WorldWideScience

Sample records for homogenously nucleated dislocations

  1. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...... or shrink by accretion or evaporation of monomers only but also by an exponentially declining change in cluster size per time step equal to the cluster distribution in the supersaturated gas....

  2. Homogenization of dislocation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    El Hajj, Ahmad; Ibrahim, Hassan; Monneau, Regis, E-mail: elhajj@cermics.enpc.fr, E-mail: ibrahim@cermics.enpc.fr, E-mail: monneau@cermics.enpc.fr [CERMICS, ENPC, 6 and 8 avenue Blaise Pascal, Cite Descartes, Champs sur Marne, 77455 Marne-la-Valle Cedex 2 (France)

    2009-07-15

    In this paper we consider the dynamics of dislocations with the same Burgers vector, contained in the same glide plane, and moving in a material with periodic obstacles. We study two cases: i) the particular case of parallel straight dislocations and ii) the general case of curved dislocations. In each case, we perform rigorously the homogenization of the dynamics and predict the corresponding effective macroscopic elasto-visco-plastic flow rule.

  3. Homogeneous crystal nucleation in polymers

    Science.gov (United States)

    Schick, C.; Androsch, R.; Schmelzer, J. W. P.

    2017-11-01

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 106 K s-1, allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  4. Homogeneous nucleation of magnesium hydroxide.

    Science.gov (United States)

    Klein, D H; Smith, M D; Driy, J A

    1967-08-01

    The rate of homogeneous nucleation of magnesium hydroxide has been determined as a function of solution concentration, using a quasi-homogeneous precipitation technique and electronic particle counting. The nucleation rate becomes measurable at super-saturations of about 4, and is dependent on the 33rd power of the product aMgaOH(2). The experimental results are consistent with nucleation theory. The nucleus-solution interfacial energy is calculated to be 115 erg/cm(2).

  5. Homogeneous nucleation and the Ostwald step rule

    NARCIS (Netherlands)

    Wolde, P.R. ten; Frenkel, D.

    1999-01-01

    We compare the pathways for homogeneous nucleation in a number of different systems. In most cases, the simulations show that the nucleation pathways are markedly different from what is assumed in classical nucleation theory. We find that homogeneous nucleation exhibits, at the microscopic level,

  6. Dislocation nucleation facilitated by atomic segregation

    Science.gov (United States)

    Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; Zakharov, Dmitri; Wiezorek, Jörg M. K.; Su, Dong; Yin, Qiyue; Li, Jonathan; Liu, Zhenyu; Stach, Eric A.; Yang, Judith C.; Qi, Liang; Wang, Guofeng; Zhou, Guangwen

    2018-01-01

    Surface segregation--the enrichment of one element at the surface, relative to the bulk--is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.

  7. An analysis of dislocation nucleation near a free surface

    NARCIS (Netherlands)

    Liu, Yufu; Van der Giessen, Erik; Needleman, Alan

    2007-01-01

    Molecular dynamics analyses of defect-free aluminum single crystals subject to bending are carried out to investigate dislocation nucleation from free surfaces. A principal aim of the analyses is to provide background for the development of dislocation nucleation criteria for use in discrete

  8. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.

    2017-08-01

    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  9. Dislocation nucleation and vacancy formation during high-speed deformation of fcc metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2001-01-01

    dislocation densities in the foils after deformation. This was interpreted as evidence for a new dislocation-free deformation mechanism, resulting in a very high vacancy production rate. In this paper we investigate this proposition using large-scale computer simulations of bulk and thin films of copper....... The dislocations are nucleated as single Shockley partials. The large stresses required before dislocations are nucleated result in a very high dislocation density, and therefore in many inelastic interactions between the dislocations. These interactions create vacancies and a very large vacancy concentration...

  10. Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles

    Science.gov (United States)

    Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.

  11. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.

    Science.gov (United States)

    Li, Xiaoyan; Wei, Yujie; Lu, Lei; Lu, Ke; Gao, Huajian

    2010-04-08

    In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries and other obstacles. For nanostructured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle, because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.

  12. Homogeneous Nucleation of Methane Hydrate in Microsecond Molecular Dynamics Simulations.

    Science.gov (United States)

    Sarupria, Sapna; Debenedetti, Pablo G

    2012-10-18

    We report atomistically detailed molecular dynamics simulations of homogeneous nucleation of methane hydrate in bulk aqueous phase in the absence of any interface. Subcritical clusters of water and methane molecules are formed in the initial segment of the simulations, which then aggregate to give the critical hydrate nucleus. This occurs over time scales of several hundred nanoseconds, indicating that the formation and aggregation of subcritical clusters can contribute significantly to the overall rate of hydrate nucleation. The clusters have elements of sI hydrate structure, such as 5(12) and 5(12)6(2) cages as well as other uncommon 5(12)6(3) and 5(12)6(4) cages, but do not possess long-range order. Clusters are dynamic in nature and undergo continuous structural rearrangements.

  13. Dislocation Nucleation on Grain Boundaries: Low Angle Twist and Asymmetric Tilt Boundaries

    Directory of Open Access Journals (Sweden)

    Erman Guleryuz

    2016-07-01

    Full Text Available We investigate the mechanisms of incipient plasticity at low angle twist and asymmetric tilt boundaries in fcc metals. To observe plasticity of grain boundaries independently of the bulk plasticity, we simulate nanoindentation of bicrystals. On the low angle twist boundaries, the intrinsic grain boundary (GB dislocation network deforms under load until a dislocation segment compatible with glide on a lattice slip plane is created. The half loops are then emitted into the bulk of the crystal. Asymmetric twist boundaries considered here did not produce bulk dislocations under load. Instead, the boundary with a low excess volume nucleated a mobile GB dislocation and additional GB defects. The GB sliding proceeded by motion of the mobile GB dislocation. The boundary with a high excess volume sheared elastically, while bulk-nucleated dislocations produced plastic relaxation.

  14. Homogeneous nucleation in liquid nitrogen at negative pressures

    Energy Technology Data Exchange (ETDEWEB)

    Baidakov, V. G., E-mail: baidakov@itp.uran.ru; Vinogradov, V. E.; Pavlov, P. A. [Russian Academy of Sciences, Institute of Thermal Physics, Ural Branch (Russian Federation)

    2016-10-15

    The kinetics of spontaneous cavitation in liquid nitrogen at positive and negative pressures has been studied in a tension wave formed by a compression pulse reflected from the liquid–vapor interface on a thin platinum wire heated by a current pulse. The limiting tensile stresses (Δp = p{sub s}–p, where p{sub s} is the saturation pressure), the corresponding bubble nucleation frequencies J (10{sup 20}–10{sup 22} s{sup –1} m{sup –3}), and temperature induced nucleation frequency growth rate G{sub T} = dlnJ/dT have been experimentally determined. At T = 90 K, the limiting tensile stress was Δp = 8.3 MPa, which was 4.9 MPa lower than the value corresponding to the boundary of thermodynamic stability of the liquid phase (spinodal). The measurement results were compared to classical (homogeneous) nucleation theory (CNT) with and without neglect of the dependence of the surface tension of critical bubbles on their dimensions. In the latter case, the properties of new phase nuclei were described in terms of the Van der Waals theory of capillarity. The experimental data agree well with the CNT theory when it takes into account the “size effect.”.

  15. Metal-Nonmetal Transition and Homogeneous Nucleation of Mercury Vapour

    Science.gov (United States)

    Uchtmann, H.; Rademann, K.; Hensel, F.

    The paper presents ionization potentials of mercury clusters obtained by photoelectron spectroscopy which provide evidence that a size-dependent gradual transition from van der Waals-type to metallic interaction occurs in Hgx-clusters for × > 13. In order to probe the role of this nonmetal to metal transition in the homogeneous nucleation process of supersaturated mercury vapour we have determined the supersaturation necessary for homogeneous condensation of mercury vapour in the temperature range 250 to 320 K. The measurements were made using an upward thermal diffusion cloud chamber. The results demonstrate that none of the current theories for homogeneous nucleation satisfactorily predict the observed critical supersaturations. The measured values are about 3 orders of magnitude lower than the values predicted by the conventional Becker-Döring-Zeldovitch-theory.Translated AbstractMetall-Nichtmetallübergang und homogene Keimbildung bei QuecksilberdampfEs werden photoelektronenspektroskopische Messungen der Ionisationspotentiale von im Molekularstrahl synthetisierten Quecksilberclustern als Funktion der Größe beschrieben. Sie zeigen, daß ein größenabhängiger kontinuierlicher Übergang von van der Waals-Bindung zu metallischer Bindung für Cluster mit mehr als 13 Hg-Atomen auftritt. Um erste Informationen über den Einfluß dieses Übergangs von nichtmetallischem zu metallischem Verhalten auf den Keimbildungsprozeß in übersättigten Quecksilberdämpfen zu erhalten, werden zusätzlich Untersuchungen der homogenen Kondensation von übersättigten Quecksilberdämpfen im Temperaturbereich zwischen 250 bis 320 K mit einer Diffusionsnebelkammer berichtet. Die erhaltenen Ergebnisse können mit keiner der existierenden Theorien für die homogene Kondensation beschrieben werden. Die beobachteten Werte für die die homogene Kondensation auslösende kritische Übersättigung sind um drei Größenordnungen größer als die mit der klassischen Becker

  16. Conception of new phase dislocation-based nucleation at reconstructive martensitic transformations

    Energy Technology Data Exchange (ETDEWEB)

    Letuchev, V.V. [Ural State Wood Technol. Acad., Ekaterinburg (Russian Federation); Vereshchagin, V.P. [Ural State Wood Technol. Acad., Ekaterinburg (Russian Federation); Alexina, I.V. [Ural State Wood Technol. Acad., Ekaterinburg (Russian Federation); Kashchenko, M.P. [Ural State Wood Technol. Acad., Ekaterinburg (Russian Federation)

    1995-12-01

    The role of dislocations and the dynamical mechanism controlling the structural reconstruction in the process of nucleation and wave growth of new phase unit crystals at martensitic transformations in metallic systems are discussed. It has been established that near some rectilinear dislocations with lines and Burgers`s vectors typical for the original phase, there are areas where an elastically deformed state is characterized by package of particularities unambiguously corresponding to the well definite morphological attribute set (habit, orientation relationship, macroshear) of the martensite crystal. The distinctiveness of these areas for martensite nucleation is caused by character of strains reducing the magnitude of interphase energetic barrier. The elastic model of the dislocation-based nucleation center of martensitic crystal, allowing to select the dislocations being the most probable for nucleation and to make a martensitic crystal with the morphological attribute specific collection corresponding to each a dislocation, has been proposed. Such dislocations for certain Fe-, Cu- and TiNi-based alloys are indicated. New results for titanium nickel are presented in more detail. (orig.).

  17. Nucleation and Cross-Slip of Partial Dislocations in FCC Metals

    OpenAIRE

    Liu, Gang

    2009-01-01

    Nucleation of partial dislocations at a crack and cross-slip of partial dislocations under general loading in FCC metals are analyzed based on a multiscale model which incorporates atomic information into continuum-mechanics approach. In both analyses, the crack and the slip planes are modeled as surfaces of displacement discontinuities embedded in elastic media. The atomic potentials between the adjacent atomic layers along the slip planes are assumed to be the generalized stacking fault ene...

  18. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal.

    Science.gov (United States)

    Oh, Sang Ho; Legros, Marc; Kiener, Daniel; Dehm, Gerhard

    2009-02-01

    'Smaller is stronger' does not hold true only for nanocrystalline materials but also for single crystals. It is argued that this effect is caused by geometrical constraints on the nucleation and motion of dislocations in submicrometre-sized crystals. Here, we report the first in situ transmission electron microscopy tensile tests of a submicrometre aluminium single crystal that are capable of providing direct insight into source-controlled dislocation plasticity in a submicrometre crystal. Single-ended sources emit dislocations that escape the crystal before being able to multiply. As dislocation nucleation and loss rates are counterbalanced at about 0.2 events per second, the dislocation density remains statistically constant throughout the deformation at strain rates of about 10(-4) s(-1). However, a sudden increase in strain rate to 10(-3) s(-1) causes a noticeable surge in dislocation density as the nucleation rate outweighs the loss rate. This observation indicates that the deformation of submicrometre crystals is strain-rate sensitive.

  19. Molecular dynamics study of dislocation nucleation from a crack tip

    NARCIS (Netherlands)

    Hess, B; Thijsse, BJ; Van der Giessen, E; Thijsse, Barend J.

    We have performed a systematic molecular dynamics study of the competition between crack growth and dislocation emission from a crack tip. Two types of boundary conditions are adopted: either planar extension or boundary displacements according to the anisotropic mode-I asymptotic continuum

  20. Ice nucleation in solutions and freeze-avoiding insects-homogeneous or heterogeneous?

    Science.gov (United States)

    Zachariassen, Karl Erik; Kristiansen, Erlend; Pedersen, Sindre Andre; Hammel, Harold T

    2004-06-01

    This article challenges the common view that solutions and cold-hardy freeze-avoiding insects always freeze by heterogeneous nucleation. Data are presented to show that the nucleation temperatures of a variety of solutions and freeze-avoiding insects are a function of the water volume as described by the data previously published by Bigg in 1953. The article also points out that the relationships between melting point depression and depression of nucleation temperature are different for samples undergoing homogeneous nucleation and those undergoing heterogeneous nucleation. Aqueous solutions and freeze-avoiding insects display a relationship like that of homogeneously nucleated samples. It is also argued that the identity of the "impurities" assumed to cause heterogeneous nucleation in aqueous solutions and insects is obscure and that the "impurities" have features which make their existence rather unlikely.

  1. Homogeneous bubble nucleation driven by local hot spots: A Molecular Dynamics study

    NARCIS (Netherlands)

    Wang, Z.J.; Valeriani, C.; Frenkel, D.

    2009-01-01

    We report a Molecular Dynamics study of homogenous bubble nucleation in a Lennard-Jones fluid. The rate of bubble nucleation is estimated using forward-flux sampling (FFS). We find that cavitation starts with compact bubbles rather than with ramified structures as had been suggested by Shen and

  2. Homogeneous bubble nucleation driven by local hot spots: A molecular dynamics study

    NARCIS (Netherlands)

    Wang, Z.J.; Valeriani, C.; Frenkel, D.

    2009-01-01

    We report a molecular dynamics study of homogeneous bubble nucleation in a Lennard-Jones fluid. The rate of bubble nucleation is estimated using forward-flux sampling (FFS). We find that cavitation starts with compact bubbles rather than with ramified structures, as had been suggested by Shen and

  3. Understanding twinning nucleation and dislocation core structure through interscale hybrid method

    DEFF Research Database (Denmark)

    Xu, Ben; Zhang, Xiaodan

    2014-01-01

    The variety of emerging simulation methods and improved computational power advance the understanding in nanometals as a good compensation of the experiments. In this paper, the first principle methods are discussed, especially as a useful combination of the classical molecular dynamics, to overc......, to overcome the disadvantages of the latter method. Two examples are given as: the nucleation of the {10-12} deformation twinning in magnesium, and the screw dislocation core structure with/without hydrogen in tungsten....

  4. Dislocation Dissociation Strongly Influences on Frank—Read Source Nucleation and Microplasticy of Materials with Low Stacking Fault Energy

    Science.gov (United States)

    Huang, Min-Sheng; Zhu, Ya-Xin; Li, Zhen-Huan

    2014-04-01

    The influence of dislocation dissociation on the evolution of Frank—Read (F-R) sources is studied using a three-dimensional discrete dislocation dynamics simulation (3D-DDD). The classical Orowan nucleation stress and recently proposed Benzerga nucleation time models for F-R sources are improved. This work shows that it is necessary to introduce the dislocation dissociation scheme into 3D-DDD simulation, especially for simulations on micro-plasticity of small sized materials with low stacking fault energy.

  5. A physically constrained classical description of the homogeneous nucleation of ice in water

    Science.gov (United States)

    Koop, Thomas; Murray, Benjamin J.

    2016-12-01

    Liquid water can persist in a supercooled state to below 238 K in the Earth's atmosphere, a temperature range where homogeneous nucleation becomes increasingly probable. However, the rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physically consistent parameterizations of the pertinent quantities. The diffusion activation energy is related to the translational self-diffusion coefficient of water for which we assess a range of descriptions and conclude that the most physically consistent fit is provided by a power law. The other key term is the interfacial energy between the ice embryo and supercooled water whose temperature dependence we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the absolute value of the interfacial energy at one reference temperature. That value is determined by fitting this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6 K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest. This extrapolation to temperatures below 233 K is consistent with the most recent measurement of the ice nucleation rate in micrometer-sized droplets at temperatures of 227-232 K on very short time scales

  6. Anisotropic Dislocation Line Energy and Crack Tip Dislocation Nucleation in (alpha)RDX

    Science.gov (United States)

    2013-11-01

    direction (ϕ = π/2). ...............................................................................9 Figure 7. GSF energy surfaces for dislocations...ϕ = π/2). δ KI KII KIII x3, t x1 x2 KI KII KIII x3, t, δ x1 x2 φ=π/2 10 Generalized stacking fault ( GSF ) energy surfaces for two αRDX slip systems...are shown in figure 7 for the (010) slip plane (7, 8). These GSF surfaces provide energy barriers, γus, for a crack tip geometry with an x2 = [010

  7. Thermodynamic properties of critical clusters from measurements of vapour-liquid homogeneous nucleation rates

    Science.gov (United States)

    Ford, I. J.

    1996-11-01

    Two nucleation theorems are proved using small system thermodynamics. The first is well known and has been used before to determine the number of molecules in the critical nucleus controlling the nucleation of droplets from supersaturated vapours. The second appears to be new, and relates the temperature dependence of the nucleation rate to the excess internal energy of the critical cluster. An analysis of measured homogeneous nucleation rates can therefore provide the size, internal energy, free energy, and entropy of the critical cluster, which should provide important guidance for the construction of theoretical models of the process. This is illustrated using water, n-butanol and n-nonane nucleation data. While there is often a close correspondence between the droplet free energy and the form suggested by classical theory, the excess internal energy seems to show a linear dependence on molecular number, rather than the classical 2/3 power behaviour.

  8. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2011-03-01

    Full Text Available The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 μm. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rates between 234.8 and 236.2 K were derived using a microphysical model and aerosol phase compositions and size distributions determined from infrared extinction measurements in the flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process. The implications of surface nucleation for the parameterization of homogeneous ice nucleation in numerical models are considered.

  9. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions

    Science.gov (United States)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  10. Molecular simulation of homogeneous crystal nucleation of n-alkane melts

    Science.gov (United States)

    Yi, Peng; Rutledge, Gregory

    2011-03-01

    One of the most important phenomena in molecular systems is homogeneous nucleation of the crystal phase from a melt. This phenomenon is particularly interesting for chain molecules due to their strong anisotropy and their conformational flexibility. In this work we report the results of molecular simulations of homogeneous crystal nucleation of n-eicosane (C20) from the melt. A realistic united atom force field was employed. The crystal phase and melting behavior were first determined by ramping temperature in a set of MD simulations. The nucleation trajectory was then sampled using MD simulations at about 20% supercooling; and the nucleation free energy was sampled using Monte Carlo umbrella sampling method for three temperatures, ranging from 10% to 20% supercooling. A first-passage time technique was used to determine the critical nucleus and the nucleation rate. Detailed examination of the simulations reveals the critical nucleus to be a bundle of stretched segments about 8 CH2 groups long, organized into a cylindrical shape. The remaining CH2 groups form a disordered interfacial layer. By fitting the nucleation free energy curve to the cylindrical nucleus model, the crystal-melt interfacial free energies are calculated to be about 10 mJ/m2 for the side surface and 4 mJ/m2 for the end surface. We also discussed the effect of using different nucleus definitions

  11. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.

    Science.gov (United States)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao

    2016-05-18

    To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory.

  12. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaoxia; Shen, Yan [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Hung, Francisco R., E-mail: frhung@lsu.edu [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Santiso, Erik E. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim{sup +}][Cl{sup −}] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589–2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10{sup 10} cm{sup −3} s{sup −1} was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores.

  13. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities

    Science.gov (United States)

    Marcolli, C.

    2014-02-01

    Heterogeneous ice nucleation is an important mechanism for the glaciation of mixed phase clouds and may also be relevant for cloud formation and dehydration at the cirrus cloud level. It is thought to proceed through different mechanisms, namely contact, condensation, immersion and deposition nucleation. Conceptually, deposition nucleation is the only pathway that does not involve liquid water, but occurs by direct water vapor deposition onto a surface. This study challenges this classical view by putting forward the hypothesis that what is called deposition nucleation is in fact pore condensation and freezing (PCF) occurring in voids and cavities that may form between aggregated primary particles and host water at relative humidity RHw montmorillonites is characterized by pores with Dp = 2-5 nm. The number and size of pores is distinctly increased in acid treated montmorillonites like K10. Water adsorption isotherms of MCM-41 show that pores with Dp = 3.5-4 nm fill with water at RHw = 56-60% in accordance with an inverse Kelvin effect. Water in such pores should freeze homogeneously for T 100%. Pores with D > 7.5 nm fill with water at RHi > 100% for T 235 K in particles that exhibit active sites for immersion freezing within pores. Most ice nucleation studies on clay minerals and mineral dusts indeed show a strong increase in ice nucleation efficiency when temperature is decreased below 235 K in accordance with PCF and are not explicable by the classical view of deposition nucleation. PCF is probably also the prevailing ice nucleation mechanism below water saturation for glassy, soot, and volcanic ash aerosols. No case could be identified that gives clear evidence of ice nucleation by water vapor deposition onto a solid surface.

  14. Homogeneous nucleation of NAD and NAT in liquid stratospheric aerosols: insufficient to explain denitrification

    Directory of Open Access Journals (Sweden)

    D. A. Knopf

    2002-01-01

    Full Text Available The nucleation of NAD and NAT from HNO3/H2O and HNO3/H2SO4/H2O solution droplets is investigated both theoretically and experimentally with respect to the formation of polar stratospheric clouds (PSCs. Our analysis shows that homogeneous NAD and NAT nucleation from liquid aerosols is insufficient to explain the number densities of large nitric acid containing particles recently observed in the Arctic stratosphere. This conclusion is based on new droplet freezing experiments employing optical microscopy combined with Raman spectroscopy. The homogeneous nucleation rate coefficients of NAD and NAT in liquid aerosols under polar stratospheric conditions derived from the experiments are -5 cm-3 s-1 and -2 cm-3 s-1, respectively. These nucleation rate coefficients are smaller by orders of magnitude than the value of ~103 cm-3 s-1 used in a recent denitrification modelling study that is based on a linear extrapolation of laboratory nucleation data to stratospheric conditions (Tabazadeh et al., Science, 291, 2591--2594, 2001. We show that this linear extrapolation is in disagreement with thermodynamics and with experimental data and, therefore, must not be used in microphysical models of PSCs. Our analysis of the experimental data yields maximum hourly production rates of nitric acid hydrate particles per cm3 of air of about 3 x 10-10 cm-3 (air h-1 under polar stratospheric conditions. Assuming PSC particle production to proceed at this rate for two months we arrive at particle number densities of -7 cm-3, much smaller than the value of ~10-4 cm-3 reported in recent field observations. In addition, the nitric acid hydrate production rate inferred from our data is much smaller than that required to reproduce the observed denitrification in the modelling study mentioned above. This clearly shows that homogeneous nucleation of NAD and NAT from liquid supercooled ternary solution aerosols cannot explain the observed polar denitrification.

  15. Direct Calculation of Ice Homogeneous Nucleation Rate for a Molecular Model of Water

    CERN Document Server

    Haji-Akbari, Amir

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of systems and environments, including biological cells [1], soil [2], aircraft [3], transportation infrastructure [4] and atmospheric clouds [5,6]. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water [7-9]. For the more realistic molecular models, only indirect estimates have been obtained, e.g.~by assuming the validity of classical nucleation theory [10]. Here, we use a path sampling approach to perform the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice [11], the most accurate among the existing molecular models for studying ice polymorphs. By using a novel topological order parameter for distinguishing different polymorphs, we are able to identify a freezing me...

  16. Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land".

    Science.gov (United States)

    Laksmono, Hartawan; McQueen, Trevor A; Sellberg, Jonas A; Loh, N Duane; Huang, Congcong; Schlesinger, Daniel; Sierra, Raymond G; Hampton, Christina Y; Nordlund, Dennis; Beye, Martin; Martin, Andrew V; Barty, Anton; Seibert, M Marvin; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Amann-Winkel, Katrin; Loerting, Thomas; Pettersson, Lars G M; Bogan, Michael J; Nilsson, Anders

    2015-07-16

    We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit T H by cooling micrometer-sized droplets (microdroplets) evaporatively at 10 3 -10 4 K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water's diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 10 6 -10 7 K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed "fragile-to-strong" transition anomaly in water.

  17. Some properties of evolution equation for homogeneous nucleation period under the smooth behavior of initial conditions

    OpenAIRE

    Kurasov, Victor

    2005-01-01

    The properties of the evolution equation have been analyzed. The uniqueness and the existence of solution for the evolution equation with special value of parameter characterizing intensity of change of external conditions, of the corresponding iterated equation have been established. On the base of these facts taking into account some properties of behavior of solution the uniqueness of the equation appeared in the theory of homogeneous nucleation has been established. The equivalence of aux...

  18. On the formation of sulfuric acid-water particles via homogeneous nucleation in the lower troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.

    1995-12-31

    Production of new sulfur derived particles via homogeneous nucleation between sulfuric acid and water vapors, and other related aerosol processes taking place in a variety of tropospheric environments, were studied using theoretical and model approaches. For nucleation to occur in the lower troposphere, cool and humid conditions combined with relatively strong solar radiation were usually required. Regardless of the system concerned, production of nuclei was found to be favored also by high SO{sub 2}(g) to fine particulate matter ratios. Urban post-fog situations, which are encountered commonly during severe air pollution episodes, were shown to favor new particle production considerably above the corresponding `background` conditions. A simple procedure for evaluating post-fog nucleation probabilities from routinely obtained data was developed and applied to real aerosol systems. Nucleation in the remote marine environment, which is an essential phenomenon in linking natural sulfur emissions to global climate change, was studied from a dynamic point of view. It was demonstrated that new particle production occurs more often in association with relative humidity transitions typical for many boundary layer processes than under averaged or steady conditions of the kind assumed explicitly in most earlier model studies. Power plant plumes were shown to be a particularly significant source of atmospheric nuclei, due primarily to their frequently high SO{sub 2}-to-particulate matter ratios. Factors affecting the probability of nucleation during plume dispersion were examined in detail, and finally, strategies for the control of in-plume particle production were analyzed. (author)

  19. Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Pusztai, Tamas; Toth, Gyula I; Koernyei, Laszlo [Research Institute for Solid State Physics and Optics, PO Box 49, H-1525 Budapest (Hungary); Tegze, Gyoergy; Bansel, Gurvinder; Fan, Zhungyun; Granasy, Laszlo [Brunel Centre for Advanced Solidification Technology, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: Laszlo.Granasy@brunel.ac.uk, E-mail: grana@szfki.hu

    2008-10-08

    Advanced phase-field techniques have been applied to address various aspects of polycrystalline solidification including different modes of crystal nucleation. The height of the nucleation barrier has been determined by solving the appropriate Euler-Lagrange equations. The examples shown include the comparison of various models of homogeneous crystal nucleation with atomistic simulations for the single-component hard sphere fluid. Extending previous work for pure systems (Granasy et al 2007 Phys. Rev. Lett. 98 035703), heterogeneous nucleation in unary and binary systems is described via introducing boundary conditions that realize the desired contact angle. A quaternion representation of crystallographic orientation of the individual particles (outlined in Pusztai et al 2005 Europhys. Lett. 71 131) has been applied for modeling a broad variety of polycrystalline structures including crystal sheaves, spherulites and those built of crystals with dendritic, cubic, rhombo-dodecahedral and truncated octahedral growth morphologies. Finally, we present illustrative results for dendritic polycrystalline solidification obtained using an atomistic phase-field model.

  20. The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit.

    Science.gov (United States)

    Cheng, Bingqing; Tribello, Gareth A; Ceriotti, Michele

    2017-09-14

    In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulations can be determined unambiguously by using a Gibbs dividing surface and how the free energy as a function of the number of solid atoms in the nucleus can thus be extracted. We then show that the parameters (the chemical potential, the interfacial free energy, and a Tolman correction) of a model based on classical nucleation theory can be fitted using the information contained in these free-energy profiles but that the parameters in such models are highly correlated. This correlation is unfortunate as it ensures that small errors in the computed free energy surface can give rise to large errors in the extrapolated properties of the fitted model. To resolve this problem we thus propose a method for fitting macroscopic nucleation models that uses simulations of planar interfaces and simulations of three-dimensional nuclei in tandem. We show that when the chemical potentials and the interface energy are pinned to their planar-interface values, more precise estimates for the Tolman length are obtained. Extrapolating the free energy profile obtained from small simulation boxes to larger nuclei is thus more reliable.

  1. Dislocation

    Science.gov (United States)

    Joint dislocation ... are emergencies that need first aid treatment. Most dislocations can be treated in a doctor's office or ... deep sleep is needed. When treated early, most dislocations do not cause permanent injury. You should expect ...

  2. Asymmetric, compressive, SiGe epilayers on Si grown by lateral liquid-phase epitaxy utilizing a distinction between dislocation nucleation and glide critical thicknesses

    Science.gov (United States)

    O'Reilly, Andrew J.; Quitoriano, Nathaniel

    2018-01-01

    Uniaxially strained Si1-xGex channels have been proposed as a solution for high mobility channels in next-generation MOSFETS to ensure continued device improvement as the benefits from further miniaturisation are diminishing. Previously proposed techniques to deposit uniaxially strained Si1-xGex epilayers on Si (0 0 1) substrates require multiple deposition steps and only yielded thin strips of uniaxially strained films. A lateral liquid-phase epitaxy (LLPE) technique was developed to deposit a blanket epilayer of asymmetrically strained Si97.4Ge2.6 on Si in a single step, where the epilayer was fully strained in the growth direction and 31% strain-relaxed in the orthogonal direction. The LLPE technique promoted the glide of misfit dislocations, which nucleated in a region with an orthogonal misfit dislocation network, into a region where the dislocation nucleation was inhibited. This created an array of parallel misfit dislocations which were the source of the asymmetric strain. By observing the thicknesses at which the dislocation network transitions from orthogonal to parallel and at which point dislocation glide is exhausted, the separate critical thicknesses for dislocation nucleation and dislocation glide can be determined.

  3. Heterogeneous and homogeneous nucleation of Taxol crystals in aqueous solutions and gels: effect of tubulin proteins.

    Science.gov (United States)

    Castro, Javier S; Deymier, Pierre A; Trzaskowski, Bartosz; Bucay, Jaim

    2010-03-01

    In this study we report crystallization of Taxol in pure water, aqueous solutions containing tubulin proteins and tubulin-containing agarose gels. We show that crystallization of Taxol in tubulin-free aqueous solutions occurs by the formation of sheaf-like crystals, while in the presence of tubulin Taxol crystallizes in the form of spherulites. Whereas sheaves are characteristic for crystals formed by homogeneous nucleation, the spherical symmetry of the Taxol crystal formed in the presence of tubulin suggests they result from heterogeneous nucleation. To explain the formation of tubulin-Taxol nuclei we suggest a new, secondary Taxol-binding site within the tubulin heterodimer. Contrary to the known binding site, where the Taxol molecule is almost completely buried in the protein, the Taxol molecule in the secondary binding site is partially exposed to the solution and may serve as a bridge, connecting other Taxol molecules. Results presented in this work are important for in vivo and in vitro microtubule studies due to the possibility of mistaking these Taxol spherulites for microtubule asters, moreover a novel variable is proposed in the study of cells treated with Taxol for cancer treatment via sequestration of tubulin.

  4. Dislocations

    Science.gov (United States)

    Dislocations are joint injuries that force the ends of your bones out of position. The cause is often a fall or a ... one, seek medical attention. Treatment depends on which joint you dislocate and the severity of the injury. It might include manipulations to reposition your bones, ...

  5. Dislocations

    Science.gov (United States)

    ... a young child's arm or shoulder, which can cause injury or dislocation. Reviewed by: Steven Dowshen, MD Date reviewed: April 2014 For Teens For Kids For Parents MORE ON THIS TOPIC Bones, Muscles, and Joints Broken Bones, Sprains, and Strains Nursemaid's Elbow Word! Dislocation Getting an ...

  6. Crack Nucleation Related Dislocation Dynamics A Numerical Study on the FCC Metal

    Science.gov (United States)

    Kwok, Harold Wing Hei

    The present thesis consists of a number of studies on the fatigue related to dislocation dynamics phenomena. These studies were intended to provide an in-depth understanding of the dynamics at the atomic scale. Until now, our understanding on such atomistic dynamics remains sparse and incomplete. Special attention was paid to two particular dislocation processes, which were the dislocation dipoles disintegration and the triple junction deformation. Both scenarios are closely related to a fatigue crack initiation at the cycle fatigue loading condition. Studies were carried out by means of numerical molecular dynamics simulation. The software used in these studies was developed by the author, and was tailored for superior performance and efficiency. One of the most important questions addressed in this thesis was the intermediate disintegration pathway of a group of dislocation dipoles. The disintegration of dipoles was realised in experiments for decades. It was known to produce massive amount of point defects as a result. However, the process cannot be observed directly. The steps between dislocation dipole accumulation to point defects production are in the missing puzzle. Molecular dynamics simulation with a precise force description was deployed to investigate the scenario in a pure aluminum sample. The analysis suggests that cross-slip is the major mechanism for the disintegration. The cross-slip leads to the formation of stacking fault tetrahedrons, which then collapse to form vacancies clusters. Another question addressed in the thesis was the deformation mechanism at the vicinity of a triple junction. It is known that such process leads to the embrittlement of a material and is related to the intergranular crack initiation. Models in the past did not consider the dynamical nature at the molecular scale. Investigation was therefore carried out to address this issue. The study illustrates that triple junction can deform via dynamic recrystallization and

  7. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.

    Science.gov (United States)

    Ghosh, Satinath; Ghosh, Swapan K

    2011-01-14

    Density functional theory (DFT) with square gradient approximation for the free energy functional and a model density profile are used to obtain an analytical expression for the size-dependent free energy of formation of a liquid drop from the vapor through the process of homogeneous nucleation, without invoking the approximations used in classical nucleation theory (CNT). The density of the liquid drop in this work is not the same as the bulk liquid density but it corresponds to minimum free energy of formation of the liquid drop. The theory is applied to study the nucleation phenomena from supersaturated vapor of Lennard-Jones fluid. The barrier height predicted by this theory is significantly lower than the same in CNT which is rather high. The density at the center of the small liquid drop as obtained through optimization is less than the bulk density which is in agreement with other earlier works. Also proposed is a sharp interface limit of the proposed DFT of nucleation, which is as simple as CNT but with a modified barrier height and this modified classical nucleation theory, as we call it, is shown to lead to improved results.

  8. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves.

    Science.gov (United States)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-28

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  9. Toward a molecular theory of homogeneous bubble nucleation: II. Calculation of the number density of critical nuclei and the rate of nucleation.

    Science.gov (United States)

    Torabi, Korosh; Corti, David S

    2013-10-17

    In the present paper, we develop a method to calculate the rate of homogeneous bubble nucleation within a superheated L-J liquid based on the (n,v) equilibrium embryo free energy surface introduced in the first paper (DOI: 10.1021/jp404149n). We express the nucleation rate as the product of the concentration of critical nuclei within the metastable liquid phase and the relevant forward rate coefficient. We calculate the forward rate coefficient of the critical nuclei from their average lifetime as determined from MD simulations of a large number of embryo trajectories initiated from the transitional region of the metastable liquid configuration space. Therefore, the proposed rate coefficient does not rely on any predefined reaction coordinate. In our model, the critical nuclei belong to the region of the configuration space where the committor probability is about one-half, guaranteeing the dynamical relevance of the proposed embryos. One novel characteristic of our approach is that we define a limit for the configuration space of the equilibrium metastable phase and do not include the configurations that have zero committor probability in the nucleation free energy surface. Furthermore, in order to take into account the transitional degrees of freedom of the critical nuclei, we develop a simulation-based approach for rigorously mapping the free energy of the (n,v) equilibrium embryos to the concentration of the critical nuclei within the bulk metastable liquid phase.

  10. submitter Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments

    CERN Document Server

    Kim, J; Yli-Juuti, T; Lawler, M; Keskinen, H; Tröstl, J; Schobesberger, S; Duplissy, J; Amorim, A; Bianchi, F; Donahue, N M; Flagan, R C; Hakala, J; Heinritzi, M; Jokinen, T; Kürten, A; Laaksonen, A; Lehtipalo, K; Miettinen, P; Petäjä, T; Rissanen, M P; Rondo, L; Sengupta, K; Simon, M; Tomé, A; Williamson, C; Wimmer, D; Winkler, P M; Ehrhart, S; Ye, P; Kirkby, J; Curtius, J; Baltensperger, U; Kulmala, M; Lehtinen, K E J; Smith, J N; Riipinen, I; Virtanen, A

    2016-01-01

    Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study, we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at subsaturated conditions (ca. 90 % relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was meas...

  11. Homogeneous nucleation rates of nitric acid dihydrate (NAD at simulated stratospheric conditions – Part II: Modelling

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192 kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001 and surface-based (Tabazadeh et al., 2002 nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.

  12. The effect of solute on the homogeneous crystal nucleation frequency in metallic melts

    Science.gov (United States)

    Thompson, C. V.; Spaepen, F.

    1982-01-01

    A complete calculation that extends the classical theory for crystal nucleation in pure melts to binary alloys has been made. Using a regular solution model, approximate expressions have been developed for the free energy change upon crystallization as a function of solute concentration. They are used, together with model-based estimates of the interfacial tension, to calculate the nucleation frequency. The predictions of the theory for the maximum attainable undercooling are compared with existing experimental results for non-glass forming alloys. The theory is also applied to several easy glass-forming alloys (Pd-Si, Au-Si, Fe-B) for qualitative comparison with the present experimental experience on the ease of glass formation, and for assessment of the potential for formation of the glass in bulk.

  13. The stability of bubbles formed from supersaturated solutions, and homogeneous nucleation of gas bubbles from solution, both revisited.

    Science.gov (United States)

    Goldman, Saul

    2008-12-25

    The solution of the problem of the relative stability of all possible equilibrium bubble states that can form from a closed, finite, supersaturated gas-liquid solution, maintained at a fixed temperature and a fixed external pressure is given. The supersaturated solution may contain any number of dissolved volatile solutes. The full solution to this problem has remained elusive for decades, because of the complication of pressure inequalities between the bubbles and the constant external (or reservoir) pressure. The method of solution is one that had been used previously to solve the related problem of the stability of a liquid droplet in a supersaturated vapor, where the same complication occurred. The derived equations were found to reduce correctly when simplified; they were consistent with experiment, and the system Gibbs free energy appropriately obeyed the Law of Corresponding States. The expressions were used in the context of transition state theory to provide semiempirical predictions of the rate of homogeneous bubble formation from a supersaturated solution, and the "critical pressure for homogeneous nucleation (P(crit))". The nucleation Gibbs free energy expression derived here had a lower barrier height and resulted in a reduction of P(crit) values, relative to what was obtained from the basis of a pre-existing approximate expression taken from the literature. Applications to chemical engineering and human decompression modeling are briefly described.

  14. Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments

    Directory of Open Access Journals (Sweden)

    J. Kim

    2016-01-01

    Full Text Available Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study, we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA at subsaturated conditions (ca. 90 % relative humidity at 293 K to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7 campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid–dimethylamine, and sulfuric acid–organics derived from α-pinene oxidation. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles. No clear effect of the sulfuric acid concentration on the hygroscopicity of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid concentrations. In particular, when the concentration of sulfuric acid was 5.1 × 106 molecules cm−3 in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured κ of 15 nm particles was 0.31 ± 0.01: close to the value reported for dimethylaminium sulfate (DMAS (κDMAS ∼ 0.28. Furthermore, the difference in κ between sulfuric acid and sulfuric acid–imethylamine experiments increased with increasing particle

  15. First passage times in homogeneous nucleation: Dependence on the total number of particles

    Energy Technology Data Exchange (ETDEWEB)

    Yvinec, Romain [PRC INRA UMR85, CNRS UMR7247, Université François Rabelais de Tours, IFCE, F-37380 Nouzilly (France); Bernard, Samuel; Pujo-Menjouet, Laurent [Université de Lyon, CNRS, Université Lyon 1, Institut Camille Jordan UMR5208, 69622 Villeurbanne (France); INRIA Team Dracula, Inria Center Grenoble Rhône-Alpes, Grenoble (France); Hingant, Erwan [Departamento de Matemática, Universidad Federal de Campina Grande, Campina Grande, PB (Brazil)

    2016-01-21

    Motivated by nucleation and molecular aggregation in physical, chemical, and biological settings, we present an extension to a thorough analysis of the stochastic self-assembly of a fixed number of identical particles in a finite volume. We study the statistics of times required for maximal clusters to be completed, starting from a pure-monomeric particle configuration. For finite volumes, we extend previous analytical approaches to the case of arbitrary size-dependent aggregation and fragmentation kinetic rates. For larger volumes, we develop a scaling framework to study the first assembly time behavior as a function of the total quantity of particles. We find that the mean time to first completion of a maximum-sized cluster may have a surprisingly weak dependence on the total number of particles. We highlight how higher statistics (variance, distribution) of the first passage time may nevertheless help to infer key parameters, such as the size of the maximum cluster. Finally, we present a framework to quantify formation of macroscopic sized clusters, which are (asymptotically) very unlikely and occur as a large deviation phenomenon from the mean-field limit. We argue that this framework is suitable to describe phase transition phenomena, as inherent infrequent stochastic processes, in contrast to classical nucleation theory.

  16. Report on the Implementation of Homogeneous Nucleation Scheme in MARMOT-based Phase Field Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2013-09-30

    In this report, we summarized our effort in developing mesoscale phase field models for predicting precipitation kinetics in alloys during thermal aging and/or under irradiation in nuclear reactors. The first part focused on developing a method to predict the thermodynamic properties of critical nuclei such as the sizes and concentration profiles of critical nuclei, and nucleation barrier. These properties are crucial for quantitative simulations of precipitate evolution kinetics with phase field models. Fe-Cr alloy was chosen as a model alloy because it has valid thermodynamic and kinetic data as well as it is an important structural material in nuclear reactors. A constrained shrinking dimer dynamics (CSDD) method was developed to search for the energy minimum path during nucleation. With the method we are able to predict the concentration profiles of the critical nuclei of Cr-rich precipitates and nucleation energy barriers. Simulations showed that Cr concentration distribution in the critical nucleus strongly depends on the overall Cr concentration as well as temperature. The Cr concentration inside the critical nucleus is much smaller than the equilibrium concentration calculated by the equilibrium phase diagram. This implies that a non-classical nucleation theory should be used to deal with the nucleation of Cr precipitates in Fe-Cr alloys. The growth kinetics of both classical and non-classical nuclei was investigated by the phase field approach. A number of interesting phenomena were observed from the simulations: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrated that it is critical to introduce the correct critical nuclei into phase

  17. Multiscale Crystal Plasticity Modeling Considering Nucleation of Dislocations Based on Thermal Activation Process on Ultrafine-grained Aluminum

    Science.gov (United States)

    Aoyagi, Y.

    2017-05-01

    In this study, a crystal plasticity model expressing the behavior of the dislocation source and the mobile dislocations is proposed by considering a thermal activation process of dislocations. In order to predict the variation of critical resolved shear stress due to grain boundaries, mobile dislocations, or dislocation sources, information on these crystal defects is introduced into a hardening law of crystal plasticity. The crystal orientation and shape of ultrafine-grained (UFG) aluminum produced by accumulative roll bonding processes are measured by electron backscatter diffraction (EBSD). Mechanical properties of the UFG aluminum are estimated using tensile test and indentation test. Results obtained by EBSD are introduced into a computational model. Finite element simulation for polycrystal of aluminum investigates the effect of microstructure on mechanical properties of UFG aluminum.

  18. Process scale-up considerations for non-thermal atmospheric-pressure plasma synthesis of nanoparticles by homogenous nucleation

    Science.gov (United States)

    Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.

    2017-08-01

    Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.

  19. Effects of Grain Boundaries and Dislocation Cell Walls on Void Nucleation and Growth in Aluminium during Fast Neutron Irradiation

    DEFF Research Database (Denmark)

    Horsewell, Andy; Rahman, F. A.; Singh, Bachu Narain

    1983-01-01

    High purity aluminium irradiated to fluences between 2 multiplied by 10**2**1 and 1 multiplied by 10**2**4 n. m** minus **2 (E greater than 1 Mev) at 120 degree C has been investigated by TEM. A void denuded zone is seen both at grain boundaries and dislocation cell walls. Enhanced void formation...

  20. Does the homogeneous ice nucleation initiate at the surface or in the volume of super-cooled water droplets?

    Science.gov (United States)

    Benz, S.; Möhler, O.; Wagner, R.; Schnaiter, M.; Leisner, T.

    2009-04-01

    The nucleation of ice in super-cooled water droplets affects many atmospheric processes as the initiation of precipitation and radiative transfer. Water droplets are freezing due to the formation of a critical germ initiating the freezing of the whole droplet. The common quantity to describe the creation of ice is the nucleation rate J, defined as the product of the number of critical germs and the rate at which additional molecules are incorporated into a critical germ. Nucleation of ice in a super-cooled liquid is a stochastic process and depends strongly on temperature. Recently there was a discussion whether the germs of the new phase are formed preferentially near the surface or in the interior of the droplet. Experiments at the aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe were performed to assess this question. We produced clouds of super-cooled water droplets and deduced the ice nucleation rate J from simultaneously measurements of the number density and size distribution of liquid droplets, the number density of ice particles, and the temperature in the range between -36 and -37 °C. With different number densities of seed aerosol particles (sulphuric acid aerosol) we were able to vary the size of the nucleating water droplets between 4 µm and 9 µm diameter. The comparison of the results - by assumption of a volume dependent process - showed very good agreement both with data from literature gained from considerably larger droplets and with classical nucleation theory. The nucleation rates disagree from each other when converting them to surface-proportional values. This contradicts the hypothesis that a critical germ is formed preferentially near the surface of a super-cooled liquid droplet.

  1. Laboratory studies of H2SO4/H2O binary homogeneous nucleation from the SO2+OH reaction: evaluation of the experimental setup and preliminary results

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2008-08-01

    Full Text Available Binary homogeneous nucleation (BHN of sulphuric acid and water (H2SO4/H2O is one of the most important atmospheric nucleation processes, but laboratory observations of this nucleation process are very limited and there are also large discrepancies between different laboratory studies. The difficulties associated with these experiments include wall loss of H2SO4 and uncertainties in estimation of H2SO4 concentration ([H2SO4] involved in nucleation. We have developed a new laboratory nucleation setup to study H2SO4/H2O BHN kinetics and provide relatively constrained [H2SO4] needed for nucleation. H2SO4 is produced from the SO2+OH→HSO3 reaction and OH radicals are produced from water vapor UV absorption. The residual [H2SO4] were measured at the end of the nucleation reactor with a chemical ionization mass spectrometer (CIMS. Wall loss factors (WLFs of H2SO4 were estimated by assuming that wall loss is diffusion limited and these calculated WLFs were in good agreement with simultaneous measurements of the initial and residual [H2SO4] with two CIMSs. The nucleation zone was estimated from numerical simulations based on the measured aerosol sizes (particle diameter, Dp and [H2SO4]. The measured BHN rates (J ranged from 0.01–220 cm−3 s−1 at the initial and residual [H2SO4] from 108−1010 cm−3, a temperature of 288 K and relative humidity (RH from 11–23%; J increased with increasing [H2SO4] and RH. J also showed a power dependence on [H2SO4] with the exponential power of 3–8. These power dependences are consistent with other laboratory studies under similar [H2SO4] and RH, but different from atmospheric field observations which showed that particle number concentrations are often linearly dependent on [H2SO4]. These results, together with a higher [H2SO4] threshold (108–109 cm−3 needed to produce the unit J measured from the laboratory studies compared to the atmospheric conditions (106–107 cm−3, imply that H2SO4/H2O BHN alone is

  2. Contrail formation: Homogeneous nucleation of H{sub 2}SO{sub 4}/H{sub 2}O droplets

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. [Universitaet Muenchen, Freising (Germany); Peter, T. [MPI fuer Chemie, Mainz (Germany); Ottmann, R. [MPI fuer Extraterrestrische Physik, Garching (Germany)

    1995-06-15

    The authors look at the possible nucleation of sub-nanometer sulfuric acid/water clusters, and the growth and possible freezing of such particles, in the exhaust gas stream from jets in the tropospause. Their studies imply that such droplets can condense, take up water, and dilute to the point that they will freeze. When they apply these results to what is known about the exhaust gas stream from a B747, they conclude that a visible contrail will not form under threshold conditions for such nucleation. More detailed microphysical data from exhaust gas measurements is necessary to overcome uncertainties in the modeled results.

