WorldWideScience

Sample records for homeostasis compensatory adjustments

  1. Acute loss of the hepatic endo-lysosomal system in vivo causes compensatory changes in iron homeostasis.

    Science.gov (United States)

    Metzendorf, Christoph; Zeigerer, Anja; Seifert, Sarah; Sparla, Richard; Najafi, Bahar; Canonne-Hergaux, François; Zerial, Marino; Muckenthaler, Martina U

    2017-06-22

    Liver cells communicate with the extracellular environment to take up nutrients via endocytosis. Iron uptake is essential for metabolic activities and cell homeostasis. Here, we investigated the role of the endocytic system for maintaining iron homeostasis. We specifically depleted the small GTPase Rab5 in the mouse liver, causing a transient loss of the entire endo-lysosomal system. Strikingly, endosome depletion led to a fast reduction of hepatic iron levels, which was preceded by an increased abundance of the iron exporter ferroportin. Compensatory changes in livers of Rab5-depleted mice include increased expression of transferrin receptor 1 as well as reduced expression of the iron-regulatory hormone hepcidin. Serum iron indices (serum iron, free iron binding capacity and total iron binding capacity) in Rab5-KD mice were increased, consistent with an elevated splenic and hepatic iron export. Our data emphasize the critical importance of the endosomal compartments in hepatocytes to maintain hepatic and systemic iron homeostasis in vivo. The short time period (between day four and five) upon which these changes occur underscore the fast dynamics of the liver iron pool.

  2. Arm-trunk coordination in wheelchair initiation displacement: A study of anticipatory and compensatory postural adjustments during different speeds and directions of propulsion.

    Science.gov (United States)

    Chikh, Soufien; Garnier, Cyril; Faupin, Arnaud; Pinti, Antonio; Boudet, Samuel; Azaiez, Fairouz; Watelain, Eric

    2018-03-13

    Arm-trunk coordination during the initiation of displacement in manual wheelchair is a complex task. The objective of this work is to study the arm-trunk coordination by measuring anticipatory and compensatory postural adjustments. Nine healthy subjects participated in the study after being trained in manual wheelchair. They were asked to initiate a displacement in manual wheelchair in three directions (forward vs. left vs. right), with two speeds (spontaneous vs. maximum) and with two initial hand's positions (hands on thighs vs. hands on handrails). Muscular activities in the trunk (postural component) and the arms (focal component) were recorded bilaterally. The results show two strategies for trunk control: An anticipatory adjustment strategy and a compensatory adjustment strategy with a dominance of compensation. These two strategies are influenced by the finalities of displacement in terms of speed and direction depending on the hands positions. Arm-trunk coordination is characterized by an adaptability of anticipatory and compensatory postural adjustments. The study of this type of coordination for subjects with different levels of spinal cord injury could be used to predict the forthcoming displacement and thus assist the user in a complex task. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Children's perceptions of relationships with siblings, friends, and mothers: compensatory processes and links with adjustment.

    Science.gov (United States)

    Stocker, C M

    1994-11-01

    Links between children's psychological adjustment and individual differences in their perceptions of relationships with siblings, mothers, and friends were studied in a sample of 85 second-graders. Results indicated that characteristics of these relationships were significantly correlated with children's loneliness, depressive mood, self-esteem, and behavioral conduct. There were some links among children's perceptions of their relationships with siblings, friends, and mothers. A compensatory model of associations among adjustment and warmth in children's relationships with friends and mothers was supported. Children who reported that their relationships with either mothers, friends, or mothers and friends were characterized by high levels of warmth had significantly better adjustment outcomes than children who reported low levels of warmth in relationships with both friends and mothers. The importance of the network of children's relationships for their mental health is discussed.

  4. Delayed Compensatory Postural Adjustments After Lateral Perturbations Contribute to the Reduced Ability of Older Adults to Control Body Balance.

    Science.gov (United States)

    Claudino, Renato; Dos Santos, Marcio José; Mazo, Giovana Zarpellon

    2017-10-01

    The goal of this study was to investigate the timing of compensatory postural adjustments in older adults during body perturbations in the mediolateral direction, circumstances that increase their risk of falls. The latencies of leg and trunk muscle activation to body perturbations at the shoulder level and variables of center of pressure excursion, which characterize postural stability, were analyzed in 40 older adults (nonfallers and fallers evenly split) and in 20 young participants. The older adults exhibited longer latencies of muscular activation in eight out of 15 postural muscles as compared with young participants; for three muscles, the latencies were longer for the older fallers than nonfallers. Simultaneously, the time for the center of pressure displacement reached its peak after the perturbation was significant longer in both groups of older adults. The observed delays in compensatory postural adjustments may affect the older adults' ability to prompt control body balance after postural disturbances and predispose them to falls.

  5. Aging increases compensatory saccade amplitude in the video head impulse test

    Directory of Open Access Journals (Sweden)

    Eric R Anson

    2016-07-01

    Full Text Available Objective: Rotational vestibular function declines with age resulting in saccades as a compensatory mechanism to improve impaired gaze stability. Small reductions in rotational vestibulo-ocular reflex (VOR gain that would be considered clinically normal have been associated with compensatory saccades. We evaluated whether compensatory saccade characteristics varied as a function of age, independent of semicircular canal function as quantified by VOR gain.Methods: Horizontal VOR gain was measured in 243 participants age 27-93 from the Baltimore Longitudinal Study of Aging using video head impulse testing (HIT. Latency and amplitude of the first saccade (either covert – occurring during head impulse, or overt – occurring following head impulse were measured for head impulses with compensatory saccades (n = 2230 head impulses. The relationship between age and saccade latency, as well as the relationship between age and saccade amplitude, were evaluated using regression analyses adjusting for VOR gain, gender, and race.Results: Older adults (mean age 75.9 made significantly larger compensatory saccades relative to younger adults (mean age 45.0. In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory covert saccade (β = 0.015, p = 0.008. In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory overt saccade (β = 0.02, p < 0.001. Compensatory saccade latencies did not vary significantly by age. Conclusions: We observed that aging increases the compensatory catch-up saccade amplitude in healthy adults after controlling for VOR gain. Size of compensatory saccades may be useful in addition to VOR gain for characterizing vestibular function in aging adults.

  6. Anticipatory and Compensatory Postural Adjustments in Response to External Lateral Shoulder Perturbations in Subjects with Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Alexandre Kretzer E Castro de Azevedo

    Full Text Available The purpose of this study was to investigate the anticipatory (APA and compensatory (CPA postural adjustments in individuals with Parkinson's disease (PD during lateral instability of posture. Twenty-six subjects (13 individuals with PD and 13 healthy matched controls were exposed to predictable lateral postural perturbations. The electromyographic (EMG activity of the lateral muscles and the displacement of the center of pressure (COP were recorded during four time intervals that are typical for postural adjustments, i.e., immediately before (APA1, APA2 and after (CPA1 and CPA2 the postural disturbances. The magnitude of the activity of the lateral muscles in the group with PD was lower only during the CPA time intervals and not during the anticipatory adjustments (APAs. Despite this finding, subjects with PD exhibit smaller COP excursions before and after the disturbance, probably due to lack of flexibility and proprioceptive impairments. The results of this study suggest that postural instability in subjects with PD can be partially explained by decreased postural sway, before and after perturbations, and reduced muscular activity after body disturbances. Our findings can motivate new studies to investigate therapeutic interventions that optimize the use of postural adjustment strategies in subjects with PD.

  7. Compensatory responses induced by oxidative stress in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    PAULA I MOREIRA

    2006-01-01

    Full Text Available Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-β deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis.

  8. Pancreatic alpha-cell dysfunction contributes to the disruption of glucose homeostasis and compensatory insulin hypersecretion in glucocorticoid-treated rats.

    Directory of Open Access Journals (Sweden)

    Alex Rafacho

    Full Text Available Glucocorticoid (GC-based therapies can cause insulin resistance (IR, glucose intolerance, hyperglycemia and, occasionally, overt diabetes. Understanding the mechanisms behind these metabolic disorders could improve the management of glucose homeostasis in patients undergoing GC treatment. For this purpose, adult rats were treated with a daily injection of dexamethasone (1 mg/kg b.w., i.p. (DEX or saline as a control for 5 consecutive days. The DEX rats developed IR, augmented glycemia, hyperinsulinemia and hyperglucagonemia. Treatment of the DEX rats with a glucagon receptor antagonist normalized their blood glucose level. The characteristic inhibitory effect of glucose on glucagon secretion was impaired in the islets of the DEX rats, while no direct effects were found on α-cells in islets that were incubated with DEX in vitro. A higher proportion of docked secretory granules was found in the DEX α-cells as well as a trend towards increased α-cell mass. Additionally, insulin secretion in the presence of glucagon was augmented in the islets of the DEX rats, which was most likely due to their higher glucagon receptor content. We also found that the enzyme 11βHSD-1, which participates in GC metabolism, contributed to the insulin hypersecretion in the DEX rats under basal glucose conditions. Altogether, we showed that GC treatment induces hyperglucagonemia, which contributes to an imbalance in glucose homeostasis and compensatory β-cell hypersecretion. This hyperglucagonemia may result from altered α-cell function and, likely, α-cell mass. Additionally, blockage of the glucagon receptor seems to be effective in preventing the elevation in blood glucose levels induced by GC administration.

  9. Neonatal capsaicin causes compensatory adjustments to energy homeostasis in rats

    NARCIS (Netherlands)

    van de Wall, E. H. E. M.; Wielinga, P. Y.; Strubbe, J. H.; van Dijk, G.

    2006-01-01

    Several mechanisms involved in ingestive behavior and neuroendocrine activity rely on vagal afferent neuronal signaling. Seemingly contradictory to this idea are observations that vagal afferent neuronal ablation by neonatal capsaicin (CAP) treatment has relatively small effects on glucose

  10. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA

    DEFF Research Database (Denmark)

    Li, Shuai; Dislich, Bastian; Brakebusch, Cord H

    2015-01-01

    11b(-)CD8(+) and CD11b(+)Esam(hi) DC subsets, whereas CD11b(+)Esam(lo) DCs were not affected in conditional RhoA-deficient mice. Proteome analyses revealed a defective prosurvival pathway via PI3K/protein kinase B (Akt1)/Bcl-2-associated death promoter in the absence of RhoA. Taken together, our...... findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation....

  11. Compensatory Postural Adjustments in an Oculus Virtual Reality Environment and the Risk of Falling in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Miguel F. Gago

    2016-06-01

    Full Text Available Background/Aims: Alzheimer's disease (AD patients have an impaired ability to quickly reweight central sensory dependence in response to unexpected body perturbations. Herein, we aim to study provoked compensatory postural adjustments (CPAs in a conflicting sensory paradigm with unpredictable visual displacements using virtual reality goggles. Methods: We used kinematic time-frequency analyses of two frequency bands: a low-frequency band (LB; 0.3-1.5 Hz; mechanical strategy and a high-frequency band (HB; 1.5-3.5 Hz; cognitive strategy. We enrolled 19 healthy subjects (controls and 21 AD patients, divided according to their previous history of falls. Results: The AD faller group presented higher-power LB CPAs, reflecting their worse inherent postural stability. The AD patients had a time lag in their HB CPA reaction. Conclusion: The slower reaction by CPA in AD may be a reflection of different cognitive resources including body schema self-perception, visual motion, depth perception, or a different state of fear and/or anxiety.

  12. Chatty Mitochondria: Keeping Balance in Cellular Protein Homeostasis.

    Science.gov (United States)

    Topf, Ulrike; Wrobel, Lidia; Chacinska, Agnieszka

    2016-08-01

    Mitochondria are multifunctional cellular organelles that host many biochemical pathways including oxidative phosphorylation (OXPHOS). Defective mitochondria pose a threat to cellular homeostasis and compensatory responses exist to curtail the source of stress and/or its consequences. The mitochondrial proteome comprises proteins encoded by the nuclear and mitochondrial genomes. Disturbances in protein homeostasis may originate from mistargeting of nuclear encoded mitochondrial proteins. Defective protein import and accumulation of mistargeted proteins leads to stress that triggers translation alterations and proteasomal activation. These cytosolic pathways are complementary to the mitochondrial unfolded protein response (UPRmt) that aims to increase the capacity of protein quality control mechanisms inside mitochondria. They constitute putative targets for interventions aimed at increasing the fitness, stress resistance, and longevity of cells and organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Preparation for Compensatory Forward Stepping in Parkinson’s Disease

    Science.gov (United States)

    King, Laurie A.; St George, Rebecca J.; Carlson-Kuhta, Patricia; Nutt, John G.; Horak, Fay B.

    2010-01-01

    Objective To characterize preparation for compensatory stepping in people with Parkinson’s disease (PD) compared with healthy control subjects, and to determine whether levodopa medication improves preparation or the execution phases of the step. Design Observational study. Setting Outpatient neuroscience laboratory. Participants Nineteen participants with idiopathic PD tested both in the on and off levodopa states and 17 healthy subjects. Intervention Moveable platform with posterior translations of 24cm at 56cm/s. Main Outcome Measures Compensatory steps forward, in response to a backward surface translation (24cm amplitude at 56cm/s), were categorized according to the presence of an anticipatory postural adjustment (APA) before stepping: no APA, single APA, or multiple APAs. The following step parameters were calculated: step latency, step length, center of mass (CoM) average velocity, and CoM displacement at the step initiation. Results Lateral APAs were evident in 57% and 42% of trials for people with PD in the off and on medication states, respectively, compared with only 10% of trials for control subjects. Compared with subjects with PD who did not have APAs, those subjects with PD who did make an APA prior to stepping had significantly later (mean ± SEM, 356 ± 16ms vs 305 ± 8ms) and shorter (mean ± SEM, 251 ± 27mm vs 300 ± 16mm) steps, their CoM was significantly farther forward (185 ± 7mm vs 171 ± 5mm) at foot-off, and they took significantly more steps to regain equilibrium. Levodopa did not affect the preparation or execution phase of compensatory stepping. Poor axial scores and reports of freezing in the United Parkinson’s Disease Rating Scale were associated with use of 1 or more APAs before compensatory stepping. Conclusions Lateral postural preparation prior to compensatory stepping in subjects with PD was associated with inefficient balance recovery from external perturbations. PMID:20801249

  14. Compensatory eye movements in mice

    NARCIS (Netherlands)

    A.M. van Alphen (Arjan)

    2002-01-01

    textabstractThis thesis will address the generation of compensatory eye movements in naturally mutated or genetically modified mice. The reason for generating compensatory eye movements is solely related to the requirements for good vision. In a subject moving through its environment the projection

  15. Endocrine Regulation of Compensatory Growth in Fish

    Directory of Open Access Journals (Sweden)

    Eugene T. Won

    2013-07-01

    Full Text Available Compensatory growth (CG is a period of accelerated growth that occurs following the alleviation of growth-stunting conditions during which an organism can make up for lost growth opportunity and potentially catch-up in size with non-stunted cohorts. Fish show a particularly robust capacity for the response and have been the focus of numerous studies that demonstrate their ability to compensate for periods of fasting once food is made available again. Compensatory growth is characterized by an elevated growth rate resulting from enhanced feed intake, mitogen production and feed conversion efficiency. Because little is known about the underlying mechanisms that drive the response, this review describes the sequential endocrine adaptations that lead to CG; namely during the precedent catabolic phase (fasting that taps endogenous energy reserves, and the following hyperanabolic phase (refeeding when accelerated growth occurs. In order to elicit a CG response, endogenous energy reserves must first be moderately depleted, which alters endocrine profiles that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin and growth hormone (GH production increase appetite and protein-sparing lipolysis, while insulin-like growth factors (IGFs are suppressed, primarily due to hepatic GH resistance. During refeeding, temporal hyperphagia provides an influx of energy and metabolic substrates that are then allocated to somatic growth by resumed IGF signaling. Under the right conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative to constantly fed controls. The response wanes as energy reserves are re-accumulated and homeostasis is restored. We ascribe possible roles for select appetite and growth-regulatory hormones in the context of these catabolic and hyperanabolic phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin, neuropeptide Y, ghrelin and leptin.

  16. Development and reliability of the rating of compensatory movements in upper limb prosthesis wearers during work-related tasks.

    Science.gov (United States)

    van der Laan, Tallie M J; Postema, Sietke G; Reneman, Michiel F; Bongers, Raoul M; van der Sluis, Corry K

    2018-02-10

    Reliability study. Quantifying compensatory movements during work-related tasks may help to prevent musculoskeletal complaints in individuals with upper limb absence. (1) To develop a qualitative scoring system for rating compensatory shoulder and trunk movements in upper limb prosthesis wearers during the performance of functional capacity evaluation tests adjusted for use by 1-handed individuals (functional capacity evaluation-one handed [FCE-OH]); (2) to examine the interrater and intrarater reliability of the scoring system; and (3) to assess its feasibility. Movement patterns of 12 videotaped upper limb prosthesis wearers and 20 controls were analyzed. Compensatory movements were defined for each FCE-OH test, and a scoring system was developed, pilot tested, and adjusted. During reliability testing, 18 raters (12 FCE experts and 6 physiotherapists/gait analysts) scored videotapes of upper limb prosthesis wearers performing 4 FCE-OH tests 2 times (2 weeks apart). Agreement was expressed in % and kappa value. Feasibility (focus area's "acceptability", "demand," and "implementation") was determined by using a questionnaire. After 2 rounds of pilot testing and adjusting, reliability of a third version was tested. The interrater reliability for the first and second rating sessions were к = 0.54 (confidence interval [CI]: 0.52-0.57) and к = 0.64 (CI: 0.61-0.66), respectively. The intrarater reliability was к = 0.77 (CI: 0.72-0.82). The feasibility was good but could be improved by a training program. It seems possible to identify compensatory movements in upper limb prosthesis wearers during the performance of FCE-OH tests reliably by observation using the developed observational scoring system. Interrater reliability was satisfactory in most instances; intrarater reliability was good. Feasibility was established. Copyright © 2018 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  17. Novel Molecules Regulating Energy Homeostasis: Physiology and Regulation by Macronutrient Intake and Weight Loss

    Directory of Open Access Journals (Sweden)

    Anna Gavrieli

    2016-09-01

    Full Text Available Excess energy intake, without a compensatory increase of energy expenditure, leads to obesity. Several molecules are involved in energy homeostasis regulation and new ones are being discovered constantly. Appetite regulating hormones such as ghrelin, peptide tyrosine-tyrosine and amylin or incretins such as the gastric inhibitory polypeptide have been studied extensively while other molecules such as fibroblast growth factor 21, chemerin, irisin, secreted frizzle-related protein-4, total bile acids, and heme oxygenase-1 have been linked to energy homeostasis regulation more recently and the specific role of each one of them has not been fully elucidated. This mini review focuses on the above mentioned molecules and discusses them in relation to their regulation by the macronutrient composition of the diet as well as diet-induced weight loss.

  18. Empirical Percentile Growth Curves with Z-scores Considering Seasonal Compensatory Growths for Japanese Thoroughbred Horses

    Science.gov (United States)

    ONODA, Tomoaki; YAMAMOTO, Ryuta; SAWAMURA, Kyohei; MURASE, Harutaka; NAMBO, Yasuo; INOUE, Yoshinobu; MATSUI, Akira; MIYAKE, Takeshi; HIRAI, Nobuhiro

    2013-01-01

    Percentile growth curves are often used as a clinical indicator to evaluate variations of children’s growth status. In this study, we propose empirical percentile growth curves using Z-scores adapted for Japanese Thoroughbred horses, with considerations of the seasonal compensatory growth that is a typical characteristic of seasonal breeding animals. We previously developed new growth curve equations for Japanese Thoroughbreds adjusting for compensatory growth. Individual horses and residual effects were included as random effects in the growth curve equation model and their variance components were estimated. Based on the Z-scores of the estimated variance components, empirical percentile growth curves were constructed. A total of 5,594 and 5,680 body weight and age measurements of male and female Thoroughbreds, respectively, and 3,770 withers height and age measurements were used in the analyses. The developed empirical percentile growth curves using Z-scores are computationally feasible and useful for monitoring individual growth parameters of body weight and withers height of young Thoroughbred horses, especially during compensatory growth periods. PMID:24834004

  19. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis.

    Science.gov (United States)

    Silva, E N; Silveira, J A G; Rodrigues, C R F; Viégas, R A

    2015-09-01

    This study assessed the capacity of Jatropha curcas to physiologically adjust to salinity. Seedlings were exposed to increasing NaCl concentrations (25, 50, 75 and 100 mm) for 15 days. Treatment without NaCl was adopted as control. Shoot dry weight was strongly reduced by NaCl, reaching values of 35% to 65% with 25 to 100 mm NaCl. The shoot/root ratio was only affected with 100 mm NaCl. Relative water content (RWC) increased only with 100 mm NaCl, while electrolyte leakage (EL) was much enhanced with 50 mm NaCl. The Na(+) transport rate to the shoot was more affected with 50 and 100 mm NaCl. In parallel, Cl(-) transport rate increased with 75 and 100 mm NaCl, while K(+) transport rate fell from 50 mm to 100 mm NaCl. In roots, Na(+) and Cl(-) transport rates fell slightly only in 50 mm (to Na(+)) and 50 and 100 mm (to Cl(-)) NaCl, while K(+) transport rate fell significantly with increasing NaCl. In general, our data demonstrate that J. curcas seedlings present changes in key physiological processes that allow this species to adjust to salinity. These responses are related to accumulation of Na(+) and Cl(-) in leaves and roots, K(+)/Na(+) homeostasis, transport of K(+) and selectivity (K-Na) in roots, and accumulation of organic solutes contributing to osmotic adjustment of the species. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. The immune system, natural autoantibodies and general homeostasis in health and disease.

    Science.gov (United States)

    Poletaev, A; Boura, P

    2011-10-01

    It is generally accepted that the destination of the immune system is not only to discriminate between self and non-self but also to mount responses against non-self. During the last decades, it became evident that weak self-reactivity is a necessary condition for immune homeostasis. Natural self reactivity and the internal image created by autoantibodies, participate greatly to the maintenance of homeostasis. Under conditions of increased or altered antigenic pressure, the homeostatic status is disrupted and the organism becomes vulnerable to the emergence of diseases. "Immunculus" is the self-reactive and interconnected entity of the immune system, provided by a complicated network of natural autoantibobies of different specificity, as a mosaic picture. Quantitative changes in each part of the image are related to variations of expression of relative antigens. The immune system takes in account image information from the continuous screening of the antigenic status and compares between presented state and the desired (optimal) one. Substantial and prolonged deviations from the optimal state, triggers the induction of compensatory and reparative processes, aiming to restore molecular and functional homeostasis. So, natural autoimmunity through the ability of natural a-Abs to induce mechanisms of natural and acquired immunity, aims to prevent pathogenic processes and maintain or restore health status.

  1. Social impairment in conversation: disfluency and compensatory mechanisms

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Lambrechts, Anna; Weed, Ethan

    of interactions with adults with ASD will help us understand how social impairment affects the life of people with ASD and which compensatory mechanisms can be used to minimize its effects. Objectives: We want to develop automated quantitative methods to assess dysfluency and compensatory dynamics in conversation......-taking measures, we observe clear compensatory dynamics at work in the interviews. The more disfluency is displayed in the participant, the more the interviewer provides scaffolding. Future work will investigate whether these effects are modulated by practice and context, and how they affect the success...

  2. COMPENSATORY AND NON COMPENSATORY FACTORS WHICH INFLUENCE THE BUYING DECISION OF CULINARY PRODUCTS, CONCENTRATED SOUP CATEGORY, IN CONSUMERS FROM BARRANQUILLA

    Directory of Open Access Journals (Sweden)

    MARÍA MERCEDES BOTERO

    2005-10-01

    Full Text Available The aim of this research was to identify the main compensatory and non-compensatory factors influencing thepurchase of concentrated broth in consumers of the city of Barranquilla. This research compiles the data obtainedthrough 300 interviews applied to consumers of concentrated broth, who do their shopping in 41 supermarkets and8.000 general stores distributed along the city.The study demonstrated that brand and the flavor are the most important factors in buying concentrated broth.Additionally, customers usually buy the product that they previously have chosen, remaining loyal to their favoritebrand. This corroborates that non-compensatory factors such as memory, experience and tradition are determinantwhen choosing a product.

  3. COMPENSATORY STRATEGIES OF FIRST-LANGUAGE-ATTRITED CHILDREN

    Directory of Open Access Journals (Sweden)

    Syahdan Syahdan

    2012-01-01

    Full Text Available This article explores the compensatory strategies used by two Indonesian children who experienced first language attrition when acquiring English in the English-speaking environment. They use compensatory strategies to compensate for their lack of competence in first language. They employ both interlingual strategies and discourse strategies when they have difficulties in communication. Interlingual strategies used are codeswitching and lexical borrowings and the discourse strategies are overt comments, appeal for assistance, and avoidance.

  4. Determinants of limb preference for initiating compensatory stepping poststroke.

    Science.gov (United States)

    Mansfield, Avril; Inness, Elizabeth L; Lakhani, Bimal; McIlroy, William E

    2012-07-01

    To investigate the determinants of limb preference for initiating compensatory stepping poststroke. Retrospective chart review. Inpatient rehabilitation. Convenience sample of individuals admitted to inpatient rehabilitation with poststroke hemiparesis. Not applicable. Compensatory stepping responses were evoked using a lean-and-release postural perturbation. The limb used to initiate compensatory stepping was determined. The relationships between stepping with the paretic limb and premorbid limb dominance, weight bearing on the paretic limb in quiet standing, ability to bear weight on the paretic limb, preperturbation weight bearing on the paretic limb, and lower-limb motor recovery scores were determined. The majority (59.1%) of responses were steps initiated with the nonparetic limb. Increased lower-limb motor recovery scores and preperturbation weight bearing on the nonparetic limb were significantly related to increased frequency of stepping with the paretic limb. When the preferred limb was physically blocked, an inappropriate response was initiated in 21% of trials (ie, nonstep responses or an attempt to step with the blocked limb). This study reveals the challenges that individuals with poststroke hemiparesis face when executing compensatory stepping responses to prevent a fall after a postural perturbation. The inability or challenges to executing a compensatory step with the paretic limb may increase the risk for falls poststroke. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Compensatory plasticity: time matters

    Directory of Open Access Journals (Sweden)

    Latifa eLazzouni

    2014-06-01

    Full Text Available Plasticity in the human and animal brain is the rule, the base for development, and the way to deal effectively with the environment for making the most efficient use of all the senses. When the brain is deprived of one sensory modality, plasticity becomes compensatory: the exception that invalidates the general loss hypothesis giving the opportunity of effective change. Sensory deprivation comes with massive alterations in brain structure and function, behavioural outcomes, and neural interactions. Blind individuals do as good as the sighted and even more, show superior abilities in auditory, tactile and olfactory processing. This behavioural enhancement is accompanied with changes in occipital cortex function, where visual areas at different levels become responsive to non-visual information. The intact senses are in general used more efficiently in the blind but are also used more exclusively. New findings are disentangling these two aspects of compensatory plasticity. What is due to visual deprivation and what is dependent on the extended use of spared modalities? The latter seems to contribute highly to compensatory changes in the congenitally blind. Short term deprivation through the use of blindfolds shows that cortical excitability of the visual cortex is likely to show rapid modulatory changes after few minutes of light deprivation and therefore changes are possible in adulthood. However, reorganization remains more pronounced in the congenitally blind. Cortico-cortical pathways between visual areas and the areas of preserved sensory modalities are inhibited in the presence of vision, but are unmasked after loss of vision or blindfolding as a mechanism likely to drive cross-modal information to the deafferented visual cortex. Plasticity in the blind is also accompanied with neurochemical and morphological changes; both intrinsic connectivity and functional coupling at rest are altered but are likewise dependent on different sensory

  6. Effects of compensatory cognitive training intervention for breast cancer patients undergoing chemotherapy: a pilot study.

    Science.gov (United States)

    Park, Jin-Hee; Jung, Yong Sik; Kim, Ku Sang; Bae, Sun Hyoung

    2017-06-01

    Numerous breast cancer patients experience cognitive changes during and after chemotherapy. Chemotherapy-related cognitive impairment can significantly affect quality of life. This pilot study attempted to determine the effects of a compensatory cognitive training on the objective and subjective cognitive functioning of breast cancer patients receiving adjuvant chemotherapy. Fifty-four patients were assigned to either a compensatory cognitive training or waitlist condition. They were assessed at baseline (T1), the completion of the 12-week intervention (T2), and 6 months after intervention completion (T3). Outcomes were assessed using the standardized neuropsychological tests and the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog), version 3. Raw data were converted to T-scores based on baseline scores, and a repeated-measures ANCOVA, adjusting for age, intelligence, depression, and treatment, was used for analysis. The effect sizes for differences in means were calculated. The intervention group improved significantly over time compared to the waitlist group on objective cognitive function. Among ten individual neuropsychological measures, immediate memory, delayed memory, verbal fluency in category, and verbal fluency in letter showed significant group × time interaction. In subjective cognitive function, scores of the waitlist group significantly decrease over time on perceived cognitive impairments, in contrast to those of the intervention group. The 12-week compensatory cognitive training significantly improved the objective and subjective cognitive functioning of breast cancer patients. Because this was a pilot study, further research using a larger sample and longer follow-up durations is necessary.

  7. Balance perturbation system to improve balance compensatory responses during walking in old persons

    Directory of Open Access Journals (Sweden)

    Melzer Itshak

    2010-07-01

    Full Text Available Abstract Ageing commonly disrupts the balance control and compensatory postural responses that contribute to maintaining balance and preventing falls during perturbation of posture. This can lead to increased risk of falling in old adults (65 years old and over. Therefore, improving compensatory postural responses during walking is one of the goals in fall prevention programs. Training is often used to achieve this goal. Most fall prevention programs are usually directed towards improving voluntary postural control. Since compensatory postural responses triggered by a slip or a trip are not under direct volitional control these exercises are less expected to improve compensatory postural responses due to lack of training specificity. Thus, there is a need to investigate the use balance perturbations during walking to train more effectively compensatory postural reactions during walking. This paper describes the Balance Measure & Perturbation System (BaMPer System a system that provides small, controlled and unpredictable perturbations during treadmill walking providing valuable perturbation, which allows training compensatory postural responses during walking which thus hypothesize to improve compensatory postural responses in older adults.

  8. Clinical identification of compensatory structures on projective tests: a self psychological approach.

    Science.gov (United States)

    Silverstein, M L

    2001-06-01

    In this article I discuss compensatory structure, a concept from Kohut's (1971, 1977) psychology of the self that is not as familiar as Kohut's other views about the self. Compensatory structures are attempts to repair selfobject failure, usually by strengthening idealization or twinship in the face of mirroring deficits. Compensatory structures, particularly their early indications, can be detected on projective tests for identifying adaptive resources and treatment potential. The clinical identification of compensatory structures on test findings is described using Rorschach and Thematic Apperception Test (Murray, 1943) content. Particular attention is devoted to the 2-part process of demonstrating first, an injury to the self, and second, how attempts to recover from such injuries can be detected on projective tests. Clinical examples are provided, and the differentiation between compensatory structures and defenses and sublimation is discussed.

  9. Compensatory Measures in European Nature Conservation Law

    Directory of Open Access Journals (Sweden)

    Geert Van Hoorick

    2014-05-01

    Full Text Available The Birds and Habitats Directives are the cornerstones of EU nature conservation law, aiming at the conservation of the Natura 2000 network, a network of protected sites under these directives, and the protection of species. The protection regime for these sites and species is not absolute: Member States may, under certain conditions, allow plans or projects that can have an adverse impact on nature. In this case compensatory measures can play an important role in safeguarding the Natura 2000 network and ensuring the survival of the protected species.This contribution analyses whether taking compensatory measures is always obligatory, and discusses the aim and the characteristics of compensatory measures, in relation to other kinds of measures such as mitigation measures, usual nature conservation measures, and former nature development measures, and to the assessment of the adverse impact caused by the plan or project and of the alternative solutions. The questions will be discussed in light of the contents of the legislation, the guidance and practice by the European Commission, (legal doctrine and case law, mainly of the Court of Justice of the European Union.

  10. Homeostasis, inflammation, and disease susceptibility.

    Science.gov (United States)

    Kotas, Maya E; Medzhitov, Ruslan

    2015-02-26

    While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Identifying compensatory movement patterns in the upper extremity using a wearable sensor system.

    Science.gov (United States)

    Ranganathan, Rajiv; Wang, Rui; Dong, Bo; Biswas, Subir

    2017-11-30

    Movement impairments such as those due to stroke often result in the nervous system adopting atypical movements to compensate for movement deficits. Monitoring these compensatory patterns is critical for improving functional outcomes during rehabilitation. The purpose of this study was to test the feasibility and validity of a wearable sensor system for detecting compensatory trunk kinematics during activities of daily living. Participants with no history of neurological impairments performed reaching and manipulation tasks with their upper extremity, and their movements were recorded by a wearable sensor system and validated using a motion capture system. Compensatory movements of the trunk were induced using a brace that limited range of motion at the elbow. Our results showed that the elbow brace elicited compensatory movements of the trunk during reaching tasks but not manipulation tasks, and that a wearable sensor system with two sensors could reliably classify compensatory movements (~90% accuracy). These results show the potential of the wearable system to assess and monitor compensatory movements outside of a lab setting.

  12. Web-based survey design for unravelling semi-compensatory choice in transport and urban planning

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Bekhor, Shlomo; Shiftan, Yoram

    2012-01-01

    The estimation of semi-compensatory models is gaining momentum in transport planning in recent years. However, traditional survey methodologies focus on collecting solely compensatory choice data, which leads to information loss when semi-compensatory models are estimated. The present study...

  13. Effect of pain and analgesia on compensatory reserve.

    Science.gov (United States)

    Hinojosa-Laborde, Carmen; Fernandez, Jessie Renee D; Muniz, Gary W; Nawn, Corinne D; Burns, Rebecca K; Le, Thuan H; Porter, Kathy B; Hardy, John T; Convertino, Victor A

    2017-07-01

    The measurement of the body's capacity to compensate for reduced blood volume can be assessed with a compensatory reserve measurement (CRM). The CRM, which is calculated from changes in features of the arterial waveform, represents the integration of compensatory mechanisms during states of low tissue perfusion and oxygenation, such as hemorrhage. This study was designed to test the hypothesis that pain which activates compensatory mechanisms and analgesia that result in reduced blood pressure are associated with lower compensatory reserve. This study evaluated CRM in obstetric patients during labor as pain intensity increased from no pain to severe pain and compared CRM before and after epidural anesthesia. CRM was calculated from a finger pulse oximeter placed on the patient's index finger and connected to the DataOx monitor in healthy pregnant women (n = 20) before and during the active labor phase of childbirth. As pain intensity, based on an 11-point scale (0, no pain; 10, worst pain), increased from 0 to 8.4 ± 0.9 (mean ± SD), CRM was not affected (81 ± 10% to 82 ± 13%). Before analgesia, CRM was 84 ± 10%. CRM at 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, and 60 minutes after analgesia was 82 ± 11%, 83 ± 14%, 83 ± 15%, 86 ± 12%, 89 ± 9%, and 87 ± 10%, respectively. There was a transient 2% reduction followed by a 5% increase in CRM from before to after epidural anesthesia (p = 0.048). Pain scores before and after analgesia were 7 ± 2 and 1 ± 1, respectively (p < 0.001). These results indicate that pain and analgesia contribute minimally, but independently to the reduction in compensatory reserve associated with trauma and hemorrhage. As such, our findings suggest that analgesia can be safely administered on the battlefield while maintaining the maximal capacity of mechanisms to compensate for blood loss. Diagnostic study, level II.

  14. Why Do Drivers Use Mobile Phones While Driving? The Contribution of Compensatory Beliefs

    Science.gov (United States)

    Zhou, Ronggang; Yu, Mengli; Wang, Xinyi

    2016-01-01

    The current study is the first to investigate the contribution of compensatory beliefs (i.e., the belief that the negative effects of an unsafe behavior can be "neutralized" by engaging in another safe behavior; e.g., "I can use a mobile phone now because I will slow down ") on drivers’ mobile phone use while driving. The effects of drivers’ personal characteristics on compensatory beliefs, mobile phone use and self-regulatory behaviors were also examined. A series of questions were administered to drivers, which included (1) personal measures, (2) scales that measured compensatory beliefs generally in substance use and with regard to driving safety, and (3) questions to measure drivers’ previous primary mobile phone usage and corresponding self-regulatory actions. Overall, drivers reported a low likelihood of compensatory beliefs, prior mobile phone use, and a strong frequency of self-regulatory behaviors. Respondents who had a higher tendency toward compensatory beliefs reported more incidents or crash involvement caused by making or answering calls and sending or reading messages. The findings provide strong support for the contribution of compensatory beliefs in predicting mobile phone usage in the context of driving. Compensatory beliefs can explain 41% and 43% of the variance in the active activities of making calls and texting/sending messages compared with 18% and 31% of the variance in the passive activities of answering calls and reading messages. Among the regression models for predicting self-regulatory behaviors at the tactical or operational level, compensatory beliefs emerge as significant predictors only in predicting shorter conversations while on a call. The findings and limitations of the current study are discussed. PMID:27494524

  15. Why Do Drivers Use Mobile Phones While Driving? The Contribution of Compensatory Beliefs.

    Directory of Open Access Journals (Sweden)

    Ronggang Zhou

    Full Text Available The current study is the first to investigate the contribution of compensatory beliefs (i.e., the belief that the negative effects of an unsafe behavior can be "neutralized" by engaging in another safe behavior; e.g., "I can use a mobile phone now because I will slow down " on drivers' mobile phone use while driving. The effects of drivers' personal characteristics on compensatory beliefs, mobile phone use and self-regulatory behaviors were also examined. A series of questions were administered to drivers, which included (1 personal measures, (2 scales that measured compensatory beliefs generally in substance use and with regard to driving safety, and (3 questions to measure drivers' previous primary mobile phone usage and corresponding self-regulatory actions. Overall, drivers reported a low likelihood of compensatory beliefs, prior mobile phone use, and a strong frequency of self-regulatory behaviors. Respondents who had a higher tendency toward compensatory beliefs reported more incidents or crash involvement caused by making or answering calls and sending or reading messages. The findings provide strong support for the contribution of compensatory beliefs in predicting mobile phone usage in the context of driving. Compensatory beliefs can explain 41% and 43% of the variance in the active activities of making calls and texting/sending messages compared with 18% and 31% of the variance in the passive activities of answering calls and reading messages. Among the regression models for predicting self-regulatory behaviors at the tactical or operational level, compensatory beliefs emerge as significant predictors only in predicting shorter conversations while on a call. The findings and limitations of the current study are discussed.

  16. Why Do Drivers Use Mobile Phones While Driving? The Contribution of Compensatory Beliefs.

    Science.gov (United States)

    Zhou, Ronggang; Yu, Mengli; Wang, Xinyi

    2016-01-01

    The current study is the first to investigate the contribution of compensatory beliefs (i.e., the belief that the negative effects of an unsafe behavior can be "neutralized" by engaging in another safe behavior; e.g., "I can use a mobile phone now because I will slow down ") on drivers' mobile phone use while driving. The effects of drivers' personal characteristics on compensatory beliefs, mobile phone use and self-regulatory behaviors were also examined. A series of questions were administered to drivers, which included (1) personal measures, (2) scales that measured compensatory beliefs generally in substance use and with regard to driving safety, and (3) questions to measure drivers' previous primary mobile phone usage and corresponding self-regulatory actions. Overall, drivers reported a low likelihood of compensatory beliefs, prior mobile phone use, and a strong frequency of self-regulatory behaviors. Respondents who had a higher tendency toward compensatory beliefs reported more incidents or crash involvement caused by making or answering calls and sending or reading messages. The findings provide strong support for the contribution of compensatory beliefs in predicting mobile phone usage in the context of driving. Compensatory beliefs can explain 41% and 43% of the variance in the active activities of making calls and texting/sending messages compared with 18% and 31% of the variance in the passive activities of answering calls and reading messages. Among the regression models for predicting self-regulatory behaviors at the tactical or operational level, compensatory beliefs emerge as significant predictors only in predicting shorter conversations while on a call. The findings and limitations of the current study are discussed.

  17. Notification: Review of Religious Compensatory Time

    Science.gov (United States)

    Project #OA-FY15-0180, August 5, 2015. The Office of Inspector General (OIG) for the U.S. Environmental Protection Agency (EPA) plans to begin field work on our audit of the EPA’s practices, policies and procedures for religious compensatory time.

  18. Compensatory movements during functional activities in ambulatory children with Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Joyce Martini

    2014-01-01

    Full Text Available Objective: During the transitional phase (ambulatory to non-ambulatory, synergies characterize the evolution of Duchenne muscular dystrophy (DMD. This study was performed to describe and quantify compensatory movements while sitting down on/rising from the floor and climbing up/down steps. Method: Eighty videos (5 children × 4 assessments × 4 tasks were recorded quarterly in the year prior to gait loss. Compensatory movements from the videos were registered based on the Functional Evaluation Scale for DMD. Results: The most frequently observed compensatory movements were upper limb support on lower limbs/floor/handrail during all the tasks and lumbar hyperlordosis, trunk support on handrail, equinus foot, increased base of support, non-alternated descent, and pauses while climbing up/down steps. Conclusion: Climbing up/down steps showed a higher number of compensatory movements than sitting down on/rising from the floor, which seemed to be lost before climbing up/down steps in ambulatory children with DMD.

  19. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    International Nuclear Information System (INIS)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P.

    2015-01-01

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [ 11 C]PIB and [ 18 F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [ 11 C]PIB or [ 18 F]FDG PET scans. The [ 11 C]PIB PET scans were quantified using [ 11 C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  20. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Brain Sciences, London (United Kingdom)

    2014-09-30

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [{sup 11}C]PIB and [{sup 18}F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [{sup 11}C]PIB or [{sup 18}F]FDG PET scans. The [{sup 11}C]PIB PET scans were quantified using [{sup 11}C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  1. Peculiarities of adaptive and compensatory abilities of the modern pupils

    Directory of Open Access Journals (Sweden)

    Тетяна Володимирівна Фролова

    2015-06-01

    Full Text Available In conditions of an intense functioning of child organism an influence of unfavorable factors can result into breakdown of adaptive and compensatory mechanisms and to become a presupposition for forming pathology.Aim: to define peculiarities of adaptive and compensatory abilities of school-aged children during the school year.Methods. 970 children 9-17 years old were examined at the beginning and at the end of school year. Children were divided in 2 groups: I – 673 children with chronic somatic diseases, II – 297 conventionally healthy children.The study of adaptive and compensatory mechanisms was carried out with a glance to vegetative regulation of body functions. Robinson index (IR was used for an express-assessment of somatic health. Statistic data-processing was done according to the requirements of evidence-based medicine.Result. An analysis of an examination results at the beginning of the school year showed that the pupils of the I group have a complex disturbances of vegetative regulation, low level of aerobic abilities of organism. Among the children of the II group no more than 25% have a satisfactory state of adaptive and compensatory mechanisms that ensure an adequate response of child organism on the stress factors of educational process.At the end of the school year the part of children who have a balanced level of neuroreflex systems of organism decreases by 50%, the number of children with an overstrain of regulatory systems of organism increases by 28%, with unsatisfactory state of adaptive and compensatory mechanisms – by 22% that becomes presupposition for formation and chronization of somatic pathology.An examination of pupils health level at the end of the school year showed that the number of conventionally healthy children decreases by 19,2%. The syntropy of pathological states formed in 54,2% of pupils with chronic somatic pathology, in 34,5% of children the functional disturbance transformed into somatic pathology

  2. Compensatory function of crime fiction texts in mass culture

    Directory of Open Access Journals (Sweden)

    G. O. Krapivnyk

    2014-09-01

    Full Text Available Philosophical and anthropological analysis allowed to confirm that the compensatory function is one of the basic functions of formulaic crime fiction texts in mass culture. It closely interacts and has no clear borderlines with other anthropological functions of the crime fiction genre. Structuring and systematizing human consciousness, entertaining and educating the recipient, the compensatory function positively influences the addresser, the addressee and the modern society. In the mass culture the function under consideration has a number of aspects, in particular, therapeutic, entertaining, educating etc. It transforms into a mechanism of regulating mental state when life processes are becoming more complicated and human psyche needs regular training and relaxation (including the creation of virtual situations in the crime fiction world, associated with crime, violence, aggression and their effects for all the related parties. However, the compensatory function of crime fiction texts also follows classical traditions, oriented on rationalism and enlightenment, as well as encourages regulation of moral and legal state system in the times of Modernity and Postmodernity, that is promotes moral and legal culture in the society.

  3. Compensatory mechanisms activated with intermittent energy restriction

    DEFF Research Database (Denmark)

    Coutinho, Sílvia Ribeiro; Halset, Eline Holli; Gåsbakk, Sigrid

    2018-01-01

    Background & aims: Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy...... restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. Methods: 35 adults (age......: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m2) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting...

  4. A Compensatory Control Account of Meritocracy

    Directory of Open Access Journals (Sweden)

    Chris Goode

    2014-12-01

    Full Text Available Why are people motivated to support social systems that claim to distribute resources based on hard work and effort, even when those systems seem unfair? Recent research on compensatory control shows that lowered perceptions of personal control motivate a greater endorsement of external systems (e.g., God, government that compensate for a lack of personal control. The present studies demonstrate that U.S. citizens’ faith in a popular economic ideology, namely the belief that hard work guarantees success (i.e., meritocracy, similarly increases under conditions of decreased personal control. We found that a threat to personal control increased participants’ endorsement of meritocracy (Studies 1 and 2. Additionally, lowered perceptions of control led to increased feelings of anxiety regarding the future, but the subsequent endorsement of (Study 2 or exposure to (Study 3 meritocracy attenuated this effect. While the compensatory use of meritocracy may be a phenomenon unique to the United States of America, these studies provide important insight into the appeal and persistence of ideologies in general.

  5. Identifying compensatory driving behavior among older adults using the situational avoidance questionnaire.

    Science.gov (United States)

    Davis, Jessica J; Conlon, Elizabeth G

    2017-12-01

    Driving self-regulation is considered a means through which older drivers can compensate for perceived declines in driving skill or more general feelings of discomfort on the road. One form of driving self-regulation is situational avoidance, the purposeful avoidance of situations perceived as challenging or potentially hazardous. This study aimed to validate the Situational Avoidance Questionnaire (SAQ, Davis, Conlon, Ownsworth, & Morrissey, 2016) and identify the point on the scale at which drivers practicing compensatory avoidance behavior could be distinguished from those whose driving is unrestricted, or who are avoiding situations for other, non-compensatory reasons (e.g., time or convenience). Seventy-nine Australian drivers (M age =71.48, SD=7.16, range: 55 to 86years) completed the SAQ and were classified as a compensatory-restricted or a non-restricted driver based on a semi-structured interview designed to assess the motivations underlying avoidance behavior reported on the SAQ. Using receiver-operator characteristic (ROC) analysis, the SAQ was found to have high diagnostic accuracy (sensitivity: 85%, specificity: 82%) in correctly classifying the driver groups. Group comparisons confirmed that compensatory-restricted drivers were self-regulating their driving behavior to reduce the perceived demands of the driving task. This group had, on average, slower hazard perception reaction times, and reported greater difficulty with driving, more discomfort when driving due to difficulty with hazard perception skills, and greater changes in cognition over the past five years. The SAQ is a psychometrically sound measure of situational avoidance for drivers in baby boomer and older adult generations. Use of validated measures of driving self-regulation that distinguish between compensatory and non-compensatory behavior, such as the SAQ, will advance our understanding of the driving self-regulation construct and its potential safety benefits for older road users

  6. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  7. Compensatory neurofuzzy model for discrete data classification in biomedical

    Science.gov (United States)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  8. Social impairment in conversation: disfluency and compensatory mechanisms

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Lambrechts, Anna; Weed, Ethan

    . Using simple measures of conversational turn-taking, we ask the following questions: i) How does autistic social impairment manifest itself in conversations? ii) How does the interlocutor react? iii) Are these dynamics related to specific clinical features? Methods: 17 ASD and 17 matched Typically...... of interactions with adults with ASD will help us understand how social impairment affects the life of people with ASD and which compensatory mechanisms can be used to minimize its effects. Objectives: We want to develop automated quantitative methods to assess dysfluency and compensatory dynamics in conversation......Background: Social impairment is a defining clinical feature of ASD. However, little is known about how it concretely unfolds during social exchanges: how interlocutors pick up and react to disfluency, and how patterns of interaction are affected. A better understanding of the dynamics...

  9. Compensatory growth assessment by plasma IGF-I hormone ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... feeding diets and regimes will be evaluated in future studies. Key words: Compensatory growth, food coefficient ratio, food intake, IGF-I, rainbow trout, special growth .... Blood was sampled for IGF-I hormone concentration.

  10. Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease.

    Science.gov (United States)

    Arkadir, David; Bergman, Hagai; Fahn, Stanley

    2014-03-25

    Neurodegenerative diseases become clinically apparent only after a substantial population of neurons is lost. This raises the possibility of compensatory mechanisms in the early phase of these diseases. The importance of understanding these mechanisms cannot be underestimated because it may guide future disease-modifying strategies. Because the anatomy and physiology of the nigrostriatal dopaminergic pathways have been well described, the study of Parkinson disease can offer insight into these early compensatory mechanisms. Collateral axonal sprouting of dopaminergic terminals into the denervated striatum is the most studied compensatory mechanism in animal (almost exclusively rodent) models of Parkinson disease and is correlated with behavioral recovery after partial lesions. This sprouting, however, does not respect the normal anatomy of the original nigrostriatal pathways and leads to aberrant neuronal networks. We suggest here that the unique physiologic property of the dopaminergic innervation of the striatum, namely redundancy of information encoding, is crucial to the efficacy of compensatory axonal sprouting in the presence of aberrant anatomical connections. Redundant information encoding results from the similarity of representation of salient and rewarding events by many dopaminergic neurons, from the wide axonal field of a single dopaminergic neuron in the striatum, and from the nonspecific spatial effect of dopamine on striatal neurons (volume conductance). Finally, we discuss the relevance of these findings in animal models to human patients with Parkinson disease.

