WorldWideScience

Sample records for hollow-core infrared fiber

  1. Hollow-core infrared fiber incorporating metal-wire metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger

    2009-01-01

    waveguides usually use a layer of metallic coating on the inner wall of the waveguide. Such a metallic layer, though reflective, still absorbs guided light significantly due to its finite Ohmic loss, especially for transverse-magnetic (TM) light. In this paper, we show that metal-wire based metamaterials may......Infrared (IR) light is considered important for short-range wireless communication, thermal sensing, spectroscopy, material processing, medical surgery, astronomy etc. However, IR light is in general much harder to transport than optical light or microwave radiation. Existing hollow-core IR...

  2. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  3. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  4. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  5. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  6. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  7. Antiresonant hollow core fiber with seven nested capillaries

    DEFF Research Database (Denmark)

    Antonio-Lopez, Jose E.; Habib, Selim; Van Newkirk, Amy

    2016-01-01

    We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.......We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth....

  8. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...... of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle...

  9. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.

    Science.gov (United States)

    Horan, L E; Ruth, A A; Gunning, F C Garcia

    2012-12-14

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to collect Raman scattering from the sample to determine the molecular fingerprint of the liquid under study. This approach has a wide variety of indicative uses in cases where nano-liter samples are necessary. We use 10-12 cm lengths of hollow core photonic crystal fibers to determine the viscosity and Raman spectra of small volumes of two types of monosaccharides diluted in a phosphate buffer solution to demonstrate the principle. The observed Raman signal is strongest when only the core of the hollow core photonic crystal fiber is filled, and gradually decays as the rest of the fiber fills with the sample.

  10. Hollow-core photonic band gap fibers for particle acceleration

    Directory of Open Access Journals (Sweden)

    Robert J. Noble

    2011-12-01

    Full Text Available Photonic band gap (PBG dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency passbands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially made fibers, we perform a simulation analysis of prototype PBG fibers with dimensions appropriate for speed-of-light TM modes.

  11. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J.; Spencer, James E.; /SLAC; Kuhlmey, Boris T.; /Sydney U.

    2011-08-19

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.

  12. Confinement less spectral behavior in hollow-core Bragg fibers

    DEFF Research Database (Denmark)

    Foroni, M.; Passaro, D.; Poli, F.

    2007-01-01

    The influence of each cross-section geometric parameter on hollow-core Bragg fiber guiding properties has been numerically investigated. Fabricated fibers have been modeled, giving insight into the spectral behavior of the confinement loss. It has been verified that, by changing the amount...... of silica and air in the fiber cladding, it is possible to change the reflection conditions undergone by the field within the core, thus shifting the confinement loss spectrum....

  13. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    2012-01-01

    t(i)/tp)^2); % SET "IL0" = 0 IL2 (i) = IL0; end; M = 5000; % number of fiber slices dz = el/M; % m, length of each fiber slice...elements of pump intesity array by the loss % associated with propogating a distance "dz" in the fiber IL = IL*exp(-lossL); IL2 = IL2 ...sigmaL*(n2(i)-n4(i))* IL2 (j)*dz + Al*n2(i)*h*nuL*omega*dz; deltan1 = Ap*n2(i)*Dt + sigmap/(h*nup)*(n2(i)-n1(i))*IP(j

  14. Energy loss in gas lasers operating in hollow-core optical fibers

    Science.gov (United States)

    Lane, Ryan A.; Madden, Timothy J.

    2017-03-01

    The output of solid core fiber lasers is constrained in the mid-infrared due to the absorption properties of silica. Optically pumped gas lasers can reach the mid-infrared but require long path lengths for interaction between the pump light and gain medium. Optically pumped gas lasers where the gain medium is contained in a hollow-core optical fiber may provide a robust and compact platform that combines advantages of fiber and optically-pumped gas lasers. Experimental demonstrations of gas-filled-fiber lasers have been reported. The energy output of a molecular gas laser operating in a hollow-core optical fiber is computationally modeled using rate equations. The rate equations include terms for various physical processes including molecular self-collisions, molecular collisions with the fiber walls, and fiber attenuation. The rate equations are solved for a time-dependent, one-dimensional fiber model with an acetylene gain medium that lases along rotation-vibrational transitions. The energy output and losses are computed for multiple configurations. Model correspondence with reported experiments is shown. The computed energy losses due to backwards propagating light, fiber losses, and molecular collisions are applied to pulsed, continuous wave, and synchronously pumped gas lasers operating in hollow-core optical fibers. Energy losses due to molecular collisions are used to estimate heating in the gain medium.

  15. Sensing Features of Long Period Gratings in Hollow Core Fibers

    Directory of Open Access Journals (Sweden)

    Agostino Iadicicco

    2015-04-01

    Full Text Available We report on the investigation of the sensing features of the Long-Period fiber Gratings (LPGs fabricated in hollow core photonic crystal fibers (HC-PCFs by the pressure assisted Electric Arc Discharge (EAD technique. In particular, the characterization of the LPG in terms of shift in resonant wavelengths and changes in attenuation band depth to the environmental parameters: strain, temperature, curvature, refractive index and pressure is presented. The achieved results show that LPGs in HC-PCFs represent a novel high performance sensing platform for measurements of different physical parameters including strain, temperature and, especially, for measurements of environmental pressure. The pressure sensitivity enhancement is about four times greater if we compare LPGs in HC and standard fibers. Moreover, differently from LPGs in standard fibers, these LPGs realized in innovative fibers, i.e., the HC-PCFs, are not sensitive to surrounding refractive index.

  16. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  17. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2015-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers......We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers...

  18. Interference Cancellation for Hollow-Core Fiber Reference Cells

    DEFF Research Database (Denmark)

    Seppä, Jeremias; Merimaa, Mikko; Merimaa, Mikko

    2015-01-01

    Doppler-free saturated absorption spectroscopy of gases in hollow-core fiber (HCF)-based cells can be used for realizing new compact, robust, and portable frequency standards. In this paper, methods for cancelling interferences resulting from the optical connections between standard fiber and HCF...... and other factors such as varying coupling to HCF modes are investigated. Laser power modulation with simultaneous detection of ac and dc signal is used to separate saturated absorption from interferences. In addition, a technique of two piezoelectric stack actuators stretching the fiber at different...... locations is described. The presented experimental results demonstrate that 99% interference attenuation is readily attainable with the techniques. Frequency comb-referenced measurement of saturated acetylene absorption features near 1.54 μm, with fiber length and power modulation, is presented...

  19. Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Xu, Jing; Lyngso, Jens Kristian; Leick, Lasse

    2013-01-01

    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 µm etc....... After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non......-return to zero (NRZ) data signals over a 30 m 7-cell HC-PBGF using the offset mode launching method. In another experiment, a short piece of 19-cell HC-PBGF was used to transmit two 20 Gbit/s NRZ channels using a spatial light modulator for precise mode excitation. Bit-error-ratio (BER) performances below...

  20. Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers

    DEFF Research Database (Denmark)

    Triches, Marco; Michieletto, Mattia; Hald, Jan

    2015-01-01

    Gas-filled hollow-core photonic crystal fibers are used to stabilize a fiber laser to the 13C2H2 P(16) (ν1+ν3) transition at 1542 nm using saturated absorption. Four hollow-core fibers with different crystal structure are compared in terms of long term lock-point repeatability and fractional freq...

  1. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated.......17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers........ The applicability of the International Standards Organization 11146 : 1999 standard for$M^2$measurement of the beam quality of HC-PCFs is discussed. Because they are dependent on the measurement parameters, such as choice of aperturing scheme and the axis of measurement,$M^2$values could vary from 1.32 to 3...

  2. Micro-Displacement Sensor Based on a Hollow-Core Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Orlando Frazão

    2012-12-01

    Full Text Available A sensing head based on a hollow-core photonic crystal fiber for in-reflection measurement of micro-displacements is presented. The sensing structure takes advantage of the multimodal behavior of a short segment of hollow-core photonic crystal fiber in-reflection, being spliced to a single mode fiber at its other end. A modal interferometer is obtained when the sensing head is close to a mirror, through which displacement is measured.

  3. Optical phase response to temperature in a hollow-core photonic crystal fiber.

    Science.gov (United States)

    Meiselman, Seth; Cranch, Geoffrey A

    2017-10-30

    Analysis of previous measurements of thermal phase sensitivity in hollow core photonic crystal fibers is presented with additional new corroborating measurements, resolving a discrepancy in previously reported results. We extend an existing derivation of thermo-mechanical phase sensitivity in solid- and hollow-core photonic crystal fiber to also include kagome lattice photonic crystal fibers. Measured thermal phase response is shown to agree with theoretical prediction to within a few percent.

  4. Feasibility of hollow core fiber based optical lattice clock

    Science.gov (United States)

    Ilinova, Ekaterina; Babb, James F.; Derevianko, Andrei; Theoretical atomic; molecular physics group Team; Atomic; Molecular Physics Division Team

    2017-04-01

    The possibility of building the optical lattice clock based on the narrow 1S0 -3P0 transition in Hg and other alkaline-earth like atoms optically trapped inside the hollow core fiber has been studied. The general form of the long range atom-surface interaction potential at non-zero temperatures has been calculated for the hollow capillary geometry. The resulting 1S0 -3P0 transition frequency shift has been calculated for Sr and Hg atoms as a function of their position inside the capillary. Its dependence on the geometric parameters and optical properties of the capillary material has been analyzed. The resonant enhancement of the atom-surface interaction potential and radiative decay rate of the 3P0 state at certain parameters of the waveguide has been studied. For the silica capillary with inner radius Rin > 15 μm and thickness d 1 μm the atom surface interaction induced 1S0 -3P0 transition frequency shift on the capillary axis can be suppressed down to the level δν / ν <10-18 . The additional frequency shifts and atom loss from the optical trap due to the residual birefringence of the waveguide and collisions with the buffer gas molecules have been evaluated. University of Nevada, Reno.

  5. Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Roberts, P. John; Williams, D.P.; Mangan, Brian J.

    2006-01-01

    A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core.......A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core....

  6. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  7. Efficient optimization of hollow-core photonic crystal fiber design using the finite-element method

    DEFF Research Database (Denmark)

    Holzlöhner, Ronald; Burger, Sven; Roberts, John

    2006-01-01

    We employ a finite-element (FE) solver with adaptive grid refinement to model hollow-core photonic crystal fibers (HC-PCFs) whose core is formed from 19 omitted cladding unit cells. We optimize the complete fiber geometry for minimal field intensity at material/air interfaces, which indicates low...

  8. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical dep...

  9. Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    is quite insensitive to the curvature of the nested element, while the distance from the core boundary to the outer perimeter of the nested element is much more critical. Interestingly, the additional freedom of the semicircular nested elements allows optimizing them for a better loss performance than......Hollow-core fibers with a single ring of circular antiresonant tubes as the cladding provide a simple way of getting a negative-curvature hollow core, resulting in broadband low-loss transmission with little power overlap in the glass. These fibers show a significant improvement in loss performance...

  10. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    release. John Luginsland Hollow-Core Optical Fiber Gas Lasers K. Corwin et al. 16 Fig. 18 (a) The mode- locked Tm/Ho...18. NUMBER OF PAGES 19a.  NAME OF RESPONSIBLE PERSON LUGINSLAND, JOHN 19b.  TELEPHONE NUMBER (Include area code) 703-588-1775 Standard Form 298 (Rev. 8...for public release. John Luginsland FA9550-14-1-0024 Final Report K. Corwin et al. 1 A. Project Summary/Abstract Hollow Core Optical Fiber Gas

  11. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers

    Directory of Open Access Journals (Sweden)

    Ciprian Dumitrache

    2014-08-01

    Full Text Available This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs, the hollow core kagome fibers have larger core diameter (~50 µm, which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25. We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine.

  12. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2016-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier...... setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 power output for a 5 meters fiber. The damage...... threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius...

  13. Slow-light enhanced absorption in a hollow-core fiber

    DEFF Research Database (Denmark)

    Grgic, Jure; Xiao, Sanshui; Mørk, Jesper

    2010-01-01

    Light traversing a hollow-core photonic band-gap fiber may experience multiple reflections and thereby a slow-down and enhanced optical path length. This offers a technologically interesting way of increasing the optical absorption of an otherwise weakly absorbing material which can infiltrate...

  14. Design of low-loss and highly birefringent hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, Peter John; Williams, D.P.; Sabert, H.

    2006-01-01

    A practical hollow-core photonic crystal fiber design suitable for attaining low-loss propagation is analyzed. The geometry involves a number of localized elliptical features positioned on the glass ring that surrounds the air core and separates the core and cladding regions. The size of each fea...

  15. Dynamic fiber delivery of 3 W 160 fs pulses with photonic crystal hollow core fiber patchcord.

    Science.gov (United States)

    Resan, Bojan; Auchli, Raffael; Villamaina, Vesna; Holtz, Ronald

    2017-10-02

    We report output characteristics of a connectorized hollow core photonics crystal fiber when it is subjected to coiling down to a 50 mm radius, bending, and torsion. We achieved coupling efficiency up to 73% with an output average power of 2 W and 24 nJ pulse energy. With optimized coupling, depolarization was as low as 7%. Coiling and bending of the photonic crystal patchcord introduces little distortion; torsion, however, changes the polarization drastically. To our knowledge, this is the first report on dynamic fiber delivery of fs pulses.

  16. Square-lattice large-pitch hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Couny, F.; Roberts, John; Birks, T.A.

    2008-01-01

    We report on the design, fabrication and characterization of silica square-lattice hollow core photonic crystal fibers optimized for low loss guidance over an extended frequency range in the mid-IR region of the optical spectrum. The fiber's linear optical properties include an ultra-low group...... velocity dispersion and a polarization cross-coupling as low as -13.4dB over 10m of fiber....

  17. Origin and suppression of parasitic signals in Kagomé lattice hollow core fibers used for SRS microscopy and endoscopy

    Science.gov (United States)

    Lombardini, Alberto; Andresen, Esben Ravn; Kudlinski, Alexandre; Rimke, Ingo; Rigneault, Hervé

    2017-05-01

    Hollow core fibers are considered as promising candidates to deliver intense temporally overlapping picosecond pulses in applications such as stimulated Raman scattering (SRS) microscopy and endoscopy because of their inherent low nonlinearity compared to solid-core silica fibers. Here we demonstrate that, contrary to prior assumptions, parasitic signals are generated in Kagom\\'e lattice hollow core fibers. We identify the origin of the parasitic signals as an interplay between the Kerr nonlinearity of air and frequency-dependent fiber losses. Importantly, we identify the special cases of experimental parameters that are free from parasitic signals, making hollow core fibers ideal candidates for noise-free SRS microscopy and endoscopy.

  18. Ultra-large bandwidth hollow-core guiding in all-silica bragg fibers with nano-supports

    DEFF Research Database (Denmark)

    Vienne, Guillaume; Xu, Yong; Jakobsen, Christian

    2004-01-01

    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding...

  19. Silica hollow core microstructured fibers for beam delivery in industrial and medical applications

    Directory of Open Access Journals (Sweden)

    Jonathan Dale Shephard

    2015-04-01

    Full Text Available The focus of this review is our recent work to develop microstructured hollow core fibers for two applications where the flexible delivery of a single mode beam is desired. Also, a review of other fiber based solutions is included.High power, short-pulsed lasers are widely used for micro-machining, providing high precision and high quality. However, the lack of truly flexible beam delivery systems limits their application to the processing of relatively small planar components. To address this, we developed hollow-core optical fibers for the 1 μm and green wavelength ranges. The hollow core overcomes the power delivery limitations of conventional silica fibers arising from nonlinear effects and material damage in the solid core. We have characterized such fibers in terms of power handling capability, damage threshold, bend loss and dispersion, and practically demonstrated delivery of high peak power pulses from the nanosecond to the femtosecond regime. Such fibers are ideal candidates for industrial laser machining applications.In laser surgical applications, meanwhile, an Er:YAG laser (2.94 μm is frequently the laser of choice because the water contained in tissue strongly absorbs this wavelength. If this laser beam is precisely delivered damage to surrounding tissue can be minimized. A common delivery method of surgical lasers, for use in the operating theatre, is articulated arms that are bulky, cumbersome and unsuitable for endoscopic procedures. To address this need for flexible mid-IR delivery we developed silica based hollow core fibers. By minimizing the overlap of the light with glass it is possible to overcome the material absorption limits of silica and achieve low attenuation. Additionally, it is possible to deliver pulse energies suitable for the ablation of both hard and soft tissue even with very small bend radii. The flexibility and small physical size of systems based on these fibers will enable new minimally invasive surgical

  20. Silica hollow core microstructured fibers for beam delivery in industrial and medical applications

    Science.gov (United States)

    Shephard, Jonathan; Urich, Artur; Carter, Richard; Jaworski, Piotr; Maier, Robert; Belardi, Walter; Yu, Fei; Wadsworth, William; Knight, Jonathan; Hand, Duncan

    2015-04-01

    The focus of this review is our recent work to develop microstructured hollow core fibers for two applications where the flexible delivery of a single mode beam is desired. Also, a review of other fiber based solutions is included. High power, short-pulsed lasers are widely used for micro-machining, providing high precision and high quality. However, the lack of truly flexible beam delivery systems limits their application to the processing of relatively small planar components. To address this, we developed hollow-core optical fibers for the 1 μm and green wavelength ranges. The hollow core overcomes the power delivery limitations of conventional silica fibers arising from nonlinear effects and material damage in the solid core. We have characterized such fibers in terms of power handling capability, damage threshold, bend loss and dispersion, and practically demonstrated delivery of high peak power pulses from the nanosecond to the femtosecond regime. Such fibers are ideal candidates for industrial laser machining applications. In laser surgical applications, meanwhile, an Er:YAG laser (2.94 μm) is frequently the laser of choice because the water contained in tissue strongly absorbs this wavelength. If this laser beam is precisely delivered damage to surrounding tissue can be minimized. A common delivery method of surgical lasers, for use in the operating theatre, is articulated arms that are bulky, cumbersome and unsuitable for endoscopic procedures. To address this need for flexible mid-IR delivery we developed silica based hollow core fibers. By minimizing the overlap of the light with glass it is possible to overcome the material absorption limits of silica and achieve low attenuation. Additionally, it is possible to deliver pulse energies suitable for the ablation of both hard and soft tissue even with very small bend radii. The flexibility and small physical size of systems based on these fibers will enable new minimally invasive surgical procedures.

  1. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical...... depths with a relatively small number of atoms. We present our experimental apparatus and discuss results regarding all-optical switching at ultra-low light levels....