  3. Thermodynamic Aspects of Homogeneous Nucleation Enhanced by Icosahedral Short Range Order in Liquid Fcc-Type Alloys

    Science.gov (United States)

    Rappaz, Michel; Kurtuldu, Güven

    2015-08-01

    We have recently shown that minute solute element additions to liquid metallic alloys can strongly influence the nucleation of the fcc phase and act as a grain refinement method. Electron back-scattered diffraction observations revealed a concomitant increase in the percentage of nearest neighbor (nn) grains that are in a twin relationship. Furthermore, multiple-twinned (MT) nn grain configurations with a fivefold symmetry around a common direction have been identified, an occurrence that can be explained when the symmetry of the icosahedron is accounted for. It was then conjectured that a new nucleation mechanism occurs in two steps: first, the formation of small icosahedral quasicrystals in the melt, followed by heteroepitaxy of the fcc phase on facets of these quasicrystals. In the present contribution, based on thermodynamics arguments, it is proposed that the first step occurs by spinodal decomposition of the liquid, in a manner similar to Guinier-Preston zones formation in solid state precipitation, while the second step is a transformation of these quasicrystal precursors into MT-fcc nanocrystals once the driving force for this transformation is sufficient to overcome the fcc-liquid interfacial energy and the elastic strains associated with MT-fcc nanoparticles. This explanation sets up guidelines for finding solute elements and composition ranges that favor this grain refinement mechanism.

  4. Discrete dislocation modelling of submicron indentation

    NARCIS (Netherlands)

    Widjaja, A; Van der Giessen, E; Needleman, A

    2005-01-01

    Indentation of a planar single crystal by a circular rigid indenter is analyzed using discrete dislocation plasticity. The crystal has three slip systems and is initially dislocation-free, but edge dislocations can nucleate from point sources inside the crystal. The lattice resistance to dislocation

  5. High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized nucleation of GaN seeds

    Science.gov (United States)

    Bi, Zhaoxia; Gustafsson, Anders; Lenrick, Filip; Lindgren, David; Hultin, Olof; Wallenberg, L. Reine; Ohlsson, B. Jonas; Monemar, Bo; Samuelson, Lars

    2018-01-01

    Uniform arrays of submicron hexagonal InGaN pyramids with high morphological and material homogeneity, reaching an indium composition of 20%, are presented in this work. The pyramids were grown by selective area metal-organic vapor phase epitaxy and nucleated from small openings in a SiN mask. The growth selectivity was accurately controlled with diffusion lengths of the gallium and indium species, more than 1 μm on the SiN surface. High material homogeneity of the pyramids was achieved by inserting a precisely formed GaN pyramidal seed prior to InGaN growth, leading to the growth of well-shaped InGaN pyramids delimited by six equivalent {" separators="| 10 1 ¯ 1 } facets. Further analysis reveals a variation in the indium composition to be mediated by competing InGaN growth on two types of crystal planes, {" separators="| 10 1 ¯ 1 } and (0001). Typically, the InGaN growth on {" separators="| 10 1 ¯ 1 } planes is much slower than on the (0001) plane. The formation of the (0001) plane and the growth of InGaN on it were found to be dependent on the morphology of the GaN seeds. We propose growth of InGaN pyramids seeded by {" separators="| 10 1 ¯ 1 }-faceted GaN pyramids as a mean to avoid InGaN material grown on the otherwise formed (0001) plane, leading to a significant reduction of variations in the indium composition in the InGaN pyramids. The InGaN pyramids in this work can be used as a high-quality template for optoelectronic devices having indium-rich active layers, with a potential of reaching green, yellow, and red emissions for LEDs.

  6. Dislocated Shoulder

    Science.gov (United States)

    ... and be prone to repeat dislocations. Symptoms Shoulder dislocation Shoulder dislocation A dislocation is an injury to your joint in which ... their normal positions. One common site for a dislocation is your shoulder, which is a ball-and- ...

  7. Subtalar dislocations.

    Science.gov (United States)

    Rammelt, Stefan; Goronzy, Jens

    2015-06-01

    Subtalar dislocations make up 1-2% of all dislocations, about 75% of them being medial dislocations. Treatment consists of early reduction under adequate sedation. In cases of soft tissue interposition or locked dislocations, open reduction is warranted. More than 60% of subtalar dislocations are associated with additional fractures, therefore a postreduction CT is recommended. Complications include avascular necrosis of the talus, infection, posttraumatic arthritis, chronic subtalar instability, and complex regional pain syndrome with delayed reduction. The prognosis of purely ligamentous injuries is excellent after early reduction. Negative prognostic factors include lateral and open dislocations, total talar dislocations, and associated fractures. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Dislocation generation during early stage sintering.

    Science.gov (United States)

    Sheehan, J. E.; Lenel, F. V.; Ansell, G. S.

    1973-01-01

    Discussion of the effects of capillarity-induced stresses on dislocations during early stage sintering. A special version of Hirth's (1963) theoretical calculation procedures modified to describe dislocation nucleation on planes meeting the sintering body's neck surface obliquely is shown to predict plastic flow at stress levels know to exist between micron size metal particles in the early stages of sintering.

  9. Interactions between Dislocations and Grain Boundaries

    NARCIS (Netherlands)

    Soer, Wouter Anthon

    2006-01-01

    Dislocations (line defects) and grain boundaries (planar defects) are two types of lattice defects that are crucial to the deformation behavior of metals. Permanent deformation of a crystalline material is microscopically associated with the nucleation and propagation of dislocations, and extensive

  10. Atomistic simulation of dislocation emission in nanosized grain boundaries

    Science.gov (United States)

    Derlet, P. M.; van Swygenhoven, H.; Hasnaoui, A.

    2003-11-01

    The present work deals with the atomic mechanism responsible for the emission of partial dislocations from grain boundaries (GB) in nanocrystalline metals. It is shown that, in a 12 nm grain-size sample, GBs containing grain-boundary dislocations (GBDs) can emit a partial dislocation during deformation by local atomic shuffling and stress-assisted free-volume migration. As in previous work, the nucleation occurs at a GBD, which, upon nucleation and propagation, is removed. In the present case, free-volume migration occurs away from the nucleation region both before and after the nucleation event.

  11. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line.

    Science.gov (United States)

    Ni, Yicun; Skinner, J L

    2016-06-07

    Supercooled water exhibits many thermodynamic anomalies, and several scenarios have been proposed to interpret them, among which the liquid-liquid critical point (LLCP) hypothesis is the most commonly discussed. We investigated Widom lines and the LLCP of deeply supercooled water, by using molecular dynamics simulation with a newly reparameterized water model that explicitly includes three-body interactions. Seven isobars are studied from ambient pressure to 2.5 kbar, and Widom lines are identified by calculating maxima in the coefficient of thermal expansion and the isothermal compressibility (both with respect to temperature). From these data we estimate that the LLCP of the new water model is at 180 K and 2.1 kbar. The oxygen radial distribution function is calculated along the 2 kbar isobar. It shows a steep change in the height of its second peak between 180 and 185 K, which indicates a transition between the high-density liquid and low-density liquid phases and which is consistent with the ascribed location of the critical point. The good agreement of the height of the second peak of the radial distribution function between simulation and experiment at 1 bar, as a function of temperature, supports the validity of the model. The location of the LLCP within the model is close to the kink in the experimental homogeneous nucleation line. We use existing experimental data to argue that the experimental LLCP is at 168 K and 1.95 kbar and speculate how this LLCP and its Widom line might be responsible for the kink in the homogeneous nucleation line.

  12. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  13. On the ice nucleation spectrum

    Directory of Open Access Journals (Sweden)

    D. Barahona

    2012-04-01

    Full Text Available This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population. The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign

  14. Broken or dislocated jaw

    Science.gov (United States)

    ... jaw; Fractured jaw; Fractured mandible; Broken jaw; TMJ dislocation; Mandibular dislocation ... needed to do this, particularly if repeated jaw dislocations occur. After dislocating your jaw, you should not ...

  15. Ice Nucleation on Carbon Surface Supports the Classical Theory for Heterogeneous Nucleation

    CERN Document Server

    Cabriolu, Raffaela

    2015-01-01

    The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and the coarse-grained water model mW, we explicitly computed the heterogeneous ice nucleation rates in the supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure further yields the estimate of the potency factor which measures the ratio of the heterogeneous nucleation barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our numerical study thus provides a strong support to the ...

  16. Ultra-large elongation and dislocation behavior of nano-sized tantalum single crystals

    Directory of Open Access Journals (Sweden)

    Ying Ma

    2017-04-01

    Full Text Available Although extensive simulations and experimental investigations have been carried out, the plastic deformation mechanism of body-centered-cubic (BCC metals is still unclear. With our home-made device, the in situ tensile tests of single crystal tantalum (Ta nanoplates with a lateral dimension of ∼200 nm in width and ∼100 nm in thickness were conducted inside a transmission electron microscope. We discovered an unusual ambient temperature (below ∼60°C ultra-large elongation which could be as large as 63% on Ta nanoplates. The in situ observations revealed that the continuous and homogeneous dislocation nucleation and fast dislocation escape lead to the ultra-large elongation in BCC Ta nanoplates. Besides commonly believed screw dislocations, a large amount of mixed dislocation with b=12 were also found during the tensile loading, indicating the dislocation process can be significantly influenced by the small sizes of BCC metals. These results provide basic understanding of plastic deformation in BCC metallic nanomaterials.

  17. Ultra-large elongation and dislocation behavior of nano-sized tantalum single crystals

    Science.gov (United States)

    Ma, Ying; Lu, Yan; Kong, Deli; Shu, Xinyu; Deng, Qingsong; Zhou, Hao; Chen, Yanhui; Zou, Jin; Wang, Lihua

    2017-04-01

    Although extensive simulations and experimental investigations have been carried out, the plastic deformation mechanism of body-centered-cubic (BCC) metals is still unclear. With our home-made device, the in situ tensile tests of single crystal tantalum (Ta) nanoplates with a lateral dimension of ˜200 nm in width and ˜100 nm in thickness were conducted inside a transmission electron microscope. We discovered an unusual ambient temperature (below ˜60°C) ultra-large elongation which could be as large as 63% on Ta nanoplates. The in situ observations revealed that the continuous and homogeneous dislocation nucleation and fast dislocation escape lead to the ultra-large elongation in BCC Ta nanoplates. Besides commonly believed screw dislocations, a large amount of mixed dislocation with b=1/2 were also found during the tensile loading, indicating the dislocation process can be significantly influenced by the small sizes of BCC metals. These results provide basic understanding of plastic deformation in BCC metallic nanomaterials.

  18. Continuum dislocation-density based models for the dynamic shock response of single-crystal and polycrystalline materials

    Science.gov (United States)

    Luscher, Darby

    2017-06-01

    The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal

  19. Dislocation Velocities and Dislocation Structure in Cubic Zirconia and Sapphire

    Science.gov (United States)

    Farber, Boris Yarovlevick

    The dislocation structure around elevated temperature indentations in 9.4 and 21 mol% rm Y_2O _3 fully-stabilized cubic ZrO_2 (c-ZrO_2) was investigated using selective etching and transmission electron microscopy (TEM). Cracking arising from interaction between slip bands was observed in the 21 mol% rm Y_2O _3 material, and direct evidence of the formation of Lomer type dislocation pile-ups leading to crack nucleation was obtained by TEM. Stress and temperature dependencies of the edge and screw dislocation velocities in c-ZrO_2 were measured. The activation energy for motion of the edge dislocations (5.0 +/- 0.4 eV) is slightly lower than that for screw dislocations (5.6 +/- 0.6 eV). The stress exponent (m) is close to 1 at low temperatures (stress relaxation in the vicinity of room temperature Knoop indents in c-ZrO_2 was investigated using photoelasticity method. A rapid low temperature stress relaxation was observed, and a mechanism was proposed. The temperature dependence of the Vickers hardness was measured on the basal (0001} and pyramidal {11|23} planes of single crystal alpha -Al_2O_3 (sapphire) from room temperature to 1273 K. The plastic zone surrounding the indents was investigated using selective etching and TEM. Indentation was accompanied by three competitive damage processes: fracture, twinning and dislocation plasticity. At room temperature, cracking predominated. At intermediate temperatures, extensive rhombohedral twinning was observed, while at higher temperatures, prismatic slip bands on {11|20} dominated the microstructure. The dislocation substructure at the vicinity of the indents consists of fairly straight dislocations lying on basal and/or prism planes and aligned along crystallographic directions. The details of the glide dissociation of perfect screw dislocations into three collinear partials, the mechanism of the microplasticity of sapphire single crystals, and details of the Peierls potential are discussed. An anomalously high low

  20. A continuum theory of edge dislocations

    Science.gov (United States)

    Berdichevsky, V. L.

    2017-09-01

    Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a ;universal solution;, which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of

  1. Kneecap dislocation

    Science.gov (United States)

    ... make you more likely to dislocate your knee. Alternative Names ... Miller MD, Thompson SR, eds. DeLee and Drez's Orthopaedic Sports Medicine . 4th ed. Philadelphia, PA: Elsevier Saunders; 2015: ...

  2. Atlantoaxial dislocation.

    Science.gov (United States)

    Jain, Vijendra K

    2012-01-01

    Atlanto-axial dislocations (AADs) may be classified into four varieties depending upon the direction and plane of the dislocation i.e. anteroposterior, rotatory, central, and mixed dislocations. However, from the surgical point of view these are divided into two categories i.e. reducible (RAADs) and irreducible (IAADs). Posterior fusion is the treatment of choice for RAAD. Transarticular screw fixation with sub-laminar wiring is the most stable& method of posterior fusion. Often, IAAD is due to inadequate extension in dynamic X-ray study which may also be due to spasm of muscles. If the anatomy at the occipito-atlanto-axial region {O-C1-C2; O: occiput, C1: atlas, C2: axis} is normal on X-ray, the dislocation should be reducible. In case congenital anomalies at O-C1-C2 and IAAD are seen on flexion/extension studies of the cervical spine, the C1-C2 joints should be seen in computerized tomography scan (CT). If the C1-C2 joint facet surfaces are normal, the AAD should be reducible by cervical traction or during surgery by mobilizing the joints. The entity termed "dolichoodontoid" does not exist. It is invariably C2-C3 (C3- third cervical vertebra) fusion which gives an appearance of dolichoodontoid on plain X-ray or on mid-saggital section of magnetic resonance imaging (MRI) or CT scan. The central dislocation and axial invagination should not be confused with basilar invagination. Transoral odontoidectomy alone is never sufficient in cases of congenital IAAD, adequate generous three-dimensional decompression while protecting the underlying neural structures should be achieved. Chronic post-traumatic IAAD are usually Type II odontoid fractures which get malunited or nonunited with pseudoarthrosis in dislocated position. All these dislocations can be reduced by transoral removal of the offending bone, callous and fibrous tissue.

  3. Perilunate Dislocation

    Directory of Open Access Journals (Sweden)

    John Jiao

    2016-09-01

    Full Text Available History of present illness: A 25-year-old female presented to the emergency department with left wrist pain following a fall off a skateboard. The patient fell on her outstretched left wrist with the wrist dorsiflexed and reported immediate sharp pain to her left wrist that was worse with movement. She denied other trauma. Significant findings: In the left lateral wrist x-ray, the lunate (outlined in blue is dislocated from the rest of the wrist bones (yellow line but still articulates with the radius (red line. The capitate (yellow line does not sit within the distal articulation of the lunate and is displaced dorsally. Additionally, a line drawn through the radius and lunate (green line fails to intersect with the capitate. This is consistent with a perilunate dislocation. This is compared to a lunate dislocation, where the lunate itself is displaced and turned ventrally (spilled teacup and the proximal aspect does not articulate with the radius. Discussion: A perilunate dislocation is a significant closed wrist injury that is easily missed on standard anterior-posterior imaging. These dislocations are relatively rare, involving only 7% of all carpal injuries and are associated with high-energy trauma onto a hyperextended wrist, such as falls from a height, motor vehicle accidents, and sports injuries.1 An untreated perilunate dislocation is associated with high risk of chronic carpal instability and post-traumatic arthritis. If the mechanism of injury is sufficient to suspect perilunate dislocation, multiple radiographic views of the wrist should be ordered. Patients should receive prompt orthopedic consultation for open reduction and ligamentous repair. Even after successful identification and subsequent surgical repair, median nerve neuropathy and post-traumatic arthritis are frequent.2-3

  4. Modeling of dislocation generation and interaction during high-speed deformation of metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2002-01-01

    at very high strain rates. We have used molecular-dynamics simulations to investigate high-speed deformation of copper crystals. Even though no pre-existing dislocation sources are present in the initial system, dislocations are quickly nucleated and a very high dislocation density is reached during...

  5. Crystal Dislocations

    Directory of Open Access Journals (Sweden)

    Ronald W. Armstrong

    2016-01-01

    Full Text Available Crystal dislocations were invisible until the mid-20th century although their presence had been inferred; the atomic and molecular scale dimensions had prevented earlier discovery. Now they are normally known to be just about everywhere, for example, in the softest molecularly-bonded crystals as well as within the hardest covalently-bonded diamonds. The advent of advanced techniques of atomic-scale probing has facilitated modern observations of dislocations in every crystal structure-type, particularly by X-ray diffraction topography and transmission electron microscopy. The present Special Issue provides a flavor of their ubiquitous presences, their characterizations and, especially, their influence on mechanical and electrical properties.

  6. Study on nucleation kinetics of lysozyme crystallization

    Science.gov (United States)

    Lin, Chen; Zhang, Yang; Liu, Jing J.; Wang, Xue Z.

    2017-07-01

    The nucleation kinetics of hen egg-white lysozyme crystallization was investigated using a hot stage cooling crystallizer and a microscope to monitor the solution crystallization process in real time. Images of crystals were continuously recorded under varied precipitant and protein concentrations. The nucleation rate was found to be higher at higher precipitant concentration, and increase monotonically with protein concentration if the precipitant concentration was held constant. Attempt was made to interpret the experimental data using classical nucleation theory. It was found that the model predictions are lower than the experimental values at low supersaturations but agree well with experimental data at high supersaturations. The trends in the experimental data suggest that two nucleation mechanisms might co-exist: heterogeneous nucleation seems to be the dominant at low supersaturation while at higher supersaturation homogeneous nucleation seems to play the major role.

  7. Search for Dislocation Free Helium 4 Crystals.

    Science.gov (United States)

    Souris, F; Fefferman, A D; Haziot, A; Garroum, N; Beamish, J R; Balibar, S

    The giant plasticity of [Formula: see text]He crystals has been explained as a consequence of the large mobility of their dislocations. Thus, the mechanical properties of dislocation free crystals should be quite different from those of usual ones. In 1996-1998, Ruutu et al. published crystal growth studies showing that, in their helium 4 crystals, the density of screw dislocations along the c-axis was less than 100 per cm[Formula: see text], sometimes zero. We have grown helium 4 crystals using similar growth speeds and temperatures, and extracted their dislocation density from their mechanical properties. We found dislocation densities that are in the range of 10[Formula: see text]-10[Formula: see text] per cm[Formula: see text], that is several orders of magnitude larger than Ruutu et al. Our tentative interpretation of this apparent contradiction is that the two types of measurements are somewhat indirect and concern different types of dislocations. As for the dislocation nucleation mechanism, it remains to be understood.

  8. Reduction of threading dislocation density in SiGe epilayer on Si (0 0 1) by lateral growth liquid-phase epitaxy

    Science.gov (United States)

    O'Reilly, Andrew J.; Quitoriano, Nathaniel J.

    2018-02-01

    Si0.973Ge0.027 epilayers were grown on a Si (0 0 1) substrate by a lateral liquid-phase epitaxy (LLPE) technique. The lateral growth mechanism favoured the glide of misfit dislocations and inhibited the nucleation of new dislocations by maintaining the thickness less than the critical thicknesses for dislocation nucleation and greater than the critical thickness for glide. This promoted the formation of an array of long misfit dislocations parallel to the [1 1 0] growth direction and reduced the threading dislocation density to 103 cm-2, two orders of magnitude lower than the seed area with an isotropic misfit dislocation network.

  9. Heterogeneous nucleation in solutions: generalized Gibbs' approach.

    Science.gov (United States)

    Abyzov, Alexander S; Schmelzer, Jürn W P

    2014-06-28

    Heterogeneous nucleation in solutions on planar solid surfaces is modeled taking into account changes of the state parameters of the critical clusters in dependence on supersaturation. The account of the variation of the state parameters of the cluster phase on nucleation is performed in the framework of the generalized Gibbs' approach. A regular solution is chosen as a model for the analysis of the basic qualitative characteristics of the process. It is shown that, employing the generalized Gibbs approach, contact angle and catalytic activity factor for heterogeneous nucleation become dependent on the degree of metastability (supersaturation) of the solution. For the case of formation of a cluster in supersaturated solutions on a surface of low wettability (the macroscopic equilibrium contact angles being larger than 90°), the solid surface has only a minor influence on nucleation. In the alternative case of high wettability (for macroscopic equilibrium contact angles being less than 90°), nucleation is significantly enhanced by the solid surface. Effectively, the existence of the solid surface results in a significant shift of the spinodal to lower supersaturations as compared with homogeneous nucleation. Qualitatively, the same behavior is observed now near the new (solid surface induced) limits of instability of the solution as compared with the behavior near to the spinodal curve in the case of homogeneous nucleation.

  10. Dislocation: First Aid

    Science.gov (United States)

    First aid Dislocation: First aid Dislocation: First aid By Mayo Clinic Staff A dislocation is an injury in which the ends of your bones are forced from ... a collision during contact or high-speed sports. Dislocation usually involves the body's larger joints. In adults, ...

  11. Dislocation Energetics and Pop-Ins in AlN Thin Films by Berkovich Nanoindentation

    National Research Council Canada - National Science Library

    Sheng-Rui Jian; Yu-Chin Tseng; I-Ju Teng; Jenh-Yih Juang

    2013-01-01

    ...) and selected area diffraction (SAD) analyses. Instead XTEM observations suggest that these "instabilities" resulted from the sudden nucleation of dislocations propagating along the slip systems lying on the {0001...

  12. Bilateral anterior shoulder dislocation

    Science.gov (United States)

    Meena, Sanjay; Saini, Pramod; Singh, Vivek; Kumar, Ramakant; Trikha, Vivek

    2013-01-01

    Shoulder dislocations are the most common major joint dislocations encountered in the emergency departments. Bilateral shoulder dislocations are rare and of these, bilateral posterior shoulder dislocations are more prevalent than bilateral anterior shoulder dislocations. Bilateral anterior shoulder dislocation is very rare. We present a case of 24-year-old male who sustained bilateral anterior shoulder dislocation following minor trauma, with associated greater tuberosity fracture on one side. Prompt closed reduction followed by immobilization in arm sling and subsequent rehabilitation ensured a good outcome. PMID:24082765

  13. Ultrahigh strength of dislocation-free Ni3Al nanocubes.

    Science.gov (United States)

    Maaß, Robert; Meza, Lucas; Gan, Bin; Tin, Sammy; Greer, Julia R

    2012-06-25

    Individual Ni(3) Al nanocubes under pressure are investigated by comparing the compressive strength of both dislocation-free and irradiated Ni(3) Al nanocubes. The results are dicussed in light of the size-dependent and size-independent strength of face-centered cubic (fcc) nanocrystals in the framework of dislocation nucleation at free surfaces. This study sheds more light on the understanding of fundamental deformation mechanisms and size-affected strength in dislocation-free metallic nanocrystals. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Overview: Experimental studies of crystal nucleation: Metals and colloids

    Science.gov (United States)

    Herlach, Dieter M.; Palberg, Thomas; Klassen, Ina; Klein, Stefan; Kobold, Raphael

    2016-12-01

    Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal

  15. Partitioning of ice nucleating particles: Which modes matter?

    Science.gov (United States)

    Hande, Luke; Hoose, Corinna

    2017-04-01

    Ice particles in clouds have a large impact on cloud lifetime, precipitation amount, and cloud radiative properties through the indirect aerosol effect. Thus, correctly modelling ice formation processes is important for simulations preformed on all spatial and temporal scales. Ice forms on aerosol particles through several different mechanisms, namely deposition nucleation, immersion freezing, and contact freezing. However there is conflicting evidence as to which mode dominates, and the relative importance of the three heterogeneous ice nucleation mechanisms, as well as homogeneous nucleation, remains an open question. The environmental conditions, and hence the cloud type, have a large impact on determining which nucleation mode dominates. In order to understand this, simulations were performed with the COSMO-LES model, utilising state of the art parameterisations to describe the different nucleation mechanisms for several semi-idealised cloud types commonly occurring over central Europe. The cloud types investigated include a semi-idealised, and an idealised convective cloud, an orographic cloud, and a stratiform cloud. Results show that immersion and contact freezing dominate at warmer temperatures, and under most conditions, deposition nucleation plays only a minor role. In clouds where sufficiently high levels of water vapour are present at colder temperatures, deposition nucleation can play a role, however in general homogeneous nucleation dominates at colder temperatures. Since contact nucleation depends on the environmental relative humidity, enhancements in this nucleation mode can be seen in areas of dry air entrainment. The results indicate that ice microphysical processes are somewhat sensitve to the environmental conditions and therefore the cloud type.

  16. Vertical atlantoaxial dislocation

    OpenAIRE

    Ramaré, S.; Lazennec, J. Y.; Camelot, C.; Saillant, G.; Hansen, S.; Trabelsi, R.

    1999-01-01

    An unusual case of vertical atlantoaxial dislocation without medulla oblongata or spinal cord injury is reported. The pathogenic process suggested occipito-axial dislocation. The case was treated surgically with excellent results on mobility and pain.

  17. Multiscale modelling of dislocation/grain-boundary interactions: I. Edge dislocations impinging on Σ11 (1 1 3) tilt boundary in Al

    Science.gov (United States)

    Dewald, M. P.; Curtin, W. A.

    2007-01-01

    Dislocation and grain-boundary processes contribute significantly to plastic behaviour in polycrystalline metals, but a full understanding of the interaction between these processes and their influence on plastic response has yet to be achieved. The coupled atomistic discrete-dislocation method is used to study edge dislocation pile-ups interacting with a Σ11-lang1 1 3rang symmetric tilt boundary in Al at zero temperature under various loading conditions. Nucleation of grain-boundary dislocations (GBDs) at the dislocation/grain-boundary intersection is the dominant mechanism of deformation. Dislocation pile-ups modify both the stress state and the residual defects at the intersection, the latter due to multiple dislocation absorption into the boundary, and so change the local grain-boundary/dislocation interaction phenomena as compared with cases with a single dislocation. The deformation is irreversible upon unloading and reverse loading if multiple lattice dislocations absorb into the boundary and damage in the form of microvoids and loss of crystalline structure accumulates around the intersection. Based on these results, the criteria for dislocation transmission formulated by Lee, Robertson and Birnbaum are extended to include the influences of grain-boundary normal stress, shear stress on the leading pile-up dislocation and minimization of step height at the intersection. Two possible yield loci for the onset of GBD nucleation versus compressive stress and relevant shear stresses are derived from the simulations. These results, and similar studies on other boundaries and dislocation characters, guide the formulation of continuum constitutive behaviours for use in discrete-dislocation or strain-gradient plasticity modelling.

  18. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles

    NARCIS (Netherlands)

    Krishnan, Gopi; de Graaf, Sytze; Brink, ten Gert; Persson, Per O. A.; Kooi, Bart J.; Palasantzas, Georgios

    2017-01-01

    In this work we report strategies to nucleate bimetallic nanoparticles (NPs) made by gas phase synthesis of elements showing difficulty in homogeneous nucleation. It is shown that the nucleation assisted problem of bimetallic NP synthesis can be solved via the following pathways: (i) selecting an

  19. Primary traumatic patellar dislocation

    Directory of Open Access Journals (Sweden)

    Tsai Chun-Hao

    2012-06-01

    Full Text Available Abstract Acute traumatic patellar dislocation is a common injury in the active and young adult populations. MRI of the knee is recommended in all patients who present with acute patellar dislocation. Numerous operative and non-operative methods have been described to treat the injuries; however, the ideal management of the acute traumatic patellar dislocation in young adults is still in debate. This article is intended to review the studies to the subjects of epidemiology, initial examination and management.

  20. Acromioclavicular joint dislocations.

    Science.gov (United States)

    Babhulkar, Ashish; Pawaskar, Aditya

    2014-03-01

    Acromioclavicular (AC) dislocation is a common injury especially among sportsmen. There is still a lack of consensus on whether to conserve or operate type III AC joint dislocations. Even among surgeons inclined to operate AC joint dislocations there is no unanimity on which surgical technique. There are a plethora of choices between mechanical fixation or synthetic materials or biologic anatomic reconstructions. Even among surgeons, there is a choice between open repairs and the latest-arthroscopic reconstructions. This review of AC joint dislocations intends to analyze the available surgical options, a critical analysis of existing literature, actual technique of anatomic repair, and also accompanying complications.

  1. Rare carpometacarpal dislocations.

    Science.gov (United States)

    Lefere, M; Dallaudière, B; Omoumi, P; Cyteval, C; Larbi, A

    2016-10-01

    Posttraumatic carpal and carpometacarpal dislocations represent a heterogeneous group of disorders resulting from high-energy wrist trauma. Perilunate injury is the most common and best-known manifestation of carpal dislocation, typically occurring after hyperextension trauma. Other forms are very rare and have different causative mechanisms. Carpometacarpal (CMC) dislocations are also uncommon and may affect isolated or multiple CMC joints. These lesions are prone to wrist instability if not treated promptly. The aim of this article is to provide a systematic radiologic approach to the evaluation of wrist injury and to present two acute cases of rare CMC dislocations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Anterior glenohumeral joint dislocations.

    Science.gov (United States)

    Dodson, Christopher C; Cordasco, Frank A

    2008-10-01

    The glenohumeral joint is the most mobile articulation in the body and the most commonly dislocated diarthroidal joint. Anterior dislocation is by far the most common direction and can lead to instability of the glenohumeral joint, which ranges from subtle increased laxity to recurrent dislocation. Overtime, understanding of anterior shoulder dislocations and the resulting instability has improved. Likewise, significant advances in arthroscopic equipment have allowed use of the arthroscope to address anatomically the various lesions that cause instability. This article reviews the anatomy, pathophysiology, clinical evaluation, and treatment of anterior shoulder instability.

  3. Nucleation of Recrystallization studied by EBSP and 3DXRD

    DEFF Research Database (Denmark)

    West, Stine

    2009-01-01

    When a deformed crystalline material is annealed, recrystallization will typically take place. In this process new perfect crystals nucleate and grow, consuming the deformation structure. Traditionally, nucleation theories state that the crystal orientations of these new grains were already present...... was seen between this rotation axis and the normals to {111} slip planes of high activity, which were expected to form slip plane aligned dislocation boundaries. This axis is also the axis of misorientation associated with GNBs of twist character forming on {111} planes. Experiments using the Three...

  4. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2010-11-01

    Full Text Available Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions, atmospheric nucleation was studied by (i developing and testing new air ion and cluster spectrometers, (ii conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii investigating atmospheric nucleation mechanism under field conditions, and (iv applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s. This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete

  5. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  6. Nucleation in food colloids

    Science.gov (United States)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  7. A pile-up of edge dislocations to relax Misfit strain

    Directory of Open Access Journals (Sweden)

    Aziz Soufi

    2017-03-01

    Full Text Available It is shown that very large stresses may be present in the thin films that comprise integrated circuits and magnetic disks and that these stresses can cause deformation and fracture of the material. For a crystalline film on a non-deformable substrate, a key problem involves the movement of dislocations in the thin film. An analysis of this problem provides insight into both the formation of misfit dislocations in epitaxial thin films and the high strengths of thin metal films on substrates. We develop in this paper, theoretical calculations for dislocation nucleation phenomena in nanomaterials obtained by hetero-epitaxial growth of thin films on substrates having lattice mismatch defects. Atomic force microscopy observations showed the nucleation of dislocations from free lateral surfaces to relax the "misfit" strain, here we explain the principle of nucleating edge dislocations from these surfaces by the theoretical calculation, using the method of image stress and energy study. We begin, by treating the case of a single dislocation and then generalize the work at a pile-up of n interface dislocations.

  8. Interactions between edge lattice dislocations and Σ11 symmetrical tilt grain boundary: comparisons among several FCC metals and interatomic potentials

    Science.gov (United States)

    Yu, Wenshan; Wang, Zhiqiang

    2014-07-01

    Interactions between edge dislocations and a ? symmetrical tilt grain boundary (GB) in face-centred cubic metals of Ni and Al are studied via a quasicontinuum method (QCM). A variety of embedding atom method potentials are used, and the results are compared to previous studies of Cu [W.S. Yu, Z.Q. Wang, Acta Mater., 60 (2012) 5010]. Different potentials do not significantly affect the edge dislocation-GB interactions in these metals. Edge dislocations can easily transmit across grain boundaries in Ni and Cu, even for a single incoming dislocation. However, slip-transmission in Al occurs only after the GB absorbs many incoming dislocations. Stable nucleation of grain boundary dislocations (GBD) in Cu and Ni plays an important role in the slip-transmissions. The slip transmission in Al is found to be difficult due to the metastable nucleation of GBD. The incoming leading and trailing partials in Al are absorbed together by the GB because of the larger values of ? (?, ? and ? are the shear modulus, magnitude of Burgers vector of a partial dislocation and the stable stacking fault (SF) energy, respectively). The parameter ? (? as the unstable SF energy) [Z.H. Jin et al., Acta. Mater. 56 (2008) 1126] incorporates ? and ?, and can be used to measure the slip transmission ability of an edge dislocation in these metals. It is also shown that certain loading conditions can help enhance the nucleation of GBDs and GBD dipoles in Al, such that the incoming, leading and trailing partial dislocations can be absorbed separately.

  9. Dislocation in Spoken French.

    Science.gov (United States)

    Calve, Pierre

    1985-01-01

    Discusses dislocation, a construction in which one element, usually a noun, is isolated either at the beginning or at the end of a sentence while being represented in the body of the sentence by a pronoun. Discusses the place of dislocation in linguistic studies and its pedagogical implications. (SED)

  10. Traumatic Elbow Dislocations

    NARCIS (Netherlands)

    G.I.T. Iordens (Gijs)

    2014-01-01

    markdownabstractThe elbow is the second most common major joint to dislocate after the shoulder in the adult population. Its stability is highly dependent on a complex interaction between bony articulations, capsuloligamentous structures and dynamic muscle restraints. Dislocations are traditionally

  11. Ice nucleation terminology

    Science.gov (United States)

    Vali, G.; DeMott, P.; Möhler, O.; Whale, T. F.

    2014-08-01

    Progress in the understanding of ice nucleation is being hampered by the lack of uniformity in how some terms are used in the literature. This even extends to some ambiguity of meanings attached to some terms. Suggestions are put forward here for common use of terms. Some are already well established and clear of ambiguities. Others are less engrained and will need a conscious effort in adoption. Evolution in the range of systems where ice nucleation is being studied enhances the need for a clear nomenclature. The ultimate limit in the clarity of definitions is, of course, the limited degree to which ice nucleation processes are understood.

  12. Energetics of protein nucleation on rough polymeric surfaces.

    Science.gov (United States)

    Curcio, Efrem; Curcio, Valerio; Di Profio, Gianluca; Fontananova, Enrica; Drioli, Enrico

    2010-11-04

    Metropolis Monte Carlo (MC) algorithm of the two-dimensional Ising model is used to study the heterogeneous nucleation of protein crystals on rough polymeric surfaces. The theoretical findings are compared to those obtained from classical nucleation theory (CNT), and to experimental data from protein model hen egg white lysozyme (HEWL) crystallized on poly(vinylidene fluoride) or PVDF, poly(dimethylsiloxane) or PDMS and Hyflon homemade membranes. The reduction of the activation energy for the nucleation process on polymeric membranes, predicted to occur at increasing surface roughness, results in a nucleation kinetics that is many orders of magnitude faster than in homogeneous phase. In general, MC stochastic dynamics offers the unique opportunity to investigate the effects of collective molecular aggregation at site level on the nucleation rate and, consequently, allows to identify optimal morphological and structural properties of polymeric membranes for a fine control of the crystallization kinetics.

  13. Dislocation climb in two-dimensional discrete dislocation dynamics

    NARCIS (Netherlands)

    Davoudi, K.M.; Nicola, L.; Vlassak, J.J.

    2012-01-01

    In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening

  14. Main features of nucleation in model solutions of blood plasma

    Science.gov (United States)

    Golovanova, O. A.; Solodyankina, A. A.

    2017-03-01

    The regularities of nucleation in a model solution of human blood plasma under the conditions similar to physiological have been investigated. The induction order and constants are determined. It is shown that an increase in supersaturation leads to a transition from heterogeneous to homogeneous nucleation of crystallites. The critical nucleus size is estimated for a pure model system and for a system containing a number of additives. The impurities under study are found to form the following descending sequence with respect to their effect on nucleation: alanine > glucose > glycine > citric acid > milky acid > magnesium ions.

  15. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  16. Ab initio study of interaction of helium with edge and screw dislocations in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Bakaev, Alexander, E-mail: bakaev_vic@mail.ru [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Grigorev, Petr [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000 Gent (Belgium); Posselt, Matthias [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)

    2017-02-15

    Highlights: • Both screw (SD) and edge dislocations (ED) offer trapping sites for He in tungsten. • He atom is attracted to SD and ED with the interaction energy of ~1.3 and ~3.0 eV, respectively. • The attraction of He to dislocations can contribute to the nucleation of He clusters at high T. - Abstract: The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of −1.3 and −3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.

  17. Bilateral traumatic hip dislocation associated with sacro-iliac dislocation.

    Science.gov (United States)

    Galois, L; Meuley, E; Pfeffer, F; Mainard, D; Delagoutte, J P

    We report a rare injury in an 18-year-old woman who sustained posterior bilateral hip dislocation with sacro-iliac dislocation after a high energy motor vehicle accident. She was treated by closed reduction and skeletal traction. Bilateral traumatic hip dislocation is an uncommon occurrence. Rarer still is bilateral traumatic hip dislocation associated with sacro-iliac dislocation because it combines two different mechanisms of trauma. (Hip International 2002; 1: 47-9).

  18. Finger Proximal Interphalangeal Joint Dislocation.

    Science.gov (United States)

    Ramponi, Denise; Cerepani, Mary Jo

    2015-01-01

    Finger dislocations are common injuries that are often managed by emergency nurse practitioners. A systematic physical examination following these injuries is imperative to avoid complications. Radiographic views, including the anteroposterior, lateral, and oblique views, are imperative to evaluate these finger dislocations. A dorsal dislocation of the proximal interphalangeal (PIP) joint is the most common finger dislocation type often easily reduced. A volar PIP dislocation can often be difficult to reduce and may result in finger deformity. Finger dislocations should be reduced promptly. Referral to an orthopedic hand specialist is required if the dislocation is unable to be reduced or if the finger joint is unstable following reduction attempts.

  19. Electrical characterization of dislocations in gallium nitride using advanced scanning probe techniques

    Science.gov (United States)

    Simpkins, Blake Shelley Ginsberg

    GaN-based materials are promising for high speed and power applications such as amplifier and communications circuits. Ga, In, and AIN-based alloys span a wide optical range (2--6.1 eV) and exhibit strong polarizations making them useful in many devices; however, films are highly defective (˜10 8 dislocations cm-2) due to lack of suitable substrates. Thus, nanoscale electronic characterization of these dislocations is critical for device and growth optimization. Scanning probe techniques enable characterization at length-scales unattainable by conventional techniques. First, scanning Kelvin probe microscopy (SKPM) was used to image surface potential variations due to charged dislocations in HVPE-grown GaN. The film's structural evolution "with thickness was monitored showing a decrease in dislocation density, likely through dislocation reaction. Numerical simulations were used to investigate tip-size effects when imaging highly localized (tens of nm) potential variations indicating that measured dislocation induced potential features in GaN can be much smaller (˜80%) than true variations. Next, capacitance variations in MBE-grown HFETs, due to dislocations-induced carrier depletion, were imaged with scanning capacitance microscopy (SCM). The distribution of these charged centers was correlated with buffer schemes showing that an AIN buffer leads to pseudomorphic (2D) nucleation and randomly distributed misfit dislocations while deposition directly on SiC results in island (3D) nucleation and a domain structure with dislocations grouped at domain boundaries. Hall measurements and numerical simulations were also carried out to further study the implications of these microstructures. Numerical results indicated that randomly distributed dislocations deplete a larger fraction of free carriers than the same density of grouped dislocations and correlated favorably with Hall results. Correlated SKPM and conductive AFM (C-AFM) measurements were then used to study

  20. The origin of dislocations in multilayers

    Science.gov (United States)

    Humphreys, C. J.; Maher, D. M.; Eaglesham, D. J.; Kvam, E. P.; Salisbury, I. G.

    1991-06-01

    This paper will consider some fundamental questions concerning the source, nucleation and propagation of dislocations in multilayers, particularly semiconductor epilayers. The concept of a “critical thickness” for the introduction of misfit dislocations in a strained layer will be considered, and X-ray topography and electron microscopy results will be presented which demonstrate that the concept of a critical thickness is not as well defined as previously supposed. Theoretical considerations for the source of misfit dislocations in epilayers grown on dislocation free substrates indicate that surface sources are improbable in low mismatched systems at typical growth temperatures, however the experimental evidence is that the nucleation of misfit dislocations is relatively easy. A new regenerative source with unique properties has been identified in the GeSi/Si system and we have called this source the diamond defect because of its diamond shape (it is a four-sided planar fault on a {111} plane with sides so that two opposing internal angles are 60° and the other two are 120°). This defect operates like a FrankRead source, but it has the unique property that it can repetitively produce dislocations with two different Burgers vectors on the same glide plane, and it can generate orthogonal bundles of misfit dislocations. Whether this source exists more widely in other materials systems requires further assessment. The important role of misfit dislocations in trace impurity gettering is demonstrated. Cet article aborde des questions fondamentales qui concernent la germination et la propagation des dislocations dans les multicouches, et en particulier dans les semiconducteurs épitaxiés. Nous considérons le concept d'épaisseur critique pour l'apparition des dislocations de désadaptation de réseau dans les couches contraintes. Les résultats de topographie X et de microscopie électronique qui sont présentés montrent que le concept d'épaisseur critique n

  1. Dislocation based multilevel model for elastic-plastic deformation of polycrystalline materials

    Science.gov (United States)

    Chechulina, E. A.; Trusov, P. V.

    2017-12-01

    The main aim of the work is to study the Portevin–Le Chatelier effect. The occurrence of the effect is closely connected to the phenomenon of dynamic strain ageing, i.e. the additional pinning of mobile dislocations by foreign atoms diffusing into the dislocation core during their arrest at obstacles, e.g. forest dislocation. The description of interaction of dislocation with impurities plays a great role, that’s why it is necessary to develop a several submodels: dislocation submodel for the interaction between dislocations and dislocation submodel for the interaction between dislocations and impurities. The multilevel approach based on using the internal variables, i.e. parameters describing the evolution of meso- and microstructure of the material, was applied to construct the model. The approach to model the dislocation structure is based on introduction of homogeneous dislocations densities on each slip system and obtaining evolutionary equations describing the mechanisms of their generation and interaction. The deformation mechanisms are evaluated and evolution of structural parameters during the process of deformation is analyzed. The dislocation submodel for the interaction between dislocations and impurities will be described in the next papers.

  2. Colloids and Nucleation

    Science.gov (United States)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  3. ''The Incubation Period for Void Swelling and its Dependence on Temperature, Dose Rate, and Dislocation Structure Evolution''

    Energy Technology Data Exchange (ETDEWEB)

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2002-06-13

    Void swelling in structural materials used for nuclear reactors is characterized by an incubation period whose duration largely determines the usefulness of the material for core components. Significant evolution of the dislocation and void microstructures that control radiation-induced swelling can occur during this period. Thus, a theory of incubation must treat time-dependent void nucleation in combination with dislocation evolution, in which the sink strengths of voids and dislocations change in concert. We present theoretical results for void nucleation and growth including the time-dependent, self-consistent coupling of point defect concentrations to the evolution of both void populations and dislocation density. Simulations show that the incubation radiation dose is a strong function of the starting dislocation density and of the dislocation bias factors for vacancy and interstitial absorption. Irradiation dose rate and temperature also affect the duration of incubation. The results are in general agreement with experiment for high purity metals.

  4. Dislocation Dynamics During Plastic Deformation

    CERN Document Server

    Messerschmidt, Ulrich

    2010-01-01

    The book gives an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail. Finally, examples are described of the processes in different classes of materials, i.e. semiconductors, ceramics, metals, intermetallic materials, and quasicrystals. The processes are illustrated by many electron micrographs of dislocations under stress and by video clips taken during in situ straining experiments in a high-voltage electron microscope showing moving dislocations. Thus, the users of the book also obtain an immediate impression and understanding of dislocation dynamics.

  5. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  6. Appendicular joint dislocations.

    Science.gov (United States)

    Hindle, Paul; Davidson, Eleanor K; Biant, Leela C; Court-Brown, Charles M

    2013-08-01

    This study defines the incidence and epidemiology of joint dislocations and subluxations of the appendicular skeleton. All patients presenting acutely to hospital with a dislocation or subluxation of the appendicular skeleton from a defined population were included in the study. There were 974 dislocations or subluxations over one year between the 1st November 2008 and the 31st October 2009. There was an overall joint dislocation incidence of 157/10(5)/year (188/10(5)/year in males and 128/10(5)/year in females). Males demonstrated a bimodal distribution with a peak incidence of 446/10(5)/year at 15-24 years old and another of 349/10(5)/year in those over 90 years. Females demonstrate an increasing incidence from the seventh decade with a maximum incidence of 520/10(5)/year in those over 90 years. The most commonly affected joints are the glenohumeral (51.2/10(5)/year), the small joints of the hand (29.9/10(5)/year), the patellofemoral joint (21.6/10(5)/year), the prosthetic hip (19.0/10(5)/year), the ankle (11.5/10(5)/year), the acromioclavicular joint (8.9/10(5)/year) and the elbow (5.5/10(5)/year). Unlike fractures, dislocations are more common in the both the most affluent and the most socially deprived sections of the population. Joint disruptions are more common than previously estimated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    Science.gov (United States)

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimeter was used to study homogeneous nucleation of ice from micron-sized aqueous ammonium sulfate aerosol particles. It is important to understand the conditions at which these particles nucleate ice because of their connection to cirrus cloud formation. Additionally, the concept of freezing point depression, a topic…

  8. Critical Nucleation Length for Accelerating Frictional Slip

    Science.gov (United States)

    Aldam, Michael; Weikamp, Marc; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran

    2017-11-01

    The spontaneous nucleation of accelerating slip along slowly driven frictional interfaces is central to a broad range of geophysical, physical, and engineering systems, with particularly far-reaching implications for earthquake physics. A common approach to this problem associates nucleation with an instability of an expanding creep patch upon surpassing a critical length Lc. The critical nucleation length Lc is conventionally obtained from a spring-block linear stability analysis extended to interfaces separating elastically deformable bodies using model-dependent fracture mechanics estimates. We propose an alternative approach in which the critical nucleation length is obtained from a related linear stability analysis of homogeneous sliding along interfaces separating elastically deformable bodies. For elastically identical half-spaces and rate-and-state friction, the two approaches are shown to yield Lc that features the same scaling structure, but with substantially different numerical prefactors, resulting in a significantly larger Lc in our approach. The proposed approach is also shown to be naturally applicable to finite-size systems and bimaterial interfaces, for which various analytic results are derived. To quantitatively test the proposed approach, we performed inertial Finite-Element-Method calculations for a finite-size two-dimensional elastically deformable body in rate-and-state frictional contact with a rigid body under sideway loading. We show that the theoretically predicted Lc and its finite-size dependence are in reasonably good quantitative agreement with the full numerical solutions, lending support to the proposed approach. These results offer a theoretical framework for predicting rapid slip nucleation along frictional interfaces.