  11. Border tax adjustments for additional costs engendered by internal and EU environmental protection measures. Implementation options and WTO admissibility; Grenzsteuerausgleich fuer Mehrkosten infolge nationaler/europaeischer Umweltschutzinstrumente. Gestaltungsmoeglichkeiten und WTO-rechtliche Zulaessigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Jacqueline; Berg, Holger (comps.)

    2008-04-15

    At the end of the year 2006, France proposed the introduction of a 'climatic tariff' into the discussion of the international climatic protection. The 'climatic tariff' shall adjust extra costs, which result from the domestic production by means of environmental protection instruments and to which the import goods are not exposed, with import/export compensatory payments in the form of import duties and/or taxes on import goods. The introduction of an import/export compensatory payment system aims to load imported goods equivalent to domestic products in order to adjust competitive disadvantages. In the contribution under consideration the authors report on possibilities and problems of design for an import/export tax compensatory. The authors examine the validity of the measures of import/export compensation from legal view the World Trade Organization (Geneva, Switzerland) based on the General Agreement on Tariffs and Trade.

  12. LA LÓGICA DIFUSA COMPENSATORIA / THE COMPENSATORY FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Jesús Cejas-Montero

    2011-06-01

    Full Text Available

    La Lógica Difusa Compensatoria es un modelo lógico que permite la modelación simultánea de los procesos deductivos y de toma de decisiones. Sus características más importantes son: la flexibilidad, la tolerancia con la imprecisión, la capacidad para moldear problemas no-lineales y su fundamento en el lenguaje de sentido común. El artículo pretende llevar a la comunidad académico-empresarial las ideas fundamentales de la Lógica Difusa Compensatoria, ilustrándola en sus posibles campos de aplicación para lograr la competitividad de una organización.

    Abstract

    The Compensatory Fuzzy Logic is a logical model that allows the simultaneous modeling of the deductive and decision-making processes. The most important characteristics of Compensatory Fuzzy Logic are: the flexibility, the tolerance with the inaccuracy, the capacity to model no-lineal problems and its foundation in the language of common sense. The article seeks to bring the basic ideas of the Compensatory Fuzzy Logic to the academic–managerial community, illustrating it in its possible fields of application, in order to achieve the competitiveness of an organization.

  13. Compensatory Self-Presentation in Upward Comparison Situations

    Science.gov (United States)

    Tyler, James M.

    2009-01-01

    This article focuses on the communication of compensatory self-presentations (CSP) (i.e., self-presentations that people engage in after publicly receiving unfavorable feedback), with prior work showing that people prudently constrain CSP to areas unrelated (vs. related) to the initial feedback. With the current project we examine the influence…

  14. The role of cognitive reserve and memory self-efficacy in compensatory strategy use: A structural equation approach.

    Science.gov (United States)

    Simon, Christa; Schmitter-Edgecombe, Maureen

    2016-08-01

    The use of compensatory strategies plays an important role in the ability of older adults to adapt to late-life memory changes. Even with the benefits associated with compensatory strategy use, little research has explored specific mechanisms associated with memory performance and compensatory strategies. Rather than an individual's objective memory performance directly predicting their use of compensatory strategies, it is possible that some other variables are indirectly influencing that relationship. The purpose of this study was to: (a) examine the moderating effects of cognitive reserve (CR) and (b) evaluate the potential mediating effects of memory self-efficacy on the relationship between objective memory performance and compensatory strategy use. Two structural equation models (SEM) were used to evaluate CR (latent moderator model) and memory self-efficacy (mediator model) in a sample of 155 community-dwelling older adults over the age of 55. The latent variable moderator model indicated that CR was not substantiated as a moderator variable in this sample (p = .861). However, memory self-efficacy significantly mediated the association between objective memory performance and compensatory strategy use (β = .22, 95% confidence interval, CI [.002, .437]). More specifically, better objective memory was associated with lower compensatory strategy use because of its relation to higher memory self-efficacy. These findings provide initial support for an explanatory framework of the relation between objective memory and compensatory strategy use in a healthy older adult population by identifying the importance of an individual's memory perceptions.

  15. The actin-binding protein profilin 2 is a novel regulator of iron homeostasis.

    Science.gov (United States)

    Luscieti, Sara; Galy, Bruno; Gutierrez, Lucia; Reinke, Michael; Couso, Jorge; Shvartsman, Maya; Di Pascale, Antonio; Witke, Walter; Hentze, Matthias W; Pilo Boyl, Pietro; Sanchez, Mayka

    2017-10-26

    Cellular iron homeostasis is controlled by the iron regulatory proteins (IRPs) 1 and 2 that bind cis -regulatory iron-responsive elements (IRE) on target messenger RNAs (mRNA). We identified profilin 2 ( Pfn2 ) mRNA, which encodes an actin-binding protein involved in endocytosis and neurotransmitter release, as a novel IRP-interacting transcript, and studied its role in iron metabolism. A combination of electrophoretic mobility shift assay experiments and bioinformatic analyses led to the identification of an atypical and conserved IRE in the 3' untranslated region of Pfn2 mRNA. Pfn2 mRNA levels were significantly reduced in duodenal samples from mice with intestinal IRP ablation, suggesting that IRPs exert a positive effect on Pfn2 mRNA expression in vivo. Overexpression of Pfn2 in HeLa and Hepa1-6 cells reduced their metabolically active iron pool. Importantly, Pfn2-deficient mice showed iron accumulation in discrete areas of the brain (olfactory bulb, hippocampus, and midbrain) and reduction of the hepatic iron store without anemia. Despite low liver iron levels, hepatic hepcidin expression remained high, likely because of compensatory activation of hepcidin by mild inflammation. Splenic ferroportin was increased probably to sustain hematopoiesis. Overall, our results indicate that Pfn2 expression is controlled by the IRPs in vivo and that Pfn2 contributes to maintaining iron homeostasis in cell lines and mice. © 2017 by The American Society of Hematology.

  16. 78 FR 53695 - Compensatory Time Off for Religious Observances and Other Miscellaneous Changes

    Science.gov (United States)

    2013-08-30

    ... overtime work is deemed to include (1) work performed by a part-time employee outside of his or her...) the employee plans to perform overtime work to earn religious compensatory time off to make up for the... employee uses religious compensatory time off prior to earning it (i.e., spending an equal amount of time...

  17. 40 CFR 230.93 - General compensatory mitigation requirements.

    Science.gov (United States)

    2010-07-01

    ... planning and scientific expertise (which often is not practical for permittee-responsible compensatory... using the methods of restoration, enhancement, establishment, and in certain circumstances preservation..., relationships to hydrologic sources (including the availability of water rights), trends in land use, ecological...

  18. Compensatory growth following transient intraguild predation risk in predatory mites.

    Science.gov (United States)

    Walzer, Andreas; Lepp, Natalia; Schausberger, Peter

    2015-05-01

    Compensatory or catch-up growth following growth impairment caused by transient environmental stress, due to adverse abiotic factors or food, is widespread in animals. Such growth strategies commonly balance retarded development and reduced growth. They depend on the type of stressor but are unknown for predation risk, a prime selective force shaping life history. Anti-predator behaviours by immature prey typically come at the cost of reduced growth rates with potential negative consequences on age and size at maturity. Here, we investigated the hypothesis that transient intraguild predation (IGP) risk induces compensatory or catch-up growth in the plant-inhabiting predatory mite Phytoseiulus persimilis . Immature P. persimilis were exposed in the larval stage to no, low or high IGP risk, and kept under benign conditions in the next developmental stage, the protonymph. High but not low IGP risk prolonged development of P. persimilis larvae, which was compensated in the protonymphal stage by increased foraging activity and accelerated development, resulting in optimal age and size at maturity. Our study provides the first experimental evidence that prey may balance developmental costs accruing from anti-predator behaviour by compensatory growth.

  19. Determination of glucose deficiency-induced cell death by mitochondrial ATP generation-driven proton homeostasis

    Institute of Scientific and Technical Information of China (English)

    Yanfen Cui; Yuanyuan Wang; Miao Liu; Li Qiu; Pan Xing; Xin Wang; Guoguang Ying; Binghui Li

    2017-01-01

    Glucose is one of major nutrients and its catabolism provides energy and/or building bricks for cell proliferation.Glucose deficiency results in cell death.However,the underlying mechanism still remains elusive.By using our recently developed method to monitor real-time cellular apoptosis and necrosis,we show that glucose deprivation can directly elicit necrosis,which is promoted by mitochondrial impairment,depending on mitochondrial adenosine triphosphate (ATP) generation instead of ATP depletion.We demonstrate that glucose metabolism is the major source to produce protons.Glucose deficiency leads to lack of proton provision while mitochondrial electron transfer chain continues consuming protons to generate energy,which provokes a compensatory iysosomal proton effiux and resultant increased lysosomal pH.This lysosomal alkalinization can trigger apoptosis or necrosis depending on the extent of alkalinization.Taken together,our results build up a metabolic connection between glycolysis,mitochondrion,and lysosome,and reveal an essential role of glucose metabolism in maintaining proton homeostasis to support cell survival.

  20. Synthesis of Research on Compensatory and Remedial Education.

    Science.gov (United States)

    Anderson, Lorin W.; Pellicer, Leonard O.

    1990-01-01

    Current Chapter 1 remedial and compensatory education programs may not be worth the substantial funds being poured into them. To address shortcomings, such programs should be upgraded, reconceptualized as educational (not funding) programs, and fully integrated into the total school program. Includes 14 references. (MLH)

  1. Localization and stretch-dependence of lung elastase activity in development and compensatory growth.

    Science.gov (United States)

    Young, Sarah Marie; Liu, Sheng; Joshi, Rashika; Batie, Matthew R; Kofron, Matthew; Guo, Jinbang; Woods, Jason C; Varisco, Brian Michael

    2015-04-01

    Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation. Copyright © 2015 the American Physiological Society.

  2. Comparative analysis of the mechanical signals in lung development and compensatory growth.

    Science.gov (United States)

    Hsia, Connie C W

    2017-03-01

    This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.

  3. Comparison of compensatory reserve during lower-body negative pressure and hemorrhage in nonhuman primates.

    Science.gov (United States)

    Hinojosa-Laborde, Carmen; Howard, Jeffrey T; Mulligan, Jane; Grudic, Greg Z; Convertino, Victor A

    2016-06-01

    Compensatory reserve was measured in baboons (n = 13) during hemorrhage (Hem) and lower-body negative pressure (LBNP) using a machine-learning algorithm developed to estimate compensatory reserve by detecting reductions in central blood volume during LBNP. The algorithm calculates compensatory reserve index (CRI) from normovolemia (CRI = 1) to cardiovascular decompensation (CRI = 0). The hypothesis was that Hem and LBNP will elicit similar CRI values and that CRI would have higher specificity than stroke volume (SV) in predicting decompensation. Blood was removed in four steps: 6.25%, 12.5%, 18.75%, and 25% of total blood volume. Four weeks after Hem, the same animals were subjected to four levels of LBNP that was matched on the basis of their central venous pressure. Data (mean ± 95% confidence interval) indicate that CRI decreased (P AUC in Hem (0.94 vs. 0.84) and LBNP (0.94 vs. 0.92). These data support the hypothesis that Hem and LBNP elicited the same CRI response, suggesting that measurement of compensatory reserve is superior to SV as a predictor of cardiovascular decompensation.

  4. The role of compensatory mutations in the emergence of drug resistance.

    Directory of Open Access Journals (Sweden)

    Andreas Handel

    2006-10-01

    Full Text Available Pathogens that evolve resistance to drugs usually have reduced fitness. However, mutations that largely compensate for this reduction in fitness often arise. We investigate how these compensatory mutations affect population-wide resistance emergence as a function of drug treatment. Using a model of gonorrhea transmission dynamics, we obtain generally applicable, qualitative results that show how compensatory mutations lead to more likely and faster resistance emergence. We further show that resistance emergence depends on the level of drug use in a strongly nonlinear fashion. We also discuss what data need to be obtained to allow future quantitative predictions of resistance emergence.

  5. A compensatory role for declarative memory in neurodevelopmental disorders

    Science.gov (United States)

    Ullman, Michael T.; Pullman, Mariel Y.

    2015-01-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional, and because this system can learn and retain numerous types of information, functions, and tasks, it should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. PMID:25597655

  6. Cerebral pathological and compensatory mechanisms in the premotor phase of leucine-rich repeat kinase 2 parkinsonism

    NARCIS (Netherlands)

    Nuenen, B.F.L. van; Helmich, R.C.G.; Ferraye, M.U.; Thaler, A.; Hendler, T.; Orr-Urtreger, A.; Mirelman, A.; Bressman, S.; Marder, K.S.; Giladi, N.; Warrenburg, B.P.C. van de; Bloem, B.R.; Toni, I.

    2012-01-01

    Compensatory cerebral mechanisms can delay motor symptom onset in Parkinson's disease. We aim to characterize these compensatory mechanisms and early disease-related changes by quantifying movement-related cerebral function in subjects at significantly increased risk of developing Parkinson's

  7. Balance perturbation system to improve balance compensatory responses during walking in old persons

    OpenAIRE

    Shapiro, Amir; Melzer, Itshak

    2010-01-01

    Abstract Ageing commonly disrupts the balance control and compensatory postural responses that contribute to maintaining balance and preventing falls during perturbation of posture. This can lead to increased risk of falling in old adults (65 years old and over). Therefore, improving compensatory postural responses during walking is one of the goals in fall prevention programs. Training is often used to achieve this goal. Most fall prevention programs are usually directed towards improving vo...

  8. Age-related changes in compensatory stepping in response to unpredictable perturbations.

    Science.gov (United States)

    McIlroy, W E; Maki, B E

    1996-11-01

    Recent studies highlight the importance of compensatory stepping to preserve stability, and the spatial and temporal demands placed on the control of this reaction. Age-related changes in the control of stepping could greatly influence the risk of falling. The present study compares, in healthy elderly and young adults, the characteristics of compensatory stepping responses to unpredictable postural perturbations. A moving platform was used to unpredictably perturb the upright stance of 14 naive, active and mobile subjects (5 aged 22 to 28 and 9 aged 65 to 81). The first 10 randomized trials (5 forward and 5 backward) were evaluated to allow a focus on reactions to relatively novel perturbations. The behavior of the subjects was not constrained. Forceplate and kinematic measures were used to evaluate the responses evoked by the brief (600 msec) platform translation. Subjects stepped in 98% of the trials. Although the elderly were less likely to execute a lateral anticipatory postural adjustment prior to foot-lift, the onset of swing-leg unloading tended to begin at the same time in the two age groups. There was remarkable similarity between the young and elderly in many other characteristics of the first step of the response. In spite of this similarity, the elderly subjects were twice as likely to take additional steps to regain stability (63% of trials for elderly). Moreover, in elderly subjects, the additional steps were often directed so as to preserve lateral stability, whereas the young rarely showed this tendency. Given the functional significance of base-of-support changes as a strategy for preserving stability and the age-related differences presently revealed, assessment of the capacity to preserve stability against unpredictable perturbation, and specific measures such as the occurrence or placement of multiple steps, may prove to be a significant predictor of falling risk and an important outcome in evaluating or developing intervention strategies to

  9. Postural inflexibility in PD: does it affect compensatory stepping?

    NARCIS (Netherlands)

    Smulders, K.; Esselink, R.A.J.; Swart, B.J.M. de; Geurts, A.C.H.; Bloem, B.R.; Weerdesteyn, V.G.M.

    2014-01-01

    Parkinson's disease (PD) impairs the ability to shape postural responses to contextual factors. It is unknown whether such inflexibility pertains to compensatory steps to overcome balance perturbations. Participants were instructed to recover balance in response to a platform translation. A step was

  10. Exit, voice, and disappointment: mountain decline and EU compensatory rural policy in Spain.

    Science.gov (United States)

    Collantes, Fernando

    2010-01-01

    The article analyses the Spanish experience of EU compensatory rural policy in order to contribute to broader debates on the effectiveness of this kind of policy and the role of agriculture in the definition of European rural policies. In the case of Spain, compensatory allowances to mainly mountain farmers had little effect on economic trajectories or social cohesion because of the small sums involved, the exclusion of those with very small farms, and the decreasing role of agriculture in the rural economy. Other, more structural, instruments of rural policy focused on small-scale promotion of business growth but were ill-equipped to challenge some of the territorially defined items of living standard gaps. A historically grounded analysis suggests that the main changes in the social trajectory of Spain's mountain areas in the last decades have little to do with compensatory policy and are related to ordinary economic dynamics.

  11. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study

    International Nuclear Information System (INIS)

    Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza; Lu, Ying; Vahter, Marie

    2016-01-01

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5–1660 μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D 3 , serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25 μg/L (range 1.9–145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D 3 (−6.1 nmol/L [95%CI −9.5; −2.6] for a 25 μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D 3 . In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30 nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25 μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. - Highlights: • Elevated drinking water lithium (Li) concentrations are increasingly reported. • We studied a Li

  12. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study

    Energy Technology Data Exchange (ETDEWEB)

    Harari, Florencia [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Åkesson, Agneta [Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Casimiro, Esperanza [Atención Primaria de la Salud, Área Operativa XXIX, Hospital Dr. Nicolás Cayetano Pagano, San Antonio de los Cobres, Salta (Argentina); Lu, Ying [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Vahter, Marie, E-mail: Marie.Vahter@ki.se [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)

    2016-05-15

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5–1660 μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D{sub 3}, serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25 μg/L (range 1.9–145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D{sub 3} (−6.1 nmol/L [95%CI −9.5; −2.6] for a 25 μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D{sub 3}. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30 nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25 μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. - Highlights: • Elevated drinking water lithium (Li) concentrations are increasingly reported. • We studied a Li

  13. Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian.

    Science.gov (United States)

    Murillo-Rincón, Andrea P; Kolter, Nora A; Laurila, Anssi; Orizaola, Germán

    2017-01-01

    In seasonal environments, modifications in the phenology of life-history events can alter the strength of time constraints experienced by organisms. Offspring can compensate for a change in timing of hatching by modifying their growth and development trajectories. However, intra- and interspecific interactions may affect these compensatory responses, in particular if differences in phenology between cohorts lead to significant priority effects (i.e. the competitive advantage that early-hatching individuals have over late-hatching ones). Here, we conducted a factorial experiment to determine whether intraspecific priority effects can alter compensatory phenotypic responses to hatching delay in a synchronic breeder by rearing moor frog (Rana arvalis) tadpoles in different combinations of phenological delay and food abundance. Tadpoles compensated for the hatching delay by speeding up their development, but only when reared in groups of individuals with identical hatching phenology. In mixed phenology groups, strong competitive effects by non-delayed tadpoles prevented the compensatory responses and delayed larvae metamorphosed later than in single phenology treatments. Non-delayed individuals gained advantage from developing with delayed larvae by increasing their developmental and growth rates as compared to single phenology groups. Food shortage prolonged larval period and reduced mass at metamorphosis in all treatments, but it did not prevent compensatory developmental responses in larvae reared in single phenology groups. This study demonstrates that strong intraspecific priority effects can constrain the compensatory growth and developmental responses to phenological change, and that priority effects can be an important factor explaining the maintenance of synchronic life histories (i.e. explosive breeding) in seasonal environments. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  14. Mode choice models' ability to express intention to change travel behaviour considering non-compensatory rules and latent variables

    Directory of Open Access Journals (Sweden)

    Nobuhiro Sanko

    2013-03-01

    Full Text Available Disaggregate behaviour choice models have been improved in many aspects, but they are rarely evaluated from the viewpoint of their ability to express intention to change travel behaviour. This study compared various models, including objective and latent models and compensatory and non-compensatory decision-making models. Latent models contain latent factors calculated using the LISREL (linear structural relations model. Non-compensatory models are based on a lexicographic-semiorder heuristic. This paper proposes ‘probability increment’ and ‘joint probability increment’ as indicators for evaluating the ability of these models to express intention to change travel behaviour. The application to commuting travel data in the Chukyo metropolitan area in Japan showed that the appropriate non-compensatory and latent models outperform other models.

  15. Structural homeostasis in the nervous system: A balancing act for wiring plasticity and stability

    Directory of Open Access Journals (Sweden)

    Jun eYin

    2015-01-01

    Full Text Available Experience-dependent modifications of neural circuits provide the cellular basis for functional adaptation and learning, while presenting significant challenges to the stability of neural networks. The nervous system copes with these perturbations through a variety of compensatory mechanisms with distinct spatial and temporal profiles. Mounting evidence suggests that structural plasticity, through modifications of the number and structure of synapses, or changes in local and long-range connectivity, might contribute to the stabilization of network activity and serve as an important component of the homeostatic regulation of the nervous system. Conceptually similar to the homeostatic regulation of synaptic strength and efficacy, homeostatic structural plasticity has a profound and lasting impact on the intrinsic excitability of the neuron and circuit properties, yet remains largely unexplored. In this review, we examine recent reports describing structural modifications associated with functional compensation in both developing and adult nervous systems, and discuss the potential role for structural homeostasis in maintaining network stability and its implications in physiological and pathological conditions of the nervous systems.

  16. Compensatory and Remedial Programs: What School Leaders Should Know.

    Science.gov (United States)

    Pellicer, Leonard; Anderson, Lorin

    1993-01-01

    A recent study of state-funded remedial and compensatory programs in South Carolina concluded that about 40% of the state's principals lacked sufficient understanding of such programs to determine which delivery model was most appropriate and to integrate the programs successfully into their schools' total instructional programs. Obviously,…

  17. Handbook on Coral Reef Impacts: Avoidance, Minimization, Compensatory Mitigation, and Restoration

    Science.gov (United States)

    This Handbook provides a general summary of current avoidance, minimization, compensatory mitigation, and restoration strategies that may help address physical damage resulting from direct adverse impacts to coral reefs.

  18. Compensatory immigration depends on adjacent population size and habitat quality but not on landscape connectivity.

    Science.gov (United States)

    Turgeon, Katrine; Kramer, Donald L

    2012-11-01

    1. Populations experiencing localized mortality can recover in the short term by net movement of individuals from adjacent areas, a process called compensatory immigration or spillover. Little is known about the factors influencing the magnitude of compensatory immigration or its impact on source populations. Such information is important for understanding metapopulation dynamics, the use of protected areas for conservation, management of exploited populations and pest control. 2. Using two small, territorial damselfish species (Stegastes diencaeus and S. adustus) in their naturally fragmented habitat, we quantified compensatory immigration in response to localized mortality, assessed its impact on adjacent source populations and examined the importance of potential immigrants, habitat quality and landscape connectivity as limiting factors. On seven experimental sites, we repeatedly removed 15% of the initial population size until none remained and immigration ceased. 3. Immigrants replaced 16-72% of original residents in S. diencaeus and 0-69% in S. adustus. The proportion of the source population that immigrated into depleted areas varied from 9% to 61% in S. diencaeus and from 3% to 21% in S. adustus. In S. diencaeus, compensatory immigration was strongly affected by habitat quality, to a lesser extent by the abundance of potential immigrants and not by landscape connectivity. In S. adustus, immigration was strongly affected by the density of potential migrants and not by habitat quality and landscape connectivity. On two control sites, immigration in the absence of creation of vacancies was extremely rare. 4. Immigration occurred in response to localized mortality and was therefore compensatory. It was highly variable, sometimes producing substantial impacts on both depleted and source populations. The magnitude of compensatory immigration was influenced primarily by the availability of immigrants and by the potential improvement in territory quality that they

  19. Biomechanics of compensatory mechanisms in spinal-pelvic complex

    Science.gov (United States)

    Ivanov, D. V.; Hominets, V. V.; Kirillova, I. V.; Kossovich, L. Yu; Kudyashev, A. L.; Teremshonok, A. V.

    2018-04-01

    3D geometric solid computer model of spinal-pelvic complex was constructed on the basis of computed tomography and full body X-ray in standing position data. The constructed model was used for biomechanical analysis of compensatory mechanisms arising in the spine with anteversion and retroversion of the pelvis. The results of numerical biomechanical 3D modeling are in good agreement with the clinical data.

  20. Chewing and spitting out food as a compensatory behavior in patients with eating disorders.

    Science.gov (United States)

    Song, Youn Joo; Lee, Jung-Hyun; Jung, Young-Chul

    2015-10-01

    Recent studies suggest that chewing and spitting out food may be associated with severe eating-related pathology. The purpose of this study was to investigate the relationship between chewing and spitting, and other symptoms of eating disorders. We hypothesized that patients who chew and spit as a compensatory behavior have more severe eating-related pathology than patients who have never engaged in chewing and spitting behavior. We divided 359 patients with eating disorders into two groups according to whether they engaged in chewing and spitting as a compensatory behavior to lose weight or not. After comparing eating-related pathology between the two groups, we examined factors associated with pathologic eating behaviors using logistic regression analysis. Among our 359 participants, 24.5% reported having engaged in chewing and spitting as a compensatory behavior. The chewing and spitting (CHSP+) group showed more severe eating disorder symptoms and suicidal behaviors. This group also had significantly higher scores on subscales that measured drive for thinness, bulimia, and impulse regulation on the EDI-2, Food Craving Questionnaire, Body Shape Questionnaire, Beck Depression Inventory, Beck Anxiety Inventory, and Maudsley Obsessive Compulsive Inventory. Chewing and spitting is a common compensatory behavior among patients with eating disorders and is associated with more-pathologic eating behaviors and higher scores on psychometric tests. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Compensatory Effects of Sibling Support in Preadolescence and Adolescence.

    Science.gov (United States)

    Milevsky, Avidan; Levitt, Mary J.

    The current study is an examination of how support from siblings relates to academic competence in early adolescence, with a focus on the compensatory effects of sibling support. Participants were 694 African-American, European-American, and Hispanic-American students, ranging in age from 11 to 15. Participants were interviewed in school regarding…

  2. Regenerative Braking Compensatory Control Strategy Considering CVT Power Loss for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2018-02-01

    Full Text Available Hybrid electric vehicles (HEV equipped with continuously variable transmission (CVT adjust the motor operating point continuously to achieve the optimal motor operating efficiency during regenerative braking. Traditional control strategies consider the CVT efficiency as constant, while the CVT efficiency varies in different operating conditions. In order to reflect the transmission efficiency more accurately during regenerative braking, the CVT theoretical torque loss model is firstly established which then leads to the battery–front motor–CVT joint operating efficiency model. The joint operating efficiency model indicates that the system efficiency is influenced by input speed, input torque, CVT speed ratio, and battery SOC (state of charge. The compensatory strategy for the front motor barking force is proposed to make full use of its braking power and the CVT speed ratio control strategy is modified to maintain the optimal operating efficiency of the system. The simulations are performed under three typical braking conditions and UDDS, NYCC, US06 respectively, the results show that the modified control strategy increases the front motor braking power and improves the system operating efficiency.

  3. Adaptive mechanisms of homeostasis disorders

    Directory of Open Access Journals (Sweden)

    Anna Maria Dobosiewicz

    2017-08-01

    Full Text Available The ability to preserve a permanent level of internal environment in a human organism, against internal and external factors, which could breach the consistency, can be define as homeostasis. Scientific proven influence on the homeostasis has the periodicity of biological processes, which is also called circadian rhythm. The effect of circadian rhythm is also to see in the functioning of autonomic nervous system and cardiovascular system. Sleep deprivation is an example of how the disorders in circadian rhythm could have the influence on the homeostasis.

  4. Does exposure to phthalates influence thyroid function and growth hormone homeostasis? The Taiwan Environmental Survey for Toxicants (TEST) 2013.

    Science.gov (United States)

    Huang, Han-Bin; Pan, Wen-Harn; Chang, Jung-Wei; Chiang, Hung-Che; Guo, Yue Leon; Jaakkola, Jouni J K; Huang, Po-Chin

    2017-02-01

    Previous epidemiologic and toxicological studies provide some inconsistent evidence that exposure to phthalates may affect thyroid function and growth hormone homeostasis. To assess the relations between exposure to phthalates and indicators of thyroid function and growth hormone homeostasis disturbances both among adults and minors. We conducted a population-based cross-sectional study of 279 Taiwanese adults (≥18 years old) and 79 minors (function included serum levels of thyroxine (T 4 ), free T 4 , triiodothyronine, thyroid-stimulating hormone, and thyroxine-binding globulin (TBG). Growth hormone homeostasis was measured as the serum levels of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP3). We applied multivariate linear regression models to examine these associations after adjusting for covariates. Among adults, serum T 4 levels were negatively associated with urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate (β=-0.028, P=0.043) and the sum of urinary di-(2-ethylhexyl) phthalate (DEHP) metabolite (β=-0.045, P=0.017) levels. Free T 4 levels were negatively associated with urinary mono-ethylhexyl phthalate (MEHP) (β=-0.013, P=0.042) and mono-(2-ethyl-5-oxohexyl) phthalate (β=-0.030, P=0.003) levels, but positively associated with urinary monoethyl phthalate (β=0.014, P=0.037) after adjustment for age, BMI, gender, urinary creatinine levels, and TBG levels. Postive associations between urinary MEHP levels and IGF-1 levels (β=0.033, P=0.006) were observed. Among minors, free T 4 was positively associated with urinary mono benzyl phthalate levels (β=0.044, P=0.001), and IGF-1 levels were negatively associated with the sum of urinary DEHP metabolite levels (β=-0.166, P=0.041) after adjustment for significant covariance and IGFBP3. Our results are consistent with the hypothesis that exposure to phthalates influences thyroid function and growth hormone homeostasis. Copyright © 2016 Elsevier Inc. All rights

  5. Compensatory stepping responses in individuals with stroke: a pilot study.

    Science.gov (United States)

    Lakhani, Bimal; Mansfield, Avril; Inness, Elizabeth L; McIlroy, William E

    2011-05-01

    Impaired postural control and a high incidence of falls are commonly observed following stroke. Compensatory stepping responses are critical to reactive balance control. We hypothesize that, following a stroke, individuals with unilateral limb dyscontrol will be faced with the unique challenge of controlling such rapid stepping reactions that may eventually be linked to the high rate of falling. The objectives of this exploratory pilot study were to investigate compensatory stepping in individuals poststroke with regard to: (1) choice of initial stepping limb (paretic or non-paretic); (2) step characteristics; and (3) differences in step characteristics when the initial step is taken with the paretic vs. the non-paretic limb. Four subjects following stroke (38-165 days post) and 11 healthy young adults were recruited. Anterior and posterior perturbations were delivered by using a weight drop system. Force plates recorded centre-of-pressure excursion prior to the onset of stepping and step timing. Of the four subjects, three only attempted to step with their non-paretic limb and one stepped with either limb. Time to foot-off was generally slow, whereas step onset time and swing time were comparable to healthy controls. Two of the four subjects executed multistep responses in every trial, and attempts to force stepping with the paretic limb were unsuccessful in three of the four subjects. Despite high clinical balance scores, these individuals with stroke demonstrated impaired compensatory stepping responses, suggesting that current clinical evaluations might not accurately reflect reactive balance control in this population.

  6. Impact of Compensatory Intervention in 6- to 18-Month-Old Babies at Risk of Motor Development Delays

    Science.gov (United States)

    Müller, Alessandra Bombarda; Saccani, Raquel; Valentini, Nadia Cristina

    2017-01-01

    Purpose: Research indicates that delayed motor development observed in the first years of life can be prevented through compensatory intervention programmes that provide proper care during this critical period of child development. Method: This study analysed the impact of a 12-week compensatory motor intervention programme on 32 babies with…

  7. A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients

    Directory of Open Access Journals (Sweden)

    Hale Gonce Kocken

    2011-01-01

    Full Text Available This paper deals with the Multiobjective Linear Transportation Problem that has fuzzy cost coefficients. In the solution procedure, many objectives may conflict with each other; therefore decision-making process becomes complicated. And also due to the fuzziness in the costs, this problem has a nonlinear structure. In this paper, fuzziness in the objective functions is handled with a fuzzy programming technique in the sense of multiobjective approach. And then we present a compensatory approach to solve Multiobjective Linear Transportation Problem with fuzzy cost coefficients by using Werner's and operator. Our approach generates compromise solutions which are both compensatory and Pareto optimal. A numerical example has been provided to illustrate the problem.

  8. The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2016-01-01

    Highlights: • Architectural homeostatic buildings (AHBs) make sense because of the laws of physics. • However, high efficiency can be obtained only with AHBs and equipment considered as systems. • Mechanical homeostasis facilitates AHB-equipment system synergy with heat extraction. • Entropically speaking a building needs neither energy nor a fixed amount of heat, but its homeostatic existence. • Homeostatic buildings can reduce building energy consumption from 80% to 90%. - Abstract: We already know, for energy-saving potential, the necessary architectural features in well-designed buildings: high performance building envelope, sufficient interior thermal mass, and hydronic-network activated radiant surfaces for cooling and heating. Buildings with these features may be referred to as architecturally homeostatic buildings (AHBs); such a building-system is thermally semi-autonomous in the sense that its temperature variation stays within a certain range even without conditioning equipment, and, with conditioning equipment in operation, its thermal regulation is handled by its hydronic heat-distribution-network for controlling the temperature level of the building. At the present time conventional HVAC equipment is used for maintaining the heat-distribution-network: this arrangement, however, has resulted in great energy saving only for AHBs with accessible natural water bodies. In operation of general AHBs, a case is made here for a new kind of mechanical equipment having the attribute of mechanical homeostasis (MH). MH is a new energy transformation concept in a triadic framework. Superlative energy efficiency is predicted as a result of combined improvements in higher triadCOPs and lower total (inducted + removed) heat rates—evincing existence of synergy in architectural and mechanical homeostasis, which together will be referred to as the homeostasis solution.

  9. Assessing the impact of power plant mortality on the compensatory reserve of fish populations

    International Nuclear Information System (INIS)

    Goodyear, C.P.

    1977-01-01

    A technique is presented to quantify the concepts of compensation and compensatory reserve in exploited fish populations. The technique was used to examine the impact of power plant mortality on a hypothetical striped bass population. Power plant mortality had a more severe impact on the compensation ratio and compensatory reserve for an exploited stock. The technique can be applied to determine a critical compensation ratio which could serve as a standard against which additional sources of mortality, such as those caused by power plants, could be measured

  10. A Physiologist's View of Homeostasis

    Science.gov (United States)

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  11. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    Science.gov (United States)

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  12. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus.

    Directory of Open Access Journals (Sweden)

    Laura Devaux

    2018-04-01

    Full Text Available Cyclic nucleotides are universally used as secondary messengers to control cellular physiology. Among these signalling molecules, cyclic di-adenosine monophosphate (c-di-AMP is a specific bacterial second messenger recognized by host cells during infections and its synthesis is assumed to be necessary for bacterial growth by controlling a conserved and essential cellular function. In this study, we sought to identify the main c-di-AMP dependent pathway in Streptococcus agalactiae, the etiological agent of neonatal septicaemia and meningitis. By conditionally inactivating dacA, the only diadenyate cyclase gene, we confirm that c-di-AMP synthesis is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable due to the accumulation of compensatory mutations. We identified several mutations restoring the viability of a ΔdacA mutant, in particular a loss-of-function mutation in the osmoprotectant transporter BusAB. Identification of c-di-AMP binding proteins revealed a conserved set of potassium and osmolyte transporters, as well as the BusR transcriptional factor. We showed that BusR negatively regulates busAB transcription by direct binding to the busAB promoter. Loss of BusR repression leads to a toxic busAB expression in absence of c-di-AMP if osmoprotectants, such as glycine betaine, are present in the medium. In contrast, deletion of the gdpP c-di-AMP phosphodiesterase leads to hyperosmotic susceptibility, a phenotype dependent on a functional BusR. Taken together, we demonstrate that c-di-AMP is essential for osmotic homeostasis and that the predominant mechanism is dependent on the c-di-AMP binding transcriptional factor BusR. The regulation of osmotic homeostasis is likely the conserved and essential function of c-di-AMP, but each species has evolved specific c-di-AMP mechanisms of osmoregulation to adapt to its environment.

  13. A Multiobjective Programming Method for Ranking All Units Based on Compensatory DEA Model

    Directory of Open Access Journals (Sweden)

    Haifang Cheng

    2014-01-01

    Full Text Available In order to rank all decision making units (DMUs on the same basis, this paper proposes a multiobjective programming (MOP model based on a compensatory data envelopment analysis (DEA model to derive a common set of weights that can be used for the full ranking of all DMUs. We first revisit a compensatory DEA model for ranking all units, point out the existing problem for solving the model, and present an improved algorithm for which an approximate global optimal solution of the model can be obtained by solving a sequence of linear programming. Then, we applied the key idea of the compensatory DEA model to develop the MOP model in which the objectives are to simultaneously maximize all common weights under constraints that the sum of efficiency values of all DMUs is equal to unity and the sum of all common weights is also equal to unity. In order to solve the MOP model, we transform it into a single objective programming (SOP model using a fuzzy programming method and solve the SOP model using the proposed approximation algorithm. To illustrate the ranking method using the proposed method, two numerical examples are solved.

  14. Weight homeostasis & its modulators in hyperthyroidism before & after treatment with carbimazole.

    Science.gov (United States)

    Dutta, Pinaki; Bhansali, Anil; Walia, Rama; Khandelwal, Niranjan; Das, Sambit; Masoodi, Shariq Rashid

    2012-08-01

    Hyperthyroidism is associated with increased food intake, energy expenditure and altered body composition. This study was aimed to evaluate the role of adipocytokines in weight homeostasis in patients with hyperthyroidism. Patients (n=27, 11men) with hyperthyroidism (20 Graves' disease, 7 toxic multinodular goiter) with mean age of 31.3±4.2 yr and 28 healthy age and body mass index (BMI) matched controls were studied. They underwent assessment of lean body mass (LBM) and total body fat (TBF) by dual energy X-ray absorptiometer (DXA) and blood sample was taken in the fasting state for measurement of leptin, adiponectin, ghrelin, insulin, glucose and lipids. Patients were re-evaluated after 3 months of treatment as by that time all of them achieved euthyroid state with carbimazole therapy. The LBM was higher (Phyperthyroid patients even after adjustment for body weight (BW), whereas total body fat was comparable between the two groups. Serum leptin levels were higher in patients with hyperthyroidism than controls (22.3±3.7 and 4.1±0.34 ng/ml, Ptreatment. Serum leptin positively correlated with TBF and this correlation persisted even after adjustment for BW, BMI, gender and age (r=0.62, P=0.001). However, serum leptin and acylated ghrelin did not correlate with the presence or absence of hyperphagia. Patients with hyperthyroidism predominantly had decreased lean body mass which increased after achievement of euthyroidism with carbimazole. The hyperphagia and the alterations in weight homeostasis associated with hyperthyroidism were independent of circulating leptin and ghrelin levels.

  15. Compensatory renal hypertrophy and the handling of an acute nephrotoxicant in a model of aging.

    Science.gov (United States)

    Oliveira, Cláudia S; Joshee, Lucy; Zalups, Rudolfs K; Bridges, Christy C

    2016-03-01

    Aging often results in progressive losses of functioning nephrons, which can lead to a significant reduction in overall renal function. Because of age-related pathological changes, the remaining functional nephrons within aged kidneys may be unable to fully counteract physiological and/or toxicological challenges. We hypothesized that when the total functional renal mass of aged rats is reduced by 50%, the nephrons within the remnant kidney do not fully undergo the functional and physiological changes that are necessary to maintain normal fluid and solute homeostasis. We also tested the hypothesis that the disposition and handling of a nephrotoxicant are altered significantly in aged kidneys following an acute, 50% reduction in functional renal mass. To test these hypotheses, we examined molecular indices of renal cellular hypertrophy and the disposition of inorganic mercury (Hg(2+)), a model nephrotoxicant, in young control, young uninephrectomized (NPX), aged control and aged NPX Wistar rats. We found that the process of aging reduces the ability of the remnant kidney to undergo compensatory renal growth. In addition, we found that an additional reduction in renal mass in aged animals alters the disposition of Hg(2+) and potentially alters the risk of renal intoxication by this nephrotoxicant. To our knowledge, this study represents the first report of the handling of a nephrotoxicant in an aged animal following a 50% reduction in functional renal mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Protective and compensatory factors mitigating the influence of deviant friends on delinquent behaviours during early adolescence.

    Science.gov (United States)

    Fergusson, David M; Vitaro, Frank; Wanner, Brigitte; Brendgen, Mara

    2007-02-01

    This study examined factors that could moderate or compensate the link between exposure to deviant friends and delinquent behaviours in a sample of 265 early adolescents. The putative moderating or compensatory factors referred to the behavioural domain (i.e. novelty seeking, harm avoidance), the biological domain (i.e. physical maturation), the sociofamily domain (i.e. sociofamily adversity, parental practices), the school domain (i.e. academic performance), and the social domain (i.e. peer acceptance). A series of regression analyses showed that novelty seeking and puberty status moderated the link between friends' self-reported delinquency and participants' self-reported delinquency. In addition, all the factors except peer acceptance also had main effects that, cumulatively, reduced the association between friends' delinquency and self-rated delinquency through compensatory main effects. These results are discussed in light of the differential roles of moderating and of compensatory factors.

  17. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    Science.gov (United States)

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  18. Can use of walkers or canes impede lateral compensatory stepping movements?

    Science.gov (United States)

    Bateni, Hamid; Heung, Evelyn; Zettel, John; McLlroy, William E; Maki, Brian E

    2004-08-01

    Although assistive devices, such as walkers and canes are often prescribed to aid in balance control, recent studies have suggested that such devices may actually increase risk of falling. In this study, we investigated one possible mechanism: the potential for walkers or canes to interfere with, or constrain, lateral movement of the feet and thereby impede execution of compensatory stepping reactions during lateral loss of balance. Lateral stepping reactions were evoked, in 10 healthy young adults (ages 22-27 years), by means of sudden unpredictable medio-lateral support surface translation. Subjects were tested while holding and loading a standard pickup walker or single-tip cane or while using no assistive device (hands free or holding an object). Results supported the hypothesis that using a walker or cane can interfere with compensatory stepping. Collisions between the swing-foot and mobility aid were remarkably frequent when using the walker (60% of stepping reactions) and also occurred in cane trials (11% of stepping reactions). Furthermore, such collisions were associated with a significant reduction (26-37%) in lateral step length. It appeared that subjects were sometimes able to avoid collision by increasing the forward or backward displacement of the swing-foot or by moving the cane; however, attempts to lift the walker out of the way occurred rarely and were usually impeded due to collision between the contralateral walker post and stance foot. The fact that compensatory stepping behavior was altered significantly in such a healthy cohort clearly demonstrates some of the safety limitations inherent to these assistive devices, as currently designed. Copyright 2003 Elsevier B.V.

  19. Cognitive compensatory processes of older, clinically fit patients with hematologic malignancies undergoing chemotherapy: A longitudinal cohort study.

    Science.gov (United States)

    Libert, Yves; Borghgraef, Cindy; Beguin, Yves; Delvaux, Nicole; Devos, Martine; Doyen, Chantal; Dubruille, Stéphanie; Etienne, Anne-Marie; Liénard, Aurore; Merckaert, Isabelle; Reynaert, Christine; Slachmuylder, Jean-Louis; Straetmans, Nicole; Van Den Neste, Eric; Bron, Dominique; Razavi, Darius

    2017-12-01

    Despite the well-known negative impacts of cancer and anticancer therapies on cognitive performance, little is known about the cognitive compensatory processes of older patients with cancer. This study was designed to investigate the cognitive compensatory processes of older, clinically fit patients with hematologic malignancies undergoing chemotherapy. We assessed 89 consecutive patients (age ≥ 65 y) without severe cognitive impairment and 89 age-, sex-, and education level-matched healthy controls. Cognitive compensatory processes were investigated by (1) comparing cognitive performance of patients and healthy controls in novel (first exposure to cognitive tasks) and non-novel (second exposure to the same cognitive tasks) contexts, and (2) assessing psychological factors that may facilitate or inhibit cognitive performance, such as motivation, psychological distress, and perceived cognitive performance. We assessed cognitive performance with the Trail-Making, Digit Span and FCSR-IR tests, psychological distress with the Hospital Anxiety and Depression Scale, and perceived cognitive performance with the FACT-Cog questionnaire. In novel and non-novel contexts, average cognitive performances of healthy controls were higher than those of patients and were associated with motivation. Cognitive performance of patients was not associated with investigated psychological factors in the novel context but was associated with motivation and psychological distress in the non-novel context. Older, clinically fit patients with hematologic malignancies undergoing chemotherapy demonstrated lower cognitive compensatory processes compared to healthy controls. Reducing distress and increasing motivation may improve cognitive compensatory processes of patients in non-novel contexts. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Evaluation of the 1987-1988 EIA Remedial and Compensatory Program.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Research.

    Evaluation of South Carolina's 1987-88 Remedial and Compensatory Program, funded by the state's Education Improvement Act of 1984 (EIA), shows that the program was successful in raising the participants' achievement. The programs include basic skills learning in reading and mathematics in all grades, and writing in grades 6-12, but not all grades…

  1. Modification of hemiplegic compensatory gait pattern by symmetry-based motion controller of HAL.

    Science.gov (United States)

    Kawamoto, Hiroaki; Kadone, Hideki; Sakurai, Takeru; Sankai, Yoshiyuki

    2015-01-01

    As one of several characteristics of hemiplegic patients after stroke, compensatory gait caused by affected limb is often seen. The purpose of this research is to apply a symmetry-based controller of a wearable type lower limb robot, Hybrid Assistive Limb (HAL) to hemiplegic patients with compensatory gait, and to investigate improvement of gait symmetry. The controller is designed respectively for swing phase and support phase according to characteristics of hemiplegic gait pattern. The controller during swing phase stores the motion of the unaffected limb and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. Moreover, the controller during support phase provides motion to extend hip and knee joints to support wearer's body. Clinical tests were conducted in order to assess the modification of gait symmetry. Our case study involved participation of one chronic stroke patient who performs abnormally-compensatory gait for both of the affected and unaffected limbs. As a result, the patient's gait symmetry was improved by providing motion support during the swing phase on the affected side and motion constraint during the support phase on the unaffected side. The study showed promising basis for the effectiveness of the controller for the future clinical study.

  2. Consequences of biodiversity loss diverge from expectation due to post-extinction compensatory responses

    Science.gov (United States)

    Thomsen, Matthias S.; Garcia, Clement; Bolam, Stefan G.; Parker, Ruth; Godbold, Jasmin A.; Solan, Martin

    2017-03-01

    Consensus has been reached that global biodiversity loss impairs ecosystem functioning and the sustainability of services beneficial to humanity. However, the ecosystem consequences of extinction in natural communities are moderated by compensatory species dynamics, yet these processes are rarely accounted for in impact assessments and seldom considered in conservation programmes. Here, we use marine invertebrate communities to parameterise numerical models of sediment bioturbation - a key mediator of biogeochemical cycling - to determine whether post-extinction compensatory mechanisms alter biodiversity-ecosystem function relations following non-random extinctions. We find that compensatory dynamics lead to trajectories of sediment mixing that diverge from those without compensation, and that the form, magnitude and variance of each probabilistic distribution is highly influenced by the type of compensation and the functional composition of surviving species. Our findings indicate that the generalized biodiversity-function relation curve, as derived from multiple empirical investigations of random species loss, is unlikely to yield representative predictions for ecosystem properties in natural systems because the influence of post-extinction community dynamics are under-represented. Recognition of this problem is fundamental to management and conservation efforts, and will be necessary to ensure future plans and adaptation strategies minimize the adverse impacts of the biodiversity crisis.

  3. A conceptual framework for homeostasis: development and validation

    Science.gov (United States)

    Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-01-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740

  4. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  5. Factors Influencing the Increase in Na-K-ATPase in Compensatory Renal Hypertrophy

    Science.gov (United States)

    Epstein, Franklin H.; Charney, Alan N.; Silva, Patricio

    1978-01-01

    An increase in Na-K-ATPase in kidney homogenates usually accompanies compensatory renal hypertrophy. While it may be evident in both the cortex and medulla of the kidney, it is most marked in the outer medulla and may be present only in that region. The increase in enzyme activity does not depend on an intact adrenal cortex and can be elicited in the absence of adrenal glucocorticoids. It is not seen in the form of renal hypertrophy produced by potassium depletion, in which the transport of sodium and potassium by the kidney is not increased. When present in compensatory renal growth, the enzyme change is correlated with an increase in the reabsorption of sodium, or the excretion of potassium, or both, per unit of renal tissue. It proceeds in the presence of either, but not in the absence of both. PMID:216164

  6. A conceptual framework for homeostasis: development and validation.

    Science.gov (United States)

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.

  7. Gastric emptying of orally administered glucose solutions and incretin hormone responses are unaffected by laparoscopic adjustable gastric banding

    DEFF Research Database (Denmark)

    Usinger, Lotte; Hansen, Katrine B; Kristiansen, Viggo B

    2011-01-01

    Laparoscopic adjustable gastric banding (LAGB) provides weight loss in obese individuals and is associated with improved glucose homeostasis and resolution of type 2 diabetes. However, in most available reports, potentially inappropriate methodology has been applied when measuring the impact...