  2. Guiding Properties of Silica/Air Hollow-Core Bragg Fibers

    DEFF Research Database (Denmark)

    Foroni, Matteo; Passaro, Davide; Poli, Federica

    2008-01-01

    The guiding properties of realistic silica/air hollow-core Bragg fibers have been investigated by calculating the dispersion curves, the confinement loss spectrum and the field distribution of the guided modes through a full-vector modal solver based on the finite element method. In particular......, the silica bridge influence on the fundamental mode has been analyzed, by comparing the properties of an ideal structure, without the silica nano-supports, and of two realistic fibers, with squared off and rounded air-holes. Simulation results have demonstrated the presence of anti-crossing points...... on the guiding properties of each geometric characteristic in the hollow-core Bragg fiber cross-section has been deeply investigated, thus showing which parameter it is better to change in order to properly modify the loss values or its spectral behaviour. Moreover, in order to improve the loss properties...

  3. Hollow-core optical fiber incorporating a metamaterial cladding

    DEFF Research Database (Denmark)

    2010-01-01

    An optical fiber (100, 200, 300) for guidance of electromagnetic radiation with an operational wavelength l, the fiber (100, 200, 300) having a longitudinal direction along a longitudinal axis and a transverse direction in a plane perpendicular to the longitudinal axis, the fiber (100, 200, 300...

  4. Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Wu, Shun; Wang, Chenchen; Fourcade-Dutin, Coralie; Washburn, Brian R; Benabid, Fetah; Corwin, Kristan L

    2014-09-22

    We have isolated a single tooth from a fiber laser-based optical frequency comb for nonlinear spectroscopy and thereby directly referenced the comb. An 89 MHz erbium fiber laser frequency comb is directly stabilized to the P(23) (1539.43 nm) overtone transition of (12)C(2)H(2) inside a hollow-core photonic crystal fiber. To do this, a single comb tooth is isolated and amplified from 20 nW to 40 mW with sufficient fidelity to perform saturated absorption spectroscopy. The fractional stability of the comb, ~7 nm away from the stabilized tooth, is shown to be 6 × 10(-12) at 100 ms gate time, which is over an order of magnitude better than that of a comb referenced to a GPS-disciplined Rb oscillator.

  5. A Raman cell based on hollow core photonic crystal fiber for human breath analysis.

    Science.gov (United States)

    Chow, Kam Kong; Short, Michael; Lam, Stephen; McWilliams, Annette; Zeng, Haishan

    2014-09-01

    Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors' goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm(-1). The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the visible wavelengths led to an estimated seven

  6. Design and analysis of photonic quasi-crystal hollow core fibers

    Science.gov (United States)

    Bahrampour, Abolfazl; Iadicicco, Agostino; Bahrampour, Ali Reza; Campopiano, Stefania; Cutolo, Antonello; Cusano, Andrea

    2013-05-01

    We present a new class of hollow core photonic crystal fibers taking the advantages of quasi-crystals structures. We analyze two structures based on modified 8-fold and 12-fold symmetries and we presente the ability of air guiding propagation having two photonic bandgap in the λ/Λ<1 In this paper bandgap of both structures as well as the behavior of the guided modes via finite element method are investigated.

  7. Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Habib, Selim

    action of self-focusing self-phase modulation (SPM) and anomalous GVD allows strong soliton self-compression down to sub-single cycle duration inside HC-AR fiber. The peak intensity at the maximum temporal compression can reach over 1014 W/cm2 which is sufficient to ionize the gas and form a plasma. We......Invention of hollow-core fiber has been proven an ideal medium to study light-gas interaction. Tight confinement of light inside hollowcore fiber allows unremitting and tailored interaction between light and gas over long distances. In this work, we used a special kind of hollowcore fiber − hollow...

  8. Kagome Hollow-Core Photonic Crystal Fiber Resonator for Rotation Sensing

    CERN Document Server

    Fsaifes, Ihsan; Debord, Benoît; Gérôme, Frédéric; Baz, Assaad; Humbert, Georges; Benabid, Fetah; Schwartz, Sylvain; Bretenaker, Fabien

    2016-01-01

    We investigate the performances of a Kagome Hollow-Core Photonic Crystal Fiber resonator for rotation sensing applications. The use of a large mode field diameter Kagome fiber permits to reduce the free space fiber-to-fiber coupling losses, allowing the realization of cavities with finesses compatible with the angular random walk required for medium to high performance rotation sensing, while minimizing the Kerr effect induced non reciprocities. Experiments show encouraging results that could lead to a compact, low cost, and robust medium for high performance gyroscope.

  9. Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing.

    Science.gov (United States)

    Tsiminis, G; Rowland, K J; Schartner, E P; Spooner, N A; Monro, T M; Ebendorff-Heidepriem, H

    2016-03-21

    We report the fabrication of the first extruded hollow core optical fiber with a single ring of cladding holes, and its use in a chemical sensing application. These single suspended ring structures show antiresonance reflection optical waveguiding (ARROW) features in the visible part of the spectrum. The impact of preform pressurization on the geometry of these fibers is determined by the size of the different hole types in the preform. The fibers are used to perform Raman sensing of methanol, demonstrating their potential for future fiber sensing applications.

  10. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  11. Gas-Filled Hollow Core Fiber Lasers Based on Population Inversion

    Science.gov (United States)

    2013-12-05

    solid-core fiber laser systems. Gas- filled hollow-core fiber lasers based on population inversion from acetylene (12C2H2) and hydrogen cyanide (HCN...via first order rotational- vibrational overtones near 1.5 μm using 1-ns duration pulses from a home-built optical parametric amplifier. Narrow-band...laser emission peaks in the 3-μm region corresponding to the ΔJ = ±1 dipole allowed rotational transitions between the pumped vibrational overtone

  12. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives......We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...

  13. Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, Peter John

    2009-01-01

    Abstract Soliton formation during dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap (HC-PBG) fiber is studied by numerical simulations. Long-pass filtering of the emerging frequency-shifted solitons is investigated with the objective...... of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse...

  14. Detailed study of macrobending effects in a wide transmission bandwidth hollow-core photonic bandgap fiber

    Science.gov (United States)

    Chen, Y.; Sandoghchi, S. R.; Numkam, E.; Bradley, T. D.; Hayes, J. R.; Wheeler, N. V.; Jasion, G.; Gray, D. R.; Poletti, F.; Petrovich, M. N.; Richardson, D. J.

    2016-04-01

    We study in detail the macrobending effects in a wide transmission bandwidth (~200nm) 19 cell hollow-core photonic bandgap fiber operating at 1550nm. Our results indicate low bend sensitivity over a ~130nm wide interval within the transmission window, with negligible loss (<0.1dB) for bending radii down to 5mm. The "red shift" and "blue shift" of the bandgap edge have been observed at the short and long wavelength edges, respectively. The cutoff wavelengths where air-guiding modes stop guiding can be extracted from the bending loss spectra, which matches well with the simulated effective refractive index map of such fiber.

  15. Resonant optical propulsion of a particle inside a hollow-core photonic crystal fiber.

    Science.gov (United States)

    Maslov, A V

    2016-07-01

    Resonant propulsion of small nonresonant particles inside metal waveguides due to the formation of resonant states by the guided modes below their cutoffs has been predicted in the past. Here it is shown that stable resonant propulsion exists in hollow-core photonic crystal fibers, which are all-dielectric structures and are a major platform for various photonic applications. Specific features of the resonant propulsion are discussed together with the fiber design issues. The results may enable power-efficient transport of particles over long distances, particle sorting, and sensitive detection.

  16. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-01-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ~20 d......B in the wavelength range 480-900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ~45 dB m-1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C-1, defined as the red-shift of the resonances per °C, which is three times higher than...... the sensitivity of polymer fiber Bragg gratings....

  17. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    Science.gov (United States)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-10-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ˜20 dB in the wavelength range 480-900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ˜45 dB m-1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C-1, defined as the red-shift of the resonances per °C, which is three times higher than the sensitivity of polymer fiber Bragg gratings.

  18. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Markos, Christos; Bang, Ole

    2017-01-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 mu m. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity...... by supercontinuum generation spanning 1-4 mu m. We find that the spectral coherence drops as the secondary compression stage is initiated. (C) 2017 Optical Society of America...

  19. Interference-based optical measurement of fluidic flow in a hollow-core fiber

    Science.gov (United States)

    Lee, Min-Hwan; Kim, Sung-Hyun; Kim, Eun-Sun; Hwang, In-Kag

    2017-11-01

    In this study, we present speed and displacement measurements of micro-fluid in a hollow-core optical fiber, where an optical interference signal is created by two guided beams reflected at a fixed facet and a moving fluid end. By counting the number of intensity oscillations of the signal, the movement of the fluid end is successfully traced with high accuracy. Furthermore, we could detect the change in curvature diameters of the fluid end depending on the flow direction by monitoring the visibility of the interference signal.

  20. High finesse hollow-core fiber resonating cavity for high sensitivity gas sensing application

    Science.gov (United States)

    Tan, Yanzhen; Jin, Wei; Yang, Fan; Ho, Hoi Lut

    2017-04-01

    We present all-fiber resonating Fabry-Perot gas cells made with a piece of hollow-core photonic bandgap fiber (HCPBF) sandwiched by two single mode fibers with mirrored ends. A HC-PBF cavity made of 6.75-cm-long HC-1550-06 fiber achieved a cavity finesse of 128, corresponding to an effective optical path length of 5.5 m. Such HC-PBF cavities can be used as absorption cells for high sensitivity gas detection with fast response. Preliminary experiment with a 9.4-cm-long resonating gas cell with a finesse of 68 demonstrated a detection limit better than 7.5 p.p.m. acetylene.

  1. Two-photon fluorescence microscope with a hollow-core photonic crystal fiber.

    Science.gov (United States)

    Tai, Shih-Peng; Chan, Ming-Che; Tsai, Tsung-Han; Guol, Shi-Hao; Chen, Li-Jin; Sun, Chi-Kuang

    2004-12-13

    Self-phase-modulation and group velocity dispersion of near IR femtosecond pulses in fibers restrict their use in two-photon fluorescence microscopy (TPFM). Here we demonstrate a hollow-core photonic crystal fiber based two-photon fluorescence microscope with low nonlinearity and dispersion effects. We use this fiber-based TPFM system to take two-photon fluorescence (chlorophyll) images of mesophyll tissue in the leaf of Rhaphidophora aurea. With less than 2mW average power exposure on the leaf at 755nm, the near zero-dispersion wavelength, chloroplasts distribution inside the mesophyll cells can be identified with a sub-micron spatial resolution. The acquired image quality is comparable to that acquired by the conventional fiber-free TPFM system, due to the negligible temporal pulse broadening effect.

  2. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  3. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zeltner, R.; Russell, P. St.J. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Bykov, D. S.; Xie, S. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Euser, T. G. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-06-06

    We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  4. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus, E-mail: markus.aspelmeyer@univie.ac.at [Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna (Austria)

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  5. The optical properties of quantum dots integrated in a hollow core photon crystal fiber

    Science.gov (United States)

    Pidenko, Sergei A.; Burmistrova, Natalia A.; Pidenko, Pavel S.; Bondarenko, Sergei D.; Shuvalov, Andrei A.; Chibrova, Anastasiya A.; Skibina, Yulia S.; Goryacheva, Irina Y.

    2017-03-01

    The use of photonic crystal fibers as a basis elements for biosensor construction is a perspective trend. The advantages of this approach are the use of micro and nano volumes of samples and a significant strengthening of the analytical signal while increasing the optical path length. Quantum dots are the most promising fluorescent markers for use in the photonic crystal fibers based analysis. The advantages of quantum dots, in this case, are associated with stability, wide range of excitation and extremely narrow range of high luminescence intensity. In this work we have investigated the behavior and optical properties of CdSe core-shell nanocrystals (quantum dots) after they including into hollow central defect of hollow core chirped photonic crystal fibers with internal surface modified by polyaniline films.

  6. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-01-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal...

  7. Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell

    Science.gov (United States)

    Pennetta, Riccardo; Xie, Shangran; Lenahan, Frances; Mridha, Manoj; Novoa, David; Russell, Philip St. J.

    2017-07-01

    We report a fully integrated interface delivering efficient, reflection-free, single-mode, and self-aligned coupling between a step-index fiber and a gas-filled hollow-core photonic crystal fiber. The device offers a universal solution for interfacing solid and hollow cores and can be sealed to allow operation either evacuated or at high pressure. Stimulated Raman scattering and molecular modulation of light are demonstrated in a H2 -filled hollow-core photonic crystal fiber using the device.

  8. 1-m tunable optical delay line using microfluid sliding in a hollow-core fiber: Feasibility study

    Science.gov (United States)

    Lee, Min-Hwan; Kim, Sung-Hyun; Kim, Eun-Sun; Hwang, In-Kag

    2017-11-01

    A novel variable optical delay line based on a hollow-core photonic bandgap fiber is proposed. The device incorporates microfluid, the end surface of which serves as an optical reflector, in the hollow-core of the fiber. The position of the fluid end is controlled by a syringe pump to change the optical delay of the reflected beam. We demonstrate wide tunability of the optical delay up to 1 m with a scan speed of several mm/s. The return loss and beat pattern in the reflected signal is studied and the potential of the device as an ultra-long delay line is discussed.

  9. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  10. Hollow core photonic bandgap fiber with microfluid-infiltrated air holes for slow-light propagation

    Science.gov (United States)

    Ren, Liyong; Liang, Jian; Yun, Maojin

    2012-10-01

    Slow light plays an important role in the fields of all-optical signal processing and integration photonics. It has shown many potential applications, such as realizing optical delay lines or buffers, enhancing linear and nonlinear light-matter interactions, as well as increasing the sensitivity of the interferometers and transducers. In this paper, hollow-core photonic bandgap fibers made from high index glasses are designed by infiltrating microfluid into the air-holes to tailor the fiber dispersion for slow-light propagation under low pulse distortion. In such a fiber made from Si material, group index ng~8 is obtained with a bandwidth up to 30 nm, where the group index fluctuation is restricted in ±10 % of the ng, while ng~6 is obtained with a bandwidth over 100 nm when the chalcogenide material is selected instead. Such a ±10 % criterion determines a regarded flatland region accordingly, and in this region the group velocity dispersion can be negligible. It is found that for the same fiber length the slow-light time delay in the photonic bandgap fiber is much larger as compared with that in the single mode fiber. This kind of photonic bandgap fiber may have many potential applications in short-distance fiber communications and delay lines.

  11. Slow-light enhanced absorption in a hollow-core fiber.

    Science.gov (United States)

    Grgić, Jure; Xiao, Sanshui; Mørk, Jesper; Jauho, Antti-Pekka; Mortensen, N Asger

    2010-06-21

    Light traversing a hollow-core photonic band-gap fiber may experience multiple reflections and thereby a slow-down and enhanced optical path length. This offers a technologically interesting way of increasing the optical absorption of an otherwise weakly absorbing material which can infiltrate the fibre. However, in contrast to structures with a refractive index that varies along the propagation direction, like Bragg stacks, the translationally invariant structures studied here feature an intrinsic trade-off between light slow-down and filling fraction that limits the net absorption enhancement. We quantify the degree of absorption enhancement that can be achieved and its dependence on key material parameters. By treating the absorption and index on equal footing, we demonstrate the existence of an absorption-induced saturation of the group index that itself limits the maximum absorption enhancement that can be achieved.

  12. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling...... due to the multitude of lengthscales involved and non-standard variations in properties such as the mode-field distribution. Linear mode-solvers require many 100,000's of basis functions to resolve the field variations, and extra terms are often required in descriptions of nonlinear propagation....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...

  13. High Pressure Gases in Hollow Core Photonic Crystal Fiber:A New Nonlinear Medium

    CERN Document Server

    Azhar, Mohiudeen; Chang, Wonkeun; Joly, Nicolas; Russell, Philip

    2012-01-01

    The effective Kerr nonlinearity of hollow-core kagome-style photonic crystal fiber (PCF) filled with argon gas increases over 100 times when the pressure is increased from 1 to 150 bar, reaching 15 % of that of bulk silica glass, while the zero dispersion wavelength shifts from 300 to 900 nm. The group velocity dispersion of the system is uniquely pressure-tunable over a wide range while avoiding Raman scattering : absent in noble gases and having an extremely high optical damage threshold. As a result, detailed and well controlled studies of nonlinear effects can be performed, in both normal and anomalous dispersion regimes, using only a fixed-frequency pump laser. For example, the absence of Raman scattering permits clean observation, at high powers, of the interaction between a modulational instability side-band and a soliton created dispersive wave. Excellent agreement is obtained between numerical simulations and experimental results. The system has great potential for the realisation of reconfigurable s...

  14. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I; Anis, Hanan

    2015-11-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells.

  15. Semi-analytical model for hollow-core anti-resonant fibers

    Directory of Open Access Journals (Sweden)

    Wei eDing

    2015-03-01

    Full Text Available We detailedly describe a recently-developed semi-analytical method to quantitatively calculate light transmission properties of hollow-core anti-resonant fibers (HC-ARFs. Formation of equiphase interface at fiber’s outermost boundary and outward light emission ruled by Helmholtz equation in fiber’s transverse plane constitute the basis of this method. Our semi-analytical calculation results agree well with those of precise simulations and clarify the light leakage dependences on azimuthal angle, geometrical shape and polarization. Using this method, we show investigations on HC-ARFs having various core shapes (e.g. polygon, hypocycloid with single- and multi-layered core-surrounds. The polarization properties of ARFs are also studied. Our semi-analytical method provides clear physical insights into the light guidance in ARF and can play as a fast and useful design aid for better ARFs.

  16. Wavelength scaling of optimal hollow-core fiber compressors in the single-cycle limit.

    Science.gov (United States)

    Granados, Eduardo; Chen, Li-Jin; Lai, Chien-Jen; Hong, Kyung-Han; Kärtner, Franz X

    2012-04-09

    We systematically investigate supercontinuum generation using three-dimensional numerical simulations of nonlinear femtosecond pulse propagation in hollow-core fibers (HCF) at different pump wavelengths ranging from 400 nm to 2 μm. A general design strategy for HCF compressors is presented, maximizing the spectral broadening while preserving high beam quality for given pump pulse energy, duration and wavelength. We show close fitting of the modeled results with simple analytical formulas, enabling the construction of high-energy pulse compressors at the wavelength range of interest. Based on the presented wavelength scaling study, we propose an orthogonally polarized two-color pumping scheme in a single HCF compressor for the coherent synthesis of the electric fields in the sub-cycle regime with mJ level energies.