  9. Posterior Elbow Dislocation

    Directory of Open Access Journals (Sweden)

    Victoria Oppenheim

    2016-09-01

    Full Text Available History of present illness: A 15-year old female presented with left elbow pain. While competing in a high school wrestling match, she extended her left arm to brace a fall and had immediate onset of sharp pain. She denied weakness or numbness of her left arm. She had no past medical history. Significant findings: Elbow dislocations are classified by the position of the radio-ulnar joint relative to the humerus.1 Images 1, 2, and 3 show a left posterior elbow dislocation; the radius and ulna are displaced posteriorly with respect to the distal humerus. The lateral view of the elbow most clearly shows this: trochlear notch of the ulna is empty and displaced posteriorly relative to the trochlea. There is no associated fracture. Images 4 and 5 show the elbow status-post reduction, demonstrating proper alignment of the distal humerus with the radius and ulna. Discussion: Traumatic dislocations of the elbow are relatively uncommon in pediatric patients, with a peak incidence at 13 to 14 years.1 Dislocations are usually posterior and occur after forced abduction and extension of the elbow.1 It is important to evaluate for an associated fracture or avulsion, which occurs in over 50% of pediatric elbow dislocations. Fractures most commonly involve the medial epicondyle, radial head and neck, or coronoid process.1 One should also consider a neurovascular injury to the ulnar or median nerve or to the brachial artery or its branches.1 Posterior elbow dislocations should be reduced as soon as possible.1 Patients should receive adequate sedation and/or analgesia. One method of reduction is the “puller” technique, during which a practitioner stabilizes the humerus, while a second practitioner applies force against the anterior forearm, with gentle traction distally.1 Post-reduction neurovascular reassessment is important. After successful reduction, patients can be immobilized in a posterior long arm splint.

  10. Characteristics-based sectional modeling of aerosol nucleation and condensation

    NARCIS (Netherlands)

    Frederix, E.M.A.; Staniç, M.; Kuczaj, Arkadiusz K.; Nordlund, M.; Geurts, Bernardus J.

    2016-01-01

    A new numerical method for the solution of an internally mixed spatially homogeneous sectional model for aerosol nucleation and condensation is proposed. The characteristics method is used to predict droplet sizes within a discrete time step. The method is de- signed such that 1) a pre-specified

  11. Dislocation of the hip (image)

    Science.gov (United States)

    A dislocation is an injury in which a bone is displaced from its proper position. Unless there are accompanying fractures or tissue damage, a simple dislocation may be manipulated back into place. Recovery may ...

  12. Traumatic thumb carpometacarpal joint dislocations.

    Science.gov (United States)

    Bosmans, B; Verhofstad, M H J; Gosens, T

    2008-03-01

    Isolated traumatic dislocation of the thumb carpometacarpal joint, also called the trapeziometacarpal joint, is a rare injury. Controversy still exists concerning which ligaments are the true key stabilizers for the joint and therefore need to be damaged to result in dislocation, and optimal treatment strategies for thumb carpometacarpal joint dislocations are the subject of continuing debate. We give a review of the literature concerning traumatic dislocations of the carpometacarpal joint of the thumb and propose a treatment algorithm.

  13. Design rules for dislocation filters

    OpenAIRE

    Ward, Tom; Sánchez, Ana M; Tang, Mingchu; Wu, Jiang; Liu, Huiyun; Dunstan, David J.; Beanland, Richard

    2014-01-01

    The efficacy of strained layer threading dislocation filter structures in single crystal epitaxial layers is evaluated using numerical modeling for (001) face-centred cubic materials, such as GaAs or Si(1-x)Ge(x), and (0001) hexagonal materials such as GaN. We find that threading dislocation densities decay exponentially as a function of the strain relieved, irrespective of the fraction of threading dislocations that are mobile. Reactions between threading dislocations tend to produce a popul...

  14. Dislocation dynamics simulations of plasticity at small scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Caizhi [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  15. Effect of Plastic Flattening on the Shearing Response of Metal Asperities : A Dislocation Dynamics Analysis

    NARCIS (Netherlands)

    Sun, Fengwei; Van der Giessen, Erik; Nicola, Lucia

    Discrete dislocation (DD) plasticity simulations are carried out to investigate the effect of flattening and shearing of surface asperities. The asperities are chosen to have a rectangular shape to keep the contact area constant. Plasticity is simulated by nucleation, motion, and annihilation of

  16. Behavior of dislocations in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sumino, Koji [Nippon Steel Corp., Chiba Prefecture (Japan)

    1995-08-01

    A review is given of dynamic behavior of dislocations in silicon on the basis of works of the author`s group. Topics taken up are generation, motion and multiplication of dislocations as affected by oxygen impurities and immobilization of dislocations due to impurity reaction.

  17. Effect of compressive and tensile strain on misfit dislocation injection in SiGe epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Wegscheider, W. [Walter Schottky Institut, Garching (Germany); Cerva, H. [Siemens AG, Research Lab., Muenchen (Germany)

    1993-05-01

    The relaxation behavior of short-period Si/Ge superlattices and Si{sub x}Ge{sub 1-x} alloy layers under compressive and tensile strain field is compared experimentally by means of transmission electron microscopy as well as theoretically on ethebasis of a half-loop dislocation nucleation mode. It was found that misfit dislocations in tensily strained layers grown on Ge(001) substrates are imperfect and of the 90{degrees} Shockley type provided some critical misfit f{sub c} is exceeded. Subsequent nucleation and glide of these partial dislocations on adjacent (111) glide planes leads to the formation of stacking faults and microtwins. In the low misfit regime (fnucleation of 60{degrees} perfect dislocations is energetically favorable. In contrast, misfit dislocations in layers which experience a compressive strain field within the (001) growth plane are generally of the 60{degrees} type. In this case the critical thickness for coherent growth is found to be substantially enlarged with respect to the inverse strain situation where microtwin formation occurs. 30 refs., 8 figs.

  18. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  19. Congenital hip dislocation (image)

    Science.gov (United States)

    ... by a blow, fall, or other trauma, a dislocation can also occur from birth. The cause is unknown but genetic factors may play a role. Problems resulting from very mild developmental dysplasia of the hip may not become apparent until the person is ...

  20. Dislocated Worker Project.

    Science.gov (United States)

    1988

    Due to the severe economic decline in the automobile manufacturing industry in southeastern Michigan, a Dislocated Workers Program has been developed through the partnership of the Flint Area Chamber of Commerce, three community colleges, the National Center for Research in Vocational Education, the Michigan State Department of Education, the…

  1. Local decomposition induced by dislocation motions inside precipitates in an Al-alloy.

    Science.gov (United States)

    Yang, B; Zhou, Y T; Chen, D; Ma, X L

    2013-01-01

    Dislocations in crystals are linear crystallographic defects, which move in lattice when crystals are plastically deformed. Motion of a partial dislocation may remove or create stacking fault characterized with a partial of a lattice translation vector. Here we report that motion of partial dislocations inside an intermetallic compound result in a local composition deviation from its stoichiometric ratio, which cannot be depicted with any vectors of the primary crystal. Along dislocation slip bands inside the deformed Al(2)Cu particles, redistribution of Cu and Al atoms leads to a local decomposition and collapse of the original crystal structure. This finding demonstrates that dislocation slip may induce destabilization in complex compounds, which is fundamentally different from that in monometallic crystals. This phenomenon of chemical unmixing of initially homogeneous multicomponent solids induced by dislocation motion might also have important implications for understanding the geologic evolvement of deep-focus peridotites in the Earth.

  2. Misfit dislocation locking and rotation during gallium nitride growth on SiC/Si substrates

    Science.gov (United States)

    Kukushkin, S. A.; Osipov, A. V.; Bessolov, V. N.; Konenkova, E. V.; Panteleev, V. N.

    2017-04-01

    The effect of changing the misfit dislocation propagation direction during GaN layer growth on the AlN/SiC/Si(111) structure surface is detected. The effect is as follows. As the GaN layer growing on AlN/SiC/Si(111) reaches a certain thickness of 300 nm, misfit dislocations initially along the layer growth axis stop and begin to move in the direction perpendicular to the growth axis. A theoretical model of AlN and GaN nucleation on the (111) SiC/Si face, explaining the effect of changing the misfit dislocation motion direction, is constructed. The effect of changing the nucleation mechanism from the island one for AlN on SiC/Si(111) to the layer one for the GaN layer on AlN/SiC/Si is experimentally detected and theoretically explained.

  3. [Subtalar dislocation of the foot].

    Science.gov (United States)

    Lacko, M; Cellár, R; Vaško, G

    2012-01-01

    Based on a retrospective analysis, the authors present their experience with treatment of subtalar dislocation of the foot. Between 1999 and 2011 six patients, all of them men, with the average age of 31 years were treated for subtalar fractures. Five patients were diagnosed with medial dislocation and one with lateral dislocation. In one patient with medial subtalar dislocation it was an open injury. The clinical and radiographic results of the patients followed up for 1 to 12 years (average, 7.8 years) were retrospectively evaluated. The achieved average score, based on the AOFAS ankle and hindfoot scale, was 91.3 points (± 9.77; minimum, 73; maximum, 100). Excellent results were recorded in four patients, good in one and satisfactory in the patient with lateral dislocation. Radiographic signs of subtalar joint osteoarthritis were found in one patient. No neurological or circulation dis - orders, skin necrosis, signs of reflex sympathetic dystrophy, aseptic bone necrosis of the talus, infection or joint instability were recorded. A subtalar dislocation of the foot involves simultaneous dislocation of the talocalcaneal and talonavicular joints. It is a rare injury accounting for about 1 to 2% of all traumatic dislocations. It may occur as medial, lateral, anterior or posterior subtalar dislocation. The results of treatment depend on several factors, such as the type of dislocation (medial and open dislocations are at higher risk), associated injuries, or damage to deep skin layers, and also on an exact diagnosis, early and accurate reduction and sufficiently long foot immobilisation.

  4. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Claire [University of California, Berkeley & LBNL; Bei, Hongbin [ORNL; Lowry, M. B. [University of California, Berkeley; Oh, Jason [Hysitron, Inc., MN; Asif, S.A. Syed [Hysitron, Inc., MN; Warren, O. [Hysitron, Inc., MN; Shan, Zhiwei [Xi' an Jiaotong University, China & Hysitron, Inc., MN; George, Easo P [ORNL; Minor, Andrew [University of California, Berkeley & LBNL

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  5. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    Science.gov (United States)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  6. Ice nucleation from aqueous NaCl droplets with and without marine diatoms

    Directory of Open Access Journals (Sweden)

    P. A. Alpert

    2011-06-01

    Full Text Available Ice formation in the atmosphere by homogeneous and heterogeneous nucleation is one of the least understood processes in cloud microphysics and climate. Here we describe our investigation of the marine environment as a potential source of atmospheric IN by experimentally observing homogeneous ice nucleation from aqueous NaCl droplets and comparing against heterogeneous ice nucleation from aqueous NaCl droplets containing intact and fragmented diatoms. Homogeneous and heterogeneous ice nucleation are studied as a function of temperature and water activity, aw. Additional analyses are presented on the dependence of diatom surface area and aqueous volume on heterogeneous freezing temperatures, ice nucleation rates, ωhet, ice nucleation rate coefficients, Jhet, and differential and cumulative ice nuclei spectra, k(T and K(T, respectively. Homogeneous freezing temperatures and corresponding nucleation rate coefficients are in agreement with the water activity based homogeneous ice nucleation theory within experimental and predictive uncertainties. Our results confirm, as predicted by classical nucleation theory, that a stochastic interpretation can be used to describe the homogeneous ice nucleation process. Heterogeneous ice nucleation initiated by intact and fragmented diatoms can be adequately represented by a modified water activity based ice nucleation theory. A horizontal shift in water activity, Δaw, het = 0.2303, of the ice melting curve can describe median heterogeneous freezing temperatures. Individual freezing temperatures showed no dependence on available diatom surface area and aqueous volume. Determined at median diatom freezing temperatures for aw from 0.8 to 0.99, ωhet~0.11+0.06−0.05 s−1, Jhet~1.0+1.16−0.61×104 cm−2

  7. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.

    Science.gov (United States)

    Zhang, Zhengcai; Guo, Guang-Jun

    2017-07-26

    Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.

  8. Neglected isolated scaphoid dislocation

    Directory of Open Access Journals (Sweden)

    Jong-Ryoon Baek

    2016-01-01

    Full Text Available The authors present a case of isolated scaphoid dislocation in a 40-year-old male that was undiagnosed for 2 months. The patient was treated by open reduction, Kirschner wire fixation, interosseous ligament repair using a suture anchor and Blatt's dorsal capsulodesis. At 6 years followup, his radiographs of wrist showed a normal carpal alignment with a scapholunate gap of 3 mm and no evidence of avascular necrosis (AVN of the scaphoid.

  9. Open Dislocation of Fifth Digit

    Directory of Open Access Journals (Sweden)

    Robert Rowe

    2016-09-01

    Full Text Available History of present illness: A 17-year-old female presented with a chief complaint of right fifth finger pain. The patient reported that she was playing volleyball when she blocked an opponent’s shot and sustained an injury to her right fifth finger. Significant findings: Physical exam revealed an open dislocation of the proximal interphalangeal joint (PIP of the right fifth digit. X-ray confirmed dislocation and revealed no fractures. The patient received a tetanus booster, Cefazolin, and the dislocation was then washed out and reduced. Multiple reduction attempts were made and were only successful once the metacarpophalangeal joints were held in 90 degree flexion, which relaxed the lateral bands and enabled the finger to be reduced. Discussion: PIP dislocations result in more complications than those of distal interphalangeal joints (DIP.1 Dorsal dislocations of the PIP are more common than volar dislocations and usually cause injury to the volar plate and the collateral ligaments.2 Dislocations are typically reduced with hyper-extension of the middle phalanx followed by longitudinal traction of the distal portion of the finger, and then gentle flexion or palmar force.1,2 The finger is then splinted in 20-30 degrees of flexion. Open dislocations and fracture dislocations should be evaluated for hand surgery.1 If left untreated or incompletely reduced, dorsal dislocations of the PIP may lead to swan neck deformities.2

  10. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  11. The Classic: Dislocation and Fracture-Dislocation of the Pelvis

    OpenAIRE

    Holdsworth, F W

    2012-01-01

    This Classic Article is a reprint of the original work by F.W. Holdsworth, Dislocation and fracture-dislocation of the pelvis. An accompanying biographical sketch of F.W. Holdsworth is available at DOI 10.1007/s11999-012-2422-4. Reproduced and adapted with permission and copyright © of the British Editorial Society of Bone and Joint Surgery. Holdsworth FW. Dislocation and fracture-dislocation of the pelvis. J Bone Joint Surg Br. 1948;30:461–466.

  12. Management of Unusual Atlantoaxial Dislocation.

    Science.gov (United States)

    Song, Ruipeng; Fan, Daoyang; Wu, Han; Zhang, Zhen; Zhao, Liang; Liu, Yilin; Liao, Wensheng; Tan, Hongyu; Wang, Limin; Wang, Weidong

    2017-04-15

    A case report and review of the literature. The aim of this study was to describe the successful treatment of one posterior atlantoaxial dislocation without fracture and to review the relevant literature. Posterior atlantoaxial dislocation without fracture of the odontoid process is extremely rare. Management of these patients is still unknown. A posterior atlantoaxial dislocation without fracture in a 58-year-old man with incomplete quadriplegia was treated surgically with posterior atlantoaxial pedicle screws internal fixation and fusion after closed reduction. The images, treatment, and related literature are reviewed. The patient had complete recovery of neurologic deficit and bony fusion of the atlantoaxial joint was identified on the follow-up computed tomography taken 3 months after posterior fixation. To our knowledge, no case of posterior atlantoaxial dislocation with neurologic deficit has been previously reported in English medical literature. We described a rare case of posterior atlantoaxial dislocation with neurologic deficit. Treatment procedure of posterior atlantoaxial dislocation was presented. 5.

  13. Design rules for dislocation filters

    Science.gov (United States)

    Ward, T.; Sánchez, A. M.; Tang, M.; Wu, J.; Liu, H.; Dunstan, D. J.; Beanland, R.

    2014-08-01

    The efficacy of strained layer threading dislocation filter structures in single crystal epitaxial layers is evaluated using numerical modeling for (001) face-centred cubic materials, such as GaAs or Si1-xGex, and (0001) hexagonal materials such as GaN. We find that threading dislocation densities decay exponentially as a function of the strain relieved, irrespective of the fraction of threading dislocations that are mobile. Reactions between threading dislocations tend to produce a population that is a balanced mixture of mobile and sessile in (001) cubic materials. In contrast, mobile threading dislocations tend to be lost very rapidly in (0001) GaN, often with little or no reduction in the immobile dislocation density. The capture radius for threading dislocation interactions is estimated to be approximately 40 nm using cross section transmission electron microscopy of dislocation filtering structures in GaAs monolithically grown on Si. We find that the minimum threading dislocation density that can be obtained in any given structure is likely to be limited by kinetic effects to approximately 104-105 cm-2.

  14. Configuration and local elastic interaction of ferroelectric domains and misfit dislocation in PbTiO3/SrTiO3 epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Takanori Kiguchi, Kenta Aoyagi, Yoshitaka Ehara, Hiroshi Funakubo, Tomoaki Yamada, Noritaka Usami and Toyohiko J Konno

    2011-01-01

    Full Text Available We have studied the strain field around the 90° domains and misfit dislocations in PbTiO3/SrTiO3 (001 epitaxial thin films, at the nanoscale, using the geometric phase analysis (GPA combined with high-resolution transmission electron microscopy (HRTEM and high-angle annular dark field––scanning transmission electron microscopy (HAADF-STEM. The films typically contain a combination of a/c-mixed domains and misfit dislocations. The PbTiO3 layer was composed from the two types of the a-domain (90° domain: a typical a/c-mixed domain configuration where a-domains are 20–30 nm wide and nano sized domains with a width of about 3 nm. In the latter case, the nano sized a-domain does not contact the film/substrate interface; it remains far from the interface and stems from the misfit dislocation. Strain maps obtained from the GPA of HRTEM images show the elastic interaction between the a-domain and the dislocations. The normal strain field and lattice rotation match each other between them. Strain maps reveal that the a-domain nucleation takes place at the misfit dislocation. The lattice rotation around the misfit dislocation triggers the nucleation of the a-domain; the normal strains around the misfit dislocation relax the residual strain in a-domain; then, the a-domain growth takes place, accompanying the introduction of the additional dislocation perpendicular to the misfit dislocation and the dissociation of the dislocations into two pairs of partial dislocations with an APB, which is the bottom boundary of the a-domain. The novel mechanism of the nucleation and growth of 90° domain in PbTiO3/SrTiO3 epitaxial system has been proposed based on above the results.

  15. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    Science.gov (United States)

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2017-10-23

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Inorganic Nanoparticle Nucleation on Polymer Matrices

    Science.gov (United States)

    Kosteleski, Adrian John

    The introduction of inorganic nanoparticles into organic materials enhances both the mechanical and chemical properties of the material. Metallic nanoparticles, like silver and gold, have been introduced into polymers for use as antimicrobial coatings or dielectric materials, respectively. The challenge in creating these materials currently is the difficulty to homogeneously disperse the particles throughout the polymer matrix. The uneven dispersion of nanoparticles can lead to less than optimal quality and undesired properties. By creating a polymer nanocomposite material with well-controlled size inorganic materials that are evenly dispersed throughout the polymer matrix; we can improve the materials performance and properties. The objective for this research is to use polymer networks for the in situ mineralization of silver and other metallic materials to create intricate inorganic structures. The work performed here studied the ability to nucleate silver nanoparticles using poly (acrylic acid) (PAA) as the templating agent. Ionic silver was chemically reduced by sodium borohydride (NaBH4) in the presence of PAA. The effect of varying reactant concentrations of silver, NaBH 4, and PAA on particle size was studied. Reaction conditions in terms of varying temperature and pH levels of the reaction solution were monitored to observe the effect of silver nanoparticle size, shape, and concentration. By monitoring the UV spectra over time the reaction mechanism of the silver reduction process was determined to be an autocatalytic process: a period of slow, continuous nucleation followed by rapid, autocatalytic growth. The reaction kinetics for this autocatalytic process is also reported. PAA was crosslinked both chemically and physically to 3 biopolymers; ELP, an elastin like peptide, cotton fabrics, and calcium alginate hydrogels. Various compositions of PAA were physically crosslinked with calcium alginate gels to design an antimicrobial hydrogel for use in wound

  17. Midfit dislocation generation mechanisms in InGaAs/GaAs heterostructures

    Science.gov (United States)

    Kui, J.; Jesser, W. A.; Jones, S. H.

    1994-01-01

    An experimental investigation of misfit dislocation generation mechanisms at an InGaAs/GaAs heterointerface is reported. InGaAs epitaxial layers were grown by low-pressure oragnometallic vapor-phase epitaxy on patterned and unpatterned GaAs substrate having etch-pit densities (EPD) of 200, 1400, and 10,000 cm(exp -2). After epitaxial growth, the samples were annealed at temperatures between 650 and 750 C, and analyzed by optical and transmission electron microscopy. For the range of substrate EPD studied, it was found that the substrate EPD controls the onset of misfit dislocation generation for low-temperature epitaxy (less than 600 C) on unpatterned substrates. When epilayers were annealed at 750 C, the density of misfit dislocations was independent of the substrate EPD. These studies also show that the dominant misfit dislocation generation mechanism for films grown on patterned substrates is nucleation at the growth-mesa edge. The density of preexisting threading dislocations has little influence on misfit dislocation generation for films selectively deposited within 100 x 100 sq micrometer growth windows. For selective heteroepitaxy, misfit dislocation generation strongly depends on the crystallographic orientation of the growth-mesa edge.

  18. Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature

    Science.gov (United States)

    Gupta, Pradeep; Yedla, Natraj

    2017-12-01

    In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.

  19. Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature

    Science.gov (United States)

    Gupta, Pradeep; Yedla, Natraj

    2017-10-01

    In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.

  20. Energies of dissociated dislocations in ice

    OpenAIRE

    福田, 明治

    1988-01-01

    Elastic energies of dissociated dislocations on the basal plane were calculated using anisotropic elasticity. Energies of stacking faults and dislocation cores were supposed to get total energies of the dislocations. It is proposed that a dislocation with [0001] Burgers vectors dissociated two partial dislocations with 1/2 [0001] Burgers vector not with 1/6 Burgers vector, and that a combination of dislocations with [0001] Burgers vector and with 1/3 Burgers vector is stable.

  1. Left Dislocation: a typological overview

    African Journals Online (AJOL)

    Andrason, A, Dr

    [Peter,]i I've known himi for a long time. b. .... or dislocating the leftmost NP This movie outside of the semantic and syntactic dependency relations licensed by the predicate. In other words, the critical difference between these constructions, is that the dislocated NP This movie can be omitted in (2c) without causing any.

  2. Nature of Dislocations in Silicon

    DEFF Research Database (Denmark)

    Hansen, Lars Bruno; Stokbro, Kurt; Lundqvist, Bengt

    1995-01-01

    Interaction between two partial 90 degrees edge dislocations is studied with atomic-scale simulations using the effective-medium tight-binding method. A large separation between the two dislocations (up to 30 Angstrom), comparable to experimental values, is achieved with a solution of the tight-b...

  3. Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Hereñú, S.; Alvarez-Armas, I. [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Krupp, U. [Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück (Germany)

    2014-10-06

    This work is focused on the fatigue damage of lean duplex stainless steels (LDSSs) LDX 2101. Special interest is placed on analyzing short fatigue crack behavior. In this sense, short crack initiation and growth during low cycle fatigue (LCF) and short crack nucleation during high cycle fatigue (HCF) of this LDSS have been studied. The active slip systems and their associated Schmid factors (SF) are determined using electron backscattered diffraction (EBSD). Additionally, the dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Regardless of the fatigue regime, LCF and HCF, short cracks nucleate along intrusion/extrusions in ferritic grains. Moreover, during the LCF phase boundaries decelerate short crack propagation. These results are rationalized by the hardness of the constitutive phases and the dependence of screw dislocation mobility in the ferrite phase on strain rate and stress amplitude.

  4. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    Science.gov (United States)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.

  5. Dislocation generation in GaN heteroepitaxy

    Science.gov (United States)

    Wu, X. H.; Fini, P.; Tarsa, E. J.; Heying, B.; Keller, S.; Mishra, U. K.; DenBaars, S. P.; Speck, J. S.

    1998-06-01

    In this work, we study the microstructural evolution, with particular emphasis on threading dislocation (TD) generation, in the two-step metal-organic chemical vapor deposition (MOCVD) of GaN on sapphire. The MOCVD growths were carried out at atmospheric pressure in a horizontal two-flow reactor. Nominally, 200 Å thick nucleation layers (NL) were deposited at temperatures in the range 525-600°C followed by high temperature (HT) growth at 1060-1080°C. Throughout the different stages of growth, the microstructure was studied by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Two growth conditions were closely studied: brief pre-growth ammonia exposure of the sapphire (`Material A') and extensive pre-growth ammonia exposure of the sapphire (`Material B'). The as-grown Material B NL has a ˜25 Å hexagonal GaN wetting layer followed by predominantly (1 1 1) oriented cubic GaN. After HT exposure, Material B NL predominantly transforms to hexagonal GaN and has TDs. These TDs propagate into the HT GaN and lead to a TD density of 2×10 10 after 1 μm of HT growth. Material A NLs, before and after HT exposure, have rough morphologies and a high-degree-of-stacking disorder (predominantly (1 1 1) oriented cubic GaN). On Material A NLs, The HT GaN grows by a coarse island mechanism in which the GaN laterally overgrows the NL without generating TDs. Stacking disorder and misorientation between the HT hexagonal GaN and the NL islands is accommodated either by Shockley or Frank partial dislocations or local strain. The majority of TDs are subsequently generated at the coalescence of the HT islands.

  6. Nucleation and Atmospheric Aerosols 17th International Conference, Galway, Ireland, 2007

    CERN Document Server

    O'Dowd, Colin D

    2007-01-01

    Atmospheric particles are ubiquitous in the atmosphere: they form the seeds for cloud droplets and they form haze layers, blocking out incoming radiation and contributing to a partial cooling of our climate. They also contribute to poor air quality and health impacts. A large fraction of aerosols are formed from nucleation processes – that is a phase transition from vapour to liquid or solid particles. Examples are the formation of stable clusters about 1 nm in size from molecular collisions and these in turn can grow into larger (100 nm or more) haze particles via condensation to the formation of ice crystals in mixed phase or cold clouds. This book brings together the leading experts from the nucleation and atmospheric aerosols research communities to present the current state-of-the-art knowledge in these related fields. Topics covered are: Nucleation Experiment & Theory, Binary, Homogeneous and Heterogeneous Nucleation, Ion & Cluster Properties During Nucleation, Aerosol Characterisation & P...

  7. Collaborative Research: failure of RockMasses from Nucleation and Growth of Microscopic Defects and Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Klein, William [Boston Univ., MA (United States)

    2016-09-12

    Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structure of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.

  8. Ice nucleation at the nanoscale probes no man's land of water.

    Science.gov (United States)

    Li, Tianshu; Donadio, Davide; Galli, Giulia

    2013-01-01

    At a given thermodynamic condition, nucleation events occur at a frequency that scales with the volume of the system. Therefore at the nanoscale, one may expect to obtain supercooled liquids below the bulk homogeneous nucleation temperature. Here we report direct computational evidence that in supercooled water nano-droplets ice nucleation rates are strongly size dependent and at the nanoscale they are several orders of magnitude smaller than in bulk water. Using a thermodynamic model based on classical nucleation theory, we show that the Laplace pressure is partially responsible for the suppression of ice crystallization. Our simulations show that the nucleation rates found for droplets are similar to those of liquid water subject to a pressure of the order of the Laplace pressure within droplets. Our findings aid the interpretation of molecular beam experiments and support the hypothesis of surface crystallization of ice in microscopic water droplets in clouds.

  9. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.

    Science.gov (United States)

    Jun, Young-Shin; Kim, Doyoon; Neil, Chelsea W

    2016-09-20

    water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.

  10. Perilunate Injuries, Not Dislocated (PLIND)

    Science.gov (United States)

    Herzberg, Guillaume

    2013-01-01

    Purpose We reviewed a series of equivalents of perilunate dislocations and fracture-dislocations (PLDs–PLFDs) in which there was no dislocation of the capitate from the lunate on the initial radiographs. We propose to include these injuries as a variant of perilunate dislocations that we have termed a perilunate injury, not dislocated (PLIND) lesion in a modified classification of perilunate injuries. Methods A review of the records of all acute perilunate injuries and displaced carpal fractures was done in a single-center university hospital wrist surgery unit over a 5-year period. All cases presenting at the acute stage with displaced fractures of scaphoid, lunate, triquetrum, or capitate along with scapholunate and/or lunotriquetral dissociation but no dislocation of the capitate from the lunate in the sagittal or coronal plane were reviewed and considered as PLIND lesions. Results We identified 11 patients with PLIND lesions. Three cases with clinical and radiological follow-up are presented. Discussion Equivalents of PLDs–PLFDs presenting without dislocation of the capitate from the lunate do exist. These injuries may be overlooked despite their severity. They require both osseous and ligamentous repair. Including them into an existing perilunate injuries classification highlights their recognition and enables a better understanding and treatment of both acute and chronic nondislocated perilunate injuries. Level of Evidence Level IV, retrospective case series. PMID:24436839

  11. New metastable form of ice and its role in the homogeneous crystallization of water.

    Science.gov (United States)

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2014-07-01

    The homogeneous crystallization of water at low temperature is believed to occur through the direct nucleation of cubic (Ic) and hexagonal (Ih) ices. Here, we provide evidence from molecular simulations that the nucleation of ice proceeds through the formation of a new metastable phase, which we name Ice 0. We find that Ice 0 is structurally similar to the supercooled liquid, and that on growth it gradually converts into a stacking of Ice Ic and Ih. We suggest that this mechanism provides a thermodynamic explanation for the location and pressure dependence of the homogeneous nucleation temperature, and that Ice 0 controls the homogeneous nucleation of low-pressure ices, acting as a precursor to crystallization in accordance with Ostwald's step rule of phases. Our findings show that metastable crystalline phases of water may play roles that have been largely overlooked.

  12. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  13. Ice Nucleation and Droplet Formation by Bare and Coated Soot Particles

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Beth J.; Kulkarni, Gourihar R.; Beranek, Josef; Zelenyuk, Alla; Thornton, Joel A.; Cziczo, Daniel J.

    2011-09-13

    We have studied ice formation at temperatures relevant to homogeneous and heterogeneous ice nucleation, as well as droplet activation and hygroscopicity, of soot particles of variable size and composition. Coatings of adipic, malic, and oleic acid were applied to span an atmospherically relevant range of solubility, and both uncoated and oleic acid coated soot particles were exposed to ozone to simulate atmospheric oxidation. The results are interpreted in terms of onset ice nucleation, with a comparison to a mineral dust particle that acts as an efficient ice nucleus, and particle hygroscopicity. At 253K and 243K, we found no evidence of heterogeneous ice nucleation occurring above the level of detection for our experimental conditions. Above water saturation, only droplet formation was observed. At 233K, we observe the occurrence of homogeneous ice nucleation for all particles studied. Coatings also did not significantly alter the ice nucleation behavior of soot particles, but aided in the uptake of water. Hygroscopicity studies confirmed that pure soot particles were hydrophobic, and coated soot particles activated as droplets at high water supersaturations. A small amount of heterogeneous ice nucleation either below the detection limit of our instrument or concurrent with droplet formation and/or homogeneous freezing cannot be precluded, but we are able to set limits for its frequency. We conclude that both uncoated and coated soot particles representative of those generated in our studies are unlikely to significantly contribute to the global budget of heterogeneous ice nuclei at temperatures between 233K and 253K.

  14. Nucleation of urea from aqueous solution: Structure, critical size, and rate

    Science.gov (United States)

    Mandal, Taraknath; Larson, Ronald G.

    2017-04-01

    Using fully atomistic simulations, we find that the structure of the critical urea crystal nucleus (monoclinic, four molecules per unit cell) in an aqueous solution differs from the known crystal structure of bulk urea (orthorhombic, two molecules per unit cell). Following a frequently used "seeding technique" combined with the classical nucleation theory, we also find that at room temperature the critical nucleus is very large (containing ˜530 molecules) and the nucleation rate is very slow (˜5 × 10-24 cm-3 s-1) , suggesting that the homogeneous nucleation of urea is improbable at room temperature.

  15. Knee Dislocations in Sports Injuries

    Science.gov (United States)

    Pardiwala, Dinshaw N; Rao, Nandan N; Anand, Karthik; Raut, Alhad

    2017-01-01

    Knee dislocations are devastating when they occur on the athletic field or secondary to motor sports. The complexity of presentation and spectrum of treatment options makes these injuries unique and extremely challenging to even the most experienced knee surgeons. An astute appreciation of the treatment algorithm is essential to plan individualized management since no two complex knee dislocations are ever the same. Moreover, attention to detail and finesse of surgical technique are required to obtain a good functional result and ensure return to play. Over the past 10 years, our service has treated 43 competitive sportsmen with knee dislocations, and this experience forms the basis for this narrative review. PMID:28966379

  16. Habitual dislocation of patella: A review

    Science.gov (United States)

    Batra, Sumit; Arora, Sumit

    2014-01-01

    Habitual dislocation of patella is a condition where the patella dislocates whenever the knee is flexed and spontaneously relocates with extension of the knee. It is also termed as obligatory dislocation as the patella dislocates completely with each flexion and extension cycle of the knee and the patient has no control over the patella dislocating as he or she moves the knee1. It usually presents after the child starts to walk, and is often well tolerated in children, if it is not painful. However it may present in childhood with dysfunction and instability. Very little literature is available on habitual dislocation of patella as most of the studies have combined cases of recurrent dislocation with habitual dislocation. Many different surgical techniques have been described in the literature for the treatment of habitual dislocation of patella. No single procedure is fully effective in the surgical treatment of habitual dislocation of patella and a combination of procedures is recommended. PMID:25983506

  17. Interpretation of the microwave effect on induction time during CaSO4 primary nucleation by a cluster coagulation model

    Science.gov (United States)

    Guo, Zhichao; Li, Liye; Han, Wenxiang; Li, Jiawei; Wang, Baodong; Xiao, Yongfeng

    2017-10-01

    The effects of microwave on the induction time of CaSO4 are studied experimentally and theoretically. In the experiments, calcium sulfate is precipitated by mixing aqueous CaCl2 solution and Na2SO4 solution. The induction time is measured by recording the change of turbidity in solution. Various energy inputs are used to investigate the effect of energy input on nucleation. The results show that the induction time decreases with increasing supersaturation and increasing energy input. Employing the classical nucleation theory, the interfacial tension is estimated. In addition, the microwave effects on nucleation order (n) and nucleation coefficient (kN) are also investigated, and the corresponding values of homogeneous nucleation are compared with the values of heterogeneous nucleation in the microwave field. A cluster coagulation model, which brings together the classic nucleation models and the theories describing the behavior of colloidal suspension, was applied to estimate the induction time under various energy inputs. It is found that when nucleation is prominently homogeneous, the microwave energy input does not change the number of monomers in dominating clusters. And when nucleation is prominently heterogeneous, although the dominating cluster size increases with supersaturation increasing, at the same supersaturation level, the dominating cluster size remains constant in the microwave field.

  18. Nonstoichiometric nucleation and growth of multicomponent nanocrystals in solution.

    Science.gov (United States)

    Min, Yuho; Kwak, Junghyeok; Soon, Aloysius; Jeong, Unyong

    2014-10-21

    The ability to assemble nanoscale functional building blocks is a useful and modular way for scientists to design valuable materials with specific physical and chemical properties. Chemists expect multicomponent, heterostructured nanocrystals to show unique electrical, thermal, and optical properties not seen in homogeneous, single-phase nanocrystals. Although researchers have made remarkable advances in heterogeneous nucleation and growth, design of synthetic conditions for obtaining nanocrystals with a target composition and shape is still a big challenge. There are several outstanding issues that chemists need to address before they can successfully carry out the design-based synthesis of multicomponent nanocrystals. For instance, small changes in the reaction parameters, such as the precursor, solvent, surfactant, reducing agent, and the reaction temperature, often result in changes in the structure and chemical composition of the final product. Although scientists do not fully understand the mechanisms underlying the nucleation and growth processes involved in the synthesis of these multicomponent nanocrystals, recent progress in understanding of the thermodynamic and kinetic factors have improved our control over their final structure and chemical composition. In this Account, we summarize our recent advances in understanding of the nucleation and growth mechanisms involved in the solution-based synthesis of multicomponent nanocrystals. We also discuss the various challenges encountered in their synthesis, emphasizing what still needs special consideration. We first discuss the three different nucleation paths from a thermodynamics perspective: amorphous nucleation, crystalline nucleation, and two-step nucleation. Amorphous nucleation and two-step nucleation involve the generation of nonstoichiometric nuclei. We initiate this process mainly by introducing an imbalance in the concentrations of the reduced elements. When the nonstoichiometric nuclei grow, we

  19. Dynamical correlations near dislocation jamming.

    Science.gov (United States)

    Laurson, Lasse; Miguel, M-Carmen; Alava, Mikko J

    2010-07-02

    Dislocation assemblies exhibit a jamming or yielding transition at a critical external shear stress value σ=σ{c}. Here we study the heterogeneous and collective nature of dislocation dynamics within a crystal plasticity model close to σ{c}, by considering the first-passage properties of the dislocation dynamics. As the transition is approached in the moving phase, the first-passage time distribution exhibits scaling, and a related peak dynamical susceptibility χ{4}{*} diverges as χ{4}{*}∼(σ-σ{c}){-α}, with α≈1.1. We relate this scaling to an avalanche description of the dynamics. While the static structural correlations are found to be independent of the external stress, we identify a diverging dynamical correlation length ξ{y} in the direction perpendicular to the dislocation glide motion.

  20. Prediction of dislocation boundary characteristics

    DEFF Research Database (Denmark)

    Winther, Grethe

    Plastic deformation of both fcc and bcc metals of medium to high stacking fault energy is known to result in dislocation patterning in the form of cells and extended planar dislocation boundaries. The latter align with specific crystallographic planes, which depend on the crystallographic....... Crystal plasticity calculations combined with the hypothesis that these boundaries separate domains with local differences in the slip system activity are introduced to address precise prediction of the experimentally observed boundaries. The presentation will focus on two cases from fcc metals...... orientation of the grain [1]. For selected boundaries it has been experimentally verified that the boundaries consist of fairly regular networks of dislocations, which come from the active slip systems [2]. The networks have been analyzed within the framework of Low-Energy-Dislocation-Structures (LEDS...

  1. Arthroscopic treatment of acromioclavicular dislocation

    OpenAIRE

    Mihai T. Gavrilă; Ștefan Cristea

    2017-01-01

    A thorough understanding of biomechanical function of both acromioclavicular (AC) and coracoclavicular (CC) ligaments, stimulated surgeons to repair high-grade AC dislocation using arthroscopic technique. This technique necessitates a clear understanding of shoulder anatomy, especially of the structures in proximity to the clavicle and coracoid process and experiences in arthroscopic surgery. The follow case describes an arthroscopic technique used to treat AC dislocation in young man 30 year...

  2. Defects and nucleation of GaN layers on (0001) sapphire

    Science.gov (United States)

    Degave, F.; Ruterana, P.; Nouet, G.; Je, J. H.; Kim, C. C.

    2002-12-01

    The morphology and microstructural evolution of a nucleation layer are analysed using high-resolution transmission electron microscopy. Low-temperature nucleation of GaN on (0001) sapphire is investigated. Depositions were made for 20, 40, 60, 120 and 180 s at 560°C by metal-organic chemical vapour deposition. It is shown that the shortest deposition times give rise to the formation of cubic islands. Subsequently, the density and the size of the nucleated islands increase and they start to transform into wurtzite from the interface with the substrate. From the start, the nuclei contain misfit dislocations. At these early growth stages, the relaxation state changes from one island to another; this probably underlies the subsequent mosaïc growth of the high-temperature-active GaN layers.

  3. Improved success of sparse matrix protein crystallization screening with heterogeneous nucleating agents.

    Directory of Open Access Journals (Sweden)

    Anil S Thakur

    2007-10-01

    Full Text Available Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed.We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other.Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens.

  4. Dislocation-induced nanoparticle decoration on a GaN nanowire.

    Science.gov (United States)

    Yang, Bing; Yuan, Fang; Liu, Qingyun; Huang, Nan; Qiu, Jianhang; Staedler, Thorsten; Liu, Baodan; Jiang, Xin

    2015-02-04

    GaN nanowires with homoepitaxial decorated GaN nanoparticles on their surface along the radial direction have been synthesized by means of a chemical vapor deposition method. The growth of GaN nanowires is catalyzed by Au particles via the vapor-liquid-solid (VLS) mechanism. Screw dislocations are generated along the radial direction of the nanowires under slight Zn doping. In contrast to the metal-catalyst-assisted VLS growth, GaN nanoparticles are found to prefer to nucleate and grow at these dislocation sites. High-resolution transmission electron microscopy (HRTEM) analysis demonstrates that the GaN nanoparticles possess two types of epitaxial orientation with respect to the corresponding GaN nanowire: (I) [1̅21̅0]np//[1̅21̅0]nw, (0001)np//(0001)nw; (II) [1̅21̅3]np//[12̅10]nw, (101̅0)np//(101̅0)nw. An increased Ga signal in the energy-dispersive spectroscopy (EDS) profile lines of the nanowires suggests GaN nanoparticle growth at the edge surface of the wires. All the crystallographic results confirm the importance of the dislocations with respect to the homoepitaxial growth of the GaN nanoparticles. Here, screw dislocations situated on the (0001) plane provide the self-step source to enable nucleation of the GaN nanoparticles.

  5. Efficiency of immersion mode ice nucleation on surrogates of mineral dust

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2007-10-01

    Full Text Available A differential scanning calorimeter (DSC was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K. For ATD-induced ice formation Classical Nucleation Theory (CNT offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle in CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (lognormally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter of at least 0

  6. Water nucleation: A comparison between some phenomenological theories and experiment.

    Science.gov (United States)

    Bennett, Thomas P; Barrett, Jonathan C

    2012-09-28

    The predictions of several homogeneous nucleation theories are compared with experimental results for water for a range of temperatures and vapor supersaturations, S. The theoretical models considered are: classical theory (including the 1/S correction factor), the Gibbs p-form, mean-field kinetic nucleation theory (MKNT), the extended modified liquid drop model-dynamical nucleation theory, and two forms of density functional theory, one without and one with a contribution due to association. The theoretical expressions for the logarithm of the nucleation rate are expanded in a series in powers of the logarithm of S. The residual dependence (once the classical dependence has been factored out) of the experimental results shows a stronger decrease with increasing temperature than all the theories except MKNT. The residual S-dependence of the experimental results decreases with increasing supersaturation whereas all the theories except the Gibbs p-form predict an increase. The first correction term to classical theory involves both the liquid compressibility and curvature correction to the surface tension (Tolman length) so the experimental results suggest that the Tolman length is zero (as assumed in the Gibbs p-form) or positive whereas the other theories predict a negative Tolman length. The effect of including a term proportional to ln(lnS) in the series expansion is also discussed.

  7. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  8. Nucleation and dissociation of nano-particles in gas phase; Nucleation et evaporation de nanoparticules en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, P

    2007-09-15

    This work deals with the study of nano-particles formation in gas phase and their dissociation pathways after an optical excitation. The clusters formation decomposes in two steps: a seed is formed (nucleation phase) and sticks atoms during its propagation in a sodium atomic vapor (growth phase). Those two steps have been observed separately for homogeneous Na{sub n} and heterogeneous Na{sub n}X particles (X = (NaOH){sub 2} or (Na{sub 2}O){sub 2}). The growth mechanism is well interpreted by a Monte Carlo simulation taking into account an accretion mechanism with hard-sphere cross section. The homogeneous nucleation mechanism has been highlighted by a direct comparison with the Classical Nucleation Theory predictions. The clusters fragmentation of ionic Na{sup +}(NaOH){sub p} et Na{sup +}(NaF){sub p} particles is studied in the second part. The way clusters fragment with size when they are excited optically is compared with theoretical previsions: this highlights the existence of an energetic barrier for special size of clusters. Finally, the fragmentation of doubly charged Na{sup +} Na{sup +} (NaOH){sub p} clusters shows a competition between the fission into two single charged fragments and the unimolecular evaporation of a neutral fragment. (author)

  9. Determination of nucleation kinetics of lovastatin in acetone solution

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hua; Wang, Jingkang; Gong, Junbo [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2010-07-15

    The metastable zone widths of lovastatin in acetone solution were determined at different temperatures, cooling rates and initial concentrations by polythermal method. It decreases with the increase of temperature and initial concentration, increases with the increase of cooling rate. The induction periods of lovastatin in acetone solution were also investigated as a function of supersaturation ratios. The crystal-liquid interfacial tension, thus the fundermental nucleation parameters including Gibbs free energy change for the formation of critical nucleus, radius of critical nucleus and number of molecules in the critical nucleus have been gotten based on the classical homogeneous nucleation theory. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Ice Nucleation and Droplet Formation by Bare and Coated Black Carbon Particles

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Beth J.; Kulkarni, Gourihar R.; Beranek, Josef; Zelenyuk, Alla; Thornton, Joel A.; Cziczo, Daniel J.

    2011-10-13

    We have studied the ice formation at heterogeneous and homogeneous temperatures, as well as droplet activation and hygroscopicity of soot particles of variable size and composition. Coatings of adipic, malic, and oleic acid were applied to span a relevant range of solubility, and both uncoated and oleic acid coated soot particles were exposed to ozone to simulate atmospheric oxidation. The results are interpreted in terms of onset ice nucleation with a comparison to a well characterized mineral dust particle that acts as an efficient ice nucleus, as well as particle hygroscopicity. At 253K and 243K, we found no evidence of heterogeneous ice nucleation occurring above the level of detection for our experimental conditions. Above water saturation, droplet formation was observed. At 233K, we observe the occurrence of homogeneous ice nucleation for all particles studied. Coatings also did not significantly alter the ice nucleation behavior of soot particles, but aided in the uptake of water. Hygroscopicity studies confirmed that pure soot particles were hydrophobic, and coated soot particles activated as droplets at high water supersaturations. A small amount of heterogeneous ice nucleation either below the detection limit of our instrument or concurrent with droplet formation and/or homogeneous freezing cannot be precluded, but we are able to set limits for its frequency. We conclude from our studies that both uncoated and coated soot particles are unlikely to contribute to the global budget of heterogeneous ice nuclei at temperatures between 233K and 253K.

  11. Reducing uncertainties in nucleation rates: A comparison of measurements and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nadykto, A. B., E-mail: anadykto@gmail.com [Atmospheric Science Research Center, State University of New York at Albany, 251 Fuller Road, Albany, NY 12203 (United States); Department of Applied Mathematics, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, Moscow 127055 (Russian Federation); Nazarenko, K. M.; Markov, P. N. [Department of Applied Mathematics, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, Moscow 127055 (Russian Federation); Yu, F. [Atmospheric Science Research Center, State University of New York at Albany, 251 Fuller Road, Albany, NY 12203 (United States)

    2016-06-08

    Recently, large uncertainties in amine nucleation thermodynamics associated with the description of interactions of H{sub 2}SO{sub 4}, the key atmospheric nucleation precursor, with pre-nucleation clusters have been revealed. Here we investigate the formation of (H{sub 2}SO{sub 4}){sub 2}(H{sub 2}O){sub n} (n=0-5) clusters via H{sub 2}O–induced dimerization using conventional RI-MP2 and PW91PW91 methods and recently developed multistep BRIMP2 and B3RICC2 methods widely used in nucleation studies and compare the obtained results with measurements for equilibrium constants of H{sub 2}O–induced dimerization. Variations in K{sub p} and Gibbs free energies predicted by different methods were found to be unexpectedly large, several times of those in hydration free energies commonly used to benchmark computational quantum methods. This means that the common hydration benchmarks are not fully representative of nucleation and that the validation of quantum methods to be recommended for use in nucleation studies is impossible without a thorough assessment of H{sub 2}SO{sub 4}-H{sub 2}SO{sub 4} interactions. We show clearly that only conventional RI-MP2 and PW91PW91 methods are consistent with experiments and that a thorough validation of theoretical predictions against experimental data on H{sub 2}SO{sub 4} clustering is needed prior to recommending a quantum–chemical method for use in nucleation research. We also shows that conclusions about the role of Amine-Enhanced Ternary Homogeneous Nucleation (ATHN) in atmospheric nucleation may be affected by the large uncertainties in nucleation thermodynamics associated with the application of B3RICC2 and BRIMP2 methods and may need a thorough revision.