  8. Report: Enhanced Controls Needed to Prevent Further Abuse of Religious Compensatory Time

    Science.gov (United States)

    Report #16-P-0333, September 27, 2016. Inadequate controls for Religious Compensatory Time resulted in payouts to employees of $73,514, and may result in additional payouts of up to $81,927. For more information, please click on the link above.

  9. Vertical control in the Class III compensatory treatment.

    Science.gov (United States)

    Sobral, Márcio Costa; Habib, Fernando A L; Nascimento, Ana Carla de Souza

    2013-01-01

    Compensatory orthodontic treatment, or simply orthodontic camouflage, consists in an important alternative to orthognathic surgery in the resolution of skeletal discrepancies in adult patients. It is important to point that, to be successfully performed, diagnosis must be detailed, to evaluate, specifically, dental and facial features, as well as the limitations imposed by the magnitude of the discrepancy. The main complaint, patient's treatment expectation, periodontal limits, facial pattern and vertical control are some of the items to be explored in the determination of the viability of a compensatory treatment. Hyperdivergent patients who present with a Class III skeletal discrepancy, associated with a vertical facial pattern, with the presence or tendency to anterior open bite, deserve special attention. In these cases, an efficient strategy of vertical control must be planned and executed. The present article aims at illustrating the evolution of efficient alternatives of vertical control in hiperdivergent patients, from the use, in the recent past, of extraoral appliances on the lower dental arch (J-hook), until nowadays, with the advent of skeletal anchorage. But for patients with a more balanced facial pattern, the conventional mechanics with Class III intermaxillary elastics, associated to an accentuated curve of Spee in the upper arch and a reverse curve of Spee in the lower arch, and vertical elastics in the anterior region, continues to be an excellent alternative, if there is extreme collaboration in using the elastics.

  10. Vertical control in the Class III compensatory treatment

    Directory of Open Access Journals (Sweden)

    Márcio Costa Sobral

    2013-04-01

    Full Text Available INTRODUCTION: Compensatory orthodontic treatment, or simply orthodontic camouflage, consists in an important alternative to orthognathic surgery in the resolution of skeletal discrepancies in adult patients. It is important to point that, to be successfully performed, diagnosis must be detailed, to evaluate, specifically, dental and facial features, as well as the limitations imposed by the magnitude of the discrepancy. The main complaint, patient's treatment expectation, periodontal limits, facial pattern and vertical control are some of the items to be explored in the determination of the viability of a compensatory treatment. Hyperdivergent patients who carry a Class III skeletal discrepancy, associated with a vertical facial pattern, with the presence or tendency to anterior open bite, deserve special attention. In these cases, an efficient strategy of vertical control must be planned and executed. OBJECTIVE: The present article aims at illustrating the evolution of efficient alternatives of vertical control in hiperdivergent patients, from the use, in the recent past, of extra-oral appliances on the lower dental arch (J-hook, until nowadays, with the advent of skeletal anchorage. But for patients with a more balanced facial pattern, the conventional mechanics with Class III intermaxillary elastics, associated to an accentuated curve of Spee in the upper arch and a reverse Curve of Spee in the lower arch, and vertical elastics in the anterior region, continues to be an excellent alternative, if there is extreme collaboration in using the elastics.

  11. Seeking homeostasis: Temporal trends in respiration, oxidation, and calcium in SOD1 G93A Amyotrophic Lateral Sclerosis mice

    Directory of Open Access Journals (Sweden)

    Cameron W Irvin

    2015-07-01

    Full Text Available Impairments in mitochondria, oxidative regulation, and calcium homeostasis have been well documented in numerous amyotrophic lateral sclerosis (ALS experimental models, especially in the superoxide dismutase 1 glycine 93 to alanine (SOD1 G93A transgenic mouse. However, the timing of these deficiencies has been debatable. In a systematic review of 45 articles, we examine experimental measurements of cellular respiration, mitochondrial mechanisms, oxidative markers, and calcium regulation. We evaluate the quantitative magnitude and statistical temporal trend of these aggregated assessments in high transgene copy SOD1 G93A mice compared to wild type mice. Analysis of overall trends reveals cellular respiration, intracellular ATP, and corresponding mitochondrial elements (Cox, cytochrome c, complex I, enzyme activity are depressed for the entire lifespan of the SOD1 G93A mouse. Oxidant markers (H2O2, 8OH2’dG, MDA are initially similar to wild type but are double that of wild type by the time of symptom onset despite early post-natal elevation of protective heat shock proteins. All aspects of calcium regulation show early disturbances, although a notable and likely compensatory convergence to near wild type levels appears to occur between 40-80 days (pre-onset, followed by a post-onset elevation in intracellular calcium. The identified temporal trends and compensatory fluctuations provide evidence that the cause of ALS may lay within failed homeostatic regulation, itself, rather than any one particular perturbing event or cellular mechanism. We discuss the vulnerabilities of motoneurons to regulatory instability and possible hypotheses regarding failed regulation and its potential treatment in ALS.

  12. Glucose homeostasis in mice is transglutaminase 2 independent.

    Directory of Open Access Journals (Sweden)

    Siiri E Iismaa

    Full Text Available Transglutaminase type 2 (TG2 has been reported to be a candidate gene for maturity onset diabetes of the young (MODY because three different mutations that impair TG2 transamidase activity have been found in 3 families with MODY. TG2 null (TG2(-/- mice have been reported to be glucose intolerant and have impaired glucose-stimulated insulin secretion (GSIS. Here we rigorously evaluated the role of TG2 in glucose metabolism using independently generated murine models of genetic TG2 disruption, which show no compensatory enhanced expression of other TGs in pancreatic islets or other tissues. First, we subjected chow- or fat-fed congenic SV129 or C57BL/6 wild type (WT and TG2(-/- littermates, to oral glucose gavage. Blood glucose and serum insulin levels were similar for both genotypes. Pancreatic islets isolated from these animals and analysed in vitro for GSIS and cholinergic potentiation of GSIS, showed no significant difference between genotypes. Results from intraperitoneal glucose tolerance tests (GTTs and insulin tolerance tests (ITTs were similar for both genotypes. Second, we directly investigated the role of TG2 transamidase activity in insulin secretion using a coisogenic model that expresses a mutant form of TG2 (TG2(R579A, which is constitutively active for transamidase activity. Intraperitoneal GTTs and ITTs revealed no significant differences between WT and TG2(R579A/R579A mice. Given that neither deletion nor constitutive activation of TG2 transamidase activity altered basal responses, or responses to a glucose or insulin challenge, our data indicate that glucose homeostasis in mice is TG2 independent, and question a link between TG2 and diabetes.

  13. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    Science.gov (United States)

    Donangelo, Carmen Marino; King, Janet C.

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide. PMID:22852063

  14. Comparison of compensatory reserve during lower-body negative pressure and hemorrhage in nonhuman primates

    Science.gov (United States)

    Howard, Jeffrey T.; Mulligan, Jane; Grudic, Greg Z.; Convertino, Victor A.

    2016-01-01

    Compensatory reserve was measured in baboons (n = 13) during hemorrhage (Hem) and lower-body negative pressure (LBNP) using a machine-learning algorithm developed to estimate compensatory reserve by detecting reductions in central blood volume during LBNP. The algorithm calculates compensatory reserve index (CRI) from normovolemia (CRI = 1) to cardiovascular decompensation (CRI = 0). The hypothesis was that Hem and LBNP will elicit similar CRI values and that CRI would have higher specificity than stroke volume (SV) in predicting decompensation. Blood was removed in four steps: 6.25%, 12.5%, 18.75%, and 25% of total blood volume. Four weeks after Hem, the same animals were subjected to four levels of LBNP that was matched on the basis of their central venous pressure. Data (mean ± 95% confidence interval) indicate that CRI decreased (P < 0.001) from baseline during Hem (0.69 ± 0.10, 0.57 ± 0.09, 0.36 ± 0.10, 0.16 ± 0.08, and 0.08 ± 0.03) and LBNP (0.76 ± 0.05, 0.66 ± 0.08, 0.36 ± 0.13, 0.23 ± 0.11, and 0.14 ± 0.09). CRI was not different between Hem and LBNP (P = 0.20). Linear regression analysis between Hem CRI and LBNP CRI revealed a slope of 1.03 and a correlation coefficient of 0.96. CRI exhibited greater specificity than SV in both Hem (92.3 vs. 82.1) and LBNP (94.8 vs. 83.1) and greater ROC AUC in Hem (0.94 vs. 0.84) and LBNP (0.94 vs. 0.92). These data support the hypothesis that Hem and LBNP elicited the same CRI response, suggesting that measurement of compensatory reserve is superior to SV as a predictor of cardiovascular decompensation PMID:27030667

  15. Metal ion transporters and homeostasis.

    OpenAIRE

    Nelson, N

    1999-01-01

    Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...

  16. Compensatory help-seeking in young and older adults: does seeking help, help?

    Science.gov (United States)

    Alea, Nicole; Cunningham, Walter R

    2003-01-01

    Asking other people for help is a compensatory behavior that may be useful across the life span to enhance functioning. Seventy-two older and younger men and women were either allowed to ask for help or were not allowed to ask for help while solving reasoning problems. Although the older adults answered fewer problems correctly, they did not seek additional help to compensate for their lower levels of performance. Younger adults sought more help. There were no age differences, however, in the types of help sought: indirect help (e.g., hints) was sought more often than direct help (e.g., asking for the answer). Exploratory analyses revealed that one's ability level was a better indicator than age of the utility of help-seeking. Findings are interpreted in the context of social and task-related influences on the use of help-seeking as a compensatory behavior across the life span.

  17. Neuronal regulation of homeostasis by nutrient sensing.

    Science.gov (United States)

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  18. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  19. Compensatory mechanisms activated with intermittent energy restriction: A randomized control trial.

    Science.gov (United States)

    Coutinho, Sílvia Ribeiro; Halset, Eline Holli; Gåsbakk, Sigrid; Rehfeld, Jens F; Kulseng, Bård; Truby, Helen; Martins, Cátia

    2018-06-01

    Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. 35 adults (age: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m 2 ) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting respiratory quotient (RQ), ExEff (10, 25, and 50 W), subjective appetite ratings (hunger, fullness, desire to eat, and prospective food consumption (PFC)), and appetite-regulating hormones (active ghrelin (AG), cholecystokinin (CCK), total peptide YY (PYY), active glucagon-like peptide-1 (GLP-1), and insulin) were measured before and after WL. Changes in body weight (≈12.5% WL) and composition were similar in both groups. Fasting RQ and ExEff at 10 W increased in both groups. Losing weight, either by IER or CER dieting, did not induce significant changes in subjective appetite ratings. RMR decreased and ExEff at 25 and 50 W increased (P intermittent, does not appear to modulate the compensatory mechanisms activated by weight loss. NCT02169778 (the study was registered in clinicaltrial.gov). Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Aerobic exercise did not have compensatory effects on physical activity levels in type 2 diabetes patients.

    Science.gov (United States)

    de Moura, Bruno Pereira; Marins, João Carlos Bouzas; Franceschini, Sylvia Do Carmo Castro; Reis, Janice Sepúlveda; Amorim, Paulo Roberto Dos Santos

    2015-01-01

    Although exercise promotes beneficial effects in diabetic patients, some studies have questioned the degree of their importance in terms of the increase in total energy expenditure. In these studies, the decrease of physical activity levels (PAL) was referred as "compensatory effect of exercise". However, our aim was to investigate whether aerobic exercise has compensatory effects on PAL in type 2 diabetes patients. Eight volunteers (51.1 ± 8.2 years) were enrolled in a supervised exercise programme for 8 weeks (3 d · wk(-1), 50-60% of VO2 peak for 30-60 min). PAL was measured using tri-axial accelerometers in the 1st, 8th and 12th weeks. Biochemical tests, cardiorespiratory fitness, anthropometric assessment and body composition were measured in the 2nd and 11th weeks. Statistical analysis was performed using non-parametric tests (Friedman and Wilcoxon, P exercise programme generated a significant 14.8% increase in VO2 peak and a 15% reduction in fructosamine. The exercise programme had no compensatory effects on PAL in type 2 diabetes patients, but improved their cardiorespiratory fitness and glycaemic control.

  1. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  2. Applicability of the Compensatory Encoding Model in Foreign Language Reading: An Investigation with Chinese College English Language Learners.

    Science.gov (United States)

    Han, Feifei

    2017-01-01

    While some first language (L1) reading models suggest that inefficient word recognition and small working memory tend to inhibit higher-level comprehension processes; the Compensatory Encoding Model maintains that slow word recognition and small working memory do not normally hinder reading comprehension, as readers are able to operate metacognitive strategies to compensate for inefficient word recognition and working memory limitation as long as readers process a reading task without time constraint. Although empirical evidence is accumulated for support of the Compensatory Encoding Model in L1 reading, there is lack of research for testing of the Compensatory Encoding Model in foreign language (FL) reading. This research empirically tested the Compensatory Encoding Model in English reading among Chinese college English language learners (ELLs). Two studies were conducted. Study one focused on testing whether reading condition varying time affects the relationship between word recognition, working memory, and reading comprehension. Students were tested on a computerized English word recognition test, a computerized Operation Span task, and reading comprehension in time constraint and non-time constraint reading. The correlation and regression analyses showed that the strength of association was much stronger between word recognition, working memory, and reading comprehension in time constraint than that in non-time constraint reading condition. Study two examined whether FL readers were able to operate metacognitive reading strategies as a compensatory way of reading comprehension for inefficient word recognition and working memory limitation in non-time constraint reading. The participants were tested on the same computerized English word recognition test and Operation Span test. They were required to think aloud while reading and to complete the comprehension questions. The think-aloud protocols were coded for concurrent use of reading strategies, classified

  3. Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency

    NARCIS (Netherlands)

    Boerboom, AL; Hof, AL; Halbertsma, JPK; van Raaij, JJAM; Schenk, W; Diercks, RL; van Horn, [No Value; van Horn, J.R.

    Anterior cruciate ligament (ACL) deficiency may cause functional instability of the knee (noncopers), while other patients compensate and perform at the same level as before injury (copers). This pilot study investigated whether there is a compensatory electromyographic (EMG) activity of the

  4. Effects of polyhalogenated aromatic hydrocarbons on vitamin A catabolism and the regulation of vitamin A homeostasis in rats

    International Nuclear Information System (INIS)

    Bank, P.A.

    1989-01-01

    Polyhalogenated aromatic hydrocarbons (PHAH) are known to adversely affect vitamin A status resulting in the hepatic depletion and enhanced excretion of vitamin A. Increased renal and serum vitamin A content occurs subsequent to these PHAH-related alterations. Vitamin A, a highly regulated system, appears to undergo rapid compensatory changes to maintain homeostasis in response to nutritional, metabolic, or toxicologic conditions. The present study was undertaken in order to elucidate the mechanism(s) responsible for these PHAH-related effects on vitamin A homeostasis. To this end, the toxin prototype of the PHAH class 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the 3,4,5,3',4',5'-hexabromo- or hexachloro-biphenyls were used in this study. Results presented in this study indirectly showed that PHAH caused enhanced hepatic and extrahepatic catabolism of intravenously administered 3 H-retinol-retinol binding protein-transthyretin as evidenced by increased inactive polar retinoids in liver, kidney, bile, and excreta. These polar retinoids were isolated from tissues and bile and are thought to represent oxidized and/or glucuronidated, elimination metabolites of vitamin A. PHAH increased the microsomal activity of cytochrome P-450 MFO and UDP-glucuronosyl transferase toward retinoic acid (RA), enzyme systems that are also known to be coordinately induced by PHAH. Increased serum and kidney vitamin A is likely a homeostatic response to PHAH-related increased target tissue catabolism. For serum, this was shown directly by the finding that PHAH caused decreased liver esterification of retinol recycled from the extrahepatic tissues and indirectly by the administration of the active target tissue metabolite, RA. After RA, both control and PHAH-treated rats lowered their serum vitamin A

  5. Anterior Overgrowth in Primary Curves, Compensatory Curves and Junctional Segments in Adolescent Idiopathic Scoliosis.

    Science.gov (United States)

    Schlösser, Tom P C; van Stralen, Marijn; Chu, Winnie C W; Lam, Tsz-Ping; Ng, Bobby K W; Vincken, Koen L; Cheng, Jack C Y; Castelein, René M

    2016-01-01

    Although much attention has been given to the global three-dimensional aspect of adolescent idiopathic scoliosis (AIS), the accurate three-dimensional morphology of the primary and compensatory curves, as well as the intervening junctional segments, in the scoliotic spine has not been described before. A unique series of 77 AIS patients with high-resolution CT scans of the spine, acquired for surgical planning purposes, were included and compared to 22 healthy controls. Non-idiopathic curves were excluded. Endplate segmentation and local longitudinal axis in endplate plane enabled semi-automatic geometric analysis of the complete three-dimensional morphology of the spine, taking inter-vertebral rotation, intra-vertebral torsion and coronal and sagittal tilt into account. Intraclass correlation coefficients for interobserver reliability were 0.98-1.00. Coronal deviation, axial rotation and the exact length discrepancies in the reconstructed sagittal plane, as defined per vertebra and disc, were analyzed for each primary and compensatory curve as well as for the junctional segments in-between. The anterior-posterior difference of spinal length, based on "true" anterior and posterior points on endplates, was +3.8% for thoracic and +9.4% for (thoraco)lumbar curves, while the junctional segments were almost straight. This differed significantly from control group thoracic kyphosis (-4.1%; P<0.001) and lumbar lordosis (+7.8%; P<0.001). For all primary as well as compensatory curves, we observed linear correlations between the coronal Cobb angle, axial rotation and the anterior-posterior length difference (r≥0.729 for thoracic curves; r≥0.485 for (thoraco)lumbar curves). Excess anterior length of the spine in AIS has been described as a generalized growth disturbance, causing relative anterior spinal overgrowth. This study is the first to demonstrate that this anterior overgrowth is not a generalized phenomenon. It is confined to the primary as well as the

  6. Development and estimation of a semi-compensatory model with a flexible error structure

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Shiftan, Yoram; Bekhor, Shlomo

    2012-01-01

    In decisions involving many alternatives, such as residential choice, individuals conduct a two-stage decision process, consisting of eliminating non-viable alternatives and choice from the retained choice set. In light of the potential of semi-compensatory discrete choice models to mathematicall...

  7. Compensatory and adaptive responses to real-time formant shifts in adults and children

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.

    2015-01-01

    Auditory feedback plays an important role in speech motor learning. Previous studies investigating auditory feedback in speech development suggest that crucial steps are made in the development of auditory-motor integration around the age of 4. The present study investigated compensatory and

  8. The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability.

    Directory of Open Access Journals (Sweden)

    Tobias Wilms

    2017-06-01

    Full Text Available The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing.

  9. [Compensatory joints at the pelvis (author's transl)].

    Science.gov (United States)

    Schumacher, G; Weber, M

    1980-10-01

    An osteochondrosis ischio-pubica represents a "testing site" for the integrity of the pelvis not only during child age but in adults as well. If all naturally available compensatory mechanisms have been exhausted especially following a change of range of motion in the pelvis ring structure, fatigue fractures or zones in transformation in the area typical of osteochondrosis ischio-pubica may appear. These fractures or transformation zones respectively to our mind have joint character, because they are capable of temporarily replacing lost mobility of physiological joints. Healing is achieved through rest, muscular balance and a specific physiotherapy. The purpose of this muscular training is to cushion all unphysiological motions in the pelvis and to support and boost the function of those joints still well preserved.

  10. Development of low postural tone compensatory patterns in children - theoretical basis.

    Science.gov (United States)

    Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej

    2014-01-01

    Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality.

  11. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  12. Redox homeostasis: The Golden Mean of healthy living.

    Science.gov (United States)

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  13. Nephron progenitor cell death elicits a limited compensatory response associated with interstitial expansion in the neonatal kidney

    Directory of Open Access Journals (Sweden)

    Sree Deepthi Muthukrishnan

    2018-01-01

    Full Text Available The final nephron number in an adult kidney is regulated by nephron progenitor cell availability and collecting duct branching in the fetal period. Fetal environmental perturbations that cause reductions in cell numbers in these two compartments result in low nephron endowment. Previous work has shown that maternal dietary factors influence nephron progenitor cell availability, with both caloric restriction and protein deprivation leading to reduced cell numbers through apoptosis. In this study, we evaluate the consequences of inducing nephron progenitor cell death on progenitor niche dynamics and on nephron endowment. Depletion of approximately 40% of nephron progenitor cells by expression of diphtheria toxin A at embryonic day 15 in the mouse results in 10-20% nephron reduction in the neonatal period. Analysis of cell numbers within the progenitor cell pool following induction of apoptosis reveals a compensatory response in which surviving progenitor cells increase their proliferation and replenish the niche. The proliferative response is temporally associated with infiltration of macrophages into the nephrogenic zone. Colony stimulating factor 1 (CSF1 has a mitogenic effect on nephron progenitor cells, providing a potential explanation for the compensatory proliferation. However, CSF1 also promotes interstitial cell proliferation, and the compensatory response is associated with interstitial expansion in recovering kidneys which can be pharmacologically inhibited by treatment with clodronate liposomes. Our findings suggest that the fetal kidney employs a macrophage-dependent compensatory regenerative mechanism to respond to acute injury caused by death of nephron progenitor cells, but that this regenerative response is associated with neonatal interstitial expansion.

  14. Dietary nitrate restores compensatory vasodilation and exercise capacity in response to a compromise in oxygen delivery in the noncompensator phenotype.

    Science.gov (United States)

    Bentley, Robert F; Walsh, Jeremy J; Drouin, Patrick J; Velickovic, Aleksandra; Kitner, Sarah J; Fenuta, Alyssa M; Tschakovsky, Michael E

    2017-09-01

    Recently, dietary nitrate supplementation has been shown to improve exercise capacity in healthy individuals through a potential nitrate-nitrite-nitric oxide pathway. Nitric oxide has been shown to play an important role in compensatory vasodilation during exercise under hypoperfusion. Previously, we established that certain individuals lack a vasodilation response when perfusion pressure reductions compromise exercising muscle blood flow. Whether this lack of compensatory vasodilation in healthy, young individuals can be restored with dietary nitrate supplementation is unknown. Six healthy (21 ± 2 yr), recreationally active men completed a rhythmic forearm exercise. During steady-state exercise, the exercising arm was rapidly transitioned from an uncompromised (below heart) to a compromised (above heart) position, resulting in a reduction in local pressure of -31 ± 1 mmHg. Exercise was completed following 5 days of nitrate-rich (70 ml, 0.4 g nitrate) and nitrate-depleted (70 ml, ~0 g nitrate) beetroot juice consumption. Forearm blood flow (in milliliters per minute; brachial artery Doppler and echo ultrasound), mean arterial blood pressure (in millimeters of mercury; finger photoplethysmography), exercising forearm venous effluent (ante-cubital vein catheter), and plasma nitrite concentrations (chemiluminescence) revealed two distinct vasodilatory responses: nitrate supplementation increased (plasma nitrite) compared with placebo (245 ± 60 vs. 39 ± 9 nmol/l; P nitrate supplementation (568 ± 117 vs. 714 ± 139 ml ⋅ min -1 ⋅ 100 mmHg -1 ; P = 0.005) but not in placebo (687 ± 166 vs. 697 ± 171 min -1 ⋅ 100 mmHg -1 ; P = 0.42). As such, peak exercise capacity was reduced to a lesser degree (-4 ± 39 vs. -39 ± 27 N; P = 0.01). In conclusion, dietary nitrate supplementation during a perfusion pressure challenge is an effective means of restoring exercise capacity and enabling compensatory vasodilation. NEW & NOTEWORTHY Previously, we

  15. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    Science.gov (United States)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  16. The impact of calcium assay change on a local adjusted calcium equation.

    Science.gov (United States)

    Davies, Sarah L; Hill, Charlotte; Bailey, Lisa M; Davison, Andrew S; Milan, Anna M

    2016-03-01

    Deriving and validating local adjusted calcium equations is important for ensuring appropriate calcium status classification. We investigated the impact on our local adjusted calcium equation of a change in calcium method by the manufacturer from cresolphthalein complexone to NM-BAPTA. Calcium and albumin results from general practice requests were extracted from the Laboratory Information Management system for a three-month period. Results for which there was evidence of disturbance in calcium homeostasis were excluded leaving 13,482 sets of results for analysis. The adjusted calcium equation was derived following least squares regression analysis of total calcium on albumin and normalized to the mean calcium concentration of the data-set. The revised equation (NM-BAPTA calcium method) was compared with the previous equation (cresolphthalein complexone calcium method). The switch in calcium assay resulted in a small change in the adjusted calcium equation but was not considered to be clinically significant. The calcium reference interval differed from that proposed by Pathology Harmony in the UK. Local adjusted calcium equations should be re-assessed following changes in the calcium method. A locally derived reference interval may differ from the consensus harmonized reference interval. © The Author(s) 2015.

  17. Compensatory deficits following rejection: the role of social anxiety in disrupting affiliative behavior.

    Science.gov (United States)

    Mallott, Michael A; Maner, Jon K; DeWall, Nathan; Schmidt, Norman B

    2009-01-01

    Managing perceived or actual social rejection is an important facet of meeting basic needs for affiliation. Social anxiety disorder (SAD) is characterized by significant distress and debilitation relating to affiliation and recent work suggests higher levels of social anxiety symptoms may adversely affect responses to social rejection. This study examined emotional and behavioral responding to a social rejection stressor to explore whether social anxiety moderates the effects of social rejection on prosocial compensatory behaviors. Individuals (N=37) evaluated on social anxiety symptoms were assigned to either a social rejection condition or control condition. Consistent with expectation, rejection promoted renewed interest in connecting with sources of positive social interaction among participants low in social anxiety. Participants with higher levels of social anxiety, however, failed to react to rejection in a positive or prosocial manner and exhibited some evidence of negative social responses. Such differential compensatory responding could have important implications for the genesis, maintenance, and treatment of SAD.

  18. Programming Saposin-Mediated Compensatory Metabolic Sinks for Enhanced Ubiquinone Production.

    Science.gov (United States)

    Xu, Wen; Yuan, Jifeng; Yang, Shuiyun; Ching, Chi-Bun; Liu, Jiankang

    2016-12-16

    Microbial synthesis of ubiquinone by fermentation processes has been emerging in recent years. However, as ubiquinone is a primary metabolite that is tightly regulated by the host central metabolism, tweaking the individual pathway components could only result in a marginal improvement on the ubiquinone production. Given that ubiquinone is stored in the lipid bilayer, we hypothesized that introducing additional metabolic sink for storing ubiquinone might improve the CoQ 10 production. As human lipid binding/transfer protein saposin B (hSapB) was reported to extract ubiquinone from the lipid bilayer and form the water-soluble complex, hSapB was chosen to build a compensatory metabolic sink for the ubiquinone storage. As a proof-of-concept, hSapB-mediated metabolic sink systems were devised and systematically investigated in the model organism of Escherichia coli. The hSapB-mediated periplasmic sink resulted in more than 200% improvement of CoQ 8 over the wild type strain. Further investigation revealed that hSapB-mediated sink systems could also improve the CoQ 10 production in a CoQ 10 -hyperproducing E. coli strain obtained by a modular pathway rewiring approach. As the design principles and the engineering strategies reported here are generalizable to other microbes, compensatory sink systems will be a method of significant interest to the synthetic biology community.

  19. Nox2 and p47phox modulate compensatory growth of primary collateral arteries

    Science.gov (United States)

    DiStasi, Matthew R.; Unthank, Joseph L.

    2014-01-01

    The role of NADPH oxidase (Nox) in both the promotion and impairment of compensatory collateral growth remains controversial because the specific Nox and reactive oxygen species involved are unclear. The aim of this study was to identify the primary Nox and reactive oxygen species associated with early stage compensatory collateral growth in young, healthy animals. Ligation of the feed arteries that form primary collateral pathways in rat mesentery and mouse hindlimb was used to assess the role of Nox during collateral growth. Changes in mesenteric collateral artery Nox mRNA expression determined by real-time PCR at 1, 3, and 7 days relative to same-animal control arteries suggested a role for Nox subunits Nox2 and p47phox. Administration of apocynin or Nox2ds-tat suppressed collateral growth in both rat and mouse models, suggesting the Nox2/p47phox interaction was involved. Functional significance of p47phox expression was assessed by evaluation of collateral growth in rats administered p47phox small interfering RNA and in p47phox−/− mice. Diameter measurements of collateral mesenteric and gracilis arteries at 7 and 14 days, respectively, indicated no significant collateral growth compared with control rats or C57BL/6 mice. Chronic polyethylene glycol-conjugated catalase administration significantly suppressed collateral development in rats and mice, implying a requirement for H2O2. Taken together, these results suggest that Nox2, modulated at least in part by p47phox, mediates early stage compensatory collateral development via a process dependent upon peroxide generation. These results have important implications for the use of antioxidants and the development of therapies for peripheral arterial disease. PMID:24633549

  20. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Dong, Yingping; Ziegler, Kerstin; Markovic, Jelena; Pallardó, Federico V; Pellny, Till K; Verrier, Paul J; Foyer, Christine H

    2010-12-01

    Cellular redox homeostasis and signalling are important in progression of the eukaryotic cell cycle. In animals, the low-molecular-weight thiol tripeptide glutathione (GSH) is recruited into the nucleus early in the cell proliferation cycle. To determine whether a similar process occurs in plants, we studied cell proliferation in Arabidopsis thaliana. We show that GSH co-localizes with nuclear DNA during the proliferation of A. thaliana cells in culture. Moreover, GSH localization in the nucleus was observed in dividing pericycle cells of the lateral root meristem. There was pronounced accumulation of GSH in the nucleus at points in the growth cycle at which a high percentage of the cells were in G(1) phase, as identified by flow cytometry and marker transcripts. Recruitment of GSH into the nucleus led to a high abundance of GSH in the nucleus (GSHn) and severe depletion of the cytoplasmic GSH pool (GSHc). Sequestration of GSH in the nucleus was accompanied by significant decreases in transcripts associated with oxidative signalling and stress tolerance, and an increase in the abundance of hydrogen peroxide, an effect that was enhanced when the dividing cells were treated with salicylic acid. Total cellular GSH and the abundance of GSH1 and GSH2 transcripts increased after the initial recruitment of GSH into the nucleus. We conclude that GSH recruitment into the nucleus during cell proliferation has a profound effect on the whole-cell redox state. High GSHn levels trigger redox adjustments in the cytoplasm, favouring decreased oxidative signalling and enhanced GSH synthesis. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  1. When Virtual Muscularity Enhances Physical Endurance: Masculinity Threat and Compensatory Avatar Customization Among Young Male Adults.

    Science.gov (United States)

    Lee-Won, Roselyn J; Tang, Wai Yen; Kibbe, Mackenzie R

    2017-01-01

    Masculinity-threatened men attempt to resolve the negative states caused by the threat through compensatory behavior such as public display of muscularity, which constitutes one way in which men physically establish masculinity. Avatars serve as a key means for self-presentation in technology-mediated environments, and compensatory motives can drive avatar customization. Noting this, the present research examined whether masculinity-threatened young men engage in compensatory avatar customization and whether such customization can be self-affirming. Specifically, we conducted a laboratory experiment to investigate the effects of masculinity threat on customization of avatar muscularity and physical endurance on a task that represents behavioral self-regulation. Data from 238 male college students revealed that masculinity-threatened young men customized their avatar to have greater muscle definition than did their nonthreatened counterparts, and greater muscle definition of the customized avatar predicted greater physical endurance on a handgrip task. Furthermore, muscle definition of the customized avatar significantly mediated the relationship between masculinity threat and physical endurance. None of these effects were moderated by masculine norm conformity, which suggested that the effects overrode individual differences in the extent to which participants conformed to masculine norms and expectations. Theoretical and practical implications of these findings are discussed.

  2. Anterior Overgrowth in Primary Curves, Compensatory Curves and Junctional Segments in Adolescent Idiopathic Scoliosis

    NARCIS (Netherlands)

    Schlösser, Tom P C; van Stralen, M; Chu, Winnie C W; Lam, Tsz-Ping; Ng, Bobby K W; Vincken, Koen L; Cheng, Jack C Y; Castelein, RM

    2016-01-01

    INTRODUCTION: Although much attention has been given to the global three-dimensional aspect of adolescent idiopathic scoliosis (AIS), the accurate three-dimensional morphology of the primary and compensatory curves, as well as the intervening junctional segments, in the scoliotic spine has not been

  3. 'Real-world' compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure.

    Science.gov (United States)

    Dawkins, Lynne; Cox, Sharon; Goniewicz, Maciej; McRobbie, Hayden; Kimber, Catherine; Doig, Mira; Kośmider, Leon

    2018-06-07

    To compare the effects of i) high versus low nicotine concentration e-liquid, ii) fixed versus adjustable power and iii) the interaction between the two on: a) vaping behaviour, b) subjective effects, c) nicotine intake, and d) exposure to acrolein and formaldehyde in e-cigarette users vaping in their everyday setting. Counterbalanced, repeated measures with four conditions: i) low nicotine (6 mg/mL)/fixed power; ii) low nicotine/adjustable power; iii) high nicotine (18 mg/mL)/fixed power; iv) high nicotine/adjustable power. London and the South East, England. Twenty experienced e-cigarette users (recruited between September 2016 and February 2017) vaped ad libitum using an eVic Supreme™ with a 'Nautilus Aspire' tank over four weeks (one week per condition). Puffing patterns (daily puff number [PN], puff duration [PD], inter-puff interval [IPI]), mL of e-liquid consumed, changes to power (where permitted), and subjective effects (urge to vape, nicotine withdrawal symptoms) were measured in each condition. Nicotine intake was measured via salivary cotinine. 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of the toxicant acrolein, and formate, a metabolite of the carcinogen formaldehyde, were measured in urine. There was a significant nicotine concentration x power interaction for PD (p<0.01). PD was longer with low nicotine/fixed power compared with i) high nicotine/fixed power (p< 0.001 and ii) low nicotine/adjustable power (p< 0.01). PN and liquid consumed were higher in the low versus high nicotine condition (main effect of nicotine, p<0.05). Urge to vape and withdrawal symptoms were lower, and nicotine intake was higher, in the high nicotine condition (main effects of nicotine: p<0.01). Whilst acrolein levels did not differ, there was a significant nicotine x power interaction for formaldehyde (p<0.05). Use of a lower nicotine concentration e-liquid may be associated with compensatory behaviour (e.g., higher number and duration of puffs) and increases

  4. Assessing state efforts to meet baby boomers' long-term care needs: a case study in compensatory federalism.

    Science.gov (United States)

    Pandey, Sanjay K

    2002-01-01

    The role of the state government and the character of federal-state relations in social policy have evolved considerably. Frank Thompson uses the phrase compensatory federalism to describe increased activity by state governments to make up for a diminished federal role. For compensatory federalism to work, it is essential for states to take leadership roles in key policy areas. Few studies examine whether states have risen to the challenge of compensatory federalism in social policy. This paper examines an emerging issue of great significance in social policy-challenges involved in meeting future long-term care needs for the baby boomer generation. The paper provides an in-depth case study of attempts by Maryland to meet the challenges of financing long-term care needs for the baby boomer generation. The detailed description of the agenda-setting and problem-structuring process in Maryland is followed by an analysis that uses three different frameworks to assess the policy development processes. These models are rooted in a bureaucratic politics perspective, an agenda-setting perspective and an interest group politics perspective. The paper concludes with a discussion of the limitations and possibilities of state leadership in the social policy sphere.

  5. Three-component homeostasis control

    Science.gov (United States)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  6. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Vincent, Leah R; Kerr, Samuel R; Tan, Yang; Tomberg, Joshua; Raterman, Erica L; Dunning Hotopp, Julie C; Unemo, Magnus; Nicholas, Robert A; Jerse, Ann E

    2018-04-03

    Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2) variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cro r ) clinical isolates (H041 and F89) into a Cro s strain (FA19) by allelic exchange and showed that the resultant Cro r mutants were significantly outcompeted by the Cro s parent strain in vitro and in a murine infection model. Four Cro r compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo One of these compensatory mutants (LV41C) displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D) in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnB G348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq) analysis of FA19 penA41 acnB G348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cro r gonococcal strains that increase metabolism to ameliorate their fitness deficit. IMPORTANCE The emergence of ceftriaxone-resistant (Cro r ) Neisseria gonorrhoeae has led to the looming threat of untreatable gonorrhea. Whether Cro resistance is likely to spread can be predicted from studies that compare the relative fitnesses of

  7. The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations

    Directory of Open Access Journals (Sweden)

    Atsushi eUeda

    2015-02-01

    Full Text Available Homeostasis is the ability of physiological systems to regain functional balance following environment or experimental insults and synaptic homeostasis has been demonstrated in various species following genetic or pharmacological disruptions. Among environmental challenges, homeostatic responses to temperature extremes are critical to animal survival under natural conditions. We previously reported that axon terminal arborization in Drosophila larval neuromuscular junctions is enhanced at elevated temperatures; however, the amplitude of excitatory junctional potentials (EJPs remains unaltered despite the increase in synaptic bouton numbers. Here we determine the cellular basis of this homeostatic adjustment in larvae reared at high temperature (HT, 29 ˚C. We found that synaptic current focally recorded from individual synaptic boutons was unaffected by rearing temperature (30 ˚C. However, HT rearing decreased the quantal size (amplitude of spontaneous miniature EJPs, or mEJPs, which compensates for the increased number of synaptic releasing sites to retain a normal EJP size. The quantal size decrease is accounted for by a decrease in input resistance of the postsynaptic muscle fiber, indicating an increase in membrane area that matches the synaptic growth at HT. Interestingly, a mutation in rutabaga (rut encoding adenylyl cyclase (AC exhibited no obvious changes in quantal size or input resistance of postsynaptic muscle cells after HT rearing, suggesting an important role for rut AC in temperature-induced synaptic homeostasis in Drosophila. This extends our previous finding of rut-dependent synaptic homeostasis in hyperexcitable mutants, e.g. slowpoke (slo. In slo larvae, the lack of BK channel function is partially ameliorated by upregulation of presynaptic Sh IA current to limit excessive transmitter release in addition to postsynaptic glutamate receptor recomposition that reduces the quantal size.

  8. MicroRNAs and Periodontal Homeostasis.

    Science.gov (United States)

    Luan, X; Zhou, X; Trombetta-eSilva, J; Francis, M; Gaharwar, A K; Atsawasuwan, P; Diekwisch, T G H

    2017-05-01

    MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic

  9. Development and Validation of the Homeostasis Concept Inventory

    Science.gov (United States)

    McFarland, Jenny L.; Price, Rebecca M.; Wenderoth, Mary Pat; Martinková, Patrícia; Cliff, William; Michael, Joel; Modell, Harold; Wright, Ann

    2017-01-01

    We present the Homeostasis Concept Inventory (HCI), a 20-item multiple-choice instrument that assesses how well undergraduates understand this critical physiological concept. We used an iterative process to develop a set of questions based on elements in the Homeostasis Concept Framework. This process involved faculty experts and undergraduate…

  10. Compensatory recombination phenomena of neurological functions in central dysphagia patients

    Directory of Open Access Journals (Sweden)

    Xiao-dong Yuan

    2015-01-01

    Full Text Available We speculate that cortical reactions evoked by swallowing activity may be abnormal in patients with central infarction with dysphagia. The present study aimed to detect functional imaging features of cerebral cortex in central dysphagia patients by using blood oxygen level-dependent functional magnetic resonance imaging techniques. The results showed that when normal controls swallowed, primary motor cortex (BA4, insula (BA13, premotor cortex (BA6/8, supramarginal gyrus (BA40, and anterior cingulate cortex (BA24/32 were activated, and that the size of the activated areas were larger in the left hemisphere compared with the right. In recurrent cerebral infarction patients with central dysphagia, BA4, BA13, BA40 and BA6/8 areas were activated, while the degree of activation in BA24/32 was decreased. Additionally, more areas were activated, including posterior cingulate cortex (BA23/31, visual association cortex (BA18/19, primary auditory cortex (BA41 and parahippocampal cortex (BA36. Somatosensory association cortex (BA7 and left cerebellum in patients with recurrent cerebral infarction with central dysphagia were also activated. Experimental findings suggest that the cerebral cortex has obvious hemisphere lateralization in response to swallowing, and patients with recurrent cerebral infarction with central dysphagia show compensatory recombination phenomena of neurological functions. In rehabilitative treatment, using the favorite food of patients can stimulate swallowing through visual, auditory, and other nerve conduction pathways, thus promoting compensatory recombination of the central cortex functions.

  11. The S-Lagrangian and a theory of homeostasis in living systems

    Science.gov (United States)

    Sandler, U.; Tsitolovsky, L.

    2017-04-01

    A major paradox of living things is their ability to actively counteract degradation in a continuously changing environment or being injured through homeostatic protection. In this study, we propose a dynamic theory of homeostasis based on a generalized Lagrangian approach (S-Lagrangian), which can be equally applied to physical and nonphysical systems. Following discoverer of homeostasis Cannon (1935), we assume that homeostasis results from tendency of the organisms to decrease of the stress and avoid of death. We show that the universality of homeostasis is a consequence of analytical properties of the S-Lagrangian, while peculiarities of the biochemical and physiological mechanisms of homeostasis determine phenomenological parameters of the S-Lagrangian. Additionally, we reveal that plausible assumptions about S-Lagrangian features lead to good agreement between theoretical descriptions and observed homeostatic behavior. Here, we have focused on homeostasis of living systems, however, the proposed theory is also capable of being extended to social systems.

  12. Ambient air pollution, adipokines, and glucose homeostasis: The Framingham Heart Study.

    Science.gov (United States)

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Kloog, Itai; Schwartz, Joel D; Koutrakis, Petros; Coull, Brent A; Gold, Diane R; Meigs, James B; Fox, Caroline S; Mittleman, Murray A

    2018-02-01

    To examine associations of proximity to major roadways, sustained exposure to fine particulate matter (PM 2.5 ), and acute exposure to ambient air pollutants with adipokines and measures of glucose homeostasis among participants living in the northeastern United States. We included 5958 participants from the Framingham Offspring cohort examination cycle 7 (1998-2001) and 8 (2005-2008) and Third Generation cohort examination cycle 1 (2002-2005) and 2 (2008-2011), who did not have type 2 diabetes at the time of examination visit. We calculated 2003 annual average PM 2.5 at participants' home address, residential distance to the nearest major roadway, and daily PM 2.5 , black carbon (BC), sulfate, nitrogen oxides (NO x ), and ozone concentrations. We used linear mixed effects models for fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) which were measured up to twice, and used linear regression models for adiponectin, resistin, leptin, and hemoglobin A1c (HbA1c) which were measured only once, adjusting for demographics, socioeconomic position, lifestyle, time, and seasonality. The mean age was 51years and 55% were women. Participants who lived 64m (25th percentile) from a major roadway had 0.28% (95% CI: 0.05%, 0.51%) higher fasting plasma glucose than participants who lived 413m (75th percentile) away, and the association appeared to be driven by participants who lived within 50m from a major roadway. Higher exposures to 3- to 7-day moving averages of BC and NO x were associated with higher glucose whereas the associations for ozone were negative. The associations otherwise were generally null and did not differ by median age, sex, educational attainment, obesity status, or prediabetes status. Living closer to a major roadway or acute exposure to traffic-related air pollutants were associated with dysregulated glucose homeostasis but not with adipokines among participants from the Framingham Offspring and Third Generation

  13. Errorless learning and social problem solving ability in schizophrenia: an examination of the compensatory effects of training.

    Science.gov (United States)

    Leshner, Anna F; Tom, Shelley R; Kern, Robert S

    2013-03-30

    Compensatory approaches to cognitive rehabilitation in schizophrenia aim to improve functioning by bypassing or compensating for impaired areas of cognition. At present, there is little empirical evidence that these approaches actually compensate for neurocognitive impairments in improving community functioning. This study examined the effects of errorless learning (EL), a compensatory cognitive rehabilitation approach, on social problem solving ability in schizophrenia. The study included 60 outpatients who met DSM-IV criteria for schizophrenia or schizoaffective disorder. Participants received a baseline battery to assess explicit and implicit memory functioning. Participants were stratified according to gender and level of memory functioning and then randomized to EL or symptom management training. Training was conducted over two days lasting a total of 6h for each group. Assessment of social problem-solving ability, using the Assessment of Interpersonal Problem Solving Skills (AIPSS), was conducted after completion of training and at a 3-month follow-up without further intervention. Results from hierarchical multiple regression and analysis of covariance each supported the compensatory effects of training. These findings indicate that EL facilitates learning of new skills across varying levels of memory impairment. Future efforts may aim to explore the specific neurocognitive mechanisms involved in EL. Published by Elsevier Ireland Ltd.

  14. Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains

    Directory of Open Access Journals (Sweden)

    Lavania M

    2018-01-01

    Full Text Available Mallika Lavania,1 Itu Singh,1 Ravindra P Turankar,1 Anuj Kumar Gupta,2 Madhvi Ahuja,1 Vinay Pathak,1 Utpal Sengupta1 1Stanley Browne Laboratory, The Leprosy Mission Trust India, TLM Community Hospital Nand Nagari, 2Agilent Technologies India Pvt Ltd, Jasola District Centre, New Delhi, India Abstract: Despite more than three decades of multidrug therapy (MDT, leprosy remains a major public health issue in several endemic countries, including India. The emergence of drug resistance in Mycobacterium leprae (M. leprae is a cause of concern and poses a threat to the leprosy-control program, which might ultimately dampen the achievement of the elimination program of the country. Rifampicin resistance in clinical strains of M. leprae are supposed to arise from harboring bacterial strains with mutations in the 81-bp rifampicin resistance determining region (RRDR of the rpoB gene. However, complete dynamics of rifampicin resistance are not explained only by this mutation in leprosy strains. To understand the role of other compensatory mutations and transmission dynamics of drug-resistant leprosy, a genome-wide sequencing of 11 M. leprae strains – comprising five rifampicin-resistant strains, five sensitive strains, and one reference strain – was done in this study. We observed the presence of compensatory mutations in two rifampicin-resistant strains in rpoC and mmpL7 genes, along with rpoB, that may additionally be responsible for conferring resistance in those strains. Our findings support the role for compensatory mutation(s in RNA polymerase gene(s, resulting in rifampicin resistance in relapsed leprosy patients. Keywords: leprosy, rifampicin resistance, compensatory mutations, next generation sequencing, relapsed, MDT, India

  15. The Role of Episodic Postprandial Peptides in Exercise-Induced Compensatory Eating.

    Science.gov (United States)

    Gibbons, Catherine; Blundell, John E; Caudwell, Phillipa; Webb, Dominic-Luc; Hellström, Per M; Näslund, Erik; Finlayson, Graham

    2017-11-01

    Prolonged physical activity gives rise to variable degrees of body weight and fat loss, and is associated with variability in appetite control. Whether these effects are modulated by postprandial, peptides is unclear. We examined the role of postprandial peptide response in compensatory eating during 12 weeks of aerobic exercise and in response to high-fat, low-carbohydrate (HFLC) and low-fat, high-carbohydrate (LFHC) meals. Of the 32 overweight/obese individuals, 16 completed 12 weeks of aerobic exercise and 16 nonexercising control subjects were matched for age and body mass index. Exercisers were classified as responders or nonresponders depending on net energy balance from observed compared with expected body composition changes from measured energy expenditure. Plasma samples were collected before and after meals to compare profiles of total and acylated ghrelin, insulin, cholecystokinin, glucagon-like peptide 1 (GLP-1), and total peptide YY (PYY) between HFLC and LFHC meals, pre- and postexercise, and between groups. No differences between pre- and postintervention peptide release. Responders had greater suppression of acylated ghrelin (P exercise. Responders to exercise-induced weight loss showed greater suppression of acylated ghrelin and greater release of GLP-1 and total PYY at baseline. Therefore, episodic postprandial peptide profiles appear to form part of the pre-existing physiology of exercise responders and suggest differences in satiety potential may underlie exercise-induced compensatory eating. Copyright © 2017 Endocrine Society

  16. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-09-11

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In... caused by impaired fire protection features at nuclear power plants. The report documents the history of...

  17. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Leah R. Vincent

    2018-04-01

    Full Text Available Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2 variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cror clinical isolates (H041 and F89 into a Cros strain (FA19 by allelic exchange and showed that the resultant Cror mutants were significantly outcompeted by the Cros parent strain in vitro and in a murine infection model. Four Cror compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo. One of these compensatory mutants (LV41C displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnBG348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq analysis of FA19 penA41 acnBG348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cror gonococcal strains that increase metabolism to ameliorate their fitness deficit.

  18. Compensatory Changes in Energy Balance Regulation over One Athletic Season.

    Science.gov (United States)

    Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; MüLLER, Manfred J; Heymsfield, Steven B; Sardinha, LUíS B

    2017-06-01

    Mechanisms in energy balance (EB) regulation may include compensatory changes in energy intake (EI) and metabolic adaption (MA), but information is unavailable in athletes who often change EB components. We aim to investigate EB regulation compensatory mechanisms over one athletic season. Fifty-seven athletes (39 males/18 females; handball, volleyball, basketball, triathlon, and swimming) were evaluated from the beginning to the competitive phase of the season. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively, and physical activity energy expenditure was determined as TEE - 0.1(TEE) - REE. Fat mass (FM) and fat-free mass (FFM) were evaluated by dual-energy x-ray absorptiometry and changed body energy stores was determined by 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). EI was derived as TEE + EB. REE was predicted from baseline FFM, FM, sex, and sports. %MA was calculated as 100(measured REE/predicted REE-1) and MA (kcal) as %MA/100 multiplied by baseline measured REE. Average EI minus average physical activity energy expenditure was computed as a proxy of average energy availability, assuming that a constant nonexercise EE occurred over the season. Body mass increased by 0.8 ± 2.5 kg (P energy availability (r = 0.356 and r = 0.0644, respectively). TEE increased over the season without relevant mean changes in weight, suggesting that EI compensation likely occurred. The thrifty or spendthrift phenotypes observed among sports and the demanding workloads these athletes are exposed to highlight the need for sport-specific energy requirements.

