sub y} systems exposed to air

    Energy Technology Data Exchange (ETDEWEB)

    Bundaleski, Nenad [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Radisavljević, Ivana, E-mail: iva@vin.bg.ac.rs [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Trigueiro, João [Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Tolstogouzov, Alexander [Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Ryazan State Radio Engineering University, Gagarin 59/1, 390005 Ryazan (Russian Federation); Rakočević, Zlatko; Medić, Mirjana [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Teodoro, Orlando M.N.D. [Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Romčević, Nebojša [University of Belgrade–Institute of Physics, Pregrevica 118, 11000 Belgrade (Serbia); Ivanović, Nenad [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2017-03-01

    Using X–ray induced Photoelectron Spectroscopy, Time–of–Flight Secondary Ion Mass Spectrometry and Atomic Force Microscopy we have investigated elemental composition, structure and oxidation process taking place at the surfaces of polycrystalline Cd{sub 0.99}Fe{sub 0.01}Te{sub 0.97}Se{sub 0.03} and Cd{sub 0.95}Mn{sub 0.05}Te{sub 0.97}Se{sub 0.03} systems stored in ambient conditions. The surface oxidation destroys the native CdTe matrix and provokes substantial atomic rearrangement in the first few atomic layers. The near–surface region of both systems is enriched in Cd and to some extent Te–deficient, but the surface structure, morphology and the native oxide composition are all found to be considerably different. In Cd{sub 0.99}Fe{sub 0.01}Te{sub 0.97}Se{sub 0.03} system both Fe and Se dopants diffuse into the bulk and oxidation of its surface results in formation of a thin CdTeO{sub 3} layer which covers the CdTe matrix. In Cd{sub 0.95}Mn{sub 0.05}Te{sub 0.97}Se{sub 0.03} system oxygen–rich atmosphere triggers Mn and Se out–diffusion and the nonuniform oxide layer predominantly consists of MnO and a small amount of Te–oxide which both lay underneath a thin layer of metallic Cd segregated at the top of the surface. - Highlights: • Nature of the CdFe(Mn)TeSe surfaces exposed to air is substantially different. • Near–surface region is enriched in Cd and to some extent Te–deficient. • Presence of Mn drastically changes the surface oxidation conditions. • The surface oxidation in ambient conditions undergoes different mechanisms. • Oxygen triggers Mn out–diffusion, while Fe diffuses into the bulk.

  6. An analytical study on groundwater flow in drainage basins with horizontal wells

    Science.gov (United States)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2014-06-01

    Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.

  7. Characterization of interfacial waves in horizontal core-annular flow

    Science.gov (United States)

    Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.

    2016-11-01

    In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.

  8. Study of structural and morphological properties of thermally evaporated Sn{sub 2}Sb{sub 6}S{sub 11} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mehrez, N., E-mail: najia.benmehrez@gmail.com [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Khemiri, N. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Kanzari, M. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Institut Préparatoire aux Etudes d’Ingénieurs de Tunis Montfleury, Université de Tunis (Tunisia)

    2016-10-01

    In this study, we report the structural and morphological properties of the new material Sn{sub 2}Sb{sub 6}S{sub 11} thin films prepared on glass substrates by vacuum thermal evaporation at various substrate temperatures (30, 60, 100, 140, 180 and 200 °C). Sn{sub 2}Sb{sub 6}S{sub 11} ingot was synthesized by the horizontal Bridgman technique. The structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The films were characterized for their structural properties by using XRD. All films were polycrystalline in nature. The variations of the structural parameters of the films with the substrate temperature were investigated. The results show that the crystallite sizes increase as the substrate temperature increases. The morphological properties of the films were analyzed by atomic force microscopy (AFM). The roughness and the topography of the surface of the films strongly depend on the substrate temperature. - Highlights: • Sn{sub 2}Sb{sub 6}S{sub 11} powder was successfully synthesized by the horizontal Bridgman technique. • Sn{sub 2}Sb{sub 6}S{sub 11} films were grown by thermal evaporation at different substrate temperatures. • Structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were investigated. • The effect of the substrate temperature on structural and morphological of Sn{sub 2}Sb{sub 6}S{sub 11} films properties was studied.

  9. Selectively placing many fractures in openhole horizontal wells improves production

    Energy Technology Data Exchange (ETDEWEB)

    Love, T. G.; McCarty, R. A. [Chevron USA Inc (United States); Suraatmadja, J. B.; Chambers, R. W.; Grundmann, S. R.

    1998-12-31

    Result of a simulation of an openhole horizontal well that was treated with hydrajet fracturing, a new fracturing process wherein fractures are placed at different locations in a horizontal well without using sectional isolation techniques, are discussed. The process uses high-pressure jetting to concentrate fracturing energy at a precise fracture location, and data is obtained by means of surface and downhole pressure recorders, flow recorders, and tracers. This technique was used in a substantially depleted horizontal well in New Mexico with good results. The new process is reported to be expensive to implement which prevents widespread application at the present time. 7 refs., 9 figs.

  10. 47nm alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction

    Directory of Open Access Journals (Sweden)

    Isaac Lare Animasaun

    2016-09-01

    Full Text Available In this article, a modified version of buoyancy-induced model is considered to investigate the flow of 47nm alumina–water nanofluid along an upper surface of horizontal paraboloid of revolution in the presence of nonlinear thermal radiation, Lorentz force and quartic autocatalysis kind of homogeneous heterogeneous chemical reaction. The case of unequal diffusion coefficients of reactant A (bulk fluid and B (high concentration of catalyst at the surface in the presence of bioconvection is considered. Governing equation suitable to unravel the thermophoresis which takes place within the boundary layer is presented. Since chemical reactant B is of higher concentration at the surface more than the concept described as cubic autocatalytic, the suitable schemes are herein described as isothermal quartic autocatalytic reaction and first order reaction. The viscosity and thermal conductivity are assumed to vary with volume fraction (ϕ and suitable models for the case 0%⩽ϕ⩽0.8% are adopted. The transformed governing equations are solved numerically using Runge–Kutta fourth order along with shooting technique (RK4SM. Good agreement is obtained between the solutions of RK4SM and MATLAB bvp5c for a limiting case. The influence of some pertinent parameters on velocity, temperature, diffusion of motile microorganism, concentration of bulk fluid and catalyst is illustrated graphically and discussed.

  11. Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe

    Science.gov (United States)

    Rawat, K. S.; Pratihar, A. K.

    2018-02-01

    In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.

  12. The horizontally homogeneous model equations of incompressible atmospheric flow in general orthogonal coordinates

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann

    2003-01-01

    The goal of this brief report is to express the model equations for an incompressible flow which is horizontally homogeneous. It is intended as a computationally inexpensive starting point of a more complete solution for neutral atmospheric flow overcomplex terrain. This idea was set forth...... by Ayotte and Taylor (1995) and in the work of Beljaars et al. (1987). Unlike the previous models, the present work uses general orthogonal coordinates. Strong conservation form of the model equations is employedto allow a robust and consistent numerical procedure. An invariant tensor form of the model...

  13. Enhancement of melting heat transfer of ice slurries by an injection flow in a rectangular cross sectional horizontal duct

    International Nuclear Information System (INIS)

    Fujii, Kota; Yamada, Masahiko

    2013-01-01

    Ice slurries are now commonly used as cold thermal storage materials, and have the potential to be applied to other engineering fields such as quenching metals to control properties, emergency cooling systems, and preservation of food and biomaterials at low temperatures. Although ice slurries have been widely utilized because of their high thermal storage densities, previous studies have revealed that the latent heat of ice particles is not completely released on melting because of insufficient contact between the ice particles and a heated surface. In this study, an injection flow that was bifurcated from the main flow of an ice slurry was employed to promote melting heat transfer of ice particles on a horizontal heated surface. The effects of injection angle and injection flow rate on local heat transfer coefficients and heat transfer coefficient ratios were determined experimentally. The results show that from two to three times higher heat transfer coefficients can be obtained by using large injection flow rates and injection angles. However, low injection angles improved the utilization rate of the latent heat of ice near the injection point by approximately a factor of two compared to that without injection. -- Highlights: • Melting of ice slurries were enhanced by the injection under constant total flow rate. • Contribution of ice particles and their latent heat to heat transfer was investigated. • Effect of velocity ratio of injection to that of main flow was examined. • Effect of the angle of injection flow to the main flow was also examined. • Appropriate conditions for the use of latent heat of ice and heat transfer did not coincide

  14. Behavior of water jet horizontally discharged from a small circular hole set on a circular pipe-surface into air

    International Nuclear Information System (INIS)

    Tsuyuki, Koji; Igarashi, Saburo; Sudo, Seiichi; Yamabe, Masahiro; Kikuchi, Akira; Oba, Risaburo

    2001-01-01

    In order to clarify the behavior of the water jet horizontally discharged from a small circular hole set on a circular pipe surface into air, in this paper, for the first step, we systematically observed the jet aspects, the efflux angle, the discharge coefficient and so on, when the hole diameter d is much smaller than the pipe diameter D. Since the upstream kinetic energy from the hole is somewhat higher than the downstream counterpart, the upstream partial jet with higher efflux angle crashes into the downstream partial jet and drives out the latter into up- and down-side, resulting in a marked pair of vortices, so that resulting in a three-dimensional spiral flow accompanying with marked surface waves. (author)

  15. Simulation of buoyancy-induced turbulent flow from a hot horizontal jet

    KAUST Repository

    El-Amin, Mohamed

    2014-02-01

    Experimental visualizations and numerical simulations of a horizontal hot water jet entering cold water into a rectangular storage tank are described. Three different temperature differences and their corresponding Reynolds numbers are considered. Both experimental visualization and numerical computations are carried out for the same flow and thermal conditions. The realizable k - ε model is used for modeling the turbulent flow while the buoyancy is modeled using the Boussinesq approximation. Polynomial approximations of the water properties are used to compare with the Boussinesq approximation. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank as well as the Froude number are analyzed. The experimental visualizations are performed at intervals of five seconds for all different cases. The simulated results are compared with the visualized results, and both of them show the stratification phenomena and buoyancy force effects due to temperature difference and density variation. After certain times, depending on the case condition, the flow tends to reach a steady state. © 2014 Publishing House for Journal of Hydrodynamics.

  16. Simulation of Coupled Processes of Flow, Transport, and Storage of CO<sub>2sub> in Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu [Colorado School of Mines, Golden, CO (United States); Chen, Zizhong [Univ. of California, Riverside, CA (United States); Kazemi, Hossein [Colorado School of Mines, Golden, CO (United States); Yin, Xiaolong [Colorado School of Mines, Golden, CO (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Winterfeld, Philip [Colorado School of Mines, Golden, CO (United States); Zhang, Ronglei [Colorado School of Mines, Golden, CO (United States)

    2014-09-30

    the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of the Mandel-Cryer effect. For the latter, we obtained a good match of temperature and gas saturation profiles, and surface uplift, after injection of hot fluid into a model of a caldera structure. In task, “Incorporation of Geochemical Reactions of Selected Important Species,” we developed a novel mathematical model of THMC processes in porous and fractured saline aquifers, simulating geo-chemical reactions associated with CO<sub>2sub> sequestration in saline aquifers. Two computational frameworks, sequentially coupled and fully coupled, were used to simulate the reactions and transport. We verified capabilities of the THMC model to treat complex THMC processes during CO<sub>2sub> sequestration by analytical solutions and we constructed reactive transport models to analyze the THMC process quantitatively. Three of these are 1D reactive transport under chemical equilibrium, a batch reaction model with equilibrium chemical reactions, and a THMC model with CO<sub>2sub> dissolution. In task “Study of Instability in CO<sub>2sub> Dissolution-Diffusion-Convection Processes,” We reviewed literature related to the study of density driven convective flows and on the instability of CO<sub>2sub> dissolution-diffusion-convection processes. We ran simulations that model the density-driven flow instability that would occur during CO<sub>2sub> sequestration. CO<sub>2sub> diffused through the top of the system and dissolved in the aqueous phase there, increasing its density. Density fingers formed along the top boundary, and coalesced into a few prominent ones, causing convective flow that forced the fluid to the system bottom. These simulations were in two and three dimensions. We ran additional simulations of convective mixing with density contrast caused by variable dissolved CO<sub>2sub> concentration in saline water, modeled after laboratory experiments in

  17. Method of measuring horizontal fluid flow in cased off subsurface formations

    International Nuclear Information System (INIS)

    Paap, H.J.; Arnold, D.M.; Scott, H.D.

    1980-01-01

    An improved method is described for determining the flow rate of earth formation liquids moving horizontally past a steel casing in a well borehole, by neutron irradiation and subsequent decay measurements of the 24 Na produced by thermal neutron capture. The system described compensates for spurious gamma radiation such as that from 56 Mn, produced by neutron irradiation of 55 Mn in the steel casing, by taking measurements for at least three separate measured time intervals in an iterative procedure. (U.K.)

  18. Effects of roll waves on annular flow heat transfer at horizontal condenser tube

    International Nuclear Information System (INIS)

    Kondo, Masaya; Nakamura, Hideo; Anoda, Yoshinari; Sakashita, Akihiro

    2002-01-01

    Heat removal characteristic of a horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. Flow regime observed at the inlet of the condenser tube was annular flow, and the local heat transfer rate was ∼20% larger than the prediction by the Dobson-Chato correlation. Roll waves were found to appear on the liquid film in the annular flow. The measured local condensation heat transfer rate was being closely related to the roll waves frequency. Based on these observations, a model is proposed which predicts the condensation heat transfer coefficient for annular flows around the tube inlet. The proposed model predicts well the influences of pressure, local gas-phase velocity and film thickness. (author)

  19. Tunable surface wettability and water adhesion of Sb{sub 2}S{sub 3} micro-/nanorod films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xin; Zhao, Huiping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Yang, Hao, E-mail: hyangwit@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Liu, Yunling [State Key laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yan, Guoping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China)

    2014-01-15

    Antimony sulfide (Sb{sub 2}S{sub 3}) films were successfully prepared by spin coating Sb{sub 2}S{sub 3} micro-/nanorods with different sizes on glass slides, which was synthesized via a facile and rapid microwave irradiation method. The prepared Sb{sub 2}S{sub 3} micro-/nanorods and films were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (CA). The as-prepared Sb{sub 2}S{sub 3} films exhibited different surface wettabilities ranging from superhydrophilicity to superhydrophobicity, which was strongly dependent on the diameter of Sb{sub 2}S{sub 3} micro-/nanorod. Sb{sub 2}S{sub 3} film made by nanorods possessed superhydrophobic surface and high water adhesive property. After surface modification with stearic acid, the superhydrophobic surface exhibited an excellent self-cleaning property owing to its low adhesive force. The clarification of three possible states including Wenzel's state, “Gecko” state and Cassie's state for Sb{sub 2}S{sub 3} film surfaces was also proposed to provide a better understanding of interesting surface phenomena on Sb{sub 2}S{sub 3} films.

  20. The effect of diameter on vertical and horizontal flow boiling crisis in a tube cooled by Freon-12

    International Nuclear Information System (INIS)

    Merilo, M.; Ahmad, S.Y.

    1979-03-01

    The influence of test section orientation and diameter on flow boiling crisis occurring in tubes has been studied experimentally using Freon-12 as a coolant. At low mass flux the critical heat flux (CHF) was lower in horizontal flow than in vertical. As either the liquid or vapour velocity, or both, were increased the vertical and horizontal CHF results converged. Above a mass flux of 4 Mg.m -2 .s -1 the results were essentially identical. The effect of tube diameter on boiling crisis in general depends crucially on the parameters which are maintained constant when the comparison is made. (author)

  1. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  2. Estimation of monthly solar exposure on horizontal surface by Angstrom-type regression equation

    International Nuclear Information System (INIS)

    Ravanshid, S.H.

    1981-01-01

    To obtain solar flux intensity, solar radiation measuring instruments are the best. In the absence of instrumental data there are other meteorological measurements which are related to solar energy and also it is possible to use empirical relationships to estimate solar flux intensit. One of these empirical relationships to estimate monthly averages of total solar radiation on a horizontal surface is the modified angstrom-type regression equation which has been employed in this report in order to estimate the solar flux intensity on a horizontal surface for Tehran. By comparing the results of this equation with four years measured valued by Tehran's meteorological weather station the values of meteorological constants (a,b) in the equation were obtained for Tehran. (author)

  3. MHD convective flow through porous medium in a horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    K.V.S. Raju

    2014-06-01

    Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.

  4. Ab initio hybrid DFT calculations of BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eglitis, Roberts I., E-mail: rieglitis@gmail.com

    2015-12-15

    Highlights: • Surface energies for AO{sub 3}-term (111) surfaces are larger than for Ti (Zr)-term surfaces. • A increase of Ti−O (Zr−O) bond covalency near the ABO{sub 3} (111) surface relative to the bulk is observed. • The ABO{sub 3} (111) surface energy is larger than the earlier calculated (001) surface energy. • Band gap for PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces becomes smaller, but for BaTiO{sub 3} (111) larger with respect to the bulk . - Abstract: The results of ab initio calculations for polar BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces using the CRYSTAL code are presented. By means of the hybrid B3LYP approach, the surface relaxation has been calculated for two possible B (B = Ti or Zr) or AO{sub 3} (A = Ba, Pb or Sr) BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surface terminations. According to performed B3LYP calculations, all atoms of the first surface layer, for both terminations, relax inwards. The only exception is a small outward relaxation of the PbO{sub 3}-terminated PbTiO{sub 3} (111) surface upper layer Pb atom. B3LYP calculated surface energies for BaO{sub 3}, PbO{sub 3}, SrO{sub 3} and PbO{sub 3}-terminated BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces are considerably larger than the surface energies for Ti (Zr)-terminated (111) surfaces. Performed B3LYP calculations indicate a considerable increase of Ti−O (Zr−O) chemical bond covalency near the BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surface relative to the BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} bulk. Calculated band gaps at the Γ-point near the PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces are reduced, but near BaTiO{sub 3} (111) surfaces increased, with respect to the BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} bulk band gap at the Γ-point values.

  5. Photoelectric properties and charge dynamics in ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} and ZnO nanowires/In{sub 2}O{sub 3}/Cu{sub 4}Bi{sub 4}S{sub 9} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn; Wang, Shun; Gu, Yuzong, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn [Institue of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Zhang, Jingwei; Zhang, Jiwei [The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004 (China)

    2014-12-28

    ZnO nanowires arrays were preformed in a horizontal double-tube system. Two types of heterostructures (ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} and ZnO nanowires/In{sub 2}O{sub 3}/Cu{sub 4}Bi{sub 4}S{sub 9}) and three-dimensional solar cells were fabricated with ZnO nanowires arrays as working electrode, In{sub 2}O{sub 3} as buffer layer, and Cu{sub 4}Bi{sub 4}S{sub 9} as inorganic dye and hole collector. It is suggested that two types of heterostructures have the similar absorption properties with single Cu{sub 4}Bi{sub 4}S{sub 9}. However, the results of steady state and electric field-induced surface photovoltage indicate that ZnO nanowires/In{sub 2}O{sub 3}/Cu{sub 4}Bi{sub 4}S{sub 9} exhibits the higher photovoltaic response than ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9}. Using the transient surface photovoltage spectroscopy, we further studied the separation and transport mechanism of photogenerated charges. Furthermore, Cu{sub 4}Bi{sub 4}S{sub 9}/In{sub 2}O{sub 3}/ZnO cells presents the better performance than Cu{sub 4}Bi{sub 4}S{sub 9}/ZnO cells and the highest efficiencies are about 6.4% and 5.2%, respectively. It is suggested that direct paths, interface barrier, built-in electric field, and double energy level matchings between conduction bands (Cu{sub 4}Bi{sub 4}S{sub 9} and In{sub 2}O{sub 3}, In{sub 2}O{sub 3} and ZnO) have obvious effect on the separation of photogenerated charges. Then we discussed the synthetic action on the charge dynamics from these factors.

  6. Productivity and injectivity of horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Khalid

    2000-03-06

    One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.

  7. Heat transfer characteristics for evaporation of R417A flowing inside horizontal smooth and internally grooved tubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoyan, Zhang [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China); School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China)], E-mail: gqzxy@sohu.com; Xingqun, Zhang; Yunguang, Chen; Xiuling, Yuan [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-06-15

    The experimental study on evaporation heat transfer of R417A (R125/R134a/R600) flowing inside horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted with the mass flow rate range from 176 to 344 kg m{sup -2} s{sup -1}, heat flux from 11 to 32 kW m{sup -2}, evaporation temperature from 0 to 5.5 deg. C and vapor quality from 0.2 to 1. Based on the experimental results, the mechanism and role of the mass flow rate, heat flux, vapor quality and enhanced surface influencing the evaporation heat transfer coefficients were analyzed and discussed. In comparison to R22, the evaporation heat transfer coefficients for R417A were lower and much lower in the internally grooved tubes than in the smooth tube. The present experimental results are also compared with the existing correlations, and the modified Kattan model is found to be in much better agreement with the experimental results than the Kattan model. The Koyama and Wellsandt microfin models all tend to over predict the evaporation heat transfer coefficients rather strongly for R417A inside internally grooved tubes.

  8. Heat transfer characteristics for evaporation of R417A flowing inside horizontal smooth and internally grooved tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyan [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China); School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China); Zhang, Xingqun; Chen, Yunguang; Yuan, Xiuling [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-06-15

    The experimental study on evaporation heat transfer of R417A (R125/R134a/R600) flowing inside horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted with the mass flow rate range from 176 to 344 kg m{sup -2} s{sup -1}, heat flux from 11 to 32 kW m{sup -2}, evaporation temperature from 0 to 5.5{sup o}C and vapor quality from 0.2 to 1. Based on the experimental results, the mechanism and role of the mass flow rate, heat flux, vapor quality and enhanced surface influencing the evaporation heat transfer coefficients were analyzed and discussed. In comparison to R22, the evaporation heat transfer coefficients for R417A were lower and much lower in the internally grooved tubes than in the smooth tube. The present experimental results are also compared with the existing correlations, and the modified Kattan model is found to be in much better agreement with the experimental results than the Kattan model. The Koyama and Wellsandt microfin models all tend to over predict the evaporation heat transfer coefficients rather strongly for R417A inside internally grooved tubes. (author)

  9. Heat transfer characteristics for evaporation of R417A flowing inside horizontal smooth and internally grooved tubes

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Zhang Xingqun; Chen Yunguang; Yuan Xiuling

    2008-01-01

    The experimental study on evaporation heat transfer of R417A (R125/R134a/R600) flowing inside horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted with the mass flow rate range from 176 to 344 kg m -2 s -1 , heat flux from 11 to 32 kW m -2 , evaporation temperature from 0 to 5.5 deg. C and vapor quality from 0.2 to 1. Based on the experimental results, the mechanism and role of the mass flow rate, heat flux, vapor quality and enhanced surface influencing the evaporation heat transfer coefficients were analyzed and discussed. In comparison to R22, the evaporation heat transfer coefficients for R417A were lower and much lower in the internally grooved tubes than in the smooth tube. The present experimental results are also compared with the existing correlations, and the modified Kattan model is found to be in much better agreement with the experimental results than the Kattan model. The Koyama and Wellsandt microfin models all tend to over predict the evaporation heat transfer coefficients rather strongly for R417A inside internally grooved tubes

  10. Treatment for GaSb surfaces using a sulphur blended (NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Murape, D.M., E-mail: Davison.Murape@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth, 6031 (South Africa); Eassa, N.; Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth, 6031 (South Africa); Betz, R. [Department of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth, 6031 (South Africa); Coetsee, E.; Swart, H.C. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein, 9300 (South Africa); Botha, J.R.; Venter, A. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth, 6031 (South Africa)

    2012-07-01

    A sulphur based chemical, [(NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}] to which S has been added, not previously reported for the treatment of (1 0 0) n-GaSb surfaces, is introduced and benchmarked against the commonly used passivants Na{sub 2}S{center_dot}9H{sub 2}O and (NH{sub 4}){sub 2}S. The surfaces of the treated material were studied by scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It has been found that the native oxides present on the GaSb surface are more effectively removed when treated with ([(NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}] + S) than with (NH{sub 4}){sub 2}S or Na{sub 2}S{center_dot}9H{sub 2}O, as evidenced by the ratio of the O{sub 506eV} to Sb{sub 457eV} AES peaks. XPS results reveal that Sb{sub 2}S{sub 3}/Sb{sub 2}S{sub 5} 'replaces' Sb{sub 2}O{sub 3}/Sb{sub 2}O{sub 5}, suggesting that sulphur atoms substitute oxygen atoms in Sb{sub 2}O{sub 3}/Sb{sub 2}O{sub 5} to form Sb-S. It seems sulphurization only partially removes Ga{sub 2}O{sub 3}. Treatment with ([(NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}] + S) also results in a noteworthy improvement in the current-voltage (I-V) characteristics of Au/n-GaSb Schottky contacts compared to those fabricated on as-received material.

  11. Long-term regional and sub-regional scale groundwater flow within an irregularly fractured Canadian shield setting

    International Nuclear Information System (INIS)

    Sykes, J.F.; Sudicky, E.A.; Normani, S.D.; McLaren, R.G.; Jensen, M.R.

    2006-01-01

    As part of Ontario Power Generation's Deep Geologic Repository Technology Program (DGRTP), activities have been undertaken to further the understanding of groundwater flow system evolution and dynamics within a Canadian Shield setting. This paper describes a numerical case study in which the evolution and nature of groundwater flow, as relevant to the siting and safety of a hypothetical Deep Geologic Repository (DGR) for used nuclear fuel, is explored within representative regional (∼5734 km 2 ) and sub-regional (∼83 km 2 ) Shield watersheds. The modelling strategy adopted a GIS framework that included a digital elevation model and surface hydrologic features such as rivers, lakes and wetlands. Model boundary conditions were extracted through GIS automation such that the 3-dimensional characteristics of surface relief, surface water features, in addition to, pore fluid salinities and spatially variable permeability fields could be explicitly incorporated. Further flow system detail has been incorporated in sub-regional simulations with the inclusion of an irregular curve-planar Fracture Network Model traceable to site-specific geologic attributes. Interim modelling results reveal that deep-seated regional flow systems do evolve with groundwater divides within the shallow (<300 m) flow system defined by local scale topography, in particular, major rivers and their tributaries. Within the realizations considered groundwater flow at depths of ∼700 m or more was determined to be essentially stagnant and likely diffusion dominated. The role of fracture zone interconnectivity, depth dependent salinity and spatially variable permeability distributions on flow system response to past glacial events is examined. In demonstrating a case for groundwater flow system stability it is evident that predictive modelling approaches that cannot preserve the 3-dimensional complexity of the watershed-scale groundwater flow system may lead to conclusions that are implausible

  12. Fully developed laminar flow of two immiscible liquids through horizontal pipes: a variational approach

    Energy Technology Data Exchange (ETDEWEB)

    Kurban, Adib Paulo Abdalla [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas; Bannwart, Antonio Carlos [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica

    1990-12-31

    The fully developed laminar flow of two immiscible liquids with both different viscosities and densities through a horizontal round pipe is studied. The interface between the fluids as well as their flow fields are determined by the use of a variational principle: the so called viscous dissipation principle: The results foreseen by this paper are in agreement with the physical observation (e.g. Southern and Ballman) that the more viscous fluid is total or partially encapsulated by the less viscous one. (author) 8 refs., 4 figs.

  13. Fully developed laminar flow of two immiscible liquids through horizontal pipes: a variational approach

    Energy Technology Data Exchange (ETDEWEB)

    Kurban, Adib Paulo Abdalla [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas; Bannwart, Antonio Carlos [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica

    1991-12-31

    The fully developed laminar flow of two immiscible liquids with both different viscosities and densities through a horizontal round pipe is studied. The interface between the fluids as well as their flow fields are determined by the use of a variational principle: the so called viscous dissipation principle: The results foreseen by this paper are in agreement with the physical observation (e.g. Southern and Ballman) that the more viscous fluid is total or partially encapsulated by the less viscous one. (author) 8 refs., 4 figs.

  14. Moulding of Sub-micrometer Surface Structures

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent

    2006-01-01

    The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim.......The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim....

  15. Visualization of cross-sectional flow structure during condensation of steam in a slightly inclined horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Puseya, Andree; Kim, H. [Kyung Hee University, Yongin (Korea, Republic of); Kwon, T. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    These flow characteristics called flow patterns still depend on a proper visualization technique in order to identify such local distribution. These proper distributions will have a dependence on the inclination of the tube as well, as it was demonstrated by Lips and Mayer. This work is focused on presenting an experimental investigation to visualize the cross sectional two-phase flow structure for condensation of steam in a horizontal tube and identify the liquid-gas interface using the axial-viewing technique. This innovative technique developed by Hewitt and more recently used in visualization works by Badie, permits the achievement to identify those systems in the area of interest by looking directly into the two-phase flow system during condensation of steam inside a pipe with technology such a high speed camera. An experimental work to visualize and locate the liquid-gas interface for steam condensation in horizontal tubes with slightly inclination was developed on this research The experimental results shows that the axial viewing technique works well with condensation phenomena and can be used for further developments in the field such as determination of liquid film geometry and calculation of void fraction.

  16. Deformation and rupture of a horizontal liquid layer by thermal and solutal Marangoni flows

    Energy Technology Data Exchange (ETDEWEB)

    Viviani, Antonio [Seconda Universita di Napoli (SUN), Dipartimento di Ingegneria Aerospaziale e Meccanica (DIAM), via Roma 29, 81031 Aversa (Italy); Zuev, Andrew [Institute of Continuous Media Mechanics, UB Russian Academy of Sciences, Academic Korolev Street 1, 614013 Perm (Russian Federation)

    2008-11-15

    The evolution of strong surface deformation of a thin viscous fluid layer on a horizontal solid wettable substrate was studied experimentally. Layer deformation is caused by the concentration gradient of surface tension generated by a drop of soluble surfactant placed on the free layer surface. The conditions leading to the layer rupture and drying of the bottom section under the spreading drop were studied. The dependence of the dry spot radius on time, horizontal dimension and thickness of the layer, volume of the introduced droplet and fluids properties, were obtained for various fluid pairs. It was found that the critical initial thickness of the layer, at which its deformation reaches the layer bottom, is practically insensitive to the quantity of the applied surfactant and is defined by the difference in surface tension between the drop and the layer. Comparison of the data with the results of the study of the thermocapillary rupture of a cylindrical layer heated at the center and cooled along the periphery showed good agreement between the dependences of the critical layer thickness on the thermal and the solutal surface tension difference. (author)

  17. New transient-flow modelling of a multiple-fractured horizontal well

    International Nuclear Information System (INIS)

    Jia, Yong-Lu; Wang, Ben-Cheng; Nie, Ren-Shi; Wang, Dan-Ling

    2014-01-01

    A new transient-flow modelling of a multiple-fractured horizontal well is presented. Compared to conventional modelling, the new modelling considered more practical physical conditions, such as various inclined angles for different fractures, different fracture intervals, different fracture lengths and partially penetrating fractures to formation. A kind of new mathematical method, including a three-dimensional eigenvalue and orthogonal transform, was created to deduce the exact analytical solutions of pressure transients for constant-rate production in real space. In order to consider a wellbore storage coefficient and skin factor, we used a Laplace-transform approach to convert the exact analytical solutions to the solutions in Laplace space. Then the numerical solutions of pressure transients in real space were gained using a Stehfest numerical inversion. Standard type curves were plotted to describe the transient-flow characteristics. Flow regimes were clearly identified from type curves. Furthermore, the differences between the new modelling and the conventional modelling in pressure transients were especially compared and discussed. Finally, an example application to show the accordance of the new modelling with real conditions was implemented. Our new modelling is different from, but more practical than, conventional modelling. (paper)

  18. Quality factor due to roughness scattering of shear horizontal surface acoustic waves in nanoresonators

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to

  19. Surface activation of MnNb{sub 2}O{sub 6} nanosheets by oxalic acid for enhanced photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junshu; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Li, Hongyi; Li, Yongli; Du, Yucheng; Yang, Yilong; Jia, Xinjian

    2017-05-01

    Graphical abstract: Visible light driven photoreduction of Cr(VI) over MnNb{sub 2}O{sub 6} nanosheets is enhanced via oxalic acid surface complex to generate activation layer. - Highlights: • MnNb{sub 2}O{sub 6} nanosheets are crystallized by a surface capping route of sulfonate groups. • Oxalic acid on MnNb{sub 2}O{sub 6} nanosheets forms an excited surface complex hybrid layer. • Surface activation enhances visible-light induced reduction of Cr(VI) into Cr(III). - Abstract: MnNb{sub 2}O{sub 6} nanosheets (P-MNOs) is selectively crystallized by using surface capping ligand with functional sulfonate group (sodium dodecyl benzene sulphonate), which binds to the (131) surface of MnNb{sub 2}O{sub 6} inducing the morphology-controlled crystallization of MnNb{sub 2}O{sub 6} materials. Surface modification of photoactive P-MNOs with electron-rich oxalic acid ligands establishes an excited surface complex layer on phase-pure P-MNO as evidenced by spectroscopic analyses (FT-IR, UV–vis, Raman, PL, etc.), and thus more efficiently photocatalyzes the reduction of Cr(VI) into Cr(III) than solely P-MNOs or oxalic acid under visible light (λ > 420 nm) via a ligand-to-metal interfacial electron transfer pathway. However, the interaction between oxalic acid and MnNb{sub 2}O{sub 6} is highly dependent upon the morphology of solid MnNb{sub 2}O{sub 6} substrate due to the higher surface-area-to-volume ratio and higher surface activity of (131) planes in the sheet-like morphology. This study could assist the construction of stable niobate material systems to allow a versatile solid surface activation for establishing more energy efficient and robust catalysis process under visible light.

  20. Conjugate heat transfer of laminar film condensation along a horizontal plate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Euk Soo [Pusan National Univesity, Busan (Korea, Republic of)

    2006-03-15

    This paper proposes appropriate conjugate parameters and dimensionless temperatures to analysis the conjugate problem of heat conduction in solid wall coupled with laminar film condensation flow adjacent to horizontal flat plate. An efficient methods for some fluids are proposed for its solution. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Modified Jacob number, Ja{sup *}/Pr, defined by an overall temperature difference, a property ratio {radical}{rho}{sub {iota}}{mu}{sub {iota}} {radical}{rho}{sub {upsilon}}{mu}{sub {upsilon}} and the conjugate parameter {zeta}. The obtained similarity solution reveals the effect of the conjugate parameter, and the results are compared with the simplified solution. The variations of the heat transfer rates as well as the interface temperature and frictions along the plate are shown explicitly.

  1. Characterization of two-phase flow regimes in horizontal tubes using 81mKr tracer experiments.

    Science.gov (United States)

    Oriol, Jean; Leclerc, Jean Pierre; Berne, Philippe; Gousseau, Georges; Jallut, Christian; Tochon, Patrice; Clement, Patrice

    2008-10-01

    The diagnosis of heat exchangers on duty with respect to flow mal-distributions needs the development of non-intrusive inlet-outlet experimental techniques in order to perform an online fault diagnosis. Tracer experiments are an example of such techniques. They can be applied to mono-phase heat exchangers but also to multi-phase ones. In this case, the tracer experiments are more difficult to perform. In order to check for the capabilities of tracer experiments to be used for the flow mal-distribution diagnosis in the case of multi-phase heat exchangers, we present here a preliminary study on the simplest possible system: two-phase flows in a horizontal tube. (81m)Kr is used as gas tracer and properly collimated NaI (TI) crystal scintillators as detectors. The specific shape of the tracer response allows two-phase flow regimes to be characterized. Signal analysis allows the estimation of the gas phase real average velocity and consequently of the liquid phase real average velocity as well as of the volumetric void fraction. These results are compared successfully to those obtained with liquid phase tracer experiments previously presented by Oriol et al. 2007. Characterization of the two-phase flow regimes and liquid dispersion in horizontal and vertical tubes using coloured tracer and no intrusive optical detector. Chem. Eng. Sci. 63(1), 24-34, as well as to those given by correlations from literature.