  12. Irreducible Traumatic Posterior Shoulder Dislocation

    Directory of Open Access Journals (Sweden)

    Blake Collier

    2017-01-01

    Full Text Available History of present illness: A 22-year-old male presented to the Emergency Department complaining of right shoulder pain after a motocross accident. He was traveling at approximately 10 mph around a turn when he lost control and was thrown over the handlebars, landing directly on his right shoulder. On arrival, he was holding his arm in adduction and internal rotation. An area of swelling was noted over his anterior shoulder. He was unable to abduct his shoulder. No humeral gapping was noted. He had normal neuro-vascular status distal to the injury. Significant findings: Radiographs demonstrated posterior displacement of the humeral head on the “Y” view (see white arrow and widening of the glenohumeral joint space on anterior-posterior view (see red arrow. The findings were consistent with posterior dislocation and a Hill-Sachs type deformity. Sedation was performed and reduction was attempted using external rotation, traction counter-traction. An immediate “pop” was felt during the procedure. Post-procedure radiographs revealed a persistent posterior subluxation with interlocking at posterior glenoid. CT revealed posterior dislocation with acute depressed impaction deformity medial to the biceps groove with the humeral head perched on the posterior glenoid, interlocked at reverse Hill-Sachs deformity (see blue arrow. Discussion: Posterior shoulder dislocations are rare and represent only 2% of all shoulder dislocations. Posterior shoulder dislocations are missed on initial diagnosis in more than 60% of cases.1 Posterior shoulder dislocations result from axial loading of the adducted and internally rotated shoulder, violent muscle contractions (resulting from seizures or electrocution, a direct posterior force applied to the anterior shoulder.1 Physical findings include decreased anterior prominence of the humeral head, increased palpable posterior prominence of the humeral head below the acromion, increased palpable prominence of the

  13. Sideline Management of Joint Dislocations.

    Science.gov (United States)

    Schupp, Christian M; Rand, Scott E; Hanson, Travis W; Lee, Bryan M; Jafarnia, Korsh; Jia, Yuhang; Moseley, J Bruce; Seaberg, John P; Seelhoefer, Gregory M

    2016-01-01

    Athletes can sustain a large variety of injuries from simple soft tissue sprains to complex fractures and joint dislocations. This article reviews and provides the most recent information for sports medicine professionals on the management of simple and complex joint dislocations, i.e., irreducible and/or associated with a fracture, from the sidelines without the benefit of imaging. For each joint, the relevant anatomy, common mechanisms, sideline assessment, reduction techniques, initial treatment, and potential complications will be discussed, which allow for the safe and prompt return of athletes to the field of play.

  14. [Traumatic hip dislocations in children].

    Science.gov (United States)

    Ayadi, K; Trigui, M; Gdoura, F; Elleuch, B; Zribi, M; Keskes, H

    2008-02-01

    Traumatic hip dislocation is a rare event in children. Appropriate management remains a subject of debate. The purpose of this study was to investigate the epidemiological, therapeutic features of this situation and the long-term outcome after treatment. This was a retrospective analysis of 15 traumatic hip dislocations collected over a period of 20 years in pediatric patients with at least two years follow-up. We searched for predisposing factors and factors affecting prognosis. The series included 11 boys and three girls, mean age eight years. Dislocation was posterior in 13 hips and anterior in two. Time to reduction was less than 3h in eight cases, 3-6h in five and greater than 6h in two. After reduction, traction was performed in nine children, for 20 days on average, followed in five cases by immobilization for 40 days on average. Five hips were immobilized directly after reduction. We identified two groups by age: group 1 with dislocations in children aged less than six years (seven children) were characterized by low-energy trauma. Dislocation was not associated with other lesions. Predisposing factors (overt ligament hyperlaxity, insufficient superolateral head cover, coax valga) were noted in six children. Reduction was simple. Later treatment consisted in immobilization with a pelvispedious cast for 30-45 days. Group 2 were dislocations in children aged over six years (seven children) victims of high-energy trauma. Associated injuries were frequent. Predisposing factors were not present. At mean 11 years follow-up, all hips are considered normal clinically. The radiograph was normal for 14 hips. In one case, there was a slight coax magna. In three patients, defective femoral head cover persisted. Coxa valga persisted in two patients. Traumatic dislocation of the hip joint is rare in very young children, but results from a minimally traumatic event. This suggests the presence of predisposing factors in this category of patients, particularly

  15. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  16. An OpenFOAM®-based tool for computational modeling of aerosol nucleation and transport

    NARCIS (Netherlands)

    Frederix, E.M.A.; Kuczaj, Arkadiusz K.; Nordlund, M.; Winkelmann, C.; Geurts, Bernardus J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    In the process of single-species homogeneous vapor condensation into aerosol, surface is created between liquid and vapor. The energy of formation of such surface limits the condensation of vapor from a supersaturated state. Nucleation, the mechanism of generation of embryo sites, or nuclei, on

  17. Total carpometacarpal joint dislocation combined with trapezium fracture, trapezoid dislocation and hamate fracture

    DEFF Research Database (Denmark)

    Gvozdenovic, R; Vadstrup, Lars Soelberg

    2015-01-01

    Multiple metacarpal dislocations combined with carpal fracture - dislocations are rare injuries. We report a new combination of these injuries where fracture-dislocation of the base of the 1st metacarpal bone occurred simultaneously with a comminuted fracture of the trapezium, dislocation of the ...

  18. Mechanism of void growth in irradiated NaCl based on exiton-induced formation of divacancies at dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Dubinko, V.I. [National Science Center, Kharkov Institute of Physics and Technology, Akademicheskaya 1, 310108 Kharkov (Ukraine)]. E-mail: vdubinko@kipt.kharkov.ua; Vainshtein, D.I. [Solid State Physics Laboratory, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); Hartog, H.W. den [Solid State Physics Laboratory, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands)

    2005-01-01

    We propose a mechanism of void growth in di-atomic ionic crystals due to agglomeration of divacancies produced by interactions between dislocations and excitons. An exciton can cause movement of nearby dislocation jogs, resulting in the creation of equal numbers of anion and cation vacancies (Schottky defects). Owing to the heat generated locally during the exciton annihilation, the jog can be displaced while a divacancy arises in the lattice. Subsequent diffusion and agglomeration of divacancies can result in void formation and growth. We evaluate the void nucleation and growth rates in electron irradiated NaCl.

  19. Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing

    Science.gov (United States)

    Wagner, Robert; Höhler, Kristina; Huang, Wei; Kiselev, Alexei; Möhler, Ottmar; Mohr, Claudia; Pajunoja, Aki; Saathoff, Harald; Schiebel, Thea; Shen, Xiaoli; Virtanen, Annele

    2017-05-01

    The ice nucleation ability of α-pinene secondary organic aerosol (SOA) particles was investigated at temperatures between 253 and 205 K in the Aerosol Interaction and Dynamics in the Atmosphere cloud simulation chamber. Pristine SOA particles were nucleated and grown from pure gas precursors and then subjected to repeated expansion cooling cycles to compare their intrinsic ice nucleation ability during the first nucleation event with that observed after ice cloud processing. The unprocessed α-pinene SOA particles were found to be inefficient ice-nucleating particles at cirrus temperatures, with nucleation onsets (for an activated fraction of 0.1%) as high as for the homogeneous freezing of aqueous solution droplets. Ice cloud processing at temperatures below 235 K only marginally improved the particles' ice nucleation ability and did not significantly alter their morphology. In contrast, the particles' morphology and ice nucleation ability was substantially modified upon ice cloud processing in a simulated convective cloud system, where the α-pinene SOA particles were first activated to supercooled cloud droplets and then froze homogeneously at about 235 K. As evidenced by electron microscopy, the α-pinene SOA particles adopted a highly porous morphology during such a freeze-drying cycle. When probing the freeze-dried particles in succeeding expansion cooling runs in the mixed-phase cloud regime up to 253 K, the increase in relative humidity led to a collapse of the porous structure. Heterogeneous ice formation was observed after the droplet activation of the collapsed, freeze-dried SOA particles, presumably caused by ice remnants in the highly viscous material or the larger surface area of the particles.

  20. 14 CFR 314.6 - Qualifying dislocation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Qualifying dislocation. 314.6 Section 314.6 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS EMPLOYEE PROTECTION PROGRAM General § 314.6 Qualifying dislocation. A qualifying dislocation is a...

  1. Metal working and dislocation structures

    DEFF Research Database (Denmark)

    Hansen, Niels

    2007-01-01

    Microstructural observations are presented for different metals deformed from low to high strain by both traditional and new metal working processes. It is shown that deformation induced dislocation structures can be interpreted and analyzed within a common framework of grain subdivision on a finer...

  2. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  3. Medial subtalar dislocation: Case report

    Directory of Open Access Journals (Sweden)

    Manojlović Radovan

    2010-01-01

    Full Text Available Introduction. Subtalar dislocation (SI is a term that refers to an injury in which there is dislocation of the talonavicular and talocalcanear joint, although the tibiotalar joint is intact. Case Outline. A case of medial subtalar dislocation as a result of basketball injury, so-called 'basketball foot', is presented. Closed reposition in i.v. anaesthesia was performed with the patient in supine position and a knee flexed at 90 degrees. Longitudinal manual traction in line of deformity was carried out in plantar flexion. The reposition continued with abduction and eversion simultaneously increasing dorsiflexion. It was made in the first attempt and completed instantly. Rehabilitation was initiated after 5 weeks of immobilization. One year after the injury, the functional outcome was excellent with full range of motion and the patient was symptom-free. For better interpretation of roentgenogram, bone model of subtalar dislocation was made using the cadaver bone. Conclusion. Although the treatment of such injury is usually successful, diagnosis can be difficult because it is a rare injury, and moreover, X-ray of the injury can be confusing due to superposition of bones. Radiograms revealed superposition of the calcaneus, tarsal and metatarsal bones which was radiographically visualized in the anterior-posterior projection as one osseous block inward from the talus, and on the lateral view as in an osteal block below the tibial bone. Prompt recognition of these injuries followed by proper, delicately closed reduction under anaesthesia is crucial for achieving a good functional result in case of medial subtalar dislocation.

  4. Slip systems, lattice rotations and dislocation boundaries

    DEFF Research Database (Denmark)

    Winther, Grethe

    2008-01-01

    Plastic deformation by slip induces rotations of the crystallographic lattice and evolution of dislocation structures. Both lattice rotations and dislocation structures exhibit a dependence on the grain orientation, which reflects underlying relations to the slip pattern. Relations between the type...... of dislocation structure formed, in particular the crystallographic alignment of dislocation boundaries, and the slip pattern are demonstrated. These relations are applied to polycrystals deformed in tension and rolling, producing good agreement with experiment for rolling but less good agreement for tension...... of these discrepancies is discussed. Finally, the implications of the relations between slip and dislocation structures for the modelling of mechanical properties are discussed....

  5. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality.

    Science.gov (United States)

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G Julius

    2017-11-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO 2 -blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO 2 -philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO 2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO 2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of

  6. Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate.

    Science.gov (United States)

    Lee, Chia-Yu; Tzou, An-Jye; Lin, Bing-Cheng; Lan, Yu-Pin; Chiu, Ching-Hsueh; Chi, Gou-Chung; Chen, Chi-Hsiang; Kuo, Hao-Chung; Lin, Ray-Ming; Chang, Chun-Yen

    2014-01-01

    The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8 × 10(7) cm(-2) to 2.6 × 10(7) cm(-2). Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer.

  7. Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array

    Science.gov (United States)

    Deinum, Eva E.; Tindemans, Simon H.; Mulder, Bela M.

    2011-10-01

    The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters.

  8. Control of dislocation morphology and lattice distortion in Na-flux GaN crystals

    Science.gov (United States)

    Takeuchi, S.; Mizuta, Y.; Imanishi, M.; Imade, M.; Mori, Y.; Sumitani, K.; Imai, Y.; Kimura, S.; Sakai, A.

    2017-09-01

    The dislocation morphology and lattice distortion, including the tilting and twisting of lattice planes, at the Na-flux GaN/seed-GaN interface were investigated using transmission electron microscopy (TEM) and position-dependent nanobeam X-ray diffraction (nanoXRD). The results revealed that the dislocation morphology and lattice distortion in Na-flux GaN at the initial growth stage are strongly influenced by the seed-GaN surface morphology and the growth mode of Na-flux GaN. From the TEM results, one can observe that the formation of dislocation-related etch pits (DREPs) on the seed-GaN surface and the three-dimensional (3D) growth mode for Na-flux GaN give rise to the bending and lateral propagation of dislocations penetrating from the seed-GaN to the Na-flux GaN. This simultaneously results in homogenization of the GaN crystal domain structure as confirmed by nanoXRD. The mechanism responsible for the bending and lateral propagation of dislocations by the formation of DREPs and the 3D growth mode for the Na-flux GaN and the correlation between the dislocation morphology and the lattice distortion are discussed on the basis of TEM and nanoXRD results.

  9. Molecular simulation of crystal nucleation in n-octane melts

    Science.gov (United States)

    Yi, Peng; Rutledge, Gregory C.

    2009-10-01

    Homogeneous nucleation of the crystal phase in n-octane melts was studied by molecular simulation with a realistic, united-atom model for n-octane. The structure of the crystal phase and the melting point of n-octane were determined through molecular dynamics simulation and found to agree with experimental results. Molecular dynamics simulations were performed to observe the nucleation events at constant pressure and constant temperature corresponding to about 20% supercooling. Umbrella sampling Monte Carlo simulations were used to calculate the nucleation free energy for three temperatures, ranging from 8% to 20% supercooling, and to reveal details of the critical nucleus for the first time. The cylindrical nucleus model was found to provide a better quantitative description of the critical nucleus than the spherical nucleus model. The interfacial free energies of the cylinder model were calculated from the simulation data. As the temperature increased, the interfacial free energy of the side surface remained relatively unchanged, at 7-8 mJ/m2, whereas the interfacial free energy of the end surface decreased significantly from 5.4 mJ/m2 to about 3 mJ/m2. These results, and the methods employed, provide valuable and quantitative information regarding the rate-limiting step during the solidification of chain molecules, with ramifications for both short alkanes and polymers.

  10. Model studies of volatile diesel exhaust particle formation: organic vapours involved in nucleation and growth?

    Science.gov (United States)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-02-01

    High concentration of volatile nucleation mode particles (NUP) formed in the atmosphere during exhaust cools and dilutes have hazardous health effects and impair visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulphur content (FSC), under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested; based on the measured gaseous sulphuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrierless heteromolecular homogeneous nucleation between GSA and semi-volatile organic vapour (for example adipic acid) combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur by the same organic vapour at concentrations of (1-2) ×1012cm-3. The pre-existing core and soot mode concentrations had opposite trend on the NUP formation, and maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, NUP formation was ceased if the GSA concentration was less than 1010cm-3 which suggests, based on the measurements, the usage of biofuel to prevent volatile particles in diesel exhaust.

  11. Homogeneity and Entropy

    Science.gov (United States)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  12. Cavity nucleation and growth in dual beam irradiated 316L industrial austenitic stainless steel

    Science.gov (United States)

    Jublot-Leclerc, S.; Li, X.; Legras, L.; Fortuna, F.; Gentils, A.

    2017-10-01

    Thin foils of 316L were simultaneously ion irradiated and He implanted in situ in a Transmission Electron Microscope at elevated temperatures. The resulting microstructure is carefully investigated in comparison with previous single ion irradiation experiments with a focus on the nucleation and growth of cavities. Helium is found to strongly enhance the nucleation of cavities in dual beam experiments. On the contrary, it does not induce more nucleation when implanted consecutively to an in situ ion irradiation but rather the growth of cavities by absorption at existing cavities, which shows the importance of synergistic effects and He injection mode on the microstructural changes. In both dual beam and single beam experiments, the characteristics of the populations of cavities, either stabilized by He or O atoms, are in qualitative agreement with the predictions of rate theory models for cavity growth. The evolutions of cavity population as a function of irradiation conditions can be reasonably well explained by the concept of relative sink strength of cavities and dislocations and the resulting partitioning of defects at sinks, or conversely recombination when either of the sinks dominates. The dislocations whose presence is a prerequisite to cavity growth in rate theory models are not observed in all studied conditions. In this case, the net influx of vacancies to cavities necessary to their growth and conversion to voids is believed to result from free surface effects, and possibly also segregation of elements close to the cavity surface. In any studied condition, the measured swelling is low, which is ascribed to the dilution of gaseous atoms among a high density of cavities as well as a high rate of point defect recombination and loss at traps. This high rate of recombination enhanced when dislocations are absent appears to result in the formation of overpressurized He bubbles.

  13. Simultaneous shoulder and elbow dislocation.

    Science.gov (United States)

    Cobanoğlu, Mutlu; Yumrukcal, Feridun; Karataş, Cengiz; Duygun, Fatih

    2014-05-23

    Ipsilateral shoulder and elbow dislocation is very rare and only six articles are present in the literature mentioning this kind of a complex injury. With this presentation we aim to emphasise the importance of assessing the adjacent joints in patients with trauma in order not to miss any accompanying pathologies. We report a case of a 43-year-old female patient with ipsilateral right shoulder and elbow dislocation treated conservatively. The patient reported elbow pain when first admitted to emergency service but she was diagnosed with simultaneous ipsilateral shoulder and elbow injury and treated conservatively. As a more painful pathology may mask the additional ones, one should hasten to help before performing a complete evaluation. Any harm caused to the patient due to this reason would not be a complication but a malpractice. 2014 BMJ Publishing Group Ltd.

  14. Arthroscopic treatment of acromioclavicular dislocation

    Directory of Open Access Journals (Sweden)

    Mihai T. Gavrilă

    2017-11-01

    Full Text Available A thorough understanding of biomechanical function of both acromioclavicular (AC and coracoclavicular (CC ligaments, stimulated surgeons to repair high-grade AC dislocation using arthroscopic technique. This technique necessitates a clear understanding of shoulder anatomy, especially of the structures in proximity to the clavicle and coracoid process and experiences in arthroscopic surgery. The follow case describes an arthroscopic technique used to treat AC dislocation in young man 30 years old, who suffered an injury at right shoulder. Results were similar to those obtained using open surgery and this encouraged us to continue utilization of this method. As a conclusion, arthroscopic treatment of AC separation is one of the best options as surgical treatment. Early results suggested that immediate anatomic reduction of an acute AC separation usually provides satisfactory clinical results at intermediate-term follow-up.

  15. Bilateral sternoclavicular joint dislocation due to sternal fracture: Is it a dislocation or a separation?

    Science.gov (United States)

    Yi, Jin Woong; Kim, Doo Hyun; Heo, Youn Moo; Jun, June Bum

    2016-05-01

    Traumatic bilateral sternoclavicular joint dislocation is very rare injury. In shoulder girdle injuries, anterior dislocation of the sternoclavicular joint accounts for 3 % and posterior sternoclavicular joint dislocation is lesser. Previous reported cases about bilateral sternoclavicular joint dislocation were result from proximal clavicle fracture with intact connection between sternum and ribs. But, the sternoclavicular joint dislocation secondary to fracture and angulation of the sternum with intact relationship between ribs and clavicle has not been reported. Authors experienced patient who has a bilateral anterior sternoclavicular joint dislocation caused by sternum fracture and anterior angulation, but intact relationship between ribs and clavicle. We report this case with satisfactory result.

  16. Recurrent Dislocation of the Patella

    OpenAIRE

    Ben?tez, Gustavo

    2015-01-01

    Purpose: To evaluate results of medial patellofemoral ligament (MPFL) reconstruction associated with lateral release and advancement of vastus medialis in recurrent dislocation of the patella. Methods: We retrospectively evaluated 11 patients with a mean follow-up of 19 months. Mean age was 23, mainly women. We did MPFL reconstruction with semitendinosus or gracilis tendon depending on BMI, associated with advancement of vastus medialis and lateral release. Results: Mean Kujala score improved...

  17. Dislocation of the knee: imaging findings.

    Science.gov (United States)

    Shearer, Damon; Lomasney, Laurie; Pierce, Kenneth

    2010-01-01

    Dislocations of the knee are relatively uncommon injuries. However, the incidence of this injury appears to be increasing. Knee dislocations are most often high velocity blunt injuries, with motor vehicle accidents being a frequent etiology. Other causes include falls from height, athletic injuries, farming and industrial accidents, and even low velocity mechanisms such as a misstep into a hole. Likewise, minor trauma in the morbidly obese is increasingly recognized as a mechanism of knee dislocation. Multiple forms of dislocation exist, with the common factor being disruption of the tibiofemoral articulation. Dislocation can occur in a variety of directions depending on the mechanism of injury. The most common dislocation is anterior, which may be seen in hyperextension injuries such as martial arts kicking. The "dashboard injury" of motor vehicle accidents can result in a posterior dislocation of the knee. Lateral and rotary dislocations are less common. Knee dislocation is more commonly diagnosed in men, with a mean age of 23 to 31 years old. This is the very patient population encountered by Special Operations Forces (SOF) healthcare providers. Given the mechanisms of injury noted above, it is reasonable to conclude that knee dislocations may be seen in a young, active SOF patient population, particularly those engaged in parachuting, fast-roping/rappelling, driving at high speeds during military operations, and mixed martial arts.

  18. Septic hip dislocations in children in a developing country

    Directory of Open Access Journals (Sweden)

    Gabriel Ngom

    2011-01-01

    Full Text Available Purpose: To report on a radiological issue and therapeutic aspects encountered in septic hip dislocations in a developing country. Patients and Methods: Nineteen children among whom 11 boys and 8 girls aged on average 5.3-years old presented 7 recent and 12 late hip dislocations. Those dislocations were distributed into in category 1: dislocations without associated lesion; category 2: dislocations associated with minor lesions; category 3: dislocations associated with major lesion. Ten children who presented an elevated erythrocyte sedimentation rate (ESR received antibiotics. An arthrotomy was performed in children with a recent dislocation. Traction was performed in all children with an average duration of 5 weeks. The results were considered good, intermediate or bad using two parameters: ESR and reduction of dislocation. Results: 2 category 1 dislocations, 6 category 2 dislocations and 11 category 3 dislocations were noted. As concerns the recent dislocations, there were 2 category 1 dislocations and 5 category 2 dislocations. For late dislocations, 1 category 2 and 11 category 3 dislocations were recorded. There were 8 good results and 11 bad results. The good results concerned 7 recent dislocations and one late dislocation. The bad results concerned exclusively late dislocations. Conclusion: In children with septic hip dislocations, the good results concern almost exclusively recent dislocations but arthrotomy and immobilization must be done early.

  19. Laws of alloyed cementite particles nucleation during heat-resistant steels carburizing

    Directory of Open Access Journals (Sweden)

    M. Yu. Semenov

    2014-01-01

    Full Text Available The article considers a problem analyzing a nucleation of cementite type carbides in carburized heat-resistant steels for the turbofan engines gear wheels.The verification of previously hypothesized mechanism of dislocation nucleation particles chromium-alloyed cementite during process of carburizing was accepted as an objective of the work.As a methodological basis of this paper were accepted the numerical experiments based on the kinetic theory of nucleation, as well as on the known results of experimental studies.According to the kinetic theory of nucleation, a new phase in the solid solutions take place in the defects of the crystal structure of the metal such as inter-grain boundaries and dislocations clusters. A principle feature of the inter-grain boundary mechanism of nucleation is formation of carbide lattice. It is of great practical interest because the cementite lattice drops mechanical properties of hardened parts.According to the experimental studies, the average chromium concentration in the alloyed cementite twice exceeds its Cr content in the heat-resistant steels. Furthermore, the areas of abnormally high (more than ten times in comparison with the average content chromium concentration in cementite have been experimentally revealed.Numerical experiments have revealed that the nucleation of cementite particles alloyed with chromium (chromium concentration of 3% or more occurs, mainly, by the dislocation mechanism on the concentration fluctuations of the alloying element. According to calculations, an obligatory prerequisite to start an active nucleation process of new phase in the solid solution is a local increase of the chromium concentration up to 40%.Despite the lack of physical prerequisites for the formation of chromium precipitates, this phenomenon is explained by a strong chemical affinity of chromium and carbon, causing diffusion of chromium atoms in the region of the carbon atoms clusters. The formation of carbon

  20. MD simulation of plastic deformation nucleation in stressed crystallites under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Korchuganov, A. V., E-mail: avkor@ispms.tsc.ru; Zolnikov, K. P., E-mail: kost@ispms.tsc.ru; Kryzhevich, D. S., E-mail: kryzhev@ispms.tsc.ru [Russian Academy of Sciences, Institute of Strength Physics and Materials Science, Siberian Branch (Russian Federation); Chernov, V. M., E-mail: VMChernov@bochvar.ru [National Research Tomsk State University (Russian Federation); Psakhie, S. G., E-mail: sp@ispms.tsc.ru [Russian Academy of Sciences, Institute of Strength Physics and Materials Science, Siberian Branch (Russian Federation)

    2016-12-15

    The investigation of plastic deformation nucleation in metals and alloys under irradiation and mechanical loading is one of the topical issues of materials science. Specific features of nucleation and evolution of the defect system in stressed and irradiated iron, vanadium, and copper crystallites were studied by molecular dynamics simulation. Mechanical loading was performed in such a way that the modeled crystallite volume remained unchanged. The energy of the primary knock-on atom initiating a cascade of atomic displacements in a stressed crystallite was varied from 0.05 to 50 keV. It was found that atomic displacement cascades might cause global structural transformations in a region far larger than the radiation-damaged area. These changes are similar to the ones occurring in the process of mechanical loading of samples. They are implemented by twinning (in iron and vanadium) or through the formation of partial dislocation loops (in copper).

  1. On the theoretical description of nucleation in confined space

    Directory of Open Access Journals (Sweden)

    Jürn W. P. Schmelzer

    2011-12-01

    Full Text Available In a recent paper, Kozisek et al. [J. Chem. Phys. 134, 094508 (2011] have demonstrated for four different cases of phase formation that the work of formation of critical clusters required to form in the system in some given time a first experimentally measurable cluster of the new phase depends in a logarithmic way on the volume of the system. This result was obtained based on the numerical solution of the kinetic equations describing nucleation and growth processes and the obtained in this way steady-state cluster size distributions. Here a straightforward alternative analytical interpretation of this result is proposed by computing directly the mean expectation times of formation of supercritical clusters. It is proven strictly that this result is generally independent of the kind of nucleation (homogeneous or heterogeneous or specific realization (condensation, cavitation, crystallization, segregation, etc. considered. It is shown that such behavior is simply a consequence of the linear dependence of the steady-state nucleation rate on the volume of the system, neither time-lag or primary depletion (due to the establishment of steady-state cluster size distributions for subcritical clusters or secondary depletion (caused by the change of the state of the ambient phase due to the formation and growth of supercritical clusters and connected with finite size effects are required for the interpretation of such result. In a second step, this analytical result is extended accounting for the growth of the supercritical cluster to directly measurable sizes. Finally, an analytical foundation of the method of determination of the critical supersaturation as employed by Kozisek et al. is developed and the results obtained via the computation and analysis of steady-state cluster size distributions and calculation of mean expectation times for formation of the first supercritical clusters are compared. Some further general problems of nucleation and

  2. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    Science.gov (United States)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  3. Free energy of cluster formation and a new scaling relation for the nucleation rate.

    Science.gov (United States)

    Tanaka, Kyoko K; Diemand, Jürg; Angélil, Raymond; Tanaka, Hidekazu

    2014-05-21

    Recent very large molecular dynamics simulations of homogeneous nucleation with (1 - 8) × 10(9) Lennard-Jones atoms [J. Diemand, R. Angélil, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. 139, 074309 (2013)] allow us to accurately determine the formation free energy of clusters over a wide range of cluster sizes. This is now possible because such large simulations allow for very precise measurements of the cluster size distribution in the steady state nucleation regime. The peaks of the free energy curves give critical cluster sizes, which agree well with independent estimates based on the nucleation theorem. Using these results, we derive an analytical formula and a new scaling relation for nucleation rates: ln J'/η is scaled by ln S/η, where the supersaturation ratio is S, η is the dimensionless surface energy, and J(') is a dimensionless nucleation rate. This relation can be derived using the free energy of cluster formation at equilibrium which corresponds to the surface energy required to form the vapor-liquid interface. At low temperatures (below the triple point), we find that the surface energy divided by that of the classical nucleation theory does not depend on temperature, which leads to the scaling relation and implies a constant, positive Tolman length equal to half of the mean inter-particle separation in the liquid phase.

  4. Crystal nucleation mechanism in melts of short polymer chains under quiescent conditions and under shear flow

    Science.gov (United States)

    Anwar, Muhammad; Berryman, Joshua T.; Schilling, Tanja

    2014-09-01

    We present a molecular dynamics simulation study of crystal nucleation from undercooled melts of n-alkanes, and we identify the molecular mechanism of homogeneous crystal nucleation under quiescent conditions and under shear flow. We compare results for n-eicosane (C20) and n-pentacontahectane (C150), i.e., one system below the entanglement length and one above, at 20%-30% undercooling. Under quiescent conditions, we observe that entanglement does not have an effect on the nucleation mechanism. For both chain lengths, the chains first align and then straighten locally, then the local density increases and finally positional ordering sets in. At low shear rates the nucleation mechanism is the same as under quiescent conditions, while at high shear rates the chains align and straighten at the same time. We report on the effects of shear rate and temperature on the nucleation rates and estimate the critical shear rates, beyond which the nucleation rates increase with the shear rate. In agreement with previous experimental observation and theoretical work, we find that the critical shear rate corresponds to a Weissenberg number of order 1. Finally, we show that the viscosity of the system is not affected by the crystalline nuclei.

  5. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    Directory of Open Access Journals (Sweden)

    K. Ignatius

    2016-05-01

    Full Text Available There are strong indications that particles containing secondary organic aerosol (SOA exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 °C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between −39.0 and −37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.

  6. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    Science.gov (United States)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank

    2016-05-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from -38 to -10 °C at 5-15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -39.0 and -37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.

  7. Experiments on Nucleation in Different Flow Regimes

    Science.gov (United States)

    Bayuzick, R. J.; Hofmeister, W. H.; Morton, C. M.; Robinson, M. B.

    1999-01-01

    The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys. Early experiments in nucleation kinetics were accomplished by droplet dispersion methods. Dilatometry was used by Turnbull and others, and more recently differential thermal analysis and differential scanning calorimetry have been used for kinetic studies. These techniques have enjoyed success; however, there are difficulties with these experiments. Since materials are dispersed in a medium, the character of the emulsion/metal interface affects the nucleation behavior. Statistics are derived from the large number of particles observed in a single experiment, but dispersions have a finite size distribution which adds to the uncertainty of the kinetic determinations. Even though temperature can be controlled quite well before the onset of nucleation, the release of the latent heat of fusion during nucleation of particles complicates the assumption of isothermality during these experiments. Containerless processing has enabled another approach to the study of nucleation kinetics. With levitation techniques it is possible to undercool one sample to nucleation repeatedly in a controlled manner, such that the statistics of the nucleation process can be derived from multiple experiments on a single sample. The authors have fully developed the analysis of nucleation experiments on single samples following the suggestions of Skripov. The advantage of these experiments is that the samples are directly observable. The nucleation temperature

  8. Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films.

    Science.gov (United States)

    Bhattacharjee, Amit Kumar

    2017-01-05

    For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays a central role in determining the geometric structure of the droplets. Noncircular nematic droplets with homogeneous director orientation are nucleated in a background of supercooled isotropic phase for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic background is found to depend on κ in a similar way. Identical growth laws are found in the two cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated interactions within the isotropic domains. Implications for a theoretical description of nucleation in anisotropic fluids are discussed.

  9. Screw-dislocation-driven growth of ZnO nanotubes seeded by self-perpetuating spirals during hydrothermal processing

    Science.gov (United States)

    Kim, Sojin; Kang, Hyon Chol

    2016-09-01

    We report the effects of precursor concentration on the characteristics of ZnO nanostructures during hydrothermal processing. Self-perpetuating surface spirals are fabricated at concentrations of 0.25 and 0.5 M, with samples grown at concentrations of 0.05 and 0.125 M exhibiting ZnO nanorods. This can be explained by a change in the growth mode from an initial columnar growth to a screw-dislocation-driven growth with decreased supersaturation. The screw dislocations nucleate at the V-shaped valleys of the columnar boundaries during the intermediate stage. We demonstrate that continuous screw-dislocation-driven growth leads to the formation of ZnO nanotubes having Burger's vectors of 1.45 nm.

  10. Homogenous finitary symmetric groups

    Directory of Open Access Journals (Sweden)

    Otto‎. ‎H‎. Kegel

    2015-03-01

    Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .

  11. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  12. Studies of polymer crystal nucleation in droplet ensembles formed by dewetting a thin film

    Science.gov (United States)

    Massa, Michael V.

    We present the results of four projects investigating the nucleation of polymer crystals from a supercooled melt. In the first study, an ensemble of droplets was prepared by dewetting a thin film on an unfavourable substrate. Crystallisation was directly monitored with optical microscopy, enabling the identification of each individual droplet over successive experiments. It was shown that homogeneous and heterogeneous nucleation could be distinguished based upon the behaviour of each droplet over multiple crystallisation experiments. The second study focussed on homogeneous nucleation within dewetted droplets. Direct visualisation made it possible to measure the volume of each droplet. The nucleation rate was determined as a function of droplet size and it was shown for the first time that the homogeneous nucleation rate scaled with the volume of the droplet. The temperature dependence was also measured, and found to be consistent with behaviour expected from classical nucleation theory. In the third study, crystal-memory of the melt was investigated by controlling the thermal history of the droplets prior to crystallisation. Memory effects were identified by 'self-nucleation' within droplets: where crystallisation occurred at elevated temperatures, beyond their observed crystallisation temperature when the sample was fully-annealed. For one system, polyethylene, pronounced melt memory effects were observed when samples were annealed (at temperature Ts) well above the observed melting temperature. As Ts decreased, there was an increase in the number of droplets which experienced the memory-effect. By comparing the crystallisation over multiple experiments it was shown that, while the number of droplets experiencing memory effects depended on Ts, self-nucleation was a randomly occurring process throughout the droplet ensemble. Memory effects in a second system, poly(ethylene oxide), were much less pronounce; self-nucleation was observed only if the samples were

  13. Earthquake simulations with time-dependent nucleation and long-range interactions

    Directory of Open Access Journals (Sweden)

    J. H. Dieterich

    1995-01-01

    Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.

  14. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Introduction. We write D for the complex unit disc and G for the Möbius group, the group of holo- morphic self-maps of D. A bounded operator T on a Hilbert space H is said to be homogeneous if its spectrum is contained in ¯D and for every g in G there exists a unitary operator U(g) such that g(T ) = U(g). −1. T U (g).

  15. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  16. Homogeneous M2 duals

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)

    2016-01-25

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  17. Bilateral asymmetrical traumatic sternoclavicular joint dislocations.

    Science.gov (United States)

    Albarrag, Mohammed K

    2012-11-01

    Unilateral and bilateral sternoclavicular joint (SCJ) dislocations are rare injuries. The difficulty in assessing this condition often leads to delay in diagnosis and treatment. We report a rare case of bilateral asymmetrical traumatic SCJ dislocations in a 45-year-old male. The right anterior SCJ dislocation was reduced in the emergency room (ER) and resulted in residual instability. The left posterior SCJ dislocation was asymptomatic and unnoticed for six months. It is important for ER physicians and orthopaedic surgeons to be able identify and treat this condition. All suspected SCJ dislocations should be evaluated by computed tomography (CT) scan for confirmation of the diagnosis and evaluation of both SCJs. Posterior SCJ dislocation is a potentially fatal injury and should not be overlooked due to the presence of other injuries. Surgical intervention is often necessary in acute and old cases.

  18. Bilateral Asymmetrical Traumatic Sternoclavicular Joint Dislocations

    Science.gov (United States)

    Albarrag, Mohammed K.

    2012-01-01

    Unilateral and bilateral sternoclavicular joint (SCJ) dislocations are rare injuries. The difficulty in assessing this condition often leads to delay in diagnosis and treatment. We report a rare case of bilateral asymmetrical traumatic SCJ dislocations in a 45-year-old male. The right anterior SCJ dislocation was reduced in the emergency room (ER) and resulted in residual instability. The left posterior SCJ dislocation was asymptomatic and unnoticed for six months. It is important for ER physicians and orthopaedic surgeons to be able identify and treat this condition. All suspected SCJ dislocations should be evaluated by computed tomography (CT) scan for confirmation of the diagnosis and evaluation of both SCJs. Posterior SCJ dislocation is a potentially fatal injury and should not be overlooked due to the presence of other injuries. Surgical intervention is often necessary in acute and old cases. PMID:23275851

  19. Atraumatic Anterior Dislocation of the Hip Joint

    Directory of Open Access Journals (Sweden)

    Tadahiko Ohtsuru

    2015-01-01

    Full Text Available Dislocation of the hip joint in adults is usually caused by high-energy trauma such as road traffic accidents or falls from heights. Posterior dislocation is observed in most cases. However, atraumatic anterior dislocation of the hip joint is extremely rare. We present a case of atraumatic anterior dislocation of the hip joint that was induced by an activity of daily living. The possible causes of this dislocation were anterior capsule insufficiency due to developmental dysplasia of the hip, posterior pelvic tilt following thoracolumbar kyphosis due to vertebral fracture, and acetabular anterior coverage changes by postural factor. Acetabular anterior coverage changes in the sagittal plane were measured using a tomosynthesis imaging system. This system was useful for elucidation of the dislocation mechanism in the present case.

  20. Management of proximal interphalangeal joint dislocations in athletes.

    Science.gov (United States)

    Bindra, Randy R; Foster, Brian J

    2009-08-01

    Proximal interphalangeal joint dislocations are common athletic injuries. In dislocations and fracture dislocations, the most important treatment principle is congruent joint reduction and maintenance of stability. This article reviews the relevant anatomy, injury characteristics, and treatment options for proximal interphalangeal joint dislocations and fracture dislocations. Treatment methods discussed include closed reduction, percutaneous fixation, and open reduction.

  1. Spectrum of carpal dislocations and fracture-dislocations: imaging and management.

    Science.gov (United States)

    Scalcione, Luke R; Gimber, Lana H; Ho, Annette M; Johnston, Stephen S; Sheppard, Joseph E; Taljanovic, Mihra S

    2014-09-01

    The objectives of this article are to discuss the imaging of carpal dislocations and fracture-dislocations and to review the ligamentous anatomy of the wrist, mechanisms of injury, and routine management of these injuries. Perilunate dislocations, perilunate fracture-dislocations (PLFDs), and lunate dislocations are high-energy wrist injuries that can and should be recognized on radio-graphs. These injuries are a result of important sequential osseous and ligamentous injuries or failures. Prompt and accurate radiographic diagnosis aids in the management of patients with perilunate dislocations, PLFDs, and lunate dislocations while assisting orthopedic surgeons with subsequent surgical planning. CT may better show the extent of the injury and help in treatment planning particularly in cases of delayed treatment or chronic perilunate dislocation. A CT examination with coronal, sagittal, and 3D reformatted images is ordered at our institution in cases in which the extent of the carpal injuries is poorly shown on radiographic examination.

  2. Misfit dislocations in composites with nanowires

    CERN Document Server

    Gutkin, M Y; Sheinerman, A G

    2003-01-01

    A theoretical model is suggested which describes the generation and evolution of misfit dislocations in composite solids containing nanowires with rectangular cross-section. In the framework of the model, the ranges of the geometric parameters (nanowire sizes, misfit parameter, interspacing between the nanowire and the free surface of the composite) are calculated at which the generation of various misfit dislocation configurations (loops, semi-loops and dipoles) is energetically favourable. Transformations of these dislocation configurations and their specific features are discussed.

  3. Dislocation and dissociation of bipolar hip hemiarthroplasty.

    Science.gov (United States)

    Moriarity, Andrew; Ellanti, Prasad; Talha, Samir; McKenna, John

    2015-07-15

    Hemiarthroplasty of the hip is a commonly performed procedure for subcapital neck of femur fractures. Dislocation of the hemiarthroplasty is a recognised but uncommon complication. Dislocations can be complicated by the uncoupling or dissociation of the femoral head component from the femoral stem. Dissociations are rare and require open reduction. We present a case of a patient with a hip hemiarthroplasty dislocation and dissociation subsequent to a fall. 2015 BMJ Publishing Group Ltd.

  4. Imaging findings of anterior hip dislocations.

    Science.gov (United States)

    Pfeifer, Kyle; Leslie, Michael; Menn, Kirsten; Haims, Andrew

    2017-06-01

    Anterior hip dislocations are rare orthopedic emergencies resulting from high-energy trauma and have unique imaging characteristics on radiography, computed tomography (CT), and magnetic resonance imaging (MRI). Imaging findings on CT and MRI allow for the prompt recognition and classification of anterior hip dislocations, which guides patient management and reduces complications. The purpose of this article is to review imaging findings of anterior hip dislocations, specifically focusing on CT and MRI.

  5. Imaging findings of anterior hip dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Kyle [Mallinckrodt Institute of Radiology, Department of Radiology, St. Louis, MO (United States); Leslie, Michael [Yale School of Medicine, Department of Orthopedics and Rehabilitation, New Haven, CT (United States); Menn, Kirsten; Haims, Andrew [Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT (United States)

    2017-06-15

    Anterior hip dislocations are rare orthopedic emergencies resulting from high-energy trauma and have unique imaging characteristics on radiography, computed tomography (CT), and magnetic resonance imaging (MRI). Imaging findings on CT and MRI allow for the prompt recognition and classification of anterior hip dislocations, which guides patient management and reduces complications. The purpose of this article is to review imaging findings of anterior hip dislocations, specifically focusing on CT and MRI. (orig.)

  6. Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity

    Directory of Open Access Journals (Sweden)

    Antti Tolvanen

    2013-03-01

    Full Text Available The plastic behaviour of individual Cu crystallites under nanoextrusion is studied by molecular dynamics simulations. Single-crystal Cu fcc nanoparticles are embedded in a spherical force field mimicking the effect of a contracting carbon shell, inducing pressure on the system in the range of gigapascals. The material is extruded from a hole of 1.1–1.6 nm radius under athermal conditions. Simultaneous nucleation of partial dislocations at the extrusion orifice leads to the formation of dislocation dendrites in the particle causing strain hardening and high flow stress of the material. As the extrusion orifice radius is reduced below 1.3 Å we observe a transition from displacive plasticity to solid-state amorphisation.

  7. Homogenization of CZ Si wafers by Tabula Rasa annealing

    Energy Technology Data Exchange (ETDEWEB)

    Meduna, M., E-mail: mjme@physics.muni.c [Department of Condensed Matter Physics, Masaryk University, Kotlarska 2, CZ-61137 Brno (Czech Republic); Caha, O.; Kubena, J.; Kubena, A. [Department of Condensed Matter Physics, Masaryk University, Kotlarska 2, CZ-61137 Brno (Czech Republic); Bursik, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-61662 Brno (Czech Republic)

    2009-12-15

    The precipitation of interstitial oxygen in Czochralski grown silicon has been investigated by infrared absorption spectroscopy, chemical etching, transmission electron microscopy and X-ray diffraction after application of homogenization annealing process called Tabula Rasa. The influence of this homogenization step consisting in short time annealing at high temperature has been observed for various temperatures and times. The experimental results involving the interstitial oxygen decay in Si wafers and absorption spectra of SiO{sub x} precipitates during precipitation annealing at 1000 deg. C were compared with other techniques for various Tabula Rasa temperatures. The differences in oxygen precipitation, precipitate morphology and evolution of point defects in samples with and without Tabula Rasa applied is evident from all used experimental techniques. The results qualitatively correlate with prediction of homogenization annealing process based on classical nucleation theory.

  8. On the origin of dislocation loops in irradiated materials: A point of view from silicon

    Energy Technology Data Exchange (ETDEWEB)

    Claverie, Alain, E-mail: claverie@cemes.fr; Cherkashin, Nikolay

    2016-05-01

    Numerous dislocation loops are often observed in irradiated and nuclear materials, affecting many physical properties. The understanding of their origin and of their growth mechanism remains unclear rendering all modeling efforts elusive. In this paper, we remind the knowledge which has been gained during the last 20 years on the formation and growth of extrinsic dislocations loops in irradiated/implanted silicon. From the compilation of a large number of experimental results, a unified picture describing the thermal evolution of interstitial defects, from the di-interstitial stable at room temperature, to “magic-size” clusters then to rod-like defects and finally to large dislocation loops of two types has emerged. All these defects grow by Ostwald ripening, i.e. by interchanging the interstitial atoms they are composed of, and transform from one to the other driven by the resulting reduction of the defect formation energy. A model has been proposed and is now integrated into process simulators which quantitatively describes the thermal evolution of all these defects, based on pertinent formation energies. The influence of the proximity of free surfaces or other recombining interfaces can be integrated, allowing simulating the possible dissolution of defects. It is suggested that, beyond silicon, the same type of scenario may take place in many materials. Dislocation loops are just one, easily detectable among many, type of defects which forms during the growth of self-interstitials. They do not nucleate but result from the growth and transformation of smaller defects.

  9. Effect of strain rate and dislocation density on the twinning behavior in tantalum

    Directory of Open Access Journals (Sweden)

    Jeffrey N. Florando

    2016-04-01

    Full Text Available The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10−4/s to 103/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77K at strain rates from 1/s to 103/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.

  10. Effect of strain rate and dislocation density on the twinning behavior in tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Florando, Jeffrey N., E-mail: florando1@llnl.gov; Swift, Damian C.; Barton, Nathan R.; McNaney, James M.; Kumar, Mukul [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); El-Dasher, Bassem S. [TerraPower LLC, Bellevue, WA 98005 (United States); Chen, Changqiang [Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL 61801 (United States); Ramesh, K. T.; Hemker, Kevin J. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-04-15

    The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10{sup −4}/s to 10{sup 3}/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77 K at strain rates from 1/s to 10{sup 3}/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.

  11. Structuring effects in binary nucleation : Molecular dynamics simulatons and coarse-grained nucleation theory

    NARCIS (Netherlands)

    Braun, S.; Kraska, T.; Kalikmanov, V.I.

    2013-01-01

    Binary clusters formed by vapor-liquid nucleation are frequently nonhomogeneous objects in which components are not well mixed. The structure of a cluster plays an important role in nucleation and cluster growth. We demonstrate structuring effects by studying high-pressure nucleation and cluster

  12. New trends in the nucleation research

    Science.gov (United States)

    Anisimov, M. P.; Hopke, P. K.

    2017-09-01

    During the last half of century the most of efforts have been directed towards small molecule system modeling using intermolecular potentials. Summarizing the nucleation theory, it can be concluded that the nowadays theory is far from complete. The vapor-gas nucleation theory can produce values that deviate from the experimental results by several orders of magnitude currently. Experiments on the vapor-gas nucleation rate measurements using different devices show significant inconsistencies in the measured rates as well. Theoretical results generally are quite reasonable for sufficiently low vapor nucleation rates where the capillary approximation is applicable. In the present research the advantages and current problems of the vapor-gas nucleation experiments are discussed briefly and a view of the future studies is presented. Using the brake points of the first derivative for the nucleation rate surface as markers of the critical embryos phase change is fresh idea to show the gas-pressure effect for the nucleating vapor-gas systems. To test the accuracy of experimental techniques, it is important to have a standard system that can be measured over a range of nucleation conditions. Several results illustrate that high-pressure techniques are needed to study multi-channel nucleation. In practical applications, parametric theories can be used for the systems of interest. However, experimental measurements are still the best source of information on nucleation rates. Experiments are labor intensive and costly, and thus, it is useful to extend the value of limited experimental measurements to a broader range of nucleation conditions. Only limited experimental data one needs for use in normalizing the slopes of the linearized nucleation rate surfaces. The nucleation rate surface is described in terms of steady-state nucleation rates. It is supposed that several new measuring systems, such as High Pressure Flow Diffusion Chamber for pressure limit up to 150 bar will be

  13. [Traumatic lumbosacral dislocation - an underrated injury].