  17. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maciej Andrzej Popenda

    2017-10-01

    Full Text Available In this paper, an application of negative curvature hollow core fiber (NCHCF in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680–750 nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH and flavin adenine dinucleotide (FAD with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF. To the author’s best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  18. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy

    Science.gov (United States)

    Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-01-01

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680–750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author’s best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments. PMID:28984838

  19. Coherent light transmission properties of commercial photonic crystal hollow core optical fiber.

    Science.gov (United States)

    Cranch, G A; Miller, G A

    2015-11-01

    Photonic crystal hollow core fiber (PC-HCF) has enabled many exciting new applications in nonlinear optics and spectroscopy. However, to date there has been less impact in coherent applications where preservation of optical phase over long fiber lengths is crucial. This paper presents characteristics of three commercially available PC-HCFs relevant to coherent applications including higher-order mode analysis, birefringence and polarization-dependent loss, and their impact on coherent light transmission in PC-HCF. Multipath interference due to higher-order mode propagation and Fresnel reflection is shown to generate excess intensity noise in transmission, which can be suppressed by up to 20 dB through high frequency phase modulation of the source laser. To demonstrate the potential of PC-HCF in high performance sensing, a Mach-Zehnder interferometer (MZI) incorporating 10 m of PC-HCF in each arm is characterized and demonstrates a phase resolution (59×10(-9)  rad/Hz(1/2) at 30 kHz) close to the shot noise limit, which is better than can be achieved in a MZI made with the same length of single mode solid core fiber because of the limit set by fundamental thermodynamic noise (74×10(-9)  rad/Hz(1/2) at 30 kHz).

  20. Hollow Core?

    Science.gov (United States)

    Qiao, G. J.; Liu, J. F.; Wang, Yang; Wu, X. J.; Han, J. L.

    We carried out the Gaussian fitting to the profile of PSR B1237+25 and found that six components rather than five are necessary to make a good fit. In the central part, we found that the core emission is not filled pencil beam but is a small hollow cone. This implies that the impact angle could be $\\beta<0.5^\\circ$. The ``hollow core'' is in agreement with Inverse Compton Scattering model of radio pulsars.

  1. The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers

    Science.gov (United States)

    Chibrova, Anastasiya A.; Shuvalov, Andrey A.; Skibina, Yulia S.; Pidenko, Pavel S.; Pidenko, Sergey A.; Burmistrova, Natalia A.; Goryacheva, Irina Y.

    2017-11-01

    Hollow core microstructural optical waveguides (photonic crystal fibers) can affect intensity and spectrum position of luminophores emission located in the hollow core. Most strongly this effects could be in case of luminescence semiconductor nanoparticles - quantum dots (QDs) due to the narrow and symmetrical photoluminescence spectra. Study of the spectral effects arising from the superposition of QDs luminescence band on the photonic band gaps in the fiber transmission spectrum is both of fundamental and applied interest. This paper demonstrates the red shift of photoluminescence maximum of CdSe/ZnS QDs with core-shell structures. Luminescence maximum shift can be more than 10 nm, depending on the position of the photonic band gaps in the fiber transmission spectrum.

  2. Enhanced Control of Transient Raman Scattering Using Buffered Hydrogen in Hollow-Core Photonic Crystal Fibers

    Science.gov (United States)

    Hosseini, P.; Novoa, D.; Abdolvand, A.; Russell, P. St. J.

    2017-12-01

    Many reports on stimulated Raman scattering in mixtures of Raman-active and noble gases indicate that the addition of a dispersive buffer gas increases the phase mismatch to higher-order Stokes and anti-Stokes sidebands, resulting in a preferential conversion to the first few Stokes lines, accompanied by a significant reduction in the Raman gain due to collisions with gas molecules. Here we report that, provided the dispersion can be precisely controlled, the effective Raman gain in a gas-filled hollow-core photonic crystal fiber can actually be significantly enhanced when a buffer gas is added. This counterintuitive behavior occurs when the nonlinear coupling between the interacting fields is strong and can result in a performance similar to that of a pure Raman-active gas, but at a much lower total gas pressure, allowing competing effects such as Raman backscattering to be suppressed. We report high modal purity in all the emitted sidebands, along with anti-Stokes conversion efficiencies as high as 5% in the visible and 2% in the ultraviolet. This new class of gas-based waveguide device, which allows the nonlinear optical response to be beneficially pressure-tuned by the addition of buffer gases, may find important applications in laser science and spectroscopy.

  3. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  4. Pulsed-induced electromagnetically induced transparency in the acetylene-filled hollow-core fibers

    Science.gov (United States)

    Rodríguez, Nayeli Casillas; Stepanov, Serguei; Miramontes, Manuel Ocegueda; Hernández, Eliseo Hernández

    2017-06-01

    Experimental results on pulsed excitation of electromagnetically induced transparency (EIT) in the acetylene-filled hollow-core photonic crystal fiber (HC-PCF) at pressures 0.1-0.4 Torr are reported. The EIT was observed both in Λ and V interaction configurations with the continuous probe wave tuned to R9 (1520.08 nm) acetylene absorption line and with the control pulses tuned to P11 (1531.58 nm) and P9 (1530.37 nm) lines, respectively. The utilized control pulses were of up to 40 ns duration with <2.5 ns fronts and with maximum input power 1 W. The maximum modulation depth of the initial probe wave absorption via EIT was up to 40 and 15% for the co- and counter-propagation of the probe and control waves, respectively, and importance of the waves polarization matching was demonstrated. For a qualitative explanation of reduction in the counter-propagation EIT efficiency a simple model of the accelerated mismatch of the two-frequency EIT resonance with deviation of the molecule thermal velocity from the resonance value was utilized. It was shown experimentally that the EIT efficiencies in both configurations do not depend on the longitudinal velocity of the molecules. The characteristic relaxation time of the of the EIT response was found to be about 9 ns, i.e., is close to the relaxation times T 1,2 of the acetylene molecules under the utilized experimental conditions.

  5. Generation of multiple VUV dispersive waves using a tapered gas-filled hollow-core anti-resonant fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers are perhaps the best platform for ultrafast nonlinear optics based on light-gas interactions because they offer broadband guidance and low-loss guidance. The main advantage of using gases inside HC fibers is that both the dispersion and nonlinearity can...... the nonlinear process to further blue-shift the generated DWs towards vacuum ultra-violet (VUV), here we numerically demonstrate for the first time (to the best of our knowledge) how the use of a tapered Ar-filled HC-AR fiber leads to multiple DWs in the extreme wavelength region from 143 to 280 nm....

  6. In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber.

    Science.gov (United States)

    Andrews, Nicholas L P; Ross, Rachel; Munzke, Dorit; van Hoorn, Camiel; Brzezinski, Andrew; Barnes, Jack A; Reich, Oliver; Loock, Hans-Peter

    2016-06-27

    We describe an in-fiber interferometer based on a gas-filled hollow-core photonic crystal fiber. Expressions for the sensitivity, figure of merit and refractive index resolution are derived, and values are experimentally measured and theoretically validated using mode field calculations. The refractive indices of nine monoatomic and molecular gases are measured with a resolution of δns -6.

  7. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  8. Nonstationary coherent optical effects caused by pulse propagation through acetylene-filled hollow-core photonic-crystal fibers

    Science.gov (United States)

    Ocegueda, M.; Hernandez, E.; Stepanov, S.; Agruzov, P.; Shamray, A.

    2014-06-01

    Experimental observations of nonstationary coherent optical phenomena, i.e., optical nutation, free induction, and photon echo, in the acetylene (12C2H2) filled hollow-core photonic-crystal fiber (PCF) are reported. The presented results were obtained for the acetylene vibration-rotational transition P9 at wavelength 1530.37 nm at room temperature under a gas pressure of acetylene molecules' presence inside the effective PCF modal area and by intermolecule collisions. An accelerated attenuation of the optical nutation oscillations is explained by a random orientation of acetylene molecules.

  9. Design of a Polymer-Based Hollow-Core Bandgap Fiber for Low-Loss Terahertz Transmission

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.

    2016-01-01

    We use numerical simulations to design a hollow-core microstructured polymer optical fiber (HC-mPOF) suitable for broadband, terahertz (THz) pulse transmission with relatively low losses and small dispersion. The HC-mPOF consists of a central large air-core surrounded by periodically arranged wav...... of non-zero values of the longitudinal wavevector. We have achieved PBG over a broad spectral range (bandwidth similar to 400 GHz) ranging from 1.65 to 2.05 THz in the proposed HC-mPOF. The achievable loss coefficient in our designed HC-mPOF is...

  10. Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications.

    Science.gov (United States)

    Jaworski, Piotr; Yu, Fei; Maier, Robert R J; Wadsworth, William J; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2013-09-23

    We present high average power picosecond and nanosecond pulse delivery at 1030 nm and 1064 nm wavelengths respectively through a novel hollow-core Negative Curvature Fiber (NCF) for high-precision micro-machining applications. Picosecond pulses with an average power above 36 W and energies of 92 µJ, corresponding to a peak power density of 1.5 TWcm⁻² have been transmitted through the fiber without introducing any damage to the input and output fiber end-faces. High-energy nanosecond pulses (>1 mJ), which are ideal for micro-machining have been successfully delivered through the NCF with a coupling efficiency of 92%. Picosecond and nanosecond pulse delivery have been demonstrated in fiber-based laser micro-machining of fused silica, aluminum and titanium.

  11. Supercontinuum generation and tunable ultrafast emission in the vacuum ultraviolet using noble-gas-filled hollow-core photonic crystal fiber

    CERN Document Server

    Ermolov, Alexey; Frosz, Michael H; Travers, John C; Russell, Philip St J

    2015-01-01

    We report on the generation of a three-octave supercontinuum extending from the vacuum ultraviolet (VUV) to the near-infrared, spanning at least 113 to 1000 nm (i.e., 11 to 1.2 eV), in He-filled hollow-core kagome-style photonic crystal fiber. The same system also permits generation of narrower-band VUV radiation tunable from 113 to 200 nm with efficiencies exceeding 1% and VUV pulse energies in excess of 50 nJ. Modeling confirms that the mechanism involves soliton self-compression to sub-femtosecond pulse durations, dispersive-wave emission and the plasma-induced soliton self-frequency blue-shift. The bandwidth of the generated VUV light, which modeling shows to be coherent, is sufficient to support 500 as single-cycle pulses.

  12. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  13. A new modality for minimally invasive CO2 laser surgery: flexible hollow-core photonic bandgap fibers.

    Science.gov (United States)

    Shurgalin, Max; Anastassiou, Charalambos

    2008-01-01

    Carbon dioxide (CO2) lasers have become one of the most common surgical lasers due to excellent tissue interaction properties that offer precise control of cutting and ablation depth, minimal thermal damage to surrounding tissue, and good hemostasis. However, realization of the benefits offered by using surgical CO2 lasers in many endoscopic, minimally invasive surgical procedures has been inhibited by the absence of reliable, flexible fiber laser beam delivery systems. Recently, novel hollow-core photonic bandgap optical fibers for CO2 lasers were developed that offer high flexibility and mechanical robustness with good optical performance under tight bends. These fibers can be used through rigid and flexible endoscopes and various handpieces and will allow surgeons to perform delicate and precise laser surgery procedures in a minimally invasive manner. This paper describes the basic design of laser beam delivery system, different surgical fiber designs and their characteristics, and usage with existing surgical CO2 laser models. A few examples of successful CO2 laser surgeries performed with these fibers are presented.

  14. Improving femtosecond laser pulse delivery through a hollow core photonic crystal fiber for temporally focused two-photon endomicroscopy.

    Science.gov (United States)

    Choi, Heejin; So, Peter T C

    2014-10-15

    In this paper, we present a strategy to improve delivery of femtosecond laser pulses from a regenerative amplifier through a hollow core photonic crystal fiber for temporally focused wide-field two-photon endomicroscopy. For endomicroscope application, wide-field two-photon excitation has the advantage of requiring no scanning in the distal end. However, wide-field two-photon excitation requires peak power that is 10(4)-10(5) times higher than the point scanning approach corresponding to femtosecond pulses with energy on the order of 1-10 μJ at the specimen plane. The transmission of these high energy pulses through a single mode fiber into the microendoscope is a significant challenge. Two approaches were pursued to partially overcome this limitation. First, a single high energy pulse is split into a train of pulses with energy below the fiber damage threshold better utilizing the available laser energy. Second, stretching the pulse width in time by introducing negative dispersion was shown to have the dual benefit of reducing fiber damage probability and compensating for the positive group velocity dispersion induced by the fiber. With these strategy applied, 11 fold increase in the two photon excitation signal has been demonstrated.

  15. Investigation on the Effect of Underwater Acoustic Pressure on the Fundamental Mode of Hollow-Core Photonic Bandgap Fibers

    Directory of Open Access Journals (Sweden)

    Adel Abdallah

    2015-01-01

    Full Text Available Recently, microstructured optical fibers have become the subject of extensive research as they can be employed in many civilian and military applications. One of the recent areas of research is to enhance the normalized responsivity (NR to acoustic pressure of the optical fiber hydrophones by replacing the conventional single mode fibers (SMFs with hollow-core photonic bandgap fibers (HC-PBFs. However, this needs further investigation. In order to fully understand the feasibility of using HC-PBFs as acoustic pressure sensors and in underwater communication systems, it is important to study their modal properties in this environment. In this paper, the finite element solver (FES COMSOL Multiphysics is used to study the effect of underwater acoustic pressure on the effective refractive index neff of the fundamental mode and discuss its contribution to NR. Besides, we investigate, for the first time to our knowledge, the effect of underwater acoustic pressure on the effective area Aeff and the numerical aperture (NA of the HC-PBF.

  16. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    Science.gov (United States)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  17. Broadband, Lensless and Optomechanically Stabilised Coupling into Microfluidic Hollow-Core Photonic Crystal Fiber Using Glass Nanospike

    CERN Document Server

    Zeltner, Richard; Pennetta, Riccardo; Russell, Philip St J

    2016-01-01

    We report a novel technique for launching broadband laser light into liquid-filled hollow-core photonic crystal fiber (HC-PCF). It uniquely offers self-alignment and self-stabilization via optomechanical trapping of a fused silica nanospike, fabricated by thermally tapering and chemically etching a single mode fiber into a tip diameter of 350 nm. We show that a trapping laser, delivering ~300 mW at 1064 nm, can be used to optically align and stably maintain the nanospike at the core center. Once this is done, a broadband supercontinuum beam (~575 to 1064 nm) can be efficiently and close to achromatically launched in the HC-PCF. The system is robust against liquid-flow in either direction inside the HC-PCF and the Fresnel back-reflections are reduced to negligible levels compared to free-space launching or butt-coupling. The results are of potential relevance for any application where the efficient delivery of broadband light into liquid-core waveguides is desired.

  18. Leakage-free, guidance of light in hollow core optical fibers

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Bjarklev, Anders Overgaard

    2000-01-01

    Summary form only given. Despite their tremendous success optical fibers of today are limited by the laws of total internal reflection. During the past five years, however, it has become increasingly evident, that a new operational principle of optical fibers is possible, namely guidance due...

  19. Orbital angular momentum modes by twisting of a hollow core antiresonant fiber

    DEFF Research Database (Denmark)

    Stefani, Alessio; Kuhlmey, Boris T.; Fleming, Simon

    2017-01-01

    physical phenomena [2]. We previously reported the ability to create helical hollow fibers by mechanically twisting a tube lattice fiber made of polyurethane, the twist of which can be adjusted and reversed [3]. In this work we report how such deformation induces a mode transformation to an OAM mode...

  20. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber.

    Science.gov (United States)

    U S, Dinish; Fu, Chit Yaw; Soh, Kiat Seng; Ramaswamy, Bhuvaneswari; Kumar, Anil; Olivo, Malini

    2012-03-15

    Enzyme-linked immunosorbent assays (ELISA) are commonly used for detecting cancer proteins at concentration in the range of about ng-μg/mL. Hence it often fails to detect tumor markers at the early stages of cancer and other diseases where the amount of protein is extremely low. Herein, we report a novel photonic crystal fiber (PCF) based surface enhanced Raman scattering (SERS) sensing platform for the ultrasensitive detection of cancer proteins in an extremely low sample volume. As a proof of concept, epidermal growth factor receptors (EGFRs) in a lysate solution from human epithelial carcinoma cells were immobilized into the hollow core PCF. Highly sensitive detection of protein was achieved using anti-EGFR antibody conjugated SERS nanotag. This SERS nanotag probe was realized by anchoring highly active Raman molecules onto the gold nanoparticles followed by bioconjugation. The proposed sensing method can detect low amount of proteins at ∼100 pg in a sample volume of ∼10 nL. Our approach may lead to the highly sensitive protein sensing methodology for the early detection of diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    Science.gov (United States)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  2. All-fiber reflecting temperature probe based on the simplified hollow-core photonic crystal fiber filled with aqueous quantum dot solution.

    Science.gov (United States)

    Wu, Jian; Yin, Xiaojin; Wang, Wenyuan; Hong, Xueming; Du, Yu; Geng, Youfu; Li, Xuejin

    2016-02-10

    An all-fiber reflecting fluorescent temperature probe is proposed based on the simplified hollow-core photonic crystal fiber (SHC-PCF) filled with an aqueous CdSe/ZnS quantum dot solution. SHC-PCF is an excellent PCF used to fill liquid materials, which has low loss transmission bands in the visible wavelength range and enlarged core sizes. Both end faces of the SHC-PCF were spliced with multimode fiber after filling in order to generate a more stable and robust waveguide structure. The obtained temperature sensitivity dependence of the emission wavelength and the self-referenced intensity are 126.23 pm/°C and -0.007/°C in the temperature range of -10°C-120°C, respectively.

  3. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  4. Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator.

    Science.gov (United States)

    Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah

    2016-05-15

    We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.

  5. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror....... The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse...

  6. Analysis of polarization noise in transmissive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber.

    Science.gov (United States)

    Jiao, Hongchen; Feng, Lishuang; Wang, Kai; Liu, Ning; Yang, Zhaohua

    2017-10-30

    We realize a transmissive single-beam-splitter resonator optic gyro based on a hollow-core photonic-crystal fiber (HCPCF), utilizing a micro-optical coupler formed by pairs of lenses and one filter, which is a new type of resonator fiber optic gyro based on the HCPCF (HC-RFOG). We build a mathematical model of the polarization noise based on the transfer function of this novel transmissive single-beam-splitter resonator. We construct a HC-RFOG and simulate and validate the effects of polarization noise on the gyro system. In addition, we apply an effective method to suppress the polarization noise and prove its efficacy through experiments. The bias stability of the gyro system is successfully improved from 25 °/h to 2 °/h, which indicates a remarkable advance of performance of HC-RFOG.