  2. Characterization of two-phase flow regimes in horizontal tubes using 81mKr tracer experiments

    International Nuclear Information System (INIS)

    Oriol, Jean; Leclerc, Jean Pierre; Berne, Philippe; Gousseau, Georges; Jallut, Christian; Tochon, Patrice; Clement, Patrice

    2008-01-01

    The diagnosis of heat exchangers on duty with respect to flow mal-distributions needs the development of non-intrusive inlet-outlet experimental techniques in order to perform an online fault diagnosis. Tracer experiments are an example of such techniques. They can be applied to mono-phase heat exchangers but also to multi-phase ones. In this case, the tracer experiments are more difficult to perform. In order to check for the capabilities of tracer experiments to be used for the flow mal-distribution diagnosis in the case of multi-phase heat exchangers, we present here a preliminary study on the simplest possible system: two-phase flows in a horizontal tube. 81m Kr is used as gas tracer and properly collimated NaI (TI) crystal scintillators as detectors. The specific shape of the tracer response allows two-phase flow regimes to be characterized. Signal analysis allows the estimation of the gas phase real average velocity and consequently of the liquid phase real average velocity as well as of the volumetric void fraction. These results are compared successfully to those obtained with liquid phase tracer experiments previously presented by Oriol et al. 2007. Characterization of the two-phase flow regimes and liquid dispersion in horizontal and vertical tubes using coloured tracer and no intrusive optical detector. Chem. Eng. Sci. 63(1), 24-34, as well as to those given by correlations from literature

  3. Electronic and surface properties of Ga-doped In{sub 2}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Regoutz, A., E-mail: a.regoutz@imperial.ac.uk [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Egdell, R.G. [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Morgan, D.J. [Cardiff Catalysis Institute (CCI), School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (United Kingdom); Palgrave, R.G. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Téllez, H.; Skinner, S.J.; Payne, D.J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Watson, G.W. [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland); Scanlon, D.O. [University College London, Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-09-15

    Graphical abstract: - Highlights: • The solubility limit of Ga in In{sub 2}O{sub 3} was established to be around 6%. • Ga doping causes a reduction in band gap although the band gap of Ga{sub 2}O{sub 3} is larger than that of In{sub 2}O{sub 3}. • The reduction in band gap is attributed to the role of lone pairs at surfaces and grain boundaries. • A pronounced surface segregation of Ga is observed. - Abstract: The limit of solubility of Ga{sub 2}O{sub 3} in the cubic bixbyite In{sub 2}O{sub 3} phase was established by X-ray diffraction and Raman spectroscopy to correspond to replacement of around 6% of In cations by Ga for samples prepared at 1250 °C. Density functional theory calculations suggest that Ga substitution should lead to widening of the bulk bandgap, as expected from the much larger gap of Ga{sub 2}O{sub 3} as compared to In{sub 2}O{sub 3}. However both diffuse reflectance spectroscopy and valence band X-ray photoemission reveal an apparent narrowing of the gap with Ga doping. It is tentatively concluded that this anomaly arises from introduction of Ga{sup +} surface lone pair states at the top of the valence band and structure at the top of the valence band in Ga-segregated samples is assigned to these lone pair states. In addition photoemission reveals a broadening of the valence band edge. Core X-ray photoemission spectra and low energy ion scattering spectroscopy both reveal pronounced segregation of Ga to the ceramic surface, which may be linked to both relief of strain in the bulk and the preferential occupation of surface sites by lone pair cations. Surprisingly Ga segregation is not accompanied by the development of chemically shifted structure in Ga 2p core XPS associated with Ga{sup +}. However experiments on ion bombarded Ga{sub 2}O{sub 3}, where a shoulder at the top edge of the valence band spectra provide a clear signature of Ga{sup +} at the surface, show that the chemical shift between Ga{sup +} and Ga{sup 3+} is too small to be

  4. Surface morphology analysis of nanostructured (Ba sub x , Sr sub 1 sub - sub x)TiO sub 3 thin films using fractal method

    CERN Document Server

    Hong, K J; Choi, W K; Cho, J C

    2003-01-01

    Based on the fractal theory, this paper uses scanning electron microscopy images to investigate the roughness characteristics of nanostructured (Ba Sr)TiO sub 3 thin films by sol-gel methods. The percentage grain area, surface fractal dimensions and 3D image are evaluated using image analysis methods. The thickness of the (Ba Sr)TiO sub 3 thin films was 260-280 nm. The surface fractal dimensions were increased with strontium doping, and grain area, were decreased with it. The fractal dimension and the grain areas of the (Ba sub 0 sub . sub 7 Sr sub 0 sub . sub 3)TiO sub 3 thin films were 1.81 and 81%. Based on the image analysis, the roughness height of 3D images as 256 levels was about 3 nm and its distribution was about 35-40% for the (Ba sub 0 sub . sub 8 Sr sub 0 sub . sub 2)TiO sub 3 and (Ba sub 0 sub . sub 7 Sr sub 0 sub . sub 3)TiO sub 3 thin films. The roughness height of the BST thin films was distributed from 35% to 40% ranging from 3 nm to 4 nm. By increasing the strontium doping, the roughness hei...

  5. Condensation of refrigerants in horizontal microfin tubes. Numerical analysis of heat transfer for annular flow regime; Reibai no microfin tsuki suihei kannai gyoshuku. Kanjoryu ryoiki ni okeru netsudentatsu no suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Nozu, S [Okayama Prefectural University, Okayama (Japan); Honda, H [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1998-07-25

    A method for predicting the local heat transfer coefficient is presented for film condensation of vapor in a spirally grooved horizontal microfin-tube. Based on the flow observation study performed by the present authors, film flow model between fins in the annular flow regime is proposed. For the fin surface, laminar condensate film controlled by the combined effects of vapor shear and surface tension forces is analyzed. While, in the groove, thick condensate film driven by the vapor shear force is taken into consideration. A parameter which accounts for the transition from annular- to stratified flow regimes is also derived. The present and previous local heat transfer data for fluorocarbon refrigerants in the annular flow regime are found by the present numerical analysis to have a mean absolute deviation of 15.1 percent. 12 refs., 10 figs., 2 tabs.

  6. Development of an electrical sensor for measurement of void fraction and identification of flow regime in a horizontal pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Ko, Min Seok; Kim, Sin

    2015-01-01

    The electrical signals of the electrical impedance sensor depend on the flow structure as well as the void fraction. For this reason, the electrical responses to a given void fraction differ according to the flow pattern. For reliable void fraction measurement, hence, information on the flow pattern should be given. Based on this idea, a new improved conductance sensor is proposed in this study to measure the void fraction and simultaneously determine the flow pattern of the air-water two-phase mixture in a horizontal pipe. The proposed sensor is composed of a 3-electrode set of adjacent and opposite electrodes. The opposite electrodes measures the void fraction, the adjacent electrode serves to determine the flow patterns. Prior to the real applications of the proposed approach, several numerical calculations based on the FEM are performed to optimize the electrode and insulator sizes in terms of the sensor linearity. The numerical results are assessed in comparison with the data from static experiments. The sensor system is applied for a horizontal flow loop with 40 mm in inner diameter and 5 m in length and its measurement performance for the void fraction is compared with that of a wire-mesh sensor system. In this study, an electrical sensor for measuring the void fraction and identifying flow pattern in horizontal pipes has been designed. For optimization of the sensor, numerical analysis have been performed in order to determine the geometry and verified it through static experiments. Also, the loop experiments were conducted for several flow rate conditions covering stratified and intermittent flow regimes and the experimental results for the void fractions measured by the proposed sensor were compared with those of a wire-mesh sensor. The comparison results are in overall good agreements

  7. Investigation of Steam Flow Behavior During Horizontal Injection into Vertical Annulus

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Kim, Won J.; Ku, Ja H.; Suh, Kune Y.; Song, Chul H.

    2004-01-01

    Qualification of uncertainty margins for accidents, which are classified as the design basis accidents, requires thermal hydraulic codes and related code models with an enhanced level of sophistication. In a cold leg break accident, the flow in downcomer is multidimensional and the velocity distribution of the steam flow in downcomer serves as a good example. For observation of the flow behavior near the break, experiments are performed to measure the velocity of the steam flow in a vessel scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this case, the steam has a quality approaching unity and thus is dealt with as a single-phase gas. The velocity of the steam flow is measured by micro-Pitot tubes arranged horizontally and vertically around the outer shell of the 1/20 scaled-down test vessel OMEGA (Optimized Multidimensional Experiment Geometric Apparatus). A commercial computational fluid dynamics code yields analytic results of multidimensional flow motion in the complex annular passage with flow obstacles. CFX is run with well-defined boundary conditions to obtain velocity profiles of the steam flow in the annular downcomer. Results of CFX shed light on the experimental setup as to fixing the location and angle of the micro-Pitot tubes, and correcting the sensitivity of the micro- Pitot tubes, for instance. This study aims to improve the multidimensional capability of the MARS code, which is based on RELAP5 and COBRA-IV, in predicting the multiphase flow behavior in the reactor downcomer. MARS is currently based on one- and two-dimensional flow analyses, which tends to distort total flow due to misrepresentation of the local phenomena. It is thus necessary to scrutinize the steam flow path and mechanistically model the momentum variation. These experimental and analytical results can locally be applied to developing the models of specific forms and essential phenomena treated in MARS. (authors)

  8. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    Science.gov (United States)

    Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.

  9. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    Directory of Open Access Journals (Sweden)

    Xianzhi Song

    Full Text Available Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2 as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in

  10. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Bhoj, Ananth N [Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801 (United States); Kushner, Mark J [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2007-11-21

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s{sup -1}. The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O{sub 2}/H{sub 2}O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O{sub 3} accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups.

  11. Analytical Solution for Time-drawdown Response to Constant Pumping from a Homogeneous, Confined Horizontal Aquifer with Unidirectional Flow

    Science.gov (United States)

    Parrish, K. E.; Zhang, J.; Teasdale, E.

    2007-12-01

    An exact analytical solution to the ordinary one-dimensional partial differential equation is derived for transient groundwater flow in a homogeneous, confined, horizontal aquifer using Laplace transformation. The theoretical analysis is based on the assumption that the aquifer is homogeneous and one-dimensional (horizontal); confined between impermeable formations on top and bottom; and of infinite horizontal extent and constant thickness. It is also assumed that there is only a single pumping well penetrating the entire aquifer; flow is everywhere horizontal within the aquifer to the well; the well is pumping with a constant discharge rate; the well diameter is infinitesimally small; and the hydraulic head is uniform throughout the aquifer before pumping. Similar to the Theis solution, this solution is suited to determine transmissivity and storativity for a two- dimensional, vertically confined aquifer, such as a long vertically fractured zone of high permeability within low permeable rocks or a long, high-permeability trench inside a low-permeability porous media. In addition, it can be used to analyze time-drawdown responses to pumping and injection in similar settings. The solution can also be used to approximate the groundwater flow for unconfined conditions if (1) the variation of transmissivity is negligible (groundwater table variation is small in comparison to the saturated thickness); and (2) the unsaturated flow is negligible. The errors associated with the use of the solution to unconfined conditions depend on the accuracies of the above two assumptions. The solution can also be used to assess the impacts of recharge from a seasonal river or irrigation canal on the groundwater system by assuming uniform, time- constant recharge along the river or canal. This paper presents the details for derivation of the analytical solution. The analytical solution is compared to numerical simulation results with example cases. Its accuracy is also assessed and

  12. Integral methods for shallow free-surface flows with separation

    DEFF Research Database (Denmark)

    Watanabe, S.; Putkaradze, V.; Bohr, Tomas

    2003-01-01

    eddy and separated flow. Assuming a variable radial velocity profile as in Karman-Pohlhausen's method, we obtain a system of two ordinary differential equations for stationary states that can smoothly go through the jump. Solutions of the system are in good agreement with experiments. For the flow down...... an inclined plane we take a similar approach and derive a simple model in which the velocity profile is not restricted to a parabolic or self-similar form. Two types of solutions with large surface distortions are found: solitary, kink-like propagating fronts, obtained when the flow rate is suddenly changed......, and stationary jumps, obtained, for instance, behind a sluice gate. We then include time dependence in the model to study the stability of these waves. This allows us to distinguish between sub- and supercritical flows by calculating dispersion relations for wavelengths of the order of the width of the layer....

  13. Entropy flow and generation in radiative transfer between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2007-02-15

    Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)

  14. Viscous Dissipation Effects on the Motion of Casson Fluid over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution: Boundary Layer Analysis

    Directory of Open Access Journals (Sweden)

    T. M. Ajayi

    2017-01-01

    Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.

  15. An investigation of particle behavior in gas-solid horizontal pipe flow by an extended LDA technique

    Energy Technology Data Exchange (ETDEWEB)

    Yong Lu; Donald H. Glass; William J. Easson [University of Edinburgh, Edinburgh (United Kingdom). Institute for Materials and Processes

    2009-12-15

    An extended Laser Doppler Anemometry (LDA) technique has been developed to measure the distributions of particle velocities and particle number rates over a whole pipe cross-section in a dilute pneumatic conveying system. The first extension concentrates on the transform matrix for predicting the laser beams' cross point in a pipe according to the shift coordinate of the 3D computer-controlled traverse system on which the probes of the LDA system were mounted. The second focuses on the proper LDA sample rate for the measurement of gas-solid pipe flow with polydisperse particles. A suitable LDA sample rate should ensure that enough data is recorded in the measurement interval to precisely calculate the particle mean velocity or other statistical values at every sample point. The present study explores the methodology as well as the fundamentals of measurements, using a laser facility, of the cross-sectional distributions of solid phase. In the horizontal gas-solid pipe flow (glass beads less than 110 {mu}m), the experimental data show that the cross-sectional flow patterns of the solid phase can be classified by annulus-like flow describing the axial particle velocity contours and stratified flow characterising particle number rate distribution over a cross-section. Thus, the cross-sectional flow pattern of the solid phase in a horizontal pipe may be annular or stratified dependent on whether the axial particle velocity or particle number rate is the phenomenon studied. 13 refs., 16 figs., 1 tab.

  16. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    OpenAIRE

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco Domingo; Peña, Araceli

    2013-01-01

    Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1), and at low wind speed (≈ 1.8 m s-1) the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening t...

  17. Mud Flow Characteristics Occurred in Izuoshima Island, 2013

    Science.gov (United States)

    Takebayashi, H.; Egashira, S.; Fujita, M.

    2015-12-01

    Landslides and mud flows were occurred in the west part of the Izuoshima Island, Japan on 16 October 2013. The Izuoshima Island is a volcanic island and the land surface is covered by the volcanic ash sediment in 1m depth. Hence, the mud flow with high sediment concentration was formed. The laminar layer is formed in the debris flow from the bed to the fluid surface. On the other hand, the laminar flow is restricted near the bed in the mud flow and the turbulence flow is formed on the laminar flow layer. As a result, the equilibrium slope of the mud flow becomes smaller comparing to the debris flow. In this study, the numerical analysis mud flow model considering the effect of turbulence flow on the equilibrium slope of the mud flow is developed. Subsequently, the model is applied to the mud flow occurred in the Izuoshima Island and discussed the applicability of the model and the flow characteristics of the mud flow. The differences of the horizontal flow areas between the simulated results and the field data are compared and it was found that the outline of the horizontal shape of the flow areas is reproduced well. Furthermore, the horizontal distribution of the erosion and deposition area is reproduced by the numerical analysis well except for the residential area (Kandachi area). Kandachi area is judged as the erosion area by the field observation, but the sediment was deposited in the numerical analysis. It is considered that the 1.5hour heavy rain over 100mm/h after the mud flow makes the discrepancy. The difference of the horizontal distribution of the maximum flow surface elevation between the simulated results and the field data are compared and it was found that the simulated flow depth is overestimated slightly, because of the wider erosion area due to the coarse resolution elevation data. The averaged velocity and the depth of the mud flow was enough large to collapse the houses.

  18. Transient heat transfer for helium gas flowing over a horizontal cylinder with exponentially increasing heat input

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya

    2003-01-01

    The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured under wide experimental conditions. The platinum cylinder with a diameter of 1.0 mm was used as test heater and heated by electric current with an exponentially increasing heat input of Q 0 exp(t/τ). The gas flow velocities ranged from 5 to 35 m/s, the gas temperatures ranged from 25 to 80degC, and the periods of heat generation rate, τ, ranged from 40 ms to 20 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Semi-empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The ratios of transient Nusselt number Nu tr to quasi-steady-state Nusselt number Nu st at various periods, flow velocities, and gas temperatures were obtained. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. Empirical correlation for transient heat transfer was also obtained based on the experimental data. (author)

  19. Formation evaluation of a horizontal well

    International Nuclear Information System (INIS)

    Najia, W.K.; Habib, K.H.; Asada, J.

    1991-01-01

    In Upper Zakum Field, the interest in horizontal drilling has continued. A second horizontal well was drilled during the second half of 1989. This necessitated running logging tools for well control and to evaluate the reservoir characteristics. The logging tool selected for this well is that of Sperry-Sun. Tools configuration and tolerance were found to fulfil SADCO's requirements and specifications. This paper reports on the services produced which included Measurement While Drilling (MWD) directional services and RLL (Recorded Lithology Logging). The RLL services cover Dual Gamma Ray (DGR), Electromagnetic Wave Resistivity (EWR) and Compensated Neutron Porosity (CN porosity). All the RLL tools were an integrated part of the Bottom Hole Drilling Assembly. Data acquired while surveying was recorded in a recording sub down-hole and retrieved when the tools were up at the surface. A PC assisted quick look interpretation was carried out using Archie's equation in shale free limestone to calculate: Effective porosity, Water Saturation and, Bulk water volume

  20. Global irradiation on horizontal surface at Hyderabad, Pakistan

    International Nuclear Information System (INIS)

    Kalhoro, A.N.

    2005-01-01

    The measurement of global irradiation on horizontal surface at PCSIR (Pakistan Council of Scientific and Industrial Research) Laboratories, Hyderabad, Pakistan, for the period of January-June, 2003 is presented in this paper. During six months the total global irradiation received on horizontal surface at Hyderabad Laboratories is 1.80238 MW-h-m2. The daily irradiation data (Watt-h/Sq.m) has been collected on continuous basis by means of EPLAB Pyranometer and EPLAB Electronic Integrator provided with DIGITEC printer system. HPX- Y recorder (potentiometer) is also connected for continuous data recording of solar intensity (m V). The weather effect over the radiation income was observed regularly and proportion of sunny, cloudy, partly cloudy and dusty days is plotted. Monthly mean daily irradiation bifurcated for sunny and cloudy days are also shown separately. To give an overview of sky conditions, the monthly clearness index is calculated. The highest value of average irradiation per day was recorded in June (7.15 kW/m/sup 2/) and minimum recorded in January (4.11 kW/m/sup 2/). The summer season, although rich in radiation with long sunshine duration, brings dust storms along with many partly cloudy or cloudy days, mostly in the month of May and likely in June as well. This could be an additional barrier for solar energy applications especially in desert areas; therefore the study was made for evaluating the effect of dust on the radiation flux. The purpose of the study is the development of rural life in Pakistan such that the inhabitants of rural areas may need not to wait for the connection to national grid. This study will help in improving the efficiency of solar thermal devices, (currently fabricated on theoretical basis at the laboratories), according to experimental data. (author)

  1. THERMOSS: a thermohydraulic model of flow stagnation in a horizontal fuel channel

    International Nuclear Information System (INIS)

    Gulshani, P.; Caplan, M.Z.; Spinks, N.J.

    1984-01-01

    Following a postulated inlet-side small break in the CANDU reactor, emergency coolant is injected to refull the horizontal fuel channels and remove the decay heat. As part of the accident analysis, the effects of loss of forced circulation during the accident are predicted. A break size exists for which, at the end of pump rundown, the break force balances the natural circulation force and the channel flow is reduced to near zero. The subcooled, stagnant channel condition is referred to as the standing-start condition. Subsequently, the channel coolant boils and stratifies. Eventually the steam flow from the channel heats up the endfitting to the saturation temperature and reaches the vertical feeder. The resulting buoyancy-induced flow then refills the channel. One dimensional, two-fluid conservation equations are solved in closed form to predict the duration of stagnation. In this calculation the channel water level is an important intermediate variable because it determines the amount of steam production

  2. Characteristics of Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Li, Zhigang

    through horizontal openings. Two cases of full-scale measurements of buoyancy driven natural ventilation through horizontal openings are performed: one horizontal opening and one horizontal opening combined with one vertical opening. For the case of one horizontal opening, the measurements are made....... Computational fluid dynamics (CFD) are used to study these two air flow cases. The air flow rate and air flow pattern are predicted and compared with the full-scale measurements. The measurement data are used to compare two CFD models: standard k- ε model and large eddy simulation (LES) model. The cases...... transient, unstable and complex, and the air flow rates oscillate with time. Correlations between the Froude number Fr and the opening ratio L/D are obtained, which is reasonable agreement with Epstein's formula derived from brine-water measurements, but the obtained Fr values show considerable deviations...

  3. Characteristic Value Method of Well Test Analysis for Horizontal Gas Well

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Li

    2014-01-01

    Full Text Available This paper presents a study of characteristic value method of well test analysis for horizontal gas well. Owing to the complicated seepage flow mechanism in horizontal gas well and the difficulty in the analysis of transient pressure test data, this paper establishes the mathematical models of well test analysis for horizontal gas well with different inner and outer boundary conditions. On the basis of obtaining the solutions of the mathematical models, several type curves are plotted with Stehfest inversion algorithm. For gas reservoir with closed outer boundary in vertical direction and infinite outer boundary in horizontal direction, while considering the effect of wellbore storage and skin effect, the pseudopressure behavior of the horizontal gas well can manifest four characteristic periods: pure wellbore storage period, early vertical radial flow period, early linear flow period, and late horizontal pseudoradial flow period. For gas reservoir with closed outer boundary both in vertical and horizontal directions, the pseudopressure behavior of the horizontal gas well adds the pseudosteady state flow period which appears after the boundary response. For gas reservoir with closed outer boundary in vertical direction and constant pressure outer boundary in horizontal direction, the pseudopressure behavior of the horizontal gas well adds the steady state flow period which appears after the boundary response. According to the characteristic lines which are manifested by pseudopressure derivative curve of each flow period, formulas are developed to obtain horizontal permeability, vertical permeability, skin factor, reservoir pressure, and pore volume of the gas reservoir, and thus the characteristic value method of well test analysis for horizontal gas well is established. Finally, the example study verifies that the new method is reliable. Characteristic value method of well test analysis for horizontal gas well makes the well test analysis

  4. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-06-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  5. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-04-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  6. Performance assessment and microbial diversity of two pilot scale multi-stage sub-surface flow constructed wetland systems.

    Science.gov (United States)

    Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G

    2016-08-01

    This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. Copyright © 2016. Published by Elsevier B.V.

  7. Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-11-15

    Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.

  8. Dynamic Gas Flow Effects on the ESD of Aerospace Vehicle Surfaces

    Science.gov (United States)

    Hogue, Michael D.; Kapat, Jayanta; Ahmed, Kareem; Cox, Rachel E.; Wilson, Jennifer G.; Calle, Luz M.; Mulligan, Jaysen

    2016-01-01

    The purpose of this work is to develop a dynamic version of Paschen's Law that takes into account the flow of ambient gas past aerospace vehicle surfaces. However, the classic Paschen's Law does not take into account the flow of gas of an aerospace vehicle, whose surfaces may be triboelectrically charged by dust or ice crystal impingement, traversing the atmosphere. The basic hypothesis of this work is that the number of electron-ion pairs created per unit distance by the electric field between the electrodes is mitigated by the electron-ion pairs removed per unit distance by the flow of gas. The revised Paschen equation must be a function of the mean velocity, v(sub xm), of the ambient gas and reduces to the classical version of Paschen's law when the gas mean velocity, v(sub xm) = 0. New formulations of Paschen's Law, taking into account Mach number and dynamic pressure, derived by the authors, will be discussed. These equations will be evaluated by wind tunnel experimentation later this year. Based on the results of this work, it is hoped that the safety of aerospace vehicles will be enhanced with a redefinition of electrostatic launch commit criteria. It is also possible that new products, such as new anti-static coatings, may be formulated from this data.

  9. Topological surface states of Bi{sub 2}Te{sub 2}Se are robust against surface chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Conor R.; Sahasrabudhe, Girija; Kushwaha, Satya Kumar; Cava, Robert J.; Schwartz, Jeffrey [Department of Chemistry, Princeton University, Princeton, NJ (United States); Xiong, Jun [Department of Physics, Princeton University, Princeton, NJ (United States)

    2014-12-01

    The robustness of the Dirac-like electronic states on the surfaces of topological insulators (TIs) during materials process-ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi{sub 2}Te{sub 2}Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov-de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case - surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides - the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    Energy Technology Data Exchange (ETDEWEB)

    Mahanthesh, B., E-mail: bmanths@gmail.com [Department of Mathematics, AIMS Institutes, Peenya, 560058 Bangalore (India); Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Gireesha, B.J., E-mail: bjgireesu@rediffmail.com [Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Gorla, R.S. Reddy, E-mail: r.gorla@csuohio.edu [Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-11-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al{sub 2}O3 and TiO{sub 2} types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  11. Mechanistic Study of Ni/CeO{sub 2}-catalyzed CO{sub 2}/CH{sub 4} Reaction Using Flow and Static Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin-Gyu; Roh, Joong-Seok; Kim, Ji-Yeong; Lee, Sung-Han; Choi, Jonng-Gill [Yonsei University, Seoul (Korea, Republic of)

    2016-08-15

    Ni/CeO{sub 2} catalysts with different Ni loadings (5, 7, 10, 12, and 14 wt% Ni) were prepared by an impregnation method and examined for the CO{sub 2} reforming of methane using flow and static reactors. Their catalytic activities and selectivities were measured under CO{sub 2}/CH{sub 4}/Ar (=5/5/40 cm{sup 3}/min) flow at 450-800 .deg. C using a flow reactor system with an on-line gas chromatography. At flexed temperature, the CO{sub 2} and CH{sub 4} conversions varied only slightly with the Ni wt%, whereas the H{sub 2}/CO ratio increased with increasing Ni wt%. The conversions increased with temperature, reaching 98% at 800 .deg. C. The H{sub 2}/CO ratio varied with temperature in the range of 450-800 .deg. C, from less than 1 below 550 .deg. C to close to 1 at 550-600 .deg. C and then back to less than 1 above 600 .deg. C. The apparent activation energies were determined to be 43.1 kJ/mol for the CO{sub 2} consumption and 50.2 kJ/mol for the CH{sub 4} consumption based on the rates measured for the reforming reaction over 5 wt% Ni/CeO{sub 2} catalyst at 550-750 .deg. C. Additionally, the catalytic reforming reaction at low pressure (40 Torr) was investigated by a static reactor system by using a differential photoacoustic cell, in which the rates were measured from the CO{sub 2} photoacoustic signal data at early reaction times over the temperature range of 460-610 .deg. C. Apparent activation energies of 25.5-30.1 kJ/mol were calculated from the CO{sub 2} disappearance rates. The CO{sub 2} adsorption on the Ni/CeO{sub 2} catalyst was investigated by the CO{sub 2} photoacoustic spectroscopy and Fourier transform infrared spectroscopy. Feasible side reactions during the catalytic CO{sub 2}/CH{sub 4} reaction were suggested on the basis of the kinetic and spectroscopic results.

  12. ESTIMATION OF THE DECREASING OF 137 CS SEDIMENT IN THE SOIL DUE TO HORIZONTAL FLOWING

    Directory of Open Access Journals (Sweden)

    O. N. Prokof'ev

    2008-01-01

    Full Text Available The purpose of work is to estimate the possible decreasing of the density of  137 Cs sediment in the soil influenced by the horizontal flowing basing on the analysis of on location observations on the density of  137 Cs sediment in the soil after the Chernobyl accident.

  13. Effect of atmospheric CO{sub 2} on surface segregation and phase formation in La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Luo, Heng [Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Cetin, Deniz [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Lin, Xi [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Ludwig, Karl [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Physics, Boston University, Boston, MA 02215 (United States); Pal, Uday; Gopalan, Srikanth [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Basu, Soumendra, E-mail: basu@bu.edu [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States)

    2014-12-30

    Highlights: • LSCF exhibits Sr surface segregation on high-temperature annealing. • The presence of atmospheric CO{sub 2} enhances the kinetics of Sr surface segregation. • At high-CO{sub 2} partial pressures, there is a significant coverage of the surface by Sr-rich phases. • The increase in kinetics is attributed to increased thermodynamic driving force for SrCO{sub 3} formation. - Abstract: The effects of atmospheric CO{sub 2} on surface segregation and phase formation in La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ} (LSCF-6428) were investigated. (0 0 1)-oriented LSCF-6428 thin films were deposited on lattice matched (1 1 0)-oriented NdGaO{sub 3} (NGO) substrates by pulsed laser deposition (PLD). Using the synchrotron technique of total reflection X-ray fluorescence (TXRF), it was found that the kinetics of Sr surface segregation was enhanced when annealing at 800 °C in a high-CO{sub 2} partial pressure, as compared to a similar anneal in a CO{sub 2}-free atmosphere, with the oxygen partial pressure being constant in both cases. Hard X-ray photoelectron spectroscopy (HAXPES) measurements showed that the contribution of the surface carbonate to surface oxide phases increased significantly for the sample annealed in the high-CO{sub 2} atmosphere. Atomic force microscopy (AFM) studies showed enhanced surface phase formation during the high-CO{sub 2} partial pressure anneal. Density functional theory (DFT) calculations provide a thermodynamic basis for the enhanced kinetics of surface segregation in the presence of atmospheric CO{sub 2}.

  14. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Mariana [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Young, Trevor M., E-mail: Trevor.Young@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)

    2014-09-30

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (R{sub a}) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (R{sub a} = 5.26 μm) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  15. Numerical analysis of capillary entrapment for effective CO{sub 2} aquifer storage

    Energy Technology Data Exchange (ETDEWEB)

    Uelker, B.; Pusch, G. [Technische Univ. Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik; May, F. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    2007-09-13

    The success of underground CO{sub 2} sequestration projects relies on the ability of keeping CO{sub 2} immobilized. The risk of CO{sub 2} leakage into the atmosphere through faults, cap rock formations or wellbore must be evaluated for the long term safety of storage. In case of CO{sub 2} sequestration in a saline aquifer capillary trapping of CO{sub 2} is one of the essential mechanisms controlling the upward and lateral migration of CO{sub 2} plumes after the injection phase. Therefore, assessment of CO{sub 2} immobilization requires accurate modelling of multi phase flow performance. A generic reservoir model was created to examine the impact of the relative permeabilities and capillary forces on capillary trapping. This study reveals how the mechanism of capillary trapping is affected by varying the CO{sub 2} injection rate, hysteresis between drainage and imbibition processes and residual phase saturations. The leakage risk of injected CO{sub 2} in vertical and horizontal wells was also compared to identify the effective injection geometry. Vertical injection across the entire storage formation interval leads to extensive contact with cap rock and leakage through it. Horizontal wells located in the lower part of the formation both increase the aquifer utilization and eliminate contact with cap rock immediately. Thus horizontal wells can be an alternative to inject more CO{sub 2} and minimize leakage. (orig.)

  16. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Anderson, Bruce [Department of Civil Engineering, Queen' s University, Kingston K7L3N6 (Canada); Cheng, Shuiping, E-mail: shpcheng@tongji.edu.cn [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2016-05-15

    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg·L{sup −1}). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (Φ{sub PSII}) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities. - Highlights: • Physiological responses of the wetland plant to triazophos

  17. Horizontal, floating, plastic hose oil skimmer

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    A horizontal, floating, plastic hose oil skimmer operates at -20/sup 0/ to +100/sup 0/C as a moving belt driven by a motor at 0.7 kw at 1400 rpm to pick up oil by adhesion from a surface such as that of used cooling water or cutting oil for subsequent stripping and collection by gravity flow. Two models provide collection rates of 10-45 l./hr for diesel oil, 35-115 l./hr for hydraulic oil, and 170-455 l./hr for gear oils and heavy heating oils.

  18. Maximum allowable heat flux for a submerged horizontal tube bundle

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1995-01-01

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or open-quotes criticalclose quotes) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration

  19. High coverage hydrogen adsorption on the Fe{sub 3}O{sub 4}(1 1 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohu, E-mail: yuxiaohu950203@126.com [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Zhang, Xuemei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); Wang, Shengguang [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Synfuels China Co., Ltd., Huairou, Beijing 101407 (China)

    2015-10-30

    Graphical abstract: - Highlights: • Hydrogen adsorption on the A and B termination layers of the Fe{sub 3}O{sub 4}(1 1 0) surface at different coverage has been studied by DFT + U method. • The adsorption of hydrogen prefers surface oxygen atoms on both Fe{sub 3}O{sub 4}(1 1 0) surface layers. • The more stable A layer has stronger adsorption energy than the less stable B layer. • The saturation coverage has two dissociatively adsorbed H{sub 2} on the A layer, and one dissociatively adsorbed H{sub 2} on the B layer. - Abstract: Hydrogen adsorption on the A and B termination layers of the Fe{sub 3}O{sub 4}(1 1 0) surface at different coverage has been systematically studied by density functional theory calculations including an on-site Hubbard term (GGA + U). The adsorption of hydrogen prefers surface oxygen atoms on both layers. The more stable A layer has stronger adsorption energy than the less stable B layer. The saturation coverage has two dissociatively adsorbed H{sub 2} on the A layer, and one dissociatively adsorbed H{sub 2} on the B layer. The adsorption mechanism has been analyzed on the basis of projected density of states (PDOS).

  20. Characterization of two-phase flow regimes in horizontal tubes using {sup 81m}Kr tracer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oriol, Jean [LPAC, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France); Leclerc, Jean Pierre [Laboratoire des Sciences du Genie Chimique (LSGC), Nancy-Universite, CNRS, BP 20451, F-54001 Nancy (France)], E-mail: leclerc@ensic.inpl-nancy.fr; Berne, Philippe; Gousseau, Georges [L2T, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France); Jallut, Christian [Universite de Lyon, Universite Lyon 1, LAGEP, UMR CNRS 5007, ESCPE, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Tochon, Patrice; Clement, Patrice [GRETh, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2008-10-15

    The diagnosis of heat exchangers on duty with respect to flow mal-distributions needs the development of non-intrusive inlet-outlet experimental techniques in order to perform an online fault diagnosis. Tracer experiments are an example of such techniques. They can be applied to mono-phase heat exchangers but also to multi-phase ones. In this case, the tracer experiments are more difficult to perform. In order to check for the capabilities of tracer experiments to be used for the flow mal-distribution diagnosis in the case of multi-phase heat exchangers, we present here a preliminary study on the simplest possible system: two-phase flows in a horizontal tube. {sup 81m}Kr is used as gas tracer and properly collimated NaI (TI) crystal scintillators as detectors. The specific shape of the tracer response allows two-phase flow regimes to be characterized. Signal analysis allows the estimation of the gas phase real average velocity and consequently of the liquid phase real average velocity as well as of the volumetric void fraction. These results are compared successfully to those obtained with liquid phase tracer experiments previously presented by Oriol et al. 2007. Characterization of the two-phase flow regimes and liquid dispersion in horizontal and vertical tubes using coloured tracer and no intrusive optical detector. Chem. Eng. Sci. 63(1), 24-34, as well as to those given by correlations from literature.

  1. The characteristics of MBE-grown In{sub x}Al{sub 1−x}N/GaN surface states

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wenyuan; Kong, Wei; Li, Jincheng; Kim, Tong-Ho; Brown, April S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Collar, Kristen [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Losurdo, Maria [CNR-NANOTEC, Istituto di Nanotecnologia, via Orabona, 4-70126 Bari (Italy)

    2016-08-22

    The density and energy distribution of In{sub x}Al{sub 1−x}N/GaN surface donor states are studied for In{sub x}Al{sub 1−x}N structures with varying indium compositions. The results support a surface states model with a constant energy distribution of 2.17–2.63 eV below the conduction band minimum and a concentration of 4.64–8.27 × 10{sup 13} cm{sup −2} eV{sup −1}. It is shown that the properties of the surface states are affected by the surface indium composition x{sub s}, as opposed to the bulk composition, x{sub b} (In{sub x}Al{sub 1−x}N). Higher surface indium composition x{sub s} increases the density of surface states and narrows their energy distribution.

  2. Partial slip effect in flow of magnetite-Fe{sub 3}O{sub 4} nanoparticles between rotating stretchable disks

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Qayyum, Sumaira [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Imtiaz, Maria, E-mail: mi_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alzahrani, Faris; Alsaedi, Ahmed [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-09-01

    This paper addresses the flow of magnetic nanofluid (ferrofluid) between two parallel rotating stretchable disks with different rotating and stretching velocities. Water based fluid comprising magnetite-Fe{sub 3}O{sub 4} nanoparticles is addressed. Velocity slip and temperature jump at solid–fluid interface are also taken into account. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are obtained. Effects of various pertinent parameters on the velocity and temperature profiles are shown and evaluated. Computations for skin friction coefficient and Nusselt number are presented and examined for the influence of involved parameters. It is noted that tangential velocity of fluid decreases for larger velocity slip parameter. Fluid temperature also reduces for increasing value of thermal slip parameter. Surface drag force and heat transfer rate at lower disk are enhanced when magnetic field strength is increased. - Highlights: • Flow and heat transfer of ferrofluid induced by two stretchable rotating disks with velocity and thermal slips are explored. • Fluid temperature increases for larger solid volume fraction of nanofluid. • Heat transfer rate decreases for increasing values of thermal slip parameter.

  3. A numerical assessment of rough surface scattering theories. I - Horizontal polarization. II - Vertical polarization

    Science.gov (United States)

    Rodriguez, Ernesto; Kim, Yunjin; Durden, Stephen L.

    1992-01-01

    A numerical evaluation is presented of the regime of validity for various rough surface scattering theories against numerical results obtained by employing the method of moments. The contribution of each theory is considered up to second order in the perturbation expansion for the surface current. Considering both vertical and horizontal polarizations, the unified perturbation method provides best results among all theories weighed.

  4. ISS modeling strategy for the numerical simulation of turbulent sub-channel liquid-vapor flows

    International Nuclear Information System (INIS)

    Olivier Lebaigue; Benoit Mathieu; Didier Jamet

    2005-01-01

    Full text of publication follows: The general objective is to perform numerical simulation of the liquid-vapor turbulent two-phase flows that occur in sub-channels of a nuclear plant assembly under nominal or incidental situations. Additional features concern nucleate boiling at the surface of fuel rods and the sliding of vapor bubbles on this surface with possible dynamic contact lines. The Interfaces and Sub-grid Scales (ISS) modeling strategy for numerical simulations is one of the possible two-phase equivalents for the one-phase LES concept. It consists in solving the two-phase flows features at the scales that are resolved by the grid of the numerical method, and to take into account the unresolved scales with sub-grid models. Interfaces are tracked in a DNS-like approach while specific features of the behavior of interfaces such as contact line physics, coalescence and fragmentation, and the smallest scales of turbulence within each phase have an unresolved scale part that is modeled. The problem of the modeling of the smallest scales of turbulence is rather simple even if the classical situation is altered by the presence of the interfaces. In a typical sub-channel situation (e.g., 15 MPa and 3.5 m.s -1 water flow in a PWR sub-channel), the Kolmogorov scale is ca. 1 μm whereas typical bubble size are supposed to be close to 150 μm. Therefore, the use of a simple sub-grid model between, e.g., 1 and 20 μm allows a drastic reduction of the number of nodes in the space discretization while it remains possible to validate by comparison to true DNS results. Other sub-grid models have been considered to recover physical phenomena that cannot be captured with a realistic discretization: they rely on physical scales from molecular size to 1 μm. In these cases, the use of sub-grid model is no longer a matter of CPU-time and memory saving only, but also a corner stone to recover physical behavior. From this point of view at least we are no longer performing true

  5. Polyacrylamide+Al{sub 2}(SO{sub 4}){sub 3} and polyacrylamide+CaO remove coliform bacteria and nutrients from swine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Entry, J.A.; Phillips, Ian; Stratton, Helen; Sojka, R.E

    2003-03-01

    Polyacrylamide mixture may be able to reduce run-off of enteric bacteria from animal wastes. - Animal wastes are a major contributor of nutrients and enteric microorganisms to surface water and ground water. Polyacrylamide (PAM) mixtures are an effective flocculent, and we hypothesized that they would reduce transport of microorganisms in flowing water. After waste water running at 60.0 l min{sup -1} flowed over PAM+Al{sub 2}(SO{sub 4}){sub 3}, or PAM+CaO in furrows, total coliform bacteria (TC) and fecal coliform bacteria (FC) were reduced by 30-50% at 1 and 50 m downstream of the treatments compared to the control. In a column study, PAM+Al{sub 2}(SO{sub 4}){sub 3}, and PAM+CaO applied to sandy, sandy loam, loam, and clay soils reduced NH{sub 4}{sup +} and ortho-P concentrations in leachate compared to the source waste water and the control. PAM+Al{sub 2}(SO{sub 4}){sub 3} and PAM+CaO applied to sandy, sandy loam and loam soils reduced both total and ortho-P, concentrations in leachate compared to the source wastewater and control treatment. In a field study, PAM+Al{sub 2}(SO{sub 4}){sub 3}, or PAM+CaO treatments did not consistently reduce NH{sub 4}{sup +}, NO{sub 3}{sup -}, ortho-P, and total P concentrations in wastewater flowing over any soil compared to inflow wastewater or the control treatment. With proper application PAM+ Al{sub 2}(SO{sub 4}){sub 3} and PAM+CaO may be able to reduce the numbers of enteric bacteria in slowly flowing wastewater running off animal confinement areas, reducing the amount of pollutants entering surface water and groundwater.