    Science.gov (United States)

    Schroeter, S; Weise, K; Badke, A

    2009-01-01

    Traumatic lumbosacral dislocations are rare. We report two cases with initially missed posttraumatic lumbosacral dislocations. The reported cases and the review of the literature show that, especially, accident victims with multiple fractures of the lumbar transverses processes may require a CT scan to confirm fractures or dislocations of L5/S1. Follow-up examinations due to persisting pain after physiotherapy should include lateral X-rays of the lumbar spine of the patient standing. According to the literature and our experience, the treatment of traumatic lumbosacral dislocation usually consists of open reduction and postero-lateral or dorso-ventral fusion of the unstable segments.

  14. Epidemiology of Isolated Acromioclavicular Joint Dislocation

    Directory of Open Access Journals (Sweden)

    Claudio Chillemi

    2013-01-01

    Full Text Available Background. Acromioclavicular (AC joint dislocation is a common shoulder problem. However, information about the basic epidemiological features of this condition is scarce. The aim of this study is to analyze the epidemiology of isolated AC dislocation in an urban population. Materials and Methods. A retrospective database search was performed to identify all patients with an AC dislocation over a 5-year period. Gender, age, affected side and traumatic mechanism were taken into account. X-rays were reviewed by two of the authors and dislocations were classified according to the Rockwood’s criteria. Results. A total of 108 patients, with a mean age of 37.5 years were diagnosed with AC dislocation. 105 (97.2% had an isolated AC dislocation, and 3 (2.8% were associated with a clavicle fracture. The estimated incidence was 1.8 per 10000 inhabitants per year and the male-female ratio was 8.5 : 1. 50.5% of all dislocations occurred in individuals between the ages of 20 and 39 years. The most common traumatic mechanism was sport injury and the most common type of dislocation was Rockwood type III. Conclusions. Age between 20 and 39 years and male sex represent significant demographic risk factors for AC dislocation.

  15. Arthroscopic Treatment of Traumatic Hip Dislocation.

    Science.gov (United States)

    Begly, John P; Robins, Bryan; Youm, Thomas

    2016-05-01

    Traumatic hip dislocations are high-energy injuries that often result in considerable morbidity. Although appropriate management improves outcomes, associated hip pathology may complicate the recovery and lead to future disability and pain. Historically, open reduction has been the standard of care for treating hip dislocations that require surgical intervention. The use of hip arthroscopy to treat the sequelae and symptoms resulting from traumatic hip dislocations recently has increased, however. When used appropriately, hip arthroscopy is a safe, effective, and minimally invasive treatment option for intra-articular pathology secondary to traumatic hip dislocation.

  16. Influence of the nucleation layer annealing atmosphere on the resistivity of GaN grown by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Weike, E-mail: luowk688@163.com; Li, Liang; Li, Zhonghui; Dong, Xun; Peng, Daqing; Zhang, Dongguo; Xu, Xiaojun

    2015-06-05

    Graphical abstract: LT-PL spectra of GaN samples A, B and C with sheet resistance of 1.1 × 10{sup 4} Ω/sq, 5.5 × 10{sup 4} Ω/sq and 1.0 × 10{sup 8} Ω/sq, respectively. - Highlights: • HR-GaN was fabricated by optimizing the nucleation layer annealing (NL) atmosphere. • The morphology of NLs annealed in different atmosphere has been investigated. • The resistance of GaN increased with density of edge type threading dislocations. • The PL results indicate that the HR-GaN is achieved due to the compensation of acceptor states. - Abstract: High-resistance (HR) GaN with sheet resistance of 1.0 × 10{sup 8} Ω/sq was grown on sapphire substrates using metal organic chemical vapor deposition. Sheet resistance of the GaN film increases 4 orders of magnitude by changing the nucleation layer (NL) annealing atmosphere from H{sub 2} to N{sub 2}. It is observed that the morphology of the NLs strongly depends on the annealing atmosphere. The analysis results based on high-resolution X-ray diffraction (HR-XRD) and etch pit density (EPD) measurements demonstrate that the density of edge-type threading dislocations increases with the proportion of the N{sub 2} in the annealing atmosphere. Photoluminescence (PL) spectra is employed to analyze the optical properties of GaN films. The XRD and PL results indicate the primary compensating mechanism is due to acceptor levels introduced by the increase in edge-type threading dislocations density. It is concluded that the annealing atmosphere of the NL controls sizes and densities of the nucleation islands, which affect electrical properties of GaN epitaxial films through changing the ratio of edge to screw/mixed-type threading dislocations.

  17. Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation – polydisperse ice nuclei

    Directory of Open Access Journals (Sweden)

    D. Barahona

    2009-08-01

    Full Text Available This study presents a comprehensive ice cloud formation parameterization that computes the ice crystal number, size distribution, and maximum supersaturation from precursor aerosol and ice nuclei. The parameterization provides an analytical solution of the cloud parcel model equations and accounts for the competition effects between homogeneous and heterogeneous freezing, and, between heterogeneous freezing in different modes. The diversity of heterogeneous nuclei is described through a nucleation spectrum function which is allowed to follow any form (i.e., derived from classical nucleation theory or from observations. The parameterization reproduces the predictions of a detailed numerical parcel model over a wide range of conditions, and several expressions for the nucleation spectrum. The average error in ice crystal number concentration was −2.0±8.5% for conditions of pure heterogeneous freezing, and, 4.7±21% when both homogeneous and heterogeneous freezing were active. The formulation presented is fast and free from requirements of numerical integration.

  18. Arthroscopic findings after shoulder dislocation

    Directory of Open Access Journals (Sweden)

    Medenica Ivica

    2009-01-01

    Full Text Available Background/Aim. Recurrent instability of the shoulder joint is frequently difficult to differentiate from diseased or injured rotator cuff or tendon of the forearm flexor (m. biceps brachii. Shoulder joint arthroscopy has been only recently introduced into instable shoulder joint lesion examination. The aim of this study was to present and analyze an arthroscopic finding on instable shoulder joint in order to determine causes and mechanisms of instability, as well as principles of surgical treatment. Methods. Arthroscopy of the shoulder joint was performed in 158 patients with at least one documented shoulder joint dislocation. These patients were divided into two groups. The group I included the patients with one to three dislocations, while the group II those with more than three dislocations. Preoperative diagnosis was based on anamnestic data and clinical examination using specific tests, and on the diagnosis of shoulder joint using radiography or computed tomography. Results. Out of the total number of the patients 138 (87.34% had injury of the anterior patellar brim, 119 (75.32% had failure of the anterior capsule, 126 (79.75% had compressive cartilage injury of the posterior part of the head of the upper arm bone (Hill-Sachs lesion, 102 (64.56% had insufficiency of glenohumeral tendon, 11 (6.96 had complete cut of the rotator cuff, 23 (14.56% had injury of the posterior patellar brim, 12 (7.59% had injury of the upper anterior-posterior patellar brim (SLAP. Conclusion. According to the obtained results it could be concluded that there is no a unique injury that leads to shoulder joint instability. It is necessary to point out to the significance of anamnesis and clinical examination in making diagnosis. Arthroscopic diagnostics is indicated in clinically unreliable findings as an additional method for determining operative treatment.

  19. Homogeneous Finsler Spaces

    CERN Document Server

    Deng, Shaoqiang

    2012-01-01

    "Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc

  20. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  1. Nucleated red blood cells and artifactual hypoglycemia.

    Science.gov (United States)

    Macaron, C I; Kadri, A; Macaron, Z

    1981-01-01

    A patient with chronic hemolytic anemia presented with an acute hemolytic crisis, a high count of nucleated red blood cells (NRBC), and artifactual hypoglycemia. Temporal events showed a parallel relationship between an increased number of nucleated RBCs and an excess in vitro consumption of glucose.

  2. Studies on growth and nucleation kinetics of cadmium thiourea sulphate and magnesium cadmium thiourea sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mekala [Quaid-e-Milleth College, Chennai 600002 (India)], E-mail: mekaladaniel@rediffmail.com; Malliga, M. Jeyarani [Bharathi Women College, Chennai 600108 (India); Sankar, R. [Kings Engineering College, Irungatukottai, Sriperumbudhur, Chennai 602105 (India); Jayaraman, D. [Presidency College, Chennai 600 004 (India)

    2009-03-15

    Semiorganic materials, in general possess high non-linear coefficient and mechanical strength which will be more applicable for device fabrication. Cadmium thiourea sulphate (CTS) and magnesium cadmium thiourea sulphate (MCTS) are better semiorganic materials which find applications in the field of optoelectronics. Single crystals of CTS and MCTS have been successfully grown from aqueous solution by slow evaporation technique using predetermined solubility data. The basic growth parameters of the crystal nuclei of the grown crystals of CTS and MCTS were evaluated based on the classical theory of homogeneous nucleation. The classical nucleation theory makes use of capillarity approximation which has certain limitations. A correction has to be applied for it and the classical nucleation theory has been suitably modified in order to calculate the critical nucleus parameters.

  3. Late dislocation is associated with recurrence after total hip arthroplasty.

    Science.gov (United States)

    Itokawa, Takashi; Nakashima, Yasuharu; Yamamoto, Takuaki; Motomura, Goro; Ohishi, Masanobu; Hamai, Satoshi; Akiyama, Mio; Hirata, Masanobu; Hara, Daisuke; Iwamoto, Yukihide

    2013-08-01

    This study was conducted to examine the risk factors for recurrent dislocation after total hip arthroplasty (THA) and test the hypothesis that late dislocations are associated with recurrence. A total of 1,250 hips in 1,017 patients were retrospectively reviewed. All operations were performed through the posterolateral approach with posterior soft tissue repair. An early or late dislocation was defined as a dislocation occurring before or after one year postoperatively, respectively. Dislocation occurred in 36 hips (2.9 %) and 20 of them experienced recurrence. Recurrent dislocations were observed in ten out of 25 hips (40.0 %) with early dislocation; however, ten out of 11 hips (90.9 %) with late dislocation experienced recurrence (p = 0.0046). Multivariate analysis revealed that late dislocation was significantly associated with recurrence with odds ratio of 5.94 per year. Seven in 20 hips with recurrent dislocation required surgical treatment. Late dislocation significantly contributed to the development of recurrent dislocations.

  4. Nucleation of super-critical carbon dioxide in a venturi nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Jarrahbashi, D., E-mail: dorrin.jarrahbashi@me.gatech.edu; Pidaparti, S.R.; Ranjan, D.

    2016-12-15

    Highlights: • Nucleation of S-CO{sub 2} in a nozzle near critical point has been computationally studied. • The nucleation behavior is very sensitive to the inlet pressure and temperature. • After nucleation, high liquid-content two-phase mixture near wall travels downstream. - Abstract: Pressure reduction at the entrance of the compressor in supercritical CO{sub 2} Brayton cycles may cause nucleation and create a mixture of vapor and liquid droplets due to operation near the saturation conditions. Transient behavior of the flow after nucleation may cause serious issues in operation of the cycle and degrade the materials used in the design. The nucleation behavior of supercritical carbon-dioxide inside a venturi nozzle near the critical point is computationally studied. A transient compressible 3D Navier–Stokes solver, coupled with continuity, and energy equations have been implemented. In order to expedite the simulations, Fluid property Interpolation Tables (FIT) based on a piecewise biquintic spline interpolation of Helmholtz energy have been integrated with OpenFOAM to model S-CO{sub 2} properties. The mass fraction of vapor created in the venturi nozzle has been calculated using homogeneous equilibrium model (HEM). Nucleation behavior has been shown to be very sensitive to the inlet pressure, inlet temperature, and flow rate. The flow conditions that led to nucleation were identified. Nucleation was observed in the throat area and divergent section of the nozzle for mass flow rates from 0.050 kg/s to 0.065 kg/s, inlet pressure from 7.8 to 7.4 MPa for fixed exit pressure equal to 7.28 MPa. The inception of high-vapor-content nucleation was first observed in the throat area away from the side walls that remained confined to the throat region in later times. However, near the walls, a high liquid-content two-phase region was detected, first in the divergent section. At later times, the two-phase region was convected downstream toward the nozzle exit

  5. The kinetics of solid nucleation in zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Morton, C.W. [Teledyne Advanced Materials, La Vergne, TN (United States); Hofmeister, W.H.; Bayuzick, R.J. [Vanderbilt Univ., Nashville, TN (United States); Rulison, A.J.; Watkins, J.L. [Space Systems/Loral, Palo Alto, CA (United States)

    1998-11-02

    The framework of classical nucleation theory coupled with statistical analysis was used to evaluate nucleation data from zirconium undercooling experiments. Bulk samples of high purity zirconium were processed in a containerless, high vacuum environment using electrostatic levitation at Space Systems/Loral in order to obtain sets of nucleation temperature data. The relationships between undercooling and initial material purity have been investigated. The nucleation rate equation parameters, preexponential factor and work of cluster formation, were determined using a statistical analysis technique. The mean undercooling values ranged from 326 to 348 K for material purities between 99.8 and 99.995%, respectively. The range of values for the preexponential factors, 10{sup 32}--10{sup 43}, and the activation energies, 64--88kT, for the classical nucleation rate equation also scaled with the purity levels.

  6. Role of stacking disorder in ice nucleation

    Science.gov (United States)

    Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H.; Molinero, Valeria

    2017-11-01

    The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.

  7. Acentrosomal microtubule nucleation in higher plants.

    Science.gov (United States)

    Schmit, Anne-Catherine

    2002-01-01

    Higher plants have developed a unique pathway to control their cytoskeleton assembly and dynamics. In most other eukaryotes, microtubules are nucleated in vivo at the nucleation and organizing centers and are involved in the establishment of polarity. Although the major cytoskeletal components are common to plant and animal cells, which suggests conserved regulation mechanisms, plants do not possess centrosome-like organelles. Nevertheless, they are able to build spindles and have developed their own specific cytoskeletal arrays: the cortical arrays, the preprophase band, and the phragmoplast, which all participate in basic developmental processes, as shown by defective mutants. New approaches provide essential clues to understanding the fundamental mechanisms of microtubule nucleation. Gamma-tubulin, which is considered to be the universal nucleator, is the essential component of microtubule-nucleating complexes identified as gamma-tubulin ring complexes (gamma-TuRC) in centriolar cells. A gamma-tubulin small complex (gamma-TuSC) forms a minimal nucleating unit recruited at specific sites of activity. These components--gamma-tubulin, Spc98p, and Spc97p--are present in higher plants. They play a crucial role in microtubule nucleation at the nuclear surface, which is known as the main functional plant microtubule-organizing center, and also probably at the cell cortex and at the phragmoplast, where secondary nucleation sites may exist. Surprisingly, plant gamma-tubulin is distributed along the microtubule length. As it is not associated with Spc98p, it may not be involved in microtubule nucleation, but may preferably control microtubule dynamics. Understanding the mechanisms of microtubule nucleation is the major challenge of the current research.

  8. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  9. [Bipolar forearm dislocation or floating forearm (a case report)].

    Science.gov (United States)

    Daoudi, A; Elibrahimi, A; Loudiyi, W D; Elmrini, A; Chakour, K; Boutayeb, F

    2009-02-01

    Bipolar dislocation of the forearm or floating forearm is a rare injury. It combines concomitant elbow and wrist dislocation. Only six cases have been reported in the literature. The diagnosis of wrist dislocation may initially be missed and therefore the prognosis will be worse. The authors report a case of a bipolar dislocation with a posterior dislocation of the elbow and a perilunate dislocation of the wrist.

  10. Formation of disorientations in dislocation structures during plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, W.

    2002-01-01

    Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient......Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation...

  11. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    Directory of Open Access Journals (Sweden)

    D. M. Lienhard

    2015-12-01

    secondary organic aerosol (SOA material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA, levoglucosan, levoglucosan/NH4HSO4, raffinose are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  12. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    Science.gov (United States)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  13. Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees.

    Science.gov (United States)

    Kuwabara, Chikako; Kasuga, Jun; Wang, Donghui; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo

    2011-12-01

    Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-D-glucopyranoside (K3Glc), kaempferol 7-O-β-D-glucopyranoside (K7Glc) and quercetin 3-O-β-D-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist. Copyright

  14. Double Dislocation of Interphalangeal Joints Accompanied with Contralateral Shoulder Dislocation: A Case Report.

    Science.gov (United States)

    Raval, Pradyumna Ramchandra; Jariwala, Arpit

    2016-02-01

    Dislocation of any joint is an orthopaedic emergency and needs immediate attention by the attending physician. A delay in reducing a dislocated joint can lead to disastrous complications both immediately as well as in the long run. Although anterior dislocation of a shoulder joint is by far the commonest dislocation encountered by any emergency care physician, other joints may also get dislocated. In certain cases two joints may get dislocated simultaneously. Such dislocation is known as a double dislocation. Double dislocation of the proximal interphalangeal joint and the distal interphalangeal joint in the same finger is a rare injury. High impact loading at the fingertip is the primary cause in most cases and it is often associated with younger individuals playing contact sports. The right little finger is the digit commonly involved and this injury is evident in football players more often than not. Although closed reduction is a preferred treatment, it may not be always successful. Time of presentation, tendon interposition, associated swelling and co-existent phalangeal fractures are certain key impediments to a successful closed reduction manoeuvre. In patients with an open injury, a thorough wash out and appropriate antibiotic cover is mandatory. We report a rare case of double dislocation of the interphalangeal joints accompanied with contralateral shoulder dislocation in an elderly man sustained after a fall which was treated successfully with closed reduction and early mobilization. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  15. On establishing coreference in Left Dislocation constructions ...

    African Journals Online (AJOL)

    The phenomenon of left dislocation (LD) has received relatively little attention in the generative literature. In Government & Binding theory and early versions of Minimalist Syntax, the left-dislocated expression is conventionally taken to be base-generated in its sentence-initial surface position and the resumptive pronoun in ...

  16. Superior dislocation hip with anterior column acetabular

    African Journals Online (AJOL)

    abp

    2012-06-21

    Jun 21, 2012 ... Abstract. Superior variety of anterior dislocation of the hip is a rare injury. Its occurrence with acetabular fractures has been documented infrequently. We report a case of superior dislocation of the hip with anterior column acetabular fracture. Open reduction of the hip and internal fixation of the fracture was ...

  17. Moving dislocations studied by nuclear magnetic resonance

    NARCIS (Netherlands)

    Hut, Gezinus

    1976-01-01

    In this thesis a new approach to the study of moving dislocations in crystalline solids during plastic deformation will be presented. Since the process of dislocation motion is made up of atomic movements nuclear magnetic resonance techniques should offer a possibility to determine the manner in

  18. On establishing coreference in Left Dislocation constructions

    African Journals Online (AJOL)

    user

    The phenomenon of left dislocation (LD) has received relatively little attention in the generative literature. In Government & Binding theory and early versions of Minimalist Syntax, the left- dislocated expression is conventionally taken to be base-generated in its sentence-initial surface position and the resumptive pronoun in ...

  19. stabilisation of posterior sternoclavicular joint dislocation using

    African Journals Online (AJOL)

    JOINT DISLOCATION USING PALMARIS LONGUS TENDON. AUTOGRAFT: A CASE REPORT. V. M. Mutiso* .... Post operative follow up was uneventful. The skin healed well and she was commenced on physiotherapy with good ... The treatment of posterior sternoclavicular joint dislocation is varied owing to the rarity of the.

  20. Chronic Protracted Dislocation of the Temporomandibular Joint ...

    African Journals Online (AJOL)

    Background: Chronic protracted dislocation worsens with time due to continuing spasms and progressive fibrosis and consolidation. The aim of this report was to document our experience in the management of two different cases of longstanding dislocation in our centre. Method: First case was treated with traction method ...

  1. Anterior bilateral temporomandibular joint dislocation: an ...

    African Journals Online (AJOL)

    Anterior dislocation of the temporomandibular joint (TMJ) though an infrequent presentation at the emergency department; often demands an immediate reduction to relieve discomfort and prevent adverse long-term sequelae. A simple and effective technique to reduce the dislocation is successfully demonstrated by putting ...

  2. [A man with a dislocated hip

    NARCIS (Netherlands)

    Valke, L.L.; Leeuwesteijn, A.E.; Poelhekke, L.M.S.J.

    2015-01-01

    A 95-year-old male presented with a dislocated hip hemiarthroplasty after falling off his chair. After closed reposition, symptoms of dislocation remained. A control X-ray showed a disassociation of the prosthesis at the head-neck interface. Therefore, open reposition was performed. X-ray control is

  3. Developmental Dislocation (Dysplasia) of the Hip (DDH)

    Science.gov (United States)

    ... bone. In babies and children with developmental dysplasia (dislocation) of the hip (DDH), the hip joint has not formed normally. ... the American Academy of Orthopaedic Surgeons. .org Developmental Dislocation (Dysplasia) of the Hip cont. • Family history of DDH (parents or siblings) • ...

  4. Frozen shoulder or missed posterior dislocation?

    African Journals Online (AJOL)

    posterior shoulder dislocation or adhesive capsulitis. Discussion. PSD is a rare entity. Incidence is approximately 2 - 5% of all shoulder dislocations.[1] Most often PSD is the result of an epileptic seizure. Less frequent causes are seizures due to alcoholic withdrawal or other metabolic disorders, electrocution or during a ...

  5. Mg doping affects dislocation core structures in GaN.

    Science.gov (United States)

    Rhode, S K; Horton, M K; Kappers, M J; Zhang, S; Humphreys, C J; Dusane, R O; Sahonta, S -L; Moram, M A

    2013-07-12

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in undoped GaN films with both high and low dislocation densities, and in a comparable high dislocation density Mg-doped GaN film. All a-type dislocations in all samples have a 5/7-atom core structure. In contrast, most (a+c)-type dislocations in undoped GaN dissociate due to local strain variations from nearby dislocations. In contrast, Mg doping prevents (a+c)-type dislocation dissociation. Our data indicate that Mg affects dislocation cores in GaN significantly.

  6. Crystal nucleation and dendrite growth of metastable phases in undercooled melts

    Energy Technology Data Exchange (ETDEWEB)

    Herlach, Dieter, E-mail: dieter.herlach@dlr.de [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, D-51170 Koeln (Germany)

    2011-06-15

    Research highlights: > Homogenous nucleation. > Effects of convection on dendrite growth kinetics. > Description of disorder trapping validated by experiment. - Abstract: An undercooled melt possesses an enhanced free enthalpy that opens up the possibility to crystallize metastable crystalline solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing techniques such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Owing to the complete avoidance of heterogeneous nucleation on container-walls a large undercooling range becomes accessible with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts. Eventually, anomalous growth behaviour of Al-rich Al-Ni alloys is presented, which may be caused by forced convection.

  7. Pseudoconvex and Disprisoning Homogeneous Sprays

    CERN Document Server

    Riego, L D

    1994-01-01

    The pseudoconvex and disprisoning conditions for geodesics of linear connections are extended to the solution curves of general homogeneous sprays. The main result is that pseudoconvexity and disprisonment are jointly stable in the fine topology on the space of all homogeneous sprays of any degree of homogeneity.

  8. The nucleation of aerosols in flue gases with a high content of alkali - a laboratory study

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Schultz-Møller, Christina; Wedel, Stig

    2000-01-01

    The formation of particles during cooling of a synthetic flue gas with vapors of sodium and potassium species is studied in a laboratory tubular reactor with laminar flow. It is shown to agree well with a theoretical model for the process. The kinetics of homogeneous nucleation of the pure chloride......, in the presence of oxygen and water vapor, increases the number concentration of effluent particles significantly and affects their composition to include sulphate in addition to chloride. The sulphate content is independent of the peak temperatures of the flue gas but increases with increasing content of oxygen...... and SO2. The study proves that the alkali sulphates are formed by the sulphation of vapor phase rather than solid, alkali chloride. The sulphate vapors are formed in high supersaturation and show a pronounced tendency towards homogeneous nucleation, which is identified as the likely source...

  9. Modeling of Dislocation Structures in Materials

    CERN Document Server

    Rickman, J M; Vinals, Jorge

    1996-01-01

    A phenomenological model of the evolution of an ensemble of interacting dislocations in an isotropic elastic medium is formulated. The line-defect microstructure is described in terms of a spatially coarse-grained order parameter, the dislocation density tensor. The tensor field satisfies a conservation law that derives from the conservation of Burgers vector. Dislocation motion is entirely dissipative and is assumed to be locally driven by the minimization of plastic free energy. We first outline the method and resulting equations of motion to linear order in the dislocation density tensor, obtain various stationary solutions, and give their geometric interpretation. The coupling of the dislocation density to an externally imposed stress field is also addressed, as well as the impact of the field on the stationary solutions.

  10. Extensor mechanism injuries in tibiofemoral dislocations.

    Science.gov (United States)

    Wissman, Robert D; Verma, Sadhna; Kreeger, Michael; Robertson, Michael

    2009-01-01

    The purpose of this study is to evaluate the incidence, location, and associated findings of extensor mechanism injuries in the setting of tibiofemoral knee dislocations. A retrospective search for patients with previous knee dislocation and MRI of the knee was made during a 5-year period. Images were evaluated for abnormalities commonly seen in patellar instability. Patellar and quadriceps tendon integrity were also evaluated. A total of 14 patients were included in the study. Medial patellofemoral ligament injuries were identified in 10 patients (71%) with tibiofemoral dislocation. As in patients with previous patellar dislocation, medial patellofemoral ligament injuries commonly occurred at the femoral attachment of the ligament. Medial patellofemoral ligament injuries correlated well with vastus medialis oblique elevation. Patellar tendon injuries were less common identified in only 5 patients (36%). Medial patellofemoral ligament injuries can be associated with tibiofemoral knee dislocations. In addition, patellar tendon injuries can also occur, although these are usually partial tears.

  11. HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  12. Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Pleše, P.; Higgins, M. D.; Mancini, L.; Lanzafame, G.; Brun, F.; Fife, J. L.; Casselman, J.; Baker, D. R.

    2018-01-01

    Bubble nucleation and growth control the explosivity of volcanic eruptions, and the kinetics of these processes are generally determined from examinations of natural samples and quenched experimental run products. These samples, however, only provide a view of the final state, from which the initial conditions of a time-evolving magmatic system are then inferred. The interpretations that follow are inexact due to the inability of determining the exact conditions of nucleation and the potential detachment of bubbles from their nucleation sites, an uncertainty that can obscure their nucleation location – either homogeneously within the melt or heterogeneously at the interface between crystals and melts. We present results of a series of dynamic, real-time 4D X-ray tomographic microscopy experiments where we observed the development of bubbles in crystal bearing silicate magmas. Experimentally synthesized andesitic glasses with 0.25–0.5 wt% H2O and seed silicate crystals were heated at 1 atm to induce bubble nucleation and track bubble growth and movement. In contrast to previous studies on natural and experimentally produced samples, we found that bubbles readily nucleated on plagioclase and clinopyroxene crystals, that their contact angle changes during growth and that they can grow to sizes many times that of the silicate on whose surface they originated. The rapid heterogeneous nucleation of bubbles at low degrees of supersaturation in the presence of silicate crystals demonstrates that silicates can affect when vesiculation ensues, influencing subsequent permeability development and effusive vs. explosive transition in volcanic eruptions.

  13. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.

    Science.gov (United States)

    Kasuga, Jun; Mizuno, Kaoru; Arakawa, Keita; Fujikawa, Seizo

    2007-12-01

    Boreal hardwood species, including Japanese white birch (Betula platyphylla Sukat. var. japonica Hara), Japanese chestnut (Castanea crenata Sieb. et Zucc.), katsura tree (Cercidiphyllum japonicum Sieb. et Zucc.), Siebold's beech (Fagus crenata Blume), mulberry (Morus bombycis Koidz.), and Japanese rowan (Sorbus commixta Hedl.), had xylem parenchyma cells (XPCs) that adapt to subfreezing temperatures by deep supercooling. Crude extracts from xylem in all these trees were found to have anti-ice nucleation activity that promoted supercooling capability of water as measured by a droplet freezing assay. The magnitude of increase in supercooling capability of water droplets in the presence of ice-nucleation bacteria, Erwinia ananas, was higher in the ranges from 0.1 to 1.7 degrees C on addition of crude xylem extracts than freezing temperature of water droplets on addition of glucose in the same concentration (100 mosmol/kg). Crude xylem extracts from C. japonicum provided the highest supercooling capability of water droplets. Our additional examination showed that crude xylem extracts from C. japonicum exhibited anti-ice nucleation activity toward water droplets containing a variety of heterogeneous ice nucleators, including ice-nucleation bacteria, not only E. ananas but also Pseudomonas syringae (NBRC3310) or Xanthomonas campestris, silver iodide or airborne impurities. However, crude xylem extracts from C. japonicum did not affect homogeneous ice nucleation temperature as analyzed by emulsified micro-water droplets. The possible role of such anti-ice nucleation activity in crude xylem extracts in deep supercooling of XPCs is discussed.

  14. Glenohumeral dislocations in snowboarding and skiing.

    Science.gov (United States)

    Ogawa, Hiroyasu; Sumi, Hiroshi; Sumi, Yasuhiko; Shimizu, Katsuji

    2011-11-01

    Glenohumeral dislocations occurring during snowboarding and skiing are severe and often leave after effects. However, little is known about their aetiology and injury pattern. The purpose of this study was to elucidate the feature of glenohumeral dislocations in these winter sports. The injuries sustained by snowboarders and skiers, who were admitted to our hospital during five ski seasons from 2004 to 2009, were analysed using questionnaires and patients' records. A retrospective cohort study and a multivariate regression analysis were performed to reveal the epidemiology and injury pattern of glenohumeral dislocations. The overall rate of glenohumeral dislocation was 0.0583 per 1000 participant days (0.0676 per 1000 participant days in snowboarders and 0.0295 per 1000 participant days in skiers). Glenohumeral dislocations in snowboarding were significantly more common in higher age, male gender, injuries resulting more from falls, wet snow conditions, injuries of the leading-side joint and engaging the toe-side edge of the snowboard. Similarly, in skiers, glenohumeral dislocations were significantly more common in higher age, male gender, higher skill level, injuries resulting more from falls and injuries occurring on steep slopes. Nearly all (95.8%) of the glenohumeral dislocations were of the anterior type, and the prevalence of fracture-dislocations of the glenohumeral joint was higher in skiing (33.9%) than in snowboarding (12.4%). The variables strongly associated with glenohumeral dislocations in snowboarding and skiing were age, gender, snow condition and skiing speed. Snowboarding and skiing are sports with increased risk of glenohumeral dislocation compared with the general population, and the injury pattern differs between them. In snowboarding, injury patterns seem to be influenced by performance style. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Impact of surface nanostructure on ice nucleation.

    Science.gov (United States)

    Zhang, Xiang-Xiong; Chen, Min; Fu, Ming

    2014-09-28

    Nucleation of water on solid surface can be promoted noticeably when the lattice parameter of a surface matches well with the ice structure. However, the characteristic length of the surface lattice reported is generally less than 0.5 nm and is hardly tunable. In this paper, we show that a surface with nanoscale roughness can also remarkably promote ice nucleation if the characteristic length of the surface structure matches well with the ice crystal. A series of surfaces composed of periodic grooves with same depth but different widths are constructed in molecular dynamics simulations. Water cylinders are placed on the constructed surfaces and frozen at constant undercooling. The nucleation rates of the water cylinders are calculated in the simulation using the mean first-passage time method and then used to measure the nucleation promotion ability of the surfaces. Results suggest that the nucleation behavior of the supercooled water is significantly sensitive to the width of the groove. When the width of the groove matches well with the specific lengths of the ice crystal structure, the nucleation can be promoted remarkably. If the width does not match with the ice crystal, this kind of promotion disappears and the nucleation rate is even smaller than that on the smooth surface. Simulations also indicate that even when water molecules are adsorbed onto the surface structure in high-humidity environment, the solid surface can provide promising anti-icing ability as long as the characteristic length of the surface structure is carefully designed to avoid geometric match.

  16. Nonclassical nucleation pathways in protein crystallization

    Science.gov (United States)

    Zhang, Fajun

    2017-11-01

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  17. Demagnetization via Nucleation of the Nonequilibrium Metastable Phase in a Model of Disorder

    OpenAIRE

    Hurtado, Pablo I.; Marro, J.; Garrido, P. L.

    2006-01-01

    We study both analytically and numerically metastability and nucleation in a two-dimensional nonequilibrium Ising ferromagnet. Canonical equilibrium is dynamically impeded by a weak random perturbation which models homogeneous disorder of undetermined source. We present a simple theoretical description, in perfect agreement with Monte Carlo simulations, assuming that the decay of the nonequilibrium metastable state is due, as in equilibrium, to the competition between the surface and the bulk...

  18. Effect of CaCO3(S) nucleation modes on algae removal from alkaline water.

    Science.gov (United States)

    Choi, Jin Yong; Kinney, Kerry A; Katz, Lynn E

    2016-02-29

    The role of calcite heterogeneous nucleation was studied in a particle coagulation treatment process for removing microalgae from water. Batch experiments were conducted with Scenedesmus sp. and Chlorella sp. in the presence and absence of carbonate and in the presence and absence of Mg to delineate the role of CaCO3(S) nucleation on microalgae removal. The results indicate that effective algae coagulation (e.g., up to 81 % algae removal efficiency) can be achieved via heterogeneous nucleation with CaCO3(S); however, supersaturation ratios between 120 and 200 are required to achieve at least 50% algae removal, depending on ion concentrations. Algae removal was attributed to adsorption of Ca2+ onto the cell surface which provides nucleation sites for CaCO3(S) precipitation. Bridging of calcite particles between the algal cells led to rapid aggregation and formation of larger flocs. However, at higher supersaturation conditions, algae removal was diminished due to the dominance of homogeneous nucleation of CaCO3(S). Removal of algae in the presence of Ca2+ and Mg2+ required higher supersaturation values; however, the shift from heteronucleation to homonucleation with increasing supersaturation was still evident. The results suggest that water chemistry, pH, ionic strength, alkalinity and Ca2+ concentration can be optimized for algae removal via coagulation-sedimentation.

  19. Molecular simulation of bundle-like crystal nucleation from n-eicosane melts

    Science.gov (United States)

    Yi, Peng; Rutledge, Gregory C.

    2011-07-01

    Homogeneous nucleation of n-eicosane crystals from the supercooled melt was studied by molecular simulation using a realistic, united-atom model for n-alkanes. Using molecular dynamics simulation, we observed nucleation events directly at constant pressure and temperature, corresponding to about 19% supercooling. Under these conditions, the induction time is found to be 80.6 ± 8.8 ns for a system of volume (1.882 ± 0.006) × 10-19 cm3, corresponding to a nucleation rate of (6.59 ± 0.72) × 1025 cm-3 s-1. The nucleation free energy was calculated separately for three temperatures, ranging from 10% to 19% supercooling, by a Monte Carlo method with umbrella sampling. Values for the nucleation free energy range from 7.3 to 13.2 (in units of kBT). Detailed examination of the simulations reveals the critical nucleus to be a bundle of stretched segments about eight methylene groups long, organized into a cylindrical shape. The remaining methylene groups of the chains that participate in the nucleus form a disordered interfacial layer. By fitting the free energy curve to the cylindrical nucleus model, the solid-liquid interfacial free energies are calculated to be about 10 mJ/m2 for the side surface and 4 mJ/m2 for the end surface, both of which are relatively insensitive to temperature.

  20. submitter Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    CERN Document Server

    Ignatius, Karoliina; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M; Gallagher, Martin W; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank

    2016-01-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 ◦C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fraction...

  1. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  2. Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs

    Science.gov (United States)

    Parambil, Jose V.; Poornachary, Sendhil K.; Tan, Reginald B. H.; Heng, Jerry Y. Y.

    2017-07-01

    Studies on the use of template surfaces to induce heterogeneous crystal nucleation have gained momentum in recent years-with potential applications in selective crystallisation of polymorphs and in the generation of seed crystals in a continuous crystallisation process. In developing a template-assisted solution crystallisation process, the kinetics of homogeneous versus heterogeneous crystal nucleation could be influenced by solute-solvent, solute-template, and solvent-template interactions. In this study, we report the effect of solvents of varying polarity on the nucleation of carbamazepine (CBZ) crystal polymorphs, a model active pharmaceutical ingredient. The experimental results demonstrate that functionalised template surfaces are effective in promoting crystallisation of either the metastable (form II) or stable (form III) polymorphs of CBZ only in moderately (methanol, ethanol, isopropanol) and low polar (toluene) solvents. A solvent with high polarity (acetonitrile) is thought to mask the template effect on heterogeneous nucleation due to strong solute-solvent and solvent-template interactions. The current study highlights that a quality-by-design (QbD) approach-considering the synergistic effects of solute concentration, solvent type, solution temperature, and template surface chemistry on crystal nucleation-is critical to the development of a template-induced crystallisation process.

  3. The role of interfacial chemistry in surface nucleation and growth of calcium oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Song, L.; Campbell, A.A.; Bunker, B.C.

    1993-06-01

    The surface adsorption of Ca{sup 2+} and oxalate anions (Ox{sup 2{minus}}) on SiO{sub 2}, TiO{sub 2} and Al{sub 2}O{sub 3} oxide colloids were by electrosonic amplitude measurements. Kinetics studies of CaO{sub x} formation on the model oxide surfaces were carried out using constant composition method. Results suggested Ca{sup 2+} and Ox{sup 2{minus}} adsorptiopn was promoted on the oxide surfaces with opposite charges, and the specific adsorption of the divalent ions also resulted in surface charge reversal. For heterogeous nucleation of CaO{sub x} on the three model oxide surfaces, induction times ranged from 270 to 360 minutes compared with 1200 minutes estimated for homogeneous nucleation and 700 minutes for spontaneous or nucleation at pH 6.5 and S = 3.3. Lower nucleation barriers, 27 mJ/m{sup 2} for SiO{sub 2}, 26 mJ/m{sup 2} for TiO{sub 2}, were observed by studying the dependence of nucleation induction times as the function of solution supersaturation.

  4. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    Science.gov (United States)

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed.

  5. Effects of clustered nucleation on recrystallization

    DEFF Research Database (Denmark)

    Storm, Søren; Juul Jensen, Dorte

    2009-01-01

    the experimentally observed clustering is not very strong, it changes the kinetics and the recrystallized microstructural morphology plus leads to a recrystallized grain size distribution, which is significantly broadened compared to that of random nucleation simulations. (C) 2009 Published by Elsevier Ltd......Computer simulations are used to study effects of an experimentally determined 3D distribution of nucleation sites on the recrystallization kinetics and on the evolution of the recrystallized microstructure as compared to simulations with random nucleation. It is found that although...

  6. Viscosity of interfacial water regulates ice nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Shun; Zhou, Xin [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Cui, Dapeng; Wang, Jianjun, E-mail: wangj220@iccas.ac.cn; Song, Yanlin [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and Γ, in the context of classical nucleation theory. From the extracted J{sub 0} and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  7. Reduced dislocation density in GaxIn1-xP compositionally graded buffer layers through engineered glide plane switch

    Science.gov (United States)

    Schulte, K. L.; France, R. M.; McMahon, W. E.; Norman, A. G.; Guthrey, H. L.; Geisz, J. F.

    2017-04-01

    In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter η decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.

  8. High attenuation in MgSiO3 post-perovskite due to [100] dislocation glide under D'' conditions: an atomic scale study

    Science.gov (United States)

    Cordier, P.; Goryaeva, A.; Carrez, P.

    2016-12-01

    Dislocation motion in crystalline materials represents one of the most efficient mechanisms to produce plastic shear, the key mechanism for CPO development. Previous atomistic simulations show that MgSiO3 ppv is characterized by remarkably low lattice friction opposed to the glide of straight [100] screw dislocations in (010), while glide in (001) requires one order of magnitude larger stress values [1]. At finite temperature, dislocation glide occurs through nucleation and propagation of kink-pairs, i.e. dislocation does not move as a straight line, but partly bows out over the Peierls potential. We propose a theoretical study of a kink-pair formation mechanism for [100] screw dislocations in MgSiO3 ppv employing the line tension (LT) model [2] in conjunction with ab-initio atomic-scale modeling. The dislocation line tension, which plays a key role in dislocation dynamics, is computed at atomic scale as the energy increase resulting from individual atomic displacements due to the nucleation of a bow out. The estimated kink-pair formation enthalpy gives an access to evolution of critical resolved shear stress (CRSS) with temperature. Our results clearly demonstrate that at the lower mantle conditions, lattice friction in ppv vanishes for temperatures above ca. 600 K, i.e. ppv deforms in the athermal regime in contrast to the high-lattice friction bridgmanite [3]. Moreover, in the Earth's mantle, high-pressure Mg-ppv can be expected to be as ductile as MgO. Our simulations demonstrate that ppv contributes to a weak layer at the base of the mantle which is likely to promote alignment of (010) planes. In addition to that, we show that the high mobility of [100] dislocations results in a decrease of the apparent shear modulus (up to 15%) which contributes to a decrease of the shear wave velocity of about 7% and suggest that ppv induces energy dissipation and strong seismic attenuation in the D" layer. References[1] Goryaeva A, Carrez Ph & Cordier P (2015) Modeling

  9. Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2010-02-01

    Full Text Available In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.

  10. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qian [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  11. Recurrent Dislocation of the Patella

    Science.gov (United States)

    Benítez, Gustavo

    2015-01-01

    Purpose: To evaluate results of medial patellofemoral ligament (MPFL) reconstruction associated with lateral release and advancement of vastus medialis in recurrent dislocation of the patella. Methods: We retrospectively evaluated 11 patients with a mean follow-up of 19 months. Mean age was 23, mainly women. We did MPFL reconstruction with semitendinosus or gracilis tendon depending on BMI, associated with advancement of vastus medialis and lateral release. Results: Mean Kujala score improved from 46,54 pts. preoperative to 88,36 postoperative. Our main complication was 1 patient with rigid knee, who required movilization under anesthesia and arthroscopic arthrolisis to improve her outcome. Conclusion: The combination of this techniques are a good alternative to treat patients with recurrent patella disclocation, with good short and mid-term results. Biomechanic intra and postop complications of MPFL reconstruction are related to patellar fixation, anatomic positioning of femoral tunnel and knee position of the graft fixation.

  12. Atlantoaxial dislocation and Down's syndrome.

    Science.gov (United States)

    Whaley, W J; Gray, W D

    1980-01-01

    The phenotypic features of Down's syndrome are easily recognized and include characteristic facial features, hypotonia, ligament laxity, transverse palmar creases and mental subnormality. Associated manifestations and complications are also familiar and involve almost every organ system. Congenital heart defects, bowel malformations and a tendency to leukemia are common attendant problems. Less common, however, are defects of the skeletal system; in fact, the most recent edition of a standard pediatric textbook makes no mention of anomalies of the vertebral column. The purpose of this paper is to call attention to the association between Down's syndrome and atlantoaxial dislocation, which in our patient resulted in quadriplegia and eventually death. Images FIG. 1 FIG. 2 PMID:6448087

  13. Traumatic Anterior Dislocation of the Shoulder: Factors Affecting the Progress of the Traumatic Anterior Dislocation

    Science.gov (United States)

    Cho, Nam Su; Cho, Seung Hyun

    2009-01-01

    Background The aim of this study was to identify the factors that affect the progress of a traumatic anterior dislocation of the shoulder. Methods Two hundred and thirty-eight patients (246 shoulders) with a traumatic anterior dislocation were enrolled in this study. The mean age at the time of surgery was 25 years (range, 14 to 47 years). There were 214 men and 24 women. Results One hundred and sixty-four shoulders (67%) were younger than 20 years at the time of the first dislocation. Patients younger than 20 years showed a shorter interval of redislocation (p = 0.001) and a higher frequency of dislocation (p = 0.001). Athletic patients experienced their first dislocation at a younger age (p = 0.023) and showed a shorter interval of redislocation (p = 0.001) than their non-athetic counterparts. The incidence of classic and non-classic Bankart lesions was unaffected by age at the time of the first dislocation, interval between the first and second dislocation or the frequency of dislocation. Patients with bony Bankart lesions had a higher frequency of dislocation (p = 0.043). Conclusions The age at the time of the first dislocation and athletic activity were related to early redislocation and a high frequency of dislocation. Bony Bankart lesions were observed more often in patients with a higher frequency of dislocation. Early surgical treatment is a good option for young athletic patients with a bony Bankart lesion and a short interval between the first and second dislocation. PMID:19956475

  14. Increasing preoperative dislocations and total time of dislocation affect surgical management of anterior shoulder instability

    Science.gov (United States)

    Denard, Patrick J.; Dai, Xuesong; Burkhart, Stephen S.

    2015-01-01

    Purpose: Our purpose was to determine the relationship between number of preoperative shoulder dislocations and total dislocation time and the need to perform bone deficiency procedures at the time of primary anterior instability surgery. Our hypothesis was that need for bone deficiency procedures would increase with the total number and hours of dislocation. Materials and Methods: A retrospective review was performed of primary instability surgeries performed by a single surgeon. Patients with 25% glenoid bone loss were treated with Latarjet reconstruction. Number of dislocations and total dislocation time were examined for their relationship with the treatment method. Results: Ten arthroscopic Bankart repairs, 13 arthroscopic Bankart plus remplissage procedures, and 9 Latarjet reconstructions were available for review. Total dislocations (P = 0.012) and total hours of dislocation (P = 0.019) increased from the Bankart, to the remplissage, to the Latarjet groups. Patients with a total dislocation time of 5 h or more were more likely to require a Latarjet reconstruction (P = 0.039). Patients with only 1 preoperative dislocation were treated with an isolated Bankart repair in 64% (7 of 11) of cases, whereas those with 2 or more dislocations required a bone loss procedure in 86% (18 of 21) of cases (P = 0.013). Conclusion: Increasing number of dislocations and total dislocation time are associated with the development of glenoid and humeral head bony lesions that alter surgical management of anterior shoulder instability. The necessity for the addition of a remplissage to an arthroscopic Bankart repair or the use of a Latarjet reconstruction increases with only 1 recurrent dislocation. Level of evidence: Level III, retrospective comparative study. PMID:25709237

  15. Investigation of nucleation in undercooled metal melts

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stefan [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), 51170 Koeln (Germany); Institut fuer Festkoerperphysik, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Herlach, Dieter M. [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), 51170 Koeln (Germany)

    2010-07-01

    Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures. By using such levitation techniques the dominating heterogeneous nucleation on container walls is completely eliminated. Furthermore, if the experiments are performed under clean environmental conditions, heterogeneous nucleation on free surfaces is also greatly reduced. In this work both electromagnetic and electrostatic levitation techniques are used for a comparative investigation of nucleation in undercooled metallic metals. In case of electromagnetic levitation samples in a diameter of 7 mm are processed within high purity inert gas atmosphere while in case of electrostatic levitation samples in a diameter of 2 mm are processed in ultra high vacuum. With a modified model by Skripov a statistical analysis of the distribution function of the undercoolings measured in one experiment run consisting of at least 100 undercooling cycles is conducted which provides information about the physical nature of different nucleation mechanism depending on experiment conditions.

  16. Nucleation and superstabilization in small systems

    Science.gov (United States)

    Philippe, T.

    2017-09-01

    Phase transitions are known to present peculiarities in small systems that are related to depletion effects of the ambient phase. Mass conservation affects the conditions of thermodynamic equilibrium between a nucleus of the new phase and the matrix as compared with nucleation in infinite systems. This finite-size effect is known to delay the phase transition but can also impede nucleation in very small systems as it stabilizes the initial state, originally metastable in infinite systems. In this work, we investigate this superstabilization effect in the context of classical nucleation theory in multicomponent solutions and we derive an analytical expression for the system size below which nucleation becomes thermodynamically impossible. Comparing with the exact solution, our simple result is shown to accurately predict the superstabilization effect, and can therefore be used, for instance, as a guideline for the design of novel nanomaterials.

  17. A TRANSITION FROM HETEROGENEOUS TO HOMOGENEOUS NUCLEATION IN THE TURBULENT MIXING CNC. (R826654)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Actin nucleation: spire - actin nucleator in a class of its own.

    Science.gov (United States)

    Baum, Buzz; Kunda, Patricia

    2005-04-26

    The rate limiting step for actin filament polymerisation is nucleation, and two types of nucleator have been described: the Arp2/3 complex and the formins. A recent study has now identified in Spire a third class of actin nucleator. The four short WH2 repeats within Spire bind four consecutive actin monomers to form a novel single strand nucleus for 'barbed end' actin filament elongation.