  19. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  20. A Formal Explication of the Concept of Family Homeostasis.

    Science.gov (United States)

    Ariel, Shlomo; And Others

    1984-01-01

    Presents three articles discussing the concept of family homeostasis and the related concepts of family rules and family feedback. Includes a reply by Paul Dell citing the need for family therapy to go beyond homeostasis and further comments by Ariel, Carel, and Tyano. (JAC)

  1. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli

    NARCIS (Netherlands)

    Baarlen, van P.; Wells, J.; Kleerebezem, M.

    2013-01-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels

  2. Persistent hepatitis virus infection and immune homeostasis

    OpenAIRE

    ZHOU Yun

    2014-01-01

    Homeostasis between the host and viruses is naturally maintained. On the one hand, the immune system activates the immune response to kill or eliminate viruses; on the other hand, the immune system controls the immune response to maintain immune homeostasis. The cause of persistent infections with hepatitis viruses such as HBV and HCV is that viral molecules damage the immune system of the host and their variants escape immune clearance. Long-term coexistence of the host and viruses is the pr...

  3. Neuroimmune regulation during intestinal development and homeostasis.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Pachnis, Vassilis

    2017-02-01

    Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological-immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.

  4. Inconsistency effects in source memory and compensatory schema-consistent guessing.

    Science.gov (United States)

    Küppers, Viviane; Bayen, Ute J

    2014-10-01

    The attention-elaboration hypothesis of memory for schematically unexpected information predicts better source memory for unexpected than expected sources. In three source-monitoring experiments, the authors tested the occurrence of an inconsistency effect in source memory. Participants were presented with items that were schematically either very expected or very unexpected for their source. Multinomial processing tree models were used to separate source memory, item memory, and guessing bias. Results show an inconsistency effect in source memory accompanied by a compensatory schema-consistent guessing bias when expectancy strength is high, that is, when items are very expected or very unexpected for their source.

  5. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The Responsibility Of Trade Unions In Transaction Collective Instruments About Compensatory Time

    OpenAIRE

    Manuella de Oliveira Soares; Rui Carvalho Piva

    2016-01-01

    The democratic State of Direct aims to provide assurance and effectiveness of fundamental rights in order that human dignity is preserved. In this way, among other fundamental rights is the right to health, in one of its aspects, protects workers' health. Thus, this study, through a bibliographical research aims to demonstrate that unions should be held responsible for damage caused to workers when preparing collective bargaining instruments to the creation of compensatory time with condition...

  7. Herbivore impacts on marsh production depend upon a compensatory continuum mediated by salinity stress.

    Directory of Open Access Journals (Sweden)

    Jeremy D Long

    Full Text Available Plant communities are disturbed by several stressors and they are expected to be further impacted by increasing anthropogenic stress. The consequences of these stressors will depend, in part, upon the ability of plants to compensate for herbivory. Previous studies found that herbivore impacts on plants can vary from negative to positive because of environmental control of plant compensatory responses, a.k.a. the Compensatory Continuum Hypothesis. While these influential studies enhanced our appreciation of the dynamic nature of plant-herbivore interactions, they largely focused on the impact of resource limitation. This bias limits our ability to predict how other environmental factors will shape the impact of herbivory. We examined the role of salinity stress on herbivory of salt marsh cordgrass, Spartina foliosa, by an herbivore previously hypothesized to influence the success of restoration projects (the scale insect, Haliaspis spartinae. Using a combination of field and mesocosm manipulations of scales and salinity, we measured how these factors affected Spartina growth and timing of senescence. In mesocosm studies, Spartina overcompensated for herbivory by growing taller shoots at low salinities but the impact of scales on plants switched from positive to neutral with increasing salinity stress. In field studies of intermediate salinities, scales reduced Spartina growth and increased the rate of senescence. Experimental salinity additions at this field site returned the impact of scales to neutral. Because salinity decreased scale densities, the switch in impact of scales on Spartina with increasing salinity was not simply a linear function of scale abundance. Thus, the impact of scales on primary production depended strongly upon environmental context because intermediate salinity stress prevented plant compensatory responses to herbivory. Understanding this context-dependency will be required if we are going to successfully predict the

  8. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses

    Science.gov (United States)

    Freyler, Kathrin; Gollhofer, Albert; Colin, Ralf; Brüderlin, Uli; Ritzmann, Ramona

    2015-01-01

    Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG) activity, centre of pressure (COP) displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental) and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR), medium (MLR) and long latency response (LLR) of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane), medial-lateral (frontal plane)), displacement (2 vs. 3cm) and velocity (0.11 vs. 0.18m/s) of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (Pjoints compensated for both increasing displacement and velocity in all directions (Pjoint deflections were particularly sensitive to increasing displacement in the sagittal (Pjoint deflections to increasing velocity in the frontal plane (P<0.05). COP measures increased with increasing perturbation velocity and displacement (P<0.05). Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb serve as delayed stabilisers after a balance disturbance. Further, a kinematic distinction regarding the compensation for balance disturbance indicated different plane- and segment-specific sensitivities with respect to the determinants displacement and velocity. PMID:26678061

  9. Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains.

    Science.gov (United States)

    Lavania, Mallika; Singh, Itu; Turankar, Ravindra P; Gupta, Anuj Kumar; Ahuja, Madhvi; Pathak, Vinay; Sengupta, Utpal

    2018-01-01

    Despite more than three decades of multidrug therapy (MDT), leprosy remains a major public health issue in several endemic countries, including India. The emergence of drug resistance in Mycobacterium leprae (M. leprae) is a cause of concern and poses a threat to the leprosy-control program, which might ultimately dampen the achievement of the elimination program of the country. Rifampicin resistance in clinical strains of M. leprae are supposed to arise from harboring bacterial strains with mutations in the 81-bp rifampicin resistance determining region (RRDR) of the rpoB gene. However, complete dynamics of rifampicin resistance are not explained only by this mutation in leprosy strains. To understand the role of other compensatory mutations and transmission dynamics of drug-resistant leprosy, a genome-wide sequencing of 11 M. leprae strains - comprising five rifampicin-resistant strains, five sensitive strains, and one reference strain - was done in this study. We observed the presence of compensatory mutations in two rifampicin-resistant strains in rpoC and mmpL7 genes, along with rpoB , that may additionally be responsible for conferring resistance in those strains. Our findings support the role for compensatory mutation(s) in RNA polymerase gene(s), resulting in rifampicin resistance in relapsed leprosy patients.

  10. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli.

    Science.gov (United States)

    van Baarlen, Peter; Wells, Jerry M; Kleerebezem, Michiel

    2013-05-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels of success. Composition of microbiota, probiotic strain identity, and host genetic differences may account for differential modulation of immune responses by probiotics. Here, we review the mechanisms of immunomodulating capacities of specific probiotic strains, the responses they can induce in the host, and how microbiota and genetic differences between individuals may co-influence host responses and immune homeostasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Diminished stress resistance and defective adaptive homeostasis in age-related diseases.

    Science.gov (United States)

    Lomeli, Naomi; Bota, Daniela A; Davies, Kelvin J A

    2017-11-01

    Adaptive homeostasis is defined as the transient expansion or contraction of the homeostatic range following exposure to subtoxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events ( Mol. Aspects Med. (2016) 49, 1-7 ). Adaptive homeostasis allows us to transiently adapt (and then de-adapt) to fluctuating levels of internal and external stressors. The ability to cope with transient changes in internal and external environmental stress, however, diminishes with age. Declining adaptive homeostasis may make older people more susceptible to many diseases. Chronic oxidative stress and defective protein homeostasis (proteostasis) are two major factors associated with the etiology of age-related disorders. In the present paper, we review the contribution of impaired responses to oxidative stress and defective adaptive homeostasis in the development of age-associated diseases. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Ultrastructural changes and nestin expression accompanying compensatory renal growth after unilateral nephrectomy in adult rats

    Directory of Open Access Journals (Sweden)

    Eladl MA

    2017-02-01

    Full Text Available Mohamed Ahmed Eladl,1,2 Wael M Elsaed,2,3 Hoda Atef,4 Mohamed El-Sherbiny2 1Department of Basic Medical Sciences, University of Sharjah, Sharjah, United Arab Emirates; 2Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; 3Anatomy and Embryology Department, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia; 4Department of Histology, University of Mansoura, Mansoura, Egypt Background: Several renal disorders affect the glomerular podocytes. Compensatory structural and functional changes have been observed in animals that have undergone unilateral renal ablation. These changes occur as a pliant response to quench the increased functional demand to maintain homeostasis of fluid and solutes. Nestin is an intermediate filament protein present in the glomerular podocytes of the adult kidney and is linked with the maintenance of its foot process structure. Structural changes in the podocytes ultimately restructure the filtration barrier. Very few studies related to the ultrastructural and histopathologic changes of the podocytes are documented. The present study aimed to assess the histopathologic changes at the ultrastructural level in the adapted kidney at different time intervals following unilateral renal ablation in adult rats and its relation with nestin.Methods: Forty-eight rats were divided into four groups (n=12 in each group. The animals of Group A were control naïve rats, while the group B, group C and group D animals underwent left unilateral nephrectomy and the remaining right kidney was removed on days 10, 20 and 30, respectively. Each group included four sham-operated rats, which were sacrificed at the same time as the naïve rats. Each nephrectomized sample was weighed and its sections were subjected to hematoxylin and eosin examination, transmission electron microscopic study as well as immunostaining using the intermediate filament protein nestin.Results: No difference was found

  13. Cellular Links between Neuronal Activity and Energy Homeostasis

    OpenAIRE

    Shetty, Pavan K.; Galeffi, Francesca; Turner, Dennis A.

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which lea...

  14. Telomere Homeostasis: Interplay with Magnesium

    Directory of Open Access Journals (Sweden)

    Donogh Maguire

    2018-01-01

    Full Text Available Telomere biology, a key component of the hallmarks of ageing, offers insight into dysregulation of normative ageing processes that accompany age-related diseases such as cancer. Telomere homeostasis is tightly linked to cellular metabolism, and in particular with mitochondrial physiology, which is also diminished during cellular senescence and normative physiological ageing. Inherent in the biochemistry of these processes is the role of magnesium, one of the main cellular ions and an essential cofactor in all reactions that use ATP. Magnesium plays an important role in many of the processes involved in regulating telomere structure, integrity and function. This review explores the mechanisms that maintain telomere structure and function, their influence on circadian rhythms and their impact on health and age-related disease. The pervasive role of magnesium in telomere homeostasis is also highlighted.

  15. Ageing and water homeostasis

    Science.gov (United States)

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  16. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Clinical and Cognitive Insight in a Compensatory Cognitive Training Intervention

    Science.gov (United States)

    Burton, Cynthia Z.; Vella, Lea; Twamley, Elizabeth W.

    2013-01-01

    The impact of limited insight is a crucial consideration in the treatment of individuals with psychiatric illness. In the context of psychosis, both clinical and cognitive insight have been described. This study aimed to evaluate the relationships between clinical and cognitive insight and neuropsychological functioning, psychiatric symptom severity, and everyday functioning in patients with a primary psychotic disorder participating in a compensatory cognitive training (CT) intervention. Sixty-nine individuals diagnosed with a primary psychotic disorder were randomized to a 3-month CT intervention or to standard pharmacotherapy, and they completed a comprehensive neuropsychological, clinical, and functional battery at baseline, 3 months, and 6 months. The CT intervention focused on habit formation and compensatory strategy learning in four domains: prospective memory, attention and vigilance, learning and memory, and problem-solving/cognitive flexibility. At baseline, better clinical insight was significantly related to better executive functioning and less severe negative symptoms. There was no significant association between cognitive insight and cognitive functioning, symptom severity, or everyday functioning ability. The CT intervention did not have an effect on clinical or cognitive insight, but better cognitive insight prior to participation in CT significantly predicted decreased positive and depressive symptom severity posttreatment, and better clinical insight predicted improved self-reported quality of life. Although clinical insight is related to executive functioning, the correlates of cognitive insight remain elusive. Intact insight appears to be beneficial in ameliorating clinical symptomatology like positive symptoms and depression, rather than augmenting cognition. It may be valuable to develop brief interventions aimed at improving clinical and cognitive insight prior to other psychosocial rehabilitation in order to maximize the benefit of

  18. Lifespan extension by preserving proliferative homeostasis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Benoît Biteau

    2010-10-01

    Full Text Available Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.

  19. HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    Terumasa Ikeda

    2018-04-01

    Full Text Available HIV-1 replication normally requires Vif-mediated neutralization of APOBEC3 antiviral enzymes. Viruses lacking Vif succumb to deamination-dependent and -independent restriction processes. Here, HIV-1 adaptation studies were leveraged to ask whether viruses with an irreparable vif deletion could develop resistance to restrictive levels of APOBEC3G. Several resistant viruses were recovered with multiple amino acid substitutions in Env, and these changes alone are sufficient to protect Vif-null viruses from APOBEC3G-dependent restriction in T cell lines. Env adaptations cause decreased fusogenicity, which results in higher levels of Gag-Pol packaging. Increased concentrations of packaged Pol in turn enable faster virus DNA replication and protection from APOBEC3G-mediated hypermutation of viral replication intermediates. Taken together, these studies reveal that a moderate decrease in one essential viral activity, namely Env-mediated fusogenicity, enables the virus to change other activities, here, Gag-Pol packaging during particle production, and thereby escape restriction by the antiviral factor APOBEC3G. We propose a new paradigm in which alterations in viral homeostasis, through compensatory small changes, constitute a general mechanism used by HIV-1 and other viral pathogens to escape innate antiviral responses and other inhibitions including antiviral drugs.

  20. The Interplay between Feedback and Buffering in Cellular Homeostasis.

    Science.gov (United States)

    Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart

    2017-11-22

    Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Mechanism for maintaining homeostasis in the immune system of the intestine.

    Science.gov (United States)

    Taniguchi, Yoshie; Yoshioka, Noriko; Nakata, Kazue; Nishizawa, Takashi; Inagawa, Hiroyuki; Kohchi, Chie; Soma, Gen-Ichiro

    2009-11-01

    Every organism possesses a mechanism for maintaining homeostasis. We have focused on the immune system as a system that helps maintain homeostasis of the body, and particularly on the intestine as the largest organ of immunity in the body. We have also focused our research on the mechanism that responds to foreign substances in the intestine, especially the toll-like receptors (TLR). The activation of myeloid differentiation primary response gene 88 (MyD88) signal transduction as a response to TLR in the intestine is believed to contribute to the maintenance of homeostasis of the body through the homeostasis of the intestine. Furthermore, significant findings were reported in which signal transduction from TLR4 was essential for the maintenance and regulation of the intestine. These results strongly suggest the possibility that homeostasis in the intestine is maintained by TLR4, and signaling by TLR4 after exposure to lipopolysaccharide (LPS) probably has a role in regulating homeostasis. It is expected that the prevention and treatment of various diseases using TLR4 will continue to develop. As LPS is a substance that enhances the activity of TLR4, it will also attract attention as a valuable substance in its own right.

  2. Impact of intermittent fasting on glucose homeostasis.

    Science.gov (United States)

    Varady, Krista A

    2016-07-01

    This article provides an overview of the most recent human trials that have examined the impact of intermittent fasting on glucose homeostasis. Our literature search retrieved one human trial of alternate day fasting, and three trials of Ramadan fasting published in the past 12 months. Current evidence suggests that 8 weeks of alternate day fasting that produces mild weight loss (4% from baseline) has no effect on glucose homeostasis. As for Ramadan fasting, decreases in fasting glucose, insulin, and insulin resistance have been noted after 4 weeks in healthy normal weight individuals with mild weight loss (1-2% from baseline). However, Ramadan fasting may have little impact on glucoregulatory parameters in women with polycystic ovarian syndrome who failed to observe weight loss. Whether intermittent fasting is an effective means of regulating glucose homeostasis remains unclear because of the scarcity of studies in this area. Large-scale, longer-term randomized controlled trials will be required before the use of fasting can be recommended for the prevention and treatment of metabolic diseases.

  3. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity.

    Science.gov (United States)

    Petersen, Frank; Yue, Xiaoyang; Riemekasten, Gabriela; Yu, Xinhua

    2017-06-01

    Monogenic autoimmune disorders provide a powerful tool for our understanding of the principles of autoimmunity due to the obvious impact of a single gene on the disease. So far, approximately 100 single gene defects causing murine monogenic autoimmune disorders have been reported and the functional characterization of these genes will provide significant progress in understanding the nature of autoimmunity. According to their function, genes leading to monogenic autoimmune disorders can be categorized into two groups. An expectable first group contains genes involved in the homeostasis of the immune system, including homeostasis of immune organs and immune cells. Intriguingly, the second group consists of genes functionally involved in the homeostasis of target tissues or autoantigens. According to our novel hypothesis, we propose that autoimmunity represents a consequence of a dysregulated homeostasis of the immune system and/or its targets including autoantigens and target tissues. In this review we refer to both aspects of homeostasis in autoimmunity with a highlight on the role of the homeostasis of target tissues and autoantigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. THE WORLD VIEW, IDENTITY AND SOCIOCULTUR HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Marina Yur’evna Neronova

    2016-02-01

    Full Text Available The paper presents the relationship between the phenomenon of world view and sociocultural identity both individuals and the community as a whole. The research is being carried out in the context of current crisis of world view accepted in so-called art Nouveau era. This paper also presents the identity crisis typical for modern civilized societies. A new notion of sociocultural homeostasis is introduced in connection with analyzable phenomena and their mutual relations.Purpose. Study of the relationship between the phenomenon of the world view and sociocultural identity as a structural and functional mechanism.Methodology. Phenomenological and systematic methods with the elements of historical method were employed. Cultural analysis is based on using both axiological and phenomenological approach, and also the elements of semiotic approach.Results. The dependence of identity on the world view is revealed (or is being revealed?, the phenomenon of sociocultural homeostasis is singled out (or is being singled out in the capacity of the mechanism setting up the correspondence in the contradictory unity between the world view as a subjective image and concrete reality as an objective part of this contradictory. The analysis of sociocultural homeostasis is carried out (or is being carried out and the conclusion is being drown that instability of the latter leads to serious problems in the identification of both individuals and communities as a whole. Besides, (moreover the relationship between the legitimacy level of the world view and stability of sociocultural homeostasis is established. (is being established.Practical implications: the system of education.

  5. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study.

    Science.gov (United States)

    Slowik, Jonathan S; McNitt-Gray, Jill L; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2016-03-01

    The considerable physical demand placed on the upper extremity during manual wheelchair propulsion is distributed among individual muscles. The strategy used to distribute the workload is likely influenced by the relative force-generating capacities of individual muscles, and some strategies may be associated with a higher injury risk than others. The objective of this study was to use forward dynamics simulations of manual wheelchair propulsion to identify compensatory strategies that can be used to overcome weakness in individual muscle groups and identify specific strategies that may increase injury risk. Identifying these strategies can provide rationale for the design of targeted rehabilitation programs aimed at preventing the development of pain and injury in manual wheelchair users. Muscle-actuated forward dynamics simulations of manual wheelchair propulsion were analyzed to identify compensatory strategies in response to individual muscle group weakness using individual muscle mechanical power and stress as measures of upper extremity demand. The simulation analyses found the upper extremity to be robust to weakness in any single muscle group as the remaining groups were able to compensate and restore normal propulsion mechanics. The rotator cuff muscles experienced relatively high muscle stress levels and exhibited compensatory relationships with the deltoid muscles. These results underline the importance of strengthening the rotator cuff muscles and supporting muscles whose contributions do not increase the potential for impingement (i.e., the thoracohumeral depressors) and minimize the risk of upper extremity injury in manual wheelchair users. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  7. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. microRNA Regulation of Peritoneal Cavity Homeostasis in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Melisa Lopez-Anton

    2015-01-01

    Full Text Available Preservation of peritoneal cavity homeostasis and peritoneal membrane function is critical for long-term peritoneal dialysis (PD treatment. Several microRNAs (miRNAs have been implicated in the regulation of key molecular pathways driving peritoneal membrane alterations leading to PD failure. miRNAs regulate the expression of the majority of protein coding genes in the human genome, thereby affecting most biochemical pathways implicated in cellular homeostasis. In this review, we report published findings on miRNAs and PD therapy, with emphasis on evidence for changes in peritoneal miRNA expression during long-term PD treatment. Recent work indicates that PD effluent- (PDE- derived cells change their miRNA expression throughout the course of PD therapy, contributing to the loss of peritoneal cavity homeostasis and peritoneal membrane function. Changes in miRNA expression profiles will alter regulation of key molecular pathways, with the potential to cause profound effects on peritoneal cavity homeostasis during PD treatment. However, research to date has mainly adopted a literature-based miRNA-candidate methodology drawing conclusions from modest numbers of patient-derived samples. Therefore, the study of miRNA expression during PD therapy remains a promising field of research to understand the mechanisms involved in basic peritoneal cell homeostasis and PD failure.

  9. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis.

    Science.gov (United States)

    Byberg, S; Hansen, A-L S; Christensen, D L; Vistisen, D; Aadahl, M; Linneberg, A; Witte, D R

    2012-09-01

    Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. The study comprised 771 participants from the Danish, population-based cross-sectional 'Health2008' study. Sleep duration and sleep quality were measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA(1c), two measures of insulin sensitivity (the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity), the homeostasis model assessment of β-cell function and glucose tolerance status. Associations of sleep duration and sleep quality with markers of glucose homeostasis and tolerance were analysed by multiple linear and logistic regression. A 1-h increment in sleep duration was associated with a 0.3 mmol/mol (0.3%) decrement in HbA(1c) and a 25% reduction in the risk of having impaired glucose regulation. Further, a 1-point increment in sleep quality was associated with a 2% increase in both the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity, as well as a 1% decrease in homeostasis model assessment of β-cell function. In the present study, shorter sleep duration was mainly associated with later alterations in glucose homeostasis, whereas poorer sleep quality was mainly associated with earlier alterations in glucose homeostasis. Thus, adopting healthy sleep habits may benefit glucose metabolism in healthy populations. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  10. Diagnostic Accuracies of Glycated Hemoglobin, Fructosamine, and Homeostasis Model Assessment of Insulin Resistance in Predicting Impaired Fasting Glucose, Impaired Glucose Tolerance, or New Onset Diabetes After Transplantation.

    Science.gov (United States)

    Rosettenstein, Kerri; Viecelli, Andrea; Yong, Kenneth; Nguyen, Hung Do; Chakera, Aron; Chan, Doris; Dogra, Gursharan; Lim, Ee Mun; Wong, Germaine; Lim, Wai H

    2016-07-01

    New onset diabetes after transplantation (NODAT) is associated with a 3-fold greater risk of cardiovascular disease events, with early identification and treatment potentially attenuating this risk. The optimal screening test to identify those with NODAT remains unclear, and the aim of this study was to examine the diagnostic accuracies of 4 screening tests in identifying impaired fasting glucose, impaired glucose tolerance (IGT), and NODAT. This is a single-center prospective cohort study of 83 nondiabetic kidney transplant recipients between 2008 and 2011. Oral glucose tolerance test was considered the gold standard in identifying IFG/IGT or NODAT. Diagnostic accuracies of random blood glucose, glycated hemoglobin (HBA1c), fructosamine, and Homeostasis Model Assessment-Insulin Resistance in predicting IFG/IGT or NODAT were assessed using the area under the receiver operating characteristic curve. Forty (48%) recipients had IFG/IGT or NODAT. Compared with HBA1c with adjusted area under the curve (AUC) of 0.88 (95% confidence interval [95% CI], 0.77-0.93), fructosamine was the most accurate test with adjusted AUC of 0.92 (95% CI, 0.83-0.96). The adjusted AUCs of random blood glucose and Homeostasis Model Assessment-Insulin Resistance in identifying IFG/IGT were between 0.81 and 0.85. Restricting to identifying IGT/NODAT using 2-hour oral glucose tolerance test (n = 66), fructosamine was the most accurate diagnostic test with adjusted AUC of 0.93 (95% CI, 0.84-0.99), but not statistically different to HBA1c with adjusted AUC of 0.88 (95% CI, 0.76-0.96). Although HBA1c is an acceptable and widely used screening test in detecting IFG/IGT or NODAT, fructosamine may be a more accurate diagnostic test but this needs to be further examined in larger cohorts.

  11. The recognition and evaluation of patterns of compensatory injury in patients with mechanical hip pain.

    Science.gov (United States)

    Hammoud, Sommer; Bedi, Asheesh; Voos, James E; Mauro, Craig S; Kelly, Bryan T

    2014-03-01

    In active individuals with femoroacetabular impingement (FAI), the resultant reduction in functional range of motion leads to high impaction loads at terminal ranges. These increased forces result in compensatory effects on bony and soft tissue structures within the hip joint and hemipelvis. An algorithm is useful in evaluating athletes with pre-arthritic, mechanical hip pain and associated compensatory disorders. A literature search was performed by a review of PubMed articles published from 1976 to 2013. Level 4. Increased stresses across the bony hemipelvis result when athletes with FAI attempt to achieve supraphysiologic, terminal ranges of motion (ROM) through the hip joint required for athletic competition. This can manifest as pain within the pubic joint (osteitis pubis), sacroiliac joint, and lumbosacral spine. Subclinical posterior hip instability may result when attempts to increase hip flexion and internal rotation are not compensated for by increased motion through the hemipelvis. Prominence of the anterior inferior iliac spine (AIIS) at the level of the acetabular rim can result in impingement of the anterior hip joint capsule or iliocapsularis muscle origin against the femoral head-neck junction, resulting in a distinct form of mechanical hip impingement (AIIS subspine impingement). Iliopsoas impingement (IPI) has also been described as an etiology for anterior hip pain. IPI results in a typical 3-o'clock labral tear as well as an inflamed capsule in close proximity to the overlying iliopsoas tendon. Injury in athletic pubalgia occurs during high-energy twisting activities in which abnormal hip ROM and resultant pelvic motion lead to shearing across the pubic symphysis. Failure to recognize and address concomitant compensatory injury patterns associated with intra-articular hip pathology can result in significant disability and persistent symptoms in athletes with pre-arthritic, mechanical hip pain. B.

  12. Effects of low level laser in the morphology of the skeletal muscle fiber during compensatory hypertrophy in plantar muscle of rats

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Kalil, Sandra; Alves, Agnelo Neves; Mesquita Ferrari, Raquel Agnelli

    2015-06-01

    The hypertrophy is known as an increase the cross-sectional area of the muscle as a result of a muscular work against an overload, and it is compensatory because the overload is induced by functional elimination of synergistic muscles. The importance of study the compensatory hypertrophy is understand how this process can be influenced by the irradiation with regard to the weight and muscle cross-sectional area, to assist in the rehabilitation process and the effectiveness functional return. The aim was evaluate the effects of low-level laser irradiation on morphological aspects of muscle tissue, comparing the weight and cross-sectional area in rat skeletal muscle. Wistar rats were divided into three groups: control, hypertrophy group without irradiation (right plantar muscle) and hypertrophy group and irradiation (left plantar muscle), both analyzed after 7 and 14 days. The irradiation was performed daily immediately after the surgery. The parameters were: λ = 780nm, beam spot of 0.04 cm2, output power of 40mW, power density of 1W/cm2, energy density of 10J / cm2 and 10s exposure time with a total energy of 3.2 J. The results revealed that low level laser irradiation an increase the weight of the plantaris muscle after 7 and 14 days with a difference of 7.06% and 11.51% respectively. In conclusion, low level laser irradiation has an effect on compensatory hypertrophy to produce increased muscle weight and promoted an increase in cross-sectional area of muscle fibers in the compensatory hypertrophy model after 14 days with parameters cited above.

  13. A new perspective on behavioral inconsistency and neural noise in aging: Compensatory speeding of neural communication

    Directory of Open Access Journals (Sweden)

    S. Lee Hong

    2012-09-01

    Full Text Available This paper seeks to present a new perspective on the aging brain. Here, we make connections between two key phenomena of brain aging: 1 increased neural noise or random background activity; and 2 slowing of brain activity. Our perspective proposes the possibility that the slowing of neural processing due to decreasing nerve conduction velocities leads to a compensatory speeding of neuron firing rates. These increased firing rates lead to a broader distribution of power in the frequency spectrum of neural oscillations, which we propose, can just as easily be interpreted as neural noise. Compensatory speeding of neural activity, as we present, is constrained by the: A availability of metabolic energy sources; and B competition for frequency bandwidth needed for neural communication. We propose that these constraints lead to the eventual inability to compensate for age-related declines in neural function that are manifested clinically as deficits in cognition, affect, and motor behavior.

  14. Digestive challenges for vertebrate animals: Microbial diversity, cardiorespiratory coupling, and dietary specialization

    DEFF Research Database (Denmark)

    Barboza, P.S.; Bennett, A.; Lignot, H.-H.

    2010-01-01

    and digestive functions, and (3) the evolution of dietary specialization. Herbivores consume, digest, and detoxify complex diets by using a wide variety of enzymes expressed by bacteria, predominantly in the phyla Firmicutes and Bacteroidetes. Carnivores, such as snakes that feed intermittently, sometimes...... characteristics of the diet and the level of food intake. In this article, we discuss three themes that affect the ability of an animal to alter digestive function in relation to novel substrates and changing food supply: (1) the fermentative digestion in herbivores, (2) the integration of cardiopulmonary...... process very large meals that require compensatory adjustments in blood flow, acid secretion, and regulation of acid‐base homeostasis. Snakes and birds that specialize in simple diets of prey or nectar retain their ability to digest a wider selection of prey. The digestive system continues...

  15. The Responsibility Of Trade Unions In Transaction Collective Instruments About Compensatory Time

    Directory of Open Access Journals (Sweden)

    Manuella de Oliveira Soares

    2016-12-01

    Full Text Available The democratic State of Direct aims to provide assurance and effectiveness of fundamental rights in order that human dignity is preserved. In this way, among other fundamental rights is the right to health, in one of its aspects, protects workers' health. Thus, this study, through a bibliographical research aims to demonstrate that unions should be held responsible for damage caused to workers when preparing collective bargaining instruments to the creation of compensatory time with conditions that endanger the health of workers .

  16. Temporal anomaly detection: an artificial immune approach based on T cell activation, clonal size regulation and homeostasis.

    Science.gov (United States)

    Antunes, Mário J; Correia, Manuel E

    2010-01-01

    This paper presents an artificial immune system (AIS) based on Grossman's tunable activation threshold (TAT) for temporal anomaly detection. We describe the generic AIS framework and the TAT model adopted for simulating T Cells behaviour, emphasizing two novel important features: the temporal dynamic adjustment of T Cells clonal size and its associated homeostasis mechanism. We also present some promising results obtained with artificially generated data sets, aiming to test the appropriateness of using TAT in dynamic changing environments, to distinguish new unseen patterns as part of what should be detected as normal or as anomalous. We conclude by discussing results obtained thus far with artificially generated data sets.

  17. Breast Milk Hormones and Regulation of Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Francesco Savino

    2011-01-01

    Full Text Available Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin, and ghrelin, are involved in this complex regulation. These hormones play a role in the regulation of glucose metabolism and are involved in the development of obesity, diabetes, and metabolic syndrome. Recently, their presence in breast milk has been detected, suggesting that they may be involved in the regulation of growth in early infancy and could influence the programming of energy balance later in life. This paper focuses on hormones present in breast milk and their role in glucose homeostasis.

  18. MicroRNAs at the epicenter of intestinal homeostasis.

    Science.gov (United States)

    Belcheva, Antoaneta

    2017-03-01

    Maintaining intestinal homeostasis is a key prerequisite for a healthy gut. Recent evidence points out that microRNAs (miRNAs) act at the epicenter of the signaling networks regulating this process. The fine balance in the interaction between gut microbiota, intestinal epithelial cells, and the host immune system is achieved by constant transmission of signals and their precise regulation. Gut microbes extensively communicate with the host immune system and modulate host gene expression. On the other hand, sensing of gut microbiota by the immune cells provides appropriate tolerant responses that facilitate the symbiotic relationships. While the role of many regulatory proteins, receptors and their signaling pathways in the regulation of the intestinal homeostasis is well documented, the involvement of non-coding RNA molecules in this process has just emerged. This review discusses the most recent knowledge about the contribution of miRNAs in the regulation of the intestinal homeostasis. © 2017 WILEY Periodicals, Inc.

  19. A mathematical model of brain glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Kimura Hidenori

    2009-11-01

    Full Text Available Abstract Background The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. Methods In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. Results It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. Conclusion Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.

  20. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  1. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... of the intestinal homeostasis and further to reveal its potential role in inflammation....

  2. Neuronal and molecular mechanisms of sleep homeostasis.

    Science.gov (United States)

    Donlea, Jeffrey M

    2017-12-01

    Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Compensatory charge as guarantee of power supply. [Federal Republic of Germany]. Finanzwissenschaftliches Forschungsinstitut an der Universitaet zu Koeln. Sonderveroeffentlichung

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A

    1981-01-01

    First, the legal base of the compensatory charge is described, followed by an evaluation of its revenue systematics. Since the compensatory charge revenue does not go into the federal budget, but to a special fund, a budget evaluation follows. In the framework of a financial evaluation, the effects of imposing this charge are investigated. The differences between a political assessment and a financial evaluation of this charge are shown by giving MP statements made. According to the present situation, it is also possible to combine the various purposes of power taxation in an ingeniously contrieved manner under the aspects of finance and psychology. It follows that a power tax might still be levied at a time when the original purpose of its introduction is no longer applicable.

  4. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com [Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan); Matsuda, Tomokazu, E-mail: tomokazu@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kimura-Koyanagi, Maki, E-mail: koyanagi@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Seino, Susumu, E-mail: seino@med.kobe-u.ac.jp [Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047 (Japan); Ogawa, Wataru, E-mail: ogawa@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kido, Yoshiaki, E-mail: kido@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan)

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  5. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    International Nuclear Information System (INIS)

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-01-01

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets

  6. Compensatory versus noncompensatory models for predicting consumer preferences

    Directory of Open Access Journals (Sweden)

    Anja Dieckmann

    2009-04-01

    Full Text Available Standard preference models in consumer research assume that people weigh and add all attributes of the available options to derive a decision, while there is growing evidence for the use of simplifying heuristics. Recently, a greedoid algorithm has been developed (Yee, Dahan, Hauser and Orlin, 2007; Kohli and Jedidi, 2007 to model lexicographic heuristics from preference data. We compare predictive accuracies of the greedoid approach and standard conjoint analysis in an online study with a rating and a ranking task. The lexicographic model derived from the greedoid algorithm was better at predicting ranking compared to rating data, but overall, it achieved lower predictive accuracy for hold-out data than the compensatory model estimated by conjoint analysis. However, a considerable minority of participants was better predicted by lexicographic strategies. We conclude that the new algorithm will not replace standard tools for analyzing preferences, but can boost the study of situational and individual differences in preferential choice processes.

  7. An Investigation of the Compensatory Effectiveness of Assistive Technology on Postsecondary Students with Learning Disabilities. Final Report.

    Science.gov (United States)

    Murphy, Harry; Higgins, Eleanor

    This final report describes the activities and accomplishments of a 3-year study on the compensatory effectiveness of three assistive technologies, optical character recognition, speech synthesis, and speech recognition, on postsecondary students (N=140) with learning disabilities. These technologies were investigated relative to: (1) immediate…

  8. Upper intestinal lipids regulate energy and glucose homeostasis.

    Science.gov (United States)

    Cheung, Grace W C; Kokorovic, Andrea; Lam, Tony K T

    2009-09-01

    Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.

  9. Guest editor's introduction: Energy homeostasis in context.

    Science.gov (United States)

    Schneider, Jill E

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Energy homeostasis is achieved through neuroendocrine and metabolic control of energy intake, storage, and expenditure. Traditionally, these controls have been studied in an unrealistic and narrow context. The appetite for food, for example, is most often assumed to be independent of other motivations, such as sexual desire, fearfulness, and competition. Furthermore, our understanding of all aspects of energy homeostasis is based on studying males of only a few species. The baseline control subjects are most often housed in enclosed spaces, with continuous, unlimited access to food. In the last century, this approach has generated useful information, but all the while, the global prevalence of obesity has increased and remains at unprecedented levels (Ogden et al., 2013, 2014). It is likely, however, that the mechanisms that control ingestive behavior were molded by evolutionary forces, and that few, if any vertebrate species evolved in the presence of a limitless food supply, in an enclosed 0.5 × 1 ft space, and exposed to a constant ambient temperature of 22+2 °C. This special issue of Hormones and Behavior therefore contains 9 review articles and 7 data articles that consider energy homeostasis within the context of other motivations and physiological processes, such as early development, sexual differentiation, sexual motivation, reproduction, seasonality, hibernation, and migration. Each article is focused on a different species or on a set of species, and most vertebrate classes are represented. Energy homeostasis is viewed in the context of the selection pressures that simultaneously molded multiple aspects of energy intake, storage, and expenditure. This approach yields surprising conclusions regarding the function of those traits and their underlying neuroendocrine mechanisms. Copyright © 2014. Published by Elsevier Inc.

  10. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  11. Association of SSTR2 Polymorphisms and Glucose Homeostasis Phenotypes

    OpenAIRE

    Sutton, Beth S.; Palmer, Nicholette D.; Langefeld, Carl D.; Xue, Bingzhong; Proctor, Alexandria; Ziegler, Julie T.; Haffner, Steven M.; Norris, Jill M.; Bowden, Donald W.

    2009-01-01

    OBJECTIVE This study evaluated the influence of somatostatin receptor type 2 (SSTR2) polymorphisms on measures of glucose homeostasis in the Insulin Resistance Atherosclerosis Family Study (IRASFS). SSTR2 is a G-protein?coupled receptor that, in response to somatostatin, mediates inhibition of insulin, glucagon, and growth hormone release and thus may affect glucose homeostasis. RESEARCH DESIGN AND METHODS Ten single nucleotide polymorphisms (SNPs) spanning the gene were chosen using a SNP de...

  12. Homeostasis as the Mechanism of Evolution

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  13. Awareness tool for safe and responsible driving (OSCAR): a potential educational intervention for increasing interest, openness and knowledge about the abilities required and compensatory strategies among older drivers.

    Science.gov (United States)

    Levasseur, Mélanie; Audet, Thérèse; Gélinas, Isabelle; Bédard, Michel; Langlais, Marie-Ève; Therrien, France-Hélène; Renaud, Judith; Coallier, Jean-Claude; D'Amours, Monia

    2015-01-01

    This pilot study aimed to verify the impact of the awareness tool for safe and responsible driving (OSCAR) on older adults' (1) interest, openness, and knowledge about the abilities and compensatory strategies required for safe driving; (2) awareness of changes that have occurred in their own driving abilities; and (3) actual utilization of compensatory strategies. A preexperimental design, including a pretest (T0) and posttest (T1) 8 to 10 weeks after exposure to the intervention, was used with 48 drivers aged between 67 and 84. The participants had a valid driving license and drove at least once a week. Overall, the results demonstrate that OSCAR increased interest, openness, and knowledge about the abilities and compensatory strategies of older drivers (P driving, OSCAR also improved awareness of the changes that could negatively impact safe driving and enhanced utilization of compensatory strategies. While promoting safe driving and the prevention of crashes and injuries, this intervention could ultimately help older adults maintain or increase their transportation mobility. More studies are needed to further evaluate OSCAR and identify ways to improve its effectiveness.

  14. Altered lipid homeostasis in Drosophila InsP3 receptor mutants leads to obesity and hyperphagia

    Directory of Open Access Journals (Sweden)

    Manivannan Subramanian

    2013-05-01

    Obesity is a complex metabolic disorder that often manifests with a strong genetic component in humans. However, the genetic basis for obesity and the accompanying metabolic syndrome is poorly defined. At a metabolic level, obesity arises from an imbalance between the nutritional intake and energy utilization of an organism. Mechanisms that sense the metabolic state of the individual and convey this information to satiety centers help achieve this balance. Mutations in genes that alter or modify such signaling mechanisms are likely to lead to either obese individuals, who in mammals are at high risk for diabetes and cardiovascular disease, or excessively thin individuals with accompanying health problems. Here we show that Drosophila mutants for an intracellular calcium signaling channel, the inositol 1,4,5-trisphosphate receptor (InsP3R store excess triglycerides in their fat bodies and become unnaturally obese on a normal diet. Although excess insulin signaling can rescue obesity in InsP3R mutants to some extent, we show that it is not the only cause of the defect. Through mass spectrometric analysis of lipids we find that homeostasis of storage and membrane lipids are altered in InsP3R mutants. Possibly as a compensatory mechanism, InsP3R mutant adults also feed excessively. Thus, reduced InsP3R function alters lipid metabolism and causes hyperphagia in adults. Together, the metabolic and behavioral changes lead to obesity. Our results implicate altered InsP3 signaling as a previously unknown causative factor for metabolic syndrome in humans. Importantly, our studies also suggest preventive dietary interventions.

  15. Components of calcium homeostasis in Archaeon Methanobacterium thermoautotrophicum

    International Nuclear Information System (INIS)

    Varecka, L.; Smigan, P.; Vancek, M.; Greksak, M.

    1998-01-01

    The cells of Archaea are interesting from several points of view. Among others there are: (a) the evolutionary relationship to procaryotes and eucaryotes and (b) the involvement of Na + and H + gradient in archaeal bio-energetics. The observations are presented which are devoted to the description of components of Ca 2+ homeostasis, an apparatus is vital for both procaryotic and eukaryotic organisms, in obligate anaerobe Methanobacterium thermoautotrophicum. This is, after the demonstration of the ATP-dependent Ca 2+ transport in Halobacterium halobium membrane vesicles, the first complex description of processes of Ca 2+ homeostasis in Archaea. The Ca 2+ influx and efflux was measured using radionuclide 4 5 Ca 2+ . The experiment were performed under strictly anaerobic conditions. The measurement of the membrane potential by means of 3 H-tetraphenyl phosphonium chloride showed that the presence of Na + depolarized the membrane from -110 to -60 mV. The growth of M. thermoautotrophicum and methanogenesis was suppressed but nor arrested by the presence EGTA suggesting that the Ca 2+ homeostasis may be involved in controlling these cellular functions. The results indicate the presence of three components involved in establishing the Ca 2+ homeostasis in cell of M. thermoautotrophicum. The first is the Ca 2+ -carrier mediating the CA 2+ influx driven by the proton motive force or the membrane potential. The Ca 2+ efflux is mediated by two transport systems, Na + /Ca 2+ and H + /Ca 2+ anti-porters. The evidence for the presence of the Ca 2+ -transporting ATPase was not obtained so far. (authors)

  16. Isolated and combined effects of asymmetric stance and pushing movement on the anticipatory and compensatory postural control.

    Science.gov (United States)

    Lee, Yun-Ju; Aruin, Alexander S

    2014-04-01

    To investigate effects of symmetric and asymmetric stance and pushing movement on anticipatory and compensatory postural adjustments (APAs and CPAs). Ten healthy volunteers stood symmetrically (feet parallel) or asymmetrically (one foot forward and the other backward) and pushed a handle with both hands or right or left hand. Bilateral EMG activity of the trunk and leg muscles and center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the APAs and CPAs. Isolated asymmetry of stance was associated with larger muscle activity of the backward leg while isolated asymmetry of pushing movement induced larger trunk muscle activity on the contralateral side. A combined asymmetry of stance and pushing movement resulted in the increase or decrease of the thigh muscle activity and ML COP displacement depending on whether both asymmetries were induced on the same side of the body or on opposite sides. Both isolated and combined asymmetries affect APAs and CPAs in pushing. Using combined asymmetry of stance and arm movement might be beneficial in performing pushing activity. The outcome of the study provides a basis for studying postural control in individuals with unilateral impairment while performing daily tasks involving pushing. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories.

    Science.gov (United States)

    Zhao, Chunhua; Zhao, Qiuwei; Li, Yin; Zhang, Yanping

    2017-06-24

    The biosynthetic pathways of most alcohols are linked to intracellular redox homeostasis, which is crucial for life. This crucial balance is primarily controlled by the generation of reducing equivalents, as well as the (reduction)-oxidation metabolic cycle and the thiol redox homeostasis system. As a main oxidation pathway of reducing equivalents, the biosynthesis of most alcohols includes redox reactions, which are dependent on cofactors such as NADH or NADPH. Thus, when engineering alcohol-producing strains, the availability of cofactors and redox homeostasis must be considered. In this review, recent advances on the engineering of cellular redox homeostasis systems to accelerate alcohol biosynthesis are summarized. Recent approaches include improving cofactor availability, manipulating the affinity of redox enzymes to specific cofactors, as well as globally controlling redox reactions, indicating the power of these approaches, and opening a path towards improving the production of a number of different industrially-relevant alcohols in the near future.

  18. Design of a new therapy for patients with chronic kidney disease: use of microarrays for selective hemoadsorption of uremic wastes and toxins to improve homeostasis.

    Science.gov (United States)

    Shahidi Bonjar, Mohammad Rashid; Shahidi Bonjar, Leyla

    2015-01-01

    The hypothesis proposed here would provide near to optimum homeostasis for patients with chronic kidney disease (CKD) without the need for hemodialysis. This strategy has not been described previously in the scientific literature. It involves a targeted therapy that may prevent progression of the disease and help to improve the well-being of CKD patients. It proposes a nanotechnological device, ie, a microarray-oriented homeostasis provider (MOHP), to improve homeostasis in CKD patients. MOHP would be an auxiliary kidney aid, and would improve the filtration functions that impaired kidneys cannot perform by their own. MOHP is composed of two main computer-oriented components, ie, a quantitative microarray detector (QMD) and a homeostasis-oriented microarray column (HOMC). QMD detects and HOMC selectively removes defined quantities of uremic wastes, toxins and any other metabolites which is programmed for. The QMD and HOMC would accomplish this with the help of a peristaltic blood pump that would circulate blood aseptically in an extracorporeal closed circuit. During the passage of blood through the QMD, this microarray detector would quantitatively monitor all of the blood compounds that accumulate in the blood of a patient with impaired glomerular filtration, including small-sized, middle-sized and large-sized molecules. The electronic information collected by QMD would be electronically transmitted to the HOMC, which would adjust the molecules to the concentrations they are electronically programmed for and/or receive from QMD. This process of monitoring and removal of waste continues until the programmed homeostasis criteria are reached. Like a conventional kidney machine, MOHP can be used in hospitals and homes under the supervision of a trained technician. The main advantages of this treatment would include improved homeostasis, a reduced likelihood of side effects and of the morbidity resulting from CKD, slower progression of kidney impairment, prevention of

  19. Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts

    Directory of Open Access Journals (Sweden)

    Alexandre Lewalle

    2018-02-01

    Full Text Available The cardiac system compensates for variations in physiological and pathophysiological conditions through a dynamic remodeling at the organ, tissue, and intracellular levels in order to maintain function. However, on longer time scales following the onset of ventricular pressure overload, such remodeling may begin to inhibit physiological function and ultimately lead to heart failure. This progression from compensatory to decompensatory behavior is poorly understood, in particular owing to the absence of a unified perspective of the concomitantly remodeling subsystems. To address this issue, the present study investigates the evolution of compensatory mechanisms, in response to overload, by integrating diffusion-tensor MRI, echocardiography, and intracellular and hemodynamic measurements within consistent computational simulations of aortic-banded rat hearts. This approach allows a comparison of the relative leverage of different cardiac properties (geometry, passive mechanical stiffness, fiber configuration, diastolic and peak calcium concentrations, calcium-binding affinity, and aortic impedance to affect cardiac contraction. Measurements indicate that, following aortic banding, an ejection fraction (EF of 75% was maintained, relative to control rats, despite significant remodeling of the left-ventricular wall thickness (increasing by ~90% over 4 weeks. Applying our framework, we identified the left-ventricular wall thickness (concentric hypertrophy and the intracellular calcium dynamics as playing the dominant roles in preserving EF acutely, whereas the significance of hypertrophy decreased subsequently. This trend suggests an increasing reliance on intracellular mechanisms (average increase ~50%, rather than on anatomical features (average decrease ~60%, to achieve compensation of pump function in the early phase of heart failure.

  20. A typology of interpartner conflict and maternal parenting practices in high-risk families: examining spillover and compensatory models and implications for child adjustment.

    Science.gov (United States)

    Sturge-Apple, Melissa L; Davies, Patrick T; Cicchetti, Dante; Fittoria, Michael G

    2014-11-01

    The present study incorporates a person-based approach to identify spillover and compartmentalization patterns of interpartner conflict and maternal parenting practices in an ethnically diverse sample of 192 2-year-old children and their mothers who had experienced higher levels of socioeconomic risk. In addition, we tested whether sociocontextual variables were differentially predictive of theses profiles and examined how interpartner-parenting profiles were associated with children's physiological and psychological adjustment over time. As expected, latent class analyses extracted three primary profiles of functioning: adequate functioning, spillover, and compartmentalizing families. Furthermore, interpartner-parenting profiles were differentially associated with both sociocontextual predictors and children's adjustment trajectories. The findings highlight the developmental utility of incorporating person-based approaches to models of interpartner conflict and maternal parenting practices.