  6. Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube

    International Nuclear Information System (INIS)

    Moh, Jeong Hah; Cho, Y. I.

    2014-01-01

    This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady

  7. Crystal structure and characterization of the novel NH{sup +} Midline-Horizontal-Ellipsis N hydrogen bonded polar crystal [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wojtas, M., E-mail: maciej.wojtas@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Gagor, A. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Science, PO Box 1410, 50-950 Wroclaw (Poland); Czupinski, O. [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland); Medycki, W. [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznan (Poland); Jakubas, R. [Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw (Poland)

    2012-03-15

    Dielectric properties and phase transitions of the piperazinium tetrafluoroborate ([NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}], abbreviated as PFB) crystal are related to the one-dimensional arrangement of the cations linked by the bistable NH{sup +} Midline-Horizontal-Ellipsis N hydrogen bonds and molecular motions of the [BF{sub 4}]{sup -} units. The crystal structure of [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}] is monoclinic at room temperature with the polar space group Pn. The polar/acentric properties of the room temperature phase IV have been confirmed by the piezoelectric and pyroelectric measurements. DSC measurements show that the compound undergoes three first-order structural phase transitions: at 421/411 K (heating/cooling), at 386/372 K and at 364/349 K. {sup 1}H and {sup 19}F NMR measurements indicate the reorientational motions of [BF{sub 4}]{sup -} anions and piperazinium(+) cations as well as the proton motion in the hydrogen-bonded chains of piperazine along the [001] direction. Over the phase I the isotropic reorientational motions or even self-diffusion of the cations and anions are expected. The conductivity measurements in the vicinity of the II-I PT indicate a superionic phase over the phase I. - Graphical abstract: It must be emphasized that the titled compound represents the first organic-inorganic simple salt containing the single-protonated piperazinium cation which was studied by means of the wide variety of experimental techniques. A survey of Cambridge Structural Database (CSD version 5.32 (November 2010) and updates (May 2011)) for structure containing the piperazinium cations yields 248 compounds with the doubly protonated piperazinium(2+) cations and only eight compounds with the singly protonated piperazinium(+) cations. Among these structures only one is the hybrid organic-inorganic material. This is piperazinium nitrate characterized structurally. The crystal packing of [NH{sub 2}(CH{sub 2}){sub 4}NH][BF{sub 4}], phase IV. The

  8. Effect of surface reactions on steel, Al{sub 2}O{sub 3} and Si{sub 3}N{sub 4} counterparts on their tribological performance with polytetrafluoroethylene filled composites

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.T.; Top, M. [Materials Innovation Institute M2i, Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Ivashenko, O.; Rudolf, P. [Department of Surfaces and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Pei, Y.T., E-mail: y.pei@rug.nl [Materials Innovation Institute M2i, Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Department of Advanced Production Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); De Hosson, J.Th.M., E-mail: j.t.m.de.hosson@rug.nl [Materials Innovation Institute M2i, Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-03-15

    Highlights: • The influence of surface reactions with PTFE on the tribo-performance of different counterparts is revealed. • Experiments confirm that friction can be greatly reduced by two F-terminated surfaces sliding over each other. • Al−F and Fe−F chemical bonding form on the surface of alumina and steel counterpart balls during sliding against PTFE-containing composite. • No Si−F bonding formed on Si{sub 3}N{sub 4} ball under the same condition, leading to higher friction and wear. - Abstract: The influence of surface reactions on the tribo-performance of steel, Al{sub 2}O{sub 3} and Si{sub 3}N{sub 4} balls sliding against polytetrafluoroethylene/SiO{sub 2}/epoxy composites was investigated. Al{sub 2}O{sub 3} ball were found to exhibit the best tribo-performance, namely a low coefficient of friction and the lowest wear rates of both the composites and the counterpart ball, when sliding against the PTFE filled composites. The difference in the tribo-performance of the Al{sub 2}O{sub 3} ball and the Si{sub 3}N{sub 4} ball can neither be attributed to the different morphology of the worn composite surfaces nor to the amount of PTFE transferred onto the wear surfaces. Instead we found that the friction is greatly reduced in the case of the Al{sub 2}O{sub 3} ball because two fluoro-terminated surfaces are sliding over each other; in fact, the formation of Al−F bonding was confirmed by X-ray photoelectron spectroscopy.

  9. Mapeamento de áreas de inundação na sub-bacia do córrego Horizonte, município de Alegre, ES. Mapping areas of flooding in Horizonte stream sub-basin, municipality of Alegre, ES.

    Directory of Open Access Journals (Sweden)

    Rafaela da SILVEIRA

    2013-12-01

    Full Text Available Inundação é um evento natural, entretanto vem ocasionando cada vez mais danos humanos e materiais. O mapeamento das áreas inundáveis é importante para eliminar os riscos de ocorrência do fenômeno e estabelecer o uso adequado de determinados locais da bacia. O objetivo deste trabalho foi delimitar as áreas de risco na sub-bacia do córrego Horizonte, pertencente ao município de Alegre, ES. Para o mapeamento das áreas sujeitas à inundação foi utilizada a metodologia proposta por Saaty (1977 e os mapas foram confeccionados pelo aplicativo ArcGIS. Os resultados evidenciam que a declividade do terreno aliada à hidrografia e altitude, são importantes parâmetros de determinação de áreas propícias à inundação. Na sub-bacia em estudo, a região sul apresenta médio risco, sendo observado o contrário na região norte.Flooding is a natural event, however it is causing more and more casualties and damage. The mapping of the wetlands is important to eliminate the risk of occurrence of the phenomenon and to determine the appropriate use of certain areas of the basin. The aim of this study was to define risk areas in the Horizonte stream subbasin, belonging to the municipality of Alegre, ES. For the mapping of areas subject to flooding the methodology proposed by Saaty (1977 was used and the maps were made by ArcGIS application. The results show that the land declivity combined with hydrography and altitude are important parameters for determining the flood prone areas. In the studied sub-basin, the southern region has average risk, whereas the opposite was observed in the north.

  10. Alternative route for the synthesis of high surface-area η-Al{sub 2}O{sub 3}/Nb{sub 2}O{sub 5} catalyst from aluminum waste

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Francisco G.E. [Departamento de Engenharia Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP (Brazil); Asencios, Yvan J.O. [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Alm. Saldanha da Gama, 89, 11030-400, Santos, SP (Brazil); Rodella, Cristiane B. [Laboratório Nacional de Luz Sincrotron, Rua Giuseppe Máximo Scolfaro, 10.000 Polo II de Alta Tecnologia, 13083-970, Campinas, SP (Brazil); Porto, André L.M. [Departamento de Engenharia Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP (Brazil); Assaf, Elisabete M., E-mail: eassaf@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense, 400, 13560-970, São Carlos, SP (Brazil)

    2016-12-01

    This paper describes an alternative route for the production of a high-surface-area η-Al{sub 2}O{sub 3}/Nb{sub 2}O{sub 5} catalyst synthesized from aluminum waste and niobium ammonium oxalate (NH{sub 4}H{sub 2}[NbO−(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O). The effects of thermal treatment on the morphology and crystal structure were examined by X-ray powder diffraction (XPD), surface area measurements (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence, dynamic scanning calorimetry (DSC) and thermogravimetry (TG) measurement. The catalysts were evaluated in the glycerol dehydration reaction. Catalytic tests were carried out with reactants in gas-phase with a fixed-bed reactor at 300° and 400 °C. - Highlights: • Alternative route for the production of a high-surface-area Al{sub 2}O{sub 3}/Nb{sub 2}O{sub 5} catalyst. • The catalyst was synthesized from aluminum waste and ammonium oxalato-niobate. • NbAl catalyst obtained showed high specific surface area (330 m{sup 2}/g). • The catalyst produced by this method showed promise in the dehydration of glycerol.

  11. Simulation of the distribution of flow and phases in vertical and horizontal bundles using the ASSERT-4 subchannel code

    International Nuclear Information System (INIS)

    Carver, M.B.; Tahir, A.; Kiteley, J.C.; Banas, A.O.; Rowe, D.S.; Midvidy, W.I.

    1990-01-01

    ASSERT-4 is a subchannel code based on the non-equilibrium equations of two-fluid flow. The paper briefly describes the equations and constitutive models used in the code, and reviews a number of validation exercises in which code results were compared to measurements in vertical and horizontal two-phase flows. (orig.)

  12. Fundamental water experiment on subassembly with porous blockage in 4 sub-channel geometry. Influence of flow on temperature distribution in the porous blockage

    International Nuclear Information System (INIS)

    Tanaka, Masa-aki; Kobayashi, Jun; Isozaki, Tadasi; Nishimura, Motohiko; Kamide, Hideki

    1998-03-01

    In the liquid metal cooled Fast Breeder Reactor, Local Fault incident is recognized as a key issue of the local subassembly accident. In terms of the reactor safety assessment, it is important to predict the velocity and temperature distributions not only in the fuel subassembly but also in the blockage accurately to evaluate the location of the hottest point and the maximum temperature. In this study, the experiment was performed with the 4 sub-channel geometry water test facility. Dimension is five times larger than that of a real FBR. The porous blockage is located at the center sub-channel in the test section and surrounded with three unplugged sub-channels. The blockages used in this study were, the solid metal, the porous medium consisted of metal spheres, the porous blockage with end plates covering the side or top faces of the blockage to prevent the horizontal and axial flows into the blockage. The experimental parameters were the heater output provided by the electrical heater in the simulated fuel pins and the flow rate. Temperature of the fluid was measured inside/outside the blockage and velocity profiles outside the blockage were measured. (J.P.N.)

  13. A status report on artificial lift systems and challenges in North Dakota horizontal completions

    Energy Technology Data Exchange (ETDEWEB)

    Fangmeier, K. [Amerada Hess Corp., ND (United States)

    2005-07-01

    Partially pressure depleted reservoirs and unfavorable horizontal flow geometries can impact artificial lift designs and diagnostics. In addition, terrain slugging, drilling fines, high gas volume fractions, H{sub 2}S gas and high bottom hole temperatures also pose challenges. This paper provides an overview of various systems utilized by Amerada Hess, a company which examines methods of reducing gas lift gas volumes to achieve maximum flow. A description of naturally fractured reservoirs and limited natural fractures was provided. A comparison was presented between the original conditions at Beaver Lodge Madison and existing conditions with horizontal development. Various artificial lift challenges were examined. It was suggested that high volume lift utilizing gas lift was the preferred artificial lift system for high volume wells. It was noted that downhole sensors can be used as an indicator of potential run life. However, reliability is limited by downhole operating temperatures and electrical ground faults. A comparison of friendly and unfriendly flow systems was presented, as well as a gas lift pressure chart. A summary of average gas volume systems was provided as well as an example of a response to increase drawdown. Examples of downhole Electric Submersible Pump (ESP) sensors were provided, as well as possible flowing pressure profiles in horizontal completion because of the constraints of lift capacity. It was concluded that a single point injection and proven gas lift system is the next step in high volume lift strategy. 2 tabs, 16 figs.

  14. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    International Nuclear Information System (INIS)

    HALVERSON, NANCY

    2004-01-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  15. Surface termination structure of α-Ga{sub 2}O{sub 3} film grown by mist chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tamba, Daiki; Kubo, Osamu, E-mail: okubo@eei.eng.osaka-u.ac.jp; Osaka, Shun; Takahashi, Kazuki; Tabata, Hiroshi; Katayama, Mitsuhiro [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Oda, Masaya [Photonics and Electronics Science and Engineering Center, Graduate School of Engineering, Kyoto University, Kyoto 615-8520 (Japan); FLOSFIA Inc., 1-36 Goryoohara, Kyoto 615-8245 (Japan); Kaneko, Kentaro; Fujita, Shizuo [Photonics and Electronics Science and Engineering Center, Graduate School of Engineering, Kyoto University, Kyoto 615-8520 (Japan)

    2016-06-20

    The surface structure of α-Ga{sub 2}O{sub 3}(0001) grown on an α-Al{sub 2}O{sub 3}(0001) substrate by mist chemical vapor deposition was studied by coaxial impact-collision ion scattering spectroscopy (CAICISS) and atomic force microscopy (AFM). The minimum step height observed in the AFM image was 0.21 ± 0.01 nm, coinciding with the height of three atomic layers of α-Ga{sub 2}O{sub 3}(0001). It was revealed by CAICISS analysis that the surface of α-Ga{sub 2}O{sub 3}(0001) is terminated by a Ga layer followed by an O layer, which is consistent with the surface termination of α-Al{sub 2}O{sub 3}(0001). A structural model taking surface relaxation into account was also constructed by fitting the simulated curve for the azimuth angle dependence of the Ga intensity to the experimental dependence. The resultant structural model is similar to the model of an α-Al{sub 2}O{sub 3}(0001) surface, which indicates analogous behavior in corundum crystals.

  16. Enhanced surface transfer doping of diamond by V{sub 2}O{sub 5} with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Kevin G., E-mail: k.crawford.2@research.gla.ac.uk; Moran, David A. J. [School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom); Cao, Liang [High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui (China); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore 117542 (Singapore); Qi, Dongchen, E-mail: d.qi@latrobe.edu.au [Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 (Australia); Tallaire, Alexandre [LSPM-CNRS, Université Paris 13, Villetaneuse 93430 (France); Limiti, E.; Verona, C. [Department of Industrial Engineering, “Tor Vergata” University, Rome 00173 (Italy); Wee, Andrew T. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore 117542 (Singapore)

    2016-01-25

    Surface transfer doping of hydrogen-terminated diamond has been achieved utilising V{sub 2}O{sub 5} as a surface electron accepting material. Contact between the oxide and diamond surface promotes the transfer of electrons from the diamond into the V{sub 2}O{sub 5} as revealed by the synchrotron-based high resolution photoemission spectroscopy. Electrical characterization by Hall measurement performed before and after V{sub 2}O{sub 5} deposition shows an increase in hole carrier concentration in the diamond from 3.0 × 10{sup 12} to 1.8 × 10{sup 13 }cm{sup −2} at room temperature. High temperature Hall measurements performed up to 300 °C in atmosphere reveal greatly enhanced thermal stability of the hole channel produced using V{sub 2}O{sub 5} in comparison with an air-induced surface conduction channel. Transfer doping of hydrogen-terminated diamond using high electron affinity oxides such as V{sub 2}O{sub 5} is a promising approach for achieving thermally stable, high performance diamond based devices in comparison with air-induced surface transfer doping.

  17. Calculation of vapour bubble growth on the lower generatrix of horizontal tubes

    International Nuclear Information System (INIS)

    Chajka, V.D.

    1987-01-01

    The known models of vapour bubble growth are compared with experimental data. Cinematographic study of vapour formation during water boiling was carried out with elements of horizontal tubes of copper 10, 16, 24, 34 and 70 mm in diameter under the pressure of 100 kPa and specific thermal loadings of 20 and 40 kW/m 2 . According to the experimental data the main volume of vapour phase is occupied by vapour bubbles from the lower part of the horizontal tube. Five stages of vapour bubble growth on the lower generatrix of the horizontal tube: nucleation, growth to the point of breaking off from nucleate centre, the breaking off from the nucleate centre, the tube surface flowing around during floating up, the breaking off from the tube surface, were singled out. The shape of vapour volume varied during the whole period of the bubble growth and it was mainly determined by the horizontal tube diameter. The change of vapour bubble radius in time is the function of the horizontal tube diameter. Comparison of the experimental data with the known models of vapour bubble growth has shown, that every stage of vapour bubble growth on the lower generatrix of the tube is determined by the complex of thermal and hydrodynamic conditions, the effect of which depends on the horizontal tube diameter

  18. Effect of surface treatment of thermoelectric materials on the properties of thermoelements made from solid solutions of Bi/sub 2/Te/sub 3/-Bi/sub 2/Se/sub 3/ and Bi/sub 2/Te/sub 3/-Sb/sub 2/Te/sub 3/ systems

    Energy Technology Data Exchange (ETDEWEB)

    Alieva, T.D.; Abdinov, D.Sh.; Salaev, Eh.Yu.

    1981-10-01

    Effect of surface treatment technology of samples of solid solutions of Ei/sub 2/Te/sub 3/-Bi/sub 2/Se/sub 3/ and Bi/sub 2/Te/sub 3/-Sb/sub 2/Te/sub 3/ systems on their thermoelectric efficiency is studied. Branches of thermoelements have been produced with the help of electroerosion or mechanical cutting of monocrystal ingots of semiconducting solid Bi/sub 2/Te/sub 3/-base solutions. It is shown that in case of the treatment of side surfaces of branches of thermoelements produced of monocrystals of Bi/sub 2/Te/sub 3/ base solid solutions their thermoelectrical efficiency grows considerably. Maximum growth of efficiency (approximately 20%) is observed during mechanical grinding of branches surfaces with diamond paste with the following chemical or electrochemical etching.

  19. Thermal healing of the sub-surface damage layer in sapphire

    International Nuclear Information System (INIS)

    Pinkas, Malki; Lotem, Haim; Golan, Yuval; Einav, Yeheskel; Golan, Roxana; Chakotay, Elad; Haim, Avivit; Sinai, Ela; Vaknin, Moshe; Hershkovitz, Yasmin; Horowitz, Atara

    2010-01-01

    The sub-surface damage layer formed by mechanical polishing of sapphire is known to reduce the mechanical strength of the processed sapphire and to degrade the performance of sapphire based components. Thermal annealing is one of the methods to eliminate the sub-surface damage layer. This study focuses on the mechanism of thermal healing by studying its effect on surface topography of a- and c-plane surfaces, on the residual stresses in surface layers and on the thickness of the sub-surface damage layer. An atomically flat surface was developed on thermally annealed c-plane surfaces while a faceted roof-top topography was formed on a-plane surfaces. The annealing resulted in an improved crystallographic perfection close to the sample surface as was indicated by a noticeable decrease in X-ray rocking curve peak width. Etching experiments and surface roughness measurements using white light interferometry with sub-nanometer resolution on specimens annealed to different extents indicate that the sub-surface damage layer of the optically polished sapphire is less than 3 μm thick and it is totally healed after thermal treatment at 1450 deg. C for 72 h.

  20. Impact of air exposure and surface chemistry on Li-Li<sub>7sub>La>3sub>Zr>2sub>O>12sub> interfacial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Sharafi, Asma [Univ. of Michigan, Ann Arbor, MI (United States); Yu, Seungho [Univ. of Michigan, Ann Arbor, MI (United States); Naguib, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Marcus [Univ. of Michigan, Ann Arbor, MI (United States); Ma, Cheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nanda, Jagjit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Maiofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Siegel, Donald J. [Univ. of Michigan, Ann Arbor, MI (United States); Sakamoto, Jeff [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-06-15

    Li<sub>7sub>La>3sub>Zr>2sub>O>12sub> (LLZO) is a promising solid-state electrolyte that could enable solid-state-batteries (SSB) employing metallic Li anodes. For a SSB to be viable, the stability and charge transfer kinetics at the Li–LLZO interface should foster facile plating and stripping of Li. Contrary to these goals, recent studies have reported high Li–LLZO interfacial resistance which was attributed to a contamination layer that forms upon exposure of LLZO to air. This study clarifies the mechanisms and consequences associated with air exposure of LLZO; additionally, strategies to minimize these effects are described. First-principles calculations reveal that LLZO readily reacts with humid air; the most favorable reaction pathway involves protonation of LLZO and formation of Li2CO3. X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the surface and subsurface chemistry of LLZO as a function of relative humidity and exposure time. Additionally, electrochemical impedance spectroscopy was used to measure the Li–LLZO interfacial resistance as a function of surface contamination. These data indicate that air exposure-induced contamination impacts the interfacial resistance significantly, when exposure time exceeds 24 h. The results of this study provide valuable insight into the sensitivity of LLZO to air and how the effects of air contamination can be reversed.

  1. Investigations of post-dryout heat transfer in case of vertical and horizontal pipe flow

    International Nuclear Information System (INIS)

    Schnittger, R.B.

    1982-01-01

    Experimental studies are presented of the heat transfer behaviour of a post dry-out flows in directly heated tubes of 6 m length. The wall temperatures of the tube are measured by thermocouples, which are distributed radially and axially on the outer tube surface. The vapor temperature is determined by a probe at the exit of the tube R 12 is used as a working fluid. Based on the experimental temperature distribution, the influence on pressure, massflow-density, and on specific thermal surface load had been studied. As a result, the heat transfer behaviour is dominated in a broad parameter range by thermal non-equilibrium conditions between the phases. Under these conditions the heat is transfered mainly from the tube wall to the vapor and from the vapor to the droplets. The strong wall temperature decrease observed at higher pressures and specific thermal surface loads after the dryout is not explained by a contact between the droplets and the tube wall, but by the decay of the droplets in the boundary layer of the wall. The non-uniform wall-temperature distribution of the horizontal tube and the lower evaporation rate compared with a vertical tube are explained by a non-uniform vapor temperature - and droplet distribution over the tube cross-section. A model is proposed for the calculation of the wall temperatures, which accounts for all these individual effects. This model can also be applied in the case of water as is demonstrated by a comparison with respective experimental results from the literature. (orig.) [de

  2. Prediction of evaporation heat transfer coefficient based on gas-liquid two-phase annular flow regime in horizontal microfin tubes

    International Nuclear Information System (INIS)

    Wang Yueshe; Wang Yanling; Wang, G.-X.; Honda, Hiroshi

    2009-01-01

    A physical model of gas-liquid two-phase annular flow regime is presented for predicting the enhanced evaporation heat transfer characteristics in horizontal microfin tubes. The model is based on the equivalence of a periodical distortion of the disturbance wave in the substrate layer. Corresponding to the stratified flow model proposed previously by authors, the dimensionless quantity Fr 0 = G/[gd e ρ v (ρ l - ρ v )] 0.5 may be used as a measure for determining the applicability of the present theoretical model, which was used to restrict the transition boundary between the stratified-wavy flow and the annular/intermittent flows. Comparison of the prediction of the circumferential average heat transfer coefficient with available experimental data for four tubes and three refrigerants reveals that a good agreement is obtained or the trend is better than that of the previously developed stratified flow model for Fr 0 > 4.0 as long as the partial dry out of tube does not occur. Obviously, the developed annular model is applicable and reliable for evaporation in horizontal microfin tubes under the case of high heat flux and high mass flux.

  3. MoS{sub 2} on an amorphous HfO{sub 2} surface: An ab initio investigation

    Energy Technology Data Exchange (ETDEWEB)

    Scopel, W. L., E-mail: wlscopel@if.uff.br [Departamento de Física, Universidade Federal do Espírito Santo, Vitória, Brazil and Departamento de Ciências Exatas, Universidade Federal Fluminense, Volta Redonda, Rio de Janerio (Brazil); Miwa, R. H., E-mail: hiroki@infis.ufu.br; Schmidt, T. M., E-mail: tome@infis.ufu.br [Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais (Brazil); Venezuela, P., E-mail: vene@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janerio (Brazil)

    2015-05-21

    The energetic stability, electronic and structural properties of MoS{sub 2} adsorbed on an amorphous a-HfO{sub 2} surface (MoS{sub 2}/HfO{sub 2}) are examined through ab initio theoretical investigations. Our total energy results indicate that the formation of MoS{sub 2}/HfO{sub 2} is an exothermic process with an adsorption energy of 34 meV/Å{sup 2}, which means that it is more stable than similar systems like graphene/HfO{sub 2} and MoS{sub 2}/SiO{sub 2}. There are no chemical bonds at the MoS{sub 2}-HfO{sub 2} interface. Upon formation of MoS{sub 2}/HfO{sub 2}, the electronic charge distribution is mostly localized at the interface region with no net charge transfer between the adsorbed MoS{sub 2} sheet and –HfO{sub 2} surface. However, the MoS{sub 2} sheet becomes n-type doped when there are oxygen vacancies in the HfO{sub 2} surface. Further investigation of the electronic distribution reveals that there are no electron- and hole-rich regions (electron-hole puddles) on the MoS{sub 2} sheet, which makes this system promising for use in high-speed nanoelectronic devices.

  4. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Hiroshi, E-mail: yamagami@cc.kyoto-su.ac.jp [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan)

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu{sub 2}Si{sub 2} are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu{sub 2}Si{sub 2} crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like 'curing-stone', 'rugby-ball' and 'ball'. The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  5. Surface obstacles in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  6. Flow field calculation around the measuring part of a circulated flow tank for measurement; Keisokuyo kairyu suiso sokuteibu no ryujo keisan ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, H; Ogura, R; Yamazaki, R [West Japan Fluid Engineering Co. Ltd., Nagasaki (Japan)

    1996-04-10

    In order to increase a fluid dynamic understanding of the flow field around the measuring part as for the leveling of free surface of the circulated flow tank for measurement, the velocity and free surface profile at the measuring part have been calculated by applying the numerical fluid dynamics. The results were compared with actual phenomena. For the average velocity at the measuring part, inclining angle of surpressing plate, and quantity of water in the tank, the flow field simulation by the numerical fluid dynamics has provided a qualitative agreement with actual phenomena. Especially, it was clarified from the viewpoint of numerical fluid dynamics that the fine adjustment of the inclining angle of surpressing plate and quantity of water in the tank greatly affect the creation of horizontal free surface at the measuring part. Furthermore, effects of the length of measuring part and the ceiling tilt angle of pipe conduit in the downstream of measuring part, which were hard to be analyzed experimentally from the viewpoint of facility and cost, were investigated. Consequently, it was clarified that there are critical length of the measuring part and optimum ceiling tilt angle in the leveling of horizontal free surface. Thus, an instruction for designing was obtained. The present flow field simulation was useful for the fluid dynamic understanding of the flow field at the measuring part, as for the leveling of horizontal free surface. 1 ref., 8 figs.

  7. Application of X-ray CT investigation of CO{sub 2}-brine flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lanlan; Liu, Yu; Song, Yongchen; Yang, Mingjun; Zhao, Yuechao; Zhao, Jiafei; Zhang, Yi; Shen, Zijian [Dalian University of Technology, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian (China); Xue, Ziqiu [Research Institute of Innovative Technology for the Earth, Kizugawa City, Kyoto (Japan); Suekane, Tetsuya [Tokyo Institute Technology, Department of Energy Sciences, Nagatsuta, Yokohama (Japan)

    2015-05-15

    A clear understanding of two-phase flows in porous media is important for investigating CO{sub 2} geological storage. In this study, we conducted an experiment of CO{sub 2}/brine flow process in porous media under sequestration conditions using X-ray CT technique. The flow properties of relative permeability, porosity heterogeneity, and CO{sub 2} saturation were observed in this experiment. The porous media was packed with glass beads having a diameter of 0.2 mm. The porosity distribution along the flow direction is heterogeneous owing to the diameter and shape of glass beads along the flow direction. There is a relationship between CO{sub 2} saturation and porosity distribution, which changes with different flow rates and fractional flows. The heterogeneity of the porous media influences the distribution of CO{sub 2}; moreover, gravity, fractional flows, and flow rates influence CO{sub 2} distribution and saturation. The relative permeability curve was constructed using the steady-state method. The results agreed well with the relative permeability curve simulated using pore-network model. (orig.)

  8. On the dependence of structural and sensing properties of sputtered MoO{sub 3} thin films on argon gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Khojier, K., E-mail: k_khojier@yahoo.com [Department of Physics, Chalous Branch, Islamic Azad University, Chalous (Iran, Islamic Republic of); Savaloni, H. [Department of Physics, University of Tehran, North Kargar Street, Tehran (Iran, Islamic Republic of); Zolghadr, S. [Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • MoO{sub 3} thin films are sputter coated and their structure are analyzed. • Effect of argon gas flow on the structural and some properties is studied. • CO sensing ability of MoO{sub 3} increases with argon gas flow. • MoO{sub 3} nano-strain decreases with argon gas flow. - Abstract: Nitrogen and carbon oxides (CO, NO and NO{sub 2}), released from combustion facilities and automobiles, are known to be extremely harmful to the human body and also are the main cause of air pollution. Therefore, effective methods to monitor and suppress the carbon and nitrogen oxides have been highly demanded for atmospheric environmental measurements and controls. It is known that molybdenum oxide (MoO{sub 3}) can be a good semiconductor material for use as a gas sensor in monitoring CO, NO and NO{sub 2}. In this paper we report the structural characteristics and sensing properties of the sputtered MoO{sub 3} thin films as a function of argon gas flow. MoO{sub 3} thin films were deposited by DC reactive magnetron sputtering technique on glass substrates at different argon gas flows in the range of 5–20 sccm. X-ray diffraction (XRD) analysis was used for studying crystallographic structure. XRD results showed that all of our films were of polycrystalline structure and of α-MoO{sub 3} stable orthorhombic phase. Results also showed that crystallite size increases while compressive nano-strain in the structure of the films decreases with increasing the argon gas flow. Atomic force microscope and the field emission scanning electron microscope studies showed granular structures for all samples, which increased in size consistent with the XRD results, with argon gas flow, while the surface roughness of the films also increased with argon gas flow. Chemical composition study showed optimum reaction between oxygen and molybdenum atoms for films produced at 15 sccm flow of argon gas. The electrical response of samples was measured in the vacuum and the CO

  9. Profile of the horizontal wind variance near the ground in near neutral flow – K-theory and the transport of the turbulent kinetic energy

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2009-05-01

    Full Text Available This paper deals with the characteristics of the atmospheric turbulent flow in the vicinity of the ground, and particularly with the profile of the horizontal wind variance. The study is based on experimental measurements performed with fast cup anemometers located near the ground at 5 different levels (from 0.25 to 4 m and sampled at 1 Hz. The experiment was carried over two agricultural plots with various tillage treatments in a fallow semiarid area (Central Aragon, Spain. The results of this study reveal that near the ground surface and under moderate wind, the horizontal wind variance logarithmically increases with height, in direct relationship with the friction velocity and the roughness length scale. A theoretical development has allowed us to link this behaviour to the modeling of the turbulent kinetic energy (TKE transport through the eddy diffusivity. Thus, the study proposes a formulation of the similarity universal function of the horizontal wind variance. Besides, the formulation offers a new method for the determination of the friction velocity and the roughness length scale and can be used for the evaluation of the TKE transport rate.

  10. Electronic parameters and top surface chemical stability of RbPb{sub 2}Br{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kesler, V.G. [Laboratory of Physical Principles for Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Pokrovsky, L.D. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Tarasova, A.Yu. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer Bridgman growth of RbPb{sub 2}Br{sub 5} crystal. Black-Right-Pointing-Pointer Electronic structure measurements with XPS. Black-Right-Pointing-Pointer Optical crystalline surface fabrication. - Abstract: The RbPb{sub 2}Br{sub 5} crystal has been grown by Bridgman method. The electronic structure of RbPb{sub 2}Br{sub 5} has been measured with XPS for a powder sample. High chemical stability of RbPb{sub 2}Br{sub 5} surface is verified by weak intensity of O 1s core level recorded by XPS and structural RHEED measurements. Chemical bonding effects have been observed by the comparative analysis of element core levels and crystal structure of RbPb{sub 2}Br{sub 5} and several rubidium- and lead-containing bromides using binding energy difference parameters {Delta}{sub Rb} = (BE Rb 3d - BE Br 3d) and {Delta}{sub Pb} = (BE Pb 4f{sub 7/2} - BE Br 3d).

  11. Flow Mode Dependent Partitioning Processes of Preferential Flow Dynamics in Unsaturated Fractures - Findings From Analogue Percolation Experiments

    Science.gov (United States)

    Kordilla, J.; Noffz, T.; Dentz, M.; Sauter, M.

    2017-12-01

    To assess the vulnerability of an aquifer system it is of utmost importance to recognize the high potential for a rapid mass transport offered by ow through unsaturated fracture networks. Numerical models have to reproduce complex effects of gravity-driven flow dynamics to generate accurate predictions of flow and transport. However, the non-linear characteristics of free surface flow dynamics and partitioning behaviour at unsaturated fracture intersections often exceed the capacity of classical volume-effective modelling approaches. Laboratory experiments that manage to isolate single aspects of the mass partitioning process can enhance the understanding of underlying dynamics, which ultimately influence travel time distributions on multiple scales. Our analogue fracture network consists of synthetic cubes with dimensions of 20 x 20 x 20 cm creating simple geometries of a single or a cascade of consecutive horizontal fractures. Gravity-driven free surface flow (droplets; rivulets) is established via a high precision multichannel dispenser at flow rates ranging from 1.5 to 4.5 ml/min. Single-inlet experiments show the influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes and allow to delineate a droplet and rivulet regime. The transition between these regimes exhibits mixed flow characteristics. In addition, multi-inlet setups with constant total infow rates decrease the variance induced by erratic free-surface flow dynamics. We investigate the impacts of variable aperture widths, horizontal offsets of vertical fracture surfaces, and alternating injection methods for both flow regimes. Normalized fracture inflow rates allow to demonstrate and compare the effects of variable geometric features. Firstly, the fracture filling can be described by plug flow. At later stages it transitions into a Washburn-type flow, which we compare to an analytical solution for the case of rivulet flow. Observations show a considerably

  12. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    Science.gov (United States)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  13. Entropy Generation on Nanofluid Flow through a Horizontal Riga Plate

    Directory of Open Access Journals (Sweden)

    Tehseen Abbas

    2016-06-01

    Full Text Available In this article, entropy generation on viscous nanofluid through a horizontal Riga plate has been examined. The present flow problem consists of continuity, linear momentum, thermal energy, and nanoparticle concentration equation which are simplified with the help of Oberbeck-Boussinesq approximation. The resulting highly nonlinear coupled partial differential equations are solved numerically by means of the shooting method (SM. The expression of local Nusselt number and local Sherwood number are also taken into account and discussed with the help of table. The physical influence of all the emerging parameters such as Brownian motion parameter, thermophoresis parameter, Brinkmann number, Richardson number, nanoparticle flux parameter, Lewis number and suction parameter are demonstrated graphically. In particular, we conferred their influence on velocity profile, temperature profile, nanoparticle concentration profile and Entropy profile.

  14. Observed metre scale horizontal variability of elemental carbon in surface snow

    International Nuclear Information System (INIS)

    Svensson, J; Lihavainen, H; Ström, J; Hansson, M; Kerminen, V-M

    2013-01-01

    Surface snow investigated for its elemental carbon (EC) concentration, based on a thermal–optical method, at two different sites during winter and spring of 2010 demonstrates metre scale horizontal variability in concentration. Based on the two sites sampled, a clean and a polluted site, the clean site (Arctic Finland) presents the greatest variability. In side-by-side ratios between neighbouring samples, 5 m apart, a ratio of around two was observed for the clean site. The median for the polluted site had a ratio of 1.2 between neighbouring samples. The results suggest that regions exposed to snowdrift may be more sensitive to horizontal variability in EC concentration. Furthermore, these results highlight the importance of carefully choosing sampling sites and timing, as each parameter will have some effect on EC variability. They also emphasize the importance of gathering multiple samples from a site to obtain a representative value for the area. (letter)

  15. Comparative study of Cu(In,Ga)Se{sub 2}/CdS and Cu(In,Ga)Se{sub 2}/In{sub 2}S{sub 3} systems by surface photovoltage techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Th., E-mail: dittrich@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Gonzáles, A.; Rada, T. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Departamento de Física, Universidad del Norte, km 5 Via Pto Colombia, Barranquilla (Colombia); Rissom, T.; Zillner, E. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Sadewasser, S. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, 4715-330 Braga (Portugal); Lux-Steiner, M. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2013-05-01

    Cu(In,Ga)Se{sub 2} absorbers were investigated by surface photovoltage (SPV) in the Kelvin probe and fixed capacitor arrangements before and after deposition of CdS or In{sub 2}S{sub 3} buffer layers as well as before and after deposition of ZnO window layers. Effects such as passivation of surface states, partial electron transfer from ZnO into In{sub 2}S{sub 3}, decrease of the ideality factor after deposition of ZnO and slow electron transfer through In{sub 2}S{sub 3} were demonstrated. The results show that SPV measurements open opportunities for dedicated studies of charge separation at hetero-junctions between ordered and disordered semiconductors. - Highlights: ► Surface photovoltage on chalcopyrite/buffer layer at different stages of formation ► Comparison of CdS and In{sub 2}S{sub 3} buffer layers ► Information about surface passivation, surface defects, ideality factor, transport.

  16. Eulerian-Lagrangian simulation of non-isothermal gas-solid flows: particle-turbulence interactions in pipe flows; Simulation eulerienne-lagrangienne d'ecoulements gaz-solide non isothermes: interactions particules-turbulence, application aux ecoulements en conduite

    Energy Technology Data Exchange (ETDEWEB)

    Chagras, V.