  19. Activity of different proteinaceous ice nucleating particles

    Science.gov (United States)

    Hartmann, Susann; Augustin-Bauditz, Stefanie; Grawe, Sarah; Ling, Meilee; Hellner, Lisa; Zapf, Jean-Michel; Šantl-Temkiv, Tina; Pummer, Bernhard; Boesen, Thomas; Wex, Heike; Finster, Kai; Stratmann, Frank

    2017-04-01

    A variety of microorganisms (bacteria, fungi, lichen) from land produce protein structures, which act as a template for ice nucleation [1]. Also marine sources of ice nucleating particles (INPs) came in focus in the recent years. The atmospheric spatio-temporal distribution of INPs from microorganisms is still not well known. However, it is often assumed that the observed onset of atmospheric ice nucleation (T>-20°C) is due to the existence of ice-nucleation active biological particles. In this study we compare the ice nucleation activity of different proteinaceous particles produced by bacteria and fungi. For bacteria we investigate (i) cells and fragments of Pseudomonas syringae from commercially available SnomaxTM and (ii) the Pseudomonas syringae INA protein expressed in living Escherichia coli bacteria. We also analyzed freeze-dried leaves [2] where we assume that proteinaceous particles are responsible for the ice nucleation activity. For fungi the widespread soil fungus Mortierella alpina was investigated which had been extracted from natural soil [3]. Immersion freezing experiments are performed at the cold stage LINA (Leipzig Ice Nucleation Array). We attempt to describe the activity of a single proteinaceous ice nucleating particle [4] in order to achieve direct comparability. Further, the results are compared with complex natural systems e.g. soil dust. The objectives of this study are to clarify potential differences in the ice nucleation potential of proteinaceous particles and to draw conclusions concerning the need to differentiate them for modelling purposes. 1. Szyrmer, W. and I. Zawadzki, Biogenic and anthropogenic sources of ice-forming nuclei: A review, Bull. Amer. Meteorol. Soc., 1997. 2. Schnell, R.C. and G. Vali, Biogenic ice nucleai .1: Terrestrial and marine sources, doi: 10.1175/1520-0469(1976)0332.0.co;2, 1976. 3. Froehlich-Nowoisky, J. et al., Ice nucleation activity in the widespread soil fungus Mortierella alpina, doi: 10.5194/bg-12

  20. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Science.gov (United States)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  1. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2012-09-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re

  2. Nucleation versus instability race in strained films

    Science.gov (United States)

    Liu, Kailang; Berbezier, Isabelle; David, Thomas; Favre, Luc; Ronda, Antoine; Abbarchi, Marco; Voorhees, Peter; Aqua, Jean-Noël

    2017-10-01

    Under the generic term "Stranski-Krastanov" are grouped two different growth mechanisms of SiGe quantum dots. They result from the self-organized Asaro-Tiller-Grinfel'd (ATG) instability at low strain, while at high strain, from a stochastic nucleation. While these regimes are well known, we elucidate here the origin of the transition between these two pathways thanks to a joint theoretical and experimental work. Nucleation is described within the master equation framework. By comparing the time scales for ATG instability development and three-dimensional (3D) nucleation onset, we demonstrate that the transition between these two regimes is simply explained by the crossover between their divergent evolutions. Nucleation exhibits a strong exponential deviation at low strain while ATG behaves only algebraically. The associated time scale varies with exp(1 /x4) for nucleation, while it only behaves as 1 /x8 for the ATG instability. Consequently, at high (low) strain, nucleation (instability) occurs faster and inhibits the alternate evolution. It is then this different kinetic evolution which explains the transition from one regime to the other. Such a kinetic view of the transition between these two 3D growth regimes was not provided before. The crossover between nucleation and ATG instability is found to occur both experimentally and theoretically at a Ge composition around 50% in the experimental conditions used here. Varying the experimental conditions and/or the system parameters does not allow us to suppress the transition. This means that the SiGe quantum dots always grow via ATG instability at low strain and nucleation at high strain. This result is important for the self-organization of quantum dots.

  3. Traumatic dislocation of the first carpometacarpal joint.

    Science.gov (United States)

    Kraus, Chadd K; Weaver, Kevin R

    2014-12-01

    We present a case report and review of the literature of traumatic dislocation of the carpometacarpal joint of the left thumb without associated fracture. The injury was sustained while skiing, and after emergency department diagnosis, the dislocation was reduced and the joint stabilized with a splint. The patient was discharged with close follow-up with a hand surgeon for definitive surgical fixation. Carpometacarpal joint dislocations of the thumb are exceedingly rare injuries and require appropriate diagnosis and treatment to minimize the morbidity and loss of function that can occur with these injuries.

  4. Bilateral carpometacarpal joint dislocations of the thumb.

    Science.gov (United States)

    Jeong, Changhoon; Kim, Hyoung-Min; Lee, Sang-Uk; Park, Il-Jung

    2012-09-01

    A traumatic carpometacarpal joint dislocation of the thumb accounts for less than 1% of all hand injuries. Optimal treatment strategies for this injury are still a subject of debate. In this article, we report a case of bilateral thumb carpometacarpal joint dislocations: a unique combination of injuries. We believe our case is the second report of bilateral carpometacarpal joint dislocation regarding the thumb in English literature. It was successfully treated with closed reduction and percutaneous K-wires fixation on one side, and an open reduction and reconstruction of the ligament on the other side.

  5. Traumatic hip dislocation; a South East Nigeria hospital experience ...

    African Journals Online (AJOL)

    Background: Hip dislocation is a relatively common orthopaedic emergency. The hip is an inherently stable joint and substantial force is required for dislocation to occur. Thus hip dislocation is said to follow motor vehicle accidents with more than 90% of hip dislocations being posterior. Thompson and Epstein grade I and II ...

  6. Monteggia fracture-dislocation: a case report, its' initial management ...

    African Journals Online (AJOL)

    Fracture of proximal ulna and dislocation of the proximal radio-ulna joint in the same arm is called Monteggia fracture- dislocation. Four clinical variants of this fracture- dislocation have been described in literature. This is a report and description of initial management of a fracture- dislocation, which was consequent to a ...

  7. Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Foreman, A.J.E.

    1997-01-01

    In metals under cascade damage conditions, dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops, particularly during the early stages of the microstructural evolution in well annealed pure metals....... This effect may arise as a result of either (a) migration and enhanced agglomeration of single SIAs in the form of loops in the strain field of the dislocation or (b) glide and trapping of SIA loops (produced directly in the cascades) in the strain field of the dislocation, In the present paper, both...... of these possibilities are examined. It is shown that the strain field of the dislocation causes a SIA depletion in the compressive as well as in the dilatational region resulting in a reduced rather than enhanced agglomeration of SIAs. (SIA depletion may, however, induce enhanced vacancy agglomeration near dislocations...

  8. Ipsilateral open anterior hip dislocation and open posterior elbow dislocation in an adult.

    Science.gov (United States)

    Kumar, Sunil; Rathi, Akhilesh; Sehrawat, Sunil; Gupta, Vikas; Talwar, Jatin; Arora, Sumit

    2014-01-01

    Open anterior dislocation of the hip is a very rare injury, especially in adults. It is a hyperabduction, external rotation and extension injury. Its combination with open posterior dislocation of the elbow has not been described in English language-based medical literature. Primary resuscitation, debridement, urgent reduction of dislocation, and adequate antibiotic support resulted in good clinical outcome in our patient. At 18 months follow-up, no signs of avascular necrosis of the femoral head or infection were observed.

  9. Indirect radiative forcing by ion-mediated nucleation of aerosol

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-12-01

    Full Text Available A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN in generating new particles and cloud condensation nuclei (CCN in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5. Our simulations show that, compared to globally averaged results based on H2SO4-H2O binary homogeneous nucleation (BHN, the presence of ionization (i.e., IMN halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~3, CCN burden by ~10% (at 0.2% supersaturation to 65% (at 1.0% supersaturation, and cloud droplet number burden by ~18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing (SWCF by 3.67 W m−2 (more negative and longwave cloud forcing by 1.78 W m−2 (more positive, with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m−2 is a factor of ~3 higher that of a previous study (1.15 W m−2 based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (~−0.02 W m−2 but have larger inter-annual (from −0.18 to 0.17 W m−2 and spatial variations.

  10. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  11. Model studies of volatile diesel exhaust particle formation: are organic vapours involved in nucleation and growth?

    Science.gov (United States)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-09-01

    A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1-2) × 1012 cm-3. The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 1010 cm-3, which was the case when biofuel was used.

  12. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    Science.gov (United States)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, Hugh; Somerville, Richard C. J.; Zhang, Kai; Liu, Xiaohong; Li, Jui-Lin F.

    2014-12-01

    In this study, an aerosol-dependent ice nucleation scheme has been implemented in an aerosol-enabled Multiscale Modeling Framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10-100/L) at cirrus temperatures. The new model simulates the observed shift of the ice supersaturation PDF toward higher values at low temperatures following the homogeneous nucleation threshold. The MMF model predicts a higher frequency of midlatitude supersaturation in the Southern Hemisphere and winter hemisphere, which is consistent with previous satellite and in situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to simulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation scheme and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement with the satellite-retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  13. Evaluation and treatment of prosthetic hip dislocation

    National Research Council Canada - National Science Library

    Dabaghi, A; Saleme, J; Ochoa, L

    2014-01-01

    Hip dislocation is the second most common complication of total hip arthroplasty followed by aseptic loosening, is the second most common complication of THA presenting with an incidence of 2.4-3.9...

  14. Strain rate sensitivity analysis in phase-field dislocation dynamics

    OpenAIRE

    Cao, Lei; Koslowski, Marisol

    2014-01-01

    We present dislocation simulations involving the collective behavior of partials and extended full dislocations in nanocrystalline (nc) materials. Although atomistic simulations have shown the importance of including partial dislocations in high strain rate simulations, the behavior of partial dislocations in complex geometries with low strain rates has not been explored. To account for the dissociation of dislocations into partials we include the full representation of the gamma surface for ...

  15. The Character of Dislocations in LiCoO2

    OpenAIRE

    Gabrisch, H.; Yazami, R.; Fultz, B.

    2002-01-01

    Dislocations in LiCoO2 were observed by transmission electron microscopy, and their Burgers vectors were determined by analysis of diffraction contrast in tilting experiments. The configuration of all dislocations indicates that they are glissile, and dislocation configurations were found that are indicative of active slip planes. Perfect dislocations of a/3 type Burgers vectors were observed on {0001} habit planes. These perfect dislocations sometimes dissociate into Shockley partial disloca...

  16. Understanding the ice nucleation characteristics of feldspars suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Zobrist et al. (2008) Arizona test dust, silver iodide, nonadecanol and silicon dioxide suspensions in various solutes showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust particles at a microphysical scale. To improve our understanding how solute and mineral dust particle surface interaction, we run freezing experiments using a differential scanning calorimeter (DSC) with microcline, sanidine, plagioclase, kaolinite and quartz particles suspended in pure water and solutions containing ammonia, ammonium bisulfate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium sulfate, sodium sulfate and sulfuric acid. Methodology Suspensions of mineral dust samples (2 - 5 wt%) are prepared in water with varying solute concentrations (0 - 15 wt%). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich

  17. Homogeneous Functionalization of Methane.

    Science.gov (United States)

    Gunsalus, Niles Jensen; Koppaka, Anjaneyulu; Park, Sae Hume; Bischof, Steven M; Hashiguchi, Brian G; Periana, Roy A

    2017-07-12

    One of the remaining "grand challenges" in chemistry is the development of a next generation, less expensive, cleaner process that can allow the vast reserves of methane from natural gas to augment or replace oil as the source of fuels and chemicals. Homogeneous (gas/liquid) systems that convert methane to functionalized products with emphasis on reports after 1995 are reviewed. Gas/solid, bioinorganic, biological, and reaction systems that do not specifically involve methane functionalization are excluded. The various reports are grouped under the main element involved in the direct reactions with methane. Central to the review is classification of the various reports into 12 categories based on both practical considerations and the mechanisms of the elementary reactions with methane. Practical considerations are based on whether or not the system reported can directly or indirectly utilize O2 as the only net coreactant based only on thermodynamic potentials. Mechanistic classifications are based on whether the elementary reactions with methane proceed by chain or nonchain reactions and with stoichiometric reagents or catalytic species. The nonchain reactions are further classified as CH activation (CHA) or CH oxidation (CHO). The bases for these various classifications are defined. In particular, CHA reactions are defined as elementary reactions with methane that result in a discrete methyl intermediate where the formal oxidation state (FOS) on the carbon remains unchanged at -IV relative to that in methane. In contrast, CHO reactions are defined as elementary reactions with methane where the carbon atom of the product is oxidized and has a FOS less negative than -IV. This review reveals that the bulk of the work in the field is relatively evenly distributed across most of the various areas classified. However, a few areas are only marginally examined, or not examined at all. This review also shows that, while significant scientific progress has been made

  18. Posterior sternoclavicular dislocation: an American football injury

    DEFF Research Database (Denmark)

    Marker, L B; Klareskov, B

    1996-01-01

    Posterior dislocation of the sternoclavicular joint is uncommon, accounting for less than 0.1% of all dislocations. Since 1824 a little more than 100 cases have been reported, and the majority in the past 20 years. A review of published reports suggests that this injury is seen particularly in co...... in connection with American football. A typical case is described. The importance of this injury is that there is often a delay in diagnosis with potentially serious complications....

  19. Posterior sternoclavicular dislocation: an American football injury

    DEFF Research Database (Denmark)

    Marker, L B; Klareskov, B

    1996-01-01

    Posterior dislocation of the sternoclavicular joint is uncommon, accounting for less than 0.1% of all dislocations. Since 1824 a little more than 100 cases have been reported, and the majority in the past 20 years. A review of published reports suggests that this injury is seen particularly...... in connection with American football. A typical case is described. The importance of this injury is that there is often a delay in diagnosis with potentially serious complications....

  20. Dislocation dynamics of web type silicon ribbon

    Science.gov (United States)

    Dillon, O. W., Jr.; Tsai, C. T.; De Angelis, R. J.

    1987-01-01

    Silicon ribbon grown by the dendritic web process passes through a rapidly changing thermal profile in the growth direction. This rapidly changing profile induces stresses which produce changes in the dislocation density in the ribbon. A viscoplastic material response function (Haasen-Sumino model) is used herein to calculate the stresses and the dislocation density at each point in the silicon ribbon. The residual stresses are also calculated.

  1. Slip patterns and preferred dislocation boundary planes

    DEFF Research Database (Denmark)

    Winther, G.

    2003-01-01

    The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...

  2. Isolated Proximal Tibiofibular Dislocation during Soccer

    Directory of Open Access Journals (Sweden)

    Casey Chiu

    2015-01-01

    Full Text Available Proximal tibiofibular dislocations are rarely encountered in the Emergency Department (ED. We present a case involving a man presenting to the ED with left knee pain after making a sharp left turn on the soccer field. His physical exam was only remarkable for tenderness over the lateral fibular head. His X-rays showed subtle abnormalities of the tibiofibular joint. The dislocation was reduced and the patient was discharged from the ED with orthopedic follow-up.

  3. Compound transstyloid, transscaphoid, perilunate fracture dislocation

    Directory of Open Access Journals (Sweden)

    Nadeem Ali

    2013-01-01

    Full Text Available Compound fracture dislocations of proximal carpal bones are very rare. We report a 26-year-old male, Defense personnel by profession, who sustained a compound Gustilo Anderson type IIIA transstyloid, transscaphoid, perilunate dislocation. The patient underwent primary proximal row carpectomy and stabilization with uni-planar, uni-lateral external fixator, and K-Wires. On follow-up after a year, the patient had almost negligible range of motion around wrist without any significant discomfort.

  4. Incidence of Posttraumatic Shoulder Dislocation in Poland.

    Science.gov (United States)

    Szyluk, Karol J; Jasiński, Andrzej; Mielnik, Michał; Koczy, Bogdan

    2016-10-25

    BACKGROUND The incidence of shoulder joint dislocation has been estimated at 11-26 per 100 000 population per year. In our opinion, basic epidemiological data need to be continually updated in studies of large populations. To study the incidence of posttraumatic dislocation of the shoulder joint in the Polish population. MATERIAL AND METHODS We retrospectively investigated the entire Polish population between 1 January 2010 and 1 January 2015. To identify the study group, data collected in the electronic database of the National Health Fund were used. The study group was divided into subgroups to detect possible differences in the incidence of shoulder dislocation with regard to age, sex, and season of the year (month) when the dislocation occurred. RESULTS The cumulative size of the study sample was 192.72 million over the 5 years of the study. We identified 51 409 patients with first posttraumatic shoulder dislocation, at a mean age of 50.83 years (SD 21.12), from 0 to 104 years. The incidence of traumatic shoulder dislocations for the entire study group ranged from 24.75/100 000/year (number of posttraumatic shoulder dislocations per 100 000 persons per year) to 29.09/100 000/year, for a mean of 26.69/100 000/year. CONCLUSIONS In this study, the overall incidence of first-time posttraumatic shoulder dislocations in the Polish general population was 26.69 per 100 000 persons per year. These results are higher than estimates presented by other authors. It is necessary to study, regularly update, and monitor this problem in the general population.

  5. Posterior atlantoaxial dislocation without odontoid fracture

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Reema; Raut, Abhijit [King Edward VII Memorial Hospital, Department of Radiology, Parel, Mumbai (India); Chaudhary, Kshitij; Metkar, Umesh; Rathod, Ashok [King Edward VII Memorial Hospital, Department of Orthopaedics, Parel, Mumbai (India); Sanghvi, Darshana [King Edward VII Memorial Hospital, Department of Radiology, Parel, Mumbai (India); DMRD, DNB, Dadar, Mumbai (India)

    2008-04-15

    We report a case of posterior atlantoaxial dislocation without a fracture of the odontoid in a 35-year-old woman. There have been nine reported cases of similar injury in the English literature. The integrity of the transverse ligament following posterior atlantoaxial dislocations has not been well documented in these reports. In the present case, MRI revealed an intact transverse ligament, which probably contributed to the stability of the C1-C2 complex following closed reduction. (orig.)

  6. New clinical classification system for atlantoaxial dislocation.

    Science.gov (United States)

    Xu, JunJie; Yin, QingShui; Xia, Hong; Wu, ZengHui; Ma, XiangYang; Zhang, Kai; Wang, ZhiYun; Yang, JinCheng; Ai, FuZhi; Wang, JianHua; Liu, JingFa; Mai, XiaoHong

    2013-01-01

    The purpose of this study was to define a new clinical classification of atlantoaxial dislocation based on its clinical manifestations, namely reducible atlantoaxial dislocation (RAAD), irreducible atlantoaxial dislocation (IAAD), and fixed atlantoaxial dislocation (FAAD). A total of 107 patients with atlantoaxial dislocation were respectively treated based on this clinical classification, including 66 patients with RAAD, 39 patients with IAAD, and 2 patients with FAAD. Six of the 66 patients with RAAD with rotatory atlantoaxial dislocation were treated with traction and a cervical collar, 9 with fresh type II dens fracture were treated with cannulated screw fixation, and 51 were treated with posterior atlantoaxial or occipitocervical arthrodesis. Thirty-eight patients with IAAD received a transoral atlantoaxial reduction plate system, and 1 with a giant cell tumor was treated with lesion resection and vertebral reconstruction by a shaped titanium mesh system followed by posterior occipitocervical screw-rod fixation. The 2 patients with FAAD underwent anterior decompression and received a transoral atlantoaxial reduction plate system. Follow-up data were obtained for a minimum of 6 months. All patients' neurological symptoms improved postoperatively. Bony union was accomplished by 3-month follow-up. Donor-site infection was found in 1 patient, with no occurrence of other complications. This article proposes a new classification of atlantoaxial dislocation indicating the severity and difficulty in reduction of the atlantoaxial joint. The classification system assists with decision making regarding therapeutic options. Transoral atlantoaxial reduction plate fixation and posterior atlantoaxial screw-rod fixation are commonly performed for atlantoaxial dislocation. Copyright 2013, SLACK Incorporated.

  7. Dislocation of the talonavicular joint: case report.

    Science.gov (United States)

    Ross, P M; Mitchell, D C

    1976-05-01

    Dislocation of the talonavicular joint is rare, caused by severe abduction or adduction of the forefoot. Proper reduction is necessary to avoid equinovarus deformity, ankylosis, or degenerative arthritis. A case of talonavicular dislocation with fracture of the head of the talus in a 52-year old woman is reported, with delayed treatment by open reduction using Kirschner wires and casting for 7 weeks. This patient is successfully employed as a waitress 2 years postinjury.

  8. Extended Dislocations in Plastically Deformed Metallic Nanoparticles

    OpenAIRE

    Bin Zheng; Yi-Nong Wang; Min Qi; Huiling Du

    2016-01-01

    In the present study, the sawtooth nature of compressive loading of metallic nanoparticles is observed using a molecular dynamics simulation. The atomic structure evolution confirmed that extended dislocations are the main defects split into two asynchronous partial disloca‐ tions, along with stored and released fault energy. This is considered the essence of sawtooth loading. The size of the nanoparticles relative to the equilibrium width of the extended dislocation is discussed to explain t...

  9. [Surgical treatment for open dislocation of talus].

    Science.gov (United States)

    Han, Qing-lin; Wang, You-hua; Liu, Fan

    2011-07-01

    To evaluate the clinical effects of surgical treatment for open dislocation of talus. From June 2001 to July 2008,the complete data of 11 patients with open dislocations of talus were retrospectively analyzed, including 8 males and 3 females with an average age of 39.5 years (ranged 19 to 52). According to Gustilo typing, type I was in 2 cases, type II in 6 cases, type III A in 2 cases, type III B in 1 case. Five cases were tibial astragaloid joint dislocation in which 3 cases associated with subtalar joint dislocation, 4 cases were subtalar joint dislocation and 2 cases were total dislocation of talus. Among them, 8 dislocations associated with talus fractures. All patients were treated with debridement, open reduction, internal fixation with K-wires or screws and external fixation with plaster or external fixator within 8 hours after injury. External fixations were removed at 6 weeks after operation. Partial weight bearing was permitted only when X-rays indicated bony healing. Clinical effects were evaluated according to AOFAS system and X-ray films during follow-up. The mean time of follow-up was 13.8 months(ranged 10 to 15 months). Eight patients with fractures obtained bone healing in 4-7 months with an average of 4.3 months. No infection of wound or deep tissue was found. At final follow-up, talus necrosis was in 2 cases and traumatic arthritis was in 2 cases. The AOFAS score was 71.3 +/- 8.6, among the total, the pain, function, alignment was respectively (32.4 +/- 7.1), (31.0 +/- 15.7), (7.6 +/- 2.3) scores. Complete debridement may avoid infection in treating open dislocation of talus, early reduction and fixation is a key point during treatment.

  10. Extended Dislocations in Plastically Deformed Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2016-05-01

    Full Text Available In the present study, the sawtooth nature of compressive loading of metallic nanoparticles is observed using a molecular dynamics simulation. The atomic structure evolution confirmed that extended dislocations are the main defects split into two asynchronous partial disloca‐ tions, along with stored and released fault energy. This is considered the essence of sawtooth loading. The size of the nanoparticles relative to the equilibrium width of the extended dislocation is discussed to explain the simulation results.

  11. Creep Deformation by Dislocation Movement in Waspaloy.

    Science.gov (United States)

    Whittaker, Mark; Harrison, Will; Deen, Christopher; Rae, Cathie; Williams, Steve

    2017-01-12

    Creep tests of the polycrystalline nickel alloy Waspaloy have been conducted at Swansea University, for varying stress conditions at 700 °C. Investigation through use of Transmission Electron Microscopy at Cambridge University has examined the dislocation networks formed under these conditions, with particular attention paid to comparing tests performed above and below the yield stress. This paper highlights how the dislocation structures vary throughout creep and proposes a dislocation mechanism theory for creep in Waspaloy. Activation energies are calculated through approaches developed in the use of the recently formulated Wilshire Equations, and are found to differ above and below the yield stress. Low activation energies are found to be related to dislocation interaction with γ' precipitates below the yield stress. However, significantly increased dislocation densities at stresses above yield cause an increase in the activation energy values as forest hardening becomes the primary mechanism controlling dislocation movement. It is proposed that the activation energy change is related to the stress increment provided by work hardening, as can be observed from Ti, Ni and steel results.

  12. Effect of dislocations on gallium arsenide FETs

    Science.gov (United States)

    Barrett, D. L.; McGuigan, S.; Eldridge, G. W.; Swanson, B. W.; Thomas, R. N.

    1985-02-01

    Indium doping at 5 x 10 to the 19th power/cc was found to be optimum for the growth of low-dislocation GaAs crystals, and to avoid constitutional supercooling effects. Dislocation etch pit densities of near 200/cc were measured in the central region of In-doped crystals, increasing to above 1000/sq cm in the peripheral regions. Based on the concept that dislocations are generated to relieve excess thermoelastic stress, a preliminary thermal model was used to design a hot zone shield to reduce thermal gradients during growth. An optimum combination of indium-doping, reduced thermal gradient growth, and appropriate growth parameters are expected to yield completely dislocation-free GaAs crystals. A FET metrology mask has been fabricated and preliminary FET device Fabrication begun, for evaluation of the effects of dislocations on FET device parameters. Twenty state-of-the-art, low dislocation, indium-doped GaAs wafers were delivered to the contractor for DARPA-related program evaluation.

  13. [Dislocation of the atlantoaxial joint].

    Science.gov (United States)

    Koppe, D; Markart, M; Ertel, W

    2014-06-01

    Injuries of the cervical spine in adolescents only occur in 0.2 % of cases. Due to the mismatch of size of the head in comparison to the relatively weakly developed neck muscles at this age, the cranial section is more vulnerable to injuries of any kind compared to the lower sections of the cervical spine. In children isolated ligament trauma is more common than fractures due to the relatively good bone structure combined with a lower bone density but the risk for fractures increases with the age of the patient. Atlantoaxial dislocation (AAD) in children is a very rare mostly ligamentous injury. A differentiation is made between traumatic AAD and the much more common non-traumatic AAD described in the literature. Although the cause is still unknown different risk factors have been isolated that seem to increase the risk for non-traumatic AAD. The following article presents guidelines for the diagnosis and treatment of this rare type of injury and also describes the case of a 19-year-old female who presented at the emergency department with an AAD without a history of trauma. After successful closed repositioning the neck was stabilized in a semi-rigid cervical collar for 6 weeks.

  14. Influence of different nucleation layers on the initial grain structure of multicrystalline silicon ingots

    Science.gov (United States)

    Kupka, I.; Lehmann, T.; Trempa, M.; Kranert, C.; Reimann, C.; Friedrich, J.

    2017-05-01

    The grain structure of high-performance (HP) multicrystalline silicon (mc-Si) is characterized by a small initial grain size with randomly oriented grains and a high length fraction of random grain boundaries. However, the remaining unmelted feedstock at the ingot bottom used as seeding layer for achieving the HP mc-Si properties in the standard crystallization procedure causes yield loss. To overcome this disadvantage, the influence of wetting angle, and surface roughness of non-Si nucleation layers at the crucible bottom on the grain structure properties of mc-Si ingots with a weight of 14.5 kg was investigated and compared to classical HP mc-Si. For that purpose, SiC and SiO2 nucleation layers realized by spraying and embedding of particles with different sizes resulting in different surface morphologies and wetting angles were studied. Nucleation on rough layers of both materials with a root mean square roughness value greater than 100 μm yielded an initially fine grain structure comparable to HP mc-Si. This did not necessarily result in a random orientation distribution and high length fraction of random grain boundaries. Nucleation on SiC layers caused random grain boundary length fractions between 20 and 30% and non-uniform grain distributions. But, nucleation on SiO2 layers yielded increased random grain boundary length fractions between 50 and 70% and homogenous grain distributions, both values are similar to HP mc-Si. These differences are discussed in terms of the thermal conductivity of the different nucleation layers.

  15. Un trait du francais parle authentique: La dislocation. (A Trait of Authentic Spoken French: Dislocation.)

    Science.gov (United States)

    Calve, Pierre

    1983-01-01

    The dislocation of sentence elements in spoken French is seen as allowing the speaker to free himself from certain constraints imposed on word order, position of accents, and grammar. Dislocation is described, its various functions are enumerated, and implications for second language instruction are outlined. (MSE)

  16. Observations of Screw Dislocation Driven Growth and Faceting During CVD Homoepitaxy on 4H-SiC On-Axis Mesa Arrays

    Science.gov (United States)

    Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony; Picard, Yoosuf N.; Twigg, Mark E.

    2009-01-01

    Previous studies of (0001) homoepitaxial growth carried out on arrays of small-area mesas etched into on-axis silicon-face 4H-SiC wafers have demonstrated that spiral growth emanating from at least one screw dislocation threading the mesa is necessary in order for a mesa to grow taller in the (c-axis vertical) direction while maintaining 4H stacking sequence [1]. However, even amongst mesas containing the screw dislocation step source necessary for vertical c-axis growth, we have observed striking differences in the height and faceting that evolve during prolonged homoepitaxial growths. This paper summarizes Atomic Force Microscopy (AFM), Electron Channeling Contrast Imaging (ECCI), Scanning Electron Microscopy (SEM), and optical microscopy observations of this phenomenon. These observations support our initially proposed model [2] that the observed large variation (for mesas where 3C-SiC nucleation has not occurred) is related to the lateral positioning of a screw dislocation step source within each etched mesa. When the screw dislocation step source is located close enough to the developing edge/sidewall facet of a mesa, the c-axis growth rate and facet angle are affected by the resulting interaction. In particular, the intersection (or near intersection) of the inward-sloping mesa sidewall facet with the screw dislocation appears to impede the rate at which the spiral provides new steps required for c-axis growth. Also, the inward slope of the sidewall facet during growth (relative to other sidewalls of the same mesa not near the screw dislocation) seems to be impeded by the screw dislocation. In contrast, mesas whose screw dislocations are centrally located grow vertically, but inward sloping sidewall facets shrink the area of the top (0001) growth surface almost to the point of vanishing.

  17. Spatiotemporal periodicity of dislocation dynamics in a two-dimensional microfluidic crystal flowing in a tapered channel.

    Science.gov (United States)

    Gai, Ya; Leong, Chia Min; Cai, Wei; Tang, Sindy K Y

    2016-10-25

    When a many-body system is driven away from equilibrium, order can spontaneously emerge in places where disorder might be expected. Here we report an unexpected order in the flow of a concentrated emulsion in a tapered microfluidic channel. The velocity profiles of individual drops in the emulsion show periodic patterns in both space and time. Such periodic patterns appear surprising from both a fluid and a solid mechanics point of view. In particular, when the emulsion is considered as a soft crystal under extrusion, a disordered scenario might be expected based on the stochastic nature of dislocation dynamics in microscopic crystals. However, an orchestrated sequence of dislocation nucleation and migration is observed to give rise to a highly ordered deformation mode. This discovery suggests that nanocrystals can be made to deform more controllably than previously thought. It can also lead to novel flow control and mixing strategies in droplet microfluidics.

  18. Atomistic simulations of screw dislocations in bcc tungsten: From core structures and static properties to interaction with vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ke [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Niu, Liang-Liang [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI 48109 (United States); Jin, Shuo, E-mail: jinshuo@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Shu, Xiaolin [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Xie, Hongxian [School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132 (China); Wang, Lifang; Lu, Guang-Hong [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China)

    2017-02-15

    Atomistic simulations have been used to investigate the core structures, static properties of isolated 1/2 <1 1 1> screw dislocations, and their interaction with vacancies in bcc tungsten (W) based on three empirical interatomic potentials. Differential displacement maps show that only one embedded atom method potential is able to reproduce the compact non-degenerate core as evidenced by ab initio calculations. The obtained strain energy and stress distribution from atomistic simulations are, in general, consistent with elasticity theory predictions. In particular, one component of the calculated shear stress, which is not present according to elasticity theory, is non-negligible in the core region of our dislocation model. The differences between the results calculated from three interatomic potentials are in details, such as the specific value and the symmetry, but the trend of spatial distributions of static properties in the long range are close to each other. By calculating the binding energies between the dislocations and vacancies, we demonstrate that the dislocations act as vacancy sinks, which may be important for the nucleation and growth of hydrogen bubbles in W under irradiation.

  19. A simple model of burst nucleation.

    Science.gov (United States)

    Baronov, Alexandr; Bufkin, Kevin; Shaw, Dan W; Johnson, Brad L; Patrick, David L

    2015-08-28

    We introduce a comprehensive quantitative treatment for burst nucleation (BN)-a kinetic pathway toward self-assembly or crystallization defined by an extended post-supersaturation induction period, followed by a burst of nucleation, and finally the growth of existing stable assemblages absent the formation of new ones-based on a hybrid mean field rate equation model incorporating thermodynamic treatment of the saturated solvent from classical nucleation theory. A key element is the inclusion of a concentration-dependent critical nucleus size, determined self-consistently along with the subcritical cluster population density. The model is applied to an example experimental study of crystallization in tetracene films prepared by organic vapor-liquid-solid deposition, where good agreement is observed with several aspects of the experiment using a single, physically well-defined adjustable parameter. The model predicts many important features of the experiment, and can be generalized to describe other self-organizing systems exhibiting BN kinetics.

  20. ON THE PRECISION OF THE NUCLEATOR

    Directory of Open Access Journals (Sweden)

    Javier González-Villa

    2017-06-01

    Full Text Available The nucleator is a design unbiased method of local stereology for estimating the volume of a bounded object. The only information required lies in the intersection of the object with an isotropic random ray emanating from a fixed point (called the pivotal point associated with the object. For instance, the volume of a neuron can be estimated from a random ray emanating from its nucleolus. The nucleator is extensively used in biosciences because it is efficient and easy to apply. The estimator variance can be reduced by increasing the number of rays. In an earlier paper a systematic sampling design was proposed, and theoretical variance predictors were derived, for the corresponding volume estimator. Being the only variance predictors hitherto available for the nucleator, our basic goal was to check their statistical performance by means of Monte Carlo resampling on computer reconstructions of real objects. As a plus, the empirical distribution of the volume estimator revealed statistical properties of practical relevance.

  1. Hybrid Dislocated Control and General Hybrid Projective Dislocated Synchronization for Memristor Chaotic Oscillator System

    Directory of Open Access Journals (Sweden)

    Junwei Sun

    2014-01-01

    Full Text Available Some important dynamical properties of the memristor chaotic oscillator system have been studied in the paper. A novel hybrid dislocated control method and a general hybrid projective dislocated synchronization scheme have been realized for memristor chaotic oscillator system. The paper firstly presents hybrid dislocated control method for stabilizing chaos to the unstable equilibrium point. Based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization has been studied for the drive memristor chaotic oscillator system and the same response memristor chaotic oscillator system. For the different dimensions, the memristor chaotic oscillator system and the other chaotic system have realized general hybrid projective dislocated synchronization. Numerical simulations are given to show the effectiveness of these methods.

  2. Nucleation, instability, and discontinuous phase transitions in monoaxial helimagnets with oblique fields

    Science.gov (United States)

    Laliena, Victor; Campo, Javier; Kousaka, Yusuke

    2017-06-01

    The phase diagram of the monoaxial chiral helimagnet as a function of temperature (T ) and magnetic field with components perpendicular (Hx) and parallel (Hz) to the chiral axis is theoretically studied via the variational mean-field approach in the continuum limit. A phase transition surface in the three-dimensional thermodynamic space separates a chiral spatially modulated phase from a homogeneous forced ferromagnetic phase. The phase boundary is divided into three parts: two surfaces of second-order transitions of instability and nucleation type, in DeGennes terminology, are separated by a surface of first-order transitions. Two lines of tricritical points separate the first-order surface from the second-order surfaces. The divergence of the period of the modulated state on the nucleation transition surface has a logarithmic behavior typical of a chiral soliton lattice. The specific heat diverges on the nucleation surface as a power law with logarithmic corrections, while it shows a finite discontinuity on the other two surfaces. The soliton density curves are described by a universal function of Hx if the values of T and Hz determine a transition point lying on the nucleation surface; otherwise, they are not universal.

  3. Continuous graphene films synthesized at low temperatures by introducing coronene as nucleation seeds.

    Science.gov (United States)

    Wu, Tianru; Ding, Guqiao; Shen, Honglie; Wang, Haomin; Sun, Lei; Zhu, Yun; Jiang, Da; Xie, Xiaoming

    2013-06-21

    In this paper, we systematically studied the effects of coronene as nucleation seeds for graphene synthesis at low temperatures by chemical vapor deposition. Naphthalene was used as a solid carbon source which is capable of producing graphene at temperatures down to 300 °C. The experimental results showed clear evidence that coronene seeds work as preferred nucleation sites, through which the nucleation density and graphene domain size could be modulated. The introduction of the seeds greatly improved the homogeneity of monolayer graphene by suppressing uncontrolled nucleation and multilayer growth of graphene domains. The obtained carrier mobility of graphene fabricated at 400 °C by the seed-assisted process reached ~912 cm(2) V(-1) s(-1), which is considerably higher than that of ~300 cm(2) V(-1) s(-1) measured on graphene prepared without seeding. Besides offering cost advantages for large scale application, the technique proposed in this study may find significant applications in graphene/copper hybrid interconnects and graphene based flexible electronics.

  4. Heterogeneous nucleation promotes carrier transport in solution-processed organic field-effect transistors

    KAUST Repository

    Li, Ruipeng

    2012-09-04

    A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cavitation Bubble Nucleation by Energetic Particles

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  6. Earthquake nucleation scaling from laboratory to Earth

    Science.gov (United States)

    Nielsen, Stefan; Kaneko, Yoshihiro; Harbord, Chris; Latour, Soumaya; Carpenter, Brett; De Paola, Nicola

    2017-04-01

    Migrating foreshock sequences along major plate boundaries and geodetic transient anomalies have been interpreted as indicators of aseismic creep for days to months prior to the initiation of earthquakes. In other cases no significant precursory activity is detected, even at well-instrumented sites, suggesting an abrupt rupture initiation. Both the nucleation size (e.g. Rice and Ruina's hRR∗ or Andrew's Lc) or its duration can be highly variable. Here we analyse the scaling of nucleation and the controls on stick-slip instability based on a review of recent laboratory experimental results. (1) Rupture propagation experiments on smooth model faults show a two-phase nucleation process with variable size and duration depending on loading rate, normal stress and frictional parameters. These results can be reproduced by numerical models incorporating rate-and-state friction laws, and can be up-scaled to simulate the nucleation process of crustal earthquakes. We used frictional properties from samples of the San Andreas Fault Observatory at Depth (SAFOD) to model the nucleation phase for magnitude˜2 repeating earthquakes at a 2.8-km depth. We predict that the nucleation could be detectable a few hours before the earthquake by strain measurements in the existing borehole. (2) An alternative set of experiments on rough model faults, instead, shows that initiation of rupture is primarily controlled by the size and the amount of heterogeneity induced by the fault topography and its interplay with the normal stress. In this case the onset of stick-slip is not predicted by the stability analysis within the rate-and-state framework, but rather by energy considerations more akin to Griffith's criterion in the presence of flaws. Although these two sets of experimental observations and their modelling are difficult to reconcile, they may be representative end members of earthquake faults with different degrees of heterogeneity.

  7. Homogeneous Spaces and Equivariant Embeddings

    CERN Document Server

    Timashev, DA

    2011-01-01

    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  8. A unified kinetic approach to binary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Physics, Rutgers University, 136 Frelinghuysen Road]|[E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854-8019 (United States); Lazaridis, M. [Norwegian Institute for Air Research (NILU), Instittutvein 18, P. O. Box 100, N-2007 Kjeller (Norway); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See) (Italy); Georgopoulos, P.G. [E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)

    1999-11-01

    Two different methods to calculate the steady-state nucleation rate in heteromolecular systems proposed by Stauffer (1976) and Langer (1969) are analyzed. Their mathematical equivalence is explicitly demonstrated, thereby obtaining a generic expression for the rate of binary nucleation. Its numerical evaluation does not entail rotation of the coordinate system at the saddle point, but it only requires data in the natural coordinate system of number fluctuations, namely molecular impingement rates, the droplet free energy and its second order derivatives at the saddle point, and the total density of condensible vapors. {copyright} {ital 1999 American Institute of Physics.}

  9. Effect of Air Injection on Nucleation Rates

    DEFF Research Database (Denmark)

    Capellades Mendez, Gerard; Kiil, Søren; Dam-Johansen, Kim

    2017-01-01

    From disruption of the supersaturated solution to improved mass transfer in the crystallizing suspension, the introduction of a moving gas phase in a crystallizer could lead to improved rates of nucleation and crystal growth. In this work, saturated air has been injected to batch crystallizers...... of the distributions were studied independently, allowing the simultaneous determination of the mean induction time and a certain detection delay related to the rate of crystal growth after formation of the first nucleus. When saturated air was injected in aqueous glycine solutions, the average detection delay...... of this technique for reduction in nucleation induction time and improved mass deposition rates in crystallization operations....

  10. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates.

    Science.gov (United States)

    Morin, Stephen A; Jin, Song

    2010-09-08

    In the current examples of dislocation-driven nanowire growth, the screw dislocations that propagate one-dimensional growth originate from spontaneously formed highly defective "seed" crystals. Here we intentionally utilize screw dislocations from defect-rich gallium nitride (GaN) thin films to propagate dislocation-driven growth, demonstrating epitaxial growth of zinc oxide (ZnO) nanowires directly from aqueous solution. Atomic force microscopy confirms screw dislocations are present on the native GaN surface and ZnO nanowires grow directly from dislocation etch pits of heavily etched GaN surfaces. Furthermore, transmission electron microscopy confirms the existence of axial dislocations. Eshelby twist in the resulting ZnO nanowires was confirmed using bright-/dark-field imaging and twist contour analysis. These results further confirm the connection between dislocation source and nanowire growth. This may eventually lead to defect engineering strategies for rationally designed catalyst-free dislocation-driven nanowire growth for specific applications.

  11. Isolated Radiopalmar Dislocation of Fifth Carpometacarpal Joint: A Rare Presentation.

    Science.gov (United States)

    Hegde, Atmananda S; Shenoy, R M; Arif, Salauddin; Shetty, Abhishek; Babu, Rajan

    2015-09-01

    Carpometacarpal (CMC) joint dislocations are uncommon injuries that account for less than 1% of hand injuries. Dorsal dislocations of the CMC joints are more frequent than volar dislocations. Palmar dislocations can be either ulnopalmar or radiopalmar. There are very few reports of isolated radiopalmar dislocations of the fifth CMC joint in the English-language literature. In our case of radiopalmar dislocation, diagnosis was delayed, and attempts at closed reduction were unsuccessful. Therefore, it was treated by open reduction and Kirschner-wire fixation. This article reports a rare type of injury and discusses its management.

  12. Salam: Of Dislocation, Marginality and Flexibility

    Directory of Open Access Journals (Sweden)

    Efenita M. Taqueban

    2012-12-01

    Full Text Available This paper reconstructs the life stories of residents of SalamCompound. The compound serves as entry point for many Muslim migrants who leave the southern Philippines. Salam is both a refuge and a halfway point. A sense of dislocation permeates the stories. Dislocation begins with the movement away from a homeland that is familiar and defining of identity. The dislocation is, in a sense, an escape, a desperate project to avoid armed conflict in the southern Philippines or a desperate enterprise in search of work.Salam is a halfway point for transients prospecting for overseas work, the staging area for a global labor exodus. The sense of dislocation is not unlike locating oneself in the margins, portrayed in the residents’ negotiated identitiesand spaces, constantly challenged, implicitly regulated. Dislocation is also depicted as flexibility, portrayed by the residents making do and their everyday creative resistance and struggle in new locations in the city. Gathered throughethnographic method, the stories offer a glimpse into the lives of the residents of the compound, how they negotiate around social constructions of identities — resisting and accommodating internal and external forces that impinge ontheir lives, revealing a rich and poignant tapestry of family relations, community ironies and an ever-impinging world beyond its walls.

  13. Isolated dorsal dislocation of the tarsal naviculum.

    Science.gov (United States)

    Hamdi, Kaziz; Hazem, Ben Ghozlen; Yadh, Zitoun; Faouzi, Abid

    2015-01-01

    Isolated dislocation of the tarsal naviculum is an unusual injury, scarcely reported in the literature. The naviculum is surrounded by the rigid bony and ligamentous support hence fracture dislocation is more common than isolated dislocation. The mechanism and treatment options remain unclear. In this case report, we describe a 31 year old man who sustained an isolated dorsal dislocation of the left tarsal naviculum, without fracture, when he was involved in a motor vehicle collision. The reported mechanism of the dislocation is a hyper plantar flexion force applied to the midfoot, resulting in a transient disruption of the ligamentous support of the naviculum bone, with dorsal displacement of the bone. The patient was treated with open reduction and Krischner-wire fixation of the navicular after the failure of closed reduction. The wires were removed after 6 weeks postoperatively. Physiotherapy for stiffness and midfoot pain was recommended for 2 months. At 6 months postoperatively, limping, midfoot pain and weakness were reported, no X-ray abnormalities were found. The patient returned to his obvious activities with a normal range of motion.

  14. Isolated dorsal dislocation of the tarsal naviculum

    Directory of Open Access Journals (Sweden)

    Kaziz Hamdi

    2015-01-01

    Full Text Available Isolated dislocation of the tarsal naviculum is an unusual injury, scarcely reported in the literature. The naviculum is surrounded by the rigid bony and ligamentous support hence fracture dislocation is more common than isolated dislocation. The mechanism and treatment options remain unclear. In this case report, we describe a 31 year old man who sustained an isolated dorsal dislocation of the left tarsal naviculum, without fracture, when he was involved in a motor vehicle collision. The reported mechanism of the dislocation is a hyper plantar flexion force applied to the midfoot, resulting in a transient disruption of the ligamentous support of the naviculum bone, with dorsal displacement of the bone. The patient was treated with open reduction and Krischner-wire fixation of the navicular after the failure of closed reduction. The wires were removed after 6 weeks postoperatively. Physiotherapy for stiffness and midfoot pain was recommended for 2 months. At 6 months postoperatively, limping, midfoot pain and weakness were reported, no X-ray abnormalities were found. The patient returned to his obvious activities with a normal range of motion.

  15. Structure of the Dislocation in Sapphire

    DEFF Research Database (Denmark)

    Bilde-Sørensen, Jørgen; Thölen, A. R.; Gooch, D. J.

    1976-01-01

    Experimental evidence of the existence of 01 0 dislocations in the {2 0} prism planes in sapphire has been obtained by transmission electron microscopy. By the weak-beam technique it has been shown that the 01 0 dislocations may dissociate into three partials. The partials all have a Burgers vector...... of ⅓ 01 0 and are separated by two identical faults. The distance between two partials is in the range 75-135 Å, corresponding to a fault energy of 320±60 mJ/m2. Perfect 01 0 dislocations have also been observed. These dislocations exhibited either one or two peaks when imaged in the (03 0) reflection...... by the weak-beam technique. The interpretation of the electron micrographs has been supported by computer simulation of the dislocation images. A faulted dipole has been observed, indicating that some of the prismatic loops often seen to lie in rows along [0001] are faulted with a ⅓ 01 0 Burgers vector...

  16. G3-homogeneous gravitational instantons

    Energy Technology Data Exchange (ETDEWEB)

    Bourliot, F; Petropoulos, P M [Centre de Physique Theorique, CNRS-UMR 7644, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Estes, J [Laboratoire de Physique Theorique, CNRS-UMR 8549, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Spindel, Ph, E-mail: bourliot@cpht.polytechnique.f, E-mail: estes@cpht.polytechnique.f, E-mail: marios@cpht.polytechnique.f, E-mail: philippe.spindel@umons.ac.b [Service de Mecanique et Gravitation, Universite de Mons, 20 Place du Parc, 7000 Mons, Belgique (Belgium)

    2010-05-21

    We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.

  17. G3-homogeneous gravitational instantons

    CERN Document Server

    Bourliot, F; Petropoulos, P M; Spindel, Ph

    2009-01-01

    We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.

  18. [Obtaining ribosome crystals in homogenates].