  7. Temperature sensing property of hollow-core photonic bandgap fiber filled with CdSe/ZnS quantum dots in an UV curing adhesive

    Science.gov (United States)

    Wang, Helin; Yang, Aijun

    2017-11-01

    A temperature sensor based on the hollow-core photonic bandgap fiber filled with the CdSe/ZnS QDs dissolved in an ultraviolet (UV) curing adhesive is reported. The sensor shows a linear variation of the photoluminescence (PL) peak wavelength for a temperature range from 40 °C to 140 °C, with a correlation factor of 0.99263 and a sensitivity of 0.05744 nm/°C. Although the peak intensity of emission spectrum increased exponentially with the temperature, a linear temperature-dependence result with a correlation factor of 0.99917 and a slope of 2.04 × 10-3 °C-1 can be obtained with a self-reference spectral intensity method. The linear variation characteristics of the peak wavelength and the self-reference intensity of PL spectrum indicates the designed fiber temperature sensor is feasible in the practical application.

  8. Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber

    Science.gov (United States)

    Abokhamis Mousavi, Seyedmohammad; Mulvad, Hans Christian Hansen; Wheeler, Natalie; Horak, Peter; Bradley, Thomas D.; Alam, Shaif-ul; Hayes, John; Sandoghchi, Seyed Reza; Richardson, David; Poletti, Francesco

    2017-02-01

    We have demonstrated Raman frequency conversion and supercontinuum light generation in a hollow core Kagomé fiber filled with air at atmospheric pressure, and developed a numerical model able to explain the results with good accuracy. A solid-state disk laser was used to launch short pulses ( 6ps) at 1030nm into an in-house fabricated hollow core Kagomé fiber with negative core curvature and both ends were open to the atmosphere. The fiber had a 150 THz wide transmission window and a record low loss of 12 dB/km at the pump wavelength. By gradually increasing the pulse energy up to 250 μJ, we observed the onset of different Kerr and Raman based optical nonlinear processes, resulting in a supercontinuum spanning from 850 to 1600 nm at maximum input power. In order to study the pulse propagation dynamics of the experiment, we used a generalized nonlinear Schrödinger equation (GNLSE). Our simulations showed that the use of a conventional damping oscillator model for the time-dependent response of the rotational Raman component of air was not accurate enough at such high intensities and large pulse widths. Therefore, we adopted a semiquantum Raman model for air, which included the full rotational and vibrational response, and their temperature-induced broadening. With this, our GNLSE results matched well the experimental data, which allowed us to clearly identify the nonlinear phenomena involved in the process. Aside from the technological interest in the high spectral density of the supercontinuum demonstrated, the validated numerical model can provide a valuable optimization tool for gas based nonlinear processes in air-filled fibers.

  9. Chromatic dispersion measurement along both polarization directions of a birefringent hollow-core photonic crystal fiber using spectral interferometry.

    Science.gov (United States)

    Grósz, Tímea; Kovács, Attila P; Varjú, Katalin

    2017-07-01

    Applications based on photonic crystal fibers depend strongly on their dispersion properties that might differ from the desired specifications due to deficiencies in the manufacturing process. Since dispersion characteristics might also be affected by the placement of the fiber, in this paper the effect of various placements on the chromatic dispersion properties of a commercially available HC-800-02 photonic crystal fiber was investigated between 760 and 870 nm with Fourier-transform spectral interferometry. To test the scaling of dispersion with fiber length, samples of different lengths ranging from 10 to 97 cm were used in the measurements. It was found that the dispersion properties of the orthogonal directions were different. The dispersion parameter showed small dependence on the placement and fiber length. The polarization-mode dispersion (PMD) of the fiber was measured using an indirect and a direct technique. To retrieve the PMD directly in the case of the shorter fibers where the fringes were too sparse for the Fourier method, the so-called minima-maxima method was employed. The precision was comparable with both techniques; however, the direct approach proved to be more accurate when longer samples were measured, and the indirect method seemed to be more reliable in the case of shorter fibers.

  10. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    Science.gov (United States)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC

  11. optimizing compression zone of flanged hollow cored concrete ...

    African Journals Online (AJOL)

    eobe

    effective flange width and the hollow core position in the compression zone of a plain concrete beam with a point ... rectangular concrete beam to the topmost fiber could ... concrete. The results obtained by finite element solution showed good agreement with experimental results. In an investigation of thirty-nine reinforced.

  12. Hollow Core, Whispering Gallery Resonator Sensors

    CERN Document Server

    Ward, Jonathan M; Chormaic, Síle Nic

    2014-01-01

    A review of hollow core whispering gallery resonators (WGRs)is given. After a short introduction to the topic of whispering gallery resonators we provide a description of whispering gallery modes in hollow or liquid core WGRs. Next, whispering gallery mode (WGM) sensing mechanisms are outlined and some fabrication methods for microbubbles, microcapillaries and other tubular WGM devices are discussed. We then focus on the most common applications of hollow core WGRs, namely refractive index and temperature sensing, gas sensing, force sensing, biosensing, and lasing. The review highlights some of the key papers in this field and gives the reader a general overview of the current state-of-the-art.

  13. Infrared Fiber Optic Sensors

    Science.gov (United States)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  14. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...... is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible...

  15. Loss mechanisms in hollow-core fibers

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, B.J.; Jakobsen, C.

    2009-01-01

    continue to increase the maximum capacity; either by reducing channel spacing or by increasing bit rates. This requires the use of state-of-the-art forward error correction (FEC) coding and de-coding in order to improve system margins and realize transmission over long-haul distances. In next....... With the rise of digital signal processing as an integral part of optical communication systems, most of the complexity is shifted from the optical/analogue to the electrical/digital domain. This will fundamentally change the way we should design our systems. At the same time, new generations of WDM systems......-generation optical transmission systems, the design of DSP algorithms and FEC coding & decoding will most likely require acombined approach. This will give rise to a new level of complexity in algorithm design and implementation challenges that will be a major challenge for both industry and the research community...

  16. Hollow-core FRP-concrete-steel bridge columns under extreme loading.

    Science.gov (United States)

    2015-04-01

    This report presents the behavior of hollow-core fiber reinforced polymer concrete - steel columns (HC-FCS) under : combined axial-flexural as well as vehicle collision loads. The HC-FCS column consists of a concrete wall sandwiched between an ou...

  17. optimizing compression zone of flanged hollow cored concrete ...

    African Journals Online (AJOL)

    eobe

    effective flange width and the hollow core position in the compression zone of a plain concrete beam with a point loaded at .... OPTIMIZING COMPRESSION ZONE OF FLANGED HOLLOW CORED CONCRETE BEAMS USING MOMENT OF INERTIA THEORY, ... chi-square test, a correction factor was obtained using.

  18. Mid-infrared fiber lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Jackson, Stuart D.; Sorokina, I.T.; Vodopyanov, K.L.

    2003-01-01

    The current state of the art in mid-infrared fiber lasers is reviewed in this chapter. The relevant fiber-host materials such as silicates, fluorides, chalcogenides, and ceramics, the fiber, pump, and resonator geometries, and the spectroscopic properties of rare-earth ions are introduced. Lasers at

  19. Raman self-induced-transparency soliton trains in hollow-core photonic crystals

    Science.gov (United States)

    Petmegni, Duplex S. Mbieda; Dikandé, Alain M.; Essimbi, B. Z.

    2017-06-01

    Periodic trains of non-topological dark and bright optical solitons are proposed as one of the possible nonlinear optical structures that could be generated during Raman transitions in nonlinear hollow-core photonic crystal fibers filled with gas. It is shown that Stokes-like probe fields, generated by stimulated Raman transitions upon propagation of the master pump in the hollow-core fiber, form a broadband spectrum, whose discrete branch is populated by several distinct localized periodic soliton modes with well-defined "quantum numbers". Such soliton trains, which are intended to complement recently proposed single-pulse and single-dark solitons for multi-channel communication applications, can be formed by temporal quantum entanglements of the single-soliton fields. Attention is laid on a possibility to generate such soliton trains in the absence of Kerr nonlinearity, and total controllability of their shape profiles including their temporal periods and average widths is demonstrated through variations of characteristic parameters of the hollow-core photonic crystal fiber.

  20. Infrared fiber optic materials

    Science.gov (United States)

    Feigelson, Robert S.

    1987-01-01

    The development of IR fiber optics for use in astronomical and other space applications is summarized. Candidate materials were sought for use in the 1 to 200 micron and the 200 to 1000 micron wavelength range. Synthesis and optical characterization were carried out on several of these materials in bulk form. And the fabrication of a few materials in single crystal fiber optic form were studied.

  1. Hollow-core photonic-crystal fibres for laser dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Konorov, Stanislav O [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation); Mitrokhin, Vladimir P [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation); Fedotov, Andrei B [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation); Sidorov-Biryukov, Dmitrii A [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation); Beloglazov, Valentin I [Technology and Equipment for Glass Structures Institute, pr. Stroitelei 1, 410044 Saratov (Russian Federation); Skibina, Nina B [Technology and Equipment for Glass Structures Institute, pr. Stroitelei 1, 410044 Saratov (Russian Federation); Wintner, Ernst [Institut fuer Photonik, Technische Universitaet Wien, Gusshausstrasse 27/387, 1040 Wien (Austria); Scalora, Michael [Weapons Sciences Directorate, US Army Aviation and Missile Command Huntsville, AL 35898-5000 (United States); Zheltikov, Aleksei M [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation)

    2004-04-07

    Hollow-core photonic-crystal fibres (PCFs) for the delivery of high-fluence laser radiation capable of ablating tooth enamel are developed. Sequences of picosecond pulses of 1.06 {mu}m Nd:YAG-laser radiation with a total energy of about 2 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 {mu}m and are focused on a tooth surface in vitro to ablate dental tissue. The hollow-core PCF is shown to support the single-fundamental-mode regime for 1.06 {mu}m laser radiation, serving as a spatial filter and allowing the laser beam quality to be substantially improved. The same fibre is used to transmit emission from plasmas produced by laser pulses on the tooth surface in the backward direction for detection and optical diagnostics.

  2. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...... to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality...

  3. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... national building regulations. The paper presents a detailed analysis of the mechanisms responsible for the loss of load-bearing capacity of hollow-core slabs when exposed to fire. Furthermore, it compares theoretical calculation and assessment according to the structural codes with data derived from...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load...

  4. Shear and anchorage behaviour of fire exposed hollow core slabs

    NARCIS (Netherlands)

    Fellinger, J.

    2005-01-01

    The fire resistance of hollow core slabs is currently assessed considering flexural failure only. However, fire tests show that shear or anchorage failure can also govern the load bearing behaviour. This paper is based on the dissertation by the author1 and discusses existing and new fire tests. It

  5. Fabrication of silica hollow core photonic crystal fibres for Er:YAG surgical applications

    Science.gov (United States)

    Urich, Artur; Maier, Robert R. J.; Knight, Jonathan C.; Mangan, Brian J.; Renshaw, Steven; Hand, Duncan P.; Shephard, Jonathan D.

    2012-01-01

    In this work we present the fabrication of silica hollow core photonic crystal fibres (HC-PCF) with guidance at 2.94μm. As light is confined inside the hollow core with a very small overlap of the guided E-M wave with the fibre material, the high intrinsic loss of silica at these mid-infrared wavelengths can be overcome. The band gap effect is achieved by a periodic structure made out of air and fused silica. As silica is bio-inert, chemically stable and mechanically robust, these fibres have potential advantages over other multi-component, non-silica optical fibres designed to guide in this wavelength regime. These fibres have a relatively small diameter, low bend sensitivity and single-mode like guidance which are ideal conditions for delivering laser light down a highly flexible fibre. Consequently they provide a potential alternative to existing surgical laser delivery methods such as articulated arms and lend themselves to endoscopy and other minimally invasive surgical procedures. In particular, we present the characterisation and performance of these fibres at 2.94 μm, the wavelength of an Er:YAG laser. This laser is widely used in surgery since the wavelength overlaps with an absorption band of water which results in clean, non-cauterised cuts. However, the practical implementation of these types of fibres for surgical applications is a significant challenge. Therefore we also report on progress made in developing hermetically sealed end tips for these hollow core fibres to avoid contamination. This work ultimately prepares the route towards a robust, practical delivery system for this wavelength.

  6. Dual hollow-core anti-resonant fibres

    Science.gov (United States)

    Wheeler, N. V.; Bradley, T. D.; Hayes, J. R.; Jasion, G. T.; Chen, Y.; Sandoghchi, S. R.; Horak, P.; Poletti, F.; Petrovich, M. N.; Richardson, D. J.

    2016-04-01

    While hollow core-photonic crystal fibres are now a well-established fibre technology, the majority of work on these speciality fibres has been on designs with a single core for optical guidance. In this paper we present the first dual hollow-core anti-resonant fibres (DHC-ARFs). The fibres have high structural uniformity and low loss (minimum loss of 0.5 dB/m in the low loss guidance window) and demonstrate regimes of both inter-core coupling and zero coupling, dependent on the wavelength of operation, input polarisation, core separation and bend radius. In a DHC-ARF with a core separation of 4.3 μm, we find that with an optimised input polarisation up to 65% of the light guided in the launch core can be coupled into the second core, opening up applications in power delivery, gas sensing and quantum optics.

  7. Structural Behavior of Fibrous Reinforced Concrete Hollow Core One-Way Slabs Strengthening by C.F.R.P

    Directory of Open Access Journals (Sweden)

    وصيف مجيد

    2016-02-01

    Full Text Available A reinforced concrete hollow core one-way slab is one of the types of slabs used widely around the world in residential and industrial buildings to take advantage of them Economic and thermal insulation as well as to reduce the self-weight of the construction. The aim of the present study is to examine the structural behavior of the reinforced concrete hollow core one-way slabs reduce failure using the normal concrete and fibrous concrete and then strengthened using carbon fiber(CFRPThis study include molding of ( 6 specimens differ in terms of the voids volume (Vv , volumetric percentage of steel fibers (ا, and then strengthened by using fibers of carbon , with the aim of rehabilitation by fibers, carbon polymer (CFRP is to find out how efficient element structural when treated after the occurrence of the failure and the validity of its use in the event of a failure has occurred entirely or partly in the roof, and re- examined using the same method and conditions that were examined ceilings is affected through it, knowing that these ceilings have been addressed and strengthened in the same way , the results of the tests of the models that have been rehabilitated using carbon fiber (CFRP, compared with the same models before strengthening and examined reduce failure, increased very high susceptibility endurance extreme , with the increase ranging from (51.6% to (96.2%, as has been observed decrease in deflection value of models after strengthening by (CFRP.It is concluded through this study the possibility of using its concrete hollow core one-way slab as a roofing system for buildings also proved the highly efficient for this slab after rehabilitation using carbon fiber (CFRP.

  8. Nonlinear modes in the hollow-cores of liquid vortices

    KAUST Repository

    Amaouche, Mustapha

    2013-09-01

    In this paper we show that the wave patterns observed on the interfacial contours of hollow-core vortices, produced within a shallow layer of fluid contained in stationary cylinder and driven by a rotating disk at the bottom [G.H. Vatistas, H.A. Abderrahmane, M.H. Kamran Siddiqui, Experimental confirmation of Kelvin\\'s equilibria, Phys. Rev. Lett. 100 (2008) 174503-174504], can be described as travelling cnoidal waves. These rotating stationary waves are obtained as solutions of a Korteweg-de Vries type equation, in accordance with the geometrical and kinematic characteristics of the observed polygonal patterns. © 2013 Elsevier Masson SAS. All rights reserved.

  9. Advances in mid-infrared fiber lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Jackson, S.D.; Ebrahim-Zadeh, M.; Sorokina, I.T.

    The current state of the art in mid-infrared fiber laser research is reviewed. The relevant glass and ceramic fiber host matkrials and the fiber, pump, and resonator geometries are introduced. Lasers operating on transitions ranging from 1.9 to 4 pm occurring in the rare-earth-ions $Tm^{3+}$,

  10. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  11. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, Henrik Brøner; Nielsen, Mogens Peter

    2014-01-01

    This paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in Building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...... saw-cut into units with the desirable length. For this reason, hollow core slabs are usually not shear reinforced and anchorage of the prestressing strands has to be established by bond. Hollow core slabs may therefore be more critical to shear and Anchorage failure than ordinary two-way spanning...... reinforced concrete slabs....

  12. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter

    2014-01-01

    Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...... saw-cut into units with the desirable length. For this reason, hollow core slabs are usually not shear reinforced and anchorage of the prestressing strands has to be established by bond. Hollow core slabs may therefore be more critical to shear and anchorage failure than ordinary two-way spanning...... reinforced concrete slabs....

  13. Flexible hollow-core waveguides for CO2 lasers: potential and limitations as beam guiding systems for medical applications

    Science.gov (United States)

    Behler, Klaus; Klein, Karl-Friedrich; Johannis, Jutta

    2004-06-01

    In contrast to Nd:YAG-lasers no amorphous material is existing which can be used as flexible solid optical fiber for far infrared wavelength as it is emitted by CO2-lasers. This is resulting in some disadvantages regarding beam guiding and handling, e. g. reduced motion flexibility and accessibility, relative large and stiff devices for beam guiding. It is well known that beam guiding by hollow waveguide structures is possible in principle. Main problems in the development and realisation of such kind of beam guiding systems have been limitations in transfer efficiency, flexibility, length and diameter. A possible technical solution for the medium-power range is basing on flexible silica capillaries which are coated inside with a double layer system out of silver (metallic) and silverjodid (dielectric) using a chemical deposition process. These capillaries can actually be produced with inner diameter between 0,5 mm - 2 mm and a length up to 13 m, covered by a mechanical protection out of acrylic material. The optical principle of the hollow-core-waveguides (HCW) is presented as well as some first results regarding their influence on the transported beam. So investigations will be presented for instance showing the attenuation depending on different parameters of the waveguide system. In addition to that it will be shown that, because of the influence on the wave front and of the numberical aperture, the focussability of a laser beam is reduced but nevertheless the transmitted beam can be focused to small diameters. The principal usability as well as the limits of flexible HCW in the medium power range, which is typically used in medical applications, will be demonstrated by the presented results.

  14. Generation of three-octave-spanning transient Raman comb in hydrogen-filled hollow-core PCF.

    Science.gov (United States)

    Tani, F; Belli, F; Abdolvand, A; Travers, J C; Russell, P St J

    2015-03-15

    A noise-seeded transient comb of Raman sidebands spanning three octaves from 180 to 2400 nm, is generated by pumping a hydrogen-filled hollow-core photonic crystal fiber with 26-μJ, 300-fs pulses at 800 nm. The pump pulses are spectrally broadened by both Kerr and Raman-related self-phase modulation (SPM), and the broadening is then transferred to the Raman lines. In spite of the high intensity, and in contrast to bulk gas-cell based experiments, neither SPM broadening nor ionization are detrimental to comb formation.