    2004-03-15

    The aim of this work is to contribute to the numerical modeling of turbulent gas-solid flows in vertical or horizontal non isothermal pipes, which can be found in many industrial processes (pneumatic transport, drying, etc). The model is based on an Eulerian-Lagrangian approach allowing a fine description of the interactions between the two phases (action of the fluid upon the particles (dispersion), action of the particles upon the fluid (two way coupling) and between particles (collisions)), more or less influential according to the characteristics of the flow. The influence of the gas phase turbulence on the particle motion is taken into account using a non-isotropic dispersion model, which allows the generation of velocity and temperature fluctuations of the fluid seen by the particles. The numerical developments brought to the model for vertical and horizontal pipe flow have been validated by comparison with available experimental results from the literature. The sensitivity tests highlight the influence of the dispersion model, collisions and turbulence modulation (direct and non direct modifications ) on the dynamic and thermal behavior of the suspension. The model is able to predict the heat exchanges in the presence of particles for a wide range of flows in vertical and horizontal pipes. However numerical problems still exist in two-way coupling for very small particles and loading ratios above one. This is related to the problems encountered when modeling the coupling terms between the two phases (parameters C{sub {epsilon}}{sub 2} and C{sub {epsilon}}{sub 3} ) involved in the turbulence dissipation balance. (author)

  17. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  18. Simulation of Turbulent Wake at Mixing of Two Confined Horizontal Flows

    Directory of Open Access Journals (Sweden)

    Rok Krpan

    2018-01-01

    Full Text Available The development of a turbulent mixing layer at mixing of two horizontal water streams with slightly different densities is studied by the means of numerical simulation. The mixing of such flows can be modelled as the flow of two components, where the concentration of one component in the mixing region is described as a passive scalar. The velocity field remains common over the entire computational domain, where the density and viscosity difference due to the concentration mainly affects the turbulent fluctuations in the mixing region. The numerical simulations are performed with the open source code OpenFOAM using two different approaches for turbulence modelling, Reynolds Averaged Navier Stokes equations (RANS and Large Eddy Simulation (LES. The simulation results are discussed and compared with the benchmark experiment obtained within the frame of OECD/NEA benchmark test. A good agreement with experimental results is obtained in the case of the single liquid experiment. A high discrepancy between the simulated and the experimental velocity fluctuations in the case of mixing of the flows with the slightly different densities and viscosities triggered a systematic investigation of the modelling approaches that helped us to find out and interpret the main reasons for the disagreement.

  19. Structure compatibility of TiO{sub 2} and SiO{sub 2} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tokarský, Jonáš, E-mail: jonas.tokarsky@vsb.cz; Čapková, Pavla

    2013-11-01

    A simple method for the estimation of the most suitable mutual crystallographic orientations of TiO{sub 2} nanoparticles anchored on SiO{sub 2} substrate is presented in this work. Number of overlapping titanium and oxygen atoms creating atomic pairs can be used to quantify the structure compatibility. These atomic pairs are obtained directly from non-optimized TiO{sub 2} and SiO{sub 2} atomic planes. The descriptions of algorithms being implemented as scripts into the MATLAB environment in order to make the method more effective are also provided. This method can help with the selection of the most promising (h k l) planes of TiO{sub 2} and SiO{sub 2} adjacent surfaces and the outputs are in good agreement with results of molecular modeling of TiO{sub 2} nanoparticles anchored on SiO{sub 2} surfaces within the meaning of ability to determine the optimized models with the highest and the lowest TiO{sub 2}–SiO{sub 2} adhesion energies. To the best of our knowledge, there is no other such simple and efficient method providing this information, which is very important for molecular modeling of nanoparticle-crystalline substrate systems.

  20. Stereoscopic particle image velocimetry investigations of the mixed convection exchange flow through a horizontal vent

    Science.gov (United States)

    Varrall, Kevin; Pretrel, Hugues; Vaux, Samuel; Vauquelin, Olivier

    2017-10-01

    The exchange flow through a horizontal vent linking two compartments (one above the other) is studied experimentally. This exchange is here governed by both the buoyant natural effect due to the temperature difference of the fluids in both compartments, and the effect of a (forced) mechanical ventilation applied in the lower compartment. Such a configuration leads to uni- or bi-directional flows through the vent. In the experiments, buoyancy is induced in the lower compartment thanks to an electrical resistor. The forced ventilation is applied in exhaust or supply modes and three different values of the vent area. To estimate both velocity fields and flow rates at the vent, measurements are realized at thermal steady state, flush the vent in the upper compartment using stereoscopic particle image velocimetry (SPIV), which is original for this kind of flow. The SPIV measurements allows the area occupied by both upward and downward flows to be determined.

  1. Developmental assessment of RELAP5/MOD3 code against ROSA-IV/TPTF horizontal two-phase flow experiments

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Asaka, Hideaki; Anoda, Yoshinari; Ishiguro, Misako; Tasaka, Kanji; Mimura, Yuichi; Nemoto, Toshiyuki.

    1990-03-01

    A developmental version of the RELAP5/Mod3 code (as of June 1989) was assessed for accuracy using experimental data taken for high-pressure (7MPa) steam-water two-phase flow in a large-diameter (0.18 m) horizontal-pipe test section of the ROSA-IV Two-Phase Flow Test Facility (TPTF). The agreement between the measured and calculated test section void fractions was much better than that for the previous generation of RELAP5 (MOD2). The improvement was achieved primarily due to the code changes with respect to the flow stratification criterion and interfacial-drag calculation scheme. (author)

  2. Surface modification and enhanced photocatalytic CO{sub 2} reduction performance of TiO{sub 2}: a review

    Energy Technology Data Exchange (ETDEWEB)

    Low, Jingxiang; Cheng, Bei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-15

    Highlights: • Application of modified TiO{sub 2} for photocatalytic CO{sub 2} reduction is summarized. • Different surface modification strategies of TiO{sub 2} are highlighted. • Summary and future perspectives in photocatalytic CO{sub 2} reduction are presented. - Abstract: Recently, the excessive consumption of fossil fuels has caused high emissions of the greenhouse gases, CO{sub 2} into atmosphere and global energy crisis. Mimicking the natural photosynthesis by using semiconductor materials to achieve photocatalytic CO{sub 2} reduction into valuable solar fuels such as CH{sub 4}, HCO{sub 2}H, CH{sub 2}O, and CH{sub 3}OH is known as one of the best solutions for addressing the aforementioned issue. Among various proposed photocatalysts, TiO{sub 2} has been extensively studied over the past several decades for photocatalytic CO{sub 2} reduction because of its cheapness and environmental friendliness. Particularly, surface modification of TiO{sub 2} has attracted numerous interests due to its capability of enhancing the light absorption ability, facilitating the electron-hole separation, tuning the CO{sub 2} reduction selectivity and increasing the CO{sub 2} adsorption and activation ability of TiO{sub 2} for photocatalytic CO{sub 2} reduction. In this review, recent approaches of the surface modification of TiO{sub 2} for photocatalytic CO{sub 2} reduction, including impurity doping, metal deposition, alkali modification, heterojunction construction and carbon-based material loading, are presented. The photocatalytic CO{sub 2} reduction mechanism and pathways of TiO{sub 2} are discussed. The future research direction and perspective of photocatalytic CO{sub 2} reduction over surface-modified TiO{sub 2} are also presented.

  3. Measurement of hydrogeologic parameters of Indian volcanic rocks by sub-surface hydronuclear techniques

    International Nuclear Information System (INIS)

    Bardhan, M.

    1977-01-01

    Sub-surface hydronuclear techniques namely neutron-neutron, gamma-gamma and tracer dilution logging and single and double well tracer methods were adopted to investigate the hitherto inadequately studied hydrophysical properties of the Deccan lava flows which constitute the principal Indian volcanic suit of rocks. The hydrogeologic parameters measured in the field pertain to hydrostratigraphy, hydrostorage properties and geohydraulic characteristics of these layered hard formations. Results of the studies are presented and discussed briefly. (author)

  4. Velocity and turbulence measurements of oil-water flow in horizontal and slightly inclined pipes using PIV

    OpenAIRE

    Kumara, W.A.S.; Halvorsen, Britt; Melaaen, Morten Christian

    2009-01-01

    Oil-water flows in horizontal and slightly inclined pipes are investigated using Particle Image Velocimetry (PIV). PIV offers a powerful non-invasive tool to study such flow fields. The experiments are conducted in a 15 m long, 56 mm diameter, inclinable steel pipe using Exxsol D60 oil (viscosity 1.64 mPa s, density 790 kg/m3) and water (viscosity 1.0 mPa s, density 996 kg/m3) as test fluids. The test pipe inclination is changed in the range from 5° upward to 5° downward. The experiments are ...

  5. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    Science.gov (United States)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  6. Investigation of fluorine adsorption on nitrogen doped MgAl{sub 2}O{sub 4} surface by first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiaojun; Xu, Zhenming [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Li, Jie, E-mail: 15216105346@163.com [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Chen, Jiangan [Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Liu, Qingsheng [Faculty of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China)

    2016-07-15

    Graphical abstract: First-principles calculations indicate that MgAl{sub 2}O{sub 4} surface is fluorine-loving, but hydrophobic. N doped MgAl{sub 2}O{sub 4} (100) surface structure shows the highest fluorine adsorption performance and fluorine atom is more preferentially adsorbed on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: N doped MgAl{sub 2}O{sub 4} (100) > Al{sub 2}O{sub 3} (0001) > MgAl{sub 2}O{sub 4} (100) > MgO (100). N doped MgAl{sub 2}O{sub 4} is a promising candidate for fluorine removal. - Highlights: • MgAl{sub 2}O{sub 4} surface is fluorine-loving, not hydrophilic. • Fluorine preferentially adsorbs on the Mg-Al bridge site. • Adsorption intensity follow this order: N doped MgAl{sub 2}O{sub 4} > Al{sub 2}O{sub 3} > MgAl{sub 2}O{sub 4} > MgO. • Excellent adsorption performance attributes to electron compensation of N atom. • Nitrogen doped MgAl{sub 2}O{sub 4} is a promising candidate for fluorine removal. - Abstract: The nature of fluorine adsorption on pure and N doped MgAl{sub 2}O{sub 4} surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl{sub 2}O{sub 4} surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl{sub 2}O{sub 4} (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl{sub 2}O{sub 4} (100) > Al{sub 2}O{sub 3} (0001) > MgAl{sub 2}O{sub 4} (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl{sub 2}O{sub 4} attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these

  7. Slug flow transitions in horizontal gas/liquid two-phase flows. Dependence on channel height and system pressure for air/water and steam/water two-phase flows

    International Nuclear Information System (INIS)

    Nakamura, Hideo

    1996-05-01

    The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs

  8. A density functional theory study of the adsorption behaviour of CO{sub 2} on Cu{sub 2}O surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Abhishek Kumar, E-mail: akmishra@ddn.upes.ac.in, E-mail: abhishek.mishra@ucl.ac.uk, E-mail: deleeuwn@cardiff.ac.uk [Research & Development, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007 (India); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Roldan, Alberto [School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT (United Kingdom); Leeuw, Nora H. de, E-mail: akmishra@ddn.upes.ac.in, E-mail: abhishek.mishra@ucl.ac.uk, E-mail: deleeuwn@cardiff.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT (United Kingdom)

    2016-07-28

    Copper has many applications, particularly in electro-catalysis, where the oxidation state of the copper electrode plays a significant role in the selectivity towards products. Although copper-based materials have clear potential as catalysts in the reduction of CO{sub 2} and conversion to products, fundamental understanding of CO{sub 2} adsorption and activation on different copper oxide surfaces is still limited. We have used DFT+U methodology to study the surface reconstruction of the three most exposed (111), (110), and (001) surfaces of Cu{sub 2}O with different possible terminations. Considering several adsorbate geometries, we have investigated CO{sub 2} adsorption on five different possible terminations and proposed eight different configurations in which CO{sub 2} binds with the surface. Similar to earlier findings, CO{sub 2} binds weakly with the most stable Cu{sub 2}O(111):O surface showing no molecular activation, whereas a number of other surfaces, which can appear in the Cu{sub 2}O particles morphology, show stronger binding as well as activation of the CO{sub 2} molecule. Different CO{sub 2} coverages were studied and a detailed structural and electronic charge analysis is presented. The activation of the CO{sub 2} molecule is characterized by structural transformations and charge transfer between the surface and the CO{sub 2} molecule, which is further confirmed by considerable red shifts in the vibrational frequencies.

  9. TiO{sub 2} colloidal nanocrystals surface modification by V{sub 2}O{sub 5} species: Investigation by {sup 47,49}Ti MAS-NMR and H{sub 2}, CO and NO{sub 2} sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Epifani, Mauro, E-mail: mauro.epifani@le.imm.cnr.it [Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR–IMM), via Monteroni c/o Campus Universitario, I-73100 Lecce (Italy); Comini, Elisabetta [SENSOR Lab, Department of Information Engineering, Brescia University and CNR-INO, via Valotti 9, 25133 Brescia (Italy); Díaz, Raül [Electrochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles (Spain); Force, Carmen [NMR Unit, Centro de Apoyo Tecnológico, Universidad Rey Juan Carlos, c/Tulipán, s/n, 28933 Móstoles (Spain); Siciliano, Pietro [Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR–IMM), via Monteroni c/o Campus Universitario, I-73100 Lecce (Italy); Faglia, Guido [SENSOR Lab, Department of Information Engineering, Brescia University and CNR-INO, via Valotti 9, 25133 Brescia (Italy)

    2015-10-01

    Highlights: • Novel sensing architecture is presented, made by V{sub 2}O{sub 5} modification of TiO{sub 2} surface. • MAS NMR techniques are a powerful tool for studying the influence of the V{sub 2}O{sub 5} layer. • The V{sub 2}O{sub 5} surface deposition enhanced the adsorption properties with respect to pure TiO{sub 2}. - Abstract: TiO{sub 2} and TiO{sub 2}–V{sub 2}O{sub 5} nanocrystals were prepared by coupling sol–gel and solvothermal methods, followed by heat-treatment at 400 °C, after which the mean nanocrystal size was about 5 nm. The materials were characterized by X-ray diffraction, transmission electron microscopy and solid state nuclear magnetic resonance spectroscopy. It was shown that while the TiO{sub 2} phase was always anatase even after heat-treatment at 500 °C, the presence of the vanadium oxide species enhanced the surface re-configuration of the Ti ions. Hence the coordination environment of surface Ti atoms was drastically changed, by formation of further bonds and imposition of a given local geometry. The final hypothesis was that in pure titania surface rearrangement occurs, leading to the new NMR signal, but this modification was favored in the TiO{sub 2}–V{sub 2}O{sub 5} sample, where the Ti surface atoms were forced into the final configurations by the bonding with V atoms through oxygen. The materials heat-treated at 400 °C were used to process chemoresistive sensors, which were tested to hydrogen, CO and NO{sub 2}, as examples of gases with peculiar sensing mechanisms. The results evidenced that the surface deposition of V{sub 2}O{sub 5} onto the anatase TiO{sub 2} nanocrystals was effective in modifying the adsorption properties of the anatase nanocrystals.

  10. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pamitran, A.S. [Department of Mechanical Engineering, University of Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Choi, Kwang-Il [Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Oh, Jong-Taek [Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Hrnjak, Pega [Department of Mechanical Science and Engineering, ACRC, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-05-15

    An experimental investigation on the characteristics of two-phase flow pattern transitions and pressure drop of R-22, R-134a, R-410A, R-290 and R-744 in horizontal small stainless steel tubes of 0.5, 1.5 and 3.0 mm inner diameters is presented. Experimental data were obtained over a heat flux range of 5-40 kW/m{sup 2}, mass flux range of 50-600 kg/(m{sup 2} s), saturation temperature range of 0-15 C, and quality up to 1.0. Experimental data were evaluated with Wang et al. and Wojtan et al. [Wang, C.C., Chiang, C.S., Lu, D.C., 1997. Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp. Therm. Fluid Sci. 15, 395-405; Wojtan, L., Ursenbacher, T., Thome, J.R., 2005. Investigation of flow boiling in horizontal tubes: part I - a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transfer 48, 2955-2969.] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the pressure drop of the working refrigerants are reported. The experimental pressure drop was compared with the predictions from some existing correlations. A new two-phase pressure drop model that is based on a superposition model for two-phase flow boiling of refrigerants in small tubes is presented. (author)

  11. Computation of Added Mass and Damping Coefficients of a Horizontal Circular Cylinder in Open Foam

    DEFF Research Database (Denmark)

    Chen, Hao; Christensen, Erik Damgaard

    2016-01-01

    This paper presents numerical computation of added massand damping coefficients of a slender horizontal cylinder in thefree surface zone, which typically serves as a fish cage floater. A fully viscous two phase flow solver in OpenFOAM was employed in the numerical computation. The purpose...

  12. Influence of semiconductor surface preparation on photoelectric properties of Al-Zn{sub 3}P{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mirowska, Nella [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)]. E-mail: nella.mirowska@pwr.wroc.pl; Misiewicz, Jan [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2006-06-15

    The Schottky barriers formed by Al on Zn{sub 3}P{sub 2} p-type crystals have been studied. Three types of crystals (monocrystal, large-grain crystal and polycrystal) were used for device fabrication. The samples were separated in two groups according to the type of structure and the methods of surface preparation. The samples from the first group were different in structure (monocrystal, large-grain crystal and polycrystals) but prepared in the same way. Three polycrystals with differently prepared surfaces were collected in the second group. Two samples from this group were also annealed in open air at 523 K for 24 h. Measurements of photovoltaic effect at room temperature were carried out to test the impact of surface preparation on photoelectric properties of Al-Zn{sub 3}P{sub 2} contacts. Substantial differences in shape and intensity of PV signal were observed depending on whether the surface of semiconductor was mechanically polished, chemically etched or/and heat treated. The height of potential barrier, {phi} {sub B}, and optical transitions in semiconductor were determined. The value of {phi} {sub B} changed from 0.747 to 0.767 eV for unheated samples and from 0.724 to 0.755 eV for the heated ones. The quality of semiconductor surface seems to have an essential influence on spectral characteristics of Al-Zn{sub 3}P{sub 2} junctions, especially in the case of polycrystals. It appeared that thorough preliminary mechanical polishing of crystals surface provides quite good photoelectric properties of Al-Zn{sub 3}P{sub 2} junctions.

  13. Surface-induced errors in target strength and position estimates during horizontal acoustic surveys

    Czech Academy of Sciences Publication Activity Database

    Balk, Helge; Sovegjarto, B.S.; Tušer, Michal; Frouzová, Jaroslava; Muška, Milan; Draštík, Vladislav; Baran, Roman; Kubečka, Jan

    2017-01-01

    Roč. 188, APR (2017), s. 149-156 ISSN 0165-7836 R&D Projects: GA MŠk(CZ) EE2.3.20.0204; GA ČR GAP504/12/1186 Institutional support: RVO:60077344 Keywords : hydroacoustics * surface boundary * shallow water * horizontal beaming * simulations Subject RIV: GL - Fish ing OBOR OECD: Fish ery Impact factor: 2.185, year: 2016

  14. Stability conditions of stationary rupture of liquid layers on an immiscible fluid surface

    Energy Technology Data Exchange (ETDEWEB)

    Viviani, A. [Seconda Univ. di Napoli, Aversa (Italy). Facolta di Ingegneria; Kostarev, K.; Shmyrov, A.; Zuev, A. [Inst. of Continuous Media Mechanics, Perm (Russian Federation)

    2009-07-01

    The stationary equilibrium shape of a 3-phase liquids-gas system was investigated. The system consisted of a horizontal liquid layer with an upper free boundary placed on the immiscible fluid interface. The study investigated the stability conditions of rupture of the liquid layer surface. The dependence of rupture parameters on the experimental cuvette diameter and layer thickness was investigated, as well as the difference in the values of surface tension of the examined fluids. The 2-layer system of horizontal fluid layers was formed in a glass cylindrical cuvette. The liquid substrate was tetrachloride carbon (CCI{sub 4}), while upper layers included water, glycerine, ethyleneglycol, and aqueous solutions of 1,4-butanediol C{sub 4}H{sub 10}O{sub 2} and isopropanol C{sub 3H8L}. Initially, the surface of the substrate fluid was overlaid with a horizontal liquid layer. The rupture was formed by subjecting the layer surface to short-time actions of a narrow directional air jet. After rupture formation, the layer thickness increased gradually. The measurements demonstrated that the rupture diameter depends on the initial thickness of the upper layer as well as the diameter of the cuvette, and the difference in the values of the surface tension of the examined fluids. Analysis of the experimental relationships indicated that the critical thickness of the breaking layer is a constant value for any specific pairs of fluids. 4 refs., 7 figs.

  15. Thermally determining flow and/or heat load distribution in parallel paths

    Science.gov (United States)

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-12-13

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  16. Generation of the J/sub c/, H/sub c/, T/sub c/ surface for commercial superconductor using reduced-state parameters

    International Nuclear Information System (INIS)

    Green, M.A.

    1988-04-01

    This report presents a method for calculating the J/sub C/, H/sub C/, T/sub C/ surface for Type II Superconductors. The method requires that one knows T/sub C/ at zero current and field, H/sub c2/ at zero current and temperature, and J/sub c/ at at least one temperature and field. The theory presented in this report agrees with the measured data quite well over virtually the entire J/sub c/, H/sub c/, T/sub c/ surface given the value of J/sub c/ versus H at one or two temperatures. This report presents calculated and measured values of J/sub c/ versus T and B for niobium titanium, niobium zirconium, niobium tin, niobium titanium tin, niobium tantalum tin, vanadium zirconium hafnium, and vanadium gallium. Good agreement of theory with measured data was obtained for commercial niobium titanium and niobium tin. 76 refs., 26 figs., 6 tabs

  17. Surface modified MXene Ti{sub 3}C{sub 2} multilayers by aryl diazonium salts leading to large-scale delamination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongbing [College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province 210098 (China); Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, Jiangsu Province 211167 (China); Zhang, Jianfeng, E-mail: jfzhang_sic@163.com [College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province 210098 (China); Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin [College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province 210098 (China)

    2016-10-30

    Highlights: • A novel and simple method to delaminate MXene Ti{sub 3}C{sub 2} multilayers. • Surface modification using aryl diazonium salts induced swelling that conversely weakened the bonds between MXene layers. • The grafting of phenylsulfonic acid groups on MXene surfaces resulted in excellent water dispersibility. - Abstract: Herein we report a simple and facile method to delaminate MXene Ti{sub 3}C{sub 2} multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti{sub 3}AlC{sub 2} and the exfoliation of Ti{sub 3}AlC{sub 2} into Ti{sub 3}C{sub 2} multilayers, followed by Na{sup +} intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti{sub 3}C{sub 2} flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti{sub 3}C{sub 2} sheets disperse well in water and the solutions obey Lambert–Beer’s law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti{sub 3}C{sub 2} flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti{sub 3}C{sub 2}via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  18. Experimental study on two-phase flow in horizontal duct using a visualization technique

    International Nuclear Information System (INIS)

    Oliveira, Livia A.; Tomas, Bruno T.; Cunha Filho, Jurandyr S.; Su, Jian

    2009-01-01

    In this paper an experimental study is performed for visualization of water-air two phase flow, stratified and intermittent, in a 51 mm internal diameter circular section horizontal tube. The study consists in filming a water-air mixture passin by a transparent interval of the tube, using a high speed camera. After that, the obtained images are analysed frame after frame and then, data are extracted of weight of gas-liquid interfaces, length and gas bubbles speeds. Then, these data are verified with experimental and theoretical correlations available in the literature

  19. Fractal approach to surface roughness of TiO{sub 2}/WO{sub 3} coatings formed by plasma electrolytic oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Rožić, L.J., E-mail: ljrozic@nanosys.ihtmbg.ac.rs [University of Belgrade, IChTM-Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade (Serbia); Petrović, S.; Radić, N. [University of Belgrade, IChTM-Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade (Serbia); Stojadinović, S. [University of Belgrade, Faculty of Physics, Studentski trg 12-16, Belgrade (Serbia); Vasilić, R. [Faculty of Environmental Governance and Corporate Responsibility, Educons University, Vojvode Putnika 87, Sremska Kamenica (Serbia); Stefanov, P. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Grbić, B. [University of Belgrade, IChTM-Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade (Serbia)

    2013-07-31

    In this study, we have shown that atomic force microscopy is a powerful technique to study the fractal parameters of TiO{sub 2}/WO{sub 3} coatings prepared by plasma electrolytic oxidation (PEO) process. Since the surface roughness of obtained oxide coatings affects their physical properties, an accurate description of roughness parameters is highly desirable. The surface roughness, described by root mean squared and arithmetic average values, is analyzed considering the scans of a series of atomic force micrographs. The results show that the oxide coatings exhibit lower surface roughness in initial stage of PEO process. Also, the surfaces of TiO{sub 2}/WO{sub 3} coatings exhibit fractal behavior. Positive correlation between the fractal dimension and surface roughness of the surfaces of TiO{sub 2}/WO{sub 3} coatings in initial stage of PEO process was found. - Highlights: • TiO{sub 2}/WO{sub 3} coatings were obtained by plasma electrolytic oxidation. • Oxide coatings exhibit lower surface roughness in initial stage of process. • The surfaces of TiO{sub 2}/WO{sub 3} coatings exhibit fractal behavior.

  20. 224Ra distribution in surface and deep water of Long Island Sound: sources and horizontal transport rates

    International Nuclear Information System (INIS)

    Torgersen, T.; O'Donnell, J.; DeAngelo, E.; Turekian, K.K.; Turekian, V.C.; Tanaka, N.

    1997-01-01

    Measurements of surface water and deep water 224 Ra(half-life 3.64 days) distributions in Long Island Sound (LIS) were conducted in July 1991. Because the pycnocline structure of LIS had been in place for about 50 days in July (long compared to the half-life of 224 Ra) in the surface water and the deep water operate as separate systems. In the surface water, the fine-grain sediments of nearshore and saltmarsh environments provide a strong source of 224 Ra, which is horizontally mixed away from the short to central LIS. A one-dimensional model of 224 Ra distribution suggests a cross-LIS horizontal eddy dispersivity of 5-50 m 2 s -1 . In the deep water, the mid-LIS sediment flux of 224 Ra is enhanced by ∼ 2x relative to the periphery, and the horizontal eddy flux is from central LIS to the periphery. A second one-dimensional model suggests a cross-LIS horizontal eddy dispersivity below the thermocline of 5-50 m 2 -1 . 224 Ra fluxes into the deep water of the central LIS are likely enhanced by (1) inhomogeneous sediment or (2) a reduced scavenging of 224 Ra in the sediments of central LIS brought about by low oxygen conditions (hypoxia) and the loss of the MnO 2 scavenging layer in the sediments. These rates of horizontal eddy dispersivity are significantly less than the estimate of 100-650 m 2 s -1 (Riley, 1967) but are consistent with the transport necessary to explain the dynamics of oxygen depletion in summer LIS. These results demonstrate the use of 224 Ra for quantifying the parameters needed to describe estuarine mixing and transport. (Author)

  1. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  2. Adsorption of ethanol on V{sub 2}O{sub 5} (010) surface for gas-sensing applications: Ab initio investigation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: qinyuxiang@tju.edu.cn [School of Electronics and Information Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cui, Mengyang; Ye, Zhenhua [School of Electronics and Information Engineering, Tianjin University, Tianjin 300072 (China)

    2016-08-30

    Highlights: • Ethanol adsorbed on V{sub 2}O{sub 5} (010) surface was investigated by ab initio calculations. • Ethanol prefers to adsorb on “Hill”-like surface, rather than“Valley”-like region. • Surface O{sub 1(H)} site plays a key role to dominate the ethanol adsorption process. • Sensing mechanism is related with electronic structure and electron redistribution. • Gas sensitivity is reflected by quantitative electron population analysis. - Abstract: The adsorption of ethanol on V{sub 2}O{sub 5} (010) surface was investigated by means of density functional theory (DFT) with a combined generalized gradient approximation (GGA) plus Hubbard U approach to exploit the potential sensing applications. The adsorption configurations were first constructed by considering different orientations of ethanol molecule to V and O sites on the “Hill”- and “Valley”-like regions of corrugated (010) surface. It is found that ethanol molecule can adsorb on whole surface in multiple stable configurations. Nevertheless the molecular adsorption on the “Hill”-like surface is calculated to occur preferentially, and the single coordinated oxygen on “Hill”-like surface (O{sub 1(H)}) acting as the most energetically favorable adsorption site shows the strongest adsorption ability to ethanol molecule. Surface adsorption of ethanol tunes the electronic structure of V{sub 2}O{sub 5} and cause an n-doping effect. As a consequence, the Fermi levels shift toward the conductive bond increasing the charge carrier concentration of electrons in adsorbed V{sub 2}O{sub 5}. The sensitive electronic structure and the multiple stable configurations to ethanol adsorption highlight the high adsorption activity and then the potential of V{sub 2}O{sub 5} (010) surface applied to high sensitive sensor for ethanol vapor detection. Further Mulliken population and Natural bond orbital (NBO) calculations quantify the electron transfer from the adsorbed ethanol to the surface, and

  3. Multi-sensor in situ observations to resolve the sub-mesoscale features in the stratified Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Lips, Urmas; Kikas, Villu; Liblik, Taavi; Lips, Inga

    2016-05-01

    High-resolution numerical modeling, remote sensing, and in situ data have revealed significant role of sub-mesoscale features in shaping the distribution pattern of tracers in the ocean's upper layer. However, in situ measurements are difficult to conduct with the required resolution and coverage in time and space to resolve the sub-mesoscale, especially in such relatively shallow basins as the Gulf of Finland, where the typical baroclinic Rossby radius is 2-5 km. To map the multi-scale spatiotemporal variability in the gulf, we initiated continuous measurements with autonomous devices, including a moored profiler and Ferrybox system, which were complemented by dedicated research-vessel-based surveys. The analysis of collected high-resolution data in the summers of 2009-2012 revealed pronounced variability at the sub-mesoscale in the presence of mesoscale upwelling/downwelling, fronts, and eddies. The horizontal wavenumber spectra of temperature variance in the surface layer had slopes close to -2 between the lateral scales from 10 to 0.5 km. Similar tendency towards the -2 slopes of horizontal wavenumber spectra of temperature variance was found in the seasonal thermocline between the lateral scales from 10 to 1 km. It suggests that the ageostrophic sub-mesoscale processes could contribute considerably to the energy cascade in such a stratified sea basin. We showed that the intrusions of water with different salinity, which indicate the occurrence of a layered flow structure, could appear in the process of upwelling/downwelling development and relaxation in response to variable wind forcing. We suggest that the sub-mesoscale processes play a major role in feeding surface blooms in the conditions of coupled coastal upwelling and downwelling events in the Gulf of Finland.

  4. Surfaces and their effect on the magnetic properties of polycrystalline hollow γ-Mn{sub 2}O{sub 3} and MnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bah, Mohamed A. [Department of Materials Science and Engineering, Newark, DE (United States); Jaffari, G. Hassnain [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Khan, F.A. [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Shah, S. Ismat, E-mail: ismat@udel.edu [Department of Materials Science and Engineering, Newark, DE (United States); Department of Physics and Astronomy, Newark, DE (United States)

    2016-07-01

    Graphical abstract: Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} and MnO were grown in an inert gas condensation system. Particles where found to range from 15 nm to 30 nm in diameter with different void sizes. Both γ-Mn{sub 2}O{sub 3} and MnO phases were found to exist in a single nanoparticle, and in close proximity. The oxides had different size and random lattice orientations. The morphology of the nanoparticles with the specific oxide is believed to be the leading cause for the observed high coercivity and exchange bias. - Highlights: • Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} (ferrimagnetic(FiM)) and MnO (antiferromagnetic(AFM)) crystallites. • γ-Mn{sub 2}O{sub 3} and MnO co-exist in a single nanoparticles. • FC loops exhibited noticeably larger coercivity compared to the ZFC loops. • Compared to the core/shell counter parts, large coercivity and exchange bias, up to 11 kOe and 7 kOe, respectively, were observed at low temperature. • Strong coupling between the FiM and AFM phases. • Large horizontal and vertical shifts. - Abstract: Manganese oxide nanoparticles were prepared in an inert gas condensation system. X-ray Diffraction (XRD) studies revealed presence of multiple manganese oxide phases while high resolution transmission electron microscopy (HRTEM) showed polycrystalline hollow nanoparticle morphology. The additional inner surface of the hollow nanoparticle directly affect the magnetic properties of these particles. Combined physical structure, electronic structure and magnetic susceptibility analyses led to the conclusion that the prepared nanoparticles are polycrystalline and composed of γ-Mn{sub 2}O{sub 3} and MnO crystallites. Magnetic study found a sharp peak around 38 K with no frequency dependence in the AC susceptibility measurement. Large coercivity (H{sub C}) and exchange bias (H{sub EB}) fields, up to 11 kOe and 7 kOe, respectively, were observed below the order

  5. The Importance of Surface IrO<sub>x> in Stabilizing RuO<sub>2sub> for Oxygen Evolution

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Pedersen, Anders Filsøe; Paoli, Elisa Antares

    2018-01-01

    consisting of RuO2 thin films with sub-monolayer (1, 2 and 4 Å) amounts of IrOx deposited on top. Operando extended X-ray absorption fine structure (EXAFS) on the Ir L-3 edge revealed a rutile type IrO2 structure with some Ir sites occupied by Ru, IrOx being at the surface of the RuO2 thin film. We monitor...... corrosion on IrOx/RuO2 thin films by combining electrochemical quartz crystal microbalance (EQCM) with inductively coupled mass spectrometry (ICP-MS). We elucidate the importance of sub-monolayer surface IrOx in minimizing Ru dissolution. Our work shows that we can tune the surface properties of active OER...

  6. Magnetic Fe{sub 3}O{sub 4}-Au core-shell nanostructures for surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.A.; Adams, S.A.; Zhang, J.Z. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Lopez-Luke, T. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Cento de Investigaciones en Optica, A.P. 1-948 Leon, Gto. 37150 (Mexico); Torres-Castro, A. [Universidad Autonoma de Nuevo Leon, A.P. 126-F, Monterrey, NL, 66450 (Mexico)

    2012-11-15

    The synthesis, structural and optical characterization, and application of superparamagnetic and water-dispersed Fe{sub 3}O{sub 4}-Au core-shell nanoparticles for surface enhanced Raman scattering (SERS) is reported. The structure of the nanoparticles was determined by scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). STEM images of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles reveal an average diameter of 120 nm and a high degree of surface roughness. The nanoparticles, which display superparamagnetic properties due to the core Fe{sub 3}O{sub 4} material, exhibit a visible surface plasmon resonance (SPR) peaked at 580 nm due to the outer gold shell. The nanoparticles are used as a substrate for surface enhanced Raman scattering (SERS) with rhodamine 6G (R6G) as a Raman reporter molecule. The SERS enhancement factor is estimated to be on the order of 10{sup 6}, which is {proportional_to} 2 times larger than that of conventional gold nanoparticles (AuNPs) under similar conditions. Significantly, magnetically-induced aggregation of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles substantially enhanced SERS activity compared to non-magnetically-aggregated Fe{sub 3}O{sub 4}-Au nanoparticles. This is attributed to both increased scattering from the aggregates as well as ''hot spots'' due to more junction sites in the magnetically-induced aggregates. The magnetic properties of the Fe{sub 3}O{sub 4} core, coupled with the optical properties of the Au shell, make the Fe{sub 3}O{sub 4}-Au nanoparticles unique for various potential applications including biological sensing and therapy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Adsorption and dissociation of H{sub 2}S on Mo{sub 2}C(001) surface-A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dianling; Guo, Wenyue, E-mail: wyguo@upc.edu.cn; Liu, Yunjie; Chi, Yuhua

    2015-10-01

    Highlights: • Adsorption of reactants, intermediates involved was investigated. • The Mulliken charge and partial density of states were analyzed. • The dissociation mechanism was investigated. • The optimal pathway for the dissociation of H{sub 2}S on the Mo{sub 2}C(001) surface was given. - Abstract: The adsorption and decomposition reaction mechanisms of H{sub 2}S on Mo{sub 2}C(001) has been systematically studied using self-consistent periodic density functional theory. Results show that the molecular of H{sub 2}S is adsorbed either on the Mo top site or bridge site. Mulliken population analysis and density of states for H{sub 2}S/Mo-terminated Mo{sub 2}C(001) adsorption system are examined to confirm the adsorption mechanism of H{sub 2}S with the Mo{sub 2}C(001) surface, which can involve the donation of charge from the “s lone pair electrons” that are LUMO orbitals into the surface and the back donation of electrons from the surface into the HOMO orbital. The optimal pathway for the dissociation of H{sub 2}S on the Mo{sub 2}C(001) surface can be H{sub 2}S{sub top} → SH{sub fcc} + H{sub fcc} → S{sub fcc} + H{sub fcc} + H{sub fcc}. The first step is the rate-determining step because it has the smallest rate constant among the possible reactions pathways.

  8. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    International Nuclear Information System (INIS)

    Johansson, Per-Olof

    2008-12-01

    are highly dependent on the very transmissive horizontal and sub-horizontal fractures of the uppermost bedrock and that evapotranspiration induced flow may change these directions under dry conditions in some areas. Data as well as the simulations with MIKE SHE raise the question if the prevailing groundwater levels in the northern part of the tectonic lens are influenced by the pumping for the drainage of the SFR facility (c. 6 L/s). Another possibly influencing sink is the pumping for drainage of the Forsmark nuclear plant reactor buildings 1 and 2 (c. 1-2 L/s). These sinks may influence the vertical flow gradients in some parts of the investigation area, and it is strongly recommended that additional investigations are performed to resolve this uncertainty

  9. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    the bedrock are highly dependent on the very transmissive horizontal and sub-horizontal fractures of the uppermost bedrock and that evapotranspiration induced flow may change these directions under dry conditions in some areas. Data as well as the simulations with MIKE SHE raise the question if the prevailing groundwater levels in the northern part of the tectonic lens are influenced by the pumping for the drainage of the SFR facility (c. 6 L/s). Another possibly influencing sink is the pumping for drainage of the Forsmark nuclear plant reactor buildings 1 and 2 (c. 1-2 L/s). These sinks may influence the vertical flow gradients in some parts of the investigation area, and it is strongly recommended that additional investigations are performed to resolve this uncertainty.