    Science.gov (United States)

    Bersani, F; Longo, I; Fanti, M; Pettazzoni, P

    1979-08-30

    Chick embryos are homogenized in order to analyse ribosome crystallization. Ribosome crystallization has been induced by hypothermic treatment in chick embryos homogenate. Tetramers and crystals were produced by gradually inducing the temperature over a span of 10 h to 4 degrees C. It has been observed that the concentration of KCl in the buffer is a critical point. It is suggested that the nuclear fraction is engaged in ribosome crystallization.

  19. Aluminum matrix composite solidification in microgravity: Effect of the reinforcing phase on nucleation

    Science.gov (United States)

    Barbieri, F.; Patuelli, C.; Giunchi, G.; Grenni, A.

    Among all the solidification processings available for metal matrix composite (MMC) fabrication, the gas pressure liquid infiltration method, recently developed, is very simple and fast. The molten aluminum can be infiltrated either in a preform made up of a three-dimensional array of fibers (SiC whiskers), or in a porous ceramic network. The resulting microstructures present rather low dislocation densities and, short solidification times can avoid interface phase formation. A series of samples with different orientations and volume fractions of the reinforcement, i.e. with different porosity, were examined in order to investigate the reinforcing phase and convection effects on the nucleation and growth of the solid nuclei in the constrained environment existing between the preform fibers.

  20. Point island models for nucleation and growth of supported nanoclusters during surface deposition

    Science.gov (United States)

    Han, Yong; Gaudry, Émilie; Oliveira, Tiago J.; Evans, James W.

    2016-12-01

    Point island models (PIMs) are presented for the formation of supported nanoclusters (or islands) during deposition on flat crystalline substrates at lower submonolayer coverages. These models treat islands as occupying a single adsorption site, although carrying a label to track their size (i.e., they suppress island structure). However, they are particularly effective in describing the island size and spatial distributions. In fact, these PIMs provide fundamental insight into the key features for homogeneous nucleation and growth processes on surfaces. PIMs are also versatile being readily adapted to treat both diffusion-limited and attachment-limited growth and also a variety of other nucleation processes with modified mechanisms. Their behavior is readily and precisely assessed by kinetic Monte Carlo simulation.

  1. Femoral head fracture without hip dislocation

    Directory of Open Access Journals (Sweden)

    Aggarwal Aditya K

    2013-10-01

    Full Text Available 【Abstract】Femoral head fractures without dislocation or subluxation are extremely rare injuries. We report a neglected case of isolated comminuted fracture of femoral head without hip dislocation or subluxation of one year duration in a 36-year-old patient who sustained a high en- ergy trauma due to road traffic accident. He presented with painful right hip and inability to bear full weight on right lower limb with Harris hip score of 39. He received cementless total hip replacement. At latest follow-up of 2.3 years, functional outcome was excellent with Harris hip score of 95. Such isolated injuries have been described only once in the literature and have not been classified till now. The purpose of this report is to highlight the extreme rarity, possible mechanism involved and a novel classification system to classify such injuries. Key words: Femur head; Hip dislocation; Classification; Arthroplasty, replacement, hip

  2. Dislocation microstructure evolution in cyclically twisted microsamples: a discrete dislocation dynamics simulation

    Science.gov (United States)

    Senger, J.; Weygand, D.; Kraft, O.; Gumbsch, P.

    2011-10-01

    Miniaturization in technical devices has increased interest in the investigation of the deformation and fatigue behaviour of metals in the micrometre regime. Due to the small dimensions of these devices, mechanical properties depend on the motion of a marginal number of dislocations. In this paper, the evolution of dislocation microstructure in torsion loaded single crystalline aluminium wires is analysed by three-dimensional discrete dislocation dynamics simulations. It is shown that the size of pile-ups and the number of the active slip systems is significantly influenced by cross-slip events independent of the crystallographic orientation. Dislocations are driven by the stress gradient from the applied loading to move into the centre of the sample. These dislocations cannot escape through the surface because of the reversal of the sign of the stress in the centre of the sample. If the micrometre-sized specimens are untwisted, the remaining dislocation microstructure in these samples depends on the maximum torsion angle reached before unloading. The larger the torsion angle, the higher is the remaining dislocation density in the unloaded specimens. These results are discussed with respect to cyclic deformation mechanisms at small scale.

  3. Functional treatment versus plaster for simple elbow dislocations (FuncSiE): A randomized trial

    NARCIS (Netherlands)

    J. de Haan (Jeroen); D. den Hartog (Dennis); W.E. Tuinebreijer (Wim); G.I.T. Iordens (Gijs); R.S. Breederveld (Roelf S.); M.W.G.A. Bronkhorst (Maarten); M.M.M. Bruijninckx (Milko); M.R. de Vries (Mark); B.J. Dwars (Boudewijn); D. Eygendaal (Denise); R. Haverlag (Robert); S.A.G. Meylaerts (Sven); J.W. Mulder (Jan-Willem); K.J. Ponsen (Kees-jan); W.H. Roerdink (Herbert); G.R. Roukema (Gert); I.B. Schipper (Inger); M.A. Schouten (Michel); J.B. Sintenie (Jan Bernard); S. Sivro (Senail); J.G.H. van den Brand (Johan); H.G.W.M. Meulen (Hub); T.P.H. Thiel (Tom); A.B. van Vugt (Arie); E.J.M.M. Verleisdonk (Egbert); J.P.A.M. Vroemen (Jos); M. Waleboer (Marco); W.J. Willems (Jaap); S. Polinder (Suzanne); P. Patka (Peter); E.M.M. van Lieshout (Esther); N.W.L. Schep (Niels)

    2010-01-01

    textabstractBackground. Elbow dislocations can be classified as simple or complex. Simple dislocations are characterized by the absence of fractures, while complex dislocations are associated with fractures. After reduction of a simple dislocation, treatment options include immobilization in a

  4. Investigations on nucleation thermodynamical parameters of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 2. Investigations on nucleation thermodynamical parameters of NdBa2Cu3O7– (Nd123) crystallization by high temperature solution growth. D P Paul R Jayavel C Subramanian P Ramasamy. Materials Synthesis Volume 23 Issue 2 April 2000 pp 79-82 ...

  5. Investigations on nucleation thermodynamical parameters of ...

    Indian Academy of Sciences (India)

    Unknown

    Crystal Growth Centre, Anna University, Chennai 600 025, India. ‡Department of Physics, University of Chittagong, Chittagong 1331, Bangladesh. Abstract. Investigations on nucleation thermodynamical parameters are very essential for the successful growth of good quality single crystals from high temperature solution.

  6. Nucleation kinetics of emulsified triglyceride mixtures

    NARCIS (Netherlands)

    Kloek, W.; Walstra, P.; Vliet, T.

    2000-01-01

    The purpose of this study is to determine characteristic nucleation parameters such as the surface free energy for nucleus formation in mixtures of fully hydrogenated palm oil (HP) in sunflower oil (SF). These parameters will be used to model the bulk crystallization kinetics of the same mixtures.

  7. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  8. Surface nucleation in complex rheological systems

    Science.gov (United States)

    Herfurth, J.; Ulrich, J.

    2017-07-01

    Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.

  9. Transformation kinetics for surface and bulk nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Elena, E-mail: elena.villa@unimi.it [University of Milan, Department of Mathematics, via Saldini 50, 20133 Milano (Italy); Rios, Paulo R., E-mail: prrios@metal.eeimvr.uff.br [Universidade Federal Fluminense, Escola de Engenharia Industrial Metalurgica de Volta Redonda, Av. dos Trabalhadores 420, 27255-125 Volta Redonda, RJ (Brazil)] [RWTH Aachen University, Institut fuer Metallkunde und Metallphysik, D-52056 Aachen (Germany)

    2010-04-15

    A rigorous mathematical approach based on the causal cone and stochastic geometry concepts is used to derive new exact expressions for transformation kinetics theory. General expressions for the mean volume density and the volume fraction are derived for both surface and bulk nucleation in a general Borel subset of R{sup 3}. In practice, probably any specimen shape of engineering interest is going to be a Borel set. An expression is also derived for the important case of polyhedral shape, in which surface nucleation may take place on the faces, edges and vertices of the polyhedron as well as within the bulk. Moreover, explicit expressions are given for surface and bulk nucleation for three specific shapes of engineering relevance: two parallel planes, an infinitely long cylinder and a sphere. Superposition is explained in detail and it permits the treatment of situations in which surface and bulk nucleation take place simultaneously. The new exact expressions presented here result in a significant increase in the number of exactly solvable cases available to formal kinetics.

  10. Dislocation filtering in GaN nanostructures.

    Science.gov (United States)

    Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H; Ewoldt, David A; Sands, Timothy D; García, R Edwin; Stach, Eric A

    2010-05-12

    Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures.

  11. Cavitation nucleation in gelatin: Experiment and mechanism.

    Science.gov (United States)

    Kang, Wonmo; Adnan, Ashfaq; O'Shaughnessy, Thomas; Bagchi, Amit

    2018-02-01

    Dynamic cavitation in soft materials is becoming increasingly relevant due to emerging medical implications such as the potential of cavitation-induced brain injury or cavitation created by therapeutic medical devices. However, the current understanding of dynamic cavitation in soft materials is still very limited, mainly due to lack of robust experimental techniques. To experimentally characterize cavitation nucleation under dynamic loading, we utilize a recently developed experimental instrument, the integrated drop tower system. This technique allows quantitative measurements of the critical acceleration (a cr ) that corresponds to cavitation nucleation while concurrently visualizing time evolution of cavitation. Our experimental results reveal that a cr increases with increasing concentration of gelatin in pure water. Interestingly, we have observed the distinctive transition from a sharp increase (pure water to 1% gelatin) to a much slower rate of increase (∼10× slower) between 1% and 7.5% gelatin. Theoretical cavitation criterion predicts the general trend of increasing a cr , but fails to explain the transition rates. As a likely mechanism, we consider concentration-dependent material properties and non-spherical cavitation nucleation sites, represented by pre-existing bubbles in gels, due to possible interplay between gelatin molecules and nucleation sites. This analysis shows that cavitation nucleation is very sensitive to the initial configuration of a bubble, i.e., a non-spherical bubble can significantly increase a cr . This conclusion matches well with the experimentally observed liquid-to-gel transition in the critical acceleration for cavitation nucleation. From a medical standpoint, understanding dynamic cavitation within soft materials, i.e., tissues, is important as there are both potential injury implications (blast-induced cavitation within the brain) as well as treatments utilizing the phenomena (lithotripsy). In this regard, the main

  12. Influence of the equilibrium dislocation substructure on the structure component morphology in the heterogeneous phase transformations in polycrystalline metallic alloys

    Directory of Open Access Journals (Sweden)

    Ігор Федорович Ткаченко

    2017-06-01

    Full Text Available Theoretical analysis of the dislocation subgrain boundary (DSB influence on the microstructure formation at the equilibrium heterogeneous polymorphic phase transformations in polycrystalline alloys has been carried out. Based on the dislocation structure of the DSB and its tendency of reaching equilibrium, evolution of the internal state for the various types of DSB (twisting and tilting and corresponding elastic strain fields has been considered. Redistribution is shown to develop during the transformation of the crystal elastic energy from the twist to the tilt DSB formed, respectively, by screw and edge dislocations. Localization of the elastic energy on the tilt DSB in the equilibrium crystal state is shown due to the dislocation reactions development between screw dislocations within the corresponding mutually crossing arrays. Taking into account the crystalline lattice elastic distortions around solute atoms and interaction of the atoms with grain boundaries (GB, the analogous chemical element space distributions are shown to appear on DSB and GB. Forming of structure components of specific morphology resulting from the distributions is shown. The possibility to form homogeneous space distributions of atoms as well as dispersed structural constituents under optimal thermal treatment has been stated. Metallographic investigations were conducted using alloy steels of various chemical compositions. Main conclusions of the theoretical analysis have been confirmed by the experimental results

  13. Nucleation Pathways For Freezing Of Two Grades Of Zirconium

    Science.gov (United States)

    Rhim, Won-Kyu; Rulison, Aaron; Bayuzick, Robert; Hofmeister, William; Morton, Craig

    1996-01-01

    Report discusses classical nucleation theory of freezing and describes experimental study of nucleation mechanisms that predominate during freezing of spherical specimens of initially molten zirconium levitated electrostatically in vacuum.

  14. Atomistic simulations of dislocation processes in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Jacobsen, K.W.

    2002-01-01

    We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example, the sta...... of vacancy controlled climb show the jogs to climb easily in their extended form. The stability of small vacancy dipoles is discussed and it is seen that the introduction of jogs may lead to the formation of Z-type faulted vacancy dipoles....

  15. Viral Lysis of Photosynthesizing Microbes As a Mechanism for Calcium Carbonate Nucleation in Seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (model for homogenous nucleation of calcium carbonate in seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved

  16. Exploring the Limit of Dislocation Based Plasticity in Nanostructured Metals

    DEFF Research Database (Denmark)

    Hughes, D. A.; Hansen, Niels

    2014-01-01

    microscopy reveal that dislocation processes still dominate. Dislocation based plasticity continues far below the transition suggested by experiment and molecular dynamics simulations, with a limit below 5 nm. Very high strength metals may emerge based on this enhanced structural refinement....

  17. Ipsilateral open anterior hip dislocation and open posterior elbow dislocation in an adult

    Directory of Open Access Journals (Sweden)

    Kumar Sunil

    2014-02-01

    Full Text Available 【Abstract】Open anterior dislocation of the hip is a very rare injury, especially in adults. It is a hyperabduction, external rotation and extension injury. Its combination with open posterior dislocation of the elbow has not been described in English language-based medical literature. Primary resuscitation, debridement, urgent reduction of dislocation, and adequate antibiotic support resulted in good clinical outcome in our patient. At 18 months follow-up, no signs of avascular necrosis of the femoral head or infection were observed.

  18. An unusual case of traumatic bilateral hip dislocation without fracture

    Science.gov (United States)

    Cobar, Andrés; Bregni, María; Altamirano, Marco

    2017-01-01

    Abstract Bilateral traumatic hip dislocations are extremely rare. Most of these are related to acetabular or proximal femoral fractures, consisting of complex lesions, and are rarely pure ligamentous injuries. Posterior dislocation is the most frequent. Some dislocations are accompanied by sciatic nerve palsy. The present case is a posterior bilateral hip dislocation with no other associated lesions, there are very few reports published with this clinical setting. The patient had good functional outcome. PMID:28560017

  19. Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2016-02-01

    Full Text Available In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270–271 K. Pre-activation was achieved under ice-subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice-subsaturated conditions. This range is set by a combination of requirements from the negative Kelvin effect for condensation and a critical size of ice embryos for ice nucleation and melting. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  20. Mechanism of cube grain nucleation during recrystallization of ...

    Indian Academy of Sciences (India)

    The subject of cube texture nucleation i.e. cube grain nucleation, from the deformed state of aluminium and copper is of scientific curiosity with concurrent technological implications. There are essentially two models currently in dispute over the mechanism of cube grain nucleation i.e. the differential stored energy model ...

  1. Nucleation, Melting Behaviour and Mechanical Properties of Poly(L ...

    African Journals Online (AJOL)

    NICO

    competitive with commercial thermoplastics. Usually, the most viable method of increasing the overall crystallization rate is to use a nucleating agent. Talc is often chosen as a nucleating agent for PLLA. It has been shown that talc nucleates the crystallization of polymers through an epitaxial mechanism6. Kolstad studied the ...

  2. An Irreducible Ankle Fracture Dislocation: The Bosworth Injury

    NARCIS (Netherlands)

    T. Schepers (Tim); T. Hagenaars (Tjebbe); D. den Hartog (Dennis)

    2012-01-01

    textabstractIrreducible fracture dislocations of the ankle are rare and represent true orthopedic emergencies. We present a case of a fracture dislocation that was irreducible owing to a fixed dislocation of the proximal fibular fragment posterior to the lateral ridge of the tibia. This particular

  3. 21 CFR 890.3665 - Congenital hip dislocation abduction splint.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Congenital hip dislocation abduction splint. 890.3665 Section 890.3665 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....3665 Congenital hip dislocation abduction splint. (a) Identification. A congenital hip dislocation...

  4. Congenital dislocation of the knee in Ibadan, Nigeria | Omololu ...

    African Journals Online (AJOL)

    We conclude that congenital knee dislocation when discovered early and without any other congenital malformation can be managed conservatively with excellent results. Keywords: Congenital, Knee dislocation, children. Résumé Entre janvier 1996 et décembre 2001, 41 cas de dislocation congénitales d' articulation de ...

  5. Septic hip dislocations in children in a developing country | Ngom ...

    African Journals Online (AJOL)

    Purpose: To report on a radiological issue and therapeutic aspects encountered in septic hip dislocations in a developing country. Patients and Methods: Nineteen children among whom 11 boys and 8 girls aged on average 5.3-years old presented 7 recent and 12 late hip dislocations. Those dislocations were distributed ...

  6. Ipsilateral dislocation of the shoulder and elbow: A case report

    African Journals Online (AJOL)

    Pr KODO

    Abstract. Ipsilateral dislocation of the shoulder and elbow is uncommon. Shoulder dislocation is often misdiagnosed on admission. We report the case of an 31-year old male whose dislocations were both recognised at the initial examination. Diagnosis pitfalls, mechanism, and management of this rare injury are reviewed.

  7. Nanoscale dislocation shear loops at static equilibrium and finite temperature

    Science.gov (United States)

    Dang, Khanh; Capolungo, Laurent; Spearot, Douglas E.

    2017-12-01

    Atomistic simulations are used to determine the resolved shear stress necessary for equilibrium and the resulting geometry of nanoscale dislocation shear loops in Al. Dislocation loops with different sizes and shapes are created via superposition of elemental triangular dislocation displacement fields in the presence of an externally imposed shear stress. First, a bisection algorithm is developed to determine systematically the resolved shear stress necessary for equilibrium at 0 K. This approach allows for the identification of dislocation core structure and a correlation between dislocation loop size, shape and the computed shear stress for equilibrium. It is found, in agreement with predictions made by Scattergood and Bacon, that the equilibrium shape of a dislocation loop becomes more circular with increasing loop size. Second, the bisection algorithm is extended to study the influence of temperature on the resolved shear stress necessary for stability. An approach is presented to compute the effective lattice friction stress, including temperature dependence, for dislocation loops in Al. The temperature dependence of the effective lattice friction stress can be reliably computed for dislocation loops larger than 16.2 nm. However, for dislocation loops smaller than this threshold, the effective lattice friction stress shows a dislocation loop size dependence caused by significant overlap of the stress fields on the interior of the dislocation loops. Combined, static and finite temperature atomistic simulations provide essential data to parameterize discrete dislocation dynamics simulations.

  8. Bypassing of a barrier by dissociated and superlattice dislocations

    DEFF Research Database (Denmark)

    Bhushan, Karihaloo

    1975-01-01

    Very simple procedures are used to calculate the upper and lower bounds for the applied stress required for the leading extended (superlattice) dislocation in a group of n coplanar screw dislocations of like sign with Burgers vector b to bypass a noncoplanar perfect screw dislocation with Burgers...

  9. Ipsilateral dislocation of the shoulder and elbow: A case report ...

    African Journals Online (AJOL)

    Ipsilateral dislocation of the shoulder and elbow is uncommon. Shoulder dislocation is often misdiagnosed on admission. We report the case of an 31-year old male whose dislocations were both recognised at the initial examination. Diagnosis pitfalls, mechanism, and management of this rare injury are reviewed. Keywords: ...

  10. Statics and dynamics of dislocations: A variational approach

    OpenAIRE

    DE LUCA, LUCIA

    2014-01-01

    Dislocations are line defects in the periodic structure of the crystals. In this thesis, we focus the variational analysis of the elastic energy induced by a finite family of dislocations. Moreover, we study the dynamics of a finite system of screw dislocations.

  11. Brachial artery injury following opened elbow dislocation associated ...

    African Journals Online (AJOL)

    Elbow dislocations are the most frequently encountered after shoulder dislocations. In their vast majority, these injuries carry a good prognosis. Although, concomitant arterial injury is rare and make them more serious. In this paper, we report a case of a 17 year old woman with opened elbow dislocation with arterial injury ...

  12. Management of neglected traumatic posterior dislocations of the hip ...

    African Journals Online (AJOL)

    examination to differentiate between a fracture neck of femur and a dislocation of the hip but for the reduction, especially for a neglected dislocation of the hip, total muscle relaxation is needed. In tropical countries, spinal anaesthesia is the anaesthetic-of choice for reduction of a dislocated hip" Pai7 recommended reduction ...

  13. Simulation of structure and annihilation of screw dislocation dipoles

    DEFF Research Database (Denmark)

    Rasmussen, Torben; Vegge, Tejs; Leffers, Torben

    2000-01-01

    .2 nm. In both cases the annihilation is initiated by cross-slip of one of the dislocations. For straight dislocations the activation energy shows a linear dependence on the inverse dipole height, and for flexible dislocations the dependence is roughly linear for the dipoles investigated....

  14. Quality-by-design: an integrated process analytical technology approach to determine the nucleation and growth mechanisms during a dynamic pharmaceutical coprecipitation process.

    Science.gov (United States)

    Wu, Huiquan; Khan, Mansoor A

    2011-05-01

    The objective of this study was to demonstrate the feasibility of using an integrated process analytical technology (PAT) approach to determine nucleation and growth mechanisms of a dynamic naproxen (drug)-Eudragit L100 (polymer) coprecipitation process. The influence of several thermodynamically important formulation and process variables (drug/polymer ratio, alcohol, and water usages) on coprecipitation process characteristics was investigated via real-time in situ focused beam reflectance measurement (FBRM) monitoring and near real-time particle vision microscopy measurement. The final products were characterized by near-infrared (NIR) spectroscopy and NIR chemical imaging microscopy. The coprecipitation nucleation induction time (t(ind) ) was measured by both FBRM trend statistics and process trajectory method, respectively. Furthermore, nucleation kinetics was evaluated based on t(ind) measurement and corresponding supersaturation ratio (S) estimated. It was found that plots of ln(t(ind) ) versus (ln(2) S)(-1) consist of two linear segments and are consistent with classical primary nucleation mechanisms. Apparently, the coprecipitation process is governed by heterogeneous primary nucleation mechanism at low S (14 ≤ S ≤ 503) and by homogeneous primary nucleation mechanism at high S (1216 ≤ S ≤ 3649). Off-line characterizations collectively supported this statement. Therefore, it demonstrated that integration real-time PAT process monitoring with first-principles modeling and off-line product characterization could enhance understanding to coprecipitation process dynamics and nucleation/growth mechanisms, which is impossible via off-line techniques alone. Copyright © 2010 Wiley-Liss, Inc.

  15. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  16. Stress-free states of continuum dislocation fields: Rotations, grain boundaries, and the Nye dislocation density tensor

    OpenAIRE

    Limkumnerd, Surachate; Sethna, James P.

    2006-01-01

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose stress fields vanish. We explain that a grain boundary (a dislocation wall satisfying Frank's formula) has vanishing stress in the continuum limit. We show that the general stress-free state can be wri...

  17. A spatially resolved network spike in model neuronal cultures reveals nucleation centers, circular traveling waves and drifting spiral waves

    Science.gov (United States)

    Paraskevov, A. V.; Zendrikov, D. K.

    2017-04-01

    We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.

  18. High-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments

    Science.gov (United States)

    Junge, K.; Swanson, B. D.

    2008-05-01

    Even though studies of Arctic ice forming particles suggest that a bacterial or viral source derived from open leads could be important for ice formation in Arctic clouds (Bigg and Leck, 2001), the ice nucleation potential of most polar marine psychrophiles or viruses has not been examined under conditions more closely resembling those in the atmosphere. In this paper, we examined the ice nucleation activity (INA) of several representative Arctic and Antarctic sea-ice bacterial isolates and a polar Colwellia phage virus. High-resolution ice nucleation spectra were obtained for droplets containing bacterial cells or virus particles using a free-fall freezing tube technique. The fraction of frozen droplets at a particular droplet temperature was determined by measuring the depolarized light scattering intensity from solution droplets in free-fall. Our experiments revealed that all sea-ice isolates and the virus nucleated ice at temperatures very close to the homogeneous nucleation temperature for the nucleation medium - which for artificial seawater was -42.2±0.3°C. Our results suggest that immersion freezing of these marine psychro-active bacteria and viruses would not be important for heterogeneous ice nucleation processes in polar clouds or to the formation of sea ice. These results also suggested that avoidance of ice formation in close proximity to cell surfaces might be one of the cold-adaptation and survival strategies for sea-ice bacteria. The fact that INA occurs at such low temperature could constitute one factor that explains the persistence of metabolic activities at temperatures far below the freezing point of seawater.

  19. High-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments

    Directory of Open Access Journals (Sweden)

    K. Junge

    2008-05-01

    Full Text Available Even though studies of Arctic ice forming particles suggest that a bacterial or viral source derived from open leads could be important for ice formation in Arctic clouds (Bigg and Leck, 2001, the ice nucleation potential of most polar marine psychrophiles or viruses has not been examined under conditions more closely resembling those in the atmosphere. In this paper, we examined the ice nucleation activity (INA of several representative Arctic and Antarctic sea-ice bacterial isolates and a polar Colwellia phage virus. High-resolution ice nucleation spectra were obtained for droplets containing bacterial cells or virus particles using a free-fall freezing tube technique. The fraction of frozen droplets at a particular droplet temperature was determined by measuring the depolarized light scattering intensity from solution droplets in free-fall. Our experiments revealed that all sea-ice isolates and the virus nucleated ice at temperatures very close to the homogeneous nucleation temperature for the nucleation medium – which for artificial seawater was –42.2±0.3°C. Our results suggest that immersion freezing of these marine psychro-active bacteria and viruses would not be important for heterogeneous ice nucleation processes in polar clouds or to the formation of sea ice. These results also suggested that avoidance of ice formation in close proximity to cell surfaces might be one of the cold-adaptation and survival strategies for sea-ice bacteria. The fact that INA occurs at such low temperature could constitute one factor that explains the persistence of metabolic activities at temperatures far below the freezing point of seawater.

  20. Left dislocation: An exploration in linguistic typology

    African Journals Online (AJOL)

    Andrason, A, Dr

    In recent years, Left Dislocation (LD), and the related notion of constituent order, received much attention from both generative and cognitive-functional perspectives. The former has generally focused on formal properties of LD, while the latter has focused on the range of discourse-pragmatic functions associated ...

  1. Dislocation Microstructures in Fatiqued Copper Polycrystals

    DEFF Research Database (Denmark)

    Winter, A.T.; Pedersen, Ole Bøcker; Rasmussen, K.V.

    1981-01-01

    Dislocation structures characteristic of persistent slip bands were observed in the interior of polycrystalline copper after fatigue. At low strain amplitudes, within the plateau on the cyclic stress-strain curve, only structures identical to those seen in single crystals were observed. This allows...

  2. Complex Dorsal Metacarpophalangeal Joint Dislocation of Index ...

    African Journals Online (AJOL)

    Complex dorsal metacarpophalangeal dislocation is uncommon. The failure of closed reduction is established. This case report highlights the problem within context of a developing country. The various factors responsible for irreducibilty are reviewed and approaches to surgical treatment discussed in the review of world ...

  3. Traumatic facet joint dislocation in Western Australia.

    Science.gov (United States)

    Eranki, Vivek; Koul, Kongposh; Mendz, George; Dillon, David

    2016-04-01

    Facet joint dislocation is a traumatic injury, which frequently results in devastating clinical outcomes. In Western Australia (WA), Royal Perth Hospital (RPH) provides a statewide Spinal Trauma Service and accepts all referrals from the entirety of the state. The economies of distance in WA mean that there is often a considerable delay between initial presentation at the peripheral hospital and enlocation of the dislocation in Perth. This study aims to identify any prejudicial clinical outcomes as a consequence of this delay. This study retrospectively examines all facet joint dislocations that presented to RPH between in a 46-month period. Data were collected on the demographics of patients, mechanism of injury, neurological assessment at presentation of injury based on the American spinal injury association (ASIA), initial presentation to RPH, post-surgical reduction and post rehabilitation. Over this time there were 23 urban patients and 28 rural patients. In the urban group, 18 patients had a final ASIA score of D or E while 5 patients had a final ASIA score of A, B or C. In the rural group, 17 patients had a final ASIA score of A, B or C while 11 patients had a final ASIA score of D or E. This study confirms the challenges of management of these injuries in a large geographical area, with a centralised spinal trauma service. Generally, facet joint dislocations that had delayed reductions had a poorer outcome. We hope that the proposed protocol would deliver better management of these injuries.

  4. Missed isolated volar dislocation of the scaphoid

    DEFF Research Database (Denmark)

    Kolby, Lise; Larsen, Søren; Jørring, Stig

    2007-01-01

    A patient presented with volar dislocation of the scaphoid, the diagnosis of which had been missed for two weeks. He was treated with open reduction through a combined volar and dorsal approach with decompression of the median nerve, internal fixation, and a cast for eight weeks. One year...

  5. managing temporomandibular joint dislocation in ibadan

    African Journals Online (AJOL)

    syndrome (EDS), Marfan's syndrome or muscular dystonias3,5. Factors associated with the onset of ... disorder on Thioridazone (Mellenil) and diazepam had idiopathic TMJ dislocation. Two other patients had a .... condyles. He had reduction using the Hippocrates manouvre and subsequent immobilization with maxillo-.

  6. Left Dislocation in Near-Native French

    Science.gov (United States)

    Donaldson, Bryan

    2011-01-01

    The present study is concerned with the upper limits of SLA--specifically, mastery of the syntax-discourse interface in successful endstate learners of second-language (L2) French (near-native speakers). Left dislocation (LD) is a syntactic means of structuring spoken French discourse by marking topic. Its use requires speakers to coordinate…

  7. Stabilisation of Posterior Sternoclavicular Joint Dislocation using ...

    African Journals Online (AJOL)

    Posterior sternoclavicular joint dislocation is a rare injury. It is usually sustained acutely in activities such as contact sports eg. rugby and motorcycle accidents. Plain radiography of the chest will often miss the diagnosis and confirmation is by CT scans. However CT scans are often reported to miss epiphyseal injuries.

  8. Left Dislocation: a typological overview | Westbury | Stellenbosch ...

    African Journals Online (AJOL)

    The Left Dislocation construction is a typologically universal phenomenon that has received detailed analysis, from both formal and functional perspectives, in a number of genetically and areally diverse languages. The present paper aims to provide a general overview of this cross-linguistic research with a concentration ...

  9. Tailoring surgical management of dislocated clavicle fractures

    NARCIS (Netherlands)

    Wijdicks, F.J.G.

    2013-01-01

    In this thesis literature research and clinical studies are presented to assist physicians in the decision making process for surgical treatment of dislocated midshaft clavicle fractures (DMCF). In Chapter 1 an introduction is given regarding the background, aim and outline of this thesis. Chapter 2

  10. Ab initio phonon scattering by dislocations

    Science.gov (United States)

    Wang, Tao; Carrete, Jesús; van Roekeghem, Ambroise; Mingo, Natalio; Madsen, Georg K. H.

    2017-06-01

    Heat management in thermoelectric and power devices as well as in random access memories poses a grand challenge and can make the difference between a working and an abandoned device design. Despite the prevalence of dislocations in all these technologies, the modeling of their thermal resistance is based on 50-year-old analytical approximations, whose simplicity was driven by practical limitations rather than physical insight. We introduce an efficient ab initio approach based on Green's functions computed by two-dimensional reciprocal space integration. By combining elasticity theory and density functional theory, we calculate the scattering strength of a 90∘ misfit edge dislocation in Si. Because of the breakdown of the Born approximation, earlier literature models fail, even qualitatively. We find that a dislocation density larger than 109cm-2 is necessary to substantially influence thermal conductivity at room temperature and above. We quantify how much of the reduction of thermal conductivity measured in nanograined samples can be explained by realistic dislocation concentrations.

  11. Dislocations in stripes and lattice Dirac fermions

    NARCIS (Netherlands)

    Mesaroš, Andrej

    2010-01-01

    The central topic in this thesis is the effect of topological defects in two distinct types of condensed matter systems. The first type consists of graphene and topological insulators. By studying the long-range effect of lattice defects (dislocations and disclinations) we find that the graphene

  12. Delayed presentation of cervical facet dislocations.

    Science.gov (United States)

    Basu, Saumyajit; Malik, Farid H; Ghosh, Jay Deep; Tikoo, Agnivesh

    2011-12-01

    To review treatment outcomes of 19 patients with delayed presentation of cervical facet dislocations. Records of 17 men and 2 women aged 21 to 63 (mean, 39) years who presented with unilateral (n=14) or bilateral (n=5) cervical facet dislocation after a delay of 7 to 21 (mean, 14) days were reviewed. The most common level of dislocation was C5-C6 (n=9), followed by C4-C5 (n=6), C3- C4 (n=2), and C6-C7 (n=2). The neurological status was graded according to the Frankel classification. One patient (with bilateral facet dislocation) had complete quadriplegia (grade A), 11 had incomplete spinal cord injury (grades C and D), and 7 had nerve root injury. Closed reduction using continuous skull traction for 2 days was attempted. In patients achieving closed reduction, only anterior discectomy and fusion was performed. Those who failed closed reduction underwent posterior partial/complete facetectomy and fixation. If there was traumatic disk prolapse, anterior decompression and fusion was then performed. The mean follow-up was 46 (range, 12- 108) months. 10 of 14 patients with unilateral facet dislocation were reduced with traction and then underwent anterior discectomy and fusion. The remaining 4 patients who failed closed reduction underwent posterior facetectomy and fixation; 3 of them had traumatic disk prolapse and thus also underwent anterior discectomy and fusion with cage and plate. Four of the 5 patients with bilateral facet dislocations failed closed reduction and underwent posterior facetectomy and lateral mass fixation, as well as anterior surgery. The remaining patient achieved reduction after traction and hence underwent only anterior discectomy and fusion. All patients achieved pain relief and sufficient neck movement for normal activities. All 7 patients with nerve root injury improved completely; 9 of the 11 patients with incomplete spinal cord injury improved by one Frankel grade, and the remaining 2 by 2 grades. The patient with complete quadriplegia

  13. Small elastic strains in finite elasto-plastic materials with continuously distributed dislocations

    Directory of Open Access Journals (Sweden)

    Cleja-Tigoiu S.

    2002-01-01

    Full Text Available In this paper we propose a macroscopic model for elastoplastic materials with continuously distributed dislocations, when we restrict to small elastic strains, but the elastic rotations and plastic distorsions remain large. The material is not homogeneous and it behaves like an elastic material element with respect to non-holonomic configuration. The elastic curvature tensor vanishes. Consequently to complete the definition of the mathematical model it is sufficient to prescribe the evolution equation for the plastic distorsion (i.e. for time-dependent non-holonomic configuration, as well as the for the internal variables. .

  14. Stress-free states of continuum dislocation fields : Rotations, grain boundaries, and the Nye dislocation density tensor

    NARCIS (Netherlands)

    Limkumnerd, Surachate; Sethna, James P.

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose

  15. Heterogeneous ice nucleation and phase transition of viscous α-pinene secondary organic aerosol

    Science.gov (United States)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Virtanen, Annele; Stratmann, Frank

    2016-04-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. Global model simulations of monoterpene SOA particles suggest that viscous biogenic SOA are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle (INP) budget. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (Ignatius et al., 2015, Järvinen et al., 2015). In the CLOUD chamber, the SOA particles were produced from the ozone initiated oxidation of α-pinene at temperatures in the range from -38 to -10° C at 5-15 % relative humidity with respect to water (RHw) to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. As the RHw was increased to between 35 % at -10° C and 80 % at -38° C, a transition to spherical shape was observed with a new in-situ optical method. This transition confirms previous modelling of the viscosity transition conditions. The ice nucleation ability of SOA particles was investigated with a new continuous flow diffusion chamber SPIN (Spectrometer for Ice Nuclei) for different SOA particle sizes. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4, significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -36.5 and -38.3° C ranged from 6 to 20 % and did not depend on the particle surface area. References Ignatius, K. et al., Heterogeneous ice

  16. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways.

    Science.gov (United States)

    Zhang, Zhengcai; Walsh, Matthew R; Guo, Guang-Jun

    2015-04-14

    The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation.

  17. Hydrogen accumulation around dislocation loops and edge dislocations: from atomistic to mesoscopic scales in BCC tungsten

    Science.gov (United States)

    De Backer, A.; Mason, D. R.; Domain, C.; Nguyen-Manh, D.; Marinica, M.-C.; Ventelon, L.; Becquart, C. S.; Dudarev, S. L.

    2017-12-01

    In a fusion tokamak, the plasma interacts with the metallic wall and the divertor. Hydrogen isotopes penetrate and diffuse into the material and interact with defects where they are trapped. Neutrons produced by the fusion reactions in the plasma are stopped in the material, creating defects, including vacancy and interstitial clusters, and dislocation loops. The trapping of hydrogen in vacancies has been extensively investigated. In our recent paper (De Backer et al 2017 Nucl. Fusion), we proposed a multi-scale model for H trapping and accumulation around interstitial defects, dislocation loops and dislocation lines. These defects create a long-range elastic field that attracts and may retain H atoms. A two-shell model with a short-range core region and a long-range elastic shell has been parameterized using a database of density functional theory (DFT) calculations. This model gives the number of H atoms forming the Cottrell atmosphere of a defect at finite temperature. In this paper, we present new DFT calculations of large dislocation loops decorated with up to 80 H, and explore our two-shell model in fusion relevant conditions. We conclude that large dislocation loops and edge dislocations can trap a significant number of hydrogen atoms in the core at temperatures up to 800 K, and also in the elastic field if the background hydrogen concentration is high.

  18. Nucleation in an ultra low ionisation environment

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    In this work we have studied aerosol formation at ultra-low ionisation levels, using the existing deep underground science facility at Boulby mine, UK. At 1100 m depth, with a corresponding factor 106 reduction in cosmic ray muon flux, the Boulby facility is an ideal place to study the role of ions...... in aerosol nucleation. By exposing a controlled volume of air to varying levels of ionising radiation, and with the minimum ionisation level vastly reduced compared to normal surface laboratory conditions, we have provided both a validation of earlier studies of ion-induced nucleation and extended...... the measurements to ionisation levels approximately 3 order of magnitudes lower than any earlier study. Getting this close to zero ionisation allows us to distinguish between the neutral and charged contribution better than previously. The effect is explored over a range of sulphuric acid concentrations....

  19. Buckyball Nucleation of HiPco Tubes

    Science.gov (United States)

    Smalley, Richard E.

    2012-01-01

    The purpose of this innovation is to enhance nucleation of single-wall nanotubes (SWNTs) in the HiPco process, selectively producing 10,10 tubes, something which until now has not been thought possible. This is accomplished by injecting C60, or a derivative of C60, solubilized in supercritical CO2 together with a transition metal carboneal cocatalyst into the HiPco reactor. This is a variant on the supercritical disclosure. C60 has never been used to nucleate carbon nanotubes in the gas phase. C60 itself may not have adequate solubility in supercritical CO2. However, fluorinated C60, e.g., C60F36, is easy to make cheaply and should have much enhanced solubility.

  20. Analysis of large dislocation populations in deformed metals

    DEFF Research Database (Denmark)

    Hansen, N.; Hughes, D.A.

    1995-01-01

    The microstructural evolution is followed in pure aluminium and nickel cold-rolled over a large strain range. A number of dislocation configurations are characterized and classified and it is found that dislocation rotation boundaries are the dominant feature which subdivide the grains on a finer...... and finer scale as the strain is increased. These configurations of dislocation boundaries are analyzed on the basis of the LEDS hypothesis for dislocation structures and agreement is found. The strengthening effect of dislocation boundaries is discussed and equations are suggested for the relationship...

  1. Work softening in nanocrystalline materials induced by dislocation annihilation

    DEFF Research Database (Denmark)

    Ungar, Tamas; Li, Li; Tichy, Geza

    2011-01-01

    Cold rolling reduces the quantity of dislocation densities in Ni–18% Fe alloys prepared by electrochemical deposition. The dislocation density evolution proposed earlier for the linearly decreasing work-hardening rate during stage III is revisited. The solution of the differential equation predicts...... that when the initial dislocation density is smaller or larger than the saturation value, then the dislocation density will increase or decrease during further plastic deformation. The predictions are verified by experimental values of dislocation densities determined by X-ray line-profile analysis....

  2. Partial Dislocations in Graphene and Their Atomic Level Migration Dynamics.

    Science.gov (United States)

    Robertson, Alex W; Lee, Gun-Do; He, Kuang; Fan, Ye; Allen, Christopher S; Lee, Sungwoo; Kim, Heeyeon; Yoon, Euijoon; Zheng, Haimei; Kirkland, Angus I; Warner, Jamie H

    2015-09-09

    We demonstrate the formation of partial dislocations in graphene at elevated temperatures of ≥500 °C with single atom resolution aberration corrected transmission electron microscopy. The partial dislocations spatially redistribute strain in the lattice, providing an energetically more favorable configuration to the perfect dislocation. Low-energy migration paths mediated by partial dislocation formation have been observed, providing insights into the atomistic dynamics of graphene during annealing. These results are important for understanding the high temperature plasticity of graphene and partial dislocation behavior in related crystal systems, such as diamond cubic materials.

  3. Nucleation of {sup (4)}R brane universes

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de FIsica, Escuela Superior de FIsica y Matematicas del IPN, Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, DF (Mexico); Rojas, EfraIn [Facultad de FIsica e Inteligencia Artificial, Universidad Veracruzana, Sebastian Camacho 5, Xalapa, Veracruz, 91000 (Mexico)

    2004-09-07

    The creation of brane universes induced by a totally antisymmetric tensor living in a fixed background spacetime is presented, where a term involving the intrinsic curvature of the brane is considered. A canonical quantum mechanical approach employing the Wheeler-DeWitt equation is used. The probability nucleation for the brane is calculated by means of the corresponding instanton and the WKB approximation. Some cosmological implications from the model are presented.

  4. Acoustic Effects in Classical Nucleation Theory

    Science.gov (United States)

    Baird, J. K.; Su, C.-H.

    2017-01-01

    The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.

  5. Leipzig Ice Nucleation chamber Comparison (LINC): intercomparison of four online ice nucleation counters

    Science.gov (United States)

    Burkert-Kohn, Monika; Wex, Heike; Welti, André; Hartmann, Susan; Grawe, Sarah; Hellner, Lisa; Herenz, Paul; Atkinson, James D.; Stratmann, Frank; Kanji, Zamin A.

    2017-09-01

    Ice crystal formation in atmospheric clouds has a strong effect on precipitation, cloud lifetime, cloud radiative properties, and thus the global energy budget. Primary ice formation above 235 K is initiated by nucleation on seed aerosol particles called ice-nucleating particles (INPs). Instruments that measure the ice-nucleating potential of aerosol particles in the atmosphere need to be able to accurately quantify ambient INP concentrations. In the last decade several instruments have been developed to investigate the ice-nucleating properties of aerosol particles and to measure ambient INP concentrations. Therefore, there is a need for intercomparisons to ensure instrument differences are not interpreted as scientific findings.In this study, we intercompare the results from parallel measurements using four online ice nucleation chambers. Seven different aerosol types are tested including untreated and acid-treated mineral dusts (microcline, which is a K-feldspar, and kaolinite), as well as birch pollen washing waters. Experiments exploring heterogeneous ice nucleation above and below water saturation are performed to cover the whole range of atmospherically relevant thermodynamic conditions that can be investigated with the intercompared chambers. The Leipzig Aerosol Cloud Interaction Simulator (LACIS) and the Portable Immersion Mode Cooling chAmber coupled to the Portable Ice Nucleation Chamber (PIMCA-PINC) performed measurements in the immersion freezing mode. Additionally, two continuous-flow diffusion chambers (CFDCs) PINC and the Spectrometer for Ice Nuclei (SPIN) are used to perform measurements below and just above water saturation, nominally presenting deposition nucleation and condensation freezing.The results of LACIS and PIMCA-PINC agree well over the whole range of measured frozen fractions (FFs) and temperature. In general PINC and SPIN compare well and the observed differences are explained by the ice crystal growth and different residence times in

  6. BILATERAL PATHOLOGICAL HIP DISLOCATION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Yuriy E. Garkavenko

    2017-03-01

    Full Text Available Introduction. Pathological dislocation of the hip is one of the most severe complications of acute hematogenous osteomyelitis. The program of treatment for children with pathological hip dislocation is complex, but it has been sufficiently developed and implemented very successfully. At the same time, the available literature provides no cases of treating children with bilateral pathological hip dislocations after hematogenous osteomyelitis. There is no information on the incidence of such cases or in regards to remote functional results. Materials and methods. The results of the treatment of 18 children with bilateral pathological dislocation of the hip after hematogenous osteomyelitis are presented, which constituted 23.1% of the total number of patients (78 who underwent surgery in 2000–2016 for the diagnosis of pathological hip dislocation. Both hip joints were surgically operated on in 12 patients, while one hip joint was operated on in 6 patients. To assess the anatomical and functional state of hip joints, the clinical and roentgenological diagnostic techniques were used. Results and discussion. To stabilize and restore the function of the hip joints, 18 children underwent 30 surgical interventions: simple open hip reduction (19 and open hip reduction with hip arthroplasty with one (6 or two (5 demineralized osteochondral allogeneic grafts. The decision regarding the possibility of performing surgical intervention on the second hip joint was made only after a child's check-up examination was complete and after positive information about the anatomical and functional state of the operated hip joint was obtained. According to these criteria, 14 (77.8% children underwent surgical treatment of the second hip joint 1–1.5 years after the course of conservative measures to restore the range of motion in the previously operated hip joint. Over a period of 1–12 years, 17 patients were examined, 10 of which underwent an operation on both

  7. The ice nucleation activity of biological aerosols

    Science.gov (United States)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  8. Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2016-01-01

    temperature Ttr.p. crystallizes via a liquid droplet is an example of Ostwald's step rule. The homogeneous nucleation in the supersaturated gas is not to a crystal, but to a liquid-like critical nucleus. We have for the first time performed constant energy (NVE) Molecular Dynamics (MD) of homogeneous......In 1897 Ostwald formulated his step rule for formation of the most stable crystal state for a system with crystal polymorphism. The rule describes the irreversible way a system converts to the crystal with lowest free energy. But in fact the irreversible way a supercooled gas below the triple point...... below Ttr.p., but without a crystallization of the droplet for long times. The dissipation of the latent heat into the surrounding gas is affected by a traditional MD thermostat, with the consequence that droplet growth is different for (NVE) MD and constant temperature (NVT) MD....

  9. Soft X-ray spectro-tomography study of cyanobacterial biomineral nucleation.

    Science.gov (United States)

    Obst, M; Wang, J; Hitchcock, A P

    2009-12-01

    Quantitative three-dimensional (3D) chemical mapping using angle-scan spectro-tomography in a scanning transmission (soft) X-ray microscope (STXM) has been used for the first time to characterize the early stages of CaCO(3) biomineral nucleation on the surface of planktonic freshwater cyanobacterial cells of the strain Synechococcus leopoliensis PCC 7942. The apparatus for STXM angle-scan tomography is described. Aspects of sample preparation, sample mounting and data acquisition and quantitative analysis and interpretation are discussed in detail. Angle-scan tomography and chemically selective 3D imaging at multiple photon energies has been combined with a complete 2D spectromicroscopic characterization of the biochemical and mineralogical composition. This has provided detailed insights into the mechanisms of mineral nucleation, leading to development of a detailed model of CaCO(3) nucleation by the cyanobacterial strain S. leopoliensis PCC 7942. It shows that Ca is absorbed by the extracellular polymeric substances (EPS) of the cyanobacteria and that CaCO(3) with aragonite-like short-range order is precipitated rather homogeneously within the EPS. The precipitation of the thermodynamically more stable calcite polymorph then starts at Ca-rich hot spots within the EPS and close to the cyanobacteria.

  10. Efficiency of the deposition mode ice nucleation on mineral dust particles

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available The deposition mode ice nucleation efficiency of various dust aerosols was investigated at cirrus cloud temperatures between 196 and 223 K using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. Arizona test dust (ATD as a reference material and two dust samples from the Takla Makan desert in Asia (AD1 and the Sahara (SD2 were used for the experiments at simulated cloud conditions. The dust particle sizes were almost lognormally distributed with mode diameters between 0.3 and 0.5 μm and geometric standard deviations between 1.6 and 1.9. Deposition ice nucleation was most efficient on ATD particles with ice-active particle fractions of about 0.6 and 0.8 at an ice saturation ratio SiSiSi. This indicates that deposition ice nucleation on mineral particles may not be treated in the same stochastic sense as homogeneous freezing. The suggested formulation of ice activation spectra may be used to calculate the formation rate of ice crystals in models, if the number concentration of dust particles is known. More experimental work is needed to quantify the variability of the ice activation spectra as function of the temperature and dust particle properties.