  1. Gut commensal flora: tolerance and homeostasis

    OpenAIRE

    Rescigno, Maria

    2009-01-01

    Commensal microorganisms are not ignored by the intestinal immune system. Recent evidence shows that commensals actively participate in maintaining intestinal immune homeostasis by interacting with intestinal epithelial cells and delivering tolerogenic signals that are transmitted to the underlying cells of the immune system.

  2. Imbalanced immune homeostasis in immune thrombocytopenia.

    Science.gov (United States)

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Intentional gaze shift to neglected space: a compensatory strategy during recovery after unilateral spatial neglect.

    Science.gov (United States)

    Takamura, Yusaku; Imanishi, Maho; Osaka, Madoka; Ohmatsu, Satoko; Tominaga, Takanori; Yamanaka, Kentaro; Morioka, Shu; Kawashima, Noritaka

    2016-11-01

    Unilateral spatial neglect is a common neurological syndrome following predominantly right hemispheric stroke. While most patients lack insight into their neglect behaviour and do not initiate compensatory behaviours in the early recovery phase, some patients recognize it and start to pay attention towards the neglected space. We aimed to characterize visual attention capacity in patients with unilateral spatial neglect with specific focus on cortical processes underlying compensatory gaze shift towards the neglected space during the recovery process. Based on the Behavioural Inattention Test score and presence or absence of experience of neglect in their daily life from stroke onset to the enrolment date, participants were divided into USN+‰‰+ (do not compensate, n = 15), USN+ (compensate, n = 10), and right hemisphere damage groups (no neglect, n = 24). The patients participated in eye pursuit-based choice reaction tasks and were asked to pursue one of five horizontally located circular objects flashed on a computer display. The task consisted of 25 trials with 4-s intervals, and the order of highlighted objects was randomly determined. From the recorded eye tracking data, eye movement onset and gaze shift were calculated. To elucidate the cortical mechanism underlying behavioural results, electroencephalagram activities were recorded in three USN+‰‰+, 13 USN+ and eight patients with right hemisphere damage. We found that while lower Behavioural Inattention Test scoring patients (USN+‰‰+) showed gaze shift to non-neglected space, some higher scoring patients (USN+) showed clear leftward gaze shift at visual stimuli onset. Moreover, we found a significant correlation between Behavioural Inattention Test score and gaze shift extent in the unilateral spatial neglect group (r = -0.62, P attention to the neglected space) and its neural correlates in patients with unilateral spatial neglect. In conclusion, patients with unilateral spatial neglect who recognized

  4. Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis--an approach for slowing Alzheimer disease?

    Science.gov (United States)

    Bendiske, Jennifer; Bahr, Ben A

    2003-05-01

    Previous reports suggest that age-related lysosomal disturbances contribute to Alzheimer-type accumulations of protein species, blockage of axonal/dendritic transport, and synaptic decline. Here, we tested the hypothesis that lysosomal enzymes are upregulated as a compensatory response to pathogenic protein accumulation. In the hippocampal slice model, tau deposits and amyloidogenic fragments induced by the lysosomal inhibitor chloroquine were accompanied by disrupted microtubule integrity and by corresponding declines in postsynaptic glutamate receptors and the presynaptic marker synaptophysin. In the same slices, cathepsins B, D, and L, beta-glucuronidase, and elastase were upregulated by 70% to 135%. To address whether this selective activation of the lysosomal system represents compensatory signaling, N-Cbz-L-phenylalanyl-L-alanyl-diazomethylketone (PADK) was used to enhance the lysosome response, generating 4- to 8-fold increases in lysosomal enzymes. PADK-mediated lysosomal modulation was stable for weeks while synaptic components remained normal. When PADK and chloroquine were co-infused, chloroquine no longer increased cellular tau levels. To assess pre-existing pathology, chloroquine was applied for 6 days after which its removal resulted in continued degeneration. In contrast, enhancing lysosomal activation by replacing chloroquine after 6 days with PADK led to clearance of accumulated protein species and restored microtubule integrity. Transport processes lost during chloroquine exposure were consequently re-established, resulting in marked recovery of synaptic components. These data indicate that compensatory activation of lysosomes follows protein accumulation events, and that lysosomal modulation represents a novel approach for treating Alzheimer disease and other protein deposition diseases.

  5. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    Science.gov (United States)

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  6. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  7. Compensatory Effect between Aortic Stiffening and Remodelling during Ageing.

    Directory of Open Access Journals (Sweden)

    Andrea Guala

    Full Text Available The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases.

  8. Compensatory Effect between Aortic Stiffening and Remodelling during Ageing.

    Science.gov (United States)

    Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca

    2015-01-01

    The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases.

  9. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Obsessive Passion: A Compensatory Response to Unsatisfied Needs.

    Science.gov (United States)

    Lalande, Daniel; Vallerand, Robert J; Lafrenière, Marc-André K; Verner-Filion, Jérémie; Laurent, François-Albert; Forest, Jacques; Paquet, Yvan

    2017-04-01

    The present research investigated the role of two sources of psychological need satisfaction (inside and outside a passionate activity) as determinants of harmonious (HP) and obsessive (OP) passion. Four studies were carried out with different samples of young and middle-aged adults (e.g., athletes, musicians; total N = 648). Different research designs (cross-sectional, mixed, longitudinal) were also used. Results showed that only a rigid engagement in a passionate activity (OP) was predicted by low levels of need satisfaction outside the passionate activity (in an important life context or in life in general), whereas both OP and a more favorable and balanced type of passion, HP were positively predicted by need satisfaction inside the passionate activity. Further, OP led to negative outcomes, and HP predicted positive outcomes. These results suggest that OP may represent a form of compensatory striving for psychological need satisfaction. It appears important to consider two distinct sources of need satisfaction, inside and outside the passionate activity, when investigating determinants of optimal and less optimal forms of activity engagement. © 2015 Wiley Periodicals, Inc.

  11. Liver immunology and its role in inflammation and homeostasis.

    Science.gov (United States)

    Robinson, Mark W; Harmon, Cathal; O'Farrelly, Cliona

    2016-05-01

    The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in combination with regular exposure to dietary and microbial products, creates the potential for excessive immune activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential to maintain liver homeostasis. Failure to clear 'dangerous' stimuli or regulate appropriately activated immune mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy. In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to treat liver disease.

  12. Unacknowledged contributions of Pavlov and Barcroft to Cannon's theory of homeostasis.

    Science.gov (United States)

    Smith, Gerard P

    2008-11-01

    Cannon's theory of homeostasis is the first, major, American contribution to physiological thought. Although it is clear that Cannon's account of homeostasis is personal and based primarily on the work of his laboratory, Cannon made it easy for readers to mistake his 1929 paper and 1932 book for a comprehensive review of the literature relevant to homeostasis. This is unfortunate because Cannon never acknowledged the important contributions of two of his contemporaries, Ivan Pavlov and Joseph Barcroft. Since he did not mention them, their contributions are rarely discussed. This paper attempts to correct this historical problem in two ways. First, I describe the unacknowledged contributions of Pavlov and Barcroft. Then I consider the possible reasons why Cannon ignored them.

  13. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  14. Molecular monitoring of equine joint homeostasis

    NARCIS (Netherlands)

    de Grauw, J.C.

    2010-01-01

    Chronic joint disorders are a major cause of impaired mobility and loss of quality of life in both humans and horses. Regardless of the primary insult, any joint disorder is characterized by an upset in normal joint homeostasis, the balance between tissue anabolism and catabolism that is normally

  15. Effects of turbinoplasty versus outfracture and bipolar cautery on the compensatory inferior turbinate hypertrophy in septoplasty patients.

    Science.gov (United States)

    Bozan, Aykut; Eriş, Hüseyin Naim; Dizdar, Denizhan; Göde, Sercan; Taşdelen, Bahar; Alpay, Hayrettin Cengiz

    2018-05-18

    The most common cause of septoplasty failure is inferior turbinate hypertrophy that is not treated properly. Several techniques have been described to date: total or partial turbinectomy, submucosal resection (surgical or with a microdebrider), with turbinate outfracture being some of those. In this study, we compared the pre- and postoperative lower turbinate volumes using computed tomography in patients who had undergone septoplasty and compensatory lower turbinate turbinoplasty with those treated with outfracture and bipolar cauterization. This retrospective study enrolled 66 patients (37 men, 29 women) who were admitted to our otorhinolaryngology clinic between 2010 and 2017 because of nasal obstruction and who were operated on for nasal septum deviation. The patients who underwent turbinoplasty due to compensatory lower turbinate hypertrophy were the turbinoplasty group; Outfracture and bipolar cauterization were separated as the out fracture group. Compensatory lower turbinate volumes of all patients participating in the study (mean age 34.0±12.4 years, range 17-61 years) were assessed by preoperative and postoperative 2 month coronal and axial plane paranasal computed tomography. The transverse and longitudinal dimensions of the postoperative turbinoplasty group were significantly lower than those of the out-fracture group (p=0.004). In both groups the lower turbinate volumes were significantly decreased (p=0.002, p<0.001 in order). The postoperative volume of the turbinate on the deviated side of the patients was significantly increased: tubinoplasty group (p=0.033). Both turbinoplasty and outfracture are effective volume-reduction techniques. However, the turbinoplasty method results in more reduction of the lower turbinate volume than outfracture and bipolar cauterization. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation.

    Directory of Open Access Journals (Sweden)

    Erica J Newton

    Full Text Available Woodland caribou (Rangifer tarandus caribou in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism-a compensatory functional response to anthropogenic

  17. Control of Immune Cell Homeostasis and Function by lncRNAs.

    Science.gov (United States)

    Mowel, Walter K; Kotzin, Jonathan J; McCright, Sam J; Neal, Vanessa D; Henao-Mejia, Jorge

    2018-01-01

    The immune system is composed of diverse cell types that coordinate responses to infection and maintain tissue homeostasis. In each of these cells, extracellular cues determine highly specific epigenetic landscapes and transcriptional profiles to promote immunity while maintaining homeostasis. New evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in epigenetic and transcriptional regulation in mammals. Thus, lncRNAs have emerged as key regulatory molecules of immune cell gene expression programs in response to microbial and tissue-derived cues. We review here how lncRNAs control the function and homeostasis of cell populations during immune responses, emphasizing the diverse molecular mechanisms by which lncRNAs tune highly contextualized transcriptional programs. In addition, we discuss the new challenges faced in interrogating lncRNA mechanisms and function in the immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sleep Homeostasis and Synaptic Plasticity

    Science.gov (United States)

    2017-06-01

    Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202...circuit (a homeostat) that operates in concert with the circadian circuitry or does sleep drive accumulate everywhere in the brain? To answer these...neurons is capable of generating sleep drive. RNAi-mediated knockdown of insomniac in R2 neurons abolished sleep homeostasis without affecting baseline

  19. Grasshoppers regulate N:p stoichiometric homeostasis by changing phosphorus contents in their frass.

    Science.gov (United States)

    Zhang, Zijia; Elser, James J; Cease, Arianne J; Zhang, Ximei; Yu, Qiang; Han, Xingguo; Zhang, Guangming

    2014-01-01

    Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.

  20. Sex-specific trade-offs and compensatory mechanisms: bite force and sprint speed pose conflicting demands on the design of geckos (Hemidactylus frenatus).

    Science.gov (United States)

    Cameron, S F; Wynn, M L; Wilson, R S

    2013-10-15

    One of the more intuitive viability costs that can result from the possession of exaggerated sexually selected traits is increased predation pressure as a result of reduced locomotor capacity. Despite mixed empirical support for such locomotor costs, recent studies suggest that such costs may be masked by compensatory traits that effectively offset any detrimental effects. In this study, we provide a comprehensive assessment of the locomotor costs associated with improved male-male competitive ability by simultaneously testing for locomotor trade-offs and potential compensatory mechanisms in territorial male and non-territorial female geckos. Fighting capacity and escape performance of male Asian house geckos (Hemidactylus frenatus) are likely to pose conflicting demands on the optimum phenotype for each task. Highly territorial and aggressive males may require greater investment in head size/strength but such an enhancement may affect overall escape performance. Among male geckos, we found that greater biting capacity because of larger head size was associated with reduced sprint performance; this trade-off was further exacerbated when sprinting on an incline. Females, however, showed no evidence of this trade-off on either flat or inclined surfaces. The sex specificity of this trade-off suggests that the sexes differ in their optimal strategies for dealing with the conflicting requirements of bite force and sprint speed. Unlike males, female H. frenatus had a positive association between hind-limb length and head size, suggesting that they have utilised a compensatory mechanism to alleviate the possible locomotor costs of larger head sizes. It appears that there is greater selection on traits that improve fighting ability (bite force) for males, but it is viability traits (sprint speed) that appear to be of greater importance for females. Our results emphasise that only by examining both functional trade-offs and potential compensatory mechanisms is it possible

  1. Development of iron homeostasis in infants and young children.

    Science.gov (United States)

    Lönnerdal, Bo

    2017-12-01

    Healthy, term, breastfed infants usually have adequate iron stores that, together with the small amount of iron that is contributed by breast milk, make them iron sufficient until ≥6 mo of age. The appropriate concentration of iron in infant formula to achieve iron sufficiency is more controversial. Infants who are fed formula with varying concentrations of iron generally achieve sufficiency with iron concentrations of 2 mg/L (i.e., with iron status that is similar to that of breastfed infants at 6 mo of age). Regardless of the feeding choice, infants' capacity to regulate iron homeostasis is important but less well understood than the regulation of iron absorption in adults, which is inverse to iron status and strongly upregulated or downregulated. Infants who were given daily iron drops compared with a placebo from 4 to 6 mo of age had similar increases in hemoglobin concentrations. In addition, isotope studies have shown no difference in iron absorption between infants with high or low hemoglobin concentrations at 6 mo of age. Together, these findings suggest a lack of homeostatic regulation of iron homeostasis in young infants. However, at 9 mo of age, homeostatic regulatory capacity has developed although, to our knowledge, its extent is not known. Studies in suckling rat pups showed similar results with no capacity to regulate iron homeostasis at 10 d of age when fully nursing, but such capacity occurred at 20 d of age when pups were partially weaned. The major iron transporters in the small intestine divalent metal-ion transporter 1 (DMT1) and ferroportin were not affected by pup iron status at 10 d of age but were strongly affected by iron status at 20 d of age. Thus, mechanisms that regulate iron homeostasis are developed at the time of weaning. Overall, studies in human infants and experimental animals suggest that iron homeostasis is absent or limited early in infancy largely because of a lack of regulation of the iron transporters DMT1 and ferroportin

  2. Practice Brief: Assessing Compensatory Strategies and Motivational Factors in High-Achieving Postsecondary Students with Attention Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Schaffer, Gary

    2013-01-01

    Research speculates that high-achieving college students with attention deficit/hyperactivity disorder (ADHD) may demonstrate a set of compensatory strategies and experience areas of difficulty and motivational factors that differ from the general ADHD populace. This Practice Brief used informal surveys with seven undergraduates with ADHD who had…

  3. Dome-shaped macula: a compensatory mechanism in myopic anisometropia?

    Science.gov (United States)

    Keane, Pearse A; Mitra, Arijit; Khan, Imran J; Quhill, Fahd; Elsherbiny, Samer M

    2012-05-31

    The purpose of this article was to describe a patient with dome-shaped macula in the setting of mild myopic anisometropia and to speculate regarding the role of this feature as a compensatory mechanism in ocular development. The clinical records of a 49-year-old woman with this condition were reviewed. Spectral-domain optical coherence tomographic images revealed evidence of a dome-shaped macula. B-scan ultrasonography measured axial lengths of 23.8 mm in the right eye and 22.8 mm in the left eye. Spherical equivalents were -1.375 and +0.375 in the right and left eyes, respectively. Examination of the left eye was unremarkable. Dome-shaped macula has previously only been described in patients with high myopia. These findings support the hypothesis that myopic anisometropia, rather than absolute refractive status, is central to the development of dome-shaped macula and that this feature represents a protective mechanism aimed at reducing the effects of anisometropia. Copyright 2012, SLACK Incorporated.

  4. Compensatory internet use among individuals higher in social anxiety and its implications for well-being

    OpenAIRE

    Weidman, Aaron C.; Fernandez, Katya C.; Levinson, Cheri A.; Augustine, Adam A; Larsen, Randy J.; Rodebaugh, Thomas L.

    2012-01-01

    The social compensation hypothesis states that the internet primarily benefits individuals who feel uncomfortable communicating face-to-face. In the current research, we tested whether individuals higher in social anxiety use the internet as a compensatory social medium, and whether such use is associated with greater well-being. In Study 1, individuals higher in social anxiety reported greater feelings of comfort and self-disclosure when socializing online than less socially anxious individu...

  5. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses.

    Directory of Open Access Journals (Sweden)

    Kathrin Freyler

    Full Text Available Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG activity, centre of pressure (COP displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR, medium (MLR and long latency response (LLR of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane, medial-lateral (frontal plane, displacement (2 vs. 3 cm and velocity (0.11 vs. 0.18 m/s of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05; LLR was scaled to increased displacement (P<0.05. Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05 and proximal muscles to stabilise in LLR (P<0.05. Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05, whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05 and hip joint deflections to increasing velocity in the frontal plane (P<0.05. COP measures increased with increasing perturbation velocity and displacement (P<0.05. Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb

  6. Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W

    2017-09-01

    Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  8. Implicit associations and compensatory health beliefs in smokers: Exploring their role for behaviour and their change through warning labels

    NARCIS (Netherlands)

    Glock, S.; Müller, B.C.N.; Krolak-Schwerdt, S.

    2013-01-01

    Objectives Smokers might think that the negative effects of smoking can be compensated for by other behaviours, such as doing exercise or eating healthily. This phenomenon is known as compensatory health beliefs (CHBs). Graphic warning labels on cigarette packets emphasize the negative effects of

  9. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    Directory of Open Access Journals (Sweden)

    Paula Patricia Perissinotti

    2015-01-01

    Full Text Available Kelch-like 1 (KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type and CaV3.2 (α1H T-type calcium channels; KLHL1 knockdown experiments (KD cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014. Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT; and PQ-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were reduced in the KO hippocampus; cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.

  10. Design of a new therapy for patients with chronic kidney disease: use of microarrays for selective hemoadsorption of uremic wastes and toxins to improve homeostasis

    Directory of Open Access Journals (Sweden)

    Shahidi Bonjar MR

    2015-01-01

    Full Text Available Mohammad Rashid Shahidi Bonjar,1 Leyla Shahidi Bonjar2 1School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran; 2Department of Pharmacology, College of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran Abstract: The hypothesis proposed here would provide near to optimum homeostasis for patients with chronic kidney disease (CKD without the need for hemodialysis. This strategy has not been described previously in the scientific literature. It involves a targeted therapy that may prevent progression of the disease and help to improve the well-being of CKD patients. It proposes a nanotechnological device, ie, a microarray-oriented homeostasis provider (MOHP, to improve homeostasis in CKD patients. MOHP would be an auxiliary kidney aid, and would improve the filtration functions that impaired kidneys cannot perform by their own. MOHP is composed of two main computer-oriented components, ie, a quantitative microarray detector (QMD and a homeostasis-oriented microarray column (HOMC. QMD detects and HOMC selectively removes defined quantities of uremic wastes, toxins and any other metabolites which is programmed for. The QMD and HOMC would accomplish this with the help of a peristaltic blood pump that would circulate blood aseptically in an extracorporeal closed circuit. During the passage of blood through the QMD, this microarray detector would quantitatively monitor all of the blood compounds that accumulate in the blood of a patient with impaired glomerular filtration, including small-sized, middle-sized and large-sized molecules. The electronic information collected by QMD would be electronically transmitted to the HOMC, which would adjust the molecules to the concentrations they are electronically programmed for and/or receive from QMD. This process of monitoring and removal of waste continues until the programmed homeostasis criteria are reached. Like a conventional kidney machine, MOHP can be used in hospitals and

  11. Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity

    Directory of Open Access Journals (Sweden)

    Rebecca N. Metzger

    2018-03-01

    Full Text Available Pattern recognition receptors (PRRs sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  12. Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity.

    Science.gov (United States)

    Metzger, Rebecca N; Krug, Anne B; Eisenächer, Katharina

    2018-03-23

    Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  13. Molecular aspects of bacterial pH sensing and homeostasis

    Science.gov (United States)

    Krulwich, Terry A.; Sachs, George; Padan, Etana

    2011-01-01

    Diverse mechanisms for pH-sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments whose pH is below 3 or above 11. Here we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH-homeostasis. These insights may help us better target certain pathogens and better harness the capacities of environmental bacteria. PMID:21464825

  14. A Cross-Age Study of Student Understanding of the Concept of Homeostasis.

    Science.gov (United States)

    Westbrook, Susan L.; Marek, Edmund A.

    1992-01-01

    The conceptual views of homeostasis held by students (n=300) in seventh grade life science, tenth grade biology, and college zoology were examined. A biographical questionnaire, the results from two Piagetian-like developmental tasks, and a concept evaluation statement of homeostasis were collected from each student. Understanding of the concept…

  15. Role of perisynaptic parameters in neurotransmitter homeostasis - computational study of a general synapse

    Science.gov (United States)

    Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.

    2015-01-01

    Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547

  16. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction.

    Science.gov (United States)

    Gendron, Joshua M; Webb, Kristofor; Yang, Bing; Rising, Lisa; Zuzow, Nathan; Bennett, Eric J

    2016-08-01

    Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis

    DEFF Research Database (Denmark)

    Byberg, Stine; Hansen, Anne-Louise Smidt; Christensen, Dirk Lund

    2012-01-01

    Abstract Aims  Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible...... associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. Methods  The study comprised 771 participants from the Danish, population-based cross-sectional ‘Health2008’ study. Sleep duration and sleep quality were...... measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA1c, two measures of insulin sensitivity (the insulin sensitivity index0,120 and homeostasis model assessment of insulin sensitivity...

  18. [Glucose homeostasis and gut-brain connection].

    Science.gov (United States)

    De Vadder, Filipe; Mithieux, Gilles

    2015-02-01

    Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.

  19. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  20. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P.; Belkaid, Yasmine; Merad, Miriam

    2014-01-01

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine. PMID:24625929

  1. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  2. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation.

    Science.gov (United States)

    Holst, Sebastian C; Sousek, Alexandra; Hefti, Katharina; Saberi-Moghadam, Sohrab; Buck, Alfred; Ametamey, Simon M; Scheidegger, Milan; Franken, Paul; Henning, Anke; Seifritz, Erich; Tafti, Mehdi; Landolt, Hans-Peter

    2017-10-05

    Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep.

  3. Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation

    Science.gov (United States)

    Hefti, Katharina; Saberi-Moghadam, Sohrab; Buck, Alfred; Ametamey, Simon M; Scheidegger, Milan; Franken, Paul; Henning, Anke; Seifritz, Erich

    2017-01-01

    Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep. PMID:28980941

  4. Direct Viewing of Dyslexics' Compensatory Strategies in Speech in Noise Using Auditory Classification Images.

    Science.gov (United States)

    Varnet, Léo; Meunier, Fanny; Trollé, Gwendoline; Hoen, Michel

    2016-01-01

    A vast majority of dyslexic children exhibit a phonological deficit, particularly noticeable in phonemic identification or discrimination tasks. The gap in performance between dyslexic and normotypical listeners appears to decrease into adulthood, suggesting that some individuals with dyslexia develop compensatory strategies. Some dyslexic adults however remain impaired in more challenging listening situations such as in the presence of background noise. This paper addresses the question of the compensatory strategies employed, using the recently developed Auditory Classification Image (ACI) methodology. The results of 18 dyslexics taking part in a phoneme categorization task in noise were compared with those of 18 normotypical age-matched controls. By fitting a penalized Generalized Linear Model on the data of each participant, we obtained his/her ACI, a map of the time-frequency regions he/she relied on to perform the task. Even though dyslexics performed significantly less well than controls, we were unable to detect a robust difference between the mean ACIs of the two groups. This is partly due to the considerable heterogeneity in listening strategies among a subgroup of 7 low-performing dyslexics, as confirmed by a complementary analysis. When excluding these participants to restrict our comparison to the 11 dyslexics performing as well as their average-reading peers, we found a significant difference in the F3 onset of the first syllable, and a tendency of difference on the F4 onset, suggesting that these listeners can compensate for their deficit by relying upon additional allophonic cues.

  5. Body fat loss and compensatory mechanisms in response to different doses of aerobic exercise - a randomized controlled trial in overweight sedentary males

    DEFF Research Database (Denmark)

    Larsen, Mads Rosenkilde; Auerbach, Pernille Landrock; Reichkendler, Michala Holm

    2012-01-01

    The amount of weight loss induced by exercise is often disappointing. A diet-induced negative energy balance triggers compensatory mechanisms, e.g. lower metabolic rate and increased appetite. However, knowledge about potential compensatory mechanisms triggered by increased aerobic exercise...... is limited. A randomized controlled trial was performed in healthy sedentary moderately overweight young men to examine the effects of increasing doses of aerobic exercise on body composition, accumulated energy balance, and the degree of compensation. Eighteen participants were randomized to a continuous...... sedentary control group, 21 to a moderate (MOD; 300 kcal/day) and 22 to a high dose (HIGH; 600 kcal/day) exercise group for 13 weeks, corresponding to approximately 30 and 60 minutes of daily aerobic exercise, respectively. Body weight (MOD: -3.6kg, P...

  6. Targeting Cardiomyocyte Ca2+ Homeostasis in Heart Failure

    Science.gov (United States)

    Røe, Åsmund T.; Frisk, Michael; Louch, William E.

    2015-01-01

    Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal disease mechanisms. Disrupted cardiomyocyte Ca2+ homeostasis is recognized as a major contributor to the heart failure phenotype, as it plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we outline existing knowledge of the involvement of Ca2+ homeostasis in these deficits, and identify four promising targets for therapeutic intervention: the sarcoplasmic reticulum Ca2+ ATPase, the Na+-Ca2+ exchanger, the ryanodine receptor, and t-tubule structure. We discuss experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future therapeutic approaches. PMID:25483944

  7. Central insulin action in energy and glucose homeostasis.

    Science.gov (United States)

    Plum, Leona; Belgardt, Bengt F; Brüning, Jens C

    2006-07-01

    Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.

  8. Redox Homeostasis in Pancreatic beta Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838 ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  9. Atypical antipsychotics and glucose homeostasis.

    Science.gov (United States)

    Bergman, Richard N; Ader, Marilyn

    2005-04-01

    Persistent reports have linked atypical antipsychotics with diabetes, yet causative mechanisms responsible for this linkage are unclear. Goals of this review are to outline the pathogenesis of nonimmune diabetes and to survey the available literature related to why antipsychotics may lead to this disease. We accessed the literature regarding atypical antipsychotics and glucose homeostasis using PubMed. The search included English-language publications from 1990 through October 2004. Keywords used included atypical antipsychotics plus one of the following: glucose, insulin, glucose tolerance, obesity, or diabetes. In addition, we culled information from published abstracts from several national and international scientific meetings for the years 2001 through 2004, including the American Diabetes Association, the International Congress on Schizophrenia Research, and the American College of Neuropsychopharmacology. The latter search was necessary because of the paucity of well-controlled prospective studies. We examined publications with significant new data or publications that contributed to the overall comprehension of the impact of atypical antipsychotics on glucose metabolism. We favored original peer-reviewed articles and were less likely to cite single case studies and/or anecdotal information. Approximately 75% of the fewer than 150 identified articles were examined and included in this review. Validity of data was evaluated using the existence of peer-review status as well as our own experience with methodology described in the specific articles. The metabolic profile caused by atypical antipsychotic treatment resembles type 2 diabetes. These agents cause weight gain in treated subjects and may induce obesity in both visceral and subcutaneous depots, as occurs in diabetes. Insulin resistance, usually associated with obesity, occurs to varying degrees with different antipsychotics, although more comparative studies with direct assessment of resistance are

  10. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  11. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis.

    Science.gov (United States)

    Emre, Selma; Demirseren, Duriye Deniz; Alisik, Murat; Aktas, Akin; Neselioglu, Salim; Erel, Ozcan

    2017-12-01

    Recently, increased reactive oxygen species (ROS), reduced antioxidant capacity, and oxidative stress have been suggested in the pathogenesis of psoriasis. The aim of this study to evaluate the thiol/disulfide homeostasis in patients with psoriasis. Ninety patients with psoriasis who did not receive any systemic treatment in the last six  months were included in the study. Seventy-six age and gender-matched healthy volunteers served as control group. Thiol/disulfide homeostasis was measured in venous blood samples obtained from patient and control groups. Native thiol and total thiol levels were significantly higher in patients than in control group. When thiol/disulfide hemostasis parameters and clinical and demographic characteristics were compared, a negative correlation was detected between native thiol and total thiol with age. The levels of total thiols had also negative correlation with PASI and duration of the disease. When we divided the patients into smokers and non-smokers, native thiol and total thiol levels were significantly higher in smokers than in controls, whereas native thiol and total thiol levels were comparable in non-smoker patients and controls. Thiol/disulfide balance shifted towards thiol in psoriasis patients and this may be responsible for increased keratinocyte proliferation in the pathogenesis of psoriasis.

  12. RIP3 Inhibits Inflammatory Hepatocarcinogenesis but Promotes Cholestasis by Controlling Caspase-8- and JNK-Dependent Compensatory Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Mihael Vucur

    2013-08-01

    Full Text Available For years, the term “apoptosis” was used synonymously with programmed cell death. However, it was recently discovered that receptor interacting protein 3 (RIP3-dependent “necroptosis” represents an alternative programmed cell death pathway activated in many inflamed tissues. Here, we show in a genetic model of chronic hepatic inflammation that activation of RIP3 limits immune responses and compensatory proliferation of liver parenchymal cells (LPC by inhibiting Caspase-8-dependent activation of Jun-(N-terminal kinase in LPC and nonparenchymal liver cells. In this way, RIP3 inhibits intrahepatic tumor growth and impedes the Caspase-8-dependent establishment of specific chromosomal aberrations that mediate resistance to tumor-necrosis-factor-induced apoptosis and underlie hepatocarcinogenesis. Moreover, RIP3 promotes the development of jaundice and cholestasis, because its activation suppresses compensatory proliferation of cholangiocytes and hepatic stem cells. These findings demonstrate a function of RIP3 in regulating carcinogenesis and cholestasis. Controlling RIP3 or Caspase-8 might represent a chemopreventive or therapeutic strategy against hepatocellular carcinoma and biliary disease.

  13. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    International Nuclear Information System (INIS)

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-01-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. 32 P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA

  14. Misfits in Organization Design: Information Processing as a Compensatory Mechanism

    Directory of Open Access Journals (Sweden)

    Ben Nanfeng Luo

    2013-04-01

    Full Text Available We propose a compensatory misfits theory which holds that an “over-fitting” organization structure can compensate for an “under-fitting” structure, thereby reducing the total misfit. In organizations, over-fit occurs when structural features misfit the core contingencies because the structural level is too high to fit the contingencies. An under-fit occurs when structural features misfit the contingencies because the structural level is too low. When an under-fit is compensated by an over-fit, the combination can produce performance outcomes that approximate those from fit. The reason inheres in information processing being a higher level factor that cuts across different contingencies and structural features that are mis-fitted to each other, so that compensation is possible. We identify the specific conditions that must be fulfilled for compensation to occur, and we discuss implications for organization design theory and practice.

  15. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  16. Compensatory plasticity in the action observation network: virtual lesions of STS enhance anticipatory simulation of seen actions.

    Science.gov (United States)

    Avenanti, Alessio; Annella, Laura; Candidi, Matteo; Urgesi, Cosimo; Aglioti, Salvatore M

    2013-03-01

    Observation of snapshots depicting ongoing motor acts increases corticospinal motor excitability. Such motor facilitation indexes the anticipatory simulation of observed (implied) actions and likely reflects computations occurring in the parietofrontal nodes of a cortical network subserving action perception (action observation network, AON). However, direct evidence for the active role of AON in simulating the future of seen actions is lacking. Using a perturb-and-measure transcranial magnetic stimulation (TMS) approach, we show that off-line TMS disruption of regions within (inferior frontal cortex, IFC) and upstream (superior temporal sulcus, STS) the parietofrontal AON transiently abolishes and enhances the motor facilitation to observed implied actions, respectively. Our findings highlight the critical role of IFC in anticipatory motor simulation. More importantly, they show that disruption of STS calls into play compensatory motor simulation activity, fundamental for counteracting the noisy visual processing induced by TMS. Thus, short-term plastic changes in the AON allow motor simulation to deal with any gap or ambiguity of ever-changing perceptual worlds. These findings support the active, compensatory, and predictive role of frontoparietal nodes of the AON in the perception and anticipatory simulation of implied actions.

  17. Taste bud homeostasis in health, disease, and aging.

    Science.gov (United States)

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  18. Taste Bud Homeostasis in Health, Disease, and Aging

    Science.gov (United States)

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  19. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation.

    Science.gov (United States)

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-08-10

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules.

  20. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    Science.gov (United States)

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  1. Cadm2 regulates body weight and energy homeostasis in mice

    Directory of Open Access Journals (Sweden)

    Xin Yan

    2018-02-01

    Full Text Available Objective: Obesity is strongly linked to genes regulating neuronal signaling and function, implicating the central nervous system in the maintenance of body weight and energy metabolism. Genome-wide association studies identified significant associations between body mass index (BMI and multiple loci near Cell adhesion molecule2 (CADM2, which encodes a mediator of synaptic signaling enriched in the brain. Here we sought to further understand the role of Cadm2 in the pathogenesis of hyperglycemia and weight gain. Methods: We first analyzed Cadm2 expression in the brain of both human subjects and mouse models and subsequently characterized a loss-of-function mouse model of Cadm2 for alterations in glucose and energy homeostasis. Results: We show that the risk variant rs13078960 associates with increased CADM2 expression in the hypothalamus of human subjects. Increased Cadm2 expression in several brain regions of Lepob/ob mice was ameliorated after leptin treatment. Deletion of Cadm2 in obese mice (Cadm2/ob resulted in reduced adiposity, systemic glucose levels, and improved insulin sensitivity. Cadm2-deficient mice exhibited increased locomotor activity, energy expenditure rate, and core body temperature identifying Cadm2 as a potent regulator of systemic energy homeostasis. Conclusions: Together these data illustrate that reducing Cadm2 expression can reverse several traits associated with the metabolic syndrome including obesity, insulin resistance, and impaired glucose homeostasis. Keywords: Cadm2/SynCAM2, Energy homeostasis, Insulin sensitivity, Genome-wide association studies, Leptin signaling

  2. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    Science.gov (United States)

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  3. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-09-01

    Full Text Available Since the 1980's, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.

  4. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality

    Science.gov (United States)

    Lasky, Jesse R.; Uriarte, María; Muscarella, Robert

    2016-11-01

    Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that

  5. Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans.

    Science.gov (United States)

    Hansen, Tue H; Madsen, Marie T B; Jørgensen, Niklas R; Cohen, Arieh S; Hansen, Torben; Vestergaard, Henrik; Pedersen, Oluf; Allin, Kristine H

    2018-01-23

    A vegan diet has been associated with increased bone fracture risk, but the physiology linking nutritional exposure to bone metabolism has only been partially elucidated. This study investigated whether a vegan diet is associated with increased bone turnover and altered calcium homeostasis due to insufficient intake of calcium and vitamin D. Fractionated and total 25-hydroxyvitamin D (25(OH)-D), parathyroid hormone (PTH), calcium, and four bone turnover markers (osteocalcin, N-terminal propeptide of type I procollagen (PINP), bone-specific alkaline phosphatase (BAP), and C-terminal telopeptide of type I collagen (CTX)) were measured in serum from 78 vegans and 77 omnivores. When adjusting for seasonality and constitutional covariates (age, sex, and body fat percentage) vegans had higher concentrations of PINP (32 [95% CI: 7, 64]%, P = 0.01) and BAP (58 [95% CI: 27, 97]%, P Vegans had higher serum PTH concentration (38 [95% CI: 19, 60]%; P Vegans have higher levels of circulating bone turnover markers compared to omnivores, which may in the long-term lead to poorer bone health. Differences in dietary habits including intake of vitamin D and calcium may, at least partly, explain the observed differences.

  6. The liver in regulation of iron homeostasis.

    Science.gov (United States)

    Rishi, Gautam; Subramaniam, V Nathan

    2017-09-01

    The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.

  7. Spontaneous Improvement of Compensatory Knee Flexion After Surgical Correction of Mismatch Between Pelvic Incidence and Lumbar Lordosis.

    Science.gov (United States)

    Cheng, Xiaofei; Zhang, Feng; Wu, Jigong; Zhu, Zhenan; Dai, Kerong; Zhao, Jie

    2016-08-15

    A retrospective study. The aim of this study was to investigate the correlation between pelvic incidence (PI) and lumbar lordosis (LL) mismatch and knee flexion during standing in patients with lumbar degenerative diseases and to examine the effects of surgical correction of the PI-LL mismatch on knee flexion. Only several studies focused on knee flexion as a compensatory mechanism of the PI-LL mismatch. Little information is currently available on the effects of lumbar correction on knee flexion in patients with the PI-LL mismatch. A group of patients with lumbar degenerative diseases were divided into PI-LL match group (PI-LL ≤ 10°) and PI-LL mismatch group (PI-LL > 10°). A series of radiographic parameters and knee flexion angle (KFA) were compared between the two groups. The PI-LL mismatch group was further subdivided into operative and nonoperative group. The changes in KFA with PI-LL were examined. The PI-LL mismatch group exhibited significantly greater sagittal vertical axis (SVA), pelvic tilt (PT) and KFA, and smaller LL, thoracic kyphosis (TK), and sacral slope than the PI-LL match group. PI-LL, LL, PI, SVA, and PT were significantly correlated with KFA in the PI-LL mismatch group. From baseline to 6-month follow-up, all variables were significantly different in the operative group with the exception of PI, although there was no significant difference in any variable in the nonoperative group. The magnitude of surgical correction in the PI-LL mismatch was significantly correlated with the degree of spontaneous changes in KFA, PT, and TK. The PI-LL mismatch would contribute to compensatory knee flexion during standing in patients with lumbar degenerative disease. Surgical correction of the PI-LL mismatch could lead to a spontaneous improvement of compensatory knee flexion. The degree of improvement in knee flexion depends in part on the amount of correction in the PI-LL mismatch. 3.

  8. Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers.

    Science.gov (United States)

    Müller, Mattea; Canfora, Emanuel E; Blaak, Ellen E

    2018-02-28

    Gastrointestinal transit time may be an important determinant of glucose homeostasis and metabolic health through effects on nutrient absorption and microbial composition, among other mechanisms. Modulation of gastrointestinal transit may be one of the mechanisms underlying the beneficial health effects of dietary fibers. These effects include improved glucose homeostasis and a reduced risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. In this review, we first discuss the regulation of gastric emptying rate, small intestinal transit and colonic transit as well as their relation to glucose homeostasis and metabolic health. Subsequently, we briefly address the reported health effects of different dietary fibers and discuss to what extent the fiber-induced health benefits may be mediated through modulation of gastrointestinal transit.

  9. Mga2 transcription factor regulates an oxygen-responsive lipid homeostasis pathway in fission yeast

    DEFF Research Database (Denmark)

    Burr, Risa; Stewart, Emerson V; Shao, Wei

    2016-01-01

    -binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis....... In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid...

  10. Effectiveness of carnosine on disturbed electrolytes homeostasis ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... of the cells to cisplatin may result from the interaction of specific proteins with ..... respiration, which is similar to uncoupling of oxidative phosphorylation (Binet ... cellular ion homeostasis with decreased cellular K+ content, increased ... of sodium and hydrogen ions will take place passively. Also, magnesium ...

  11. Role of Snf3 in glucose homeostasis of Saccharomyces cerevisiae (review)

    DEFF Research Database (Denmark)

    Kielland-Brandt, Morten

    signal pathways in directions opposite to those caused by extracellular nutrients (6,7), a phenomenon predicted to contribute to intracellular nutrient homeostasis. Although significant, the influence of intracellular leucine on signaling from Ssy1 is relatively modest (6), whereas the conditions...... with enhanced intracellular glucose concentrations (7) caused a strong decrease in signaling from Snf3, suggesting an important role of Snf3 in intracellular glucose homeostasis. Strategies for studies of this role will be discussed....

  12. Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma.

    Science.gov (United States)

    Demirseren, Duriye Deniz; Cicek, Cagla; Alisik, Murat; Demirseren, Mustafa Erol; Aktaş, Akın; Erel, Ozcan

    2017-09-01

    The aim of this study is to measure and compare the dynamic thiol/disulphide homeostasis of patients with basal cell carcinoma and healthy subjects with a newly developed and original method. Thirty four patients attending our outpatient clinic and clinically and histopathologically diagnosed as nodular basal cell carcinoma, and age and gender matched 30 healthy individuals have been involved in the study. Thiol/disulphide homeostasis tests have been measured with a novel automatic spectrophotometric method developed and the results have been compared statistically. Serum native thiol and disulphide levels in the patient and control group show a considerable variance statistically (p = 0.028, 0.039, respectively). Total thiol levels do not reveal a considerable variation (p = 0.094). Disulphide/native thiol ratios and native thiol/total thiol ratios also show a considerable variance statistically (p = 0.012, 0.013, 0.010, respectively). Thiol disulphide homeostasis in patients with basal cell carcinoma alters in the way that disulphide gets lower and thiols get higher. Thiol/disulphide level is likely to have a role in basal cell carcinoma pathogenesis.

  13. Iron Homeostasis in Peripheral Nervous System, Still a Black Box?

    Science.gov (United States)

    Taveggia, Carla

    2014-01-01

    Abstract Significance: Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. Recent Advances: During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. Critical Issues: However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. Future Directions: To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood–nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies. Antioxid. Redox Signal. 21, 634–648. PMID:24409826

  14. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions

  15. The Role of Follicular Fluid Thiol/Disulphide Homeostasis in Polycystic Ovary Syndrome.

    Science.gov (United States)

    Tola, Esra Nur; Köroğlu, Nadiye; Ergin, Merve; Oral, Hilmi Baha; Turgut, Abdülkadir; Erel, Özcan

    2018-04-04

    Oxidative stress is suggested as a potential triggering factor in the etiopathogenesis of Polycystic ovary syndrome related infertility. Thiol/disulphide homeostasis, a recently oxidative stress marker, is one of the antioxidant mechanism in human which have critical roles in folliculogenesis and ovulation. The aim of our study is to investigate follicular fluid thiol/disulphide homeostasis in the etiopathogenesis of Polycystic ovary syndrome and to determine its' association with in vitro fertilization outcome. The study procedures were approved by local ethic committee. Cross sectional design Methods: Follicular fluid of twenty-two Polycystic ovary syndrome women and twenty ovulatory controls undergoing in vitro fertilization treatment were recruited. Thiol/disulphide homeostasis was analyzed via a novel spectrophotometric method. Follicular native thiol levels were found to be lower in Polycystic ovary syndrome group than non- Polycystic ovary syndrome group (p=0.041) as well as native thiol/total thiol ratio (pPolycystic ovary syndrome group (pPolycystic ovary syndrome patients was found. A positive predictive effect of native thiol on fertilization rate among Polycystic ovary syndrome group was also found (p=0.03, β=0.45, 95% CI=0.031-0.643). Deterioration in thiol/disulphide homeostasis, especially elevated disulphide levels could be one of the etiopathogenetic mechanism in Polycystic ovary syndrome. Increased native thiol levels is related to fertilization rate among Polycystic ovary syndrome patients and also positive predictor marker of fertilization rate among Polycystic ovary syndrome patients. Improvement of thiol/disulphide homeostasis could be of importance in the treatment of Polycystic ovary syndrome to increase in vitro fertilization success in Polycystic ovary syndrome.

  16. Glucose Homeostasis Variables in Pregnancy versus Maternal and Infant Body Composition

    Directory of Open Access Journals (Sweden)

    Pontus Henriksson

    2015-07-01

    Full Text Available Intrauterine factors influence infant size and body composition but the mechanisms involved are to a large extent unknown. We studied relationships between the body composition of pregnant women and variables related to their glucose homeostasis, i.e., glucose, HOMA-IR (homeostasis model assessment-insulin resistance, hemoglobin A1c and IGFBP-1 (insulin-like growth factor binding protein-1, and related these variables to the body composition of their infants. Body composition of 209 women in gestational week 32 and of their healthy, singleton and full-term one-week-old infants was measured using air displacement plethysmography. Glucose homeostasis variables were assessed in gestational week 32. HOMA-IR was positively related to fat mass index and fat mass (r2 = 0.32, p < 0.001 of the women. Maternal glucose and HOMA-IR values were positively (p ≤ 0.006 associated, while IGFBP-1was negatively (p = 0.001 associated, with infant fat mass. HOMA-IR was positively associated with fat mass of daughters (p < 0.001, but not of sons (p = 0.65 (Sex-interaction: p = 0.042. In conclusion, glucose homeostasis variables of pregnant women are related to their own body composition and to that of their infants. The results suggest that a previously identified relationship between fat mass of mothers and daughters is mediated by maternal insulin resistance.

  17. Environmental metabolomics with data science for investigating ecosystem homeostasis.

    Science.gov (United States)

    Kikuchi, Jun; Ito, Kengo; Date, Yasuhiro

    2018-02-01

    A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches. Copyright © 2017. Published by Elsevier B.V.

  18. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    Science.gov (United States)

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  19. [The structure of aggression of the patients with paranoid schizophrenia and compensatory behavioral trends].

    Science.gov (United States)

    Reverchuk, I V; Khudyakova, Yu Yu

    To study the structure of aggression of the patients with paranoid schizophrenia depending on sex and illness duration. 102 patients with paranoid schizophrenia and 101 healthy people, aged from 18 to 64 years, were examined. Quantitative indicators of cognitive, emotional, and behavioral components of aggression were measured using the Buss-Perry questionnaire. The projective Hand-test was administered to assess aggressive behavioral tendencies and inclinations to aggressive behavior. The authors identified the dissociated structure of aggressiveness in patients with paranoid schizophrenia that manifested with dissociated cognitive, emotional, and behavioral components. The specifics of the structure of aggression and compensatory behavioral trends are described.

  20. Investigation of manganese homeostasis in dogs with anaemia and ...

    African Journals Online (AJOL)

    Investigation of manganese homeostasis in dogs with anaemia and chronic enteropathy. Marisa da Fonseca Ferreira, Arielle Elizabeth Ann Aylor, Richard John Mellanby, Susan Mary Campbell, Adam George Gow ...

  1. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity.

    Science.gov (United States)

    Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine

    2014-01-01

    Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.

  2. Compensatory beliefs, nutrition knowledge and eating styles of users and non-users of meal replacement products.

    Science.gov (United States)

    Hartmann, Christina; Keller, Carmen; Siegrist, Michael

    2016-10-01

    Meal replacement products (MRPs) are used to regulate body weight, but the underlying eating behavior-related characteristics of MRP consumers are unknown. The study was based on an online survey of 490 women (221 who consume MRPs and 269 who do not) in Switzerland. Nutrition knowledge of calories, balanced meal composition and eating styles (restrained, emotional, external eating, overeating tendencies) were measured. In addition, compensatory beliefs regarding the effects of MRPs were assessed. The results showed that consumers of MRPs believed more strongly that MRPs can compensate for overeating, and that health behaviors key to successful weight regulation, such as physical exercise, do not have to be implemented when MRPs are consumed. Using binary logistic regression modeling, age, weight goal, compensatory beliefs regarding overconsumption, nutrition knowledge related to balanced meal composition, restrained eating and overeating tendencies were significant predictors of MRP consumption during the previous year. It was found that MRPs might be used as a license to indulge in palatable food, based on the perception that they can compensate for calorie overconsumption. Furthermore, they might help people with restraint eating tendencies and those who regularly overeat to compensate for overeating episodes and maintain dietary goals, even after excess food intake. Whether this approach is successful remains to be explored in future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.

    Science.gov (United States)

    Tan, Darren Q; Suda, Toshio

    2018-07-10

    The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.

  4. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Treg cell-IgA axis in maintenance of host immune homeostasis with microbiota

    OpenAIRE

    Feng, Ting; Elson, Charles O.; Cong, Yingzi

    2010-01-01

    The intestine is the home to a vast diversity of microbiota and a complex of mucosal immune system. Multiple regulatory mechanisms control host immune responses to microbiota and maintain intestinal immune homeostasis. This mini review will provide evidence indicating a Treg cell-IgA axis and such axis playing a major role in maintenance of intestinal homeostasis.

  6. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis.

    Science.gov (United States)

    Bellavia, Daniele; Costa, Viviana; De Luca, Angela; Maglio, Melania; Pagani, Stefania; Fini, Milena; Giavaresi, Gianluca

    2016-10-13

    Vitamin D is a key molecule in calcium and phosphate homeostasis; however, increasing evidence has recently shown that it also plays a crucial role in the immune system, both innate and adaptive. A deregulation of vitamin D levels, due also to mutations and polymorphisms in the genes of the vitamin D pathway, determines severe alterations in the homeostasis of the organism, resulting in a higher risk of onset of some diseases, including osteoporosis. This review gives an overview of the influence of vitamin D levels on the pathogenesis of osteoporosis, between bone homeostasis and immune system.

  7. Using Synchrotron X-ray Fluorescence Microprobes in the Study of Metal Homeostasis in Plants

    International Nuclear Information System (INIS)

    Punshon, T.; Guerinot, M.; Lanzirotti, A.