  10. Electron beam induced Hg desorption and the electronic structure of the Hg depleted surface of Hg1/sub -//sub x/Cd/sub x/Te

    International Nuclear Information System (INIS)

    Shih, C.K.; Friedman, D.J.; Bertness, K.A.; Lindau, I.; Spicer, W.E.; Wilson, J.A.

    1986-01-01

    Auger electron spectroscopy (AES), x-ray photoemission spectroscopy (XPS), low energy electron diffraction (LEED), and angle-resolved ultraviolet photoemission spectroscopy (ARPES) were used to study the electron beam induced Hg desorption from a cleaved (110)Hg/sub 1-//sub x/Cd/sub x/Te surface and the electronic structure of the Hg depleted surface. Solid state recrystallized Hg/sub 1-//sub x/Cd/sub x/Te single crystals were used. It was found that the electron beam heating dominated the electron beam induced Hg desorption on Hg/sub 1-//sub x/Cd/sub x/Te. At the electron beam energy used, the electron beam heating extended several thousand angstroms deep. However, the Hg depletion saturated after a few monolayers were depleted of Hg atoms. At the initial stage of Hg loss (only 3%), the surface band bends upward (more p type). The ARPES spectrum showed the loss of some E vs k dispersion after 22% Hg atoms were removed from the surface region, and no dispersion was observed after 43% Hg atoms were removed. These results have important implications on the electronic structure of the surfaces and interfaces of which the stoichiometry is altered

  11. A review on critical heat flux in horizontal tubes

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Gaikwad, Avinash; Prabhu, S.V.

    2015-01-01

    Coolant channels of PHWR during accident similar to loss of coolant accident (LOCA) may experience different flow transients with low pressure and low flow conditions. In the advanced PHWRs it is desired to have small amount of positive quality at the exit of the coolant channel to increase the thermal efficiency. Investigation on pressure drop and heat transfer coefficient under subcooled boiling condition is important in the design and operation of the PHWRs. Understanding of thermal hydraulic phenomena associated with horizontal flow is also important in the safety and accident management in these reactors. A detailed experimental investigation on the important thermal hydraulic phenomena of horizontal tubes under low pressure and low flow conditions is carried out. The phenomena covered in this work are measurement of diabatic single phase and subcooled boiling pressure drop and local heat transfer coefficients, steady state CHF, effect of upstream flow restrictions on flow transients and CHF, CHF under oscillatory flow and flow decreasing transients. A detailed literature review is carried out on CHF in horizontal channels to take stock of the works being carried out along with current state of the art and to justify the motivation for the experimental study. This paper presents the review of available literature on horizontal CHF with the results of the experimental work. (author)

  12. Extending freight flow modelling to sub-Saharan Africa to inform infrastructure investments - trade data issues

    Directory of Open Access Journals (Sweden)

    Jan Havenga

    2012-11-01

    Full Text Available This paper highlights the first attempt by researchers at Stellenbosch University to model freight flows between and for 17 countries in sub-Saharan Africa (SSA. The model will be informed by and linked to the South African surface Freight Demand Model (FDM given these dimensions. By analysing and collating available datasets and developing a freight flow model, a better understanding of freight movements between countries can be obtained and then used for long-term planning efforts. A simple methodology is envisaged that will entail a high-level corridor classification that links a major district in the country with a similar district in another country. Existing trade data will be used to corroborate new base-year economic demand and supply volumetric data that will be generated from social accounting matrices for each country. The trade data will also provide initial flow dynamics between countries that will be refined according to the new volumes. The model can then generate commodity-level corridor flows between SSA countries, and between SSA countries and the rest of the world, as well as intra-country rural and metropolitan flows, using a gravity-based modelling approach. This article outlines efforts to harmonise trade data between the 17 countries identified, as well as between these countries and the rest of the world as a first step towards developing a freight demand model for sub-Saharan Africa.

  13. Oscillations of the fluid flow and the free surface in a cavity with a submerged bifurcated nozzle

    International Nuclear Information System (INIS)

    Kalter, R.; Tummers, M.J.; Kenjereš, S.; Righolt, B.W.; Kleijn, C.R.

    2013-01-01

    Highlights: • Self-sustained oscillations in a thin cavity with submerged nozzle were observed. • Three flow regimes are detected depending on nozzle depth and inlet velocity. • The three flow regimes have been summarized in a flow regime map. • PIV measurements are performed to link free surface behavior to the bulk-flow. • We report a close correlation between jet-behavior and free surface dynamics. -- Abstract: The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur. For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity

  14. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  15. Free-surface entrainment into a rimming flow containing surfactants

    Science.gov (United States)

    Thoroddsen, S. T.; Tan, Y.-K.

    2004-02-01

    We study experimentally the free-surface entrainment of tubes into a steady rimming flow formed inside a partially filled horizontally rotating cylinder. The liquid consists of a glycerin-water mixture containing surfactants (fatty acids). The phenomenon does not occur without the surfactants and the details are sensitive to their concentration. The entrainment of numerous closely spaced air tubes and/or surfactant columns can start intermittently along a two-dimensional stagnation line, but is usually associated with the appearance of an axially periodic vortex structure, the so-called shark teeth, which fixes the spanwise location of these tubes. The number of tubes is governed by the three-dimensional shape of the free surface, reducing from more than 10 to only two in each trough, as the rotation rate is increased. The tubes vary in diameter from 10-30 μm and can extend hundreds of diameters into the liquid layer before breaking up into a continuous stream of bubbles and/or drops. The tubes are driven through the stagnation line by the strong viscous shear and are stretched in the downstream direction. The entrainment starts when the Capillary number Ca=μωR/σ≃0.4.

  16. Flame spread along thermally thick horizontal rods

    Science.gov (United States)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  17. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  18. Measurements of gravity and gravity-capillary waves in horizontal gas-liquid pipe flow using PIV in both phases

    NARCIS (Netherlands)

    Birvalski, M.; Tummers, M.J.; Henkes, R.A.W.M.

    2016-01-01

    An experimental study was performed in stratified wavy flow of air and water through a horizontal pipe. The velocity fields in both phases were measured simultaneously using PIV and the interfacial shape was resolved using a profile capturing technique. The objective of the study was to

  19. Preparation and tribological properties of surface-modified nano-Y{sub 2}O{sub 3} as additive in liquid paraffin

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin, E-mail: gych@gdut.edu.cn [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhang Lin; Ye Fei; Sun Ming; Cheng Xiaoling; Diao Guiqiang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Nano-Y{sub 2}O{sub 3} was for the first time used as lubricant additive in liquid paraffin. Black-Right-Pointing-Pointer The nano-Y{sub 2}O{sub 3} modified by a coupling-grafting method shows good dispersibility in liquid paraffin. Black-Right-Pointing-Pointer The surface-modified nano-Y{sub 2}O{sub 3} considerably improves the tribological performances of liquid paraffin. - Abstract: Surface-modified nano-Y{sub 2}O{sub 3} was prepared by a coupling-grafting method with vinyl methylerichlorosilane and methyl methacrylate as the coupling agent and grafting agent, respectively. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron micrograph (TEM) and thermal gravimetric analysis (TGA). The tribological properties of the surface-modified nano-Y{sub 2}O{sub 3} as additive in liquid paraffin were evaluated with a four-ball tester. The results show that the nano-Y{sub 2}O{sub 3} keeps its original crystalline structure after surface modification, and the modified nano-Y{sub 2}O{sub 3} forms a core-shell structure with an average particle size of 24.5 nm. The maximum non-seizure load (P{sub B} value) and sintered load (P{sub D} value) increase by 25% and 26.9%, respectively, when compared with those of liquid paraffin, and the wear scar diameter (WSD) also decrease by 21% when 0.10% surface-modified nano-Y{sub 2}O{sub 3} was added. The protective inorganic-organic film formed by nano-Y{sub 2}O{sub 3} and organic modifiers plays an important role in the improved tribological properties of liquid paraffin.

  20. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor

    Directory of Open Access Journals (Sweden)

    Jules L. Hammond

    2016-12-01

    Full Text Available Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL to pattern an 11 mm long serpentine nanogap (215 nm between two electrodes. For the second method we use inductively-coupled plasma (ICP reactive ion etching (RIE to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA−DNA binding events using dielectric spectroscopy with the horizontal coplanar device.

  1. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  2. Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe

    Science.gov (United States)

    Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.

    2018-03-01

    The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.

  3. Flow behaviour in a CANDU horizontal fuel channel from stagnant subcooled initial conditions

    International Nuclear Information System (INIS)

    Caplan, M.Z.; Gulshani, P.; Holmes, R.W.; Wright, A.C.D.

    1984-01-01

    The flow behaviour in a CANDU primary system with horizontal fuel channels is described following a small inlet header break. With the primary pumps running, emergency coolant injection is in the forward direction so that the channel outlet feeders remain warmer than the inlet thereby promoting forward natural circulation. However, the break force opposes the forward driving force. Should the primary pumps run down after the circuit has refilled, there is a break size for which the natural circulation force is balanced by the break force and channels could, theoretically, stagnate. Result of visualization and of full-size channel tests on channel flow behaviour from an initially stagnant channel condition are discussed. After a channel stagnation, the decay power heats the coolant to saturation. Steam is then formed and the coolant stratifies. The steam expands into the subcooled water in the end fitting in a chugging type of flow regime due to steam condensation. After the end fitting reaches the saturation temperature, steam is able to penetrate into the vertical feeder thereby initiating a large buoyancy induced flow which refills the channel. The duration of stagnation is shown to be sensitive to small asymmetries in the initial conditions. A small initial flow can significantly shorten the occurrence and/or duration of boiling as has been confirmed by reactor experience. (author)

  4. Atom distribution and interactions in Ag{sub x}Pt{sub 1-x} and Au{sub x}Pt{sub 1-x} surface alloys on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2009-07-01

    The atom distributions in Ag{sub x}Pt{sub 1-x}/Pt(111) and Au{sub x}Pt{sub 1-x}/Pt(111) surface alloys were studied by high resolution UHV-STM. These surfaces were prepared by submonolayer Ag (Au) metal deposition on Pt(111), followed by annealing at 900 K or 1000 K, respectively, which in both cases results in surface confined 2D alloys, with equilibrated distribution of the components. Both systems show a tendency towards two-dimensional clustering, which fits well to their known bulk immiscibility. Effective cluster interactions (ECIs) will be derived by a quantitative evaluation of the 2D atom distributions in the surface alloys. By comparing the ECIs for PtAg and PtAu on Pt(111), and considering that Ag and Au have almost similar lattice constants, the results allow conclusion on the physical origin of the tendency for clustering.

  5. Effect of N{sub 2} flow rate on the properties of N doped TiO{sub 2} films deposited by DC coupled RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430000 (China); State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Yang, Yong, E-mail: 88087113@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Li, Gang; Jiang, Jiwen; Jin, Kewu; Yao, TingTing; Zhang, Kuanxiang [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Cao, Xin [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116000 (China); Wang, Yun; Xu, Genbao [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China)

    2016-09-05

    N doped TiO{sub 2} films were deposited on glass substrates at room temperature using DC coupled RF magnetron sputtering with a TiO{sub 2} ceramic target. The influences of N{sub 2} flow rate on the deposition rate, crystal structure, chemical composition and band gap of the deposited films were investigated by Optical profiler, X-ray diffraction, X-ray photoelectron spectroscope and ultraviolet-visible spectrophotometer. The film growth rate gradually decreased with increasing N{sub 2} flow rate. As N{sub 2} flow rate increased, the crystallization of the films deteriorated, and the films tended to form amorphous structure. XPS analysis revealed that N dopant atoms were added at the substitutional sites into TiO{sub 2} lattice structure. FE-SEM results showed that the grain size of the film decreased and the crystallinity degraded as N{sub 2} flow rate increases. In addition, N doping caused an obvious red shift in the optical absorption edge. - Highlights: • N doped TiO{sub 2} films were deposited by DC coupled RF magnetron reactive sputtering. • As N{sub 2} flow rate increases, the crystallization of the deposited films degrades. • The higher N{sub 2} flow rate is beneficial to form more substituted N in the film. • N doping causes an obvious red shift in the absorption wavelength.

  6. Adsorption and dehydrogenation of ammonia at the V{sub 2}O{sub 5}(010) surface: DFT cluster studies

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Mathis; Hermann, Klaus [Fritz-Haber-Institut der MPG, Berlin (Germany)

    2008-07-01

    Transition metal oxide catalysts are widely used for selective oxidation reactions. However, in many cases details of the catalytic reaction mechanisms are still under discussion. One prominent example is the ammoxidation of propylene to acrylonitrile at transition metal oxide surfaces (SOHIO process). This catalytic reaction includes, amongst other steps, the adsorption and dehydrogenation of NH{sub x}, x<4, at the catalyst surface. We have performed theoretical studies on these reaction steps where the catalyst is simulated by a finite section of the V{sub 2}O{sub 5}(010) surface. The calculations use density-functional theory combined with clusters modeling the surface and adsorbate system. Calculations for the clean V{sub 2}O{sub 5}(010) surface show that binding energies of the H atom are always significantly larger than of the NH{sub x} species. Further, the substrate is found to lower corresponding dehydrogenation energies compared with values for the gas phase reaction. However, the lowering is too small to make dehydrogenation likely to happen under ammoxidation reaction conditions. This suggests that surface defects such as oxygen vacancies become important for the reaction. Therefore, the role of oxygen vacancies for the dehydrogenation of NH{sub x} is discussed in detail.

  7. The Self-Potential Anomaly Produced by a Subsurface Flow at the Contact of Two Horizontal Layers and Its Quantitative Interpretation

    OpenAIRE

    Skianis, Georgios Aim.

    2012-01-01

    In the present paper the problem of a polarized cylinder with a small cross-section, which is located at the contact of two horizontal layers with different resistivities, is studied. Such a polarization geometry simulates the self-potential (SP) field produced by a horizontal flow at the contact between the two layers. First, the expression of the self potential at the space domain is derived, applying the image technique. Then, the expression for the Fourier transform of the SP anomaly is f...

  8. Experimental and Numerical Analysis of S-CO{sub 2} Critical Flow for SFR Recovery System Design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Jung, Hwa-Young; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-05-15

    This paper presents both numerical and experimental studies of the critical flow of S-CO{sub 2} while special attention is given to the turbo-machinery seal design. A computational critical flow model is described first. The experiments were conducted to validate the critical flow model. Various conditions have been tested to study the flow characteristic and provide validation data for the model. The comparison of numerical and experimental results of S-CO{sub 2} critical flow will be presented. In order to eliminate SWR, a concept of coupling the Supercritical CO{sub 2} (S-CO{sub 2}) cycle with SFR has been proposed. It is known that for a closed system controlling the inventory is important for stable operation and achieving high efficiency. Since the S-CO{sub 2} power cycle is a highly pressurized system, certain amount of leakage flow is inevitable in the rotating turbo-machinery via seals. To simulate the CO{sub 2} leak flow in a turbo-machinery with higher accuracy in the future, the real gas effect and friction factor will be considered for the CO{sub 2} critical flow model. Moreover, experimentally obtained temperature data were somewhat different from the numerically obtained temperature due to the insufficient insulation and large thermal inertia of the CO{sub 2} critical flow facility. Insulation in connecting pipes and the low-pressure tank will be added and additional tests will be conducted.

  9. Fluorocarbon based atomic layer etching of Si{sub 3}N{sub 4} and etching selectivity of SiO{sub 2} over Si{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chen [Department of Physics, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu [Department of Materials Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Lai, Chiukin Steven; Hudson, Eric A. [Lam Research Corporation, 4400 Cushing Parkway, Fremont, California 94538 (United States)

    2016-07-15

    Angstrom-level plasma etching precision is required for semiconductor manufacturing of sub-10 nm critical dimension features. Atomic layer etching (ALE), achieved by a series of self-limited cycles, can precisely control etching depths by limiting the amount of chemical reactant available at the surface. Recently, SiO{sub 2} ALE has been achieved by deposition of a thin (several Angstroms) reactive fluorocarbon (FC) layer on the material surface using controlled FC precursor flow and subsequent low energy Ar{sup +} ion bombardment in a cyclic fashion. Low energy ion bombardment is used to remove the FC layer along with a limited amount of SiO{sub 2} from the surface. In the present article, the authors describe controlled etching of Si{sub 3}N{sub 4} and SiO{sub 2} layers of one to several Angstroms using this cyclic ALE approach. Si{sub 3}N{sub 4} etching and etching selectivity of SiO{sub 2} over Si{sub 3}N{sub 4} were studied and evaluated with regard to the dependence on maximum ion energy, etching step length (ESL), FC surface coverage, and precursor selection. Surface chemistries of Si{sub 3}N{sub 4} were investigated by x-ray photoelectron spectroscopy (XPS) after vacuum transfer at each stage of the ALE process. Since Si{sub 3}N{sub 4} has a lower physical sputtering energy threshold than SiO{sub 2}, Si{sub 3}N{sub 4} physical sputtering can take place after removal of chemical etchant at the end of each cycle for relatively high ion energies. Si{sub 3}N{sub 4} to SiO{sub 2} ALE etching selectivity was observed for these FC depleted conditions. By optimization of the ALE process parameters, e.g., low ion energies, short ESLs, and/or high FC film deposition per cycle, highly selective SiO{sub 2} to Si{sub 3}N{sub 4} etching can be achieved for FC accumulation conditions, where FC can be selectively accumulated on Si{sub 3}N{sub 4} surfaces. This highly selective etching is explained by a lower carbon consumption of Si{sub 3}N{sub 4} as compared to SiO{sub

  10. Chemistry of surface nanostructures in lead precursor-rich PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} sol–gel films

    Energy Technology Data Exchange (ETDEWEB)

    Gueye, I.; Le Rhun, G.; Gergaud, P.; Renault, O. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, E. [Luxembourg Institute of Science and Technology, Materials Research and Technology Department, 41 Rue du Brill, L-4422 Belvaux (Luxembourg); Barrett, N., E-mail: nick.barrett@cea.fr [SPEC, CEA, CNRS, Université Paris Saclay, F-91191 Gif-sur-Yvette (France)

    2016-02-15

    Highlights: • We have studied the effect of lead excess on the surface of PZT sol–gel films. • For low lead excess (10%) nanostructured surface phase is observed. • X-ray photoelectron spectroscopy shows that the surface phase is Zr oxide. - Abstract: We present a study of the chemistry of the nanostructured phase at the surface of lead zirconium titanate PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) films synthesized by sol–gel method. In sol–gel synthesis, excess lead precursor is used to maintain the target stoichiometry. Surface nanostructures appear at 10% excess whereas 30% excess inhibits their formation. Using the surface-sensitive, quantitative X-ray photoelectron spectroscopy and glancing angle X-ray diffraction we have shown that the chemical composition of the nanostructures is ZrO{sub 1.82−1.89} rather than pyrochlore often described in the literature. The presence of a possibly discontinuous layer of wide band gap ZrO{sub 1.82−1.89} could be of importance in determining the electrical properties of PZT-based metal-insulator-metal heterostructures.

  11. Surface study of platinum decorated graphene towards adsorption of NH{sub 3} and CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Rad, Ali Shokuhi, E-mail: a.shokuhi@gmail.com [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Pazoki, Hossein; Mohseni, Soheil [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Zareyee, Daryoush [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Peyravi, Majid [Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2016-10-01

    To distinguish the potential of graphene sensors, there is a need to recognize the interaction between graphene sheet and adsorbing molecules. We used density functional theory (DFT) calculations to study the properties of pristine as well as Pt-decorated graphene sheet upon adsorption of NH{sub 3} and CH{sub 4} on its surface to exploit its potential to be as gas sensors for them. We found much higher adsorption, higher charge transfer, lower intermolecular distance, and higher orbital hybridizing upon adsorption of NH{sub 3} and CH{sub 4} gas molecules on Pt-decorated graphene compared to pristine graphene. Also our calculations reveal that the adsorption energies on Pt-decorated graphene sheet are in order of NH{sub 3} >CH{sub 4} which could be corresponded to the order of their sensitivity on this modified surface. We used orbital analysis including density of states as well as frontier molecular orbital study for all analyte-surface systems to more understanding the kind of interaction (physisorption or chemisorption). Consequently, the Pt-decorated graphene can transform the existence of NH{sub 3} and CH{sub 4} molecules into electrical signal and it may be potentially used as an ideal sensor for detection of NH{sub 3} and CH{sub 4} in ambient situation. - Highlights: • Pt-decorated graphene was investigated as an adsorbent for NH{sub 3} and CH{sub 4}. • Much higher adsorption of NH{sub 3} and CH{sub 4} on Pt-decorated graphene than pristine graphene. • Higher adsorption of NH{sub 3} compared to CH{sub 4} on Pt-decorated graphene. • Pt influences the electronic structure of graphene.

  12. Facile synthesis of surface N-doped Bi{sub 2}O{sub 2}CO{sub 3}: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Zhao, Ziyan [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Wang, Fang; Cao, Kun [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Doronkin, Dmitry E. [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Dong, Fan [College of Environmental and Biological Engineering, Chonqing Technology and Business University, Chongqing 400067 (China); Grunwaldt, Jan-Dierk, E-mail: grunwaldt@kit.edu [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-04-15

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi{sub 2}O{sub 2}CO{sub 3} surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi{sub 2}O{sub 2}CO{sub 3} were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi{sub 2}O{sub 2}CO{sub 3} surface was achieved at room temperature. • N-doped Bi{sub 2}O{sub 2}CO{sub 3} exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi{sub 2}O{sub 2}CO{sub 3}. • The formation of localized states from N−O bond could account for the visible light activity of Bi{sub 2}O{sub 2}CO{sub 3}. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3} nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi{sub 2}O{sub 2}CO{sub 3}, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi{sub 2}O{sub 2}CO{sub 3}, but also modifies the surface properties of Bi{sub 2}O{sub 2}CO{sub 3} through the interaction between CTAB and Bi{sub 2}O{sub 2}CO{sub 3}. Nitrogen from CTAB as dopant interstitially incorporates in the Bi{sub 2}O{sub 2}CO{sub 3} surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi{sub 2}O{sub 2}CO{sub 3} nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier

  13. Surface desorption and bulk diffusion models of tritium release from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.E., E-mail: ravila@cchen.c [Departamento de Materiales Nucleares, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile); Pena, L.A.; Jimenez, J.C. [Departamento de Produccion y Servicios, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile)

    2010-10-30

    The release of tritium from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles, in batch experiments, is studied by means of temperature programmed desorption. Data reduction focuses on the analysis of the non-oxidized and oxidized tritium components in terms of release limited by diffusion from the bulk of ceramic grains, or by first or second order surface desorption. By analytical and numerical methods the in-furnace tritium release is deconvoluted from the ionization chamber transfer functions, for which a semi-empirical form is established. The release from Li{sub 2}TiO{sub 3} follows second order desorption kinetics, requiring a temperature for a residence time of 1 day (T{sub 1dRes}) of 620 K, and 603 K, of the non-oxidized, and the oxidized components, respectively. The release from Li{sub 2}ZrO{sub 3} appears as limited by either diffusion from the bulk of the ceramic grains, or by first order surface desorption, the first possibility being the more probable. The respective values of T{sub 1dRes} for the non-oxidized component are 661 K, according to the first order surface desorption model, and 735 K within the bulk diffusion limited model.

  14. A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces

    International Nuclear Information System (INIS)

    Myong, Hyon Kook

    2014-01-01

    A fluid transport technique is a key issue for the development of microfluidic systems. In this paper, a new concept for transporting a droplet without external power sources is proposed and verified numerically. The proposed device is a heterogeneous surface which has both hydrophilic and hydrophobic horizontal surfaces. The numerical simulation to demonstrate the new concept is conducted by an in-house solution code (PowerCFD) which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. It is found that the proposed concept for droplet transport shows superior performance for droplet transport in microfluidic systems

  15. Two-phase flow field simulation of horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Ataollah; Kamalinia, Amir Hossein; Hadad, Kamal [School of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2017-02-15

    The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

  16. Surface chemical and electronic properties of In{sub 2}O{sub 3} and In{sub 2}O{sub 3-x} nanoparticles for ozone detection

    Energy Technology Data Exchange (ETDEWEB)

    Himmerlich, Marcel; Krischok, Stefan [Institut fuer Physik and Institut fuer Mikro- und Nanotechnologien, TU Ilmenau, PF 100565, 98684 Ilmenau (Germany); Wang, Chunyu; Cimalla, Volker; Ambacher, Oliver [Fraunhofer-Institut fuer Angewandte Festkoerperphysik, Tullastr. 72, 79108 Freiburg im Breisgau (Germany)

    2012-07-01

    The electrical properties of indium oxide nanoparticle films can be tuned by variation of growth temperature as well as rapid thermal annealing, UV-irradiation and ozone-induced oxidation. The high O{sub 3} sensitivity of indium oxide thin films is strongly linked to their structural and electronic properties. Especially, the alteration of the surface electron accumulation plays an important role in the change of the film resistivity upon O{sub 3} interaction and UV-induced regeneration. We analyse the changes of indium oxide surface properties with respect to varying crystallinity using AFM, XPS and UPS. Compared to stoichiometric In{sub 2}O{sub 3} thin films, indium oxide nanoparticles exhibit a high oxygen deficiency and hence a high defect density at the nanoparticle surface. After growth, these defects are saturated by hydrocarbons due to the incomplete decomposition of precursors during low temperature MOCVD. The defects and the changed stoichiometry have impact on the surface band alignment. Upon ozone-induced oxidation and UV photoreduction a reversible change in band bending, surface dipole and O adsorption density is found and will be discussed in context with electron transport characteristics and thermal properties.

  17. Defects and boundary RG flows in ℂ/ℤ{sub d}

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Melanie; Cabrera, Yaniel [George and Cynthia Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Robbins, Daniel [Department of Physics, University at Albany,1400 Washington Ave., Albany, NY 12222 (United States)

    2017-02-01

    We show that topological defects in the language of Landau-Ginzburg models carry information about the RG flow between the non-compact orbifolds ℂ/ℤ{sub d}. We show that such defects correctly implement the bulk-induced RG flow on the boundary.

  18. Surface characterization of poly(methylmethacrylate) based nanocomposite thin films containing Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, S., E-mail: Scott.Lewis@Manchester.ac.u [School of Physics and Astronomy, Radio Astronomy Technology Group, University of Manchester, Turing Building, Oxford Rd, Manchester, M13 9PL (United Kingdom); Haynes, V. [School of Physics and Astronomy, Radio Astronomy Technology Group, University of Manchester, Turing Building, Oxford Rd, Manchester, M13 9PL (United Kingdom); Wheeler-Jones, R. [Institute of Advanced Materials and Energy Systems, Cardiff School of Engineering, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Sly, J. [School of Electrical and Electronic Engineering, Microelectronics and Nanostructures group, The University of Manchester, Sackville St Building, Sackville St, Manchester, M60 1QD (United Kingdom); Perks, R.M. [Institute of Advanced Materials and Energy Systems, Cardiff School of Engineering, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Piccirillo, L. [School of Physics and Astronomy, Radio Astronomy Technology Group, University of Manchester, Turing Building, Oxford Rd, Manchester, M13 9PL (United Kingdom)

    2010-03-01

    Poly(methylmethacrylate) (PMMA) based nanocomposite electron beam resists have been demonstrated by spin coating techniques. When TiO{sub 2} and Al{sub 2}O{sub 3} nanoparticles were directly dispersed into the PMMA polymer matrix, the resulting nanocomposites produced poor quality films with surface roughnesses of 322 and 402 nm respectively. To improve the surface of the resists, the oxide nanoparticles were encapsulated in toluene and methanol. Using the zeta potential parameter, it was found that the stabilities of the toluene/oxide nanoparticle suspensions were 7.7 mV and 19.4 mV respectively, meaning that the suspension was not stable. However, when the TiO{sub 2} and Al{sub 2}O{sub 3} nanoparticles were encapsulated in methanol the zeta potential parameter was 31.9 mV and 39.2 mV respectively. Therefore, the nanoparticle suspension was stable. This method improved the surface roughness of PMMA based nanocomposite thin films by a factor of 6.6 and 6.4, when TiO{sub 2} and Al{sub 2}O{sub 3} were suspended in methanol before being dispersed into the PMMA polymer.

  19. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  20. Surface properties and dye loading behavior of Zn{sub 2}SnO{sub 4} nanoparticles hydrothermally synthesized using different mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, Alagappan; Eo, Yang Dam [Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 (Korea, Republic of); Im, Chan [Department of Chemistry, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Man-Jong, E-mail: leemtx@konkuk.ac.kr [Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2011-10-15

    We present for the first time the influence of different mineralizers on the isoelectric point (IEP) of zinc stannate (Zn{sub 2}SnO{sub 4}) nanoparticles hydrothermally prepared using three different mineralizers, viz., Na{sub 2}CO{sub 3}, KOH and tert-butyl amine, and the effect of the IEPs on the dye loading behavior of Zn{sub 2}SnO{sub 4} based photoelectrodes in dye sensitized solar cells (DSSCs). To produce highly crystalline, uniform sized Zn{sub 2}SnO{sub 4} nanoparticles, hydrothermal processing parameters, such as reaction temperature, time, and the mineralizers used have been critically adjusted. The structural and morphological features of the as-synthesized Zn{sub 2}SnO{sub 4} nanoparticles have been observed using both scanning and transmission electron microscopy. For the surface state characterization of shape- and size-controlled Zn{sub 2}SnO{sub 4} nanoparticles, the IEPs of Zn{sub 2}SnO{sub 4} surfaces were determined through zeta potential measurements. The IEPs were found to be 5.7, 7.4 and 8.1 for Zn{sub 2}SnO{sub 4} nanoparticles formed using Na{sub 2}CO{sub 3}, KOH and tert-butyl amine, respectively, suggesting that the surface properties of Zn{sub 2}SnO{sub 4} nanoparticles can be manipulated through the choice of the mineralizers used during the hydrothermal reaction. The amount of N719 dye loading on the surfaces of Zn{sub 2}SnO{sub 4} electrodes having different IEPs was also evaluated. It was revealed that the higher the IEP, the higher the dye loading amount, which means that the IEP mainly affects the dye loading at the dye-metal oxide interface. - Highlights: {yields} The effect of various mineralizers on the isoelectric point of Zn{sub 2}SnO{sub 4} was discussed. {yields} The IEP of Zn{sub 2}SnO{sub 4} can be modified by the choice of mineralizer. {yields} Change in IEP affects the surface properties and the morphology of Zn{sub 2}SnO{sub 4} particles. {yields} Modified surface affects the N719 dye loading behaviour of the Zn{sub 2

  1. Mechanistic multidimensional analysis of two-phase flow in horizontal tube with 90 deg elbow

    International Nuclear Information System (INIS)

    Tselishcheva, E.A.; Antal, St.P.; Podowski, M.Z.; Marshall, S.

    2007-01-01

    The development of modeling and simulation capabilities of two-phase flow and heat transfer is very important for the design, operation and safety of nuclear reactors. Whereas a significant progress in this field has been made over the recent years, further advancements are clearly needed for new concepts of advanced (Generation-IV in particular) reactors. Difficulties in analyzing gas/liquid flows are due to the fact that such two-phase mixtures can assume several different flow patterns, each characterized by flow-regime specific interfacial phenomena of mass, momentum and energy transfer. The level of difficulty increases even further in the case of a complex tube geometries and spatial orientations. The purpose of this paper is to discuss the results of the analysis of a two-phase flow in a horizontal pipe with a 90-degree elbow. The overall objective of the present work is the development of a 3-dimensional computational model of a two-phase high-Reynolds number turbulent flow. The overall new model has been encoded in the next-generation Computational Multiphase Fluid Dynamics (CMFD) computer code, NPHASE. The model has been tested parametrically and the results of NPHASE calculations have been compared against experimental data. It has been demonstrated that the proposed model is consistent both physically and numerically, the predictions are in a reasonable agreement with the measurements

  2. Etching mechanism of niobium in coaxial Ar/Cl<sub>2sub> radio frequency plasma

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Janardan [Old Dominion Univ., Norfolk, VA (United States); Im, Do [Old Dominion Univ., Norfolk, VA (United States); Popovic, Svetozar [Old Dominion Univ., Norfolk, VA (United States); Valente-Feliciano, Anne -Marie [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Phillips, H. Larry [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Vuskovic, Leposova [Old Dominion Univ., Norfolk, VA (United States)

    2015-03-18

    The understanding of the Ar/Cl<sub>2sub> plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl<sub>2sub> concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. Furthermore, to understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  3. Improvement of the overall performances of LiMn{sub 2}O{sub 4} via surface-modification by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Wang, Wan [Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Zhu, Ding [Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065 (China); Huang, Liwu, E-mail: liwuhuang@scu.edu.cn [Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Chen, Yungui, E-mail: ygchen60@aliyun.com [Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)

    2015-11-15

    Graphical abstract: Polypyrrole(PPy) film has improved the rate performance of LiMn{sub 2}O{sub 4} efficiently due to its excellent conductivity. PPy@LiMn{sub 2}O{sub 4} could provide more energy under the higher power than pristine LMO. - Highlights: • The PPy layer on the surface of LMO particles hasn’t been studied in LiMn{sub 2}O{sub 4} so far. • The solvent in the synthesis process of PPy@LMO is absolute ethyl alcohol. • The differences of surface-modification between the PPy and PI for LMO. • The analyses of rate performances are through specific power. - Abstract: Polypyrrole (PPy) is an excellent conductive polymer and the study on its utilization in the surface modification of the LiMn{sub 2}O{sub 4} (LMO) is few. In this work, the structure, morphology and electrochemical performance of surface-modified LiMn{sub 2}O{sub 4} composites with PPy and polyimides (PI) were discussed. The crystal structure, chemical bonds and morphology were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. Moreover, the specific power and cycling performance were tested at room and high (55 °C) temperature. The PPy@LMO (surface-modified LMO composites with PPy) shows better performances than the pristine LMO. The addition of PPy not only weakens the corrosion caused by electrolyte, but also improves the discharge capacity at higher rates. The charge transfer resistance of the PPy@LMO is much lower than that of the pristine LMO after cycling.

  4. Surface decoration with MnO{sub 2} nanoplatelets on graphene/TiO{sub 2} (B) hybrids for rechargeable lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinlu, E-mail: lixinlu@cqu.edu.cn; Zhang, Yonglai; Zhong, Qineng; Li, Tongtao; Li, Hongyi; Huang, Jiamu

    2014-09-15

    Graphical abstract: - Highlights: • The surface of graphene/TiO{sub 2} (B) hybrids is decorated by ultrathin MnO{sub 2} nanoplatelets. • MnO{sub 2}@graphene/TiO{sub 2} (B) composites exhibit high specific surface area of 283.9 m{sup 2} g{sup −1}. • The reversible capacity of graphene/TiO{sub 2} (B) hybrids is greatly improved by surface decoration with low content of MnO{sub 2}. - Abstract: Hierarchically ultrathin MnO{sub 2} nanoplatelets are decorated on the surface of graphene-based TiO{sub 2} (B) hybrids by a facile water-bath reaction to fabricate MnO{sub 2}@graphene/TiO{sub 2} (B) composites. The multi-component composites show high specific surface area of 283.9 m{sup 2} g{sup −1}, facilitating the electrochemical reactions with solvented lithium ions in the enlarged interface area. The reversible capacity of the composites remains 243 mA h g{sup −1} after 150 cycles, with capacity retention of 83.5%. In comparison with graphene/TiO{sub 2} (B) hybrids, the MnO{sub 2}@graphene/TiO{sub 2} (B) composites perform better rate capability, suggesting that surface decoration with MnO{sub 2} nanoplatelets can be a promising strategy to enhance the electrochemical performance of anode materials for lithium ion batteries.

  5. Sub-Grid Modeling of Electrokinetic Effects in Micro Flows

    Science.gov (United States)

    Chen, C. P.

    2005-01-01

    Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this

  6. Palladium mixed-metal surface-modified AB<sub>5sub>-type intermetallides enhance hydrogen sorption kinetics

    Directory of Open Access Journals (Sweden)

    Roman V. Denys

    2010-09-01

    Full Text Available Surface engineering approaches were adopted in the preparation of advanced hydrogen sorption materials, based on ‘low-temperature’, AB<sub>5sub>-type intermetallides. The approaches investigated included micro-encapsulation with palladium and mixed-metal mantles using electroless plating. The influence of micro-encapsulation on the surface morphology and kinetics of hydrogen charging were investigated. It was found that palladium-nickel (Pd-Ni co-deposition by electroless plating significantly improved the kinetics of hydrogen charging of the AB<sub>5sub>-type intermetallides at low hydrogen pressure and temperature, after long-term pre-exposure to air. The improvement in the kinetics of hydrogen charging was credited to a synergistic effect between the palladium and nickel atoms in the catalytic mantle and the formation of an ‘interfacial bridge’ for hydrogen diffusion by the nickel atoms in the deposited layer. The developed surface-modified materials may find application in highly selective hydrogen extraction, purification, and storage from impure hydrogen feeds.

  7. An investigation of the constitutive relations for intersubchannel transfer mechanisms in horizontal flows as applied in the ASSERT-4 subchannel code

    International Nuclear Information System (INIS)

    Tye, P.; Teyssedou, A.; Tapucu, A.

    1994-01-01

    In this paper, the influence that the constitutive relations used to represent some of the intersubchannel transfer mechanisms has on the predictions of the ASSERT-4 subchannel code for horizontal flows is examined. In particular the choices made in the representation of the gravity driven phase separation phenomena are analyzed. This is done by comparing the predictions of the ASSERT subchannel code with experimental data on void fraction and mass flow rate, obtained for two horizontal interconnected subchannels. ASSERT uses a drift flux model which allows the two phases to have different velocities. In particular ASSERT contains models for the buoyancy effects which cause phase separation between adjacent subchannels in horizontal flows. This feature, which is of great importance in the subchannel analysis of CANDU reactors, is implemented in the constitutive relationship for the relative velocity. In order to isolate different intersubchannel transfer mechanisms, three different subchannel orientations are analyzed. These are the two subchannels at the same elevation, the high void subchannel below the low void subchannel, and the high void subchannel above the low void subchannel. It is observed that for all three subchannel orientations ASSERT does a reasonably good job of predicting the experimental trends. However, certain modifications to the representation of the gravitational phase separation effects which seem to improve the overall predictions are suggested. ((orig.))