  15. Seismic assessment of WSDOT bridges with prestressed hollow core piles : part II.

    Science.gov (United States)

    2009-12-01

    This report investigates the seismic performance of a reinforced concrete : bridge with prestressed hollow core piles. Both nonlinear static and nonlinear dynamic : analyses were carried out. A three-dimensional spine model of the bridge was : ...

  16. Towards implementation of hollow core fibres for surgical applications

    Science.gov (United States)

    Urich, Artur; Delmonte, Tiina; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2011-03-01

    Presently, there is no truly flexible delivery system for light from Er:Yag medical lasers (λ = 2.94 μm) which allows surgeons to work unrestricted. Instead, either a relatively inflexible articulated arm or multi-mode fibre, limited to large bend radii, must be used. One proposed solution is the use of novel types of hollow core - band gap optical fibre rather than more traditional large area solid core fibres. In these silica based fibres, material absorption and damage limitations are overcome by using a photonic band gap structure. This confines radiation to lower order modes, that are guided in a small diameter air core. The overall fibre diameter is also smaller, which allows a smaller mechanical bend radius. Together with the guidance in air, this improves the laser power damage threshold. However, there are many practical hurdles that must be overcome to achieve a robust system for use in surgery. One of the main problems is that the fibre structure is hollow and ingress of dust, vapour, fluids and other contaminants need to be prevented to ensure safe in-vivo usage. Additionally, any infibre contamination will degrade the laser damage resistance of the fibre leading to potential catastrophic failure. The development of a robust and hermetically sealed end cap for the fibre, without adversely affecting beam quality or damage threshold is an essential prerequisite for the safe and efficient use of such fibres in surgery. In this paper we report on the progress on implementing end caps and describe novel methods of sealing off these hollow fibres in particular for surgical applications. This work will demonstrate that the use of these superior fibres with low loss guidance at 2.94 μm in surgery is feasible.

  17. 3D-printed PMMA Preform for Hollow-core POF Drawing

    DEFF Research Database (Denmark)

    Zubel, M. G.; Fasano, Andrea; Woyessa, Getinet

    2016-01-01

    In this paper we report the first, to our knowledge, 3D-printed hollow-core poly(methyl methacrylate) (PMMA) preform for polymer optical fibre drawing. It was printed of commercial PMMA by means of fused deposition modelling technique. The preform was drawn to cane, proving good enough quality...... of drawing process and the PMMA molecular weight to be appropriate for drawing. This ascertains that the manufacturing process provides preforms suitable for hollow-core fibre drawing. The paper focuses on maximisation of transparency of PMMA 3D printouts by optimising printing process parameters: nozzle...

  18. Microstructured optical fibers for gas sensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William Albert; Choudhury, Niloy; Palit, Sabarni

    2017-10-17

    Microstructured optical fiber (MOF) includes a cladding extending a length between first and second ends. The cladding includes an inner porous microstructure that at least partially surrounds a hollow core. A perimeter contour of the hollow core has a non-uniform radial distance from a center axis of the cladding such that first segments of the cladding along the perimeter contour have a shorter radial distance from the center axis relative to second segments of the cladding along the perimeter contour. The cladding receives and propagates light energy through the hollow core, and the inner porous microstructure substantially confines the light energy within the hollow core. The cladding defines at least one port hole that extends radially from an exterior surface of the cladding to the hollow core. Each port hole penetrates the perimeter contour of the hollow core through one of the second segments of the cladding.

  19. Near-Field Imaging of Optical Fibers in the Mid-Infrared for New Mid-Wave Infrared Fiber Science

    Science.gov (United States)

    2017-03-17

    AFRL-AFOSR-UK-TR-2017-0017 Near-field imaging of optical fibres in the mid-infrared for new Mid-Wave Infrared Fiber Science Angela Seddon UNIVERSITY...in the mid-infrared for new Mid-Wave Infrared Fiber Science 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0180 5c.  PROGRAM ELEMENT NUMBER...Infrared Fiber Science FINAL REPORT & COLLATION 14 March 2017 State-of-the-art, mid-infrared (3-12 m wavelength) optical

  20. Metal-assisted coupling to hollow-core photonic crystal fibres

    DEFF Research Database (Denmark)

    Sørensen, Thorkild; Hansen, Theis Peter; Bjarklev, Anders Overgaard

    2005-01-01

    Selective coupling to the fundamental mode of short hollow-core photonic bandgap fibres without exciting cladding modes is improved by gold-coated fibre end facets. Cladding modes are suppressed by 20–30 dB for single-and multimode fibre launch, respectively, while in-band power loss is 3–8 dB....

  1. Numerical Analysis of Heat Storage and Heat Conductivity in the Concrete Hollow Core Deck Element

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    the overall heat transfer and heat storage in the hollow-core decks. The presented results allow comparison between detailed results from 2D-COMSOL simulations and simple 1D calculations from the whole building simulation tool such as BSim program and moreover, it is possible to validate the calculation...

  2. A Simplified Method for Stationary Heat Transfer of a Hollow Core Concrete Slab Used for TABS

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo

    2014-01-01

    Thermally activated building systems (TABS) have been an energy efficient way to improve the indoor thermal comfort. Due to the complicated structure, heat transfer prediction for a hollow core concrete used for TABS is difficult. This paper proposes a simplified method using equivalent thermal r...

  3. Hollow Waveguide Gas Sensor for Mid-Infrared Trace Gas Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Young, C; Chan, J; Carter, C; Mizaikoff, B

    2007-07-12

    A hollow waveguide mid-infrared gas sensor operating from 1000 cm{sup -1} to 4000 cm{sup -1} has been developed, optimized, and its performance characterized by combining a FT-IR spectrometer with Ag/Ag-halide hollow core optical fibers. The hollow core waveguide simultaneously serves as a light guide and miniature gas cell. CH{sub 4} was used as test analyte during exponential dilution experiments for accurate determination of the achievable limit of detection (LOD). It is shown that the optimized integration of an optical gas sensor module with FT-IR spectroscopy provides trace sensitivity at the few hundreds of parts-per-billion concentration range (ppb, v/v) for CH{sub 4}.

  4. Pulsed photothermal interferometry for high sensitivity gas detection with hollow-core photonic bandgap fibre

    Science.gov (United States)

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ho, Hoi Lut

    2017-04-01

    Pulsed photothermal interferometry (PTI) gas sensor with hollow-core photonic bandgap fibre (HC-PBF) is demonstrated with a Sagnac interferometer-based phase detection system. Under the condition of constant peak pump power, the optimal pulse duration is found to be > 1:2 μs for detecting low-concentration of trace gases in nitrogen, limited by thermal conduction of gases within the hollow-core. Preliminary experiments with a 0.62-mlong HC-PBF gas cell, low peak power ( 20:2mW) and a boxcar averager with 10k average times demonstrated a detection limit of 3:3 p:p:m acetylene. Detection limit down to ppb or lower is expected with high peak power pump pulses.

  5. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    Science.gov (United States)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  6. Mode multiplexing at 2×20Gbps over 19-cell hollow-core photonic band gap fibre

    DEFF Research Database (Denmark)

    Carpenter, Joel; Xu, Jing; Peucheret, Christophe

    2012-01-01

    This paper demonstrates the first mode-multiplexed system over 19-cell hollow-core photonic band gap fibre, at 2×20Gbps using the LP0,1 and LP2,1-like modes.......This paper demonstrates the first mode-multiplexed system over 19-cell hollow-core photonic band gap fibre, at 2×20Gbps using the LP0,1 and LP2,1-like modes....

  7. Dynamic and Static Behavior of Hollow-Core FRP-Concrete-Steel and Reinforced Concrete Bridge Columns under Vehicle Collision

    Directory of Open Access Journals (Sweden)

    Omar I. Abdelkarim

    2016-12-01

    Full Text Available This paper presents the difference in behavior between hollow-core fiber reinforced polymer-concrete-steel (HC-FCS columns and conventional reinforced concrete (RC columns under vehicle collision in terms of dynamic and static forces. The HC-FCS column consisted of an outer FRP tube, an inner steel tube, and a concrete shell sandwiched between the two tubes. The steel tube was hollow inside and embedded into the concrete footing with a length of 1.5 times the tube diameter while the FRP tube stopped at the top of footing. The RC column had a solid cross-section. The study was conducted through extensive finite element impact analyses using LS-DYNA software. Nine parameters were studied including the concrete material model, unconfined concrete compressive strength, material strain rate, column height-to-diameter ratio, column diameter, column top boundary condition, axial load level, vehicle velocity, and vehicle mass. Generally, the HC-FCS columns had lower dynamic forces and higher static forces than the RC columns when changing the values of the different parameters. During vehicle collision with either the RC or the HC-FCS columns, the imposed dynamic forces and their equivalent static forces were affected mainly by the vehicle velocity and vehicle mass.

  8. Preparation of hollow core/shell microspheres of hematite and its adsorption ability for samarium.

    Science.gov (United States)

    Yu, Sheng-Hui; Yao, Qi-Zhi; Zhou, Gen-Tao; Fu, Sheng-Quan

    2014-07-09

    Hollow core/shell hematite microspheres with diameter of ca. 1-2 μm have been successfully achieved by calcining the precursor composite microspheres of pyrite and polyvinylpyrrolidone (PVP) in air. The synthesized products were characterized by a wide range of techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and Brunauer-Emmett-Teller (BET) gas sorptometry. Temperature- and time-dependent experiments unveil that the precursor pyrite-PVP composite microspheres finally transform into hollow core/shell hematite microspheres in air through a multistep process including the oxidation and sulfation of pyrite, combustion of PVP occluded in the precursor, desulfation, aggregation, and fusion of nanosized hematite as well as mass transportation from the interior to the exterior of the microspheres. The formation of the hollow core/shell microspheres dominantly depends on the calcination temperature under current experimental conditions, and the aggregation of hematite nanocrystals and the core shrinking during the oxidation of pyrite are responsible for the formation of the hollow structures. Moreover, the adsorption ability of the hematite for Sm(III) was also tested. The results exhibit that the hematite microspheres have good adsorption activity for trivalent samarium, and that its adsorption capacity strongly depends on the pH of the solution, and the maximum adsorption capacity for Sm(III) is 14.48 mg/g at neutral pH. As samarium is a typical member of the lanthanide series, our results suggest that the hollow hematite microspheres have potential application in removal of rare earth elements (REEs) entering the water environment.

  9. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures

    Science.gov (United States)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A.; Labis, Joselito Puzon; Alothman, Zeid A.; Alhoshan, Mansour; Elzatahry, Ahmed A.; Zhang, Fan

    2016-01-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  10. Potential glucose monitoring of blood plasma using hollow core photonic crystal fibre

    Science.gov (United States)

    Horan, L. E.; Khara, G.; Rutowska, M.; Ellis, A. D.; Garcia Gunning, F. C.

    2011-05-01

    The ratio (ζ) of surface tension to viscosity of liquids can be determined using hollow core photonic crystal fibres (HCPCF), and we show here techniques to determine ζ of glucose levels within fluids, of nano-litre quantities. We demonstrate an optically integrated micro-capillary viscometer, to determine the concentrations of nano-litre solutions based on properties of their flow within HC-PCF. The filling of the fibres with liquids within a given range of refractive index will induce a shift in the photonic band gap of the fibre, allowing guidance of light at wavelengths that were originally outside the bandgap of the HC-PCF.

  11. 4.4-μm Raman laser based on hollow-core silica fibre

    Science.gov (United States)

    Gladyshev, A. V.; Kosolapov, A. F.; Khudyakov, M. M.; Yatsenko, Yu. P.; Kolyadin, A. N.; Krylov, A. A.; Pryamikov, A. D.; Biriukov, A. S.; Likhachev, M. E.; Bufetov, I. A.; Dianov, E. M.

    2017-06-01

    A Raman laser with a wavelength exceeding 4 μm is designed for the first time. Using a revolver silica fibre with a hollow core filled with molecular hydrogen (1H2) as an active medium, we have obtained SRS lasing at a wavelength of 4.4 μm under pumping by a pulsed erbium fibre laser (λ = 1.56 μm, τ = 2 ns). The SRS conversion quantum efficiency reaches 15 %, and the maximum output peak power at a wavelength of 4.4 μm is 0.6 kW.

  12. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  13. Thermal and Structural Analysis of a Hollow Core Space Shuttle Main Engine (SSME) Turbine Blade

    Science.gov (United States)

    Abdul-Aziz, Ali; Kalluri, Sreeramesh; McGaw, Michael A.

    1995-01-01

    The influence of primary and secondary orientations on the elastic response of a hollow core, (001)-oriented nickel base single-crystal superalloy turbine blade, was investigated under combined thermal and mechanical conditions. Finite element techniques is employed through MARC finite element code to conduct the analyses on a hollow core SSME turbine blade made out of PWA 1480 single crystal material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal blade were determined for different orientations of the blade. The influence of angular offsets such as the single crystal's primary and secondary orientations and the loading conditions on the elastic stress response of the PWA 1480 hollow blade are summarized. The influence of he primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle.

  14. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    OpenAIRE

    Ordu, M.; Guo, J.; G. Ng Pack; Shah, P.; S. Ramachandran; Hong, M K; Ziegler, L. D.; S. N. Basu; Erramilli, S

    2017-01-01

    Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed i...

  15. Mid infrared supercontinuum generation from chalcogenide glass waveguides and fibers

    DEFF Research Database (Denmark)

    Luther-Davies, Barry; Yu, Yi; Zhang, Bin

    2015-01-01

    I report work on mid-infrared super-continuum generation in chalcogenide fibers and waveguides pumped by 320fsec pulses at 21MHz in the 3-4.6µm range. Average powers of ≈20mW were produced with spectral coverage from <2µm to >11µm.......I report work on mid-infrared super-continuum generation in chalcogenide fibers and waveguides pumped by 320fsec pulses at 21MHz in the 3-4.6µm range. Average powers of ≈20mW were produced with spectral coverage from 11µm....

  16. Telluride glass step index fiber for the far infrared

    NARCIS (Netherlands)

    Maurugeon, S.; Boussard-Plédel, C.; Troles, J.; Faber, A.J.; Lucas, P.; Zhang, X.H.; Lucas, J.; Bureau, B.

    2010-01-01

    Nulling interferometry is an important technique under development for the DARWIN planet finding mission which enables the detection of the weak infrared emission lines of an orbiting planet. This technique requires the use of single mode optical fibers transmitting light as far as possible in the

  17. Gamma irradiation of minimal latency Hollow-Core Photonic Bandgap Fibres

    CERN Document Server

    Olanterae, L; Richardson, D J; Vasey, F; Wooler, J P; Petrovich, M N; Wheeler, N V; Poletti, F; Troska, J

    2013-01-01

    Hollow-Core Photonic-Bandgap Fibres (HC-PBGFs) offer several distinct advantages over conventional fibres, such as low latency and radiation hardness; properties that make HC-PBGFs interesting for the high energy physics community. This contribution presents the results from a gamma irradiation test carried out using a new type of HC-PBGF that combines sufficiently low attenuation over distances that are compatible with high energy physics applications together with a transmission bandwidth that covers the 1550 nm region. The radiation induced attenuation of the HC-PBGF was two orders of magnitude lower than that of a conventional fibre during a 67.5 h exposure to gamma-rays, resulting in a radiation-induced attenuation of only 2.1 dB/km at an accumulated dose of 940 kGy.

  18. Induction spectrometry using an ultrafast hollow-cored toroidal-coil (HTC) detector

    Science.gov (United States)

    Arbelo, Yunieski; Bleiner, Davide

    2017-02-01

    Ultrafast photoelectron and photoion spectroscopy (as well as their combination known as "coincidence spectroscopy") utilizes detectors based on different electron multipliers such as microchannel plates or single-channel electron multipliers. These detectors have a few important limitations such as fast-signal distortion (low pass operation), mutually exclusive positive or negative mode, dead time, and requirement of trigger. A high-pass induction detector, based on a hollow-cored toroidal coil, was developed that overcomes the above-mentioned limitations. The frequency-dispersive response and linearity of different configurations were analyzed. It is shown that the response is enhanced for ultrafast electron signals, dependent on construction parameters, thus offering response flexibility by design. Kinetic energy distributions of pseudospark-induced electron pulses are characterized in order to validate the capabilities in real applications.

  19. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  20. Biomedical, environmental, and industrial application of fiber optical infrared spectroscopy

    Science.gov (United States)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Bruch, Reinhard F.; Gummuluri, Satyashree

    2000-07-01

    An advanced infrared interferometric method using fiber optics has been developed for biomedical, environmental and industrial applications. The fiberoptic Evanescent Wave Fourier Transform Infrared (FEW-FTIR) spectroscopy method has been applied to diagnostics of numerous materials including living tissue without sample preparation. This highly sensitive diagnostics tool can conduct surface and subsurface analysis at the molecular level on such diverse materials as human tissue and body fluids, plants, soil, rocks, chemicals, oil, paper and polymers nondestructively, noninvasively in vivo. Operating in the attenuated total reflection regime in the middle-infrared range, the FEW-FTIR technique provides direct contact between the fiber probe and any surface. Our fiber optical spectroscopic device is compact, portable for any application and operates up to a distance of three meters with extremely low loss and nontoxic fibers. This method allows the detection of functional chemical groups and bonds directly from a surface by soft touching of a surface for 15 sec. Applications of this method include (1) early diagnostics of precancerous conditions and other diseases, (2) sun, laser radiation and the influence of other environmental factors (water, pollution and weather), (3) quality control during manufacturing processes, in process analysis.

  1. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Science.gov (United States)

    Ordu, M.; Guo, J.; Ng Pack, G.; Shah, P.; Ramachandran, S.; Hong, M. K.; Ziegler, L. D.; Basu, S. N.; Erramilli, S.

    2017-09-01

    Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3)) response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  2. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  3. Mid-Infrared Fiber-Coupled QCl-QEPAS Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

    2013-08-01

    An innovative spectroscopic system based on an external cavity quantum cascade laser (EC-QCL) coupled with a mid-infrared (mid-IR) fiber and quartz enhanced photoacoustic spectroscopy (QEPAS) is described. SF6 has been selected as a target gas in demonstration of the system for trace gas sensing. Single mode laser delivery through the prongs of the quartz tuning fork has been obtained employing a hollow waveguide fiber with inner silver–silver iodine (Ag–AgI) coatings and internal core diameter of 300 lm. A detailed design and realization of the QCL fiber coupling and output collimator system allowed almost practically all (99.4 %) of the laser beam to be transmitted through the spectrophone module. The achieved sensitivity of the system is 50 parts per trillion in 1 s, corresponding to a record for QEPAS normalized noise-equivalent absorption 2.7 9 10-10 W cm-1 Hz-1/2.