    2009-01-01

    Background and Aims: This Botanical Briefing reviews the application of synchrotron X-ray fluorescence (SXRF) microprobes to the plant sciences; how the technique has expanded our knowledge of metal(loid) homeostasis, and how it can be used in the future. Scope: The use of SXRF microspectroscopy and microtomography in research on metal homeostasis in plants is reviewed. The potential use of SXRF as part of the ionomics toolbox, where it is able to provide fundamental information on the way that plants control metal homeostasis, is recommended. Conclusions: SXRF is one of the few techniques capable of providing spatially resolved in-vivo metal abundance data on a sub-micrometre scale, without the need for chemical fixation, coating, drying or even sectioning of samples. This gives researchers the ability to uncover mechanisms of plant metal homeostasis that can potentially be obscured by the artefacts of sample preparation. Further, new generation synchrotrons with smaller beam sizes and more sensitive detection systems will allow for the imaging of metal distribution within single living plant cells. Even greater advances in our understanding of metal homeostasis in plants can be gained by overcoming some of the practical boundaries that exist in the use of SXRF analysis.

  8. Complement: a key system for immune surveillance and homeostasis.

    Science.gov (United States)

    Ricklin, Daniel; Hajishengallis, George; Yang, Kun; Lambris, John D

    2010-09-01

    Nearly a century after the significance of the human complement system was recognized, we have come to realize that its functions extend far beyond the elimination of microbes. Complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses and sending 'danger' signals, complement contributes substantially to homeostasis, but it can also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its multiple roles in homeostasis and disease.

  9. Homeostasis and Gauss statistics: barriers to understanding natural variability.

    Science.gov (United States)

    West, Bruce J

    2010-06-01

    In this paper, the concept of knowledge is argued to be the top of a three-tiered system of science. The first tier is that of measurement and data, followed by information consisting of the patterns within the data, and ending with theory that interprets the patterns and yields knowledge. Thus, when a scientific theory ceases to be consistent with the database the knowledge based on that theory must be re-examined and potentially modified. Consequently, all knowledge, like glory, is transient. Herein we focus on the non-normal statistics of physiologic time series and conclude that the empirical inverse power-law statistics and long-time correlations are inconsistent with the theoretical notion of homeostasis. We suggest replacing the notion of homeostasis with that of Fractal Physiology.

  10. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

    2012-06-01

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

  11. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  12. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Science.gov (United States)

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  13. The tumor necrosis factor-alpha-induced protein 8 family in immune homeostasis and inflammatory cancer diseases.

    Science.gov (United States)

    Luan, Y Y; Yao, Y M; Sheng, Z Y

    2013-01-01

    Within the immune system homeostasis is maintained by a myriad of mechanisms that include the regulation of immune cell activation and programmed cell death. The breakdown of immune homeostasis may lead to fatal inflammatory diseases. We set out to identify genes of tumor necrosis factor-alpha-induced protein 8 (TNFAIP8) family that has a functional role in the process of immune homeostasis. Tumor necrosis factor-alpha-induced protein 8 (TNFAIP8), which functions as an oncogenic molecule, is also associated with enhanced cell survival and inhibition of apoptosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) governs immune homeostasis in both the innate and adaptive immune system and prevents hyper-responsiveness by negatively regulating signaling via T cell receptors and Toll-like receptors (TLRs). There also exist two highly homologous but uncharacterized proteins, TIPE1 and TIPE3. This review is an attempt to provide a summary of TNFAIP8 family associated with immune homeostasis and inflammatory cancer diseases.

  14. A Dual-Sensing Receptor Confers Robust Cellular Homeostasis

    Directory of Open Access Journals (Sweden)

    Hannah Schramke

    2016-06-01

    Full Text Available Cells have evolved diverse mechanisms that maintain intracellular homeostasis in fluctuating environments. In bacteria, control is often exerted by bifunctional receptors acting as both kinase and phosphatase to regulate gene expression, a design known to provide robustness against noise. Yet how such antagonistic enzymatic activities are balanced as a function of environmental change remains poorly understood. We find that the bifunctional receptor that regulates K+ uptake in Escherichia coli is a dual sensor, which modulates its autokinase and phosphatase activities in response to both extracellular and intracellular K+ concentration. Using mathematical modeling, we show that dual sensing is a superior strategy for ensuring homeostasis when both the supply of and demand for a limiting resource fluctuate. By engineering standards, this molecular control system displays a strikingly high degree of functional integration, providing a reference for the vast numbers of receptors for which the sensing strategy remains elusive.

  15. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  16. A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis.

    Science.gov (United States)

    Gao, Yi-Qun; Chen, Jiu-Geng; Chen, Zi-Ru; An, Dong; Lv, Qiao-Yan; Han, Mei-Ling; Wang, Ya-Ling; Salt, David E; Chao, Dai-Yin

    2017-12-01

    Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.

  17. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  18. The Greater Phenotypic Homeostasis of the Allopolyploid Coffea arabica Improved the Transcriptional Homeostasis Over that of Both Diploid Parents.

    Science.gov (United States)

    Bertrand, Benoît; Bardil, Amélie; Baraille, Hélène; Dussert, Stéphane; Doulbeau, Sylvie; Dubois, Emeric; Severac, Dany; Dereeper, Alexis; Etienne, Hervé

    2015-10-01

    Polyploidy impacts the diversity of plant species, giving rise to novel phenotypes and leading to ecological diversification. In order to observe adaptive and evolutionary capacities of polyploids, we compared the growth, primary metabolism and transcriptomic expression level in the leaves of the newly formed allotetraploid Coffea arabica species compared with its two diploid parental species (Coffea eugenioides and Coffea canephora), exposed to four thermal regimes (TRs; 18-14, 23-19, 28-24 and 33-29°C). The growth rate of the allopolyploid C. arabica was similar to that of C. canephora under the hottest TR and that of C. eugenioides under the coldest TR. For metabolite contents measured at the hottest TR, the allopolyploid showed similar behavior to C. canephora, the parent which tolerates higher growth temperatures in the natural environment. However, at the coldest TR, the allopolyploid displayed higher sucrose, raffinose and ABA contents than those of its two parents and similar linolenic acid leaf composition and Chl content to those of C. eugenioides. At the gene expression level, few differences between the allopolyploid and its parents were observed for studied genes linked to photosynthesis, respiration and the circadian clock, whereas genes linked to redox activity showed a greater capacity of the allopolyploid for homeostasis. Finally, we found that the overall transcriptional response to TRs of the allopolyploid was more homeostatic compared with its parents. This better transcriptional homeostasis of the allopolyploid C. arabica afforded a greater phenotypic homeostasis when faced with environments that are unsuited to the diploid parental species. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. "Compensatory Legitimation" in Greek Educational Policy: An Explanation for the Abortive Educational Reforms in Greece in Comparison with Those in France.

    Science.gov (United States)

    Persianis, Panayiotis

    1998-01-01

    Examines the political dynamics of planning and implementing educational reforms in Greece, with comparisons to France. Argues that, as in France, the state's concern for "compensatory legitimation" provides a better tool than those advanced by sociologists or historians for explaining Greece's many failed educational reforms. Compares…

  20. Ets transcription factor GABP controls T cell homeostasis and immunity.

    Science.gov (United States)

    Luo, Chong T; Osmanbeyoglu, Hatice U; Do, Mytrang H; Bivona, Michael R; Toure, Ahmed; Kang, Davina; Xie, Yuchen; Leslie, Christina S; Li, Ming O

    2017-10-20

    Peripheral T cells are maintained in the absence of vigorous stimuli, and respond to antigenic stimulation by initiating cell cycle progression and functional differentiation. Here we show that depletion of the Ets family transcription factor GA-binding protein (GABP) in T cells impairs T-cell homeostasis. In addition, GABP is critically required for antigen-stimulated T-cell responses in vitro and in vivo. Transcriptome and genome-wide GABP-binding site analyses identify GABP direct targets encoding proteins involved in cellular redox balance and DNA replication, including the Mcm replicative helicases. These findings show that GABP has a nonredundant role in the control of T-cell homeostasis and immunity.

  1. Longitudinal Analysis of the Interaction Between Obesity and Pregnancy on Iron Homeostasis: Role of Hepcidin.

    Science.gov (United States)

    Flores-Quijano, María Eugenia; Montalvo-Velarde, Irene; Vital-Reyes, Victor Saul; Rodríguez-Cruz, Maricela; Rendón-Macías, Mario Enrique; López-Alarcón, Mardia

    2016-10-01

    When pregnancy occurs in obese women, two opposite mechanisms for iron homeostasis concur: increased need for available iron to support erythropoiesis and decreased iron mobilization from diets and stores due to obesity-related inflammation linked to overexpressed hepcidin. Few studies have examined the role of hepcidin on maternal iron homeostasis in the context of obese pregnancy. The aim of the study was to evaluate the combined effect of maternal obesity and pregnancy on hepcidin and maternal iron status while accounting for inflammation and iron supplementation. We conducted a secondary analysis of a cohort of pregnant women recruited from a referral obstetric hospital in Mexico City. Circulating biomarkers of iron status (hepcidin, ferritin [SF], transferrin receptor [sTfR], erythropoietin [EPO]), and inflammation (C-reactive protein [CRP], tumor necrosis factor-[TNF]α, and interleukin-[IL]6) were determined monthly throughout pregnancy. Repeated measures ANOVA and logistic regression models were used for statistics. Twenty-three obese (Ob) and 25 lean (Lc) women were studied. SF and hepcidin declined, and EPO and sTfR increased throughout pregnancy in both groups. sTfR increased more in Ob than in Lc (p = 0.024). The smallest hepcidin decline occurred in iron-supplemented Ob women compared to non-supplemented Lc women (p = 0.022). The risk for iron deficiency at the end of pregnancy was higher for Ob than for Lc (OR = 4.45, 95% CI = 2.07-9.58) after adjusting for iron supplementation and hepcidin concentration. Pre-gestational obesity increases the risk of maternal iron deficiency despite iron supplementation. Overexpressed hepcidin appears to be a potential mechanism. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  2. Brain glucose sensing, counterregulation, and energy homeostasis.

    Science.gov (United States)

    Marty, Nell; Dallaporta, Michel; Thorens, Bernard

    2007-08-01

    Neuronal circuits in the central nervous system play a critical role in orchestrating the control of glucose and energy homeostasis. Glucose, beside being a nutrient, is also a signal detected by several glucose-sensing units that are located at different anatomical sites and converge to the hypothalamus to cooperate with leptin and insulin in controlling the melanocortin pathway.

  3. ALTERATIONS OF FE HOMEOSTASIS IN RAT CARDIOVASCULAR DISEASE MODELS AND ITS CONTRIBUTION TO CARDIOPULMONARY TOXICITY

    Science.gov (United States)

    Introduction: Fe homeostasis can be disrupted in human cardiovascular diseases (CVD). We addressed how dysregulation of Fe homeostasis affected the pulmonary inflammation/oxidative stress response and disease progression after exposure to Libby amphibole (LA), an asbestifonn mine...

  4. Hormonal homeostasis in lung cancer patients under combined and radiation treatment

    International Nuclear Information System (INIS)

    Zotova, I.A.; Firsova, P.P.; Matveenko, E.G.

    1984-01-01

    Radioimmunoassay of hormonal homeostasis was performed in 200 lung cancer patients before and after combined and radiation treatment and in 25 healthy subjects (controls). The study showed an increase in the basal level of hormones of pituitary - adrenal system matched by a decline in thyroid function. Adequate combined and radiation treatment brought hormone levels to normal. Hormonal disorders accompanying recurrence were identical to those registered at disease onset. In some cases, changes in hormonal homeostasis developed as early as 3-6 months prior to clinically manifest recurrences or dissemination

  5. Reasoning and dyslexia: is visual memory a compensatory resource?

    Science.gov (United States)

    Bacon, Alison M; Handley, Simon J

    2014-11-01

    Effective reasoning is fundamental to problem solving and achievement in education and employment. Protocol studies have previously suggested that people with dyslexia use reasoning strategies based on visual mental representations, whereas non-dyslexics use abstract verbal strategies. This research presents converging evidence from experimental and individual differences perspectives. In Experiment 1, dyslexic and non-dyslexic participants were similarly accurate on reasoning problems, but scores on a measure of visual memory ability only predicted reasoning accuracy for dyslexics. In Experiment 2, a secondary task loaded visual memory resources during concurrent reasoning. Dyslexics were significantly less accurate when reasoning under conditions of high memory load and showed reduced ability to subsequently recall the visual stimuli, suggesting that the memory and reasoning tasks were competing for the same visual cognitive resource. The results are consistent with an explanation based on limitations in the verbal and executive components of working memory in dyslexia and the use of compensatory visual strategies for reasoning. There are implications for cognitive activities that do not readily support visual thinking, whether in education, employment or less formal everyday settings. Copyright © 2014 John Wiley & Sons, Ltd.

  6. The Commensal Microbiota Drives Immune Homeostasis

    OpenAIRE

    Arrieta, Marie-Claire; Finlay, Barton Brett

    2012-01-01

    For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use t...

  7. Association of glucose homeostasis measures with heart rate variability among Hispanic/Latino adults without diabetes: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).

    Science.gov (United States)

    Meyer, Michelle L; Gotman, Nathan M; Soliman, Elsayed Z; Whitsel, Eric A; Arens, Raanan; Cai, Jianwen; Daviglus, Martha L; Denes, Pablo; González, Hector M; Moreiras, Juan; Talavera, Gregory A; Heiss, Gerardo

    2016-03-16

    Reduced heart rate variability (HRV), a measure of cardiac autonomic function, is associated with an increased risk of cardiovascular disease (CVD) and mortality. Glucose homeostasis measures are associated with reduced cardiac autonomic function among those with diabetes, but inconsistent associations have been reported among those without diabetes. This study aimed to examine the association of glucose homeostasis measures with cardiac autonomic function among diverse Hispanic/Latino adults without diabetes. The Hispanic community Health Study/Study of Latinos (HCHS/SOL; 2008-2011) used two-stage area probability sampling of households to enroll 16,415 self-identified Hispanics/Latinos aged 18-74 years from four USA communities. Resting, standard 12-lead electrocardiogram recordings were used to estimate the following ultrashort-term measures of HRV: RR interval (RR), standard deviation of all normal to normal RR (SDNN) and root mean square of successive differences in RR intervals (RMSSD). Multivariable regression analysis was used to estimate associations between glucose homeostasis measures with HRV using data from 11,994 adults without diabetes (mean age 39 years; 52 % women). Higher fasting glucose was associated with lower RR, SDNN, and RMSSD. Fasting insulin and the homeostasis model assessment of insulin resistance was negatively associated with RR, SDNN, and RMSSD, and the association was stronger among men compared with women. RMSSD was, on average, 26 % lower in men with higher fasting insulin and 29 % lower in men with lower insulin resistance; for women, the corresponding estimates were smaller at 4 and 9 %, respectively. Higher glycated hemoglobin was associated with lower RR, SDNN, and RMSSD in those with abdominal adiposity, defined by sex-specific cut-points for waist circumference, after adjusting for demographics and medication use. There were no associations between glycated hemoglobin and HRV measures among those without abdominal adiposity

  8. A long-term cohort study of the muscle apparatus of female volleyball players after the application of a compensatory programme

    Directory of Open Access Journals (Sweden)

    Tamara Čučková

    2017-11-01

    Full Text Available Volleyball is a sport with great unilateral load that can have a negative impact on a postural system. The aim of the study was to perform a detailed examination of posture and muscle imbalance in elite female volleyball athletes and, according to the results of the examination, to put together compensatory exercises and to assess their effect. A group of elite junior female volleyball players (n = 12 was examined by an experienced physiotherapist using a complex kinesiological analysis especially focused on body posture (from frontal, sagittal and dorsal plane, shortened muscles and performance of basic movement patterns (hip extension, hip abduction, sit-up, cervical flexion, shoulder abduction, push-up. The preliminary examination showed that every tested player had some kind of posture deficiency. The compensatory programme, consisting of breathing techniques, stretching exercises, strengthening exercises with an elastic band, and balance exercises with a Bosu balance trainer, was applied at the end of every training session over the competitive parts of two volleyball seasons. Before the application of the exercise programme we found flat back in 92% subjects, whereas 33% of subjects exhibited it after compensation. Improvement was noted in the intensified lumbar lordosis (from 50% subjects to 42%, and scoliotic body posture (from 50% to 17%. The biggest improvement in shortened muscles in the upper body was observed on the m. levator scapulae (from 83% subjects to 8% and the m. trapezius (from 42% subjects to 8%; and in the lower body m. triceps surae (from 75% subjects to 33% and hip abductors (from 83% subjects to 25%. The study suggests that balance exercises with a Bosu balance trainer and exercises with an exercise elastic band seem to be useful for volleyball since we noted improvement in body posture, movement patterns and muscle shortness. We therefore highly recommend this compensatory programme.

  9. Highly controlled nest homeostasis of honey bees helps deactivate phenolics in nectar

    Science.gov (United States)

    Liu, Fanglin; He, Jianzhong; Fu, Wenjun

    2005-06-01

    Honey bees have a highly developed nest homeostasis, for example, maintaining low CO2 levels and stable nest temperatures at 35°C.We investigate the role of nest homeostasis in deactivating phenolic compounds present in the nectar of Aloe littoralis. We show that the phenolic content in nectar was reduced (from 0.65% to 0.49%) after nectar was incubated in a nest of Apis cerana, and that it was reduced still more (from 0.65% to 0.37%) if nectar was mixed with hypopharyngeal gland proteins (HGP) of worker bees before being placed inside a nest. HGP had little effect on samples outside a nest, indicating that nest conditions are necessary for HGP to deactivate phenolics in nectar. Consequently, the highly controlled nest homeostasis of honey bees facilitates direct deactivation of phenolics in nectar, and plays a role in the action of HGP as well.

  10. Hydration and beyond: neuropeptides as mediators of hydromineral balance, anxiety and stress-responsiveness

    Directory of Open Access Journals (Sweden)

    Justin Andrew Smith

    2015-03-01

    Full Text Available Challenges to body fluid homeostasis can have a profound impact on hypothalamic regulation of stress responsiveness. Deficiencies in blood volume or sodium concentration leads to the generation of neural and humoral signals relayed through the hindbrain and circumventricular organs that apprise the paraventricular nucleus of the hypothalamus (PVH of hydromineral imbalance. Collectively, these neural and humoral signals converge onto PVH neurons, including those that express corticotrophin-releasing factor, oxytocin, and vasopressin, to influence their activity and initiate compensatory responses that alleviate hydromineral imbalance. Interestingly, following exposure to perceived threats to homeostasis, select limbic brain regions mediate behavioral and physiological responses to psychogenic stressors, in part, by influencing activation of the same PVH neurons that are known to maintain body fluid homeostasis. Here, we review past and present research examining interactions between hypothalamic circuits regulating body fluid homeostasis and those mediating behavioral and physiological responses to psychogenic stress.

  11. Deletion of the Androgen Receptor in Adipose Tissue in Male Mice Elevates Retinol Binding Protein 4 and Reveals Independent Effects on Visceral Fat Mass and on Glucose Homeostasis

    Science.gov (United States)

    McInnes, Kerry J.; Smith, Lee B.; Hunger, Nicole I.; Saunders, Philippa T.K.; Andrew, Ruth; Walker, Brian R.

    2012-01-01

    Testosterone deficiency is epidemic in obese ageing males with type 2 diabetes, but the direction of causality remains unclear. Testosterone-deficient males and global androgen receptor (AR) knockout mice are insulin resistant with increased fat, but it is unclear whether AR signaling in adipose tissue mediates body fat redistribution and alters glucose homoeostasis. To investigate this, mice with selective knockdown of AR in adipocytes (fARKO) were generated. Male fARKO mice on normal diet had reduced perigonadal fat but were hyperinsulinemic and by age 12 months, were insulin deficient in the absence of obesity. On high-fat diet, fARKO mice had impaired compensatory insulin secretion and hyperglycemia, with increased susceptibility to visceral obesity. Adipokine screening in fARKO mice revealed a selective increase in plasma and intra-adipose retinol binding protein 4 (RBP4) that preceded obesity. AR activation in murine 3T3 adipocytes downregulated RBP4 mRNA. We conclude that AR signaling in adipocytes not only protects against high-fat diet–induced visceral obesity but also regulates insulin action and glucose homeostasis, independently of adiposity. Androgen deficiency in adipocytes in mice resembles human type 2 diabetes, with early insulin resistance and evolving insulin deficiency. PMID:22415878

  12. The influence of bile acids homeostasis by cryptotanshinone ...

    African Journals Online (AJOL)

    Background: Herbs might affect the homeostasis of bile acids through influence of multiple metabolic pathways of bile acids. Aim: The present study aims to investigate the inhibition of cryptotanshinone towards the glucuronidation of LCA, trying to indicate the possible influence of cryptotanshinone-containing herbs towards ...

  13. Colonic macrophage polarization in homeostasis, inflammation, and cancer

    Science.gov (United States)

    Appleyard, Caroline B.

    2016-01-01

    Our review focuses on the colonic macrophage, a monocyte-derived, tissue-resident macrophage, and the role it plays in health and disease, specifically in inflammatory conditions such as inflammatory bowel disease and cancer of the colon and rectum. We give special emphasis to macrophage polarization, or phenotype, in these different states. We focus on macrophages because they are one of the most numerous leukocytes in the colon, and because they normally contribute to homeostasis through an anti-inflammatory phenotype. However, in conditions such as inflammatory bowel disease, proinflammatory macrophages are increased in the colon and have been linked to disease severity and progression. In colorectal cancer, tumor cells may employ anti-inflammatory macrophages to promote tumor growth and dissemination, whereas proinflammatory macrophages may antagonize tumor growth. Given the key roles that this cell type plays in homeostasis, inflammation, and cancer, the colonic macrophage is an intriguing therapeutic target. As such, potential macrophage-targeting strategies are discussed. PMID:27229123

  14. The emerging role of lysosomes in copper homeostasis.

    Science.gov (United States)

    Polishchuk, Elena V; Polishchuk, Roman S

    2016-09-01

    The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.

  15. Cellular Links between Neuronal Activity and Energy Homeostasis.

    Science.gov (United States)

    Shetty, Pavan K; Galeffi, Francesca; Turner, Dennis A

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply.

  16. CbRCI35, a cold responsive peroxidase from Capsella bursa-pastoris regulates reactive oxygen species homeostasis and enhances cold tolerance in tobacco

    Directory of Open Access Journals (Sweden)

    Juan Lin

    2016-10-01

    Full Text Available Low temperature affects gene regulatory networks and alters cellular metabolism to inhibit plant growth. Peroxidases are widely distributed in plants and play a large role in adjusting and controlling reactive oxygen species (ROS homeostasis in response to abiotic stresses such as low temperature. The Rare Cold-Inducible 35 gene from Capsella bursa-pastoris (CbRCI35 belongs to the type III peroxidase family and has been reported to be a cold responsive gene in plants. Here we performed an expressional characterization of CbRCI35 under cold and ionic liquid treatments. The promoter of CbRCI35 was also cloned and its activity was examined using the GUS reporter system. CbRCI35 protein was localized in the cytoplasm according to sequence prediction and GFP fusion assay. Heterologous expression tests revealed that CbRCI35 conferred enhanced resistance to low temperature and activated endogenous cold responsive signaling in tobacco. Furthermore, in the normal condition the ROS accumulation was moderately enhanced while after chilling exposure superoxide dismutase (SOD activity was increased in CbRCI53 transgenic plants. The ROS metabolism related genes expression was altered accordingly. We conclude that CbRCI35 modulates ROS homeostasis and contributes to cold tolerance in plants.

  17. Adjustment Criterion and Algorithm in Adjustment Model with Uncertain

    Directory of Open Access Journals (Sweden)

    SONG Yingchun

    2015-02-01

    Full Text Available Uncertainty often exists in the process of obtaining measurement data, which affects the reliability of parameter estimation. This paper establishes a new adjustment model in which uncertainty is incorporated into the function model as a parameter. A new adjustment criterion and its iterative algorithm are given based on uncertainty propagation law in the residual error, in which the maximum possible uncertainty is minimized. This paper also analyzes, with examples, the different adjustment criteria and features of optimal solutions about the least-squares adjustment, the uncertainty adjustment and total least-squares adjustment. Existing error theory is extended with new observational data processing method about uncertainty.

  18. Regulation of protein homeostasis in neurodegenerative diseases : the role of coding and non-coding genes

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Nollen, Ellen A. A.

    Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding,

  19. Compensatory canine angulation in angle Class II and III patients

    Directory of Open Access Journals (Sweden)

    Mauro Carlos Agner Busato

    2009-09-01

    Full Text Available The aim of this study was to evaluate the occurence of compensation in mesiodistal axial inclinations of canines in skeletal malocclusions patients. The sample consisted of 25 Angle Class II, division 1 malocclusion (group 1 and 19 Angle Class III malocclusion patients (group 2. After measurement of dental angulations through a method that associates plaster model photography and AutoCad software, comparisons between the groups were performed by T-test for independent samples. Results showed that there was no statistically significant difference (p < 0.05 between groups, when maxillary canine angulations were compared. Regarding the mandibular canines, there was a statistically significant difference in dental angulation, expressed by 3.2° for group 1 and 0.15° for group 2. An upright position tendency for mandibular canines was observed in the Angle Class III sample. This configures a pattern of compensatory coronary positioning, since the angulation of these teeth makes them occupy less space in the dental arch and consequently mandibular incisors can be in a more retracted position in the sagittal plane.

  20. Molecular monitoring of equine joint homeostasis

    OpenAIRE

    de Grauw, J.C.

    2010-01-01

    Chronic joint disorders are a major cause of impaired mobility and loss of quality of life in both humans and horses. Regardless of the primary insult, any joint disorder is characterized by an upset in normal joint homeostasis, the balance between tissue anabolism and catabolism that is normally maintained by resident articular cells. This upset is often fuelled by a local inflammatory response in the synovial membrane and the articular cartilage. Our current understanding of the pathogenesi...

  1. Orm family proteins mediate sphingolipid homeostasis

    DEFF Research Database (Denmark)

    Breslow, David K; Collins, Sean R; Bodenmiller, Bernd

    2010-01-01

    a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. We also define a regulatory pathway in which phosphorylation of Orm proteins relieves their inhibitory activity when sphingolipid production is disrupted. Changes in ORM gene expression...... or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma....

  2. Department of Energy Plutonium ES ampersand H Vulnerability Assessment Savannah River Site interim compensatory measures

    International Nuclear Information System (INIS)

    Bickford, W.E.

    1994-01-01

    The Savannah River Site (SRS) has recently completed a self-assessment of potential vulnerabilities associated with plutonium and other transuranic materials stored at the site. An independent Working Group Assessment Team (WGAT) appointed by DOE/ES ampersand H also performed an independent assessment, and reviewed and validated the site self-assessment. The purpose of this report is to provide a status of interim compensatory measures at SRS to address hazards in advance of any corrective actions. ES ampersand H has requested this status for all vulnerabilities ranked medium or higher with respect to potential consequences to workers, environment, and the public

  3. Improving ecosystem-scale modeling of evapotranspiration using ecological mechanisms that account for compensatory responses following disturbance

    Science.gov (United States)

    Millar, David J.; Ewers, Brent E.; Mackay, D. Scott; Peckham, Scott; Reed, David E.; Sekoni, Adewale

    2017-09-01

    Mountain pine beetle outbreaks in western North America have led to extensive forest mortality, justifiably generating interest in improving our understanding of how this type of ecological disturbance affects hydrological cycles. While observational studies and simulations have been used to elucidate the effects of mountain beetle mortality on hydrological fluxes, an ecologically mechanistic model of forest evapotranspiration (ET) evaluated against field data has yet to be developed. In this work, we use the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to incorporate the ecohydrological impacts of mountain pine beetle disturbance on ET for a lodgepole pine-dominated forest equipped with an eddy covariance tower. An existing degree-day model was incorporated that predicted the life cycle of mountain pine beetles, along with an empirically derived submodel that allowed sap flux to decline as a function of temperature-dependent blue stain fungal growth. The eddy covariance footprint was divided into multiple cohorts for multiple growing seasons, including representations of recently attacked trees and the compensatory effects of regenerating understory, using two different spatial scaling methods. Our results showed that using a multiple cohort approach matched eddy covariance-measured ecosystem-scale ET fluxes well, and showed improved performance compared to model simulations assuming a binary framework of only areas of live and dead overstory. Cumulative growing season ecosystem-scale ET fluxes were 8 - 29% greater using the multicohort approach during years in which beetle attacks occurred, highlighting the importance of including compensatory ecological mechanism in ET models.

  4. The Causative Gene in Chanarian Dorfman Syndrome Regulates Lipid Droplet Homeostasis in C. elegans.

    Directory of Open Access Journals (Sweden)

    Meng Xie

    2015-06-01

    Full Text Available AMP-activated kinase (AMPK is a key regulator of many cellular mechanisms required for adjustment to various stresses induced by the changing environment. In C. elegans dauer larvae AMPK-null mutants expire prematurely due to hyperactive Adipose Triglyceride Lipase (ATGL-1 followed by rapid depletion of triglyceride stores. We found that the compromise of one of the three C. elegans orthologues of human cgi-58 significantly improves the survival of AMPK-deficient dauers. We also provide evidence that C. elegans CGI-58 acts as a co-activator of ATGL-1, while it also functions cooperatively to maintain regular lipid droplet structure. Surprisingly, we show that it also acts independently of ATGL-1 to restrict lipid droplet coalescence by altering the surface abundance and composition of long chain (C20 polyunsaturated fatty acids (PUFAs. Our data reveal a novel structural role of CGI-58 in maintaining lipid droplet homeostasis through its effects on droplet composition, morphology and lipid hydrolysis; a conserved function that may account for some of the ATGL-1-independent features unique to Chanarin-Dorfman Syndrome.

  5. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis

    OpenAIRE

    Kocalis, Heidi E.; Hagan, Scott L.; George, Leena; Turney, Maxine K.; Siuta, Michael A.; Laryea, Gloria N.; Morris, Lindsey C.; Muglia, Louis J.; Printz, Richard L.; Stanwood, Gregg D.; Niswender, Kevin D.

    2014-01-01

    Insulin signaling in the central nervous system (CNS) regulates energy balance and peripheral glucose homeostasis. Rictor is a key regulatory/structural subunit of the mTORC2 complex and is required for hydrophobic motif site phosphorylation of Akt at serine 473. To examine the contribution of neuronal Rictor/mTORC2 signaling to CNS regulation of energy and glucose homeostasis, we utilized Cre-LoxP technology to generate mice lacking Rictor in all neurons, or in either POMC or AgRP expressing...

  6. Exploring the role of glucagon in glucose homeostasis

    NARCIS (Netherlands)

    Dongen, Maria Gertrud Jobina van

    2015-01-01

    The aim of this thesis was to gain further insight into the role of glucagon in glucose homeostasis in healthy volunteers and type 2 diabetes mellitus (T2DM) patients, and to explore the novel antisense glucagon receptor antagonist. Chapter 2 showed that the effect of meal replacers containing

  7. Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis.

    Science.gov (United States)

    Chen, Xiyue; Eslamfam, Shabnam; Fang, Luoyun; Qiao, Shiyan; Ma, Xi

    2017-01-01

    Gastrointestinal homeostasis is a dynamic balance under the interaction between the host, GI tract, nutrition and energy metabolism. Glucose is the main energy source in living cells. Thus, glucose metabolic disorders can impair normal cellular function and endanger organisms' health. Diseases that are associated with glucose metabolic disorders such as obesity, diabetes, hypertension, and other metabolic syndromes are in fact life threatening. Digestive system is responsible for food digestion and nutrient absorption. It is also involved in neuronal, immune, and endocrine pathways. In addition, the gut microbiota plays an essential role in initiating signal transduction, and communication between the enteric and central nervous system. Gut-brain axis is composed of enteric neural system, central neural system, and all the efferent and afferent neurons that are involved in signal transduction between the brain and gut-brain. Gut-brain axis is influenced by the gut-microbiota as well as numerous neurotransmitters. Properly regulated gut-brain axis ensures normal digestion, absorption, energy production, and subsequently maintenance of glucose homeostasis. Understanding the underlying regulatory mechanisms of gut-brain axis involved in gluose homeostasis would enable us develop more efficient means of prevention and management of metabolic disease such as diabetic, obesity, and hypertension. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis.

    Science.gov (United States)

    Vianna, Claudia R; Coppari, Roberto

    2011-01-01

    Changes in physical activities and feeding habits have transformed the historically rare disease of obesity into a modern metabolic pandemic. Obesity occurs when energy intake exceeds energy expenditure over time. This energy imbalance significantly increases the risk for cardiovascular disease and type 2 diabetes mellitus and as such represents an enormous socioeconomic burden and health threat. To combat obesity, a better understanding of the molecular mechanisms and neurocircuitries underlying normal body weight homeostasis is required. In the 1940s, pioneering lesion experiments unveiled the importance of medial and lateral hypothalamic structures. In the 1980s and 1990s, several neuropeptides and peripheral hormones critical for appropriate feeding behavior, energy expenditure, and hence body weight homeostasis were identified. In the 2000s, results from metabolic analyses of genetically engineered mice bearing mutations only in selected neuronal groups greatly advanced our knowledge of the peripheral/brain feedback-loop modalities by which central neurons control energy balance. In this review, we will summarize these recent progresses with particular emphasis on the biochemical identities of hypothalamic neurons and molecular components underlying normal appetite, energy expenditure, and body weight homeostasis. We will also parse which of those neurons and molecules are critical components of homeostatic adaptive pathways against obesity induced by hypercaloric feeding.

  9. [Zinc signaling : a novel regulatory system on bone homeostasis, and immune and allergic responses].

    Science.gov (United States)

    Fukada, Toshiyuki; Nishida, Keigo; Yamasaki, Satoru; Hojyo, Shintaro

    2012-11-01

    Zinc (Zn) is an essential trace element that is required for proliferation, differentiation, and variety of cellular functions, and unbalanced homeostasis of Zn ion (Zn(2 + )) results in health problems such as abnormal bone formation and immunodeficiency. Recent studies have shed light on important roles of Zn(2 + )as a signaling mediator, called Zn signal. Zn(2 + )homeostasis is regulated through Zn transporters and cation channels. Advances of genetic and molecular approaches have revealed that Zn signal regulates mammalian physiology and pathogenesis. We will address that Zn signal undoubtedly contributes to our health, by highlighting it in bone homeostasis and immune regulation, and discuss that the "Zn signal axis" selectively controls intracellular signal transduction to fine-tune cellular functions.

  10. Sustained sleep fragmentation induces sleep homeostasis in mice

    KAUST Repository

    Baud, Maxime O.; Magistretti, Pierre J.; Petit, Jean Marie

    2015-01-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.

  11. Sustained sleep fragmentation induces sleep homeostasis in mice

    KAUST Repository

    Baud, Maxime O.

    2015-04-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.

  12. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis

    Science.gov (United States)

    Kocalis, Heidi E.; Hagan, Scott L.; George, Leena; Turney, Maxine K.; Siuta, Michael A.; Laryea, Gloria N.; Morris, Lindsey C.; Muglia, Louis J.; Printz, Richard L.; Stanwood, Gregg D.; Niswender, Kevin D.

    2014-01-01

    Insulin signaling in the central nervous system (CNS) regulates energy balance and peripheral glucose homeostasis. Rictor is a key regulatory/structural subunit of the mTORC2 complex and is required for hydrophobic motif site phosphorylation of Akt at serine 473. To examine the contribution of neuronal Rictor/mTORC2 signaling to CNS regulation of energy and glucose homeostasis, we utilized Cre-LoxP technology to generate mice lacking Rictor in all neurons, or in either POMC or AgRP expressing neurons. Rictor deletion in all neurons led to increased fat mass and adiposity, glucose intolerance and behavioral leptin resistance. Disrupting Rictor in POMC neurons also caused obesity and hyperphagia, fasting hyperglycemia and pronounced glucose intolerance. AgRP neuron specific deletion did not impact energy balance but led to mild glucose intolerance. Collectively, we show that Rictor/mTORC2 signaling, especially in POMC-expressing neurons, is important for central regulation of energy and glucose homeostasis. PMID:24944899

  13. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis.

    Science.gov (United States)

    Kocalis, Heidi E; Hagan, Scott L; George, Leena; Turney, Maxine K; Siuta, Michael A; Laryea, Gloria N; Morris, Lindsey C; Muglia, Louis J; Printz, Richard L; Stanwood, Gregg D; Niswender, Kevin D

    2014-07-01

    Insulin signaling in the central nervous system (CNS) regulates energy balance and peripheral glucose homeostasis. Rictor is a key regulatory/structural subunit of the mTORC2 complex and is required for hydrophobic motif site phosphorylation of Akt at serine 473. To examine the contribution of neuronal Rictor/mTORC2 signaling to CNS regulation of energy and glucose homeostasis, we utilized Cre-LoxP technology to generate mice lacking Rictor in all neurons, or in either POMC or AgRP expressing neurons. Rictor deletion in all neurons led to increased fat mass and adiposity, glucose intolerance and behavioral leptin resistance. Disrupting Rictor in POMC neurons also caused obesity and hyperphagia, fasting hyperglycemia and pronounced glucose intolerance. AgRP neuron specific deletion did not impact energy balance but led to mild glucose intolerance. Collectively, we show that Rictor/mTORC2 signaling, especially in POMC-expressing neurons, is important for central regulation of energy and glucose homeostasis.

  14. Thiol/disulphide homeostasis in celiac disease

    Science.gov (United States)

    Kaplan, Mustafa; Ates, Ihsan; Yuksel, Mahmut; Ozderin Ozin, Yasemin; Alisik, Murat; Erel, Ozcan; Kayacetin, Ertugrul

    2017-01-01

    AIM To determine dynamic thiol/disulphide homeostasis in celiac disease and to examine the associate with celiac autoantibodies and gluten-free diet. METHODS Seventy three patients with celiac disease and 73 healthy volunteers were enrolled in the study. In both groups, thiol/disulphide homeostasis was examined with a new colorimetric method recently developed by Erel and Neselioglu. RESULTS In patients with celiac disease, native thiol (P = 0.027) and total thiol (P = 0.031) levels were lower, while disulphide (P < 0.001) level, disulphide/native thiol (P < 0.001) and disulphide/total thiol (P < 0.001) ratios were higher compared to the control group. In patients who do not comply with a gluten-free diet, disulphide/native thiol ratio was found higher compared to the patients who comply with the diet (P < 0.001). In patients with any autoantibody-positive, disulphide/native thiol ratio was observed higher compared to the patients with autoantibody-negative (P < 0.05). It is found that there is a negative correlation between celiac autoantibodies, and native thiol, total thiol levels and native thiol/total thiol ratio, while a positive correlation is observed between disulphide, disulphide/native thiol and disulphide/total thiol levels. CONCLUSION This study is first in the literature which found that the patients with celiac disease the dynamic thiol/disulphide balance shifts through disulphide form compared to the control group. PMID:28533921

  15. Calcium homeostasis during pregnancy and lactation: role of vitamin ...

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    skinned but also even Caucasian women tend to go into vitamin D deficiency during ... homeostasis in this phase of life is still controversial. Studies are .... calcium balance in lactating women. .... work on vitamin D. In general these authors.

  16. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.

    Science.gov (United States)

    Bevins, Charles L; Salzman, Nita H

    2011-05-01

    Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.

  17. Modulation of intestinal sulfur assimilation metabolism regulates iron homeostasis

    Science.gov (United States)

    Hudson, Benjamin H.; Hale, Andrew T.; Irving, Ryan P.; Li, Shenglan; York, John D.

    2018-01-01

    Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis. PMID:29507250

  18. Origins and Hallmarks of Macrophages: Development, Homeostasis, and Disease

    Science.gov (United States)

    Wynn, Thomas A.; Chawla, Ajay; Pollard, Jeffrey W.

    2013-01-01

    Preface Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases. PMID:23619691

  19. Salt stress induced ion accumulation, ion homeostasis, membrane ...

    African Journals Online (AJOL)

    Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice ( Oryza sativa L. spp. indica ) roots under isoosmotic conditions. ... The accumulation of sugars in PT1 roots may be a primary salt-defense mechanism and may function as an osmotic control. Key words: ...

  20. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...

  1. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Vikram Saini

    2016-01-01

    Full Text Available The mechanisms by which Mycobacterium tuberculosis (Mtb maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT and mycothiol (MSH are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping but distinct functions of EGT and MSH. Last, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity.

  2. Cortical delta-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation.

    Science.gov (United States)

    Chao, Dongman; Donnelly, David F; Feng, Yin; Bazzy-Asaad, Alia; Xia, Ying

    2007-02-01

    Central neurons are extremely vulnerable to hypoxic/ischemic insult, which is a major cause of neurologic morbidity and mortality as a consequence of neuronal dysfunction and death. Our recent work has shown that delta-opioid receptor (DOR) is neuroprotective against hypoxic and excitotoxic stress, although the underlying mechanisms remain unclear. Because hypoxia/ischemia disrupts ionic homeostasis with an increase in extracellular K(+), which plays a role in neuronal death, we asked whether DOR activation preserves K(+) homeostasis during hypoxic/ischemic stress. To test this hypothesis, extracellular recordings with K(+)-sensitive microelectrodes were performed in mouse cortical slices under anoxia or oxygen-glucose deprivation (OGD). The main findings in this study are that (1) DOR activation with [D-Ala(2), D-Leu(5)]-enkephalinamide attenuated the anoxia- and OGD-induced increase in extracellular K(+) and decrease in DC potential in cortical slices; (2) DOR inhibition with naltrindole, a DOR antagonist, completely abolished the DOR-mediated prevention of increase in extracellular K(+) and decrease in DC potential; (3) inhibition of protein kinase A (PKA) with N-(2-[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide dihydrochloride had no effect on the DOR protection; and (4) inhibition of protein kinase C (PKC) with chelerythrine chloride reduced the DOR protection, whereas the PKC activator (phorbol 12-myristate 13-acetate) mimicked the effect of DOR activation on K(+) homeostasis. These data suggest that activation of DOR protects the cortex against anoxia- or ODG-induced derangement of potassium homeostasis, and this protection occurs via a PKC-dependent and PKA-independent pathway. We conclude that an important aspect of DOR-mediated neuroprotection is its early action against derangement of K(+) homeostasis during anoxia or ischemia.

  3. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    Science.gov (United States)

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  4. Serum levels of carbonylated and nitrosylated proteins in mobbing victims with workplace adjustment disorders.

    Science.gov (United States)

    Di Rosa, A E; Gangemi, S; Cristani, M; Fenga, C; Saitta, S; Abenavoli, E; Imbesi, S; Speciale, A; Minciullo, P L; Spatari, G; Abbate, S; Saija, A; Cimino, F

    2009-12-01

    Today the most important problem in the work place is psychological abuse, which may affect the health because of high levels of stress and anxiety. There is evidence that most psychiatric disorders are associated with increased oxidative stress but nothing is reported about the presence of oxidative stress in mobbing victims. This study has been carried out in a group of 19 patients affected by workplace mobbing-due adjustment disorders, in comparison with 38 healthy subjects, to evaluate whether oxidative stress may be induced by mobbing. Serum levels of protein carbonyl groups and of nitrosylated proteins, biological markers of oxidative stress conditions, were higher than those measured in healthy subjects. These findings may contribute to a better understanding of the redox homeostasis dysregulation occurring in victims of workplace mobbing.

  5. nfluence of antidepressants on glucose homeostasis : effects and mechanisms

    NARCIS (Netherlands)

    Derijks, H.J.

    2009-01-01

    Depression has shown to be a common morbidity in patients with diabetes mellitus and comorbid depression in diabetes mellitus patients is frequently treated with antidepressants. It has been postulated that antidepressants may interfere with glucose homeostasis and that the interference of

  6. Asiatic acid influences glucose homeostasis in P. berghei murine ...

    African Journals Online (AJOL)

    Background: Glucose homeostasis derangement is a common pathophysiology of malaria whose aetiology is still controversial. The Plasmodium parasite, immunological and inflammatory responses, as well as chemotherapeutics currently used cause hypoglycaemia in malaria. Anti-parasitic and anti-disease drugs are ...

  7. Setting sail for glucose homeostasis with the AKAP150-PP2B-anchor.

    Science.gov (United States)

    Teo, Adrian Kee Keong; Kulkarni, Rohit N

    2012-10-17

    Glucose-stimulated insulin secretion, controlled by multiple protein phosphorylation events, is critical for the regulation of glucose homeostasis. Protein kinase A (PKA) is known to play a role in β cell physiology, but the role of its anchoring protein is not fully understood. Hinke et al (2012) illustrate the significance of A-kinase anchoring protein 150 in tethering protein phosphatase 2B to mediate nutrient-stimulated insulin secretion and thus modulate glucose homeostasis.

  8. TRPV5, the gateway to Ca2+ homeostasis.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Ca2+ homeostasis in the body is tightly controlled, and is a balance between absorption in the intestine, excretion via the urine, and exchange from bone. Recently, the epithelial Ca2+ channel (TRPV5) has been identified as the gene responsible for the Ca2+ influx in epithelial cells of the renal

  9. The influence of bile acids homeostasis by cryptotanshinone ...

    African Journals Online (AJOL)

    The homeostasis of bile acids can be tightly regulated through feed-back and feed-forward regula- tion pathways. Bile acids exert their toxicity towards cells at high concentrations, and the accumulation of bile acids can induce the severe damage towards liver cells 2. Bile acids have been reported to induce cell injury.

  10. Disruption of gut homeostasis by opioids accelerates HIV disease progression

    Directory of Open Access Journals (Sweden)

    Jingjing eMeng

    2015-06-01

    Full Text Available Cumulative studies during the past 30 years have established the correlation between opioid abuse and human immunodeficiency virus (HIV infection. Further studies also demonstrate that opioid addiction is associated with faster progression to AIDS in patients. Recently, it was revealed that disruption of gut homeostasis and subsequent microbial translocation play important roles in pathological activation of the immune system during HIV infection and contributes to accelerated disease progression. Similarly, opioids have been shown to modulate gut immunity and induce gut bacterial translocation. This review will explore the mechanisms by which opioids accelerate HIV disease progression by disrupting gut homeostasis. Better understanding of these mechanisms will facilitate the search for new therapeutic interventions to treat HIV infection especially in opioid abusing population.

  11. Central insulin and leptin-mediated autonomic control of glucose homeostasis.

    Science.gov (United States)

    Marino, Joseph S; Xu, Yong; Hill, Jennifer W

    2011-07-01

    Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism

    DEFF Research Database (Denmark)

    Grgurevic, Lovorka; Christensen, Gitte Lund; Schulz, Tim J

    2016-01-01

    implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role...... homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been...

  13. Postradiation immunoendocrine homeostasis in patients with cancer of the buccal mucosa

    International Nuclear Information System (INIS)

    Savina, N.P.; Pavlov, A.S.; Lyasko, L.I.

    1993-01-01

    A follow-up of the immune and endocrine homeostasis was carried out for 1 to 3 years in 80 patients with cancer of the buccal mucose (T 1-2 , N 0 , M 0 ), exposed to intratissue therapy with 252 Cf and 60 Co alone and in combination with longdistance gamma-beam therapy. The status of the postradiation immune and endocrine homeostasis was found to depend on the dose load of the critical organs, the thymus and hypophysis. Complete recovery of the parameters was obsered in the patients administered lower irradiation dose, whereas after higher doses of irradiation no complete recovery was observed in remote periods after radiotherapy

  14. Signalling from the periphery to the brain that regulates energy homeostasis.

    Science.gov (United States)

    Kim, Ki-Suk; Seeley, Randy J; Sandoval, Darleen A

    2018-04-01

    The CNS regulates body weight; however, we still lack a clear understanding of what drives decisions about when, how much and what to eat. A vast array of peripheral signals provides information to the CNS regarding fluctuations in energy status. The CNS then integrates this information to influence acute feeding behaviour and long-term energy homeostasis. Previous paradigms have delegated the control of long-term energy homeostasis to the hypothalamus and short-term changes in feeding behaviour to the hindbrain. However, recent studies have identified target hindbrain neurocircuitry that integrates the orchestration of individual bouts of ingestion with the long-term regulation of energy balance.

  15. Convexity Adjustments

    DEFF Research Database (Denmark)

    M. Gaspar, Raquel; Murgoci, Agatha

    2010-01-01

    A convexity adjustment (or convexity correction) in fixed income markets arises when one uses prices of standard (plain vanilla) products plus an adjustment to price nonstandard products. We explain the basic and appealing idea behind the use of convexity adjustments and focus on the situations...

  16. Challenging homeostasis to define biomarkers for nutrition related health

    NARCIS (Netherlands)

    Ommen, van B.; Keijer, J.; Heil, S.G.; Kaput, J.

    2009-01-01

    A primary goal of nutrition research is to optimize health and prevent or delay disease. Biomarkers to quantify health optimization are needed since many if not most biomarkers are developed for diseases. Quantifying normal homeostasis and developing validated biomarkers are formidable tasks because

  17. Renal renin secretion as regulator of body fluid homeostasis

    DEFF Research Database (Denmark)

    Damkjær, Mads; Isaksson, Gustaf L; Stubbe, Jane

    2013-01-01

    The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium...

  18. Activating transcription factor 3 regulates immune and metabolic homeostasis

    Czech Academy of Sciences Publication Activity Database

    Ryneš, J.; Donohoe, C. D.; Frommolt, P.; Brodesser, S.; Jindra, Marek; Uhlířová, M.

    2012-01-01

    Roč. 32, č. 19 (2012), s. 3949-3962 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GD204/09/H058 Institutional support: RVO:60077344 Keywords : metabolic homeostasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.372, year: 2012

  19. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen

    2015-01-01

    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an

  20. Integrative studies on cartilage tissue engineering and joint homeostasis

    NARCIS (Netherlands)

    Rutgers, M.