  8. One-dimensional three-field model of condensation in horizontal countercurrent flow with supercritical liquid velocity

    International Nuclear Information System (INIS)

    Trewin, Richard R.

    2011-01-01

    Highlights: → CCFL in the hot leg of a PWR with ECC Injection. → Three-Field Model of counter flowing water film and entrained droplets. → Flow of steam can cause a hydraulic jump in the supercritical flow of water. → Condensation of steam on subcooled water increases the required flow for hydraulic jump. → Better agreement with UPTF experimental data than Wallis-type correlation. - Abstract: A one-dimensional three-field model was developed to predict the flow of liquid and vapor that results from countercurrent flow of water injected into the hot leg of a PWR and the oncoming steam flowing from the upper plenum. The model solves the conservation equations for mass, momentum, and energy in a continuous-vapor field, a continuous-liquid field, and a dispersed-liquid (entrained-droplet) field. Single-effect experiments performed in the upper plenum test facility (UPTF) of the former SIEMENS KWU (now AREVA) at Mannheim, Germany, were used to validate the countercurrent flow limitation (CCFL) model in case of emergency core cooling water injection into the hot legs. Subcooled water and saturated steam flowed countercurrent in a horizontal pipe with an inside diameter of 0.75 m. The flow of injected water was varied from 150 kg/s to 400 kg/s, and the flow of steam varied from 13 kg/s to 178 kg/s. The subcooling of the liquid ranged from 0 K to 104 K. The velocity of the water at the injection point was supercritical (greater than the celerity of a gravity wave) for all the experiments. The three-field model was successfully used to predict the experimental data, and the results from the model provide insight into the mechanisms that influence the flows of liquid and vapor during countercurrent flow in a hot leg. When the injected water was saturated and the flow of steam was small, all or most of the injected water flowed to the upper plenum. Because the velocity of the liquid remained supercritical, entrainment of droplets was suppressed. When the injected

  9. A study on bubble detachment and the impact of heated surface structure in subcooled nucleate boiling flows

    International Nuclear Information System (INIS)

    Wu Wen; Chen Peipei; Jones, Barclay G.; Newell, Ty A.

    2008-01-01

    This study examines the bubble detachment phenomena under subcooled nucleate boiling conditions, in order to obtain a better understanding of the bubble dynamics on horizontal flat heat exchangers. Refrigerant R134a is chosen as a simulant fluid due to its merits of having smaller surface tension, reduced latent heat, and lower boiling temperature than water. Experiments are run with varying experimental parameters, e.g. pressure, inlet subcooled level, flow rate, etc. Digital images are obtained at frame rates up to 4000 frames/s, showing the characteristics of bubble movements. Bubble departure and bubble lift-off, which are described as bubbles detaching from the original nucleation sites and bubbles detaching from the horizontal heated surface respectively, are both considered and measured. Results are compared against the model proposed by Klausner et al. for the prediction of bubble detachment sizes. While good overall agreement is shown, it is suggested that finite rather than zero bubble contact area should be assumed, which improves the model prediction at the pressure range of 300-500 kPa while playing no significant role at a lower pressure of 150 kPa where the model was originally benchmarked. The impact of heated surface structure is studied whose results provide support to the above assumption

  10. Effect of liquid nitrogen flow rate on solidification of stagnant water in a horizontal tube

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    1995-01-01

    Five experiments are conducted to study the effect of liquid nitrogen flow rate on the solidification of stagnant water inside a horizontal stainless steel tube of inner diameter 19.6 cm and 12 mm thick. This tube simulates the down-comer of the nuclear reactor ET-R R-1. The apparatus design is mentioned more detail description. The results show that for the first experiment where the liquid nitrogen flow rate is 30 1/hr, the progress of solidification of water has stopped at a diameter of 12 cm. By increasing the flow rate from 30 1/hr to 40,50 and 60 1/hr, the time of freezing the water inside the tube is decreased from 86 to 67 and 60 minutes respectively. By increasing the liquid nitrogen flow rate to 70 1/hr, there is no much effect on the time of frozen. In all experiments, where the solidification is happened, the ice block formed inside the tube is subjected to a pressure of 3 at mg least, and is succeed to withstand this pressure without any leak. 7 figs

  11. Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes

    Directory of Open Access Journals (Sweden)

    G. H. de Rooij

    2012-03-01

    Full Text Available The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.

  12. Numerical analysis of interfacial growth and deformation in horizontal stratified two-phase flow by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi

    2005-03-01

    paper, first, the validity and the usefulness of the lattice-gas model and the lattice Boltzmann method for the numerical analysis of two-phase flow are examined by applying the two-phase fluid model of these methods to the phenomena of the falling droplet and the rising bubble. Next, on the basis of the examination of its numerical results, the horizontal stratified two-phase flow, which is the fundamental and important flow and often observed in a practical situation, is simulated by use of the HCZ model that is the two-phase fluid model of the lattice Boltzmann method proposed by He, Chen, and Zhang. The HCZ model can simulate Rayleigh-Taylor instability which shows complex interfacial phenomena. It is verified that the simulated interfacial growth is subject to the Kelvin-Helmholtz instability theory and can reproduce the curve concerning the interfacial growth of the theoretical flow regime map proposed by Taitel and Dukler (T-D map). Furthermore, it is found that the interfacial growth in the channel with the narrow width needs more superficial flow velocity than that given by the T-D map. In the simulation of the droplet generation in the horizontal stratified two-phase flow, it is verified that the HCZ model can also reproduce the experimental correlation proposed by Ishii and Grolmes within the range of the distribution of experimental data. According to the results of this report, it is found that the HCZ model of the lattice Boltzmann method can simulate complex interfacial phenomena in the horizontal stratified two-phase flow and reproduce the theoretical flow regime map and the experimental correlation. Considering the application of this model to more practical two-phase flow, it is also seen that this model has some problems which have to be solved, such as practical density difference, thermal influence and so on. (author)

  13. Search for horizontal bosons at the SSC

    International Nuclear Information System (INIS)

    Albright, C.H.; Deshpande, N.G.; Gunion, J.F.; Haber, H.E.

    1984-01-01

    The production process anti p p → l - l' + + X, where the leptons belong to two different generations and X refers to spectator jets, provides a clear signature for horizontal (generation-changing) bosons when the leptons are emitted nearly back-to-back and p/sub T//sup miss/ = 0. Cross sections and p/sub T/ distributions for each lepton are presented, and discovery limits on M/sub H/ are extracted for several different channels

  14. Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow

    Science.gov (United States)

    Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui

    2018-06-01

    Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.

  15. The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Fauchez, Thomas [Laboratoire d’Optique Atmosphèrique (LOA), UMR 8518, Université Lille 1, Villeneuve d’Ascq (France); Rossi, Loic; Stam, Daphne M. [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2017-06-10

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.

  16. Study on adsorption of O{sub 2} on LaFe{sub 1-x}Mg{sub x}O{sub 3} (0 1 0) surface by density function theory calculation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing, E-mail: liuxing0108@mail.sdu.edu.cn [Civil Engineer Department, Qingdao Technological University (Linyi), Easter Outer Ring Road 1, Linyi, 273400 (China); Cheng, Bin [Civil Engineer Department, Qingdao Technological University (Linyi), Easter Outer Ring Road 1, Linyi, 273400 (China); Hu, Jifan; Qin, Hongwei [State Key Laboratory of Crystal Material, Department of Physics, Shandong University, Hongjialou 5, Jinan, 250100 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Mg-doping can change the electronic properties of LaFeO{sub 3} (0 1 0) surface by decreasing the band gap. Black-Right-Pointing-Pointer The position and content of Mg-doping can both affect the ability to adsorb O{sub 2}. Black-Right-Pointing-Pointer The strong hybridization between O{sub 2} p and Fe d orbital is the origin of binding mechanism. - Abstract: The adsorption of O{sub 2} on the clean and Mg doped LaFeO{sub 3} (0 1 0) surface has been investigated using the density functional theory (DFT) method. Calculation results show that Mg-doping can change the electronic properties of LaFeO{sub 3} (0 1 0) surface by decreasing the band gap. When Mg ions were not on the first layer of the surface, with increasing Mg content the adsorption of O{sub 2} was enhanced. When Mg ions were on the first layer, the adsorption of O{sub 2} was weakened with the increase of Mg content. The analysis results of the DOS indicated that the Mg ion and adsorbed O{sub 2} had no strong hybridization, and the bonding mechanism was originated from the strong hybridization between the O p and Fe d orbital. Referring to all the calculation results, it was found that except for the increase of stability of oxygen adsorption, the Mg doping could not improve the sensitivity to O{sub 2}.

  17. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-`sub-bottom sediment pump action'

    Science.gov (United States)

    Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei

    2017-02-01

    A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.

  18. Observation and characterization of flow in critical sections of a horizontal pressurized gating system using water models

    Directory of Open Access Journals (Sweden)

    Jaiganesh Venkataramani

    2013-07-01

    Full Text Available This work is concerned with the hydraulics and flow characterization in a pressurized, horizontal gating system with multiple ingates attached to a plate mold, using transparent water models. Runners with two different aspect ratios (w/h = 0.5 and 2 and four different types of ingates (rectangular, convergent, divergent and venturi were examined for their influence on flow behavior. Flow behavior was visualized using a high speed camera capable of capturing images up to 10,000 frames per second. Real time experimentation with a few runner – ingate combinations were carried out to validate the usefulness of water models in predicting the filling behavior. Comparison of the approaches provided useful insights into the filling behavior in critical sections of the flow passages as well as the utility of water models towards understanding of the filling behavior during real time casting.

  19. Optimization of energy and fluence of N{sub 2}{sup +} ions in the conversion of Al{sub 2}O{sub 3} surface into AlN at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: praiitr@gmail.com [Center for Nanoscience and Nanotechnology, Panjab University, Chandigarh 160014 (India); Devi, Pooja [Central Scientific Instruments Organization, Sector-30 C, Chandigarh 160030 (India); Kumar, Mahesh [Physics of Energy and Harvesting group, National Physical Laboratory, New Delhi 110012 (India); Shivaprasad, S.M. [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2016-01-15

    Graphical abstract: We present a systematic study of energetic N{sub 2}{sup +} ions (0.1–5 keV) interaction with clean c-plane Al{sub 2}O{sub 3} surface in situ in a UHV system equipped with X-ray Photoelectron Spectroscopy at room temperature. Results show that maximum thickness of surface is nitride by 5 keV N{sub 2}{sup +} ion with an optimal fluence of 1.5 × 10{sup 15} ions/cm{sup 2}. This modified surface can be used as a template for low defect III-nitrides growth, with enhanced lattice matching than on bare c-Al{sub 2}O{sub 3}. - Highlights: • A mechanism for the formation of AlN on Al{sub 2}O{sub 3}. • Investigation of optimal energy and fluence for energetic N{sub 2}{sup +} ions. • AlN formation at room temperature on Al{sub 2}O{sub 3}. - Abstract: The work presents a systematic study of energetic N{sub 2}{sup +} ion interaction with the clean Al{sub 2}O{sub 3} surface at room temperature. Energetic N{sub 2}{sup +} ions with energies ranging from 0.1 to 5 keV were bombarded onto the c-plane Al{sub 2}O{sub 3} surface in situ in a UHV system equipped with X-ray Photoelectron Spectroscopy. Survey scans and core level spectra of Al(2p), O(1s), N(1s) were recorded as a function of ion fluence. Survey scans of XPS are used for the compositional analysis, while deconvoluted core level spectra are used to identify the evolution of the chemical bonding. Energetic dependence of N{sub 2}{sup +} ions occupying interstitial and substitutional sites in Al{sub 2}O{sub 3} lattice are probed to follow the surface evolution. Results show that maximum thickness of surface is nitride by 5 keV N{sub 2}{sup +} ion with an optimal fluence of 1.5 × 10{sup 15} ions/cm{sup 2}. This modified surface can be used as a template for low defect III-nitrides growth, with enhanced lattice matching than on bare c-Al{sub 2}O{sub 3}.

  20. Flow visualization study of two-phase flow in the horizontal annulus of the fuel-channel outlet end-fitting of a CANDU reactor

    International Nuclear Information System (INIS)

    Supa-Amornkul, S.; Steward, F.R.; Lister, D.H.

    2005-01-01

    In CANDU-6 reactors, the pressurized hightemperature coolant flows through 380 fuel channels passing horizontally through the core. In 1996, higher than expected rates of wall thinning of the outlet feeders were ascribed to flow-accelerated corrosion (FAC). Such corrosion is strongly influenced by the hydrodynamics of the coolant. Results of preliminary flow visualization and modelling studies have suggested that flow conditions in the end-fitting annulus upstream of the outlet feeder may influence the pattern of FAC. For a full-scale flow visualization, an acrylic test section was built to simulate the cylindrical end-fitting with its annulus flow path. The tests were performed with water and air at atmospheric pressure and room temperature. The phase distribution along the length of the annulus was recorded with a digital video recorder. Size, concentration and velocity of the air bubbles at particular locations were studied with a high-speed digital still camera and a high-speed digital video camera. Phase distributions and variations in bubble size with velocity were determined. Significant effects on the flow patterns of spacer buttons in the annulus were observed. A commercial computational fluid dynamics (CFD) code-Fluent 6.1-was used to model the results. (authors)

  1. Strong and weak adsorption of CO{sub 2} on PuO{sub 2} (1 1 0) surfaces from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.L. [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Deng, X.D. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Li, G.; Lai, X.C. [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Meng, D.Q., E-mail: yuhuilong2002@126.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2014-10-15

    Highlights: • The CO{sub 2} adsorption on PuO{sub 2} (1 1 0) surface was studied by GGA + U. • Both weak and strong adsorptions exist between CO{sub 2} and the PuO{sub 2} (1 1 0) surface. • Electrostatic interactions were involved in the weak interactions. • Covalent bonding was developed in the strong adsorptions. - Abstract: The CO{sub 2} adsorption on plutonium dioxide (PuO{sub 2}) (1 1 0) surface was studied using projector-augmented wave (PAW) method based on density-functional theory corrected for onsite Coulombic interactions (GGA + U). It is found that CO{sub 2} has several different adsorption features on PuO{sub 2} (1 1 0) surface. Both weak and strong adsorptions exist between CO{sub 2} and the PuO{sub 2} (1 1 0) surface. Further investigation of partial density of states (PDOS) and charge density difference on two typical absorption sites reveal that electrostatic interactions were involved in the weak interactions, while covalent bonding was developed in the strong adsorptions.

  2. Phase diagrams of two dimensional Pd{sub x}Ag{sub 1-x}/Pd(111) and Pt{sub x}Ag{sub 1-x}/Pt(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Engstfeld, Albert K.; Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2011-07-01

    The distribution of Ag and Pd or Pt in Ag{sub x}Pd{sub 1-x}/Pd(111) and Ag{sub x}Pt{sub 1-x}/Pt(111) surface alloys was studied by high resolution UHV-STM. The alloys were prepared by evaporating Ag on the respective substrate and subsequent annealing to 800 K. From quantitative 2D atom distributions we can show that AgPt tends towards two dimensional clustering and AgPd towards a 'quasi' random distribution, with small deviations for low and high coverages. From effective pair interactions, we are able to calculate the surface mixing energy and determine 2D phase diagrams. Furthermore we will elucidate whether the size mismatch or the differences in the intermetallic bonding are the dominant factor for the respective distribution in the surface alloy.

  3. Levitation of a drop over a film flow

    Science.gov (United States)

    Sreenivas, K. R.; de, P. K.; Arakeri, Jaywant H.

    1999-02-01

    A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 ml) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.

  4. Pressure suppression pool hydrodynamic studies for horizontal vent exit of Indian PHWR containment

    International Nuclear Information System (INIS)

    Mohan, N.; Bajaj, S.S.; Saha, P.

    1994-01-01

    The standard Indian PHWR incorporates a pressure suppression type of containment system with a suppression pool.The design of KAPS (Kakrapar Atomic Power Station) suppression pool system adopts a modified system of downcomers having horizontal vents as compared to vertical vents of NAPS (Narora Atomic Power Station). Hydrodynamic studies for vertical vents have been reported earlier. This paper presents hydrodynamic studies for horizontal type vent system during LOCA. These studies include the phenomenon of vent clearing (where the water slug standing in downcomer initially is injected to wetwell due to rapid pressurization of drywell) followed by pool swell (elevation of pool water due to formation of bubbles due to air mass entering pool at the exit of horizontal vents from drywell). The analysis performed for vent clearing and pool swell is based on rigorous thermal hydraulic calculation consisting of conservation of air-steam mixture mass, momentum and thermal energy and mass of air. Horizontal vent of downcomer is modelled in such a way that during steam-air flow, variation of flow area due to oscillating water surface in downcomer could be considered. Calculation predicts that the vent gets cleared in about 1.0 second and the corresponding downward slug velocity in the downcomer is 4.61 m/sec. The maximum pool swell for a conservative lateral expansion is calculated to be 0.56 m. (author). 3 refs., 12 figs

  5. Ferrofluid meniscus in a horizontal or vertical magnetic field

    International Nuclear Information System (INIS)

    Rosensweig, R.E.; Elborai, S.; Lee, S.-H.; Zahn, M.

    2005-01-01

    An optical system using reflections of a narrow laser beam to measure the height and shape of a ferrofluid meniscus in response to uniform applied magnetic fields finds that meniscus height on a vertical flat wall decreases in horizontal applied field and increases in vertical applied field. An approximate energy minimization analysis predicts meniscus height in directional agreement with measurements. This study is a first step in calculating the tangential surface force acting in flows where magnetization magnitude and direction lag a changing magnetic field direction, and the meniscus shape is magnetically perturbed

  6. Pseudomorphic growth mode of Pb on the Al{sub 13}Fe{sub 4}(0 1 0) approximant surface

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, J., E-mail: Julian.ledieu@univ-lorraine.fr [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France); Weerd, M.-C de [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France); Hahne, M.; Gille, P. [Department of Earth and Environmental Sciences, Crystallography Section, Ludwig-Maximilians-Universität München, Theresienstr. 41, D-80333 München (Germany); Fournée, V. [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France)

    2015-11-30

    Highlights: • Pb adsorption has been characterised on the Al{sub 13}Fe{sub 4}(0 1 0) approximant surface. • A pseudomorphic Pb monolayer is formed at 300 K on this highly corrugated template. • The Pb atomic arrangement replicates the motifs observed on the clean surface. • The formation of surface alloys and intermixing can be disregarded. • Efficient energy dissipation of impinging adatoms allows additional layer deposition. - Abstract: We report the adsorption of lead adatoms on the pseudo-10-fold Al{sub 13}Fe{sub 4}(0 1 0) surface using low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). For the submonolayer regime, Pb adatoms remain highly mobile across the surface at 300 K. STM analysis indicates the formation of irregularly shaped islands of monoatomic height. The latter do not coalesce with increasing coverage. At 0.95 MLE coverage, the LEED patterns are consistent with a pseudomorphic growth of the adatoms. This is confirmed by STM measurements which reveal local motifs qualitatively similar to those observed on the clean Al{sub 13}Fe{sub 4}(0 1 0) surface, i.e. prior to dosing. Apart from the absence of plasmons, the XPS measurements of Pb 4f and Al 2s core levels are comparable to those observed for the Pb/Al(1 1 1) system.

  7. Protein surface labeling reactivity of N-hydroxysuccinimide esters conjugated to Fe{sub 3}O{sub 4}@SiO{sub 2} magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pirani, Parisa; Patil, Ujwal S.; Apsunde, Tushar Dattu; Trudell, Mark L.; Cai, Yang, E-mail: ycai@chnola-research.org; Tarr, Matthew A., E-mail: mtarr@uno.edu [University of New Orleans, Department of Chemistry (United States)

    2015-09-15

    The N-hydroxysuccinimide (NHS) ester moiety is one of the most widely used amine reactive groups for covalent conjugation of proteins/peptides to other functional targets. In this study, a cleave-analyze approach was developed to quantify NHS ester groups conjugated to silica-coated iron oxide magnetic nanoparticles (Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs). The fluorophore dansylcadaverine was attached to Fe{sub 3}O{sub 4}@SiO{sub 2} magnetic nanoparticles (MNPs) via reaction with NHS ester groups, and then released from the MNPs by cleavage of the disulfide bond in the linker between the fluorophore and the MNPs moiety. The fluorophore released from Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs was fluorometrically measured, and the amount of fluorophore should be equivalent to the quantity of the NHS ester groups on the surface of Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs that participated in the fluorophore conjugation reaction. Another sensitive and semiquantitative fluorescence microscopic test was also developed to confirm the presence of NHS ester groups on the surface of Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs. Surface-conjugated NHS ester group measurements were primarily performed on Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs of 100–150 nm in diameter and also on 20-nm nanoparticles of the same type but prepared by a different method. The efficiency of labeling native proteins by NHS ester-coated Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs was explored in terms of maximizing the number of MNPs conjugated per BSA molecule or maximizing the number of BSA molecules conjugated per each nanoparticle. Maintaining the amount of fresh NHS ester moieties in the labeling reaction system was essential especially when maximizing the number of MNPs conjugated per protein molecule. The methodology demonstrated in this study can serve as a guide in labeling the exposed portions of proteins by bulky multivalent labeling reagents.

  8. Near‐surface void detection using a seismic landstreamer and horizontal velocity and attenuation tomography

    Science.gov (United States)

    Buckley, Sean F.; Lane, John W.

    2012-01-01

    The detection and characterization of subsurface voids plays an important role in the study of karst formations and clandestine tunnels. Horizontal velocity and attenuation tomography (HVAT) using offset‐fan shooting and a towed seismic land streamer is a simple, rapid, minimally invasive method that shows promise for detecting near‐surface voids and providing information on the orientation of linear voids. HVAT surveys were conducted over a known subsurface steam tunnel on the University of Connecticut Depot Campus, Storrs, Connecticut. First‐arrival travel‐time and amplitude data were used to produce two‐dimensional (2D) horizontal (map view) velocity and attenuation tomograms. In addition, attenuation tomograms were produced based on normalized total trace energy (TTE). Both the velocity and TTE attenuation tomograms depict an anomaly consistent with the location and orientation of the known tunnel; the TTE method, however, requires significantly less processing time, and therefore may provide a path forward to semi‐automated, near real‐time detection of near‐surface voids. Further study is needed to assess the utility of the HVAT method to detect deeper voids and the effects of a more complex geology on HVAT results.

  9. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  10. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    Science.gov (United States)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  11. Tolerance of topological surface state towards adsorbed magnetic moments: Fe on Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Markus; Marchenko, Dmitry; Sanchez-Barriga, Jaime; Varykhalov, Andrei; Rader, Oliver [Helmholtz-Zentrum fuer Materialien und Energie, Berlin (Germany); Volykhov, Andrei; Yashina, Lada [Moscow State University, Moskau, Russland (Russian Federation)

    2011-07-01

    Topological surface states on Bi{sub 2}Se{sub 3} and Bi{sub 2}Te{sub 3} are protected by time reversal symmetry. Magnetic fields break time-reversal symmetry, and they have been used in two-dimensional spin quantum-Hall systems to destroy the topological edge states. Another possibility is to introduce magnetic moments. This has been done by substitution of Mn and Fe into the bulk. For Fe a small gap of 44meV was created, however, at very large amounts (12%). In this work, we deposit Fe directly onto the surface where the topological surface state is localized. We show for coverages of 0.25 and 1 ML Fe that the Dirac point remains intact and no gap appears. Core level spectroscopy of Bi and Te states gives insight into the interaction between substrate and adatoms. In addition, extra surface states appear at the Fermi energy which show a large Rashba-type spin-orbit splitting. The orientation of the spin of both, the topological as well as the Rashba-type split surface states is analysed.

  12. Adsorption and diffusion of H and NH{sub x} as key steps of the NH{sub x} dehydrogenation reaction at the V{sub 2}O{sub 5} (010) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Mathis; Hermann, Klaus [Fritz-Haber-Institut der MPG, und Sfb 546, Berlin (Germany)

    2009-07-01

    Various selective oxidation reactions as the selective catalytic reduction (SCR) of NO{sub x} or the ammoxidation of propane/propene to acrylonitrile are processed on vanadium based metal-oxide catalysts in the presence of ammonia. In the reactions the intermediates NH{sub 2}, NH{sub 3}, and NH{sub 4} are involved indicating that the adsorption and dehydrogenation of NH{sub x}, x < 4, are important steps. We have performed theoretical studies of corresponding reaction steps where the catalyst is simulated by a finite section of the V{sub 2}O{sub 5} (010) surface. The calculations apply density-functional theory combined with clusters modeling the adsorbate system. The substrate lowers corresponding dehydrogenation energies considerably compared with values for the gas phase reaction. However, the lowering is too small to make dehydrogenation of NH{sub 3} likely to happen. Our results on the role of oxygen vacancies for the dehydrogenation indicate that such surface defects become important for the reaction. Besides the energetics also the diffusion at the surface influences the reaction. A nudged elastic band (NEB) routine has been implemented to evaluate diffusion paths and barriers. Hydrogen diffusion on the surface will be discussed and additional examples for NH{sub x} diffusion will be shown. Based on these results possible reaction scenarios for the dehydrogenation reaction will be presented.

  13. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency

  14. The effect of surface morphology on the response of Fe{sub 2}O{sub 3}-loaded vanadium oxide nanotubes gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin Wei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Li Yue; Zhao Chunxia; Dai Ying [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2011-06-01

    The effect of surface morphology on the response of an ethanol sensor based on vanadium nanotubes surface loaded with Fe{sub 2}O{sub 3} nanoparticles (Fe{sub 2}O{sub 3}/VONTs) was investigated in this work. The particle size of Fe{sub 2}O{sub 3} loaded on VONTs was varied by using novel citric acid-assisted hydrothermal method. In the synthesis progress, citric acid was used as a surfactant and chelate agent, which ensured the growth of a uniform Fe{sub 2}O{sub 3} loading on the nanotubes surface. The ethanol sensing properties was then measured for these Fe{sub 2}O{sub 3}/VONTs at 230-300 deg. C. The results showed that the sensor response increased with the particles size and the loading amount of Fe{sub 2}O{sub 3}. It appears that the load of Fe{sub 2}O{sub 3} on the VONTs surface increases the concentration of oxygen vacancies and decreases the concentration of free electrons. The effects of morphology on the sensor resistance were interpreted in terms of the Debye length and the difference in the number of active sites.

  15. Subcooled flow boiling heat transfer from microporous surfaces in a small channel

    International Nuclear Information System (INIS)

    Yan, Sun; Li, Zhang; Hong, Xu; Xiaocheng, Zhong

    2011-01-01

    The continuously increasing requirement for high heat transfer rate in a compact space can be met by combining the small channel/microchannel and heat transfer enhancement methods during fluid subcooled flow boiling. In this paper, the sintered microporous coating, as an efficient means of enhancing nucleate boiling, was applied to a horizontal, rectangular small channel. Water flow boiling heat transfer characteristics from the small channel with/without the microporous coating were experimentally investigated. The small channel, even without the coating, presented flow boiling heat transfer enhancement at low vapor quality due to size effects of the channel. This enhancement was also verified by under-predictions from macro-scale correlations. In addition to the enhancement from the channel size, all six microporous coatings with various structural parameters were found to further enhance nucleate boiling significantly. Effects of the coating structural parameters, fluid mass flux and inlet subcooling were also investigated to identify the optimum condition for heat transfer enhancement. Under the optimum condition, the microporous coating could produce the heat transfer coefficients 2.7 times the smooth surface value in subcooled flow boiling and 3 times in saturated flow boiling. The combination of the microporous coating and small channel led to excellent heat transfer performance, and therefore was deemed to have promising application prospects in many areas such as air conditioning, chip cooling, refrigeration systems, and many others involving compact heat exchangers. (authors)

  16. Condensation of the steam in the horizontal steam line during cold water flooding

    International Nuclear Information System (INIS)

    Strubelj, L.; Tiselj, I.

    2006-01-01

    Direct contact condensation and condensation induced water-hammer in a horizontal pipe was experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The experiment is preformed in the horizontal section of the steam line of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the steam line, the vapour-liquid interface area increases and therefore the vapour condensation rate and the vapour velocity also increase. Similar phenomena can occur in the cold/hot leg of the primary loop of PWR nuclear power plant during loss of coolant accident, when emergency core cooling system is activated. Water level at one cross-section and four local void fraction and temperature at the top of steam line was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Free surface simulation of the experiment with thermal phase change model is presented. Surface renewal concept with small eddies is used for calculation of heat transfer coefficient. With surface renewal theory we did not get results similar to experiment, that is why heat transfer coefficient was increased by factor 20. In simulation with heat transfer coefficient calculated with surface renewal concept bubble entrapment is due to reflection of the wave from the end of the pipe. When heat transfer coefficient is increased, condensation rate and steam velocity are also increased, bubble entrapment is due to Kelvin-Helmholtz instability of the free surface, and the results become similar to the measurements. (author)

  17. Understanding the stability of Fe incorporation within Mn{sub 3}N{sub 2}(0 0 1) surfaces: An ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@ifuap.buap.mx [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570, México (Mexico); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California Codigo Postal 22800, México (Mexico); Mandru, Andrada-Oana [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California Codigo Postal 22800, México (Mexico); Cocoletzi, Gregorio H. [Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570, México (Mexico); Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States)

    2016-02-15

    Graphical abstract: - Highlights: • The Fe incorporation into inner layers of the Mn{sub 3}N{sub 2} surfaces is stable in all range of chemical potential. • Displaced Mn atoms forming cluster-like structures induce the stability of incorporated Fe atoms. • Antiferromagnetic alignment in the [0 0 1] direction and in-plane Ferromagnetic Fe–Fe and Fe–Mn alignments are the same as in Mn{sub 3}N{sub 2} bulk structure. • Incorporated Fe layers contribute to the metallic character of these surfaces. - Abstract: We present first principles spin-polarized calculations of the adsorption and incorporation of iron in the Mn{sub 3}N{sub 2}(0 0 1) surfaces. By means of a surface formation energy criterion, it is demonstrated that Fe incorporation is energetically stable for all studied surfaces. An Fe bilayer formation is achieved after Fe atoms displace Mn atoms in the sub-surface N-vacancy layers. An analysis of the magnetic coupling shows an antiferromagnetic alignment along the [0 0 1] direction as in the clean, ideal surfaces. Also, the in-plane magnetic coupling between Fe–Fe and Fe–Mn shows a ferromagnetic tendency, similar to the clean, ideally terminated surfaces. These results clearly indicate that Fe behaves like Mn when adsorbed into the Mn{sub 3}N{sub 2} surface. Density of states calculations of the stable structures show a slight deviation from the antiferromagnetic-like behavior, with the most important contribution around the Fermi level coming from the Fe-d and Mn-d orbitals.

  18. Waves on radial film flows

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  19. Surface chemistry and catalytic activity of Ni/Al{sub 2}O{sub 3} irradiated with high-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jin [Department of Optometry and Optic Science, Dongshin University, 252 Daeho-Dong, Naju 520-714 (Korea, Republic of)], E-mail: jinjun@dsu.ac.kr; Dhayal, Marshal [Liquid Crystal and Self Assembled Monolayer Section, National Physical Laboratory, Dr. KS Krisnan Marg, New Delhi 120011 (India); Shin, Joong-Hyeok [Department of Environmental Engineering, Dongshin University, 252 Daeho-Dong, Naju 520-714 (Korea, Republic of); Han, Young Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Getoff, Nikola [Department of Nutrition, Section Radiation Biology, University of Vienna, Althanstr. 14, A-1090 Vienna (Austria)

    2008-05-30

    The radiation effects induced effects by electron beam (EB) treatment on the catalytic activity of Ni/{gamma}-Al{sub 2}O{sub 3} were studied for the carbon dioxide reforming of methane with different EB energy and absorbed radiation dose. Transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to determine the change in structure and surface states of Ni/{gamma}-Al{sub 2}O{sub 3} catalyst before and after the EB treatment. Higher energy EB treatment is useful for increasing the proportion of the active sites (such as Ni{sup 0} and NiAl{sub 2}O{sub 4}-phase) on the surface. The increase of Ni/Al-ratio indicates that the Ni dispersion on the surface increased with the EB-treatment, resulting in an increase of the active sites, which leads to improving the catalytic activity. XPS measurement also showed a decrease of the surface carbon with EB dose. The maximum 20% increase in the conversion of CO{sub 2}/CH{sub 4}-mixture into CO/H{sub 2} gas was observed for the catalyst treated with 2 MeV energy and 600 kGy dose of EB relative to untreated.

  20. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO <sub>2sub> (110)

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Nir; Browning, Nigel D.

    2011-06-16

    Gold clusters on rutile TiO<sub>2sub> are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO<sub>2sub>(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  1. Effect of template-induced surface species on electronic structure and photocatalytic activity of g-C{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yu; Guo, Xiaojuan; Bo, Xiangkun; Wang, Yongzheng [Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023 (China); Guo, Xiangke [Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); Xie, Mingjiang, E-mail: xiemingjiang@hotmail.com [Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023 (China); Guo, Xuefeng, E-mail: guoxf@nju.edu.cn [Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China)

    2017-02-28

    Highlights: • The effect of template on the surface chemistry of g-C{sub 3}N{sub 4} were investigated. • Template induces more non-graphitic species (sp{sup 3}−C−C− and −NH{sub x}) on g-C{sub 3}N{sub 4}. • Non-graphitic species influence electronic structure and performance of g-C{sub 3}N{sub 4}. - Abstract: In view of the fact that the photocatalytic activity of graphitic carbon nitride (g-C{sub 3}N{sub 4}) is greatly influenced by its electronic structure, herein, effect of templates induced surface species variation on the electronic structure and photocatalytic activity of the templated g-C{sub 3}N{sub 4} was investigated. By mixing the precursor of cyanamide with different templates (SiO{sub 2}, Al{sub 2}O{sub 3} and template-free) in the preparation of graphitic carbon nitride (g-C{sub 3}N{sub 4}), carbon nitrides with different surface species were obtained. The obtained carbon nitride (g-C{sub 3}N{sub 4}-Si) templated by SiO{sub 2} nanoparticles exhibits enlarged band gap (3.26 eV) and enhanced photo-degradation ability towards Methyl Orange (MO) compared to that of bulk g-C{sub 3}N{sub 4} (2.67 eV) synthesized from direct condensation/carbonization of melamine and Al{sub 2}O{sub 3}-templated g-C{sub 3}N{sub 4}-Al (2.76 eV). Detailed characterizations confirm that the introduction of templates in the synthesis process resulted in more non-graphitic species (sp{sup 3}−C−C− and −NH{sub x}) on the surface of the derived carbon nitrides, exerting remarkable effect on the electronic structure and photocatalytic performance.

  2. Dynamics of optical degradation on LiB{sub 3}O{sub 5}-crystal surfaces during SFG

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Stefan; Andresen, Aenne; Imlau, Mirco [Department of Physics, University of Osnabrueck (Germany)

    2008-07-01

    We have investigated the phenomenon of optical degradation of LiB{sub 3}O{sub 5} single crystal surfaces during sum-frequency generation (SFG) of UV-light ({lambda}=355 nm) by a focused Q-switched Nd:YAG laser (f=20 kHz, {tau}{sub 1064}=10 ns, anti P{sub 1064}=1.5 W). The investigations were performed on timescales >100 h and UV-intensities below the light induced damage threshold of the crystals. The degradations were studied with optical and analytical methods. As a result we found a steady deposition of foreign material on the output crystal surface in the illuminated area. Here, XPS uncovered several foreign elements as Na,S,Si,Ca, C beside B and O depending on the composition of the ambient atmosphere during SFG. The temporal development of the degradation could be observed by measuring the beam profile behind the crystal. The beam divergence increased as a function of the deposition height, which led to a complex intensity profile in the far-field. Further illuminating lead to a catastrophic break-down of the surface and the beam profile. This is due to thermal damage originating from the UV-absorption of the deposited material. Three models for the deposition process are discussed: a) diffusion out of the LiB{sub 3}O{sub 5}-subsurface, b) deposition of atoms of the ambient atmosphere, c) chemical reactions of LiB{sub 3}O{sub 5}, water, and boric acid.

  3. Transport of solutes under transient flow conditions – A case study – Yamuna river sub basin (Kosi Kalan to Agra

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2015-09-01

    Full Text Available The imbalance between incoming and outgoing salt causes salinization of soils and sub-soils that result in increasing the salinity of stream-flows and agriculture land. This salinization is a serious environmental hazard particularly in semi-arid and arid lands. In order to estimate the magnitude of the hazard posed by salinity, it is important to understand and identify the processes that control salt movement from the soil surface through the root zone to the ground water and stream flows. In the present study, Yamuna sub-basin (both sides of Gokul dam site has been selected which has two distinct climatic zones, sub-humid (upstream of Mathura and semi-arid region (downstream of Mathura. In the upstream, both surface and ground waters are used for irrigation, whereas in the downstream mostly groundwater is used. Both soils and ground waters are more saline in downstream parts of the study area. In this study we characterized the soil salinity and groundwater quality in both areas. An attempt is also made to model the distribution of potassium concentration in the soil profile in response to varying irrigation conditions using the Soil-Water Infiltration and Movement (SWIM model. Fair agreement was obtained between predicted and measured results indicating the applicability of the model.