  4. Mid-infrared fiber-coupled QCL-QEPAS sensor

    Science.gov (United States)

    Spagnolo, Vincenzo; Patimisco, Pietro; Borri, Simone; Scamarcio, Gaetano; Bernacki, Bruce E.; Kriesel, Jason

    2013-08-01

    An innovative spectroscopic system based on an external cavity quantum cascade laser (EC-QCL) coupled with a mid-infrared (mid-IR) fiber and quartz enhanced photoacoustic spectroscopy (QEPAS) is described. SF6 has been selected as a target gas in demonstration of the system for trace gas sensing. Single mode laser delivery through the prongs of the quartz tuning fork has been obtained employing a hollow waveguide fiber with inner silver-silver iodine (Ag-AgI) coatings and internal core diameter of 300 μm. A detailed design and realization of the QCL fiber coupling and output collimator system allowed almost practically all (99.4 %) of the laser beam to be transmitted through the spectrophone module. The achieved sensitivity of the system is 50 parts per trillion in 1 s, corresponding to a record for QEPAS normalized noise-equivalent absorption of 2.7 × 10-10 W cm-1 Hz-1/2.

  5. The Lateral Compressive Buckling Performance of Aluminum Honeycomb Panels for Long-Span Hollow Core Roofs

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    2016-06-01

    Full Text Available To solve the problem of critical buckling in the structural analysis and design of the new long-span hollow core roof architecture proposed in this paper (referred to as a “honeycomb panel structural system” (HSSS, lateral compression tests and finite element analyses were employed in this study to examine the lateral compressive buckling performance of this new type of honeycomb panel with different length-to-thickness ratios. The results led to two main conclusions: (1 Under the experimental conditions that were used, honeycomb panels with the same planar dimensions but different thicknesses had the same compressive stiffness immediately before buckling, while the lateral compressive buckling load-bearing capacity initially increased rapidly with an increasing honeycomb core thickness and then approached the same limiting value; (2 The compressive stiffnesses of test pieces with the same thickness but different lengths were different, while the maximum lateral compressive buckling loads were very similar. Overall instability failure is prone to occur in long and flexible honeycomb panels. In addition, the errors between the lateral compressive buckling loads from the experiment and the finite element simulations are within 6%, which demonstrates the effectiveness of the nonlinear finite element analysis and provides a theoretical basis for future analysis and design for this new type of spatial structure.

  6. The role of flexible hollow core carbon dioxide lasers in resection of lumbar intraspinal lipomas.

    Science.gov (United States)

    Desai, Sohum Kiran; Paulson, David; Thompson, Bobbye Jo; Patterson, Joel; Mohanty, Aaron

    2012-10-01

    The authors assess the role of flexible hollow core CO2 laser system (Omniguide system) in resection of intraspinal lipomas. Eight patients with intraspinal lipomas were operated using an Omniguide laser system over a 22-month period. The age range varied between 6 months and 16 years. All of them had lipoma of the conus medullaris associated with lumbar subcutaneous lipoma. Two of these had previous surgery with resection of the subcutaneous part of the lipoma; in one of them, a partial resection of the conus medullaris lipoma had also been performed. In six, there were no obvious motor or sensory deficits whereas two had gross neurologic deficits, with the deficits occurring in one after the previous decompression. Resection of the conus lipoma, untethering of the spinal cord, and reconstruction of the decompressed conus was performed in all aided with Omniguide laser system. The power settings of the laser system ranged from 4 to 8 W. Subtotal to near-total resection was achieved in all. None of the patients developed any new motor or sensory deficits. Three had postoperative CSF leaks which initially required reoperation with graft resuturing and subsequently placement of lumboperitoneal shunt. One child with preexisting neurologic deficits improved in power over the next 12 months. Flexible CO2 laser system was precise and convenient in decompressing the conus lipomas and untethering of the cord in lumbar spinal lipomas.

  7. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  8. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers

    Science.gov (United States)

    Jones, A. M.; Fourcade-Dutin, C.; Mao, C.; Baumgart, B.; Nampoothiri, A. V. V.; Campbell, N.; Wang, Y.; Benabid, F.; Rudolph, W.; Washburn, B. R.; Corwin, K. L.

    2012-02-01

    We have now demonstrated and characterized gas-filled hollow-core fiber lasers based on population inversion from acetylene (12C2H2) and HCN gas contained within the core of a kagome-structured hollow-core photonic crystal fiber. The gases are optically pumped via first order rotational-vibrational overtones near 1.5 μm using 1-ns pulses from an optical parametric amplifier. Transitions from the pumped overtone modes to fundamental C-H stretching modes in both molecules create narrow-band laser emissions near 3 μm. High gain resulting from tight confinement of the pump and laser light together with the active gas permits us to operate these lasers in a single pass configuration, without the use of any external resonator structure. A delay between the emitted laser pulse and the incident pump pulse has been observed and is shown to vary with pump pulse energy and gas pressure. Furthermore, we have demonstrated lasing beyond 4 μm from CO and CO2 using silver-coated glass capillaries, since fused silica based fibers do not transmit in this spectral region and chalcogenide fibers are not yet readily available. Studies of the laser pulse energy as functions of the pump pulse energy and gas pressure were performed. Efficiencies reaching ~ 20% are observed for both acetylene and CO2.

  9. Picosecond passively mode-locked mid-infrared fiber laser

    Science.gov (United States)

    Wei, C.; Zhu, X.; Norwood, R. A.; Kieu, K.; Peyghambarian, N.

    2013-02-01

    Mode-locked mid-infrared (mid-IR) fiber lasers are of increasing interest due to their many potential applications in spectroscopic sensors, infrared countermeasures, laser surgery, and high-efficiency pump sources for nonlinear wavelength convertors. Er3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fiber lasers, which can emit mid-IR light at 2.65-2.9 μm through the transition from the upper energy level 4I11/2 to the lower laser level 4I13/2, have attracted much attention because of their broad emission range, high optical efficiency, and the ready availability of diode pump lasers at the two absorption peaks of Er3+ ions (975 nm and 976 nm). In recent years, significant progress on high power Er3+- doped ZBLAN fiber lasers has been achieved and over 20 watt cw output at 2.8 μm has been demonstrated; however, there has been little progress on ultrafast mid-IR ZBLAN fiber lasers to date. We report a passively mode-locked Er3+- doped ZBLAN fiber laser in which a Fe2+:ZnSe crystal was used as the intracavity saturable absorber. Fe2+:ZnSe is an ideal material for mid-IR laser pulse generation because of its large saturable absorption cross-section and small saturation energy along with the excellent opto-mechanical (damage threshold ~2 J/cm2) and physical characteristics of the crystalline ZnSe host. A 1.6 m double-clad 8 mol% Er3+-doped ZBLAN fiber was used in our experiment. The fiber core has a diameter of 15 μm and a numerical aperture (NA) of 0.1. The inner circular cladding has a diameter of 125 μm and an NA of 0.5. Both continuous-wave and Q-switched mode-locking pulses at 2.8 μm were obtained. Continuous-wave mode locking operation with a pulse duration of 19 ps and an average power of 51 mW were achieved when a collimated beam traversed the Fe2+:ZnSe crystal. When the cavity was modified to provide a focused beam at the Fe2+:ZnSe crystal, Q-switched mode-locked operation with a pulse duration of 60 ps and an average power of 4.6 mW was achieved. More powerful

  10. Measurement of Machining Temperature Using Infrared Radiation Pyrometer With Optical Fiber: Characteristics of Pyrometer

    OpenAIRE

    上田, 隆司; 金田, 泰幸; 佐藤, 昌彦; 杉田, 忠彰

    1992-01-01

    The fundamental characteristics of a new type of infrared radiation pyrometer using an optical fiber are investigated theoretically and experimentally. The structure of this pyrometer is that the optical fiber accepts the infrared flux radiated from the object and transmits it to an infrared detector InSb cell. This I. R. P. is suitable for measuring the temperature of a very small object whose temperature changes rapidly. The flexibility of the optical fiber also makes it possible to measure...

  11. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  12. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    Science.gov (United States)

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  13. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression.......We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  14. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    Science.gov (United States)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  15. Advances on Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Luciano Mescia

    2013-12-01

    Full Text Available In this review paper some recent advances on optical fiber sensors are reported. In particular, fiber Bragg grating (FBG, long period gratings (LPGs, evanescent field and hollow core optical fiber sensors are mentioned. Examples of recent optical fiber sensors for the measurement of strain, temperature, displacement, air flow, pressure, liquid-level, magnetic field, and the determination of methadone, hydrocarbons, ethanol, and sucrose are briefly described.

  16. Method for the preparation of carbon fiber from polyolefin fiber precursor

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  17. Fiber-based portable optical frequency standard for telecommunication

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-01-01

    Gas-filled hollow-core photonic crystal fibers are used to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. The fiber is encapsulated in glass cells for gas handling and compact free-space coupling, and packaged in a easy-to-use configuration...

  18. High Average Power Mid-infrared Supercontinuum Generation in a Suspended Core Chalcogenide Fiber

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Yu, Yi; Petersen, Christian Rosenberg

    2014-01-01

    Mid-infrared supercontinuum spanning from 2.0 to 6.1 μm is generated in a 9 cm suspended core chalcogenide fiber by pumping close to the fiber zero-dispersion wavelength at 3.5 μm with an OPA system......Mid-infrared supercontinuum spanning from 2.0 to 6.1 μm is generated in a 9 cm suspended core chalcogenide fiber by pumping close to the fiber zero-dispersion wavelength at 3.5 μm with an OPA system...

  19. Polymer fiber waveguides for terahertz radiation

    DEFF Research Database (Denmark)

    Nielsen, Kristian

    is taken from microstructured polymer optical fibers (mPOFs) used at optical wavelengths for sensing and communication. The fibers investigated can be divided into two groups, the solid core fibers and the hollow core fibers. The solid core fibers offer the broadest bandwidth with the best dispersion....... The polymer material with lowest loss is Topas and all the solid core fibers are manufactured using this material. The polymer PMMA however has higher refractive index along with higher loss, and this higher refractive index is utilized to achieve a large bandwidth hollow core fiber with a low air......Terahertz radiation offers many exciting applications noticeably in spectroscopy and it is showing promising results in imaging, mainly for security applications. In this project the study of using structured polymer fibers for THz waveguiding is presented. The inspiration for the THz fiber...

  20. Infrared fiber optic probes for evaluation of musculoskeletal tissue pathology

    Science.gov (United States)

    Padalkar, Mugdha; McGoverin, Cushla; Onigbanjo, Quam; Spencer, Richard; Barbash, Scott; Kropf, Eric; Pleshko, Nancy

    2014-03-01

    Musculoskeletal pathology of the knee commonly occurs with aging and as a result of injury. The incidence of anterior cruciate ligament (ACL) injuries continues to increase annually, and may precede the eventual onset of osteoarthritis (OA), a debilitating and prevalent disease characterized by cartilage degeneration. Early detection of OA remains elusive, with current imaging methods lacking adequate sensitivity to detect early pathologic cartilage changes. We used mid- and near- infrared (IR) spectroscopy through arthroscopic-based fiber-optic devices to assess cartilage damage and differentiate tendon from ligament. Mid-IR spectroscopy is characterized by distinct bands and low penetration depth (< 10 μm) and near-IR spectroscopy is characterized by complex overlapping bands and greater penetration depths (< 1 cm). We have found that combined mid- and near-IR analysis greatly extends the information available through either in the analysis of soft tissues, including cartilage, ligaments and tendons. We discuss here basic science studies and the potential for translation to clinical research with novel arthroscopic probes.

  1. Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser

    National Research Council Canada - National Science Library

    Jarno J J Kaakkunen; Ilkka Vanttaja; Petri Laakso

    2014-01-01

    ...) and a galvanometer scanner with an infrared nanosecond fiber lasers is studied. Here, the SLM is used as a computer generated hologram which can be applied to modify laser pulses intensity distribution virtually almost arbitrary...

  2. A novel optical readout infrared FPA imaging system with fiber reference channel.

    Science.gov (United States)

    Chu, Xuhong; Zhao, Yuejin; Dong, Liquan; Jia, Qian; Kong, Lingqin; Yu, Xiaomei; Liu, Xiaohua; Gong, Cheng; Jin, Yufeng

    2012-04-23

    A novel fiber reference optical readout method was proposed in the bi-material micro cantilever infrared imaging system, which consists of an infrared imaging channel, an optical readout channel and a fiber reference channel. The fiber reference channel is used to monitor the intensity fluctuation of the light source, and provide a signal to correct the distortion of the infrared images from the optical readout channel. Comparing with the typical optical readout method without any references, the noise equivalent temperature difference (NETD) of such an infrared imaging system with the fiber reference optical readout method can be reduced by about 33% and edges of the IR images become clearer. © 2012 Optical Society of America

  3. Heat Storage Performance of the Prefabricated Hollow Core Concrete Deck Element with Integrated Microencapsulated Phase Change Material

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The paper presents the numerically calculated dynamic heat storage capacity of the prefabricated hollow core concrete deck element with and without microencapsulated phase change material (PCM). The reference deck is the ordinary deck made of standard concrete material and that is broadly used...... or the building with such a deck is that the thermal properties of such a new material are not yet well defined. The results presented in the paper include models in which PCM concrete material properties such as thermal conductivity and specific heat capacity were theoretically calculated using weight average...... of thermal properties of standard concrete material and pure PCM. Consequently, the numerical models of the decks were updated with the experimentally determined thermal properties of PCM concrete after these two materials have been combined into one material. Finally, the heat storage of the decks...

  4. Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre

    CERN Document Server

    Konorov, S O; Kolevatova, O A; Beloglasov, V I; Skibina, N B; Shcherbakov, A V; Wintner, E; Zheltikov, A M

    2003-01-01

    Sequences of picosecond pulses with a total energy in the pulse train of about 1 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 mu m. The fluence of laser radiation coupled into the core of the fibre under these conditions exceeds the breakdown threshold of fused silica by nearly an order of magnitude. The laser beam coming out of the fibre is then focused to produce a breakdown on a solid surface. Parameters of laser radiation were chosen in such a way as to avoid effects related to the excitation of higher order waveguide modes and ionization of the gas filling the fibre in order to provide the possibility to focus the output beam into a spot with a minimum diameter, thus ensuring the maximum spatial resolution and the maximum power density in the focal spot.

  5. Measurement of blood glucose by infrared spectroscopy using hollow-optical fiber probe

    Science.gov (United States)

    Tanaka, Y.; Kino, S.; Matsuura, Y.

    2013-03-01

    An infrared spectroscopy system based on a hollow-optical fiber probe for measurement of blood glucose concentration is developed. The probe consists of a flexible hollow-optical fiber and an ATR prism attached at the distal end of the fiber. This flexible probe enables measurement of oral mucosa and ear lobes that have blood capillaries near the skin surface. Experimental results show that absorption peaks of blood glucose are detected by the system.

  6. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  7. A remote controllable fiber-type near-infrared light-responsive actuator.

    Science.gov (United States)

    Shi, Qiuwei; Li, Jiahui; Hou, Chengyi; Shao, Yuanlong; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2017-10-10

    A novel near-infrared (NIR) light-responsive sodium polyacrylate (PAAS)/graphene oxide (GO) fiber with a torsional pre-deformation structure is reported to realize remote control actuation. The torsional pre-deformed PAAS/GO fiber exhibited various actuation phenomena, under the control of a low powered near-infrared light (50 mW cm(-2)), such as rotating in a low-temperature range (<25 °C), rolling a distance of 10 times of its diameter within 10 s, and even driving the shape change of a fabric (the weight is as high as 20 times of the fiber itself).

  8. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies

    Directory of Open Access Journals (Sweden)

    Jacques Lucas

    2013-05-01

    Full Text Available Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS. FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA. The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  9. Laser frequency standards based on gas-filled hollow-core fibres

    DEFF Research Database (Denmark)

    Triches, Marco

    technology, which has been widely investigated in the past decades, using many different molecular and atomic transitions as optical reference. One of the recommended references in the telecommunication region of the light spectrum is given by a specific absorption line in 13C2H2 acetylene. However, many...... into the HC fiber technology is represented by high-energy pulse delivery systems. The low non-linearity of the in-air guidance mechanism offers a unique tool to propagate unperturbed pulses far from the laser source. A tight vacuum sealed encapsulation can avoid the remaining non-linearity generated by in...

  10. Infrared Supercontinuum Generation in Soft-glass Fibers

    DEFF Research Database (Denmark)

    Agger, Christian

    sources. A novel SC system, incorporating a fluor based (ZBLAN) step-index fiber (SIF), has been developed by an industrial collaborator. Numerical simulations show good agreement with measurements of fs-pumped SC generation stretching above 4 μm in a ZBLAN fiber. Furthermore, a design parameter, useful...

  11. High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier.

    Science.gov (United States)

    Geng, Jihong; Wang, Qing; Jiang, Shibin

    2012-03-01

    Broadband mid-infrared supercontinuum pulses were generated directly from a short piece of active fiber in a single-mode Tm-doped fiber amplifier. The broadband mid-infrared pulses have an extremely high spectral flatness with ~600 nm FWHM bandwidth (from 1.9 μm to 2.5 μm), >15 kW peak power, and >20 GW/cm(2) laser peak intensity. This new approach exhibits a significantly different physical mechanism from other supercontinuum generation demonstrations in the literature, in which usually a piece of passive fiber was used for nonlinear spectral broadening. The physical mechanism for the broadband mid-infrared supercontinuum generation in this approach has been attributed to a combined effect of two superradiative processes of Tm(3+) ions (i.e., the (3)F(4)-(3)H(6) transition covering the 1.8~2.1  μm spectral region and the (3)H(4)-(3)H(5) transition covering the 2.2~2.5  μm spectral region), and also nonlinear optical processes as well in the Tm-doped gain fiber. The spectra of the mid-infrared supercontinuum pulses were further broadened in a 2 m chalcogenide fiber with 20 dB bandwidth ~1100 nm and a 3 m fluoride fiber with 20 dB bandwidth ~2600 nm. © 2012 Optical Society of America

  12. Spectral broadening of 25 fs laser pulses via self-phase modulation in a neon filled hollow core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Weichert, Stefan

    2017-05-15

    The goal of this work was the realisation of a setup for spectral broadening and subsequent compression of 25 fs laser pulses provided by a commercial Ti:Sapphire based CPA laser system by means of the hollow core fibre chirped mirror compressor technique. For the spectral broadening a vessel containing the hollow waveguide filled with a noble gas serving as the nonlinear medium was set up and an alignment procedure was developed. Neon was chosen as the nonlinear medium for the self-phase modulation of the pulses. With this setup spectral broadening, sufficient for supporting sub 5 fs pulses, was observed. The spectra at different input energies and neon gas pressures were measured and the stability of these and their respective Fourier transform-limited pulses determined in order to find an operating point. For the compression of the self-phase modulated pulses a chirped mirror compressor was designed and set up, but not tested yet. The layout of a single-shot intensity autocorrelator capable of estimating the pulse duration of sub 10 fs pulses was given.