    2014-01-01

    The impact of cartilage injury to the joint is often larger than the initial clinical symptoms suggest. Through an alteration in joint homeostasis and biomechanical loading, cartilage lesions may accelerate osteoarthritis onset. Although good clinical results are achieved in patients treated by the

  1. Atmospheric Convective Organization: Self-Organized Criticality or Homeostasis?

    Science.gov (United States)

    Yano, Jun-Ichi

    2015-04-01

    Atmospheric convection has a tendency organized on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden-Julian oscillation. The present talk examines two major possible mechanisms of self-organization identified in wider literature from a phenomenological thermodynamic point of view by analysing a planetary-scale cloud-resolving model simulation. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with the increasing column-integrated water, reminiscence of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as cloud-resolving model (CRM) experiments give mixed results. A satellite data analysis suggests self-organized criticality. Some observational data as well as CRM experiments support homeostasis. Other analyses point to a combination of these two interpretations. In this study, a CRM experiment over a planetary-scale domain with a constant sea-surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms are further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes. These self-organization mechanisms are most likely be best theoretically understood by the energy cycle of the convective systems consisting of the kinetic energy and the cloud-work function. The author has already investigated the behavior of this

  2. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  3. Relationship between oxygen delivery and its compensatory factors and acute mountain sickness

    Directory of Open Access Journals (Sweden)

    Ming LI

    2013-03-01

    Full Text Available Objective  To investigate the changes in oxygen delivery (DO2 to the body and brain and its compensatory factors to acute hypoxia and their relation to acute mountain sickness (AMS. Methods  One hundred and forty-seven participants were recruited from Chinese young men who had lived in plain all along arrived in Tibet by flight. All of them were asked to complete an AMS questionnaire within 48h after arrival. The resting heart rate (HR, blood pressure (BP, cardiac output (CO, oxygen saturation (SaO2, stroke volume (SV and blood flow velocity in the middle cerebral artery (MCAv were measured one week before departure from the plain and within 48h after arrival in Tibet. AMS was diagnosed according to Louis Lake Score System (LLS, and the results were then statistically analyzed. Results  AMS was diagnosed in eighty-six subjects (58.5%. After exposure to hypoxia, SaO2 was decreased by 10% and was negatively correlated with AMS score. Systemic DO2, CO and HR were increased by 19%, 32.5% and 31.7%, respectively, and were positively correlated with AMS, while the SV remained unchanged. MCAv accelerated by 10%, and that of AMS subjects was higher than of non-AMS ones. The cerebral DO2 (DO2C was maintained because the MCAv matched with SaO2 changes. The middle cerebral artery resistance units (RMCA decreased obviously with an increase in MBP, and RMCA in AMS subjects was lower than that in non-AMS ones. HR and MCAv, the key compensation factors of DO2, were used as the objective evaluation indices, in collaboration of HR≥85 beat/min and MCAv≥66cm/s, could be a better means to evaluate AMS, with a positive predictive value of 82.4% and specificity of 90.2%. Conclusions  DO2 and its compensatory factors may play a key role in the regulation response to acclimatize to acute hypoxia. Among them, HR and MCAv may relate to the mechanism of AMS development, and indirectly reflect the compensation level to oxygen debt, implying that HR and MCAv are

  4. Neuroimmune interaction and the regulation of intestinal immune homeostasis.

    Science.gov (United States)

    Verheijden, Simon; Boeckxstaens, Guy E

    2018-01-01

    Many essential gastrointestinal functions, including motility, secretion, and blood flow, are regulated by the autonomic nervous system (ANS), both through intrinsic enteric neurons and extrinsic (sympathetic and parasympathetic) innervation. Recently identified neuroimmune mechanisms, in particular the interplay between enteric neurons and muscularis macrophages, are now considered to be essential for fine-tuning peristalsis. These findings shed new light on how intestinal immune cells can support enteric nervous function. In addition, both intrinsic and extrinsic neural mechanisms control intestinal immune homeostasis in different layers of the intestine, mainly by affecting macrophage activation through neurotransmitter release. In this mini-review, we discuss recent insights on immunomodulation by intrinsic enteric neurons and extrinsic innervation, with a particular focus on intestinal macrophages. In addition, we discuss the relevance of these novel mechanisms for intestinal immune homeostasis in physiological and pathological conditions, mainly focusing on motility disorders (gastroparesis and postoperative ileus) and inflammatory disorders (colitis).

  5. CNS-targets in control of energy and glucose homeostasis.

    Science.gov (United States)

    Kleinridders, André; Könner, A Christine; Brüning, Jens C

    2009-12-01

    The exceeding efforts in understanding the signals initiated by nutrients and hormones in the central nervous system (CNS) to regulate glucose and energy homeostasis have largely revolutionized our understanding of the neurocircuitry in control of peripheral metabolism. The ability of neurons to sense nutrients and hormones and to adopt a coordinated response to these signals is of crucial importance in controlling food intake, energy expenditure, glucose and lipid metabolism. Anatomical lesion experiments, pharmacological inhibition of signaling pathways, and, more recently, the analysis of conditional mouse mutants with modifications of hormone and nutrient signaling in defined neuronal populations have broadened our understanding of these complex neurocircuits. This review summarizes recent findings regarding the role of the CNS in sensing and transmitting nutritional and hormonal signals to control energy and glucose homeostasis and aims to define them as potential novel drug targets for the treatment of obesity and type 2 diabetes mellitus.

  6. A quasi-proportional electoral system 'only for honest men'? The hidden potential for manipulating mixed compensatory electoral systems

    DEFF Research Database (Denmark)

    Bochsler, Daniel

    2012-01-01

    , and Venezuela, however, demonstrate a particular loophole for such systems: strategic voting, organized by political parties. Large parties can achieve over-representation by encouraging their voters to split their votes. In this way, they outsmart the compensatory mechanism designed to lead to proportional...... results. These disproportional results are particularly controversial, since they are deliberate and strategic. This article takes the 2005 Albanian elections as its main case study, and uses simulations to illustrate its political consequences....

  7. Energy homeostasis regulatory peptides in hibernating grizzly bears.

    Science.gov (United States)

    Gardi, János; Nelson, O Lynne; Robbins, Charles T; Szentirmai, Eva; Kapás, Levente; Krueger, James M

    2011-05-15

    Grizzly bears (Ursus arctos horribilis) are inactive for up to 6 months during hibernation. They undergo profound seasonal changes in food intake, body mass, and energy expenditure. The circa-annual regulation of metabolism is poorly understood. In this study, we measured plasma ghrelin, leptin, obestatin, and neuropeptide-Y (NPY) levels, hormones known to be involved in the regulation of energy homeostasis, in ten grizzly bears. Blood samples were collected during the active summer period, early hibernation and late hibernation. Plasma levels of leptin, obestatin, and NPY did not change between the active and the hibernation periods. Plasma total ghrelin and desacyl-ghrelin concentrations significantly decreased during the inactive winter period compared to summer levels. The elevated ghrelin levels may help enhance body mass during pre-hibernation, while the low plasma ghrelin concentrations during hibernation season may contribute to the maintenance of hypophagia, low energy utilization and behavioral inactivity. Our results suggest that ghrelin plays a potential role in the regulation of metabolic changes and energy homeostasis during hibernation in grizzly bears. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation.

    Science.gov (United States)

    Molofsky, Ari B; Savage, Adam K; Locksley, Richard M

    2015-06-16

    Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described as a potent inducer of allergic type 2 immunity. IL-33 signals via the receptor ST2, which is highly expressed on group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells, thus underpinning its association with helminth infection and allergic pathology. Recent studies have revealed ST2 expression on subsets of regulatory T cells, and for a role for IL-33 in tissue homeostasis and repair that suggests previously unrecognized interactions within these cellular networks. IL-33 can participate in pathologic fibrotic reactions, or, in the setting of microbial invasion, can cooperate with inflammatory cytokines to promote responses by cytotoxic NK cells, Th1 cells, and CD8(+) T cells. Here, we highlight the regulation and function of IL-33 and ST2 and review their roles in homeostasis, damage, and inflammation, suggesting a conceptual framework for future studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cellular Links Between Neuronal Activity and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Pavan K Shetty

    2012-03-01

    Full Text Available Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function. Nervous system energy homeostasis also varies during long-term physiological conditions (ie, development and aging and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste byproducts. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply.

  10. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity

    OpenAIRE

    Xuemei Shi; Shaji Chacko; Feng Li; Depei Li; Douglas Burrin; Lawrence Chan; Xinfu Guan

    2017-01-01

    Objective: Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. Methods: We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected...

  11. Cooperation between brain and islet in glucose homeostasis and diabetes

    Science.gov (United States)

    Schwartz, Michael W.; Seeley, Randy J.; Tschöp, Matthias H.; Woods, Stephen C.; Morton, Gregory J.; Myers, Martin G.; D'Alessio, David

    2014-01-01

    Although a prominent role for the brain in glucose homeostasis was proposed by scientists in the nineteenth century, research throughout most of the twentieth century focused on evidence that the function of pancreatic islets is both necessary and sufficient to explain glucose homeostasis, and that diabetes results from defects of insulin secretion, action or both. However, insulin-independent mechanisms, referred to as ‘glucose effectiveness’, account for roughly 50% of overall glucose disposal, and reduced glucose effectiveness also contributes importantly to diabetes pathogenesis. Although mechanisms underlying glucose effectiveness are poorly understood, growing evidence suggests that the brain can dynamically regulate this process in ways that improve or even normalize glycaemia in rodent models of diabetes. Here we present evidence of a brain-centred glucoregulatory system (BCGS) that can lower blood glucose levels via both insulin-dependent and -independent mechanisms, and propose a model in which complex and highly coordinated interactions between the BCGS and pancreatic islets promote normal glucose homeostasis. Because activation of either regulatory system can compensate for failure of the other, defects in both may be required for diabetes to develop. Consequently, therapies that target the BCGS in addition to conventional approaches based on enhancing insulin effects may have the potential to induce diabetes remission, whereas targeting just one typically does not. PMID:24201279

  12. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota.

    Science.gov (United States)

    Peterson, C T; Sharma, V; Elmén, L; Peterson, S N

    2015-03-01

    The distal gut harbours ∼10(13) bacteria, representing the most densely populated ecosystem known. The functional diversity expressed by these communities is enormous and relatively unexplored. The past decade of research has unveiled the profound influence that the resident microbial populations bestow to host immunity and metabolism. The evolution of these communities from birth generates a highly adapted and highly personalized microbiota that is stable in healthy individuals. Immune homeostasis is achieved and maintained due in part to the extensive interplay between the gut microbiota and host mucosal immune system. Imbalances of gut microbiota may lead to a number of pathologies such as obesity, type I and type II diabetes, inflammatory bowel disease (IBD), colorectal cancer (CRC) and inflammaging/immunosenscence in the elderly. In-depth understanding of the underlying mechanisms that control homeostasis and dysbiosis of the gut microbiota represents an important step in our ability to reliably modulate the gut microbiota with positive clinical outcomes. The potential of microbiome-based therapeutics to treat epidemic human disease is of great interest. New therapeutic paradigms, including second-generation personalized probiotics, prebiotics, narrow spectrum antibiotic treatment and faecal microbiome transplantation, may provide safer and natural alternatives to traditional clinical interventions for chronic diseases. This review discusses host-microbiota homeostasis, consequences of its perturbation and the associated challenges in therapeutic developments that lie ahead. © 2014 British Society for Immunology.

  13. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    Science.gov (United States)

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  14. Adjusting kinematics and kinetics in a feedback-controlled toe walking model

    Directory of Open Access Journals (Sweden)

    Olenšek Andrej

    2012-08-01

    Full Text Available Abstract Background In clinical gait assessment, the correct interpretation of gait kinematics and kinetics has a decisive impact on the success of the therapeutic programme. Due to the vast amount of information from which primary anomalies should be identified and separated from secondary compensatory changes, as well as the biomechanical complexity and redundancy of the human locomotion system, this task is considerably challenging and requires the attention of an experienced interdisciplinary team of experts. The ongoing research in the field of biomechanics suggests that mathematical modeling may facilitate this task. This paper explores the possibility of generating a family of toe walking gait patterns by systematically changing selected parameters of a feedback-controlled model. Methods From the selected clinical case of toe walking we identified typical toe walking characteristics and encoded them as a set of gait-oriented control objectives to be achieved in a feedback-controlled walking model. They were defined as fourth order polynomials and imposed via feedback control at the within-step control level. At the between-step control level, stance leg lengthening velocity at the end of the single support phase was adaptively adjusted after each step so as to facilitate gait velocity control. Each time the gait velocity settled at the desired value, selected intra-step gait characteristics were modified by adjusting the polynomials so as to mimic the effect of a typical therapeutical intervention - inhibitory casting. Results By systematically adjusting the set of control parameters we were able to generate a family of gait kinematic and kinetic patterns that exhibit similar principal toe walking characteristics, as they were recorded by means of an instrumented gait analysis system in the selected clinical case of toe walking. We further acknowledge that they to some extent follow similar improvement tendencies as those which one can

  15. Evaluation of dynamic serum thiol/disulfide homeostasis in locally advanced and metastatic gastric cancer

    Directory of Open Access Journals (Sweden)

    Mutlu Hizal

    2018-04-01

    Full Text Available Background: Gastric cancer is one the most diagnosed cancer and the third leading cause of death from cancer worldwide. As an indicator of antioxidant capacity thiol/disulfide homeostasis regulates detoxification, cell signal mechanisms, apoptosis, transcription and antioxidant defense mechanisms. Disregulation of thiol/disulfide homeostasis identified in other cancer types by recent data. In this study, we aimed to evaluate the thiol/disulfide homeostasis in advanced gastric cancer patients. Methods: The patients who diagnosed with gastric cancer and healthy control subjects were included to study. Serum samples for the thiol-disulphide test were obtained at the time of diagnosis. Thiol-disulphide homeostasis tests were measured by the automated spectrophotometric method. Thiol-disulphide homeostasis was also measured according to clinical and laboratory features. Results: Thirty newly diagnosed advanced gastric adenocarcinoma patients and 28 healthy controls were enrolled in the study. The native thiol (NT and total thiol (TT levels of patients' group were significantly lower compared with controls (p = 0.001 and p < 0.001. In the CEA high (≥5.4 ng/ml group, DS/NT ratio were higher compared with CEA low (<5.4 ng/ml group (p = 0.024. In CA.19-9 high (≥28.3 kU/L group, both DS and DS/NT ratio were significantly higher compared with a CA19-9 low(<28.3 kU/L group (p < 0.05 both. The correlation between CEA and DS levels was also significant (p = 0.02. There was also a positive correlation between CEA levels and DS/NT ratio (p = 0.01. Conclusion: Derangements of thiol/disulfide homeostasis may have a role in gastric cancer pathogenesis and the higher level of oxidative stress may relate to extensive and aggressiveness of the advanced disease. The diagnostic and prognostic values of thiol/disulfide products need to identify with further studies. Keywords: Thiol, Disulfide, Oxidative stress, Gastric cancer, Metastatic

  16. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    Science.gov (United States)

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  17. Influence of Amino Acids in Dairy Products on Glucose Homeostasis: The Clinical Evidence.

    Science.gov (United States)

    Chartrand, Dominic; Da Silva, Marine S; Julien, Pierre; Rudkowska, Iwona

    2017-06-01

    Dairy products have been hypothesized to protect against type 2 diabetes because of their high content of whey proteins, rich in branched-chain amino acids (BCAAs) - leucine, isoleucine and valine - and lysine, which may decrease postprandial glucose responses and stimulate insulin secretion. Paradoxically, epidemiologic studies also show that higher levels of plasma BCAAs have been linked to insulin resistance and type 2 diabetes. Therefore, the objective was to review the recent clinical evidence concerning the intake of amino acids found in dairy proteins so as to determine their impact on glucose homeostasis in healthy persons and in those with prediabetes and type 2 diabetes. Clinical studies have reported that the major dairy amino acids, namely, leucine, isoleucine, glutamine, phenylalanine, proline and lysine, have beneficial effects on glucose homeostasis. Yet the reported doses of amino acids investigated are too elevated to be reached through adequate dairy product intake. The minor dairy amino acids, arginine and glycine, may improve glucose homeostasis by improving other risk factors for type 2 diabetes. Further, the combination of amino acids may also improve glucose-related outcomes, suggesting additive or synergistic effects. Nevertheless, additional long-term studies in individuals with prediabetes and type 2 diabetes are needed to ascertain the benefits for glucose homeostasis of amino acids found in dairy foods. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  18. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  19. Predictors of initiation and persistence of recurrent binge eating and inappropriate weight compensatory behaviors in college men.

    Science.gov (United States)

    Dakanalis, Antonios; Clerici, Massimo; Caslini, Manuela; Gaudio, Santino; Serino, Silvia; Riva, Giuseppe; Carrà, Giuseppe

    2016-06-01

    The transition to college is considered as a risk period for the development of behavioral symptoms of eating disorders (BSEDs) and some evidence suggests that, amongst men, these symptoms occurring on a regular basis remain relatively stable over the college period. Nevertheless, little is known about factors associated with persistent engagement in and initiation of recurrent (or regular) binge eating and inappropriate weight compensatory behaviors in this population. The objective of this report was to address these research gaps. Data were examined from 2,555 male first-year college students who completed an assessment of potential vulnerability factors and BSEDs at the beginning of the autumn semester (baseline) and nine months later (end of the spring semester; follow-up). Elevated negative affectivity, body dissatisfaction, self-objectification, and lower self-esteem at baseline were predictive of persistent engagement in regular binge eating and four compensatory behaviors (self-induced vomiting, laxative/diuretic abuse, fasting, exercise) at follow-up, as well as initiation of all these behaviors occurring regularly (i.e., at least weekly for 3 months). Self-objectification (thinking and monitoring the body's outward appearance from a third-person perspective) emerged as the largest contributor of both the initiation and persistence of all behavioral symptoms. Data emphasize that the same psychological factors underlie initiation and persistence of recurrent BSEDs and should shape the focus of future interventions for college men. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:581-590). © 2016 Wiley Periodicals, Inc.

  20. Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state?

    Science.gov (United States)

    García-Fontana, Beatriz; Reyes-García, Rebeca; Morales-Santana, Sonia; Ávila-Rubio, Verónica; Muñoz-Garach, Araceli; Rozas-Moreno, Pedro; Muñoz-Torres, Manuel

    2016-04-01

    Myostatin and irisin are two myokines related to energy metabolism, acting on skeletal muscle and recently suggested on adipose tissue in mice. However, the exact role of these myokines in humans has not been fully established. Our aim was to evaluate the relationship between serum levels of myostatin and irisin in type 2 diabetes mellitus patients and non-diabetic controls and to explore its links with metabolic parameters. Case-control study including 73 type 2 diabetes mellitus patients and 55 non-diabetic subjects as control group. Circulating myostatin and irisin levels were measured by enzyme-linked immunosorbent assays. Type 2 diabetes mellitus patients showed significantly lower myostatin levels (p = 0.001) and higher irisin levels (p = 0.036) than controls. An inverse relationship was observed between myostatin and irisin levels (p = 0.002). Moreover, in type 2 diabetes mellitus patients, after adjusting by confounder factors, myostatin was negatively related to fasting plasma glucose (p = 0.005) and to triglyceride levels (p = 0.028) while irisin showed a positive association with these variables (p = 0.017 and p = 0.006 respectively). A linear regression analysis showed that irisin and fasting plasma glucose levels were independently associated to myostatin levels and that myostatin and triglyceride levels were independently associated to irisin concentrations in type 2 diabetes mellitus patients. Our results suggest that serum levels of myostatin and irisin are related in patients with type 2 diabetes. Triglyceride and glucose levels could modulate myostatin and irisin concentrations as a compensatory mechanism to improve the metabolic state in these patients although further studies are needed to elucidate whether the action of these myokines represents an adaptative response.

  1. Energy homeostasis and running wheel activity during pregnancy in the mouse.

    Science.gov (United States)

    Ladyman, S R; Carter, K M; Grattan, D R

    2018-05-05

    Pregnancy and lactation are metabolically challenging states, where the mother must supply all the energy requirements for the developing fetus and growing pups respectively. The aim of the current study was to characterize many aspects of energy homeostasis before and during pregnancy in the mouse, and to examine the role of voluntary activity on changes in energy expenditure during pregnancy. In a secondary aim, we evaluate measures of energy homeostasis during pregnancy in mice that successfully reared their litter or in mice that went on to abandon their litter, to determine if an impairment in pregnancy-induced adaptation of energy homeostasis might underlie the abandonment of pups soon after birth. During pregnancy, food intake was increased, characterized by increased meal size and duration but not number of meals per day. The duration of time spent inactive, predicted to indicate sleep behaviour, was increased both early and late in pregnancy compared to pre-pregnancy levels. Increased x + y beam breaks, as a measure of activity increased during pregnancy and this reflected an increase in ambulatory behaviour in mid pregnancy and an increase in non-ambulatory movement in late pregnancy. Energy expenditure, as measured by indirect calorimetry, increased across pregnancy, likely due to the growth and development of fetal tissue. There was also a dramatic reduction in voluntary wheel running as soon as the mice became pregnant. Compared with successful pregnancies and lactations, pregnancies where pups were abandoned soon after birth were associated with reduced body weight gain and an increase in running wheel activity at the end of pregnancy, but no difference in food intake or energy expenditure. Overall, during pregnancy there are multiple adaptations to change energy homeostasis, resulting in partitioning of provisions of energy to the developing fetus and storing energy for future metabolic demands. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis

    DEFF Research Database (Denmark)

    Luda, Katarzyna M.; Joeris, Thorsten; Persson, Emma K.

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence...... dependent DCs in the maintenance of intestinal T cell homeostasis....

  3. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.

  5. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  6. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  7. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  8. Integrating physiological regulation with stem cell and tissue homeostasis

    Science.gov (United States)

    Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.

    2015-01-01

    Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826

  9. The nucleolus—guardian of cellular homeostasis and genome integrity.

    Science.gov (United States)

    Grummt, Ingrid

    2013-12-01

    All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.

  10. Analysis of vegetative homeostasis state of elite handball players

    Directory of Open Access Journals (Sweden)

    Y.N. Prystupa

    2015-12-01

    Full Text Available Purpose: to study characteristics and dynamic of elite handball players’ physiological indicators. Material: In experiment elite handball players (n=112, age 18-35 years participated. For determination of vegetative homeostasis state we analyzed variability of heart rhythm. The researches were conducted in laboratory conditions in rest state, in lying position during 5 minutes. Results: it was found that organism’s adaptation reactions to training loads go with different tension of regulation systems. At the end of competition period there appears hyper-kinetic syndrome. It witnessed insufficiency of means, which permit to maintain optimal regulation of cardio-vascular system and increase its functional potentials. Conclusions: indicators of cardio-vascular system and their dynamic w3itnessed maintaining of high level of handball players’ organism hemodynamic provisioning. High level of vegetative homeostasis pointed at certain degree of sportsmen’s fitness. Such state is sufficient for preservation of high potential of sympathetic -adrenaline system and overcoming of fatigue processes.

  11. A novel role for Twist-1 in pulp homeostasis.

    Science.gov (United States)

    Galler, K M; Yasue, A; Cavender, A C; Bialek, P; Karsenty, G; D'Souza, R N

    2007-10-01

    The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/-) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.

  12. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis

    Science.gov (United States)

    Namkung, Jun; Kim, Hail; Park, Sangkyu

    2015-01-01

    Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041

  13. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    Science.gov (United States)

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  14. Effects of Ramadan fasting on glucose homeostasis and adiponectin levels in healthy adult males.

    Science.gov (United States)

    Gnanou, Justin V; Caszo, Brinnell A; Khalil, Khalifah M; Abdullah, Shahidah L; Knight, Victor F; Bidin, Mohd Z

    2015-01-01

    Adiponectin is a hormone secreted by adipocytes during the fasting phase of the fast-fed cycle. Ramadan fasting involves prolonged fasting for up to twelve hours and thus could lead to increased secretion of adiponectin by adipocytes. However, studies on the role of adiponectin on glucose and body weight homeostasis during Ramadan fasting is still a matter of controversy. Thus the specific aim of this study was to assess the effect of fasting during Ramadan on the adiponectin levels, body weight and glucose homeostasis in healthy male Malaysian subjects. Twenty healthy male (19-23 years) Muslim subjects were followed up during the fasting month of Ramadan. Anthropometry and blood samples were taken one week before and during the fourth week of fasting. Plasma glucose, insulin and adiponectin were estimated and insulin sensitivity indices were estimated using the Homeostasis Model Assessment. Subjects experienced a significant decrease in body weight (2.4 %, p Ramadan fasting in young healthy individuals has a positive impact on the maintenance of glucose homeostasis. It also shows that adiponectin levels dropped along with significant loss in weight. We feel caloric restriction during the Ramadan fasting is in itself sufficient to improve insulin sensitivity in healthy individuals.

  15. Preoperative octreotide therapy and surgery in acromegaly: associations between glucose homeostasis and treatment response.

    Science.gov (United States)

    Helseth, R; Carlsen, S M; Bollerslev, J; Svartberg, J; Øksnes, M; Skeie, S; Fougner, S L

    2016-02-01

    In acromegaly, high GH/IGF-1 levels associate with abnormal glucose metabolism. Somatostatin analogs (SSAs) reduce GH and IGF-1 but inhibit insulin secretion. We studied glucose homeostasis in de novo patients with acromegaly and changes in glucose metabolism after treatment with SSA and surgery. In this post hoc analysis from a randomized controlled trial, 55 de novo patients with acromegaly, not using antidiabetic medication, were included. Before surgery, 26 patients received SSAs for 6 months. HbA1c, fasting glucose, and oral glucose tolerance test were performed at baseline, after SSA pretreatment and at 3 months postoperative. Area under curve of glucose (AUC-G) was calculated. Glucose homeostasis was compared to baseline levels of GH and IGF-1, change after SSA pretreatment, and remission both after SSA pretreatment and 3 months postoperative. In de novo patients, IGF-1/GH levels did not associate with baseline glucose parameters. After SSA pretreatment, changes in GH/IGF-1 correlated positively to change in HbA1c levels (both p acromegaly, disease activity did not correlate with glucose homeostasis. Surgical treatment of acromegaly improved glucose metabolism in both cured and not cured patients, while SSA pretreatment led to deterioration in glucose homeostasis in patients not achieving biochemical control.

  16. Systematic review of the synergist muscle ablation model for compensatory hypertrophy.

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Bussadori, Sandra Kalill; Deana, Alessandro Melo; Mesquita-Ferrari, Raquel Agnelli

    2017-02-01

    The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. This model differs from other overload models (exercise and training) regarding the characteristics involved in the hypertrophy process (acute) and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  17. Transgenerational effects and impact of compensatory responses to changes in breeding phenology on antipredator defenses.

    Science.gov (United States)

    Orizaola, Germán; Richter-Boix, Alex; Laurila, Anssi

    2016-09-01

    As organisms living in temperate environments often have only a short time window for growth and reproduction, their life-history strategies are expected to be influenced by these time constraints. Parents may alter the pace of offspring life-history as a response to changes in breeding phenology. However, the responses to changes in time constraints must be balanced with those against other stressors, such as predation, one of the strongest and more ubiquitous selective factors in nature. Here, after experimentally modifying the timing of breeding and hatching in the moor frog (Rana arvalis), we studied how compensatory responses to delayed breeding and hatching affect antipredator strategies in amphibian larvae. We examined the activity patterns, morphology and life-history responses in tadpoles exposed to different combinations of breeding and hatching delays in the presence and absence of predators. We found clear evidence of adaptive transgenerational effects since tadpoles from delayed breeding treatments increased growth and development independently of predation risk. The presence of predators reduced tadpole activity, tadpoles from delayed breeding treatments maintaining lower activity than non-delayed ones also in the absence of predators. Tadpoles reared with predators developed deeper tails and bodies, however, tadpoles from breeding delay treatments had reduced morphological defenses as compared to non-delayed individuals. No significant effects of hatching delay were detected in this study. Our study reveals that amphibian larvae exposed to breeding delay develop compensatory life-history responses even under predation risk, but these responses trade-off with the development of morphological antipredator defenses. These results suggest that under strong time constraints organisms are selected to develop fast growth and development responses, and rely on lower activity rates as their main antipredator defense. Examining how responses to changes in

  18. Iron Homeostasis in Yellowstone National Park Hot Spring Microbial Communities

    Science.gov (United States)

    Brown, I.; Tringe, S. G.; Franklin, H.; Bryant, D. A.; Klatt, C. G.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    It has been postulated that life may have originated on Earth, and possibly on Mars, in association with hydrothermal activity and high concentrations of ferrous iron. However, it is not clear how an iron-rich thermal hydrosphere could be hospitable to microbes, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, the study of microbial diversity in iron-depositing hot springs (IDHS) and the mechanisms of iron homeostasis and suppression of oxidative stress may help elucidate how Precambrian organisms could withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe(2+) and O2. Proteins and clusters of orthologous groups (COGs) involved in the maintenance of Fe homeostasis found in cyanobacteria (CB) inhabiting environments with high and low [Fe] were main target of this analysis. Preliminary results of the analysis suggest that the Chocolate Pots (CP) microbial community is heavily dominated by phototrophs from the cyanobacteria (CB), Chloroflexi and Chlorobi phyla, while the Mushroom Spring (MS) effluent channel harbors a more diverse community in which Chloroflexi are the dominant phototrophs. It is speculated that CB inhabiting IDHS have an increased tolerance to both high concentrations of Fe(2+) and ROS produced in the Fenton reaction. This hypothesis was explored via a comparative analysis of the diversity of proteins and COGs involved in Fe and redox homeostasis in the CP and MS microbiomes.

  19. The role of gut microbiota in immune homeostasis and autoimmunity.

    Science.gov (United States)

    Wu, Hsin-Jung; Wu, Eric

    2012-01-01

    Keeping a delicate balance in the immune system by eliminating invading pathogens, while still maintaining self-tolerance to avoid autoimmunity, is critical for the body's health. The gut microbiota that resides in the gastrointestinal tract provides essential health benefits to its host, particularly by regulating immune homeostasis. Moreover, it has recently become obvious that alterations of these gut microbial communities can cause immune dysregulation, leading to autoimmune disorders. Here we review the advances in our understanding of how the gut microbiota regulates innate and adaptive immune homeostasis, which in turn can affect the development of not only intestinal but also systemic autoimmune diseases. Exploring the interaction of gut microbes and the host immune system will not only allow us to understand the pathogenesis of autoimmune diseases but will also provide us new foundations for the design of novel immuno- or microbe-based therapies.

  20. Segmental heterogeneity of enzymatic response during compensatory renal growth

    International Nuclear Information System (INIS)

    Hoang, T.; Bergeron, M.

    1985-01-01

    The activities of DNA polymerase α and key enzymes of gluconeogenesis and glycolysis were measured in different segments of the rat nephron at various times (up to 96 hrs) following a unilateral nephrectomy (UNx). Tubule fragments were obtained after collagenase treatment followed by centrifugation on a Percoll gradient. The DNA polymerase α activity in control rats showed moderate and similar values in different segmental extracts as well as in the whole kidney extract (1700-1800 μμmole[ 3 H] dAMP/mg DNA). In Unx rats, activity in proximal tubules (PT) measured at 24, 48, 72 and 96 hrs after nephrectomy represented an increase of 60%, 200%, 420% and 370% respectively over control values. Distal tubule fragments (DT) showed only minor increases. The results demonstrate that the proximal tubule accounts for most of the compensatory renal growth (CRG) in the remaining kidney. The gluconeogenic and glycolytic enzymes were confined to the PT and those of glycolysis to the DT fragments. Following UNx, the specific activities of these enzymes were not modified in the remaining kidney; however, the overall activity of gluconeogenesis was increased as a result of the cell hyperplasia occurring in the PT. The work also illustrates that biochemical studies of CRG on the whole organ may provide misleading information due to the presence of heterogeneous cell populations in the mammalian kidney and to their uneven response in CRG

  1. Brain Iron Homeostasis: From Molecular Mechanisms To Clinical Significance and Therapeutic Opportunities

    Science.gov (United States)

    Haldar, Swati; Tripathi, Ajai K.; Horback, Katharine; Wong, Joseph; Sharma, Deepak; Beserra, Amber; Suda, Srinivas; Anbalagan, Charumathi; Dev, Som; Mukhopadhyay, Chinmay K.; Singh, Ajay

    2014-01-01

    Abstract Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders. Antioxid. Redox Signal. 20, 1324–1363. PMID:23815406

  2. Interference between nanoparticles and metal homeostasis

    International Nuclear Information System (INIS)

    Petit, A N; Catty, P; Charbonnier, P; Cuillel, M; Mintz, E; Moulis, J M; Niviere, V; Choudens, S Ollagnier de; Garcia, C Aude; Candeias, S; Chevallet, M; Collin-Faure, V; Lelong, C; Luche, S; Rabilloud, T; Casanova, A; Herlin-Boime, N; Douki, T; Ravanat, J L; Sauvaigo, S

    2011-01-01

    The TiO 2 nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO 2 -NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO 2 -NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO 2 -NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO 2 -NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO 2 -NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO 2 -NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO 2 -NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  3. Sexual hormones modulate compensatory renal growth and function

    Directory of Open Access Journals (Sweden)

    Pablo J. Azurmendi

    2013-12-01

    Full Text Available The role played by sexual hormones and vasoactive substances in the compensatory renal growth (CRG that follows uninephrectomy (uNx is still controversial. Intact and gonadectomized adult Wistar rats of both sexes, with and without uNx, performed at 90 days age, were studied at age 150 days. Daily urine volume, electrolyte excretion and kallikrein activity (UKa were determined. Afterwards, glomerular filtration rate and blood pressure were measured, the kidneys weighed and DNA, protein and RNA studied to determine nuclei content and cell size. When the remnant kidney weight at age 150 days was compared with the weight of the kidney removed at the time of uNx, male uNx rats showed the greatest CRG (50% while growth in the other uNx groups was 25%, 15% and 19% in orchidectomized, female and ovariectomized rats, respectively. The small CRG observed in the uNx female rats was accompanied by the lowest glomerular filtration value, 0.56 ± 0.02 ml/min/g kwt compared, with the other uNx groups, p < 0.05. Cell size (protein or RNA/DNA was similar for all the groups except for uNx orchidectomized rats. In this group the cytoplasmatic protein or RNA content was lower than in the other groups while DNA (nuclei content was similar. Some degree of hyperplasia was determined by DNA content in the uNx groups. Male sexual hormones positively influenced CRG and its absence modulated cell size. Female sexual hormones, instead, did not appear to stimulate CRG. The kallikrein kinin system may not be involved in CRG.

  4. Compensatory mechanisms in basketball players with jumper's knee.

    Science.gov (United States)

    Siegmund, Julie A; Huxel, Kellie C; Swanik, C Buz

    2008-11-01

    Determining whether there are compensations in those with jumper's knee (JK) might further our understanding of the condition. Comparing lower extremity kinematics and jump performance of basketball athletes with JK with those of healthy controls (C). Repeated-measures control-match design. University laboratory. 24 male basketball players (12 JK, 12 C) matched by height, weight, position, experience, and frequency of play. Standing counter-movement and running layup jumps. Maximum vertical-jump height, footfall landing, and lower extremity sagittal-plane kinematics. There were no significant group differences (P > .05) in vertical-jump height (JK = 64.3 +/- 8.6 cm, C = 63.0 +/- 9.8 cm) or layup height (JK = 71.3 +/- 11.6 cm, C = 73.3 +/- 11.0 cm). JK subjects landed flat footed (50%) more than controls (8%). JK subjects showed significantly more hip flexion (JK = 105 degrees +/- 24.8 degrees, C = 89.8 degrees +/- 14.1 degrees; P = .039) with decreased hip acceleration during the countermovement (JK = -3039 +/- 1392 degrees /s2, C = -4229 +/- 1765 degrees /s2; P = .040). When landing from the countermovement jump, JK subjects had significantly less knee acceleration (JK = -4960 +/- 1512 degrees/s2, C = -6736 +/- 2009 degrees/s2, P = .023) and in the layup showed significantly less ankle dorsiflexion (JK = 106.5 degrees +/- 9.0 degrees, C = 112.5 degrees +/- 7.7 degrees; P = .048) and hip acceleration (JK = -2841 +/- 1094 degrees/s2, C = -3912 +/- 1575 degrees/s2; P = .033). Compensatory strategies observed in JK subjects might help maintain performance, because their jump height was similar to that of healthy controls.

  5. Practical homeostasis lighting control system using sensor agent robots for office space

    Science.gov (United States)

    Tokiwa, Momoko; Mita, Akira

    2014-03-01

    The comfortable space can be changed by season, age, physical condition and the like. However, the current systems are not able to resolve them absolutely. This research proposes the Homeostasis lighting control system based on the mechanism of biotic homeostasis for making the algorithms of apparatus control. Homeostasis are kept by the interaction of the three systems, endocrine system, immune system, and nervous system[1]. By the gradual reaction in the endocrine system, body's protective response in the immune system, and the electrical reaction in the nerve system, we can keep the environments against variable changes. The new lighting control system utilizes this mechanism. Firstly, we focused on legibility and comfort in the office space to construct the control model learning from the endocrine and immune systems. The mechanism of the endocrine system is used for ambient lights in the space is used considering circadian rhythm for comfort. For the legibility, the immune system is used to control considering devices near the human depending on the distance between the human. Simulations and the demonstration were conducted to show the feasibility. Finally, the nerve system was intruded to enhance the system.

  6. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer

    NARCIS (Netherlands)

    Medema, Jan Paul; Vermeulen, Louis

    2011-01-01

    The identification of intestinal stem cells as well as their malignant counterparts, colon cancer stem cells, has undergone rapid development in recent years. Under physiological conditions, intestinal homeostasis is a carefully balanced and efficient interplay between stem cells, their progeny and

  7. Coffee Consumption, Newly Diagnosed Diabetes, and Other Alterations in Glucose Homeostasis: A Cross-Sectional Analysis of the Longitudinal Study of Adult Health (ELSA-Brasil)

    Science.gov (United States)

    Yarmolinsky, James; Mueller, Noel T.; Duncan, Bruce B.; Bisi Molina, Maria del Carmen; Goulart, Alessandra C.; Schmidt, Maria Inês

    2015-01-01

    Introduction Observational studies have reported fairly consistent inverse associations between coffee consumption and risk of type 2 diabetes, but this association has been little investigated with regard to lesser degrees of hyperglycemia and other alterations in glucose homeostasis. Additionally, the association between coffee consumption and diabetes has been rarely investigated in South American populations. We examined the cross-sectional relationships of coffee intake with newly diagnosed diabetes and measures of glucose homeostasis, insulin sensitivity, and insulin secretion, in a large Brazilian cohort of middle-aged and elderly individuals. Methods We used baseline data from 12,586 participants of the Longitudinal Study of Adult Health (ELSA-Brasil). Logistic regression analyses were performed to examine associations between coffee consumption and newly diagnosed diabetes. Analysis of covariance was used to assess coffee intake in relation to two-hour glucose from an oral glucose tolerance test, fasting glucose, glycated hemoglobin, fasting and –2-hour postload insulin and measures of insulin sensitivity. Results We found an inverse association between coffee consumption and newly diagnosed diabetes, after adjusting for multiple covariates [23% and 26% lower odds of diabetes for those consuming coffee 2–3 and >3 times per day, respectively, compared to those reporting never or almost never consuming coffee, (p = .02)]. An inverse association was also found for 2-hour postload glucose [Never/almost never: 7.57 mmol/L, ≤1 time/day: 7.48 mmol/L, 2-3 times/day: 7.22 mmol/L, >3 times/day: 7.12 mol/L, p3 times/day: 262.2 pmol/L, p = 0.0005) but not with fasting insulin concentrations (p = .58). Conclusion Our present study provides further evidence of a protective effect of coffee on risk of adult-onset diabetes. This effect appears to act primarily, if not exclusively, through postprandial, as opposed to fasting, glucose homeostasis. PMID:25978631

  8. Coffee Consumption, Newly Diagnosed Diabetes, and Other Alterations in Glucose Homeostasis: A Cross-Sectional Analysis of the Longitudinal Study of Adult Health (ELSA-Brasil.

    Directory of Open Access Journals (Sweden)

    James Yarmolinsky

    Full Text Available Observational studies have reported fairly consistent inverse associations between coffee consumption and risk of type 2 diabetes, but this association has been little investigated with regard to lesser degrees of hyperglycemia and other alterations in glucose homeostasis. Additionally, the association between coffee consumption and diabetes has been rarely investigated in South American populations. We examined the cross-sectional relationships of coffee intake with newly diagnosed diabetes and measures of glucose homeostasis, insulin sensitivity, and insulin secretion, in a large Brazilian cohort of middle-aged and elderly individuals.We used baseline data from 12,586 participants of the Longitudinal Study of Adult Health (ELSA-Brasil. Logistic regression analyses were performed to examine associations between coffee consumption and newly diagnosed diabetes. Analysis of covariance was used to assess coffee intake in relation to two-hour glucose from an oral glucose tolerance test, fasting glucose, glycated hemoglobin, fasting and -2-hour postload insulin and measures of insulin sensitivity.We found an inverse association between coffee consumption and newly diagnosed diabetes, after adjusting for multiple covariates [23% and 26% lower odds of diabetes for those consuming coffee 2-3 and >3 times per day, respectively, compared to those reporting never or almost never consuming coffee, (p = .02]. An inverse association was also found for 2-hour postload glucose [Never/almost never: 7.57 mmol/L, ≤1 time/day: 7.48 mmol/L, 2-3 times/day: 7.22 mmol/L, >3 times/day: 7.12 mol/L, p3 times/day: 262.2 pmol/L, p = 0.0005 but not with fasting insulin concentrations (p = .58.Our present study provides further evidence of a protective effect of coffee on risk of adult-onset diabetes. This effect appears to act primarily, if not exclusively, through postprandial, as opposed to fasting, glucose homeostasis.

  9. Development and Validation of the Homeostasis Concept Inventory

    Czech Academy of Sciences Publication Activity Database

    McFarland, J.L.; Price, R.M.; Wenderoth, M.P.; Martinková, Patrícia; Cliff, W.; Michael, J.; Modell, H.; Wright, A.

    2017-01-01

    Roč. 16, č. 2 (2017), č. článku ar35. ISSN 1931-7913 R&D Projects: GA ČR GJ15-15856Y Grant - others:NSF(US) DUE-1043443 Institutional support: RVO:67985807 Keywords : homeostasis * physiology * assessment * concept inventory * undergraduate education Subject RIV: AM - Education OBOR OECD: Education, general; including training, pedagogy, didactics [ and education systems] Impact factor: 3.930, year: 2016

  10. Diuretics and disorders of calcium homeostasis.

    Science.gov (United States)

    Grieff, Marvin; Bushinsky, David A

    2011-11-01

    Diuretics commonly are administered in disorders of sodium balance. Loop diuretics inhibit the Na-K-2Cl transporter and also increase calcium excretion. They are often used in the treatment of hypercalcemia. Thiazide diuretics block the thiazide-sensitive NaCl transporter in the distal convoluted tubule, and can decrease calcium excretion. They are often used in the treatment of nephrolithiasis. Carbonic anhydrase inhibitors decrease bicarbonate absorption and the resultant metabolic acidosis can increase calcium excretion. Their use can promote nephrocalcinosis and nephrolithiasis. This review will address the use of diuretics on disorders of calcium homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Compensatory Feeding Following a Predator Removal Program : Detection and Mechanisms, 1982-1996 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, James H.

    2002-02-28

    Predator removal is one of the oldest management tools in existence, with evidence that ancient Greeks used a bounty reward for wolves over 3,000 years ago (Anonymous 1964). Efforts to control predators on fish have been documented in scientific journals for at least 60 years (Eschmeyer 1937; Lagler 1939; Foerster and Ricker 1941; Smith and Swingle 1941; Jeppson and Platts 1959), and has likely been attempted for much longer. Complete eradication of a target species from a body of water has rarely been the objective of predator removal programs, which instead have attempted to eliminate predators from specific areas, to reduce the density or standing stock of predators, or to kill the largest individuals in the population (Meronek et al. 1996). In evaluating management programs that remove only part of a predator population, the compensatory response(s) of the remaining predators must be considered. Some potential compensatory responses by remaining individuals include increased reproductive output, increased growth rate, or increased consumption of certain prey species (Jude et al. 1987). If compensation by predators that remain in the system following a removal effort occurs, it may reduce the effectiveness of the predator control program. Northern pike-minnow Ptychocheilus oregonensis (formerly called northern squawfish) consume juvenile salmon in rivers, lakes, and reservoirs in British Columbia, Washington, Idaho, Oregon, and California. Northern pikeminnow have been estimated to consume about 11% of all juvenile salmon that migrate through John Day Reservoir on the Columbia River (Rieman et al. 1991). Modeling studies suggested that removal of 20% of the northern pikeminnow population in John Day Reservoir would result in a 50% decrease in predation-related mortality of juvenile salmon migrating through this reach (Beamesderfer et al. 1991). Since the early 1940's, other programs have been implemented to remove northern pikeminnow, with hopes of

  12. Assessment of urinary concentrations of hepcidin provides novel insight into disturbances in iron homeostasis during malarial infection

    NARCIS (Netherlands)

    Mast, de Q.; Nadjm, B.; Reyburn, H.; Kemna, E.H.J.M.; Amos, B.; Laarakkers, C.M.M.; Silalye, S.; Verhoef, H.; Sauerwein, R.W.; Swinkels, D.W.; Ven, van der A.J.A.M.

    2009-01-01

    Disturbances in iron homeostasis are frequently observed in individuals with malaria. To study the effect of malaria and its treatment on iron homeostasis and to provide a mechanistic explanation for observed alterations in iron distribution, we studied the course of the iron regulatory hormone

  13. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.

    Directory of Open Access Journals (Sweden)

    Ana Belén Sánchez-García

    Full Text Available Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.. To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.

  14. The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids.

    Science.gov (United States)

    Cao, Wei; Kayama, Hisako; Chen, Mei Lan; Delmas, Amber; Sun, Amy; Kim, Sang Yong; Rangarajan, Erumbi S; McKevitt, Kelly; Beck, Amanda P; Jackson, Cody B; Crynen, Gogce; Oikonomopoulos, Angelos; Lacey, Precious N; Martinez, Gustavo J; Izard, Tina; Lorenz, Robin G; Rodriguez-Palacios, Alex; Cominelli, Fabio; Abreu, Maria T; Hommes, Daniel W; Koralov, Sergei B; Takeda, Kiyoshi; Sundrud, Mark S

    2017-12-19

    CD4 + T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4 + T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1 -/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1 -/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Bim: guardian of tissue homeostasis and critical regulator of the immune system, tumorigenesis and bone biology.

    Science.gov (United States)

    Akiyama, Toru; Tanaka, Sakae

    2011-08-01

    One of the most important roles of apoptosis is the maintenance of tissue homeostasis. Impairment of apoptosis leads to a number of pathological conditions. In response to apoptotic signals, various proteins are activated in a pathway and signal-specific manner. Recently, the pro-apoptotic molecule Bim has attracted increasing attention as a pivotal regulator of tissue homeostasis. The Bim expression level is strictly controlled in both transcriptional and post-transcriptional levels. This control is dependent on cell, tissue and apoptotic stimuli. The phenotype of Bim-deficient mice is a systemic lupus erythematosus-like autoimmune disease with an abnormal accumulation of hematopoietic cells. Bim is thus a critical regulator of hematopoietic cells and immune system. Further studies have revealed the critical roles of Bim in various normal and pathological conditions, including bone homeostasis and tumorigenesis. The current understanding of Bim signaling and roles in the maintenance of tissue homeostasis is reviewed in this paper, focusing on the immune system, bone biology and tumorigenesis to illustrate the diversified role of Bim.

  16. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  17. Dietary inhibitors of histone deacetylases in intestinal immunity anc homeostasis

    NARCIS (Netherlands)

    Schilderink, R.; Verseijden, C.; de Jonge, W. J.

    2013-01-01

    Intestinal epithelial cells (IECs) are integral players in homeostasis of immunity and host defense in the gut and are under influence of the intestinal microbiome. Microbial metabolites and dietary components, including short chain fatty acids (acetate, propionate, and butyrate, SCFAs), have an

  18. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  19. Peculiarities of plasma homeostasis in the patients with rectal cancer according to laser correlation spectroscopy findings

    International Nuclear Information System (INIS)

    Byilenko, O.A.; Bazhora, Yu.Yi.; Sokolov, V.M.; Andronov, D.Yu.

    1997-01-01

    Laser correlation spectroscopy was used to investigate plasma homeostasis in 82 patients with rectal cancer. The spectra of the blood plasma from 21 donors of the transfusion station were used as the control. The blood plasma homeostasis changes reheated with laser correlation spectrometry in the patients with rectal cancer allow to use them for diagnosis of this pathology

  20. MicroRNA-orchestrated pathophysiologic control in gut homeostasis and inflammation.

    Science.gov (United States)

    Lee, Juneyoung; Park, Eun Jeong; Kiyono, Hiroshi

    2016-05-01

    The intestine represents the largest and most elaborate immune system organ, in which dynamic and reciprocal interplay among numerous immune and epithelial cells, commensal microbiota, and external antigens contributes to establishing both homeostatic and pathologic conditions. The mechanisms that sustain gut homeostasis are pivotal in maintaining gut health in the harsh environment of the gut lumen. Intestinal epithelial cells are critical players in creating the mucosal platform for interplay between host immune cells and luminal stress inducers. Thus, knowledge of the epithelial interface between immune cells and the luminal environment is a prerequisite for a better understanding of gut homeostasis and pathophysiologies such as inflammation. In this review, we explore the importance of the epithelium in limiting or promoting gut inflammation (e.g., inflammatory bowel disease). We also introduce recent findings on how small RNAs such as microRNAs orchestrate pathophysiologic gene regulation. [BMB Reports 2016; 49(5): 263-269].