  4. Surface spins disorder in uncoated and SiO{sub 2} coated maghemite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, F. [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Nadeem, K., E-mail: kashif.nadeem@iiu.edu.pk [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Shah, S. Kamran Ali; Kamran, M. [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Gul, I. Hussain [School of Chemical & Materials Engineering, National University of Sciences and Technology (NUST), H-12, 44000 Islamabad, Pakistan (Pakistan); Ali, L. [Materials Research Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan)

    2017-05-01

    We studied the surface spins disorder in uncoated and silica (SiO{sub 2}) coated maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO{sub 2} coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (T{sub B}) for SiO{sub 2} coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (M{sub s}) of SiO{sub 2} coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO{sub 2} coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1− BT{sup b})) was fitted well for both uncoated and SiO{sub 2} coated nanoparticles and yields: B =3×10{sup −7} K{sup -b}, b=2.22 and B=0.0127 K{sup -b}, b=0.57 for uncoated and SiO{sub 2} coated nanoparticles, respectively. Higher value of B for SiO{sub 2} coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO{sub 2} coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO{sub 2} coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO{sub 2} coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface

  5. a-Si{sub x}C{sub 1−x}:H thin films with subnanometer surface roughness for biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Celis, José, E-mail: jlhc@inaoep.mx; Reyes-Betanzo, Claudia, E-mail: creyes@inaoep.mx; Itzmoyotl-Toxqui, Adrián, E-mail: aitzmo@inaoep.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro #1, Santa María Tonantzintla, San Andrés Cholula 72840, Puebla (Mexico); Orduña-Díaz, Abdu, E-mail: abdueve@hotmail.com; Pérez-Coyotl, Ana, E-mail: anapcoyotl@hotmail.com [Centro de Investigación en Biotecnología Aplicada del IPN, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tepetitla 90700, Tlaxcala (Mexico)

    2015-09-15

    The characterization of a-Si{sub x}C{sub 1−x}:H thin films by plasma-enhanced chemical vapor deposition with high hydrogen dilution for biological applications is addressed. A root mean square roughness less than 1 nm was measured via atomic force microscopy for an area of 25 μm{sup 2}. Structural analysis was done using Fourier transform infrared spectroscopy in the middle infrared region. It was found that under the deposition conditions, the formation of Si–C bonds is promoted. Electrical dark conductivity measurements were performed to evaluate the effect of high hydrogen dilution and to find the relation between carrier transport properties and the structural arrangement. Conductivities of the order of 10{sup −7} to 10{sup −9} S/cm at room temperature for methane–silane gas flow ratio from 0.35 to 0.85 were achieved, respectively. UV-visible spectra were used to obtain the optical band gap and the Tauc parameter. Optical band gap as wide as 3.55 eV was achieved in the regime of high carbon incorporation. Accordingly, deposition under low power density and high hydrogen dilution reduces the roughness, improves the structure of the network, and stabilizes the film properties as a greater percentage of carbon is incorporated. The biofunctionalization of a-Si{sub x}C{sub 1−x}:H surfaces with NH{sub 2}-terminated self-assembled monolayers was obtained through silanization with 3-aminopropyltrimethoxysilane. This knowledge opens a window for the inclusion of these a-Si{sub x}C{sub 1−x}:H thin films in devices such as biosensors.

  6. A modelling study of the multiphase leakage flow from pressurised CO{sub 2} pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuejin; Li, Kang [Department of Safety Science Engineering & State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tu, Ran [College of Mechanical Engineering and Automation, Huaqiao University, Jimei, Xiamen 361000 (China); Yi, Jianxin; Xie, Qiyuan [Department of Safety Science Engineering & State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jiang, Xi, E-mail: x.jiang@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster LA1 4YR (United Kingdom)

    2016-04-05

    Highlights: • A simplified model for CO{sub 2} decompression from high pressure pipelines is proposed. • The multiphase fluid was considered as a homogeneous equilibrium mixture. • Different real gas equations of state were incorporated into the model. • Detailed chocked flow calculation with capillary tube assumption was performed. • The model was validated against experimental data with discrepancies discussed. - Abstract: The accidental leakage is one of the main risks during the pipeline transportation of high pressure CO{sub 2}. The decompression process of high pressure CO{sub 2} involves complex phase transition and large variations of the pressure and temperature fields. A mathematical method based on the homogeneous equilibrium mixture assumption is presented for simulating the leakage flow through a nozzle in a pressurised CO{sub 2} pipeline. The decompression process is represented by two sub-models: the flow in the pipe is represented by the blowdown model, while the leakage flow through the nozzle is calculated with the capillary tube assumption. In the simulation, two kinds of real gas equations of state were employed in this model instead of the ideal gas equation of state. Moreover, results of the flow through the nozzle and measurement data obtained from laboratory experiments of pressurised CO{sub 2} pipeline leakage were compared for the purpose of validation. The thermodynamic processes of the fluid both in the pipeline and the nozzle were described and analysed.

  7. Scanning tunneling microscopy of the atomically smooth (001) surface of vanadium pentoxide V{sub 2}O{sub 5} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-01-15

    The (001) cleavage surface of vanadium pentoxide (V{sub 2}O{sub 5}) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V{sub 2}O{sub 5} crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surface (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.

  8. Hybrid HF-DFT comparative study of SrZrO{sub 3} and SrTiO{sub 3}(001) surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E. [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskii Prospekt, Stary Petergof, 198504 St. Petersburg (Russian Federation)

    2006-10-15

    Hybrid HF-DFT LCAO simulations of SrZrO{sub 3} and SrTiO{sub 3}(001) surface properties are performed in a single-slab model framework. The SrZrO{sub 3}(001) surface was studied by an ab initio method for the first time. Three slab models with different surface terminations including up to 8 atomic planes were used for calculation of the various surface characteristics (surface energies, atomic charges, density of electronic states). The dependence of the results on the chosen model and on the kind of d-element is analyzed. The dissimilarity in the surface oxygen atom contributions to the total density of states of two crystals is attributed to the more ionic nature of Zr-O bonds compared to Ti-O bonds. It is found that in the case of SrZrO{sub 3} the electronic density is biased towards the SrO-terminated surface and this surface should be more basic in nature than the SrO surface of SrTiO{sub 3} crystal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Surface structure and reaction property of CuCl{sub 2}-PdCl{sub 2} bimetallic catalyst in methanol oxycarbonylation: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingsen [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang, Shengping, E-mail: spwang@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Shen, Yongli; Yan, Bing [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wu, Yuanxin [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Xinbin [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2014-02-15

    Surface structure of CuCl{sub 2}-PdCl{sub 2} bimetallic catalyst (Wacker-type catalyst) was built employing density functional theory (DFT) calculations, and the reaction mechanism of methanol oxycarbonylation over the CuCl{sub 2}-PdCl{sub 2} surfaces was also investigated. On the CuCl{sub 2}-PdCl{sub 2} surface, the active site for methanol oxidation was confirmed as Cu-Cl-Cu (Pd). Comparing with pure CuCl{sub 2} surface, the introduction of Pd atom causes the electron repopulation on the surface and lowers the energy barrier for methanol oxidation, but the number of the active site decreases with the increasing of Pd doping volume. Agreed with previous experimental results, the Pd site is most favorable for the CO insertion, indicated by the lowest activation barrier for the formation of COOCH{sub 3} on Pd atom. The lowest energy barrier for the formation of DMC appears when COOCH{sub 3} species adsorbed on Pd atom and methoxyl adsorbed on Cu atoms, which is 0.42 eV. Finally, the reconstruction of the unsaturated surface is a spontaneous and exothermic process. Comparing with other surfaces, the rate-limiting step, methanol oxidation, on CuCl{sub 2}-PdCl{sub 2} surface with Pd/Cu = 1:17 has the lowest energy barrier, which is agreed with the experimental observation that PdCl{sub 2}-CuCl{sub 2} catalyst with Pd/Cu = 1:20 has the favorable activity. The adsorbed methoxyl will further lower the activation barrier of methanol oxidation, which is agreed with experimental observation that the Wacker-type catalysts have an induction period in the methanol oxidative carbonylation system.

  10. Investigation of air-water flow in a horizontal pipe with 90 degree bends using wire mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, R.C.; Yang, S.K., E-mail: robert.bowden@cnl.ca, E-mail: sun-kyu.yang@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Wire mesh sensors were used to investigate the void fraction distribution along a 9 meter long, 50.8 mm diameter, horizontal test section that contained two 90 degree bends. Deionised water and compressed air were used as the working fluids, with the bubbly flow regime achieved at a superficial liquid velocity of 3.5 m/s and superficial gas velocities that varied between 0.1 and 1.2 m/s. The effects of superficial gas velocity and axial location on the void fraction distribution were investigated. Bubble and slug flow patterns were identified using a probability density function analysis based on a Gaussian mixture model. (author)

  11. Decomposition of SnH{sub 4} molecules on metal and metal–oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, D. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Storm, A.J.; Verberk, R. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Brouwer, J.C. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Sloof, W.G., E-mail: w.g.sloof@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-01

    Atomic hydrogen cleaning is a promising method for EUV lithography systems, to recover from surface oxidation and to remove carbon and tin contaminants. Earlier studies showed, however, that tin may redeposit on nearby surfaces due to SnH{sub 4} decomposition. This phenomenon of SnH{sub 4} decomposition during tin cleaning has been quantified for various metallic and metal-oxide surfaces using X-ray photoelectron spectroscopy (XPS). It was observed that the metal oxide surfaces (TiO{sub 2} and ZrO{sub 2}) were significantly less contaminated than metallic surfaces. Tin contamination due to SnH{sub 4} decomposition can thus be reduced or even mitigated by application of a suitable metal-oxide coating.

  12. Interaction of Formaldehyde with the Rutile TiO <sub>2sub> (110) Surface: A Combined Experimental and Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaojuan; Zhang, Zhenrong; Yang, Chengwu; Bebensee, Fabian; Heibler, Stefan; Nefedov, Alexei; Tang, Miru; Ge, Qingfeng; Chen, Long; Kay, Bruce D.; Dohnalek, Zdenek; Wang, Yuemin; Woll, Christof

    2016-06-16

    The adsorption and reaction of formaldehyde (CH<sub>2sub>O) on the oxidized rutile TiO<sub>2sub>(110) surface were studied by temperature programmed desorption (TPD), scanning tunneling microscopy (STM), infrared reflection-absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations. The experimental and theoretical data reveal the presence of various species depending on the temperature and coverage. After formaldehyde adsorption on TiO<sub>2sub>(110) at 65 K, the multilayer CH<sub>2sub>O was detected, which desorbs completely upon heating to 120 K. The isolated CH<sub>2sub>O monomer was identified after submonolayer adsorption at low temperatures (45-65 K), in which CH<sub>2sub>O is bound to the surface Ti5c sites via σ-donation and adopts a tilted geometry. With heating to higher temperatures the CH<sub>2sub>O monomers remain stable up to 70 K and then undergo coupling reactions to form paraformaldehyde (polyoxymethylene, POM) at the Ti<sub>5csub> rows. The POM chain is oriented primarily along the [001] direction in a slightly disordered configuration. POM becomes the predominant species at 120 K and is decomposed releasing CH<sub>2sub>O at about 250 K. In addition, dioxymethylene (DOM) was detected as minority species formed via reaction of Ti<sub>5csub>-bound CH<sub>2sub>O with both neighboring O<sub>2csub> along the [1-10] direction and oxygen adatoms (Oad) at Ti<sub>5csub> sites along [001] on the oxidized TiO<sub>2sub>(110) surface.

  13. Preparation and characterization of Mn-doped Li{sub 0.06}(Na{sub 0.5}K{sub 0.5}){sub 0.94}NbO{sub 3} lead-free piezoelectric ceramics with surface sol-gel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ae Ri; Lee, Seong Eui; Lee, Hee Chul [Korea Polytechnic University, Shiheung (Korea, Republic of)

    2014-08-15

    This study investigated the effects of Mn doping and sol-gel surface coating on the structural and the electrical properties of lead-free Li{sub 0.06}(K{sub 0.5}Na{sub 0.5}){sub 0.94}NbO{sub 3}(LNKN) ceramics in disc form for use as eco-friendly piezoelectric devices. The 1-mol% Mn-doped LNKN ceramic showed a relatively high piezoelectric constant owing to its high density in the case of its being annealed at a temperature of 1010 .deg. C. A Mn-doped LNKN sol-gel solution with the same composition as that of the ceramics was spin-coated and sintered on both sides of the ceramic surfaces to acquire improved electrical properties. The sol-gel surface coating could play a decisive role in filling the pores, resulting in flat and stable interfaces between the electrodes and the piezoelectric elements. As a result, the highest piezoelectric constant, d{sub 33}, of 173 pC/N could be obtained for the Mn-doped LNKN ceramics with 420-nm-thick sol-gel surface coatings.

  14. Air–Sea Interaction and Horizontal Circulation in the Red Sea

    KAUST Repository

    Bower, Amy S.

    2015-01-01

    This chapter discusses the horizontal circulation of the Red Sea and the surface meteorology that drives it, and recent satellite and in situ measurements from the region are used to illustrate properties of the Red Sea circulation and the atmospheric forcing. The surface winds over the Red Sea have rich spatial structure, with variations in speed and direction on both synoptic and seasonal timescales. Wintertime mountain-gap wind jets drive large heat losses and evaporation at some locations, with as much as 9 cm of evaporation in a week. The near-surface currents in the Red Sea exhibit similarly rich variability, with an energetic and complex flow field dominated by persistent, quasi-stationary eddies, and convoluted boundary currents. At least one quasi-stationary eddy pair is driven largely by winds blowing through a gap in the mountains (Tokar Gap), but numerical simulations suggest that much of the eddy field is driven by the interaction of the buoyancy-driven flow with topography. Recent measurements suggest that Gulf of Aden Intermediate Water (GAIW) penetrates further northward into the Red Sea than previously reported.

  15. Micro- and nanostructured Al{sub 2}O{sub 3} surfaces for controlled vascular endothelial and smooth muscle cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, Cenk, E-mail: cenk.aktas@inm-gmbh.de [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Doerrschuck, Eva; Schuh, Cathrin [Clinic of Paediatric Cardiology, Saarland University, Building 9, 66424 Homburg (Germany); Miro, Marina Martinez; Lee, Juseok [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Puetz, Norbert; Wennemuth, Gunther [Department of Anatomy and Cell Biology, Saarland University, Building 61, 66424 Homburg (Germany); Metzger, Wolfgang; Oberringer, Martin [Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Building 57, 66424 Homburg (Germany); Veith, Michael [INM - Leibniz Institute for New Materials, CVD/Biosurfaces Division, 66123 Saarbruecken (Germany); Department of Inorganic Chemistry, University of Saarland, Building C 4 1, 66123 Saarbruecken (Germany); Abdul-Khaliq, Hashim [Clinic of Paediatric Cardiology, Saarland University, Building 9, 66424 Homburg (Germany)

    2012-07-01

    The effect of the micro- and nanotopography on vascular cell-surface interaction is investigated using nano- and microstructured Al{sub 2}O{sub 3} as model substrate. Two different nanostructured Al{sub 2}O{sub 3} surfaces composed of low density (LD) and high density (HD) nanowires (NWs) were synthesized by chemical vapour deposition (CVD) and commercially available microstructured Al{sub 2}O{sub 3} plates were used for comparison. A clear diverging response of human umbilical vein endothelial cells (HUVEC) and human umbilical vein smooth muscle cells (HUVSMC) was observed on these nano- and microstructured surfaces. LD Al{sub 2}O{sub 3} NWs seem to enhance the proliferation of HUVECs selectively. This selective control of the cell-surface interaction by topography may represent a key issue for the future stent material design. - Highlights: Black-Right-Pointing-Pointer Nanostructured alumina surfaces triggers selective adhesion and proliferation of endothelial cells. Black-Right-Pointing-Pointer Catalyst free synthesis of nanowires. Black-Right-Pointing-Pointer Topography induces selective cell response.

  16. A DFT study of ethanol adsorption and decomposition on α-Al{sub 2}O{sub 3}(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hsin-Ni; Nachimuthu, Santhanamoorthi, E-mail: santhanamoorthi@gmail.com; Cheng, Ya-Chin; Damayanti, Nur Pradani; Jiang, Jyh-Chiang, E-mail: jcjiang@mail.ntust.edu.tw

    2016-02-15

    Graphical abstract: - Highlights: • Ethanol decomposition has been studied over α-Al{sub 2}O{sub 3}(0 0 0 1) surface. • EDD and DOS results confirm the stable adsorption of ethanol on the surface. • DFT calculations favor ethylene formation via C{sub β}−H bond scission. • The formation of acetaldehyde has higher energy barrier. - Abstract: Ethanol adsorption and decomposition on the clean α-Al{sub 2}O{sub 3}(0 0 0 1) surface have been systematically investigated by density functional theory calculations. The nature of the surface-ethanol bonding has studied through the density of states (DOS) and the electron density difference (EDD) contour plots. The DOS patterns confirm that the lone pair electrons of EtOH are involved in the formation of a surface Al−O dative bond and the EDD plots provide evidences for the bond weakening/forming, which are consistent with the DOS analysis. Our ethanol decomposition results indicate that ethanol dehydration to ethylene (CH{sub 3}CH{sub 2}OH{sub (a)} → C{sub 2}H{sub 4(g)} + OH{sub (a)} + H{sub (a)}), is the main reaction pathway with the energy barrier of 1.46 eV. Although the cleavage of the hydroxyl group of ethanol has lower energy barrier, the further decomposition of ethoxy owns much higher energy barrier.

  17. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  18. Smooth surfaces in very thin GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films for application in superconducting tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, H., E-mail: henrynavarro@cab.cnea.gov.ar [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Sirena, M. [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Kim, Jeehoon [Department of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); CALDES, Institute for Basic Science, Pohang (Korea, Republic of); Haberkorn, N. [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

    2015-03-15

    Highlights: • A detailed study of the morphological properties of GdBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films was realized. • The inclusion of a very thin SrTiO{sub 3} buffer layer modifies the surface of the SrTiO{sub 3} substrates. • The inclusion of the buffer layer suppress the three dimensional nucleation in the GdBa{sub 2}Cu{sub 3}O{sub 7−δ} film. • GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films with large areas free of topological defects and T{sub c} close to liquid nitrogen can be obtained. - Abstract: This paper provides a systematic analysis of the morphology and the superconducting critical temperature obtained in very thin GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films grown on (0 0 1) SrTiO{sub 3} substrates by DC sputtering. We find that the use of a very thin SrTiO{sub 3} buffer layer (≈2 nm) modify the nucleation of GdBa{sub 2}Cu{sub 3}O{sub 7−δ} on the surface of the substrate reducing the formation of 3 dimensional clusters. Our results demonstrate that 16 nm thick GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films with an average root-mean-square (RMS) smaller than 1 nm and large surface areas (up 10 μm{sup 2}) free of 3 dimensional topological defects can be obtained. In films thinner than 24 nm the onset (zero resistance) of superconducting transition of the films is reduced, being close to liquid nitrogen. This fact can be associated with stress reducing the orthorhombicity and slightly drop in oxygen stoichiometry.

  19. The decompression of basaltic magma into a sub-surface repository

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.

    2002-01-01

    We examine the ascent of volatile-rich basaltic magma through a vertical dike that intersects a horizontal tunnel of comparable cross-sectional area to the dike and located 300 $m$ below the surface and initially filled with air at atmospheric pressure. This process is a simplified representation of

  20. The Self-Potential Anomaly Produced by a Subsurface Flow at the Contact of Two Horizontal Layers and Its Quantitative Interpretation

    Directory of Open Access Journals (Sweden)

    Georgios Aim. Skianis

    2012-01-01

    Full Text Available In the present paper the problem of a polarized cylinder with a small cross-section, which is located at the contact of two horizontal layers with different resistivities, is studied. Such a polarization geometry simulates the self-potential (SP field produced by a horizontal flow at the contact between the two layers. First, the expression of the self potential at the space domain is derived, applying the image technique. Then, the expression for the Fourier transform of the SP anomaly is found and the behavior of the amplitude spectrum is studied. Based on this study, a direct interpretation method at the spatial frequency domain is proposed, in order to calculate the depth of the flow and the reflection coefficient of the stratified medium. Experimentation with a synthetic model shows that the method works well (small deviations between true and calculated values. When the SP curve contains noise, deviations between calculated and true depths are smaller than those between calculated and true reflection coefficients. The proposed method, which is also applied on SP data from a geothermal system (Mauri et al., 2010, may be useful in detecting underground water or heat flows.

  1. LA phonons scattering of surface electrons in Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lang-Tao [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Zhu, Bang-Fen [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China and Institute of Advanced Study, Tsinghua University, Beijing 100084 (China)

    2013-12-04

    Within the Boltzmann equation formalism we evaluate the transport relaxation time of Dirac surface states (SSs) in the typical topological insulator(TI) Bi{sub 2}Se{sub 3} due to the phonon scattering. We find that although the back-scattering of the SSs in TIs is strictly forbidden, the in-plane scattering between SSs in 3-dimensional TIs is allowed, maximum around the right-angle scattering. Thus the topological property of the SSs only reduces the scattering rate to its one half approximately. Besides, the larger LA deformation potential and lower sound velocity of Bi{sub 2}Se{sub 3} enhance the scattering rate significantly. Compared with the Dirac electrons in graphene, we find the scattering rate of SSs in Bi{sub 2}Se{sub 3} are two orders of magnitudes larger, which agree with the recent transport experiments.

  2. Transient disturbance growth in flows over convex surfaces

    Science.gov (United States)

    Karp, Michael; Hack, M. J. Philipp

    2017-11-01

    Flows over curved surfaces occur in a wide range of applications including airfoils, compressor and turbine vanes as well as aerial, naval and ground vehicles. In most of these applications the surface has convex curvature, while concave surfaces are less common. Since monotonic boundary-layer flows over convex surfaces are exponentially stable, they have received considerably less attention than flows over concave walls which are destabilized by centrifugal forces. Non-modal mechanisms may nonetheless enable significant disturbance growth which can make the flow susceptible to secondary instabilities. A parametric investigation of the transient growth and secondary instability of flows over convex surfaces is performed. The specific conditions yielding the maximal transient growth and strongest instability are identified. The effect of wall-normal and spanwise inflection points on the instability process is discussed. Finally, the role and significance of additional parameters, such as the geometry and pressure gradient, is analyzed.

  3. A density functional study on properties of a Cu{sub 3}Zn material and CO adsorption onto its surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qian-Lin, E-mail: qltang@xidian.edu.cn [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Duan, Xiao-Xuan; Liu, Bei; Wei, An-Qing; Liu, Sheng-Long [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Wang, Qi, E-mail: qwang@mail.xidian.edu.cn [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Liang, Yan-Ping, E-mail: ypliang@mail.xidian.edu.cn [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Ma, Xiao-Hua [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China)

    2016-02-15

    , Cu(1 1 1). This agreement confirms the total energy results that indicate that the flat (1 1 4) and stepped (2 1 4) facets are the most stable and abundant ones in the Cu{sub 3}Zn particles formed. It was found that a subtle compromise between the cost of fragment distortions and the large stabilization due to molecule–surface interaction is the way to control and optimize the reactivity of the Cu-based alloy to CO chemisorption. Intriguingly, electronic structure evaluation reveals that as far as all the alloy surfaces under scrutiny are concerned, a layer of CO brought a decrease, not an increase, in work function for (1 0 1){sup Zn} and (1 1 0){sup CuZn}, though the electrons always flowed from the substrate to the adsorbate. The finding is not trivial at all since it counters the classical rule that an electronegative species raises the work function of the underlying surface. The bonding of CO to the Cu{sub 3}Zn systems via C–Cu contacts was identified as being primarily covalent rather than ionic. A simple d-band energy model is able to capture the bonding tendency observed.

  4. Static elliptic minimal surfaces in AdS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Pastras, Georgios [NCSR ' ' Demokritos' ' , Institute of Nuclear and Particle Physics, Attiki (Greece)

    2017-11-15

    The Ryu-Takayanagi conjecture connects the entanglement entropy in the boundary CFT to the area of open co-dimension two minimal surfaces in the bulk. Especially in AdS{sub 4}, the latter are two-dimensional surfaces, and, thus, solutions of a Euclidean non-linear sigma model on a symmetric target space that can be reduced to an integrable system via Pohlmeyer reduction. In this work, we construct static minimal surfaces in AdS{sub 4} that correspond to elliptic solutions of the reduced system, namely the cosh-Gordon equation, via the inversion of Pohlmeyer reduction. The constructed minimal surfaces comprise a two-parameter family of surfaces that include helicoids and catenoids in H{sup 3} as special limits. Minimal surfaces that correspond to identical boundary conditions are discovered within the constructed family of surfaces and the relevant geometric phase transitions are studied. (orig.)

  5. Boosted surface acidity in TiO{sub 2} and Al{sub 2}O{sub 3}-TiO{sub 2} nanotubes as catalytic supports

    Energy Technology Data Exchange (ETDEWEB)

    Camposeco, R. [Molecular Engineering Program, Mexican Institute of Petroleum, 07730, México, D.F. (Mexico); Department of Chemistry, UAM-A, 55534, México, D.F. (Mexico); Castillo, S., E-mail: scastill@imp.mx [Molecular Engineering Program, Mexican Institute of Petroleum, 07730, México, D.F. (Mexico); Department of Chemical Engineering, ESIQIE-IPN, 75876, México, D.F. (Mexico); Mejía-Centeno, Isidro; Navarrete, J.; Nava, N. [Molecular Engineering Program, Mexican Institute of Petroleum, 07730, México, D.F. (Mexico)

    2015-11-30

    Graphical abstract: - Highlights: • Surface acidity of NTs was modified by adding alumina. • Brönsted acid sites remain constant but Lewis acid sites are increased remarkably. • IR characterization by lutidine and pyridine confirms the surface acidity of NTs. • 98% of NO conversion was reached between 380 and 480 °C on NT-5Al. • The boosted surface acidity of NT-Al improves the catalytic activity for SCR-NO. - Abstract: In this study, titanate nanotubes (NT) and titanate nanotubes with alumina (NT-Al) were studied as solid acid catalytic supports to show the relationship between the kind of acidity and catalytic activity. The supports were characterized by XRD, TEM, FTIR, XPS, and tested in the SCR-NO with NH{sub 3}. It was found that the amount of Brönsted acid sites was maintained and the Lewis acid sites were significantly affected by the addition of alumina (1, 3, 5 and 10 wt.%); such acidity was higher than that of the titanate nanotubes (NT) by two-fold. To confirm the formation of titanate nanotubes and titanate nanotubes with alumina, transmission electron microscopy (TEM) was used. X-ray diffraction (XRD) revealed the formation of the H{sub 2}Ti{sub 4}O{sub 9}·H{sub 2}O phase. All NT and NT-Al supports presented catalytic activity to remove NO with NH{sub 3} under lean conditions, confirming the presence of an important amount of Brönsted and Lewis acid sites in both NT and NT-Al supports.

  6. Water adsorption induced in-plane domain switching on BaTiO{sub 3} surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Bai, Y.; Su, Y. J., E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Wang, B. C. [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Multiscale Materials Modelling group, Department of Materials and Engineering, Royal Institute of Technology, SE-10044 Stockholm (Sweden)

    2015-09-07

    In this study, the influences of the adsorption of water molecules on the changes in the atomic and electric structures of BaTiO{sub 3} surface were investigated using ab initio calculation. Water molecules are molecularly and dissociatively adsorbed on the BaTiO{sub 3} surface, which makes electrons transfer from water molecules to the BaTiO{sub 3} surface. The redistribution of electrons in the BaTiO{sub 3} surface layers weakens the Ba-O interactions and strengthens the Ti-O interactions, so that the Ti atom shifts in TiO{sub 2} plane, i.e., an in-plane domain switching. The adsorption of water molecules on BaTiO{sub 3} surfaces also results in a reduction in the surface rumpling.

  7. Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  8. Microwave plasma generation and filtered transport of O{sub 2} (a {sup 1}{delta}{sub g})

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Skip [Air Force Research Laboratory, Mail Stop PRAS, 1950 Fifth Street, WPAFB, OH 45433-7251 (United States); Popovic, Svetozar [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States); Gupta, Manish [Los Gatos Research, Incorporated 67 East Evelyn Ave, Suite 3, Mountain View, CA 94041 (United States)], E-mail: skip.williams@wpafb.af.mil

    2009-08-01

    Singlet oxygen, O{sub 2}(a {sup 1}{delta}{sub g}), is generated using a low pressure, low power continuous microwave discharge operating at 2.45 GHz with a flow of helium seeded with 1-10% molecular oxygen. The absolute concentration of O{sub 2}(a {sup 1}{delta}{sub g}) is measured using off-axis integrated cavity output spectroscopy to probe the Q-branch transition of the (1, 0) band of the b{sup 1}{sigma}{sub g}{sup +}-a{sup 1}{delta}{sub g} Noxon system. In order to remove other energetic species from the flow, the post-discharge flow is passed through a coarse fritted quartz filter. The use of the quartz frit takes advantage of the substantially lower surface sticking probability of O{sub 2}(a {sup 1}{delta}{sub g}) in comparison with other excited species on the flow. Up to 6% of the total oxygen passing through the filter remains in the a {sup 1}{delta}{sub g} state, and absolute densities of 2.5 x 10{sup 14} cm{sup -3} are obtained using this method. This preparation method and transport is important in developing sources of singlet oxygen for kinetic and spectroscopic studies.

  9. Cobalt surface modification during γ-Fe{sub 2}O{sub 3} nanoparticle synthesis by chemical-induced transition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junming [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-01

    In the chemical-induced transition of FeCl{sub 2} solution, the FeOOH/Mg(OH){sub 2} precursor was transformed into spinel structured γ-Fe{sub 2}O{sub 3} crystallites, coated with a FeCl{sub 3}·6H{sub 2}O layer. CoCl{sub 2} surface modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding Co(NO{sub 3}){sub 2} during the synthesis. CoFe{sub 2}O{sub 4} modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding NaOH during the surface modification with Co(NO{sub 3}){sub 2}. The CoFe{sub 2}O{sub 4} layer grew epitaxially on the γ-Fe{sub 2}O{sub 3} crystallite to form a composite crystallite, which was coated by CoCl{sub 2}·6H{sub 2}O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe{sub 2}O{sub 4} and γ-Fe{sub 2}O{sub 3} possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe{sub 2}O{sub 3}-based nanoparticles were related to the grain size. - Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles were synthesized by chemical induced transition. • CoCl{sub 2} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} during synthesization. • CoFe{sub 2}O{sub 4} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} and NaOH. • The magnetism of the nanoparticles is related to the grain size.

  10. Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe{sub 3}O{sub 4}/SiO{sub 2}/NH{sub 2}/PAA/LnF{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin; Lis, Stefan, E-mail: blis@amu.edu.pl

    2016-02-15

    The synthesized magnetite nanoparticles (10–15 nm) were successfully coated with amine modified silica nanoshell, which led to the formation of core/shell type nanostructures (30–50 nm). The as-prepared nanoparticles were surface modified with polyacrylic acid (PAA) via electrostatic interactions of –NH{sub 2} and –COOH groups. Afterwards, the surface PAA molecules acted as complexing agents of the introduced lanthanide (Ln{sup 3+}) ions. Subsequently, the as-prepared nanostructures were surface decorated with luminescent LnF{sub 3} nanoparticles, forming Eu{sup 3+} or Tb{sup 3+} doped Fe{sub 3}O{sub 4}/SiO{sub 2}/NH{sub 2}/PAA/LnF{sub 3} nanomaterials (50–100 nm). The obtained luminescent–magnetic products exhibited simultaneously bright red or green emission under UV lamp irradiation (λ{sub ex}=254 nm), and a response for the applied magnetic field (strong magnet attracts the colloidal particles, dispersed in aqueous medium). After the synthesis, properties of the nanomaterials were investigated by powder X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), infrared spectroscopy (IR) and spectrofluorometry (analysis of excitation/emission spectra and luminescence decay curves). Such advanced nanomaterials can be potentially used in multimodal imaging, targeted therapies and as multifunctional contrast agents, novel luminescent–magnetic tracers, protection of documents, etc. - Highlights: • Luminescent–magnetic nanomaterials Fe{sub 3}O{sub 4}/SiO{sub 2}/NH{sub 2}/PAA/LnF{sub 3} were synthesized. • Core/shell nanostructures were obtained by surface modification of nanoparticles. • Luminescent lanthanide fluoride nanoparticles doped with Eu{sup 3+} and Tb{sup 3+} ions. • Multifunctional core/shell nanostructures exhibited red or green emission. • Nanomaterials formed stable aqueous colloids.

  11. Possible origin of RHIC R{sub out}/R{sub sid} HBT results

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S

    2003-03-10

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R{sub out}/R{sub sid} observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities.

  12. Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus

    Science.gov (United States)

    Abbas, Zaheer; Hasnain, Jafar

    A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.

  13. Experimental investigation on TBAB clathrate hydrate slurry flows in a horizontal tube: Forced convective heat transfer behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Wenji, Song [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Rui, Xiao; Chong, Huang; Shihui, He; Kaijun, Dong; Ziping, Feng [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China)

    2009-11-15

    Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within {+-}20%. (author)

  14. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO<sub>2sub> emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhong [Univ. of Pittsburgh, PA (United States); Chyu, Minking [Univ. of Pittsburgh, PA (United States); Wang, Qing-Ming [Univ. of Pittsburgh, PA (United States)

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO<sub>2sub> measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO<sub>2sub> sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO<sub>2sub> . The sensor frequency change was around 300ppm for pure CO<sub>2sub> . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  15. Control of the Shell Thickness of TiO{sub 2} SiO{sub 2} Particles and Its Surface Functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Junho; Jung, Sung Ho; Lee, Ji Ha; Kwon, Kiyoung; Jung, Jong Hwa [Gyeongsang National Univ., Jinju (Korea, Republic of)

    2013-11-15

    TiO{sub 2} SiO{sub 2} yolk/core shell particles were obtained by a sol-gel polymerization. The shell thickness of TiO{sub 2} SiO{sub 2} can successfully be controlled by sol-gel reaction times. The anatase structure of TiO{sub 2} SiO{sub 2} was more stable than that of TiO{sub 2} particles calcinated at higher temperature. Moreover, acrylate-functionalized TiO{sub 2} SiO{sub 2} particles were also successfully synthesized using the TiO{sub 2} SiO{sub 2} particles as building blocks by copolymerization of trimethoxysilyl groups of MPA with the existing hydroxyl groups on the surface of TiO{sub 2} SiO{sub 2} particles. Furthermore, TEM, EDX, and FTIR studies confirmed that MPA had been successfully grafted to the surface of TiO{sub 2} SiO{sub 2} particles. Finally, we believe that the present results showing the development of surface functionalized particles can be very useful in the fields of various functional applications, and could be extended to more sophisticated hybrid materials.The fabrication of functional hollow particles is of great scientific and technological interest for purposes of applications ranging from drug delivery, coatings, photonic devices, and nanoscale reaction vessels. Various methods, including approaches such as spray drying, emulsion templating techniques, and self-assembly processes, have been described for the preparation of hollow spheres out of latex, metal, and inorganic materials.

  16. Synthesis, surface properties and photocatalytic abilities of semiconductor In{sub 2}Cu{sub 2}O{sub 5} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian; Wan, Yingpeng; Huang, Yanlin [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang, Yaorong, E-mail: yrwang@suda.edu.cn [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Qin, Lin [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2016-12-15

    Highlights: • In{sub 2}Cu{sub 2}O{sub 5} has high absorption in the UV-green and red wavelength region. • The nanoparticles present efficient photocatalytsis under visible light. • The photochemical properties were elucidated on its structure properties. - Abstract: In{sub 2}Cu{sub 2}O{sub 5} photocatalyst was prepared by the sol-gel method which produced worm-like nanoparticles. The X-ray powder diffraction (XRD) measurement and Rietveld structural refinement were applied to elucidate the phase formation and structural properties. The morphological properties of the surfaces were measured by scanning electron microscope (SEM), energy dispersive spectrum (EDS), and transmission electron microscopy (TEM). The nanoparticles present optical absorption from both the host lattices and the d–d transitions of distorted Cu{sup 2+} octahedra in UV–vis light wavelength region. The band-gap of In{sub 2}Cu{sub 2}O{sub 5} photocatalyst is about 2.31 eV. The photocatalytic abilities of In{sub 2}Cu{sub 2}O{sub 5} nanoparticles were verified by photo-degradation of methylene blue (MB) solutions irradiated by visible light. The energy potential and bad structure were discussed. In{sub 2}Cu{sub 2}O{sub 5} nanoparticles have the potential application for the efficient photocatalysis on MB dye solutions.

  17. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Song, P.; Vasyliūnas, V. M., E-mail: paul_song@uml.edu [Space Science Laboratory and Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States)

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  18. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    International Nuclear Information System (INIS)

    Song, P.; Vasyliūnas, V. M.

    2014-01-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models

  19. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs{sub 0.91}Sb{sub 0.09}

    Energy Technology Data Exchange (ETDEWEB)

    Kotane, L M; Comins, J D; Every, A G [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg, Wits 2050 (South Africa); Botha, J R, E-mail: Lesias.Kotane@wits.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs{sub 0.91}Sb{sub 0.09}. The wave speed measurements have been used to determine the room temperature values of the elastic constants C{sub 11}, C{sub 12} and C{sub 44} of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  20. Effects of synthesis conditions on structure and surface properties of SmMn{sub 2}O{sub 5} mullite-type oxide

    Energy Technology Data Exchange (ETDEWEB)

    Thampy, Sampreetha; Ibarra, Venessa; Lee, Yun-Ju [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); McCool, Geoffrey [Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA 94063 (United States); Cho, Kyeongjae [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Hsu, Julia W.P., E-mail: jwhsu@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2016-11-01

    Highlights: • Investigate the effects of calcination temperature and precipitation pH on crystallinity, phase purity, particle size, surface composition, and NO adsorption capacity of SmMn{sub 2}O{sub 5}. • High calcination temperature increases mullite phase purity but decreases specific surface area (SSA). • Mullite phase purity is independent of pH while SSA monotonically increases. • SSA and surface Mn/Sm ratio determine NO uptake. - Abstract: A mixed-phase compound that contains SmMn{sub 2}O{sub 5} mullite-type oxides has been reported to display excellent catalytic activity for nitric oxide (NO) oxidation. Here we investigate the effects of calcination temperature and precipitation pH on structural, physical, chemical, and surface properties of SmMn{sub 2}O{sub 5}. As the calcination temperature increases from 750 °C to 1000 °C, mullite phase purity increases from 74% to 100%, while specific surface area (SSA) decreases from 23.6 m{sup 2}/g to 5.1 m{sup 2}/g with particle size increases correspondingly. Mullite phase purity (87%) is independent of pH between 8.5–10.4, whereas SSA monotonically increases from 12.5 m{sup 2}/g at pH 8.1 to 27.4 m{sup 2}/g at pH 13. X-ray photoelectron spectroscopy (XPS) studies reveal that the surface Mn/Sm ratio is similar to the bulk value and is unaffected by calcination temperature and pH values up to 10.4, whereas sample precipitated at pH 13 is surface-rich in Sm. NO chemisorption studies show that the SSA and surface Mn/Sm ratio determine NO uptake by SmMn{sub 2}O{sub 5} mullite oxides.