  13. Broadband-tunable LP$_{01}$ mode frequency shifting by Raman coherence waves in H$_2$-filled hollow-core PCF

    CERN Document Server

    Bauerschmidt, S T; Abdolvand, Amir; Russell, Philip S J

    2015-01-01

    When a laser pump beam of sufficient intensity is incident on a Raman-active medium such as hydrogen gas, a strong Stokes signal, red-shifted by the Raman transition frequency {\\Omega}$_R$, is generated. This is accompanied by the creation of a "coherence wave" of synchronized molecular oscillations with wavevector {\\Delta}{\\beta} determined by the optical dispersion. Within its lifetime, this coherence wave can be used to shift by {\\Omega}$_R$ the frequency of a third "mixing" signal, provided phase-matching is satisfied, i.e., {\\Delta}{\\beta} is matched. Conventionally this can be arranged using non-collinear beams or higher-order waveguide modes. Here we report collinear phase-matched frequency shifting of an arbitrary mixing signal using only the fundamental LP$_{01}$ modes of a hydrogen-filled hollow-core PCF. This is made possible by the S-shaped dispersion curve that occurs around the pressure-tunable zero dispersion point. Phase-matched frequency shifting by 125 THz is possible from the UV to the near...

  14. Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes

    CERN Document Server

    Günendi, Mehmet C; Frosz, Michael H; Russell, Philip St J

    2015-01-01

    We propose and theoretically analyse a novel hollow-core photonic crystal fibre (PCF) that is engineered so as to strongly suppress higher order modes, i.e., to provide robust LP$_{01}$ single-mode guidance in all the wavelength ranges where the fibre guides with low loss. Encircling the core is a single ring of non-touching glass elements whose modes are tailored to ensure resonant phase-matched coupling to higher-order core modes, causing them to leak at a very high rate into the supporting solid glass sheath. Using a model based on coupled capillary waveguides, as well as full vectorial finite element modelling, we show that this modal filtering effect depends on only one dimensionless geometrical parameter, akin to the well-known $d/{\\Lambda}$ parameter for endlessly single-mode solid-core PCF. The design is scalable up to large core sizes and is predicted to deliver LP$_{01}$ mode losses of some $10$s of dB/km in multiple transmission windows, the broadest of which spans more than an octave. At the same ...

  15. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  16. Fiber sources of femtosecond pulses in the mid-infrared (Conference Presentation)

    Science.gov (United States)

    Wise, Frank W.

    2017-05-01

    There is currently broad interest in sources of ultrashort pulses at mid-infrared (3-5 micron) and even long-wave infrared wavelengths. Fiber-based sources of ultrashort pulses potentially offer some performance advantages along with major practical advantages, but also face major challenges. The development of optical fibers that transmit in the mid- and long-wave-infrared enables the design of short-pulse sources at these wavelengths. This talk will focus on sources of coherent femtosecond pulses. The first fiber lasers that directly emit ultrashort pulses around 3 micron wavelength will be reviewed, along with an approach to tunable femtosecond pulses in the 3-6 micron region based on Raman frequency shifting. Thoughts on how to extend the performance to higher energies, broader wavelength coverage, and greater integration will be offered.

  17. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography

    Science.gov (United States)

    Li, Yin; Zhang, Wei; Yang, Zheng-wei; Zhang, Jin-yu; Tao, Sheng-jie

    2016-05-01

    Carbon fiber reinforced polymer (CFRP) after low-velocity impact is detected using infrared thermography, and different damages in the impacted composites are analyzed in the thermal maps. The thermal conductivity under pulse stimulation, frictional heating and thermal conductivity under ultrasonic stimulation of CFRP containing low-velocity impact damage are simulated using numerical simulation method. Then, the specimens successively exposed to the low-velocity impact are respectively detected using the pulse infrared thermography and ultrasonic infrared thermography. Through the numerical simulation and experimental investigation, the results obtained show that the combination of the above two detection methods can greatly improve the capability for detecting and evaluating the impact damage in CFRP. Different damages correspond to different infrared thermal images. The delamination damage, matrix cracking and fiber breakage are characterized as the block-shape hot spot, line-shape hot spot, and

  18. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Yu, Yi; Kubat, Irnis

    2015-01-01

    A low-loss suspended core As38Se62 fiber with core diameter of 4.5 μm and a zero-dispersion wavelength of 3.5 μm was used for mid-infrared supercontinuum generation. The dispersion of the fiber was measured from 2.9 to 4.2 μm and was in good correspondence with the calculated dispersion. An optical...

  19. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre.

    Science.gov (United States)

    Urich, A; Maier, R R J; Mangan, B J; Renshaw, S; Knight, J C; Hand, D P; Shephard, J D

    2012-03-12

    In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures.

  20. Part-Per-Trillion Level SF6 Detection Using a Quartz Enhanced Photoacoustic Spectroscopy-Based Sensor with Single-Mode Fiber-Coupled Quantum Cascade Laser Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

    2012-10-23

    A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 µm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 W•cm-1/Hz1/2.

  1. Changes in hemp secondary fiber production related to technical fiber variability revealed by light microscopy and attenuated total reflectance Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Fernandez-Tendero, Eva; Day, Arnaud; Legros, Sandrine; Habrant, Anouck; Hawkins, Simon; Chabbert, Brigitte

    2017-01-01

    Interest in hemp (Cannabis sativa L.) is increasing due to the development of a new range of industrial applications based on bast fibers. However the variability of bast fiber yield and quality represents an important barrier to further exploitation. Primary and secondary fiber content was examined in two commercial hemp varieties (Fedora 17, Santhica 27) grown under contrasted sowing density and irrigation conditions. Both growing conditions and hemp varieties impact stem tissue architecture with a large effect on the proportion of secondary fibers but not primary fibers. Attenuated total reflectance infrared spectroscopy allowed the discrimination of manually-isolated native primary fibers and secondary fibers but did not reveal any clustering according to growing conditions and variety. Infrared data were confirmed by wet chemistry analyses that revealed slight but significant differences between primary and secondary fiber cell wall composition. Infrared spectroscopy of technical fibers obtained after mechanical defibering revealed differences with native primary, but not secondary fibers and also discriminated samples obtained from plants grown under different conditions. Altogether the results suggested that the observed variability of hemp technical fibers could be partially explained by i) differences in secondary fiber production and ii) differential behavior during mechanical defibering resulting in unequal separation of primary and secondary fibers.

  2. Fiber-optic soliton self-compression to subcycle pulse widths in the mid-infrared

    Science.gov (United States)

    Meshchankin, D. V.; Voronin, A. A.; Zheltikov, A. M.

    2017-12-01

    We demonstrate physical scenarios whereby ultrashort mid-infrared pulses even with very low pulse energies can be compressed to subcycle pulse widths using nonlinear-optical field transformations in chalcogenide photonic-crystal fibers. We show that an 85 fs pulse with a spectrum centered at 3.5 µm can be compressed to a subcycle pulse width through a solitonic transformation inside a chalcogenide photonic-crystal fiber with a hexagonal cladding. Waveform distortions of such pulses can be suppressed, as our simulations show, by combining chalcogenide photonic-crystal fibers with carefully optimized solid-state components for accurate nonlinear phase compensation.

  3. Infrared Evanescent-Absorption Spectroscopy with Chalcogenide Glass-Fibers

    OpenAIRE

    Sanghera, J S; Kung, F H; Pureza, P. C.; Nguyen, V Q; Miklos, R. E.; Aggarwal, I D

    1994-01-01

    We have used telluride glass fibers fabricated in house to measure the evanescent-absorption spectra of water, methanol, ethanol, isopropanol, acetone, ethanoic acid, hexane, and chloroform. Furthermore, detection limits of less than 2 vol. % solute were obtained for mixtures of water and methanol, ethanol, isopropanol, acetone, and ethanoic acid. Techniques to reduce the detection limits are discussed.

  4. Fiber-pigtailed integrated spectrometer for the infrared spectral range

    Science.gov (United States)

    Kruzelecky, Roman V.; Ghosh, Asoke K.; Tremblay, Christine L.; Paquet, Carl

    1998-09-01

    The availability of a relatively low-cost miniature integrate dIR spectrometer facilitates the application of IR spectroscopy to numerous spectral analysis and identification tasks. Recent advances in semiconductor material processing now provide the technology for the development of planar optical waveguides that exhibit good transmission characteristics in the mid-IR spectral range. Chalcogenide and fluoride glass fibers are commercially available which allows their use for coupling light to the integrated spectrometer. Integration of the slab waveguide structure with an input IR fiber and an output IR detector array thus results in a very compact device that can be used in numerous field and industrial applications such as gas detection, water analysis, chemical process monitoring, geological and agricultural surveys, and pollution monitoring. In the present work, these new materials and technologies have been exploited for the implementation of a miniature integrated optic SPECtrometer (IOSPEC) for the 2 to 6 micrometers spectral range. In the developed miniature spectrometer, broadband light is coupled into the spectrometer through an IR fiber, then subsequently dispersed into its spectral components by a diffraction grating made by anisotropic etching of silicon and finally focused on an IR detector array. This paper discusses some of the performance and design aspects of the current third generation IOSPEC technology; namely the use of IR fiber arrays in order to improve the device throughput and resolution, and the coupling of IOSPEC to advanced linear IR detector array technology.

  5. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres

    Directory of Open Access Journals (Sweden)

    Abdelnasser Salah Shebl Ibrahim

    2016-01-01

    Full Text Available The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6% and loading capacity (88.1 μg protein/mg carrier and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  6. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    Science.gov (United States)

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  7. Infrared single mode chalcogenide glass fiber for space

    NARCIS (Netherlands)

    Houlzot, P.; Boussard-Plédel, C.; Faber, A.J.; Cheng, L.K.; Bureau, B.; Nijnatten, P.A. van; Gielesen, W.L.M.; Do Carmo, J.P.; Lucas, J.

    2007-01-01

    An important measuring technique under study for the DARWIN planet finding mission, is nulling interferometry, enabling the detection of the weak infrared emission lines of an orbiting planet. This technique requires a perfect wavefront of the light beams to be combined in the interferometer. By

  8. Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Engelsholm, Rasmus Dybbro; Markos, Christos

    2017-01-01

    Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source....

  9. QEPAS nitric oxide sensor based on a mid-infrared fiber-coupled quantum cascade laser

    Science.gov (United States)

    Ren, Wei; Shi, Chao; Wang, Zhen; Yao, Chenyu

    2017-04-01

    We report a quartz-enhanced photoacoustic sensor (QEPAS) for nitric oxide (NO) detection using a mid-infrared fibercoupled quantum cascade laser (QCL) near 5.2 μm. The QCL radiation was coupled into an InF3 fiber (100 μm core diameter) for light delivery to the quartz tuning fork, a tiny piezoelectric element converting the acoustic wave induced mechanical vibration to the gas-absorption associated electrical signal. This mid-infrared fiber can achieve nearly single-mode light delivery for the target wavelength. The off-beam configuration was adopted for the fiber-coupled detection considering its simpler installation, optical alignment and comparative sensitivity to the traditional on-beam setup.

  10. Probe And Enhancement Of SBS Based Phonons In Infrared Fibers Using Waveguide Coupled External Radiation

    Science.gov (United States)

    Yu, Chung; Chong, Yat C.; Fong, Chee K.

    1989-06-01

    Interaction of GHz and MHz radiation with CO2 laser propagation in a silver halide fiber using sBs based phonon coupling is furthet investigated. The external signal serves to both probe and enhance laser generated sBs phonons in the fiber. Efficient coupling of microwave radiation into the fiber is accomplished by placing the fiber in a hollow metallic waveguide, designed and constructed to transmit the dominant mode in the 0.9-2.0 GHz band. MHz radiation is conveniently coupled into the fiber using the guided microwave radiation as carrier. Phonon emissions from the fiber under CO2 laser pumping are first established on a spectrum analyzer; low frequency generators ale then tuned to match these frequencies and their maximum interaction recorded. Such interactions are systematically studied by monitoring the amplitude and waveform of the reflected and transmitted laser pulse at various power levels and frequencies of the externally coupled radiation. A plot of reflected laser power versus incident laser power reveals a distinct sBs generated phonon threshold. Variouslaunch directions of the GHz and MHz radiation with respect to the direction of laser propagation are realized to verify theory governing sBs interactions. The MHz radiation and its associated phonons in the fiber are convenient tools for probing sBs related phenomenon in infrared fibers.

  11. Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging

    Science.gov (United States)

    Jayasuriya, D.; Wilson, B.; Furniss, D.; Tang, Z.; Barney, E.; Benson, T. M.; Seddon, A. B.

    2016-03-01

    Novel chalcogenide glass-based fiber opens up the mid-infrared (MIR) range for real-time monitoring and control in medical diagnostics and chemical processing. Fibers with long wavelength cut-off are of interest here. Sulfide, selenide and telluride based chalcogenide glass are candidates, but there are differences in their glass forming region, thermal stability and in the short and long wavelength cut-off positions. In general sulfide and selenide glasses have greater glass stability, but shorter long-wavelength cut-off edge, compared to telluride glasses; selenide-telluride glasses are a good compromise. Low optical loss selenide-telluride based long wavelength fibers could play a substantial role in improving medical diagnostic systems, chemical sensing, and processing, and in security and agriculture. For biological tissue, the molecular finger print lies between ~3-15 μm wavelengths in the MIR region. Using MIR spectral mapping, information about diseased tissue may be obtained with improved accuracy and in vivo using bright broadband MIR super-continuum generation (SCG) fiber sources and low optical loss fiber for routing. The Ge-As-Se-Te chalcogenide glass system is a potential candidate for both MIR SCG and passive-routing fiber, with good thermal stability, wide intrinsic transparency from ~1.5 to 20 μm and low phonon energy. This paper investigates Ge-As-Se-Te glass system pairs for developing high numerical aperture (NA) small-core, step-index optical fiber for MIR SCG and low NA passive step-index optical fiber for an in vivo fiber probe. Control of fiber geometry of small-core optical fiber and methods of producing the glass material are also included in this paper.

  12. Design of photonic bandgap fibers by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Feurer, Thomas

    2010-01-01

    A method based on topology optimization is presented to design the cross section of hollow-core photonic bandgap fibers for minimizing energy loss by material absorption. The optical problem is modeled by the timeharmonic wave equation and solved with the finite element program Comsol Multiphysics...

  13. Few photon switching with slow light in hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited by dif...

  14. Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy

    Science.gov (United States)

    Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Xu, Kexin

    2014-04-01

    Wavelength-tunable laser spectroscopy in combination with a small-sized fiber-optic attenuated total reflection (ATR) sensor (fiber-based evanescent field analysis, FEFA) is reported for the continuous measurement of the glucose level. We propose a method of controlling and stabilizing the wavelength and power of laser emission and present a newly developed mid-infrared wavelength-tunable laser with a broad emission spectrum band of 9.19-9.77 μm (1024-1088 cm-1). The novel small-sized flow-through fiber-optic ATR sensor with long optical sensing length was used for glucose level determination. The experimental results indicate that the noise-equivalent concentration of this laser measurement system is as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. The sensitivity, which is three times that of conventional Fourier transform infrared spectrometer, was acquired because of the higher laser power and higher spectral resolution. The best prediction of the glucose concentration in phosphate buffered saline solution was achieved using the five-variable partial least-squares model, yielding a root-mean-square error of prediction as small as 3.5 mg/dL. The high sensitivity, multiple tunable wavelengths and small fiber-based sensor with long optical sensing length make glucose determination possible in blood or interstitial fluid in vivo.

  15. Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm.

    Science.gov (United States)

    Wei, Chen; Zhu, Xiushan; Norwood, Robert A; Song, Feng; Peyghambarian, N

    2013-12-02

    High power mid-infrared (mid-IR) supercontinuum (SC) laser sources in the 3-12 µm region are of great interest for a variety of applications in many fields. Although various mid-IR SC laser sources have been proposed and investigated experimentally and theoretically in the past several years, power scaling of mid-IR SC lasers beyond 3 μm with infrared edges extending beyond 7 μm are still challenges because the wavelengths of most previously used pump sources are below 2 μm. These problems can be solved with the recent development of mode-locked fiber lasers at 3 μm. In this paper, high power mid-IR SC laser sources based on dispersion engineered tellurite and chalcogenide fibers and pumped by ultrafast lasers at 3 µm are proposed and investigated. Our simulation results show that, when a W-type tellurite fiber with a zero dispersion wavelength (ZDW) of 2.7 µm is pumped at 2.78 μm, the power proportion of the SC laser beyond 3 µm can exceed 40% and the attainable SC output power of the proposed solid-cladding tellurite fiber is one order of magnitude higher than that of existing microstructured tellurite fibers. Our calculation also predicts that a very promising super-broadband mid-IR SC fiber laser source covering two atmospheric windows and molecules' "fingerprint" region can be obtained with a microstructured As2Se3 chalcogenide fiber pumped at 2.78 μm.

  16. Polarized infrared microspectroscopy of single spruce fibers: hydrogen bonding in wood polymers.

    Science.gov (United States)

    Schmidt, Martin; Gierlinger, Notburga; Schade, Ulrich; Rogge, Tilmann; Grunze, Michael

    2006-12-05

    We studied wood polymers in their native composite structure using mechanically isolated single spruce (Picea abies [L.] Karst.) fibers. Dichroic infrared spectra of fibers placed in a custom-built microfluidic cuvette were acquired in air, in liquid (heavy) water, and in liquid dimethylacetamide using a novel combination of synchrotron-based Fourier transform infrared microspectroscopy with polarization modulation. Differences were observed in the O-H stretching frequency region of the spruce spectra upon changing the ambient conditions. Analysis of these spectral variations provides information on hydrogen bonding, orientation, and accessibility of structural units of the wood polymers in the spruce cell walls. Our in situ approach contributes to a further understanding of the structural details of wood polymers in their native setting. (c) 2006 Wiley Periodicals, Inc.

  17. Two-octave mid-infrared supercontinuum generation in As-Se suspended core fibers

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    2015-01-01

    A more than two-octave mid-infrared supercontinuum with an average output power of 15.6 mW covering 1.7-7.5 μm (1,333-5,900 cm-1) is generated in a low-loss As38Se62 suspended core fiber with core diameter of 4.5 μm.......A more than two-octave mid-infrared supercontinuum with an average output power of 15.6 mW covering 1.7-7.5 μm (1,333-5,900 cm-1) is generated in a low-loss As38Se62 suspended core fiber with core diameter of 4.5 μm....