  11. Constraining Climate Forcing of Ice Nucleation with SPartICus/MACPEX Observations

    Science.gov (United States)

    Liu, X.; Zhang, K.; Wang, M.; Comstock, J. M.; Mitchell, D. L.; Mace, G. G.; Jensen, E. J.

    2012-12-01

    Cirrus clouds composed of ice crystals play an important role in modifying the global radiative balance through scattering shortwave (SW) radiation and absorbing and emitting longwave (LW) terrestrial radiation. Cirrus clouds also modulate water vapor in the upper troposphere and lower stratosphere, which is an important greenhouse gas. Although cirrus clouds are an important player in the global climate system, there are still large uncertainties in the understanding of cirrus cloud properties and processes and their treatments in global climate models, due to the scarcity of cirrus measurements and instrument artifacts of in situ ice crystal number measurements. The DOE Atmospheric Radiation Measurement (ARM)'s Small Particles in Cirrus (SPartICus) campaign (http://campaign.arm.gov/sparticus/) and the NASA's Mid-latitude Airborne Cirrus Properties Experiment (MACPEX, http://www.espo.nasa.gov/macpex/) conducted airborne measurements over central North America with special emphasis in the vicinity of the DOE ARM's Southern Great Plains (SGP) site to investigate the properties of mid-latitude cirrus clouds, the processes affecting these properties and their impact on radiation. With a new generation of probes designed to minimize artifacts due to ice shattering, SPartICus and MACPEX provide unprecedented datasets characterizing cirrus microphysical properties and dynamics. In this study we use the SPartICus/MACPEX observations to constrain the parameterizations of formation and growth of ice crystals in the Community Atmospheric Model version 5 (CAM5). This is achieved by comparing modeled ice crystal number concentration, ice water content, updraft velocity and relative humidity in- and outside cirrus, and their covariance with temperature with the statistics from SPartICus/MACPEX observations. Model sensitivity tests are performed with different ice nucleation mechanisms (homogeneous versus heterogeneous nucleation) and different vapor deposition coefficients to

  12. Transtriquetral perihamate fracture-dislocation: case report

    Directory of Open Access Journals (Sweden)

    Frederico Barra de Moraes

    2016-08-01

    Full Text Available ABSTRACT The wrist is a region that is very vulnerable to injuries of the extremities. Among these injuries, fractures of the pyramidal bone (or triquetrum in association with dislocation of the hamate and carpal instability are uncommon. They are generally correlated with high-energy trauma and may be associated with neurovascular deficits, muscle-tendon disorders, skin lesions or injuries to other carpal bones. Thus, in this report, one of these rare cases of transtriquetral perihamate fracture-dislocation with carpal instability is presented, diagnosed by means of radiography on the right wrist of the patient who presented pain, edema and limitation of flexion-extension of the carpus after trauma to the region. The stages of attending to the case are described, from the initial consultation to the surgical treatment and physiotherapy, which culminated in restoration of the strength and range of motion of the wrist.

  13. Geometry of Homogeneous Bounded Domains

    CERN Document Server

    Vesentini, E

    2011-01-01

    This title includes: S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Kahler manifolds; S.G. Greenfield: Extendibility properties of real submanifolds of Cn; W. Kaup: Holomorphische Abbildungen in Hyperbolische Raume; A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains; J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symetriques; S. Murakami: Plongements holomorphes de domaines symetriques; and E.M. Stein: The analogues of Fatous' theorem and estimates for maximal functions.

  14. Effect of Mg Addition on the Refinement and Homogenized Distribution of Inclusions in Steel with Different Al Contents

    Science.gov (United States)

    Wang, Linzhu; Yang, Shufeng; Li, Jingshe; Zhang, Shuo; Ju, Jiantao

    2017-04-01

    To investigate the effect of Mg addition on the refinement and homogenized distribution of inclusions, deoxidized experiments with different amounts of aluminum and magnesium addition were carried out at 1873 K (1600 °C) under the condition of no fluid flow. The size distribution of three-dimensional inclusions obtained by applying the modified Schwartz-Saltykov transformation from the observed planar size distribution, and degree of homogeneity in inclusion dispersion quantified by measuring the inter-surface distance of inclusions, were studied as a function of the amount of Mg addition and holding time. The nucleation and growth of inclusions based on homogeneous nucleation theory and Ostwald ripening were discussed with the consideration of supersaturation degree and interfacial energy between molten steel and inclusions. The average attractive force acted on inclusions in experimental steels was estimated according to Paunov's theory. The results showed that in addition to increasing the Mg addition, increasing the oxygen activity at an early stage of deoxidation and lowering the dissolved oxygen content are conductive to the increase of nucleation rate as well as to the refinement of inclusions Moreover, it was found that the degree of homogeneity in inclusion dispersion decreases with an increase of the attractive force acted on inclusions, which is largely dependent on the inclusion composition and volume fraction of inclusions.

  15. Dislocations: 75 years of Deformation Mechanisms

    Science.gov (United States)

    Schneider, Judy

    2009-01-01

    The selection of papers presented in this section reflect on themes to be explored at the "Dislocations: 75 years of Deformation Mechanisms" Symposium to be held at the Annual 2009 TMS meeting. The symposium was sponsored by the Mechanical Behavior of Materials Committee to give tribute to the evolution of a concept that has formed the basis of our mechanistic understanding of how crystalline solids plastically deform and how they fail.

  16. Painful Spastic Hip Dislocation: Proximal Femoral Resection

    OpenAIRE

    Albiñana, Javier; Gonzalez-Moran, Gaspar

    2002-01-01

    The dislocated hip in a non-ambulatory child with spastic paresis tends to be a painful interference to sleep, sitting upright, and perineal care. Proximal femoral resection-interposition arthroplasty is one method of treatment for this condition. We reviewed eight hips, two bilateral cases, with a mean follow-up of 30 months. Clinical improvement was observed in all except one case, with respect to pain relief and sitting tolerance. Some proximal migration was observed in three cases, despit...

  17. Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics

    Science.gov (United States)

    Silbermann, C. B.; Ihlemann, J.

    2017-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Interestingly, CDT shows striking analogies to other branches of continuum mechanics. The present contribution demonstrates this on two essential kinematical quantities which reflect tensorial dislocation properties: the (resultant) Burgers vector and the dislocation density tensor. First, the limiting process for the (resultant) Burgers vector from an integral to a local quantity is performed analogously to the limiting process from the force vector to the traction vector. By evaluating the balance of forces on a tetrahedral volume element, Cauchy found his famous formula relating traction vector and stress tensor. It is shown how this procedure may be adopted to a continuously dislocated tetrahedron. Here, the conservation of Burger’s vector implicates the introduction of the dislocation density tensor. Second, analogies between the plastic flow of a continuously dislocated solid and the liquid flow of a fluid are highlighted: the resultant Burgers vector of a dislocation ensemble plays a similar role as the (resultant) circulation of a vortex tube. Moreover, both vortices within flowing fluids and dislocations within deforming solids induce discontinuities in the velocity field and the plastic distortion field, respectively. Beyond the analogies, some peculiar properties of the dislocation density tensor are presented as well.

  18. Atomistic calculations of dislocation core energy in aluminium

    Science.gov (United States)

    Zhou, X. W.; Sills, R. B.; Ward, D. K.; Karnesky, R. A.

    2017-02-01

    A robust molecular-dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: It does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and the Burgers vector. These calculations show that, for the face-centered-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elastic energy: Ec=A sin2β +B cos2β , and this dependence is independent of temperature between 100 and 300 K. By further analyzing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and the core radius of a perfect versus an extended dislocation. With our methodology, the dislocation core energy can accurately be accounted for in models of dislocation-mediated plasticity.

  19. Ultrasonic influence on evolution of disordered dislocation structures

    Science.gov (United States)

    Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.

    2017-12-01

    Evolution of disordered dislocation structures under ultrasonic influence is studied in a model two-dimensional grain within the discrete-dislocation approach. Non-equilibrium grain boundary state is mimicked by a mesodefect located at the corners of the grain, stress field of which is described by that of a wedge junction disclination quadrupole. Significant rearrangement related to gliding of lattice dislocations towards the grain boundaries is found, which results in a noticeable reduction of internal stress fields and cancel of disclination quadrupole. The process of dislocation structure evolution passes through two stages: rapid and slow. The main dislocation rearrangement occurs during the first stage. Reduction of internal stress fields is associated with the number of dislocations entered into the grain boundaries. The change of misorientation angle due to lattice dislocations absorbed by the grain boundaries is evaluated. Amplitude of ultrasonic treatment significantly influences the relaxation of dislocation structure. Preliminary elastic relaxation of dislocation structure does not affect substantially the results of the following ultrasonic treatment. Substantial grain size dependence of relaxation of disordered dislocation systems is found. Simulation results are consistent with experimental data.

  20. Predictors and outcomes of treatment in hip hemiarthroplasty dislocation

    Science.gov (United States)

    Salem, KMI; Scammell, BE; Moran, CG

    2014-01-01

    Introduction Dislocation following hip hemiarthroplasty (HHA), its incidence, predictors, treatment outcomes and mortality were investigated in a single centre series. Methods The prospectively collected data on neck of femur fracture admissions compiled over 11 years were reviewed. Place of residence, place of fall, past medical history, intraoperative factors (grade of surgeon, delay in surgery, type of implant and operative time), postoperative complications and mortality were compared between patients who suffered a dislocation and those who did not. In the dislocation group, the mean number of dislocations, reduction method, type and fate of implant, and mortality were investigated. Results Prospective data on 8,631 admissions were collected; 41% of these were managed with a HHA. The dislocation rate was 0.76%. A delay in surgery of >24 hours was associated with a fourfold increase in the dislocation risk. The majority (81%) of dislocations occurred in the first six weeks and closed manipulation was the definitive treatment in only 23% of the cases. The mortality rate was not increased following HHA dislocation. Conclusions The delay in surgery was the most important predictor of HHA dislocation. Closed reduction was associated with a high failure rate. While an initial attempt at closed reduction for a first dislocation is recommended, for redislocators, we recommend early exploration/revision as an alternative to repeat manipulations. PMID:25198977

  1. Dislocation Following Total Hip Replacement: The Avon Orthopaedic Centre Experience

    Science.gov (United States)

    Blom, Ashley W; Rogers, Mark; Taylor, Adrian H; Pattison, Giles; Whitehouse, Sarah; Bannister, Gordon C

    2008-01-01

    INTRODUCTION The aim of this study was to determine the incidence and outcome of dislocation after total hip arthroplasty at our unit. PATIENTS AND METHODS In total, 1727 primary total joint arthroplasties and 305 revision total hip arthroplasties were performed between 1993 and 1996 at our unit. We followed up 1567 (91%) of the primary hip arthroplasties and 284 (93%) of the revision hip arthroplasties at 8–11 years after surgery. Patients were traced by postal questionnaire, telephone interview or examination of case notes of the deceased. RESULTS The dislocation rates by approach were 23 out of 555 (4.1%) for the posterior approach, 0 out of 120 (0%) for the Omega approach and 30 out of 892 (3.4%) for the modified Hardinge approach. Of dislocations after primary total hip arthroplasty, 58.5% were recurrent. The mean number of dislocations per patient was 2.81. Overall, 8.1% of revision total hip arthroplasties dislocated. 70% of these became recurrent. The mean number of dislocations per patient was 2.87. The vast majority of dislocations occurred within 2 months of surgery. DISCUSSION To our knowledge, this is the largest multisurgeon audit of dislocation after total hip arthroplasty published in the UK. The follow-up of 8–11 years is longer than most comparable studies. The results of this study can be used to inform patients as to the risk and outcome of dislocation, as well as to the risk of further dislocation. PMID:18828962

  2. Revision for recurrent dislocation of total hip replacement.

    Science.gov (United States)

    Rogers, Mark; Blom, Ashley W; Barnett, Andrew; Karantana, Alexia; Bannister, Gordon C

    2009-01-01

    Dislocation is one of the commonest complications of total hip arthroplasty with an incidence of between 0.5 and 9.2%. Despite this, little is known of the outcome of treatment strategies for dislocation. The aim of this study was to establish the optimal strategy for the operative management of recurrent dislocation following THA taking account of the surgical approach employed in the replacement that became unstable and the direction of the instability that followed. We reviewed 70 patients who underwent revision surgery for recurrent dislocation after total hip arthroplasty (THA), 38 through the transgluteal (Hardinge) and 32 through the posterior approach.52 of these followed primary and 18 followed revision THA for reasons other than instability.We recorded the surgical approach, the direction of dislocation and the operative strategy employed for each case. We achieved stability in 75% of patients who dislocated after primary and 50% after revision THA. 77% of dislocations performed initially through the transgluteal approach were anterior and 88% through the posterior approach were posterior. Following the transgluteal approach, we stabilised anterior dislocation in 54% of cases. Following the posterior approach we stabilised posterior dislocation in 79%. The most successful operative strategy overall was cup augmentation which conferred stability in 90% of cases. Instability after primary total hip replacement is easier to treat (75% chance of success) than after revision total hip replacement (50% chance of success). Although previous studies have shown that the posterior approach has a slightly higher risk of dislocation, this study has shown that achieving stability after a posterior dislocation is more likely than after an anterior dislocation. The outcome of revision for instability depends on the surgical approach used initially, and the direction of dislocation.

  3. Dislocation movement and hysteresis in Maraging blades

    Science.gov (United States)

    Di Cintio, Arianna; Marchesoni, Fabio; Ascione, Maria; Bhawal, Abhik; De Salvo, Riccardo

    2009-10-01

    All seismic isolation systems developed for gravitational-wave interferometric detectors, such as LIGO, Virgo and TAMA, make use of Maraging steel blades. The dissipation properties of these blades have been studied at low frequencies, by using a geometric anti-spring (GAS) filter, which allowed the exploration of resonant frequencies below 100 mHz. At this frequency an anomalous transfer function was observed in the GAS filter: this is one of several motivations for this work. The many unexpected effects observed and measured are explainable by the collective movement of dislocations inside the material described with the statistic of self-organised criticality. At low frequencies, below 200 mHz, the dissipation mechanism can subtract elasticity from the system even leading to sudden collapse. While Young's modulus is weaker, excess dissipation is observed. At higher frequencies the applied stress is probably too fast to allow the full growth of dislocation avalanches, and less losses are observed, thus explaining the higher Q-factor in this frequency range. The domino effect that leads to the release of entangled dislocations allows the understanding of the random walk of the Virgo and TAMA inverted pendula, the anomalous GAS filter transfer function as well as the loss of predictability of the ring-down decay in the LIGO seismic attenuation system inverted pendula.

  4. Dislocation movement and hysteresis in Maraging blades

    Energy Technology Data Exchange (ETDEWEB)

    Di Cintio, Arianna; Ascione, Maria; De Salvo, Riccardo [LIGO Laboratory, California Institute of Technology, MS 18-34, 1200 E.California Blvd., Pasadena, CA, 91125 (United States); Marchesoni, Fabio [INFN-VIRGO Project Dipartimento di Fisica, Universita' di Camerino, I-62032 Camerino (Italy); Bhawal, Abhik, E-mail: desalvo@ligo.caltech.ed [Arcadia High School, Arcadia, CA (United States)

    2009-10-21

    All seismic isolation systems developed for gravitational-wave interferometric detectors, such as LIGO, Virgo and TAMA, make use of Maraging steel blades. The dissipation properties of these blades have been studied at low frequencies, by using a geometric anti-spring (GAS) filter, which allowed the exploration of resonant frequencies below 100 mHz. At this frequency an anomalous transfer function was observed in the GAS filter: this is one of several motivations for this work. The many unexpected effects observed and measured are explainable by the collective movement of dislocations inside the material described with the statistic of self-organised criticality. At low frequencies, below 200 mHz, the dissipation mechanism can subtract elasticity from the system even leading to sudden collapse. While Young's modulus is weaker, excess dissipation is observed. At higher frequencies the applied stress is probably too fast to allow the full growth of dislocation avalanches, and less losses are observed, thus explaining the higher Q-factor in this frequency range. The domino effect that leads to the release of entangled dislocations allows the understanding of the random walk of the Virgo and TAMA inverted pendula, the anomalous GAS filter transfer function as well as the loss of predictability of the ring-down decay in the LIGO seismic attenuation system inverted pendula.

  5. Surgical management of intraocular lens dislocations

    Directory of Open Access Journals (Sweden)

    Adem Gul

    2015-10-01

    Full Text Available ABSTRACTPurpose:To report and compare the surgical, visual, and anatomical outcomes following treatment of dislocated intraocular lenses (IOLs.Methods:The medical records of 28 eyes of 28 patients were evaluated. Age, gender, pre-and postoperative best-corrected visual acuity (BCVA, surgical methods, and complications were recorded.Results:Pre-and postoperative BCVA ranged from counting fingers to 20/32 and from counting fingers to 20/25, respectively. Late-onset dislocations were the most frequently observed complication. The most frequent surgical method was IOL repositioning in 15 of 28 patients, followed by IOL exchange in 11 patients, and IOL removal in 2 patients. Only 1 patient required surgical re-intervention with IOL capture.Conclusions:Visual acuity improved following the use of either IOL repositioning or IOL exchange. No superiority of one method over the other was observed. In the present retrospective case series, management of dislocated IOLs with repositioning or exchange of the primary implant conferred comparable surgical and visual outcomes.

  6. [Diagnosis and treatment for complicated atlantoaxial dislocation].

    Science.gov (United States)

    Yin, Qing-shui; Xia, Hong; Wu, Zeng-hui; Ai, Fu-zhi; Ma, Xiang-yang; Zhang, Kai; Wang, Jian-hua; Mai, Xiao-hong; Wan, Lei; Chen, Xu-qiong

    2010-09-01

    To explore the clinical characteristics and treatment methods for complicated atlantoaxial dislocation. A retrospective evaluation was done to summarize and analyze the clinical characteristics and complicated factors of 54 patients with complicated atlantoaxial dislocation who could not to be treated effectively by using conventional therapy in our hospital from February 2005 to October 2008. According to different complicated factors, different treatment methods mainly including transoral atlantoaxial reduction plate-III (TARP-III) operation, decompression procedure with deep grinding guided by computer aided design-rapid prototyping (CAD-RP), screw placement technique with CAD-RP guide plate and extensile approach surgery were performed. The average follow-up period was 24 months. Among 54 cases, 48 cases achieved immediate anatomic reduction completely and 6 cases almost achieved anatomical reduction. All the compressed spinal cords were decompressed sufficiently. The decompression rate was 86.0% and the improvement rate of nerve function was 77.8%. Two cases suffered postoperative intracranial infection. Some cases of complicated atlantoaxial dislocation can be effectively treated by using TARP-III operation, decompression procedure with deep grinding guided by CAD-RP, individualized screw placement technique with CAD-RP guide plate and extensile approach surgery.

  7. Traumatic atlantoaxial dislocation with Hangman fracture.

    Science.gov (United States)

    Chaudhary, Saad B; Martinez, Maximilian; Shah, Neel P; Vives, Michael J

    2015-04-01

    Traumatic bilateral-atlantoaxial dislocations are rare injuries. Hangman fractures, conversely, represent 4% to 7% of all cervical fractures and frequently involve a combination C1-C2 fracture pattern. Presently, there is no report in the English literature of a traumatic C2-spondylolisthesis associated with a C1-C2 rotatory dislocation. This injury complex cannot be cataloged using current classification schemes and no established treatment recommendations exist. To report a unique case of a Hangman fracture associated with bilateral C1-C2 rotatory-dislocation, which does not fit into existing classification systems, and discuss our treatment approach. A clinical case report and review of the literature. Chart review and analysis of relevant literature. There were no study-specific conflicts of interest. A 26-year-old man sustained a traumatic C2-spondylolisthesis along with C1-C2 rotatory subluxation in an automobile collision. The patient was originally placed in a halo crown and vest and then taken for an open reduction and stabilization through a posterior approach for persistent C1-C2 subluxation. The patient is currently 16 months postoperative and back to work as a plumber. The injury complex encountered cannot be described using the available classification systems. Our treatment included initial stabilization with halo placement, followed by a posterior C1, C2, and C3 segmental reduction and fixation resulting in radiographic fusion and a good clinical outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Differences in ice nucleation behavior of arable and desert soil dust in deposition nucleation regime

    Science.gov (United States)

    Ullrich, Romy; Vogel, Franziska; Möhler, Ottmar; Höhler, Kristina; Schiebel, Thea

    2017-04-01

    Soil dust from arid and semi-arid regions is one of the most abundant aerosol types in the atmosphere with emission rates of about 1600 Tg per year (Andreae et al. (2009)). Therewith, soil dust plays an important role for the atmospheric radiative transfer and also for the formation of clouds. Soil dust refers to dust sampled from agricultural used areas, to dust from bare soil as well as to dust from desert regions. By mass-spectrometric measurements of the chemical composition of ice residuals, mineral dust as component of soil dust was found to be the major heterogeneous ice nucleating particle (INP) type (e.g. Cziczo et al. (2013)), in particular in the upper troposphere. Also in laboratory studies the ice nucleation efficiency of the different soil dusts was investigated. It was shown that desert dusts (Ullrich et al. (2017)) as well as soil dusts from arable regions (O'Sullivan et al. (2014), Tobo et al. (2014)) are efficient INP. However, there is still a lack of data for ice nucleation on soil dusts for temperatures below about 220 K. With the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber, we are able to characterize the ice nucleation efficiency for different aerosol types to temperatures down to 180 K and high ice supersaturations. In order to extend the already existing AIDA data base for deposition nucleation on desert dusts and agricultural soil dusts, new experiments were done in the upper tropospheric temperature regime. This contribution will show the results of the new experiments with desert dust in comparison to existing data for higher temperatures. The first data analysis confirms the temperature dependent trend of the ice nucleation activity as discussed and parameterized in a recent paper by Ullrich et al. (2017). Furthermore, the update and extension of the recently published parameterization of deposition nucleation for desert dust to lower temperatures will be discussed. The experiments with agricultural soil

  9. Effect of Al /N ratio during nucleation layer growth on Hall mobility and buffer leakage of molecular-beam epitaxy grown AlGaN /GaN heterostructures

    Science.gov (United States)

    Storm, D. F.; Katzer, D. S.; Binari, S. C.; Shanabrook, B. V.; Zhou, Lin; Smith, David J.

    2004-10-01

    AlGaN /GaN high electron mobility transistor structures have been grown by plasma-assisted molecular beam epitaxy on semi-insulating 4H-SiC utilizing an AlN nucleation layer. The electron Hall mobility of these structures increases from 1050cm2/Vs to greater than 1450cm2/Vs when the Al /N flux ratio during the growth of the nucleation layer is increased from 0.90 to 1.07. Buffer leakage currents increase abruptly by nearly three orders of magnitude when the Al /N ratio increases from below to above unity. Transmission electron microscopy indicates that high buffer leakage is correlated with the presence of stacking faults in the nucleation layer and cubic phase GaN in the buffer, while low mobilities are correlated with high dislocation densities.

  10. Nucleation of gold nanoparticle superclusters from solution.

    Science.gov (United States)

    Yan, H; Cingarapu, S; Klabunde, K J; Chakrabarti, A; Sorensen, C M

    2009-03-06

    Measurements of the solubility curve of a quasi-monodisperse gold nanoparticle solution are given. Temperature quenches from the one-phase to the two-phase regime yielded superclusters of the nanoparticle solid phase with sizes that depended on the quench depth. Classical nucleation theory was used to describe these sizes using a value of the surface tension for the nanoparticle solid phase of 0.042 erg/cm2. This value is consistent with molecule size scaling of the surface tension. In total these results show that suspensions of nanoparticles act like molecular solutions.

  11. Ubiquity of biological ice nucleators in snowfall.

    Science.gov (United States)

    Christner, Brent C; Morris, Cindy E; Foreman, Christine M; Cai, Rongman; Sands, David C

    2008-02-29

    Despite the integral role of ice nucleators (IN) in atmospheric processes leading to precipitation, their sources and distributions have not been well established. We examined IN in snowfall from mid- and high-latitude locations and found that the most active were biological in origin. Of the IN larger than 0.2 micrometer that were active at temperatures warmer than -7 degrees C, 69 to 100% were biological, and a substantial fraction were bacteria. Our results indicate that the biosphere is a source of highly active IN and suggest that these biological particles may affect the precipitation cycle and/or their own precipitation during atmospheric transport.

  12. Nucleation of Ordered Phases in Block Copolymers

    Science.gov (United States)

    Cheng, Xiuyuan; Lin, Ling; E, Weinan; Zhang, Pingwen; Shi, An-Chang

    2010-04-01

    Nucleation of various ordered phases in block copolymers is studied by examining the free-energy landscape within the self-consistent field theory. The minimum energy path (MEP) connecting two ordered phases is computed using a recently developed string method. The shape, size, and free-energy barrier of critical nuclei are obtained from the MEP, providing information about the emergence of a stable ordered phase from a metastable phase. In particular, structural evolution of embryonic gyroid nucleus is predicted to follow two possible MEPs, revealing an interesting transition pathway with an intermediate perforated layered structure.

  13. Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Hong, C.S.; Tao, N.R.; Huang, Xiaoxu

    2010-01-01

    to be a two-stage process, namely a nucleation stage resulting in a narrow band composed of nano-sized (sub)grains intersecting the T/M lamellae, followed by a thickening stage of the narrow band into adjacent T/M lamellae regions. The nucleation stage occurred within a narrow region of an almost constant......Microstructural evolution associated with the shear banding in nano-scale twin/matrix (T/M) lamellae of a Cu–Al alloy processed by means of dynamic plastic deformation was investigated using transmission electron microscopy (TEM) and high-resolution TEM. The development of a shear band was found...... strain gradients accommodated by high density of dislocations. Increasing shear strains leads to thickening of shear bands at the expense of the adjoining T/M lamellae, which is composed of thickening of the core region by transforming the TRLs into the core region with DDS and NGS, analogous to steps (2...

  14. Ice nucleation properties of volcanic ash from Eyjafjallajökull

    Directory of Open Access Journals (Sweden)

    C. R. Hoyle

    2011-09-01

    Full Text Available The ice nucleation ability of volcanic ash particles collected close to the Icelandic volcano Eyjafjallajökull during its eruptions in April and May 2010 is investigated experimentally, in the immersion and deposition modes, and applied to atmospheric conditions by comparison with airborne measurements and microphysical model calculations. The number of ash particles which are active as ice nuclei (IN is strongly temperature dependent, with a very small minority being active in the immersion mode at temperatures of 250–263 K. Average ash particles show only a moderate effect on ice nucleation, by inducing freezing at temperatures between 236 K and 240 K (i.e. approximately 3–4 K higher than temperatures required for homogeneous ice nucleation, measured with the same instrument. By scaling the results to aircraft and lidar measurements of the conditions in the ash plume days down wind of the eruption, and by applying a simple microphysical model, it was found that the IN active in the immersion mode in the range 250–263 K generally occurred in atmospheric number densities at the lower end of those required to have an impact on ice cloud formation. However, 3–4 K above the homogeneous freezing point, immersion mode IN number densities a few days down wind of the eruption were sufficiently high to have a moderate influence on ice cloud formation. The efficiency of IN in the deposition mode was found to be poor except at very cold conditions (<238 K, when they reach an efficiency similar to that of mineral dust with the onset of freezing at 10 % supersaturation with respect to ice, and with the frozen fraction nearing its maximum value at a supersaturation 20 %. In summary, these investigations suggest volcanic ash particles to have only moderate effects on atmospheric ice formation.

  15. Growth of atmospheric nano-particles by heterogeneous nucleation of organic vapor

    Science.gov (United States)

    Wang, J.; McGraw, R. L.; Kuang, C.

    2013-07-01

    Atmospheric aerosols play critical roles in air quality, public health, and visibility. In addition, they strongly influence climate by scattering solar radiation and by changing the reflectivity and lifetime of clouds. One major but still poorly understood source of atmospheric aerosols is new particle formation, which consists of the formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size (~3 nm). Because freshly nucleated clusters are most susceptible to loss due to high rate of coagulation with pre-existing aerosol population, the initial growth rate strongly influences the rate of new particle formation and ambient aerosol population. Whereas many field observations and modeling studies indicate that organics enhance the initial growth of the clusters and therefore new particle formation, thermodynamic considerations would suggest that the strong increase of equilibrium vapor concentration due to cluster surface curvature (Kelvin effect) may prevent ambient organics from condensing on these small clusters. Here, the contribution of organics to the initial cluster growth is described as heterogeneous nucleation of organic molecules onto these clusters. We find that the strong gradient in cluster population with respect to its size leads to positive cluster number flux. This positive flux drives the growth of clusters substantially smaller than the Kelvin diameter, conventionally considered the minimum particle size that can be grown through condensation. The conventional approach neglects the contribution from the cluster concentration gradient, and underestimates the cluster survival probabilities by a factor of up to 60 if early growth of clusters is due to both condensation of sulfuric acid and heterogeneous nucleation of organic vapors.

  16. Solute Nucleation and Growth in Supercritical Fluid Mixtures

    Science.gov (United States)

    Smedley, Gregory T.; Wilemski, Gerald; Rawlins, W. Terry; Joshi, Prakash; Oakes, David B.; Durgin, William W.

    1996-01-01

    This research effort is directed toward two primary scientific objectives: (1) to determine the gravitational effect on the measurement of nucleation and growth rates near a critical point and (2) to investigate the nucleation process in supercritical fluids to aid in the evaluation and development of existing theoretical models and practical applications. A nucleation pulse method will be employed for this investigation using a rapid expansion to a supersaturated state that is maintained for approximately 1 ms followed by a rapid recompression to a less supersaturated state that effectively terminates nucleation while permitting growth to continue. Nucleation, which occurs during the initial supersaturated state, is decoupled from growth by producing rapid pressure changes. Thermodynamic analysis, condensation modeling, apparatus design, and optical diagnostic design necessary for the initiation of a theoretical and experimental investigation of naphthalene nucleation from supercritical CO2 have been completed.

  17. Mixed calcium-magnesium pre-nucleation clusters enrich calcium

    OpenAIRE

    Verch, Andreas; Antonietti, Markus; Cölfen, Helmut

    2012-01-01

    It is demonstrated that magnesium and carbonate ions can form pre-nucleation clusters in analogy to calcium carbonate. If a mixed calcium and magnesium solution is brought in contact with carbonate ions, mixed pre-nucleation clusters form. The equilibrium constants for their formation are reported revealing that over the entire range of possible cation mixing ratios, calcium gets enriched over magnesium in the pre-nucleation clusters. This can explain high magnesium contents in amorphous calc...

  18. Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics

    KAUST Repository

    Yavari, Arash

    2012-03-09

    We present a geometric theory of nonlinear solids with distributed dislocations. In this theory the material manifold-where the body is stress free-is a Weitzenböck manifold, that is, a manifold with a flat affine connection with torsion but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan\\'s moving frames we construct the material manifold for several examples of bodies with distributed dislocations. We also present non-trivial examples of zero-stress dislocation distributions. More importantly, in this geometric framework we are able to calculate the residual stress fields, assuming that the nonlinear elastic body is incompressible. We derive the governing equations of nonlinear dislocation mechanics covariantly using balance of energy and its covariance. © 2012 Springer-Verlag.

  19. Dislocations in the Spacetime Continuum: Framework for Quantum Physics

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2015-10-01

    Full Text Available This paper provides a framework for the physical description of physical processes at the quantum level based on dislocations in the spacetime continuum within STCED (Spacetime Continuum Elastodynamics. In this framework, photon and particle self- energies and interactions are mediated by the strain energy density of the dislocations, replacing the role played by virtual particles in QED. We postulate that the spacetime continuum has a granularity characterized by a length b 0 corresponding to the smallest STC elementary Burgers dislocation-displacement vector. Screw dislocations corre- sponding to transverse displacements are identified with photons, and edge dislocations corresponding to longitudinal displacements are identified with particles. Mixed dislo- cations give rise to wave-particle duality. The strain energy density of the dislocations are calculated and proposed to explain the QED problem of mass renormalization.

  20. Anterior superior dislocation of the hip joint: A report of 3 cases and ...

    African Journals Online (AJOL)

    Traumatic anterior dislocation of the hip forms approximately 11% of hip dislocations and is divided into superior and inferior types. Anterior superior hip dislocation accounts for 10% of anterior hip dislocations. The clinical appearance of anterior superior hip dislocation resembles that of a fracture of the femoral neck, ...

  1. Homogenization in chemical reactive flows

    Directory of Open Access Journals (Sweden)

    Carlos Conca

    2004-03-01

    Full Text Available This paper concerns the homogenization of two nonlinear models for chemical reactive flows through the exterior of a domain containing periodically distributed reactive solid grains (or reactive obstacles. In the first model, the chemical reactions take place on the walls of the grains, while in the second one the fluid penetrates the grains and the reactions take place therein. The effective behavior of these reactive flows is described by a new elliptic boundary-value problem containing an extra zero-order term which captures the effect of the chemical reactions.

  2. Jaw Dislocation as an Unusual Complication of Upper Endoscopy

    Directory of Open Access Journals (Sweden)

    Evan S. Dellon

    2016-05-01

    Full Text Available This case report presents an unusual complication of upper endoscopy, resulting in jaw dislocation. Temporomandibular joint dislocation is commonly reported in association with anesthesia and intubation, but it is not widely recognized as a complication of gastrointestinal endoscopy. This report also reviews the current literature regarding this complication and discusses the potential causes of dislocation, differential diagnoses for jaw pain following endoscopy, and recommendations for prevention.

  3. Dislocation Field Theory in 2D: Application to Graphene

    OpenAIRE

    Lazar, Markus

    2015-01-01

    A two-dimensional (2D) dislocation continuum theory is being introduced. The present theory adds elastic rotation, dislocation density, and background stress to the classical energy density of elasticity. This theory contains four material moduli. Two characteristic length scales are defined in terms of the four material moduli. Non-singular solutions of the stresses and elastic distortions of an edge dislocation are calculated. It has been pointed out that the elastic strain agrees well with...

  4. Dislocation dynamics during the growth of silicon ribbon

    Science.gov (United States)

    Dillon, O. W., Jr.; Tsai, C. T.; De Angelis, R. J.

    1986-01-01

    The thermal viscoplastic stresses and the dislocation densities in silicon ribbon are computed for an axially changing thermal profile by using an iterative finite difference method. A material constitutive equation (Haasen-Sumino model) which involves an internal variable (mobile dislocation density) is used. The results are interpreted as showing that there is a maximum width of silicon ribbon that can be grown when viscoplasticity and dislocations are considered. This maximum width limitation does not exist if the material behavior is elastic.

  5. Do joint registries report true rates of hip dislocation?

    Science.gov (United States)

    Devane, Peter A; Wraighte, Philip J; Ong, David C G; Horne, J Geoffrey

    2012-11-01

    Despite advances in primary THA, dislocation remains a common complication. In New Zealand (NZ), dislocations are reported to the National Joint Registry (NJR) only when prosthetic components are revised in the treatment of a dislocation. Closed reductions of dislocated hips are not recorded by the NJR. We compared the true dislocation rate for patients receiving primary THA in the Wellington region with the rate reported by the NZ NJR for the same group of patients. The NZ NJR identified 570 patients undergoing primary THA from January 1, 2008, to December 31, 2009, with addresses in the Wellington region. The mean age was 67.5 years (range, 27-96 years). The minimum followup was 2 years (mean, 3 years; range, 2-4 years). Six patients required revision of at least one component for dislocation. There was 100% agreement between the hospital database and the NJR. Using the NJR criteria of revision of any component as an end point, the dislocation rate in the Wellington region after primary THA was 1.05%. The hospital database identified a further eight patients who presented with a dislocation of their primary THA and underwent a closed reduction. These patients were not recorded by the NJR. The true rate of all dislocations, which includes closed reductions, was 2.46%. This article documents the discrepancy between the NZ NJR reported rate of revision for dislocation and the true rate of dislocation in primary THA. We recommend documentation of all dislocations by NJR in their database to allow more accurate comparisons between centers and research outcomes. Level IV, clinical research study. See Guidelines for Authors for a complete description of levels of evidence.

  6. Bilateral Anterior Fracture Dislocation of Shoulder-A Rare case

    Directory of Open Access Journals (Sweden)

    Sanjay Deshpande

    2014-01-01

    Full Text Available We report an unusual case of simultaneous bilateral anterior glenohumeral fracture dislocation following fall from standing height. A 24 years old male presented with bilateral anterior glenohumeral dislocation with no peripheral motor, sensory or vascular deficit. Closed reduction was done for right glenohumeral dislocation and on left side open reduction and internal fixation was done. He was placed in bilateral slings and progressive and controlled mobilization was started. The patient was discharged and is currently under follow up.

  7. Temporomandibular joint dislocation in an 18-month-old child

    Directory of Open Access Journals (Sweden)

    Jaeson Mohanan Painatt

    2017-01-01

    Full Text Available Temporomandibular joint (TMJ dislocation in children is extremely rare. In our case, an 18-month-old child presented with a history of inability to close her mouth. To confirm the clinical diagnosis, a computed tomogram was taken. Clinical examination and X-ray of the TMJ revealed bilateral TMJ dislocation. Bilateral TMJ reduction was achieved manually after giving analgesia and procedural sedation. This is one of the few case reports of an acute dislocation in a toddler.

  8. Microtubule nucleation by γ-tubulin complexes.

    Science.gov (United States)

    Kollman, Justin M; Merdes, Andreas; Mourey, Lionel; Agard, David A

    2011-10-12

    Microtubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function. The structures have also suggested an unexpected mechanism for regulating γTuRC activity via conformational modulation of the complex component GCP3. New experiments on γTuRC localization extend these insights, suggesting a direct link between its attachment at specific cellular sites and its activation.

  9. Aerosol droplets: Nucleation dynamics and photokinetics

    Science.gov (United States)

    Signorell, Ruth

    This talk addresses two fundamental aerosol processes that play a pivotal role in atmospheric processes: The formation dynamics of aerosol particles from neutral gas phase precursors and photochemical reactions in small aerosol droplets induced by ultraviolet and visible light. Nucleation is the rate determining step of aerosol particle formation. The idea behind nucleation is that supersaturation of a gas leads to the formation of a critical cluster, which quickly grows into larger aerosol particles. We discuss an experiment for studying the size and chemical composition of critical clusters at the molecular level. Much of the chemistry happening in planetary atmospheres is driven by sunlight. Photochemical reactions in small aerosol particles play a peculiar role in this context. Sunlight is strongly focused inside these particles which leads to a natural increase in the rates of photochemical reactions in small particles compared with the bulk. This ubiquitous phenomenon has been recognised but so far escaped direct observation and quantification. The development of a new experimental setup has finally made it possible to directly observe this nanofocusing effect in droplet photokinetics. This work was supported by the Swiss National Science Foundation (SNSF) and ETH Zurich.

  10. Thermodynamics of ice nucleation in liquid water.

    Science.gov (United States)

    Wang, Xin; Wang, Shui; Xu, Qinzhi; Mi, Jianguo

    2015-01-29

    We present a density functional theory approach to investigate the thermodynamics of ice nucleation in supercooled water. Within the theoretical framework, the free-energy functional is constructed by the direct correlation function of oxygen-oxygen of the equilibrium water, and the function is derived from the reference interaction site model in consideration of the interactions of hydrogen-hydrogen, hydrogen-oxygen, and oxygen-oxygen. The equilibrium properties, including vapor-liquid and liquid-solid phase equilibria, local structure of hexagonal ice crystal, and interfacial structure and tension of water-ice are calculated in advance to examine the basis for the theory. The predicted phase equilibria and the water-ice surface tension are in good agreement with the experimental data. In particular, the critical nucleus radius and free-energy barrier during ice nucleation are predicted. The critical radius is similar to the simulation value, suggesting that the current theoretical approach is suitable in describing the thermodynamic properties of ice crystallization.

  11. Cooperative dissociations of misfit dislocations at bimetal interfaces

    Directory of Open Access Journals (Sweden)

    K. Liu

    2016-11-01

    Full Text Available Using atomistic simulations, several semi-coherent cube-on-cube bimetal interfaces are comparatively investigated to unravel the combined effect of the character of misfit dislocations, the stacking fault energy difference between bimetal pairs, and their lattice mismatch on the dissociation of interfacial misfit dislocations. Different dissociation paths and features under loadings provide several unique deformation mechanisms that are critical for understanding interface strengthening. In particular, applied strains can cause either the formation of global interface coherency by the migration of misfit dislocations from an interface to an adjoining crystal interior or to an alternate packing of stacking faults connected by stair-rod dislocations.

  12. Posterior Shoulder Dislocation Due to an Atypical Trauma Mechanism

    Science.gov (United States)

    Güzel, Şevket Ergun; Baysal, Özgür; Eceviz, Engin; Elmalı, Nurzat

    2014-01-01

    Objectives: A 32 year old man who was admitted to the emergency department with serious pain and absent movement of the right upper extremity due to passing the ball in a basketball game. He had no shoulder dislocation in his medical history. The right shoulder position was flexion and adduction. The shoulder range of motion was restricted and the neurovascular examination was intact. Posterior shoulder dislocation was diagnosed in radiographs.The aim of the study is pointed out an unusual mechanism of the posterior shoulder dislocations which is related microtrauma. The main problem in treatment of this kind of dislocation is correct and timely diagnosis. Methods: After diagnosing the posterior shoulder dislocation, we reducted the shoulder joint immediately and immobilized in abduction and external rotation with Velpeau bandage. We took radiographs and computerized tomography to confirm the reduction of the joint and diagnose the additional bone pathology. Reverse Hill Sacks lesion was diagnosed. Two weeks later after diagnosing passive range of movement exercises were applied. Magnetic resonance imaging was done to diagnose the additional pathology. Results: There was no spesific finding in radiographs and reverse Hill Sachs lesion and anterior labral tear were determined in magnetic images finding. Conclusion: Shoulder joint dislocations are the most seen pathology in the emergency department. On the other hand posterior shoulder dislocations are less common than anterior dislocations, but more commonly missed. Posterior shoulder dislocations are caused by high energy trauma, seizures, electric shocks and microtrauma.

  13. Dislocation field theory in 2D: Application to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Markus, E-mail: lazar@fkp.tu-darmstadt.de [Heisenberg Research Group, Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, D-64289 Darmstadt (Germany); Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States)

    2013-01-17

    A two-dimensional (2D) dislocation continuum theory is being introduced. The present theory adds elastic rotation, dislocation density, and background stress to the classical energy density of elasticity. This theory contains four material moduli. Two characteristic length scales are defined in terms of the four material moduli. Non-singular solutions of the stresses and elastic distortions of an edge dislocation are calculated. It has been pointed out that the elastic strain agrees well with experimental data found recently for an edge dislocation in graphene.

  14. Interfacial dislocation motion and interactions in single-crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raabe, D. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Roters, F. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Arsenlis, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  15. Lateral subtalar dislocation: Case report and review of the literature

    Science.gov (United States)

    Veltman, Ewout S; Steller, Ernst JA; Wittich, Philippe; Keizer, Jort

    2016-01-01

    A case of complicated lateral subtalar dislocation is presented and the literature concerning this injury is reviewed. Subtalar joint dislocations are rare and often the result of a high-energy trauma. Complications include avascular necrosis of the talus, infection, posttraumatic osteoarthritis requiring arthrodesis and chronic subtalar instability. Negative prognostic factors include lateral and complicated dislocations, total talar extrusions, and associated fractures. A literature search was performed to identify studies describing outcome after lateral subtalar joint dislocation. Eight studies including fifty patients could be included, thirty out of 50 patients suffered a complicated injury. Mean follow-up was fifty-five months. Ankle function was reported as good in all patients with closed lateral subtalar dislocation. Thirteen out of thirty patients with complicated lateral subtalar joint dislocation developed a complication. Avascular necrosis was present in nine patients with complicated injury. Four patients with complicated lateral subtalar dislocation suffered deep infection requiring treatment with antibiotics. In case of uncomplicated lateral subtalar joint dislocation, excellent functional outcome after closed reduction and immobilization can be expected. In case of complicated lateral subtalar joint dislocation immediate reduction, wound debridement and if necessary (external) stabilisation are critical. Up to fifty percent of patients suffering complicated injury are at risk of developing complications such as avascular talar necrosis and infection. PMID:27672576

  16. Dislocation luminescence in GaN single crystals under nanoindentation

    Science.gov (United States)

    2014-01-01

    This work presents an experimental study on the dislocation luminescence in GaN by nanoindentation, cathodoluminescence, and Raman. The dislocation luminescence peaking at 3.12 eV exhibits a series of special properties in the cathodoluminescence measurements, and it completely disappears after annealing at 500°C. Raman spectroscopy shows evidence for existence of vacancies in the indented region. A comprehensive investigation encompassing cathodoluminescence, Raman, and annealing experiments allow the assignment of dislocation luminescence to conduction-band-acceptor transition involving Ga vacancies. The nanoscale plasticity of GaN can be better understood by considering the dislocation luminescence mechanism. PMID:25593548

  17. A Case of Simultaneous Bilateral Anterior Shoulder Dislocation

    Directory of Open Access Journals (Sweden)

    Mallanagouda N Patil

    2013-04-01

    Full Text Available Introduction: Anterior dislocation of shoulder is commonest dislocation one encounters in day to day Orthopaedic practice. But bilateral shoulder dislocations are relatively uncommon frequently posterior and secondary to violent muscle contraction. Simultaneous bilateral anterior dislocations of shoulder following trauma is rare occurrence. Case Report: 35 year old male presented to emergency department with history fall by tripping on a stone (fall on outstretched hand. He complained of pain and difficulty in moving both the shoulders. On clinical examination, patient’s both upper limbs were abducted and externally rotated. Bilaterally shoulder contour was lost with flattening. Other classical signs of shoulder dislocation viz, Bryants test, Callway sign, Hamilton’s ruler test were positive. Diagnosis was confirmed on X rays. Both shoulders were reduced in emergency operation theater under general anaesthesia by Kocher’s method and were immobilised in sling. Conclusion: Though bilateral shoulder dislocations are commonly posterior, usually either secondary to convulsions or electric shock, anterior dislocation has to be kept in mind , especially in post traumatic injuries. This bilateral dislocation also presents with practical problems immobilization and day to day care of patients. Keywords: Simultaneous, bilateral, shoulder dislocation, traumatic.

  18. Constrained liners for recurrent dislocations in total hip arthroplasty

    DEFF Research Database (Denmark)

    Knudsen, R; Ovesen, O; Kjaersgaard-Andersen, P

    2009-01-01

    This study reports the results and complications from treating recurrent hip dislocations with a constrained liner (CL) after total hip arthroplasty (THA). Forty patients who had a CL inserted as a secondary prophylactic treatment were retrospectively reviewed after a median observation period...... of 27 months (range 7-77 months). During the observation period five patients had to be revised: one for deep infection and four on account of re-dislocations. Our results indicate that patients with recurrent THA dislocations can be treated with a CL and has a satisfactory low complication rate...... and a relatively low risk of re-dislocation....

  19. Traumatic Anterior Dislocation of Hip in a Child- Case Report

    Directory of Open Access Journals (Sweden)

    S Ahmad

    2015-03-01

    Full Text Available Traumatic hip dislocation in children is relatively rare accounting for about 5% of all hip dislocations. Most of the hip dislocations seen in children are of the posterior type but the much rarer anterior and anterior-inferior (obturator types have also been described. We present the case of an eight years old girl with an obturator type of hip dislocation following trivial trauma. She was treated with closed reduction and immobilisation in skin traction for three weeks. She was followed up closely for one year and did not develop any complications during that period.

  20. Harmonic oscillator in an elastic medium with a spiral dislocation

    Science.gov (United States)

    Maia, A. V. D. M.; Bakke, K.

    2018-02-01

    We investigate the behaviour of a two-dimensional harmonic oscillator in an elastic medium that possesses a spiral dislocation (an edge dislocation). We show that the Schrödinger equation for harmonic oscillator in the presence of a spiral dislocation can be solved analytically. Further, we discuss the effects of this topological defect on the confinement to a hard-wall confining potential. In both cases, we analyse if the effects of the topology of the spiral dislocation gives rise to an Aharonov-Bohm-type effect for bound states.