  1. Studies of YBa{sub 2}Cu{sub 3}O{sub 6+x} degradation and surface conductivity properties by Scanning Spreading Resistance Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Truchly, Martin, E-mail: martin.truchly@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, Tomas; Krsko, Ondrej; Gregor, Maros; Satrapinskyy, Leonid; Roch, Tomas; Grancic, Branislav; Mikula, Marian [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Dujavova, Agata; Chromik, Stefan [Institute of Electrical Engineering, Slovak Academy of Sciences, 84104 Bratislava (Slovakia); Kus, Peter; Plecenik, Andrej [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2012-12-14

    Local surface conductivity properties and surface degradation of c-axis oriented YBa{sub 2}Cu{sub 3}O{sub 6+x} (YBCO) thin films were studied by Scanning Spreading Resistance Microscopy (SSRM). For the surface degradation studies, the YBCO surface was cleaned by ion beam etching and the SSRM surface conductivity map has been subsequently repeatedly measured over several hours in air and pure nitrogen. Average surface conductivity of the scanned area was gradually decreasing over time in both cases, faster in air. This was explained by oxygen out-diffusion in both cases and chemical reactions with water vapor in air. The obtained surface conductivity images also revealed its high inhomogenity on micrometer and nanometer scale with numerous regions of highly enhanced conductivity compared to the surroundings. Furthermore, it has been shown that the size of these conductive regions considerably depends on the applied voltage. We propose that such inhomogeneous surface conductivity is most likely caused by varying thickness of degraded YBCO surface layer as well as varying oxygen concentration (x parameter) within this layer, what was confirmed by scanning Auger electron microscopy (SAM). In our opinion the presented findings might be important for analysis of current-voltage and differential characteristics measured on classical planar junctions on YBCO as well as other perovskites.

  2. Experimental study on two-phase flow in horizontal duct using a visualization technique; Estudo experimental de escoamentos bifasicos em duto horizontal usando uma tecnica de visualizacao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Livia A.; Tomas, Bruno T.; Cunha Filho, Jurandyr S.; Su, Jian, E-mail: livia.alves.oliveira@gmail.co [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In this paper an experimental study is performed for visualization of water-air two phase flow, stratified and intermittent, in a 51 mm internal diameter circular section horizontal tube. The study consists in filming a water-air mixture passin by a transparent interval of the tube, using a high speed camera. After that, the obtained images are analysed frame after frame and then, data are extracted of weight of gas-liquid interfaces, length and gas bubbles speeds. Then, these data are verified with experimental and theoretical correlations available in the literature

  3. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  4. Sub-µm structured lotus surfaces manufacturing

    DEFF Research Database (Denmark)

    Worgull, Matthias; Heckele, Mathias; Mappes, Timo

    2009-01-01

    . Unlike to stochastic methods, patterning with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g., with gradients). In this paper we present the process chain to realize polymer sub-lm structures with minimum lateral feature size of 400 nm...

  5. Flow over riblet curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  6. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)

    2012-07-01

    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  7. P sub(T)-flow in 100 - 1000 TeV

    International Nuclear Information System (INIS)

    Amato, N.M.; Arata, N.; Maldonado, R.H.C.

    1983-01-01

    It is studied how the flow of transverse momenta (Σ P sub(T) or Σ ER) behaves in multi-particle production phenomena in the region of visible energy 10 -1000 TeV, using the emulsion chamber data of Brazil-Japan Collaboration. (Author) [pt

  8. Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/Cd{sub x}Zn{sub 1-x}S/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Shen Huaibin; Niu Jin Zhong; Xu Shasha; Zhou Changhua; Li Linsong [Key Laboratory for Special Functional Materials, Henan University, Kaifeng 475004 (China); Yuan Hang; Ma Lan, E-mail: malan@sz.tsinghua.edu.cn, E-mail: lsli@henu.edu.cn [Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2011-09-16

    Highly photoluminescent (PL) reverse type-I ZnSe/CdSe nanocrystals (NCs) and ZnSe/CdSe/CdS/Cd{sub x}Zn{sub 1-x}S/ZnS core/multishell NCs were successfully synthesized by a phosphine-free method. By this low-cost, 'green' synthesis route, more than 10 g of high-quality ZnSe/CdSe/CdS/Cd{sub x}Zn{sub 1-x}S/ZnS NCs were synthesized in a large scale synthesis. After the overgrowth of a CdS/Cd{sub x}Zn{sub 1-x}S/ZnS multishell on ZnSe/CdSe cores, the PL quantum yields (QYs) increased from 28% to 75% along with the stability improvement. An amphiphilic oligomer was used as a surface coating agent to conduct a phase transfer experiment, core/multishell NCs were dissolved in water by such surface modification and the QYs were still kept above 70%. The as-prepared water dispersible ZnSe/CdSe/CdS/Cd{sub x}Zn{sub 1-x}S/ZnS core/multishell NCs not only have high fluorescence QYs but also are extremely stable in various physiological conditions. Furthermore, a biosensor system (lateral flow immunoassay system, LFIA) for the detection of human hepatitis B surface antigen (HBsAg) was developed by using this water-soluble core/multishell NCs as a fluorescent label and a nitrocellulose filter membrane for lateral flow. The result showed that such ZnSe/CdSe/CdS/Cd{sub x}Zn{sub 1-x}S/ZnS core/multishell NCs were excellent fluorescent labels to detect HBsAg. The sensitivity of HBsAg detection could reach as high as 0.05 ng ml{sup -1}.

  9. Photoreduction of non-noble metal Bi on the surface of Bi{sub 2}WO{sub 6} for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojing [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); Yu, Shan; Liu, Yang; Zhang, Qian [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China)

    2017-02-28

    Highlights: • Bi{sub 2}WO{sub 6}-Bi composite was synthesized by in situ photoreduction of Bi{sub 2}WO{sub 6}. • Bi{sub 2}WO{sub 6}-Bi exhibits improved photocatalytic efficiency towards degradation of Rhodamine B. • The generation of elemental Bi in Bi{sub 2}WO{sub 6}-Bi induces vacancy and structure distortion of Bi{sub 2}WO{sub 6}. • The surface oxygen adsorption mode changes from hydroxyl group on Bi{sub 2}WO{sub 6} to molecular oxygen on Bi{sub 2}WO{sub 6}-Bi. - Abstract: In this report, Bi{sub 2}WO{sub 6}-Bi composite was prepared through an in situ photoreduction method and was characterized systematically by X-Ray diffraction, transmission electron microscopy, X-Ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The as-prepared Bi{sub 2}WO{sub 6}-Bi maintains the same crystal structure with the pristine Bi{sub 2}WO{sub 6} regardless of some surface defects. Nevertheless, these surface defects result in the change of surface oxygen adsorption mode from hydroxyl to molecular oxygen on Bi{sub 2}WO{sub 6}. Photocatalytic activity over Bi{sub 2}WO{sub 6}-Bi is 2.4 times higher than that of Bi{sub 2}WO{sub 6} towards the degradation of organic dye Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). A deep study shows that cleavage of benzene ring is the main pathway for RhB degradation over Bi{sub 2}WO{sub 6}, but both the benzene cleavage and de-ethylation pathway coexist for RhB decomposition in the presence of Bi{sub 2}WO{sub 6}-Bi as the photocatalyst. Photoelectrochemical study including transient photocurrent tests and electrochemical impedance spectroscopy measurements shows that Bi{sub 2}WO{sub 6}-Bi could facilitate the charge transfer process compared to Bi{sub 2}WO{sub 6}. These data above has indicated a new insight into the promotion mechanism based on Bi related heterostructures.

  10. Surface and interface states of Bi{sub 2}Se{sub 3} thin films investigated by optical second-harmonic generation and terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Hamh, S. Y.; Park, S.-H.; Lee, J. S., E-mail: jsl@gist.ac.kr [Department of Physics and Photon Science, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jerng, S.-K.; Jeon, J. H.; Chun, S. H. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of); Jeon, J. H.; Kahng, S. J. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Yu, K.; Choi, E. J. [Department of Physics, University or Seoul, Seoul 130-743 (Korea, Republic of); Kim, S.; Choi, S.-H. [Department of Applied Physics, College of Applied Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Bansal, N. [Department of Electrical and Computer Engineering, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Oh, S. [Department of Physics and Astronomy, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Park, Joonbum; Kho, Byung-Woo; Kim, Jun Sung [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2016-02-01

    We investigate the surface and interface states of Bi{sub 2}Se{sub 3} thin films by using the second-harmonic generation technique. Distinct from the surface of bulk crystals, the film surface and interface show the isotropic azimuth dependence of second-harmonic intensity, which is attributed to the formation of randomly oriented domains on the in-plane. Based on the nonlinear susceptibility deduced from the model fitting, we determine that the surface band bending induced in a space charge region occurs more strongly at the film interface facing the Al{sub 2}O{sub 3} substrate or capping layer compared with the interface facing the air. We demonstrate that distinct behavior of the terahertz electric field emitted from the samples can provide further information about the surface electronic state of Bi{sub 2}Se{sub 3}.

  11. FINE MAGNETIC STRUCTURE AND ORIGIN OF COUNTER-STREAMING MASS FLOWS IN A QUIESCENT SOLAR PROMINENCE

    International Nuclear Information System (INIS)

    Shen, Yuandeng; Liu, Yu; Xu, Zhi; Liu, Zhong; Liu, Ying D.; Chen, P. F.; Su, Jiangtao

    2015-01-01

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends

  12. Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wiswall, J.T.; Li, J.; Wooldridge, M.S.; Im, H.G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2011-01-15

    A stagnation flow reactor was used to study the effects of platinum on the lean flammability limits of atmospheric pressure premixed methane/air flames at moderate stagnation surface temperatures. Experimental and computational methods were used to quantify the equivalence ratio at the lean extinction limit ({phi}{sub ext}) and the corresponding stagnation surface temperature (T{sub s}). A range of flow rates (57-90 cm/s) and corresponding strain rates were considered. The results indicate that the gas-phase methane/air flames are sufficiently strong relative to the heterogeneous chemistry for T{sub s} conditions less than 750 K that the platinum does not affect {phi}{sub ext}. The computational results are in good agreement with the experimentally observed trends and further indicate that higher reactant flow rates (>139 cm/s) and levels of dilution (>{proportional_to}10% N{sub 2}) are required to weaken the gas-phase flame sufficiently for surface reaction to play a positive role on extending the lean flammability limits. (author)

  13. Adiabatic gas-liquid flow

    International Nuclear Information System (INIS)

    Mayinger, F.

    1982-01-01

    The author starts by discussing the gas-fluidic mixture, its application and its special characteristics. The conservation theorems for these mixtures are then presented, including the continuity equation, the impulse equation, and energy balance. The type of flow in vertical channels, vertical downwards flow and flow in horizontal and inclined tubes is discussed followed by a short section on local volumetric steam contents and slip. The expressions for the slip and for the local volumetric steam contents are explained before discussing phase separation in nonflowing fluids. Pressure loss in tubes and channels is followed by discussion of pressure loss in various types of moulded bodies with particular reference to fuel rod bundles. In conclusion the author discusses pressure wave expansion, critical discharge and cross exchange in sub-divided channels. (A.N.K.)

  14. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  15. Sub-µ structured Lotus Surfaces Manufacturing

    DEFF Research Database (Denmark)

    Worgull, Matthias; Heckele, Mathias; Mappes, Timo

    2008-01-01

    . Unlike to stochastic methods, patternin¬g with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g. with gradients). In this paper we present the process chain to realize polymer sub-micro structures with minimum lateral feature size of 400 nm...

  16. Metastable atomic species in the N{sub 2} flowing afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Levaton, J. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.br [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil)

    2012-03-13

    Graphical abstract: Calculated N({sup 4}S), N({sup 2}D) and N({sup 2}P) absolute densities as a function of the afterglow time. Highlights: Black-Right-Pointing-Pointer Nitrogen flowing post-discharge. Black-Right-Pointing-Pointer N({sup 4}S) and N({sup 2}D) densities. Black-Right-Pointing-Pointer Kinetic numerical model of the nitrogen afterglow. - Abstract: We have studied by optical emission spectroscopy the post-discharge of a pure N{sub 2} DC flowing discharge in such experimental conditions that the pink afterglow and the Lewis-Rayleigh afterglow occur. The emission profiles originated from the N{sub 2}(B{sup 3}{Pi}{sub g}), N{sub 2}(C{sup 3}{Pi}{sub u}) and N{sub 2}{sup +}(B{sup 2}{Sigma}{sub u}{sup +}) states and the N{sub 2}(B{sup 3}{Pi}{sub g},6{<=}v{<=}12) and N{sub 2}(C{sup 3}{Pi}{sub u},0{<=}v{<=}4) vibrational distributions were obtained in the post-discharge region. With basis on the works of Bockel et al. [S. Bockel, A.M. Diamy, A. Ricard, Surf. Coat. Tech. 74 (1995) 474] and Amorim and Kiohara [J. Amorim, V. Kiohara, Chem. Phys. Lett. 385 (2004) 268], we have obtained the experimental N({sup 4}S) and N({sup 2}D) relative densities along the post-discharge. A numerical model, previously developed to describe the neutral atomic, molecular and ionic species in the afterglow, was improved to include the kinetics of N({sup 2}D) and N({sup 2}P) states. Several kinetic mechanisms leading to the production of N({sup 2}D) in the post-discharge have been studied in order to explain the experimental data. We have determined that the dominant one is the reaction N{sub 2}(X{sup 1}{Sigma}{sub g}{sup +},v>8)+N({sup 4}S){yields}N{sub 2}(X{sup 1}{Sigma}{sub g}{sup +})+N({sup 2}D) with an estimated rate constant of 7 Multiplication-Sign 10{sup -14} cm{sup 3} s{sup -1}. Also, the fit of the numerical density profiles of N{sub 2}(C{sup 3}{Pi}{sub u}) and N{sub 2}{sup +}(B{sup 2}{Sigma}{sub u}{sup +}) to the experimental ones has provided the rate constant for reaction

  17. Superparamagnetic behavior of nanosized Co{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} synthesized by a flow rate controlled chemical coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Dey, S. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Dey, S.K. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Department of Physics, NITMAS, 24 Pargana(s) 743368 (India); Majumder, S. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Poddar, A.; Dasgupta, P.; Banerjee, S. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Kumar, S., E-mail: kumars@phys.jdvu.ac.in [Department of Physics, Jadavpur University, Kolkata 700032 (India)

    2014-09-01

    We have studied the structural, microstructural and magnetic properties of nanosized (∼20 nm) Co{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} synthesized by a flow rate controlled coprecipitation method. The phase purity and crystallinity of the sample have been confirmed by powder X-ray diffraction and high resolution transmission electron microscopic studies. According to the results of dc magnetic measurements the sample exhibits superparamagnetic behavior above 70 K due to its nanometric size. This has been corroborated by Mössbauer spectroscopic study at 300 K. The infield Mössbauer spectroscopic study indicates that the sample behaves ferrimagnetically at 10 K and it possesses equilibrium cation distribution. The saturation magnetization of the sample (M{sub SAT}∼32 emu g{sup −1} at 300 K) is substantially lower than its bulk counterpart (M{sub SAT}=80 emu g{sup −1}) but higher than those having same composition synthesized by the conventional coprecipitation method. This has been attributed to finite size and spin canting effects as well as good crystalline character and bulk like equilibrium cation distribution of the sample. We have shown that the flow rate controlled coprecipitation method can produce nanosized ferrites with very good crystalline order and equilibrium cation distribution but they exhibit reduction of magnetization, magnetic order and ordering temperature compared to their bulk counterparts due to spin canting effect and finite size effect.

  18. Effect of sulfation on the surface activity of CaO for N{sub 2}O decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lingnan, E-mail: wulingnan@126.com [School of Energy, Power and Mechanical Engineering, North China Electric Power University, 102206 Beijing (China); National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Hu, Xiaoying, E-mail: huxy@ncepu.edu.cn [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Qin, Wu, E-mail: qinwugx@126.com [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Dong, Changqing, E-mail: cqdong1@163.com [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Yang, Yongping, E-mail: yypncepu@163.com [School of Energy, Power and Mechanical Engineering, North China Electric Power University, 102206 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • Sulfation of CaO (1 0 0) surface greatly deactivates its surface activity for N{sub 2}O decomposition. • An increase of sulfation degree leads to a decrease of CaO surface activity for N{sub 2}O decomposition. • Sulfation from CaSO{sub 3} into CaSO{sub 4} is the crucial step for deactivating the surface activity for N{sub 2}O decomposition. • The electronic interaction CaO (1 0 0)/CaSO{sub 4} (0 0 1) interface is limited to the bottom layer of CaSO{sub 4} (0 0 1) and the top layer of CaO (1 0 0). • CaSO{sub 4} (0 0 1) and (0 1 0) surfaces show negligible catalytic ability for N{sub 2}O decomposition. - Abstract: Limestone addition to circulating fluidized bed boilers for sulfur removal affects nitrous oxide (N{sub 2}O) emission at the same time, but mechanism of how sulfation process influences the surface activity of CaO for N{sub 2}O decomposition remains unclear. In this paper, we investigated the effect of sulfation on the surface properties and catalytic activity of CaO for N{sub 2}O decomposition using density functional theory calculations. Sulfation of CaO (1 0 0) surface by the adsorption of a single gaseous SO{sub 2} or SO{sub 3} molecule forms stable local CaSO{sub 3} or CaSO{sub 4} on the CaO (1 0 0) surface with strong hybridization between the S atom of SO{sub x} and the surface O anion. The formed local CaSO{sub 3} increases the barrier energy of N{sub 2}O decomposition from 0.989 eV (on the CaO (1 0 0) surface) to 1.340 eV, and further sulfation into local CaSO{sub 4} remarkably increases the barrier energy to 2.967 eV. Sulfation from CaSO{sub 3} into CaSO{sub 4} is therefore the crucial step for deactivating the surface activity for N{sub 2}O decomposition. Completely sulfated CaSO{sub 4} (0 0 1) and (0 1 0) surfaces further validate the negligible catalytic ability of CaSO{sub 4} for N{sub 2}O decomposition.

  19. The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder

    Science.gov (United States)

    Juliyanto, Bagus; Widodo, Basuki; Imron, Chairul

    2018-04-01

    The purpose of this research is to study the effect of heat generation on mixed convection flow on Nano fluids over a horizontal circular cylinder of a heated in two dimension form. A stream of fluids are steady and incompressible, a stream flowing vertically upwards for circular cylinder and the boundary layer at the stagnation point. Three different types of nanoparticles considered are Cu, Al2O3, and TiO2. Mixed convection flow in Nano fluids on the surface of a circular cylinder will cause the boundary layer. The governing boundary layer equations are transformed into a non-dimensional form, and then the non-dimensional forms are transformed into a similar boundary equations by using stream function. Furthermore, an implicit finite-difference scheme known as the Keller-box method is applied to solve numerically the resulting similar boundary layer equations. The result of the research by varying the non-dimensional parameters are mixed convection, Prandtl number, nanoparticle volume fraction, heat generation, and radius of a cylinder are as follows. First, the velocity profile increase and temperature profile decrease when mixed convection parameter increase. Second, the velocity and temperature profiles decrease when Prandtl number parameter increase. Third, the velocity profile with the variation of nanoparticle volume fraction (χ) is increased when the value of χ is 0,1 ≤ χ ≤ 0,15 and the velocity profile decreases when the value of χ is 0,19 ≤ χ ≤ 0,5 while the temperature profile is increasing when the value of χ is 0,1 ≤ χ ≤ 0,5. Fourth, the velocity and temperature profiles increase when heat generation and the radius of the cylinder increase. The last, Cu, Al 2 O 3, and TiO 2 nanoparticles produce the same velocity and temperature profiles, but the three types of nanoparticles are different at the velocity and temperature values.

  20. Horizontal and Vertical Rule Bases Method in Fuzzy Controllers

    OpenAIRE

    Aminifar, Sadegh; bin Marzuki, Arjuna

    2013-01-01

    Concept of horizontal and vertical rule bases is introduced. Using this method enables the designers to look for main behaviors of system and describes them with greater approximations. The rules which describe the system in first stage are called horizontal rule base. In the second stage, the designer modulates the obtained surface by describing needed changes on first surface for handling real behaviors of system. The rules used in the second stage are called vertical rule base. Horizontal...

  1. Piezoelectric Ca{sub 3}NbGa{sub 3}Si{sub 2}O{sub 14} crystal: crystal growth, piezoelectric and acoustic properties

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry; Emelin, Evgenii [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials, Chernogolovka, Moscow District (Russian Federation); National University of Science and Technology MISiS, Moscow (Russian Federation); Ortega, Luc [Univ. Paris-Sud, CNRS, UMR 8502, Laboratoire de Physique des Solides, Orsay Cedex (France); Plotitcyna, Olga; Irzhak, Dmitry [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials, Chernogolovka, Moscow District (Russian Federation); Erko, Alexei; Zizak, Ivo; Vadilonga, Simone [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Nanometre Optics and Technology, Berlin (Germany); Buzanov, Oleg [FOMOS Materials Co., Moscow (Russian Federation); Leitenberger, Wolfram [Universitaet Potsdam Institut fuer Physik, Potsdam (Germany)

    2016-08-15

    Ca{sub 3}NbGa{sub 3}Si{sub 2}O{sub 14} (CNGS), a five-component crystal of lanthanum-gallium silicate group, was grown by the Czochralski method. The parameters of the elementary unit cell of the crystal were measured by powder diffraction. The independent piezoelectric strain coefficients d{sub 11} and d{sub 14} were determined by the triple-axis X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves (SAW) were studied by high-resolution X-ray diffraction at BESSY II synchrotron radiation source. The velocity of SAW propagation and power flow angles in the Y-, X- and yxl/+36 {sup circle} -cuts of the CNGS crystal were determined from the analysis of the diffraction spectra. The CNGS crystal was found practically isotropic by its acoustic properties. (orig.)

  2. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    specified directly or calculated as a function of the simulated wetted perimeter and defined reach bed hydraulic properties, or as a weighted combination of both reach bed hydraulic properties and horizontal hydraulic conductivity. Each reach can be explicitly coupled to a single specific groundwater-model layer or coupled to multiple groundwater-model layers based on the reach geometry and groundwater-model layer elevations in the row and column containing the reach. Surface-water flow between reservoirs is simulated using control structures. Surface-water flow between reaches, simulated by the diffusive-wave approximation, can also be simulated using control structures. A variety of control structures have been included in the SWR1 Process and include (1) excess-volume structures, (2) uncontrolled-discharge structures, (3) pumps, (4) defined stage-discharge relations, (5) culverts, (6) fixed- or movable-crest weirs, and (7) fixed or operable gated spillways. Multiple control structures can be implemented in individual reaches and are treated as composite flow structures. Solution of the continuity equation at the reach-group scale (a single reach or a user-defined collection of individual reaches) is achieved using exact Newton methods with direct solution methods or exact and inexact Newton methods with Krylov sub-space methods. Newton methods have been used in the SWR1 Process because of their ability to solve nonlinear problems. Multiple SWR1 time steps can be simulated for each MODFLOW time step, and a simple adaptive time-step algorithm, based on user-specified rainfall, stage, flow, or convergence constraints, has been implemented to better resolve surface-water response. A simple linear- or sigmoid-depth scaling approach also has been implemented to account for increased bed roughness at small surface-water depths and to increase numerical stability. A line-search algorithm also has been included to improve the quality of the Newton-step upgrade vector, if possible

  3. Effect of ion irradiation on surface morphology and superconductivity of BaFe{sub 2}(As{sub 1−x}P{sub x}){sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Daghero, D., E-mail: dario.daghero@polito.it [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Tortello, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Gozzelino, L. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino (Italy); Gonnelli, R.S. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Hatano, T.; Kawaguchi, T.; Ikuta, H. [Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603 (Japan)

    2017-02-15

    Highlights: • Epitaxial films of BaFe{sub 2}(As,P){sub 2} at optimal doping on MgO substrate have been irradiated by 250 MeV Au ions with different fluences. • Irradiation induces a partial relaxation of the in-plane tensile stress typical of the pristine films. • The residual resistivity increases less than linearly with fluence, tending to saturate; the overall increase is about 60%, but the critical temperature decreases by only 2%. • These results indicate that the substrate and the reduced dimensionality of the films (as compared to the case of single crystals) play an important role in their response to irradiation. - Abstract: We have irradiated epitaxial thin films of BaFe{sub 2}(As{sub 1−x}P{sub x}){sub 2} with x ≃ 0.2 (optimal doping) with Au ions having an energy of 250 MeV. We have used two different fluences, Φ{sub 1} = 2.4 × 10{sup 11} cm{sup −2} and Φ{sub 2} = 7.3 × 10{sup 11} cm{sup −2}, and we have studied the effects of irradiation on the surface morphology, on the resistivity and on the critical temperature. We have found that irradiation progressively destroys the very clear and interconnected growth terraces typical of the pristine surface, leading first to their smoothening – accompanied by the appearance of localized defects – and then to a completely disordered surface. The residual resistivity increases by almost 60%, but the critical temperature decreases very little (i.e. by about 2%) on going from the pristine film to the most irradiated one. The possible role of the substrate in these results is discussed.

  4. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1993-03-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. A comparison between numerical calculations using commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degree C and 23 degree C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower for the low and medium heat dissipation levels, but higher at the high heat dissipation. The temperature differences are 1 degree C and 6 degree C for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degree C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects will be increasingly important as the amount of dissipated heat increases

  5. Video imaging measurement of interfacial wave velocity in air-water flow through a horizontal elbow

    Science.gov (United States)

    Al-Wazzan, Amir; Than, Cheok F.; Moghavvemi, Mahmoud; Yew, Chia W.

    2001-10-01

    Two-phase flow in pipelines containing elbows represents a common situation in the oil and gas industries. This study deals with the stratified flow regime between the gas and liquid phase through an elbow. It is of interest to study the change in wave characteristics by measuring the wave velocity and wavelength at the inlet and outlet of the elbow. The experiments were performed under concurrent air-water stratified flow in a horizontal transparent polycarbonate pipe of 0.05m diameter and superficial air and water velocities up to 8.97 and 0.0778 m/s respectively. A non-intrusive video imaging technique was applied to capture the waves. For image analysis, a frame by frame direct overlapping method was used to detect for pulsating flow and a pixel shifting method based on the detection of minimum values in the overlap function was used to determine wave velocity and wavelength. Under superficial gas velocity of less than 4.44 m/s, the results suggest a regular pulsating outflow produced by the elbow. At higher gas velocities, more random pulsation was found and the emergence of localized interfacial waves was detected. Wave velocities measured by this technique were found to produce satisfactory agreement with direct measurements.

  6. Large-eddy-simulation approach in understanding flow structures of 2D turbulent density currents over sloping surfaces

    Science.gov (United States)

    Nayamatullah, M.; Rao Pillalamarri, Narasimha; Bhaganagar, Kiran

    2018-04-01

    A numerical investigation was performed to understand the flow dynamics of 2D density currents over sloping surfaces. Large eddy simulation was conducted for lock-exchange (L-E) release currents and overflows. 2D Navier-Stokes equations were solved using the Boussinesq approximation. The effects of the lock aspect-ratio (height/length of lock), slope, and Reynolds number on the flow structures and turbulence mixing have been analyzed. Results have confirmed buoyancy within the head of the two-dimensional currents is not conserved which contradicts the classical thermal theory. The lock aspect-ratio dictates the fraction of initial buoyancy which is carried by the head of the current at the beginning of the slumping (horizontal) and accelerating phase (over a slope), which has important implications on turbulence kinetic energy production, and hence mixing in the current. For L-E flows over a slope, increasing slope angle enhances the turbulence production. Increasing slope results in shear reversal within the density current resulting in shear-instabilities. Differences in turbulence production mechanisms and flow structures exist between the L-E and constant-flux release currents resulting in significant differences in the flow characteristics between different releases.

  7. Experimental studies of flooding in nearly horizontal pipes

    International Nuclear Information System (INIS)

    Choi, Ki Yong

    1993-02-01

    To investigate the flooding phenomenon in nearly horizontal pipes the experimental studies are performed in the facility with the length of 2160mm, with three different inner diameters of 40mm, 60mm, and 70mm, and with the various inclination angles. Air and water approximately at room temperature and at atmospheric pressure are used as test fluids. The local void factions are measured by the three conductance probes located at the inlet, middle, and exit of water flow, respectively. Two mechanisms governing the transition to flooding are proposed. The effects of pipe end geometry, pipe diameter, and inclination angle are investigated and the comparisons with the slug formation models are conducted. It is found in this study that the transition to flooding is originated from two mechanisms i.e. 'wave instability' and 'high head flooding', and two regions (sub-critical and super-critical) coexist if the air flow increases up to a criticalvalue. It is observed that large roll waves are grown to the critical amplitude in the sub-critical region, does not show any dustive growth phenomenon. When the void fraction in the sub-critical region is used as the parameter for the flooding criterion, Ishii's slug formation model predicts the data without systematid errors. On the other hand, when the voide fraction in the super-critical region is selected as the parameter, Taitel's slug formation model best fitsthe data. Data obtained in the condition of high head flooding are not in good agreement with the results predicted by the slug formation models. Also, the transition criterion to the onset of flooding is very sensitive to the inclination angle, and the effect of pipe end geometry on the onset of flooding is negligible

  8. Passivation of the surfaces of single crystal gadolinium molybdate (Gd/sub 2/(MoO/sub 4/)/sub 3/) against attack by hydrofluoric acid by inert ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, A; Cross, L E; Tongson, L [Pennsylvania State Univ., University Park (USA). Materials Research Lab.

    1978-01-01

    The passivation effect from inert ion beam bombardment has been studied on a ferroelectric surface. The mechanism in these materials may have some additional contributions because of the polarization charges of the domains and the dipole effect (ion beam and surface species) on the surfaces. For these studies Gd/sub 2/(MoO/sub 4/)/sub 3/ (GMO) crystals were selected. Two possible mechanisms of passivation of GMO surfaces when bombarded with ion beams are discussed.

  9. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  10. Quantification of the dry aeolian deposition of dust on horizontal surfaces: an experimental comparison of theory and measurements

    NARCIS (Netherlands)

    Goossens, D.

    2005-01-01

    Eight techniques to quantify the deposition of aeolian dust on horizontal surfaces were tested in a wind tunnel. The tests included three theoretical techniques and five measurement techniques. The theoretical techniques investigated were: the gradient technique, the inferential technique without

  11. Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream

    Science.gov (United States)

    Dunkerley, David; Brown, Kate

    1999-08-01

    The behaviour of a discrete sub-bank-full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank-full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank-full stage, and be higher in both sub-bank-full and overbank flows. Factors contributing to enhanced flow loss in the sub-bank-full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments.

  12. Magnetohydrodynamics effect on three-dimensional viscous incompressible flow between two horizontal parallel porous plates and heat transfer with periodic injection/suction

    Directory of Open Access Journals (Sweden)

    R. C. Chaudhary

    2004-11-01

    Full Text Available We investigate the hydromagnetic effect on viscous incompressible flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the fluid at the stationary plate and its corresponding removal by periodic suction through the plate in uniform motion. The flow becomes three dimensional due to this injection/suction velocity. Approximate solutions are obtained for the flow field, the pressure, the skin-friction, the temperature field, and the rate of heat transfer. The dependence of solution on M (Hartmann number and λ (injection/suction is investigated by the graphs and tables.

  13. Sub-surface defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Huda Abdullah; Abdul Razak Hamzah; Wan Saffiey Wan Abdullah; Ibrahim Ahmad; Vavilov, Vladimir

    2009-04-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 k Watt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with thermo fit TM Pro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔT max and the time of its appearance, τ max (ΔT). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔT max ), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defect area at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (author)

  14. Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?

    Science.gov (United States)

    Pandey, B. P.

    2018-05-01

    In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.

  15. Hydrogen dissociation and incorporation on Mg{sub 17}Al{sub 12}(100) surface: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Hua [Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Zhou, Zhiyan; Zhang, Ziyan [Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Zhou, Wenzheng; Li, Guangxu [Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Guo, Jin, E-mail: guojin@gxu.edu.cn [Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2017-02-28

    Highlights: • Hydrogen adsorption, dissociation, and penetration on (in) Mg{sub 17}Al{sub 12} (100) surface are studied. • Hydrogen molecules are dissociated on the surface with barrier of 0.63 eV. • The maximum barrier energy for atomic hydrogen penetration into the subsurface is ∼0.7 eV. • The hybridization between the s orbital of H and the s orbitals of Mg is major. - Abstract: Hydrogen adsorption, dissociation, and penetration on (in) Mg{sub 17}Al{sub 12} (100) surface are studied extensively by DFT total-energy calculations. The adsorption geometries, dissociation barriers, various diffusion pathways, penetrative processes, and electronic structures were investigated. Results show that the atomic and molecular hydrogen forms prefer to be adsorbed on the Mg3-Mg3 bridge sites (C sites). Hydrogen molecules are dissociated on the surface with the minimum barrier energy of 0.63 eV. There are two stages in the process of hydrogen incorporation, which are hydrogen diffusion on the surface and the penetration from the surface into the subsurface. Two possible pathways of atomic hydrogen penetration from surface into subsurface are found. The calculations of electronic structures show that the hybridization between the s orbital of H and the s orbitals of Mg is major. The Mg-Mg bond on the outmost surface is shortened from 4.48 Å to 3.30 Å after the hydrogen adsorption on C sites, showing the strong interaction between Mg and H atoms.

  16. Study on the sweep gas effect on the surface of Li{sub 4}SiO{sub 4} by means of work function measurement

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ. (Japan)

    1998-03-01

    In the establishment of fuel cycle of tritium, it is important to make research on how the sweep gas composition affects the surface properties of breeder materials and the release of tritium from the surface of them. In this study, the change of contact potential difference (CPD) between Li{sub 4}SiO{sub 4} and Pt was measured in various gas compositions with a high temperature Kelvin probe. The work function change of Li{sub 4}SiO{sub 4} was obtained from the measured CPD and the work function change of Pt which was estimated from blank tests. From the results, the effect of oxygen deficient layer near the surface of Li{sub 4}SiO{sub 4} was observed, and the effect of OH{sup -} at the surface of Li{sub 4}SiO{sub 4} was considered. (author)

  17. Surface modelling on heavy atom crystalline compounds: HfO{sub 2} and UO{sub 2} fluorite structures

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, Robert [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Prospect, Peterhof, St. Petersburg 198504 (Russian Federation)], E-mail: re1973@re1973.spb.edu; Bandura, Andrei; Blokhin, Eugeny [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Prospect, Peterhof, St. Petersburg 198504 (Russian Federation)

    2009-01-15

    The study of the bulk and surface properties of cubic (fluorite structure) HfO{sub 2} and UO{sub 2} was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO{sub 2} differ from those found for other metal oxides with the closed-shell configuration of d-electrons.

  18. Examination of the effect of blowing on the near-surface flow structure over a dimpled surface

    Science.gov (United States)

    Borchetta, C. G.; Martin, A.; Bailey, S. C. C.

    2018-03-01

    The near surface flow over a dimpled surface with flow injection through it was documented using time-resolved particle image velocimetry. The instantaneous flow structure, time-averaged statistics, and results from snapshot proper orthogonal decomposition were used to examine the coherent structures forming near the dimpled surface. In particular, the modifications made to the flow structures by the addition of flow injection through the surface were studied. It was observed that without flow injection, inclined flow structures with alternating vorticity from neighboring dimples are generated by the dimples and advect downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection was introduced through the surface, the flow structures became more disorganized, but some of the features of the semi-periodic structures observed without flow injection were preserved. The structures with flow injection appear in multiple wall-normal layers, formed from vortical structures shed from upstream dimples, with a corresponding increase in the size of the advecting structures. As a result of the more complex flow field observed with flow injection, there was an increase in turbulent kinetic energy and Reynolds shear stress, with the Reynolds shear stress representing an increase in vertical transport of momentum by sweeping and ejecting motions that were not present without flow injection.

  19. Polygon formation and surface flow on a rotating fluid surface

    DEFF Research Database (Denmark)

    Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.

    2011-01-01

    We present a study of polygons forming on the free surface of a water flow confined to a stationary cylinder and driven by a rotating bottom plate as described by Jansson et al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the case of a triangular structure, either completely...... there the symmetry breaking proceeds like a low-dimensional linear instability. We show that the circular state and the unstable manifold connecting it with the polygon solution are universal in the sense that very different initial conditions lead to the same circular state and unstable manifold. For a wet triangle......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re...

  20. Anisotropic-strain-relaxation-induced crosshatch morphology in epitaxial SrTiO{sub 3}/NdGaO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tan, X. L.; Chen, F.; Chen, P. F.; Xu, H. R.; Chen, B. B.; Jin, F.; Gao, G. Y.; Wu, W. B., E-mail: wuwb@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230026 (China)

    2014-10-15

    We investigate the strain relaxation and surface morphology of epitaxial SrTiO{sub 3} (STO) films grown on (001){sub O} and (110){sub O} planes of orthorhombic NdGaO{sub 3} (NGO), and (001) plane of cubic (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates. Although the average lattice mismatches are similar, strikingly regular crosshatched surface patterns can be found on STO/NGO(001){sub O}[(110){sub O}] films, contrary to the uniform surface of STO/LSAT(001). Based on the orientation and thickness dependent patterns and high-resolution x-ray diffractions, we ascribe the crosshatch morphology to the anisotropic strain relaxation with possibly the 60° misfit dislocation formation and lateral surface step flow in STO/NGO films, while an isotropic strain relaxation in STO/LSAT. Further, we show that the crosshatched STO/NGO(110){sub O} surface could be utilized as a template to modify the magnetotransport properties of epitaxial La{sub 0.6}Ca{sub 0.4}MnO{sub 3} films. This study highlights the crucial role of symmetry mismatch in determining the surface morphology of the perovskite oxide films, in addition to their epitaxial strain states, and offers a different route for designing and fabricating functional perovskite-oxide devices.