  1. CHF: circulatory homeostasis gone awry.

    Science.gov (United States)

    Weber, Karl T; Burlew, Brad S; Davis, Richard C; Newman, Kevin P; D'Cruz, Ivan A; Hawkins, Ralph G; Wall, Barry M; Parker, Robert B

    2002-01-01

    The role of the renin-angiotensin-aldosterone system (RAAS) is integral to salt and water retention, particularly by the kidneys. Over time, positive sodium balance leads first to intra- and then to extravascular volume expansion, with subsequent symptomatic heart failure. This report examines the role of the RAAS in regulating a less well recognized component essential to circulatory homeostasis--central blood volume. The regulation of central blood volume draws on integrative cardiorenal physiology and a key role played by the RAAS in its regulation. In presenting insights into the role of the RAAS in regulating central blood volume, this review also addresses other sodium-retaining states with a predisposition to edema formation, such as cirrhosis and nephrosis. (c)2002 CHF, Inc

  2. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Science.gov (United States)

    Chen, Peili; Li, Yan Chun; Toback, F Gary

    2015-01-01

    Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  3. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Directory of Open Access Journals (Sweden)

    Peili Chen

    Full Text Available Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD. We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  4. Physical activity, fitness, glucose homeostasis, and brain morphology in twins.

    Science.gov (United States)

    Rottensteiner, Mirva; Leskinen, Tuija; Niskanen, Eini; Aaltonen, Sari; Mutikainen, Sara; Wikgren, Jan; Heikkilä, Kauko; Kovanen, Vuokko; Kainulainen, Heikki; Kaprio, Jaakko; Tarkka, Ina M; Kujala, Urho M

    2015-03-01

    The main aim of the present study (FITFATTWIN) was to investigate how physical activity level is associated with body composition, glucose homeostasis, and brain morphology in young adult male monozygotic twin pairs discordant for physical activity. From a population-based twin cohort, we systematically selected 10 young adult male monozygotic twin pairs (age range, 32-36 yr) discordant for leisure time physical activity during the past 3 yr. On the basis of interviews, we calculated a mean sum index for leisure time and commuting activity during the past 3 yr (3-yr LTMET index expressed as MET-hours per day). We conducted extensive measurements on body composition (including fat percentage measured by dual-energy x-ray absorptiometry), glucose homeostasis including homeostatic model assessment index and insulin sensitivity index (Matsuda index, calculated from glucose and insulin values from an oral glucose tolerance test), and whole brain magnetic resonance imaging for regional volumetric analyses. According to pairwise analysis, the active twins had lower body fat percentage (P = 0.029) and homeostatic model assessment index (P = 0.031) and higher Matsuda index (P = 0.021) compared with their inactive co-twins. Striatal and prefrontal cortex (subgyral and inferior frontal gyrus) brain gray matter volumes were larger in the nondominant hemisphere in active twins compared with those in inactive co-twins, with a statistical threshold of P physical activity is associated with improved glucose homeostasis and modulation of striatum and prefrontal cortex gray matter volume, independent of genetic background. The findings may contribute to later reduced risk of type 2 diabetes and mobility limitations.

  5. Articulação compensatória associada à fissura de palato ou disfunção velofaríngea: revisão de literatura Compensatory articulation associated to cleft palate or velopharyngeal dysfunction: literature review

    Directory of Open Access Journals (Sweden)

    Viviane Cristina de Castro Marino

    2012-06-01

    Full Text Available TEMA: articulação compensatória na fissura palatina. OBJETIVO: contribuir para o aprofundamento de informações sobre os tipos de articulação compensatória descritos na literatura e, ainda, discutir as implicações e contribuições da avaliação clínica e instrumental na identificação destas produções. CONCLUSÃO: as articulações compensatórias merecem a atenção de clínicos e pesquisadores que atuam no Brasil, já que estas alterações são encontradas com grande freqüência em crianças e adultos com fissura palatina ou disfunção velofaríngea, o que compromete a qualidade de vida destes sujeitos. Os fonoaudiólogos devem aprofundar seus conhecimentos sobre os tipos de articulação compensatória e os procedimentos de avaliação, bem como devem estabelecer programas preventivos que favoreçam a aquisição fonológica sem o desenvolvimento dessas compensações.BACKGROUND: compensatory articulation in cleft lip and palate. PURPOSE: to contribute with information regarding the types of compensatory articulation described in the literature and discuss the implications and contributions of clinical and instrumental evaluation of these speech productions. CONCLUSION: compensatory articulation deserves attention from Brazilian physicians and researchers, since that these productions occur in children and adults with cleft palate and velopharyngeal dysfunction, compromising their speech intelligibility and consequently quality of their lives. Speech-language pathologists need to improve knowledge regarding different types of compensatory articulation and also on the procedures for evaluating these productions, in order to settle preventive programs that favor phonological acquisition in children with cleft palate without developing compensatory articulation.

  6. Homeostasis of metals in the progression of Alzheimer's disease.

    Science.gov (United States)

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2014-06-01

    In order to study the involvement of metals in the progression of Alzheimer's disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer's disease.

  7. Sleep apnea predicts distinct alterations in glucose homeostasis and biomarkers in obese adults with normal and impaired glucose metabolism

    Directory of Open Access Journals (Sweden)

    Hill Nathan R

    2010-12-01

    Full Text Available Abstract Background Notwithstanding previous studies supporting independent associations between obstructive sleep apnea (OSA and prevalence of diabetes, the underlying pathogenesis of impaired glucose regulation in OSA remains unclear. We explored mechanisms linking OSA with prediabetes/diabetes and associated biomarker profiles. We hypothesized that OSA is associated with distinct alterations in glucose homeostasis and biomarker profiles in subjects with normal (NGM and impaired glucose metabolism (IGM. Methods Forty-five severely obese adults (36 women without certain comorbidities/medications underwent anthropometric measurements, polysomnography, and blood tests. We measured fasting serum glucose, insulin, selected cytokines, and calculated homeostasis model assessment estimates of insulin sensitivity (HOMA-IS and pancreatic beta-cell function (HOMA-B. Results Both increases in apnea-hypopnea index (AHI and the presence of prediabetes/diabetes were associated with reductions in HOMA-IS in the entire cohort even after adjustment for sex, race, age, and BMI (P = 0.003. In subjects with NGM (n = 30, OSA severity was associated with significantly increased HOMA-B (a trend towards decreased HOMA-IS independent of sex and adiposity. OSA-related oxyhemoglobin desaturations correlated with TNF-α (r=-0.76; P = 0.001 in women with NGM and with IL-6 (rho=-0.55; P = 0.035 in women with IGM (n = 15 matched individually for age, adiposity, and AHI. Conclusions OSA is independently associated with altered glucose homeostasis and increased basal beta-cell function in severely obese adults with NGM. The findings suggest that moderate to severe OSA imposes an excessive functional demand on pancreatic beta-cells, which may lead to their exhaustion and impaired secretory capacity over time. The two distinct biomarker profiles linking sleep apnea with NGM and IGM via TNF-α and IL-6 have been discerned in our study to suggest that sleep apnea and particularly

  8. Quorum sensing in CD4+ T cell homeostasis: a hypothesis and a model.

    Directory of Open Access Journals (Sweden)

    Afonso R.M. Almeida

    2012-05-01

    Full Text Available Homeostasis of lymphocyte numbers is believed to be due to competition between cellular populations for a common niche of restricted size, defined by the combination of interactions and trophic factors required for cell survival. Here we propose a new mechanism: homeostasis of lymphocyte numbers could also be achieved by the ability of lymphocytes to perceive the density of their own populations. Such a mechanism would be reminiscent of the primordial quorum sensing systems used by bacteria, in which some bacteria sense the accumulation of bacterial metabolites secreted by other elements of the population, allowing them to count the number of cells present and adapt their growth accordingly. We propose that homeostasis of CD4+ T cell numbers may occur via a quorum-sensing-like mechanism, where IL-2 is produced by activated CD4+ T cells and sensed by a population of CD4+ Treg cells that expresses the high-affinity IL-2Rα-chain and can regulate the number of activated IL-2-producing CD4+ T cells and the total CD4+T cell population. In other words, CD4+ T cell populations can restrain their growth by monitoring the number of activated cells, thus preventing uncontrolled lymphocyte proliferation during immune responses. We hypothesize that malfunction of this quorum-sensing mechanism may lead to uncontrolled T cell activation and autoimmunity. Finally, we present a mathematical model that describes the role of IL-2 and quorum-sensing mechanisms in CD4+ T cell homeostasis during an immune response.

  9. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis.

    Science.gov (United States)

    Sun, Honghong; Gong, Shunyou; Carmody, Ruaidhri J; Hilliard, Anja; Li, Li; Sun, Jing; Kong, Li; Xu, Lingyun; Hilliard, Brendan; Hu, Shimin; Shen, Hao; Yang, Xiaolu; Chen, Youhai H

    2008-05-02

    Immune homeostasis is essential for the normal functioning of the immune system, and its breakdown leads to fatal inflammatory diseases. We report here the identification of a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, designated TIPE2, that is required for maintaining immune homeostasis. TIPE2 is preferentially expressed in lymphoid tissues, and its deletion in mice leads to multiorgan inflammation, splenomegaly, and premature death. TIPE2-deficient animals are hypersensitive to septic shock, and TIPE2-deficient cells are hyper-responsive to Toll-like receptor (TLR) and T cell receptor (TCR) activation. Importantly, TIPE2 binds to caspase-8 and inhibits activating protein-1 and nuclear factor-kappaB activation while promoting Fas-induced apoptosis. Inhibiting caspase-8 significantly blocks the hyper-responsiveness of TIPE2-deficient cells. These results establish that TIPE2 is an essential negative regulator of TLR and TCR function, and its selective expression in the immune system prevents hyperresponsiveness and maintains immune homeostasis.

  10. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    Science.gov (United States)

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-07-01

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions. © The Author(s) 2014.

  11. Deficiency of a alpha-1-antitrypsin influences systemic iron homeostasis

    Science.gov (United States)

    Abstract Background: There is evidence that proteases and anti-proteases participate in the iron homeostasis of cells and living systems. We tested the postulate that alpha-1 antitrypsin (A1AT) polymorphism and the consequent deficiency of this anti-protease in humans are asso...

  12. Hedgehog Signaling and Maintenance of Homeostasis in the Intestinal Epithelium

    NARCIS (Netherlands)

    Büller, Nikè V. J. A.; Rosekrans, Sanne L.; Westerlund, Jessica; van den Brink, Gijs R.

    2012-01-01

    Homeostasis of the rapidly renewing intestinal epithelium depends on a balance between cell proliferation and loss. Indian hedgehog (Ihh) acts as a negative feedback signal in this dynamic equilibrium. We discuss recent evidence that Ihh may be one of the key epithelial signals that indicates

  13. The use of compensatory base change analysis of ITS2 as a tool in the phylogeny of Mucorales, illustrated by the Mucor circinelloides complex

    NARCIS (Netherlands)

    Pawlowska, J.; Walther, G.; Wilk, M.; de Hoog, S.; Wrzosek, M.

    2013-01-01

    Compensatory base changes (CBCs) in helix II of rDNA ITS2, suggested as a molecular classifier for fungi, were analyzed in Mucor circinelloides and its varieties. Only a few CBCs were found in the complex. Three out of the four accepted formae (f. circinelloides, f. lusitanicus, f. janssenii) did

  14. Maintenance of the adult Drosophila intestine: all roads lead to homeostasis.

    Science.gov (United States)

    Guo, Zheng; Lucchetta, Elena; Rafel, Neus; Ohlstein, Benjamin

    2016-10-01

    Maintenance of tissue homeostasis is critical in tissues with high turnover such as the intestinal epithelium. The intestinal epithelium is under constant cellular assault due to its digestive functions and its function as a barrier to chemical and bacterial insults. The resulting high rate of cellular turnover necessitates highly controlled mechanisms of regeneration to maintain the integrity of the tissue over the lifetime of the organism. Transient increase in stem cell proliferation is a commonly used and elaborate mechanism to ensure fast and efficient repair of the gut. However, tissue repair is not limited to regulating ISC proliferation, as emerging evidence demonstrates that the Drosophila intestine uses multiple strategies to ensure proper tissue homeostasis that may also extend to other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of whole-body irradiation on calcium and phosphate homeostasis in the rat

    International Nuclear Information System (INIS)

    Pento, J.T.; Kenny, A.D.

    1975-01-01

    Previous irradiation studies have revealed marked alterations in calcium metabolism. Moreover, the maintenance of calcium homeostasis with parathyroid hormone or calcium salts has been reported to reduce radiation lethality. Therefore, the present study was designed to evaluate the influence of irradiation on calcium homeostasis in the rat. Nine hundred rad of whole-body irradiation produced a significant depression of both plasma calcium and phosphate at 4 days postirradiation. This effect of irradiation was observed to be dose-dependent over a range of 600 to 1200 rad, and possibly related to irradiation-induced anorexia. The physiological significance of these observations is discussed

  16. On the mechanism of cytogenetic effect of electromagnetic radiation: role of oxidation homeostasis

    International Nuclear Information System (INIS)

    Brezitskaya, N.V.; Timchenko, O.I.

    2000-01-01

    The evaluation of the role of changes in oxidation homeostasis in developing the cytogenetic effects arising by the electromagnetic irradiation impact is carried out. The experiments were performed on white male rats. The animals were subjected to impact of the nonionizing radiations in the microwave range during 40 days by 7 hours a day. It is established that changes in the free-radical oxidation by the impact of nonionizing radiation of the electromagnetic fields have a wave-like character. It is established that changes in the oxidation homeostasis proceed the development of cytogenetic effects and may be the cause thereof [ru

  17. Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis.

    Science.gov (United States)

    García-Vallejo, Juan J; van Kooyk, Yvette

    2009-07-01

    C-type lectin receptors (CLRs) have long been known as pattern-recognition receptors implicated in the recognition of pathogens by the innate immune system. However, evidence is accumulating that many CLRs are also able to recognize endogenous 'self' ligands and that this recognition event often plays an important role in immune homeostasis. In the present review, we focus on the human and mouse CLRs for which endogenous ligands have been described. Special attention is given to the signaling events initiated upon recognition of the self ligand and the regulation of glycosylation as a switch modulating CLR recognition, and therefore, immune homeostasis.

  18. Influence of oxidative homeostasis on bacterial density and cost of infection in Drosophila-Wolbachia symbioses.

    Science.gov (United States)

    Monnin, D; Kremer, N; Berny, C; Henri, H; Dumet, A; Voituron, Y; Desouhant, E; Vavre, F

    2016-06-01

    The evolution of symbioses along the continuum between parasitism and mutualism can be influenced by the oxidative homeostasis, that is the balance between reactive oxygen species (ROS) and antioxidant molecules. Indeed, ROS can contribute to the host immune defence to regulate symbiont populations, but are also toxic. This interplay between ROS and symbiosis is notably exemplified by recent results in arthropod-Wolbachia interactions. Wolbachia are symbiotic bacteria involved in a wide range of interactions with their arthropods hosts, from facultative, parasitic associations to obligatory, mutualistic ones. In this study, we used Drosophila-Wolbachia associations to determine whether the oxidative homeostasis plays a role in explaining the differences between phenotypically distinct arthropod-Wolbachia symbioses. We used Drosophila lines with different Wolbachia infections and measured the effects of pro-oxidant (paraquat) and antioxidant (glutathione) treatments on the Wolbachia density and the host survival. We show that experimental manipulations of the oxidative homeostasis can reduce the cost of the infection through its effect on Wolbachia density. We discuss the implication of this result from an evolutionary perspective and argue that the oxidative homeostasis could underlie the evolution of tolerance and dependence on Wolbachia. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  19. Utility of Childhood Glucose Homeostasis Variables in Predicting Adult Diabetes and Related Cardiometabolic Risk Factors

    OpenAIRE

    Nguyen, Quoc Manh; Srinivasan, Sathanur R.; Xu, Ji-Hua; Chen, Wei; Kieltyka, Lyn; Berenson, Gerald S.

    2009-01-01

    OBJECTIVE This study examines the usefulness of childhood glucose homeostasis variables (glucose, insulin, and insulin resistance index [homeostasis model assessment of insulin resistance {HOMA-IR}]) in predicting pre-diabetes and type 2 diabetes and related cardiometabolic risk factors in adulthood. RESEARCH DESIGN AND METHODS This retrospective cohort study consisted of normoglycemic (n = 1,058), pre-diabetic (n = 37), and type 2 diabetic (n = 25) adults aged 19–39 years who were followed o...

  20. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.

    Science.gov (United States)

    Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo

    2017-07-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pain emotion and homeostasis.

    Science.gov (United States)

    Panerai, Alberto E

    2011-05-01

    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate.

  2. Asthma as a disruption in iron homeostasis | Science ...

    Science.gov (United States)

    Over several decades, asthma has evolved from being recognized as a single disease to include a diverse group of phenotypes with dissimilar natural histories, pathophysiologies, responses to treatment, and distinctive molecular pathways. With the application of Occam’s razor to asthma, it is proposed that there is one cause underlying the numerous phenotypes of this disease and that the responsible molecular pathway is a deficiency of iron in the lung tissues. This deficiency can be either absolute (e.g. asthma in the neonate and during both pregnancy and menstruation) or functional (e.g. asthma associated with infections, smoking, and obesity). Comparable associations between asthma co-morbidity (e.g. eczema, urticaria, restless leg syndrome, and pulmonary hypertension) with iron deficiency support such a shared mechanistic pathway. Therapies directed at asthma demonstrate a capacity to impact iron homeostasis, further strengthening the relationship. Finally, pathophysiologic events producing asthma, including inflammation, increases in Th2 cells, and muscle contraction, can correlate with iron availability. Recognition of a potential association between asthma and an absolute and/or functional iron deficiency suggests specific therapeutic interventions including inhaled iron. Asthma is a public health issue that has environmental triggers. Iron homeostasis is an essential mechanism whereby the body manages the impact of environmental agents on overall

  3. The plasticity of extracellular fluid homeostasis in insects.

    Science.gov (United States)

    Beyenbach, Klaus W

    2016-09-01

    In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass. © 2016. Published by The Company of Biologists Ltd.

  4. Immunology in the liver--from homeostasis to disease.

    Science.gov (United States)

    Heymann, Felix; Tacke, Frank

    2016-02-01

    The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.

  5. NET SALARY ADJUSTMENT

    CERN Multimedia

    Finance Division

    2001-01-01

    On 15 June 2001 the Council approved the correction of the discrepancy identified in the net salary adjustment implemented on 1st January 2001 by retroactively increasing the scale of basic salaries to achieve the 2.8% average net salary adjustment approved in December 2000. We should like to inform you that the corresponding adjustment will be made to your July salary. Full details of the retroactive adjustments will consequently be shown on your pay slip.

  6. The commensal microbiota drives immune homeostasis

    Directory of Open Access Journals (Sweden)

    Marie-Claire eArrieta

    2012-03-01

    Full Text Available For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.

  7. Systematic review of the synergist muscle ablation model for compensatory hypertrophy

    Directory of Open Access Journals (Sweden)

    Stella Maris Lins Terena

    Full Text Available Summary Objective: The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Method: Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. Results: The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. Conclusion: This model differs from other overload models (exercise and training regarding the characteristics involved in the hypertrophy process (acute and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  8. Compensatory motor control after stroke: an alternative joint strategy for object-dependent shaping of hand posture.

    Science.gov (United States)

    Raghavan, Preeti; Santello, Marco; Gordon, Andrew M; Krakauer, John W

    2010-06-01

    Efficient grasping requires planned and accurate coordination of finger movements to approximate the shape of an object before contact. In healthy subjects, hand shaping is known to occur early in reach under predominantly feedforward control. In patients with hemiparesis after stroke, execution of coordinated digit motion during grasping is impaired as a result of damage to the corticospinal tract. The question addressed here is whether patients with hemiparesis are able to compensate for their execution deficit with a qualitatively different grasp strategy that still allows them to differentiate hand posture to object shape. Subjects grasped a rectangular, concave, and convex object while wearing an instrumented glove. Reach-to-grasp was divided into three phases based on wrist kinematics: reach acceleration (reach onset to peak horizontal wrist velocity), reach deceleration (peak horizontal wrist velocity to reach offset), and grasp (reach offset to lift-off). Patients showed reduced finger abduction, proximal interphalangeal joint (PIP) flexion, and metacarpophalangeal joint (MCP) extension at object grasp across all three shapes compared with controls; however, they were able to partially differentiate hand posture for the convex and concave shapes using a compensatory strategy that involved increased MCP flexion rather than the PIP flexion seen in controls. Interestingly, shape-specific hand postures did not unfold initially during reach acceleration as seen in controls, but instead evolved later during reach deceleration, which suggests increased reliance on sensory feedback. These results indicate that kinematic analysis can identify and quantify within-limb compensatory motor control strategies after stroke. From a clinical perspective, quantitative study of compensation is important to better understand the process of recovery from brain injury. From a motor control perspective, compensation can be considered a model for how joint redundancy is exploited

  9. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  10. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  11. Compensatory role of Neuroglobin in nervous and non-nervous cancer cells in response to the nutrient deprivation.

    Directory of Open Access Journals (Sweden)

    Marco Fiocchetti

    Full Text Available Environmental factors or adverse growth conditions that may reduce cell function or viability are considered stress. The cell ability to sense and respond to environmental stresses determine its function and survival destiny. We recently defined Neuroglobin (NGB, a heme-protein, as a compensatory protein in the 17β-Estradiol (E2 anti-apoptotic activity and as a sensor of oxidative stress in both neurons and breast cancer cells. Here, the possibility that NGB levels could represent a pivotal regulator of integrated response of cancer cells to stress has been evaluated. Data obtained in neuroblastoma and in breast cancer cell lines evidence that nutrient deprivation significantly up-regulated NGB levels at different time points. However, the analysis of autophagy activation led to exclude any possible role of stress- or E2-induced NGB in the upstream regulation of general autophagy. However, the over-expression of Flag-NGB in ERα stable transfected HEK-293 cells completely affects nutrient deprivation-induced decrease in cell number. In addition, reported results indicate that modulation of the anti-apoptotic Bcl-2 level may play a key role in the protective NGB function against energetic stress. Overall, these data define a role of NGB as compensatory protein in the cell machinery activated in response to stress and as general stress adaptation marker of cancer cells susceptible to oxidative stress, oxygen and, as demonstrated here for the first time, even to nutrient willingness. Despite the lacking of any direct NGB role on autophagic flux activated by energetic stress, NGB upregulation appears functional in delaying stress-related cell death allowing an appropriate cell response and adaptation to the changing extracellular conditions.

  12. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat

    International Nuclear Information System (INIS)

    Humphreys, M.H.; Etheredge, S.B.; Lin, Shanyan; Ribstein, J.; Marton, L.J.

    1988-01-01

    The authors determined the role of ornithine decarboxylase (ODC) in compensatory renal hypertrophy (CRH) by relating renal ODC activity and polyamine content to kidney size, expressed as a percent of body weight, 1 wk after unilateral nephrectomy (UN). In normal rats, renal ODC activity increased after UN; 1 wk later the remaining kidney weight had increased. Renal concentration of putrescine, the product of ODC's decarboxylation of ornithine, was increased 3, 8, and 48 h after UN, but concentrations of polyamines synthesized later in the pathway, spermidine and spermine, were not appreciably affected. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ODC inhibited both base-line renal ODC activity and putrescine concentration as well as increases stimulated by UN, although concentrations of spermidine and spermine were not decreased. In hypophysectomized rats, both increased renal ODC activity and CRH occurred as well, indicating that these two consequences of UN do not require intact pituitary function. Thus stimulation of renal ODC activity and putrescine content do not appear critical to the process of CRH after UN

  13. COMPENSATORY GROWTH IN MOZAMBIQUE TILAPIA (Oreochromis mossambicus, FED A SUB-OPTIMAL DIET

    Directory of Open Access Journals (Sweden)

    Ewen McLean

    1998-04-01

    Full Text Available Mozambique tilapia, Oreochromis mossambicus, held in 30%o seawater and at 29-30 °C, were divided into four groups (n = 50/group in replicate, and given one of four feed cycles: 1 control, with continuous feedind, 2 5:5, 3 10:10 and 4 15:15, wherein fish were subjected to starvation and subsequent refeeding cycles of 5, 10 and 15 days respectively. All animals were fed a commercial diet containing 18.4% protein, 6.7% lipid, 58.6% carbohydrate and 7.2% ash, over a 60 day trial period. Growth compensation was observed in the feed cycled groups as increased (P < 0.03 weight specific growth rates during refeeding. However, feed cycled groups were unable to achieve the weghts of control fish. Starvation reduced (P<0.01 haematocrit values when compared to control levels and, in the 15:15 cycled groups, elevated the testicular index (P < 0.02. The results are considered with respect to the commercial application of compensatory growth during production of tilapia.

  14. Galanin-like peptide (GALP) is a hypothalamic regulator of energy homeostasis and reproduction.

    Science.gov (United States)

    Lawrence, Catherine; Fraley, Gregory S

    2011-01-01

    Galanin-like peptide (GALP) was discovered in 1999 in the porcine hypothalamus and was found to be a 60 amino acid neuropeptide. GALP shares sequence homology to galanin (1-13) in position 9-21 and can bind to, as well as activate, the three galanin receptor subtypes (GalR1-3). GALP-expressing cells are limited, and are mainly found in the arcuate nucleus of the hypothalamus (ARC) and the posterior pituitary. GALP-positive neurons in the ARC project to several brain regions where they appear to make contact with multiple neuromodulators. These neuromodulators are involved in the regulation of energy homeostasis and reproduction, anatomical evidence that suggests a role for GALP in these physiological functions. In support of this idea, GALP gene expression is regulated by several factors that reflect metabolic state including the metabolic hormones leptin and insulin, thyroid hormones, and blood glucose. Considerable evidence now exists to support the hypothesis that GALP has a role in the regulation of energy homeostasis and reproduction; and, that GALP's role may be independent of the known galanin receptors. In this review, we (1) provide an overview of the distribution of GALP, and discuss the potential relationship between GALP and other neuromodulators of energy homeostasis and reproduction, (2) discuss the metabolic factors that regulate GALP expression, (3) review the evidence for the role of GALP in energy homeostasis and reproduction, (4) discuss the potential downstream mediators and mechanisms underlying GALP's effects, and (5) discuss the possibility that GALP may mediate its effects via an as yet unidentified GALP-specific receptor. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis.

    Science.gov (United States)

    Klose, Christoph S N; Artis, David

    2016-06-21

    Research over the last 7 years has led to the formal identification of innate lymphoid cells (ILCs), increased the understanding of their tissue distribution and has established essential functions of ILCs in diverse physiological processes. These include resistance to pathogens, the regulation of autoimmune inflammation, tissue remodeling, cancer and metabolic homeostasis. Notably, many ILC functions appear to be regulated by mechanisms distinct from those of other innate and adaptive immune cells. In this Review, we focus on how group 2 ILC (ILC2) and group 3 ILC (ILC3) responses are regulated and how these cells interact with other immune and non-immune cells to mediate their functions. We highlight experimental evidence from mouse models and patient-based studies that have elucidated the effects of ILCs on the maintenance of tissue homeostasis and the consequences for health and disease.

  16. Autonomous Motivation Is Not Enough: The Role of Compensatory Health Beliefs for the Readiness to Change Stair and Elevator Use

    OpenAIRE

    Radtke, Theda; Rackow, Pamela

    2014-01-01

    Compensatory health beliefs (CHBs) are beliefs that an unhealthy behavior can be compensated with a healthy behavior. In line with the CHBs model, the aim of this study was twofold. First, the study investigated the relationship between autonomous motivation and CHBs that physical inactivity can be compensated by taking the stairs instead of the elevator. Second, the study focused on the associations between CHBs and readiness to use the stairs more often and stair and elevator use. Thus, a c...

  17. Matriptase zymogen supports epithelial development, homeostasis and regeneration

    DEFF Research Database (Denmark)

    Friis, Stine; Tadeo, Daniel; Le-Gall, Sylvain M.

    2017-01-01

    Background Matriptase is a membrane serine protease essential for epithelial development, homeostasis, and regeneration, as well as a central orchestrator of pathogenic pericellular signaling in the context of inflammatory and proliferative diseases. Matriptase is an unusual protease in that its...... previously reported for transgenic mice mis-expressing wildtype epidermal matriptase. Equally surprising, mice engineered to express only zymogen-locked endogenous matriptase, unlike matriptase null mice, were viable, developed epithelial barrier function, and regenerated the injured epithelium. Compatible...

  18. Influence of an unstable shoe on compensatory postural adjustments: An experimental evaluation

    OpenAIRE

    Andreia S. P. Sousa; Rui Macedo; Rubim Santos; João Manuel R. S. Tavares

    2010-01-01

    This study attempted to evaluate the influence of using an unstable shoe in muscle re-cruitment strategies and center of pressure (CoP) displacement after the application of an external perturba-tion. Fourteen healthy female subjects participated in this study. The electromyographic activity of medial ga-strocnemius, tibialis anterior, rectus femoris, biceps femoris, rectus abdominis and erector spinae muscles and the kinetic values to calculate the CoP were collected and analyzed after the a...

  19. Superior serial memory in the blind: a case of cognitive compensatory adjustment.

    Science.gov (United States)

    Raz, Noa; Striem, Ella; Pundak, Golan; Orlov, Tanya; Zohary, Ehud

    2007-07-03

    In the absence of vision, perception of space is likely to be highly dependent on memory. As previously stated, the blind tend to code spatial information in the form of "route-like" sequential representations [1-3]. Thus, serial memory, indicating the order in which items are encountered, may be especially important for the blind to generate a mental picture of the world. In accordance, we find that the congenitally blind are remarkably superior to sighted peers in serial memory tasks. Specifically, subjects heard a list of 20 words and were instructed to recall the words according to their original order in the list. The blind recalled more words than the sighted (indicating better item memory), but their greatest advantage was in recalling longer word sequences (according to their original order). We further show that the serial memory superiority of the blind is not merely a result of their advantage in item recall per se (as we additionally confirm via a separate recognition memory task). These results suggest the refinement of a specific cognitive ability to compensate for blindness in humans.

  20. Nitric oxide and plant iron homeostasis.

    Science.gov (United States)

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  1. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  2. p300/CBP as a Key Nutritional Sensor for Hepatic Energy Homeostasis and Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Weilei Yao

    2018-01-01

    Full Text Available The overwhelming frequency of metabolic diseases such as obesity and diabetes are closely related to liver diseases, which might share common pathogenic signaling processes. These metabolic disorders in the presence of inflammatory response seem to be triggered by and to reside in the liver, which is the central metabolic organ that plays primary roles in regulating lipid and glucose homeostasis upon alterations of metabolic conditions. Recently, abundant emerging researches suggested that p300 and CREB binding protein (CBP are crucial regulators of energy homeostasis and liver fibrosis through both their acetyltransferase activities and transcriptional coactivators. Plenty of recent findings demonstrated the potential roles of p300/CBP in mammalian metabolic homeostasis in response to nutrients. This review is focused on the different targets and functions of p300/CBP in physiological and pathological processes, including lipogenesis, lipid export, gluconeogenesis, and liver fibrosis, also provided some nutrients as the regulator of p300/CBP for nutritional therapeutic approaches to treat liver diseases.

  3. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    Directory of Open Access Journals (Sweden)

    Angel L. Pey

    2013-01-01

    Full Text Available Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.

  4. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1

    Directory of Open Access Journals (Sweden)

    Koji Aoyama

    2015-05-01

    Full Text Available Reactive oxygen species (ROS are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1 plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.

  5. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity.

    Science.gov (United States)

    Sag, Duygu; Cekic, Caglar; Wu, Runpei; Linden, Joel; Hedrick, Catherine C

    2015-02-27

    ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol efflux from cells and regulates intracellular cholesterol homeostasis. Here we demonstrate a role of ABCG1 as a mediator of tumour immunity. Abcg1(-/-) mice have dramatically suppressed subcutaneous MB49-bladder carcinoma and B16-melanoma growth and prolonged survival. We show that reduced tumour growth in Abcg1(-/-) mice is myeloid cell intrinsic and is associated with a phenotypic shift of the macrophages from a tumour-promoting M2 to a tumour-fighting M1 within the tumour. Abcg1(-/-) macrophages exhibit an intrinsic bias towards M1 polarization with increased NF-κB activation and direct cytotoxicity for tumour cells in vitro. Overall, our study demonstrates that the absence of ABCG1 inhibits tumour growth through modulation of macrophage function within the tumour, and illustrates a link between cholesterol homeostasis and cancer.

  6. Deficiency of α-1-antitrypsin influences systemic iron homeostasis

    Directory of Open Access Journals (Sweden)

    Ghio AJ

    2013-01-01

    Full Text Available Andrew J Ghio,1 Joleen M Soukup,1 Judy H Richards,1 Bernard M Fischer,2 Judith A Voynow,2 Donald E Schmechel31US Environmental Protection Agency, Chapel Hill, NC, USA; 2Division of Pediatric Pulmonary Medicine, Department of Pediatrics,3Joseph and Kathleen Bryan Alzheimer Disease Research Center, Department of Medicine (Neurology, Duke University Medical Center, Durham, NC, USAAbstract: There is evidence that proteases and antiproteases participate in the iron homeostasis of cells and living systems. We tested the postulate that α-1 antitrypsin (A1AT polymorphism and the consequent deficiency of this antiprotease in humans are associated with a systemic disruption in iron homeostasis. Archived plasma samples from Alpha-1 Foundation (30 MM, 30 MZ, and 30 ZZ individuals were analyzed for A1AT, ferritin, transferrin, and C-reactive protein (CRP. Plasma samples were also assayed for metals using inductively coupled plasma atomic emission spectroscopy (ICPAES. Plasma levels of A1AT in MZ and ZZ individuals were approximately 60% and 20% of those for MM individuals respectively. Plasma ferritin concentrations in those with the ZZ genotype were greater relative to those individuals with either MM or MZ genotype. Plasma transferrin for MM, MZ, and ZZ genotypes showed no significant differences. Linear regression analysis revealed a significant (negative relationship between plasma concentrations of A1AT and ferritin while that between A1AT and transferrin levels was not significant. Plasma CRP concentrations were not significantly different between MM, MZ, and ZZ individuals. ICPAES measurement of metals confirmed elevated plasma concentrations of nonheme iron among ZZ individuals. Nonheme iron concentrations correlated (negatively with levels of A1AT. A1AT deficiency is associated with evidence of a disruption in iron homeostasis with plasma ferritin and nonheme iron concentrations being elevated among those with the ZZ genotype.Keywords: α-1

  7. Innate lymphoid cells in tissue homeostasis and diseases.

    Science.gov (United States)

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  8. Regulatory T Cells in Post-stroke Immune Homeostasis.

    Science.gov (United States)

    Liesz, Arthur; Kleinschnitz, Christoph

    2016-08-01

    The secondary neuroinflammatory response has come into focus of experimental stroke research. Immunological mechanisms after acute stroke are being investigated in the hope to identify novel and druggable pathways that contribute to secondary infarct growth after stroke. Among a variety of neuroimmunological events after acute brain ischemia, including microglial activation, brain leukocyte invasion, and secretion of pro-inflammatory factors, lymphocytes have been identified as the key leukocyte subpopulation driving the neuroinflammatory response and contributing to stroke outcome. Several studies have shown that pro-inflammatory lymphocyte subpopulations worsen stroke outcome and that inhibiting their invasion to the injured brain is neuroprotective. In contrast to the effector functions of pro-inflammatory lymphocytes, regulatory T cells (Treg) are critically involved in maintaining immune homeostasis and have been characterized as disease-limiting protective cells in several inflammatory conditions, particularly in primary inflammatory diseases of the central nervous system (CNS). However, due to the complex function of regulatory cells in immune homeostasis and disease, divergent findings have been described for the role of Treg in stroke models. Emerging evidence suggests that this discrepancy arises from potentially differing functions of Treg depending on the predominant site of action within the neurovascular unit and the surrounding inflammatory milieu. This article will provide a comprehensive review of current findings on Treg in brain ischemia models and discuss potential reasons for the observed discrepancies.

  9. MicroRNAs and the regulation of intestinal homeostasis.

    Science.gov (United States)

    Runtsch, Marah C; Round, June L; O'Connell, Ryan M

    2014-01-01

    The mammalian intestinal tract is a unique site in which a large portion of our immune system and the 10(14) commensal organisms that make up the microbiota reside in intimate contact with each other. Despite the potential for inflammatory immune responses, this complex interface contains host immune cells and epithelial cells interacting with the microbiota in a manner that promotes symbiosis. Due to the complexity of the cell types and microorganisms involved, this process requires elaborate regulatory mechanisms to ensure mutualism and prevent disease. While many studies have described critical roles for protein regulators of intestinal homeostasis, recent reports indicate that non-coding RNAs are also major contributors to optimal host-commensal interactions. In particular, there is emerging evidence that microRNAs (miRNAs) have evolved to fine tune host gene expression networks and signaling pathways that modulate cellular physiology in the intestinal tract. Here, we review our present knowledge of the influence miRNAs have on both immune and epithelial cell biology in the mammalian intestines and the impact this has on the microbiota. We also discuss a need for further studies to decipher the functions of specific miRNAs within the gut to better understand cellular mechanisms that promote intestinal homeostasis and to identify potential molecular targets underlying diseases such as inflammatory bowel disease and colorectal cancer.

  10. Creatine maintains intestinal homeostasis and protects against colitis.

    Science.gov (United States)

    Turer, Emre; McAlpine, William; Wang, Kuan-Wen; Lu, Tianshi; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Murray, Anne R; Beutler, Bruce

    2017-02-14

    Creatine, a nitrogenous organic acid, replenishes cytoplasmic ATP at the expense of mitochondrial ATP via the phosphocreatine shuttle. Creatine levels are maintained by diet and endogenous synthesis from arginine and glycine. Glycine amidinotransferase (GATM) catalyzes the rate-limiting step of creatine biosynthesis: the transfer of an amidino group from arginine to glycine to form ornithine and guanidinoacetate. We screened 36,530 third-generation germline mutant mice derived from N -ethyl- N -nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). Among 27 colitis susceptibility phenotypes identified and mapped, one was strongly correlated with a missense mutation in Gatm in a recessive model of inheritance, and causation was confirmed by CRISPR/Cas9 gene targeting. Supplementation of homozygous Gatm mutants with exogenous creatine ameliorated the colitis phenotype. CRISPR/Cas9-targeted ( Gatm c/c ) mice displayed a normal peripheral immune response and immune cell homeostasis. However, the intestinal epithelium of the Gatm c/c mice displayed increased cell death and decreased proliferation during DSS treatment. In addition, Gatm c/c colonocytes showed increased metabolic stress in response to DSS with higher levels of phospho-AMPK and lower levels of phosphorylation of mammalian target of rapamycin (phospho-mTOR). These findings establish an in vivo requirement for rapid replenishment of cytoplasmic ATP within colonic epithelial cells in the maintenance of the mucosal barrier after injury.

  11. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  12. O-GlcNAcase Expression is Sensitive to Changes in O-GlcNAc Homeostasis.

    Science.gov (United States)

    Zhang, Zhen; Tan, Ee Phie; VandenHull, Nicole J; Peterson, Kenneth R; Slawson, Chad

    2014-01-01

    O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification involving an attachment of a single β-N-acetylglucosamine moiety to serine or threonine residues in nuclear and cytoplasmic proteins. Cellular O-GlcNAc levels are regulated by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove the modification, respectively. The levels of O-GlcNAc can rapidly change in response to fluctuations in the extracellular environment; however, O-GlcNAcylation returns to a baseline level quickly after stimulus removal. This process termed O-GlcNAc homeostasis appears to be critical to the regulation of many cellular functions including cell cycle progress, stress response, and gene transcription. Disruptions in O-GlcNAc homeostasis are proposed to lead to the development of diseases, such as cancer, diabetes, and Alzheimer's disease. O-GlcNAc homeostasis is correlated with the expression of OGT and OGA. We reason that alterations in O-GlcNAc levels affect OGA and OGT transcription. We treated several human cell lines with Thiamet-G (TMG, an OGA inhibitor) to increase overall O-GlcNAc levels resulting in decreased OGT protein expression and increased OGA protein expression. OGT transcript levels slightly declined with TMG treatment, but OGA transcript levels were significantly increased. Pretreating cells with protein translation inhibitor cycloheximide did not stabilize OGT or OGA protein expression in the presence of TMG; nor did TMG stabilize OGT and OGA mRNA levels when cells were treated with RNA transcription inhibitor actinomycin D. Finally, we performed RNA Polymerase II chromatin immunoprecipitation at the OGA promoter and found that RNA Pol II occupancy at the transcription start site was lower after prolonged TMG treatment. Together, these data suggest that OGA transcription was sensitive to changes in O-GlcNAc homeostasis and was potentially regulated by O-GlcNAc.

  13. Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits.

    Science.gov (United States)

    Mattson, M P; Chan, S L

    2001-10-01

    Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer's disease (AD). Associations between the pathological hallmarks ofAD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the beta-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid beta-peptide (Abeta) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Abeta may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic

  14. NPY modulates PYY function in the regulation of energy balance and glucose homeostasis.

    Science.gov (United States)

    Zhang, L; Nguyen, A D; Lee, I-C J; Yulyaningsih, E; Riepler, S J; Stehrer, B; Enriquez, R F; Lin, S; Shi, Y-C; Baldock, P A; Sainsbury, A; Herzog, H

    2012-08-01

    Both the neuronal-derived neuropeptide Y (NPY) and the gut hormone peptide YY (PYY) have been implicated in the regulation of energy balance and glucose homeostasis. However, despite similar affinities for the same Y receptors, the co-ordinated actions of these two peptides in energy and glucose homeostasis remain largely unknown. To investigate the mechanisms and possible interactions between PYY with NPY in the regulation of these processes, we utilized NPY/PYY single and double mutant mouse models and examined parameters of energy balance and glucose homeostasis. PYY(-/-) mice exhibited increased fasting-induced food intake, enhanced fasting and oral glucose-induced serum insulin levels, and an impaired insulin tolerance, - changes not observed in NPY(-/-) mice. Interestingly, whereas PYY deficiency-induced impairment in insulin tolerance remained in NPY(-/-) PYY(-/-) mice, effects of PYY deficiency on fasting-induced food intake and serum insulin concentrations at baseline and after the oral glucose bolus were absent in NPY(-/-) PYY(-/-) mice, suggesting that NPY signalling may be required for PYY's action on insulin secretion and fasting-induced hyperphagia. Moreover, NPY(-/-) PYY(-/-) , but not NPY(-/-) or PYY(-/-) mice had significantly decreased daily food intake, indicating interactive control by NPY and PYY on spontaneous food intake. Furthermore, both NPY(-/-) and PYY(-/-) mice showed significantly reduced respiratory exchange ratio during the light phase, with no additive effects observed in NPY(-/-) PYY(-/-) mice, indicating that NPY and PYY may regulate oxidative fuel selection via partly shared mechanisms. Overall, physical activity and energy expenditure, however, are not significantly altered by NPY and PYY single or double deficiencies. These findings show significant and diverse interactions between NPY and PYY signalling in the regulation of different aspects of energy balance and glucose homeostasis. © 2012 Blackwell Publishing Ltd.

  15. Osteoclasts and CD8 T cells form a negative feedback loop that contributes to homeostasis of both the skeletal and immune systems.

    Science.gov (United States)

    Buchwald, Zachary S; Aurora, Rajeev

    2013-01-01

    There are a number of dynamic regulatory loops that maintain homeostasis of the immune and skeletal systems. In this review, we highlight a number of these regulatory interactions that contribute to maintaining homeostasis. In addition, we review data on a negative regulatory feedback loop between osteoclasts and CD8 T cells that contributes to homeostasis of both the skeletal and immune systems.

  16. Childhood cardiorespiratory fitness, muscular fitness and adult measures of glucose homeostasis.

    Science.gov (United States)

    Fraser, Brooklyn J; Blizzard, Leigh; Schmidt, Michael D; Juonala, Markus; Dwyer, Terence; Venn, Alison J; Magnussen, Costan G

    2018-02-14

    To assess whether childhood cardiorespiratory fitness (CRF) and muscular fitness phenotypes (strength, power, endurance) predict adult glucose homeostasis measures. Prospective longitudinal study. Study examining participants who had physical fitness measured in childhood (aged 7-15 years) and who attended follow-up clinics approximately 20 years later and provided a fasting blood sample which was tested for glucose and insulin. Physical fitness measurements included muscular strength (right and left grip, shoulder flexion, shoulder and leg extension), power (standing long jump distance) and endurance (number of push-ups in 30s), and CRF (1.6km run duration). In adulthood, fasting glucose and insulin levels were used to derive glucose homeostasis measures of insulin resistance (HOMA2-IR) and beta cell function (HOMA2-β). A standard deviation increase in childhood CRF or muscular strength (males) was associated with fasting glucose (CRF: β=-0.06mmol/L), fasting insulin (CRF: β=-0.73mU/L; strength: β=-0.40mU/L), HOMA2-IR (CRF: β=-0.06; strength: β=-0.05) and HOMA2-β (CRF: β=-3.06%; strength: β=-2.62%) in adulthood, independent of the alternative fitness phenotype (all p0.06). CRF and muscular fitness in childhood were inversely associated with measures of fasting insulin, insulin resistance and beta cell function in adulthood. Childhood CRF and muscular fitness could both be potential independent targets for strategies to help reduce the development of adverse glucose homeostasis. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Commensal Homeostasis of Gut Microbiota-Host for the Impact of Obesity

    Directory of Open Access Journals (Sweden)

    Pengyi Zhang

    2018-01-01

    Full Text Available Gut microbiota and their metabolites have been linked to a series of chronic diseases such as obesity and other metabolic dysfunctions. Obesity is an increasingly serious international health issue that may lead to a risk of insulin resistance and other metabolic diseases. The relationship between gut microbiota and the host is both interdependent and relatively independent. In this review, the causality of gut microbiota and its role in the pathogenesis and intervention of obesity is comprehensively presented to include human genotype, enterotypes, interactions of gut microbiota with the host, microbial metabolites, and energy homeostasis all of which may be influenced by dietary nutrition. Diet can enhance, inhibit, or even change the composition and functions of the gut microbiota. The metabolites they produce depend upon the dietary substrates provided, some of which have indispensable functions for the host. Therefore, diet is a key factor that maintains or not a healthy commensal relationship. In addition, the specific genotype of the host may impact the phylogenetic compositions of gut microbiota through the production of host metabolites. The commensal homeostasis of gut microbiota is favored by a balance of microbial composition, metabolites, and energy. Ultimately the desired commensal relationship is one of mutual support. This article analyzes the clues that result in patterns of commensal homeostasis. A deeper understanding of these interactions is beneficial for developing effective prevention, diagnosis, and personalized therapeutic strategies to combat obesity and other metabolic diseases. The idea we discuss is meant to improve human health by shaping or modulating the beneficial gut microbiota.

  18. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  19. NOD-Like Receptors in Intestinal Homeostasis and Epithelial Tissue Repair

    Science.gov (United States)

    Parlato, Marianna; Yeretssian, Garabet

    2014-01-01

    The intestinal epithelium constitutes a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. Following injury, the epithelial integrity is restored by rapid migration of intestinal epithelial cells (IECs) across the denuded area in a process known as wound healing. Hence, through a sequence of events involving restitution, proliferation and differentiation of IECs the gap is resealed and homeostasis reestablished. Relapsing damage followed by healing of the inflamed mucosa is a hallmark of several intestinal disorders including inflammatory bowel diseases (IBD). While several regulatory peptides, growth factors and cytokines stimulate restitution of the epithelial layer after injury, recent evidence in the field underscores the contribution of innate immunity in controlling this process. In particular, nucleotide-binding and oligomerization domain-like receptors (NLRs) play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Here, we review the process of intestinal epithelial tissue repair and we specifically focus on the impact of NLR-mediated signaling mechanisms involved in governing epithelial wound healing during disease. PMID:24886810

  20. Physiological Roles for mafr-1 in Reproduction and Lipid Homeostasis

    Directory of Open Access Journals (Sweden)

    Akshat Khanna

    2014-12-01

    Full Text Available Maf1 is a conserved repressor of RNA polymerase (Pol III transcription; however, its physiological role in the context of a multicellular organism is not well understood. Here, we show that C. elegans MAFR-1 is functionally orthologous to human Maf1, represses the expression of both RNA Pol III and Pol II transcripts, and mediates organismal fecundity and lipid homeostasis. MAFR-1 impacts lipid transport by modulating intestinal expression of the vitellogenin family of proteins, resulting in cell-nonautonomous defects in the developing reproductive system. MAFR-1 levels inversely correlate with stored intestinal lipids, in part by influencing the expression of the lipogenesis enzymes fasn-1/FASN and pod-2/ACC1. Animals fed a high carbohydrate diet exhibit reduced mafr-1 expression and mutations in the insulin signaling pathway genes daf-18/PTEN and daf-16/FoxO abrogate the lipid storage defects associated with deregulated mafr-1 expression. Our results reveal physiological roles for mafr-1 in regulating organismal lipid homeostasis, which ensure reproductive success.