  18. Through-the-jacket inscription of fiber Bragg gratings using femtosecond infrared radiation for sensor applications

    Science.gov (United States)

    Mihailov, Stephen J.; Grobnic, Dan; Smelser, Christopher W.; Walker, Robert B.

    2009-05-01

    Silica-based fiber Bragg gratings (FBG) sensors are versatile devices that are typically fabricated using UV laser exposure. As most standard optical fiber polymer coatings are highly absorbing in the UV, grating inscription typically requires the removal and reapplication of the protective coating by either chemical or mechanical means. Optical fiber stripping and recoating are time-consuming processes that can seriously degrade the mechanical integrity of the fiber. For high temperature sensor applications (> 200 °C), the optical fiber is coated in polyimide which is resistant to chemical attack. Invasive and hazardous techniques for its removal are required such as hot sulphuric acid stripping. In this paper, results of FBG inscription directly through the polymer coating of standard optical fiber with a femtosecond infrared laser and a phase mask are reviewed. Significant grating reflectivities are achieved along with improved mechanical reliability and performance at elevated temperatures. The only example of direct FBG inscription through polyimide coatings for high temperature stable grating sensors will also be presented.

  19. Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating.

    Science.gov (United States)

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2015-04-15

    The absolute refractive indices (RIs) of water and other liquids are determined with an uncertainty of ±0.001 at near-infrared wavelengths by using the tilted fiber Bragg grating (TFBG) cladding mode resonances of a standard single-mode fiber to measure the critical angle for total internal reflection at the interface between the fiber and its surroundings. The necessary condition to obtain absolute RIs (instead of measuring RI changes) is a thorough characterization of the dispersion of the core mode effective index of the TFBG across the full range of its cladding mode resonance spectrum. This technique is shown to be competitive with the best available measurements of the RIs of water and NaCl solutions at wavelengths in the vicinity of 1550 nm.

  20. Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser.

    Science.gov (United States)

    Shen, Yanlong; Wang, Yishan; Chen, Hongwei; Luan, Kunpeng; Tao, Mengmeng; Si, Jinhai

    2017-11-02

    A passively mode-locked Er3+-doped ZBLAN fiber laser around 3 μm with a wide wavelength tuning range is proposed and demonstrated. The laser cavity was comprised of a semiconductor saturable absorber mirror and a blazed grating to provide a wavelength tunable feedback. The central wavelength of the mode-locked fiber laser can be continuously tuned from 2710 to 2820 nm. The pulse train had a maximum average power of higher than 203 mW, a repetition rate of 28.9 MHz and a pulse duration of 6.4 ps, yielding a peak power of exceeding 1.1 kW. To the best of our knowledge, this is the first demonstration of a wavelength-tunable passively mode-locked mid-infrared fiber laser at 3 μm.

  1. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Science.gov (United States)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  2. Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers

    Science.gov (United States)

    The amount of secondary cell wall (SCW) cellulose in the fiber affects the quality and commercial value of cotton. Accurate assessments of SCW cellulose are essential for improving cotton fibers. Fourier Transform Infrared (FT-IR) spectroscopy enables distinguishing SCW from other cell wall componen...

  3. Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and Practical Handling

    DEFF Research Database (Denmark)

    Hansen, Theis Peter; Broeng, Jes; Jakobsen, Christian

    2004-01-01

    For development of hollow-core transmission fibers, the realizable fibers lengths, bandwidth, characterization, and compatibility with standard technology are important issues. We report record-length air-guiding fiber, spectral properties, splicing, and optical time domain reflectometer (OTDR......) measurements. Furthermore, spectral macrobending loss measurements for two different designs of air-core photonic bandgap fibers are presented. While bending loss is observed, it does not limit operation for all practical bending diameters (>tex/tex...

  4. Infrared imaging of cotton fiber bundles using a focal plane array detector and a single reflectance accessory

    Science.gov (United States)

    Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report the use of an infrared instrument equippe...

  5. Quantification of defects depth in glass fiber reinforced plastic plate by infrared lock-in thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of); Choi, Man Yong [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-03-15

    The increasing use of composite materials in various industries has evidenced the need for development of more effective nondestructive evaluation methodologies in order to reduce rejected parts and to optimize production cost. Infrared thermography is a noncontact, fast and reliable non-destructive evaluation technique that has received vast and growing attention for diagnostic and monitoring in the recent years. This paper describes the quantitative analysis of artificial defects in Glass fiber reinforced plastic plate by using Lockin infrared thermography. The experimental analysis was performed at several excitation frequencies to investigate the sample ranging from 2.946 Hz down to 0.019 Hz and the effects of each excitation frequency on defect detachability. The four point method was used in post processing of every pixel of thermal images using the MATLAB programming language. The relationship between the phase contrast with defects depth and area was examined. Finally, phase contrast method was used to calculate the defects depth considering the thermal diffusivity of the material being inspected and the excitation frequency for which the defect becomes visible. The obtained results demonstrated the effectiveness of Lock-in infrared thermography as a powerful measurement technique for the inspection of Glass fiber reinforced plastic structures.

  6. Characterization of Developmental Immature Fiber ( im) Mutant and Texas Marker-1 (TM-1) Cotton Fibers Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    Science.gov (United States)

    Liu, Yongliang; Kim, Hee-Jin

    2017-07-01

    The immature fiber ( im) mutant is one type of cotton fiber mutant with unique characteristics of non-fluffy cotton bolls. Compared to its near-isogenic wild type Texas Marker-1 (TM-1), im fiber has a thin secondary cell wall and is less mature. In this work, we applied the previously proposed principal component analysis (PCA) and simple algorithms to analyze the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectra of developmental im and TM-1 fibers. The results from these approaches could not effectively and consistently indicate the inherent difference between TM-1 and im fibers at the same developmental stage. The difference between TM-1 and corresponding im fibers was detected when comparing the normalized intensity variations of the 730 cm-1 bands. The 730 cm-1 band intensities in developmental im fibers are temporally lower than those in developmental TM-1 fibers although they became similar when the TM-1 and im fibers are fully mature. The observation might imply the likelihood of temporal reduction of amorphous regions in developmental im fibers rather than in developmental TM-1 fibers.

  7. Efficient all-optical switching using slow light within a hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic-crys...

  8. Generation of 70-fs pulses at 286 μm from a mid-infrared fiber laser

    Science.gov (United States)

    Woodward, R. I.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.

    2017-12-01

    We propose and demonstrate a simple route to few-optical-cycle pulse generation from a mid-infrared fiber laser through nonlinear compression of pulses from a holmium-doped fiber oscillator using a short length of chalcogenide fiber and a grating pair. Pulses from the oscillator with 265-fs duration at 2.86 {\\mu}m are spectrally broadened through self-phase modulation in step-index As2S3 fiber to 141-nm bandwidth and then re-compressed to 70 fs (7.3 optical cycles). These are the shortest pulses from a mid-infrared fiber system to date, and we note that our system is compact, robust, and uses only commercially available components. The scalability of this approach is also discussed, supported by numerical modeling.

  9. Mid-infrared supercontinuum generation in multimode As2 Se3 chalcogenide photonic crystal fiber.

    Science.gov (United States)

    Khalifa, Ameni Ben; Salem, Amine Ben; Cherif, Rim

    2017-05-20

    We rigorously investigated the mid-infrared supercontinuum generation in a multimode As2Se3 chalcogenide photonic crystal fiber (PCF). We studied the impact of the intermodal nonlinear effects on the nonlinear propagation of the fundamental and high-order modes. By solving the multimode generalized nonlinear Schrödinger equation, we have predicted the generation of a very broadband supercontinuum in both polarizations of the fundamental mode spanning from 2 to 11 μm at -20  dB in only 5 cm PCF length. The proposed study confirms that the energy transfer occurs only between the optical degenerate modes when propagating in the multimode chalcogenide PCF in the mid-infrared region.

  10. Synergy Effect of Combining Fluorescence and Mid Infrared Fiber Spectroscopy for Kidney Tumor Diagnostics

    Directory of Open Access Journals (Sweden)

    Andrey Bogomolov

    2017-11-01

    Full Text Available Matching pairs of tumor and non-tumor kidney tissue samples of four patients were investigated ex vivo using a combination of two methods, attenuated total reflection mid infrared spectroscopy and fluorescence spectroscopy, through respectively prepared and adjusted fiber probes. In order to increase the data information content, the measurements on tissue samples in both methods were performed in the same 31 preselected positions. Multivariate data analysis revealed a synergic effect of combining the two methods for the diagnostics of kidney tumor compared to individual techniques.

  11. Three-dimensional radiation thermometer combining near-infrared passband thermometry with optical fiber bundle tomography

    Science.gov (United States)

    Wan, Xiong; Zhang, Zhimin; Chen, Qi

    2013-09-01

    We report an implementation of a three-dimensional (3D) middle-temperature (500-1500 kelvin) radiation thermometer, which combines a near-infrared passband (1-3 micron) thermometry with an optical fiber bundle tomography (OFBT). To improve the probe precision, we calibrate the digital output of each OFB unit vs. the passband radiant intensity of the blackbody. Furthermore a digital signal processor (DSP) based system is built to accomplish the emission signal processing and the tomographic computation with which the calculation speed can be improved. A temperature probe experiment of the flame of a candle has testified the feasibility of the OFBT-based 3D thermometer.

  12. Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation.

    Science.gov (United States)

    Pineda-Vadillo, Pablo; Lynch, Michael; Charlton, Christy; Donegan, John F; Weldon, Vincent

    2009-12-07

    In this paper the application of Wavelength Modulation (WM) techniques to non-resonant saturation spectroscopy in acetylene-filled Hollow-Core Photonic Bandgap Fibres (HC-PBFs) and modulation-free Laser Diode (LD) frequency stabilisation is investigated. In the first part WM techniques are applied to non-resonant pump-probe saturation of acetylene overtone rotational transitions in a HC-PBF. A high-power DFB chip-on-carrier mounted LD is used in conjunction with a tuneable External Cavity Laser (ECL) and the main saturation parameters are characterized. In the second part a novel feedback system to stabilize the DFB emission wavelength based on the WM saturation results is implemented. Modulation-free locking of the DFB laser frequency to the narrow linewidth saturation feature is achieved for both constant and variable LD temperatures.

  13. Fiber based infrared lasers and their applications in medicine, spectroscopy and metrology

    Science.gov (United States)

    Alexander, Vinay Varkey

    In my thesis, I have demonstrated the development of fiber based infrared lasers and devices for applications in medicine, spectroscopy and metrology. One of the key accomplishments presented in this thesis for medical applications is the demonstration of a focused infrared laser to perform renal denervation both in vivo and in vitro. Hypertension is a significant health hazard in the US and throughout the world, and the laser based renal denervation procedure may be a potential treatment for resistant hypertension. Compared to current treatment modalities, lasers may be able to perform treatments with lesser collateral tissue damage and quicker treatment times helping to reduce patient discomfort and pain. An additional medical application demonstrated in this thesis is the use of infrared fiber lasers to damage sebaceous glands in human skin as a potential treatment for acne. Another significant work presented in this thesis is a field trial performed at the Wright Patterson Air Force Base using a Short Wave Infrared (SWIR) Supercontinuum (SC) laser as an active illumination source for long distance reflectance measurements. In this case, an SC laser developed as part of this thesis is kept on a 12 story tower and propagated through the atmosphere to a target kept 1.6 km away and used to perform spectroscopy measurements. In the future this technology may permit 24/7 surveillance based on looking for the spectral signatures of materials. Beyond applications in defense, this technology may have far reaching commercial applications as well, including areas such as oil and natural resources exploration. Beyond these major contributions to the state-of-the-art, this thesis also describes other significant studies such as power scalability of SWIR SC sources and non-invasive measurement of surface roughness.

  14. Rational Construction of Hollow Core-Branch CoSe2 Nanoarrays for High-Performance Asymmetric Supercapacitor and Efficient Oxygen Evolution.

    Science.gov (United States)

    Chen, Tian; Li, Songzhan; Wen, Jian; Gui, Pengbin; Guo, Yaxiong; Guan, Cao; Liu, Jinping; Fang, Guojia

    2017-12-18

    Metal selenides have great potential for electrochemical energy storage, but are relatively scarce investigated. Herein, a novel hollow core-branch CoSe2 nanoarray on carbon cloth is designed by a facile selenization reaction of predesigned CoO nanocones. And the electrochemical reaction mechanism of CoSe2 in supercapacitor is studied in detail for the first time. Compared with CoO, the hollow core-branch CoSe2 has both larger specific surface area and higher electrical conductivity. When tested as a supercapacitor positive electrode, the CoSe2 delivers a high specific capacitance of 759.5 F g-1 at 1 mA cm-2 , which is much larger than that of CoO nanocones (319.5 F g-1 ). In addition, the CoSe2 electrode exhibits excellent cycling stability in that a capacitance retention of 94.5% can be maintained after 5000 charge-discharge cycles at 5 mA cm-2 . An asymmetric supercapacitor using the CoSe2 as cathode and an N-doped carbon nanowall as anode is further assembled, which show a high energy density of 32.2 Wh kg-1 at a power density of 1914.7 W kg-1 , and maintains 24.9 Wh kg-1 when power density increased to 7354.8 W kg-1 . Moreover, the CoSe2 electrode also exhibits better oxygen evolution reaction activity than that of CoO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Damage-free single-mode transmission of deep-UV light in hollow-core PCF

    CERN Document Server

    Gebert, F; Weiss, T; Wan, Y; Ermolov, A; Joly, N Y; Schmidt, P O; Russell, P St J

    2014-01-01

    Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagom\\'e type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment significantly increases the coherence times of the internal state transfer due to an increase in beam pointing stability.

  16. Ultrafast fiber beam delivery: system technology and industrial application

    Science.gov (United States)

    Funck, Max C.; Eilzer, Sebastian; Wedel, Björn

    2017-02-01

    Flexible beam delivery of high power pico- and femtosecond pulses offers great advantages in industrial applications. Complex free space beam delivery as found in robot or gantry systems can be replaced, laser safety and uptime increased and system integration in production environment simplified. Only recently fiber beam delivery has become available for ultrafast lasers while it has been an established standard for cw and pulsed laser sources for many years. Using special kinds of fiber that guide the laser beam mostly inside a hollow core, nonlinear effects and catastrophic damage that would arise in conventional glass fibers can be avoided. Today, ultrafast pulses with several 100 μJ and hundreds of MW can be transmitted in quasi single mode fashion with micro-structured hollow core fibers. During the last years we have developed a modular beam delivery system that suits industrial ultrafast lasers and can be integrated into existing processing machines. Micro-structured hollow core fibers inside the sealed laser light cable efficiently guide high-power laser pulses over distances of several meters with excellent beam quality, while power, pulse duration and polarization are maintained. We report on the technology required for fiber beam delivery of ultrafast laser pulses and discuss requirements for successful integration into industrial production as well as achievable performance under realistic operation and show examples of micromachining applications.

  17. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    Science.gov (United States)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  18. Fiber-coupled high resolution infrared array spectrometer for the Kuiper Airborne Observatory

    Science.gov (United States)

    Glenar, D. A.; Reuter, D.; Mumma, M. J.; Chin, G.; Wiedemann, G.; Jennings, D.

    1990-01-01

    A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.

  19. Delamination of carbon-fiber strengthening layer from concrete beam during deformation (infrared thermography

    Directory of Open Access Journals (Sweden)

    I. N. Shardakov

    2016-10-01

    Full Text Available Technology of strengthening reinforced concrete structures with composite materials has found wide application. The effectiveness of strengthening of concrete structures with externally bonded reinforcement is supported by a great deal of experimental evidence. However, the problem of serviceability of such structures has not been adequately explored. The present work describes the results of experimental studies on the loadcarrying capacity of concrete beams strengthened with carbon fiber reinforced plastic (CFRP. Special emphasis is placed on studying the debonding of the strengthening layer from the concrete surface and analyzing its influence on the load-carrying capacity of beams. Infrared thermography is used to detect the first signs of debonding and to assess the debond growth rate

  20. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Engelsholm, Rasmus Dybbro; Markos, Christos

    2017-01-01

    The trade-off between the spectral bandwidth and average output power from chalcogenide fiber-based mid-infrared supercontinuum sources is one of the major challenges towards practical application of the technology. In this paper we address this challenge through tapering of large-mode-area chalc...

  1. Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy probe.

    Science.gov (United States)

    Damin, Craig A; Sommer, André J

    2013-11-01

    Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending

  2. Mid-infrared fiber laser application: Er 3+-doped chalcogenide glasses

    Science.gov (United States)

    Moizan, Virginie; Nazabal, Virginie; Troles, Johann; Houizot, Patrick; Adam, Jean-Luc; Smektala, Frédéric; Doualan, Jean-Louis; Moncorgé, Richard; Canat, Guillaume; Cariou, Jean-Pierre

    2007-02-01

    Mid-infrared (IR) lasers are of interest for a variety of applications including environmental sensing, LIDAR and military counter measures. However, this wavelength range lacks powerful, coherent, robust and compact sources. A solution can lie in chalcogenide glasses as host materials for rare earth ions. With an extended infrared transparency, low phonon energy limiting the non radiative multiphonon relaxation rates and suitable rare earth solubility, sulfide glasses based on Ge-Ga-Sb-S system make available radiative transitions in the mid-IR range. The glasses with nominal composition of Ge 20Ga 5Sb 10S 65 doped with Er 3+ (500 to 10000 ppm) were prepared by means of conventional melting and quenching method. The Er 3+, widely studied in glass fibers for near-IR amplification, was initially selected for the transition 4I 9/2 to 4I 11/2 emitting at around 4.5 μm in order to demonstrate the ability of this sulfide composition for midinfrared fiber lasers application. In these objectives, absorption and emission spectra have been recorded and the radiative decay lifetime of excited levels ( 4I 9/2, 4I 11/2 and 4I 13/2) has been determined. These last experimental results were compared with those obtained by Judd-Ofelt model from absorption cross-sections of all observable transitions. Therefore, the 4I 9/2 radiative quantum efficiency was estimated at 67 %. The emission cross-section was 2.6x10 -21 cm2 at 4.6 μm obtained by Fütchbauer-Ladenburg theory. The product of measured lifetime and emission cross-section for 4I 9/2 -> 4I 11/2 transition is about 1.87x10 -24 cm2.s is comparable with that for GaLaS glasses. The fiber drawing of the Er 3+ doped Ge 20Ga 5Sb 10S 65 glasses and measurements of optical losses in mid-IR are currently in progress and first results were presented.

  3. Development and characterization of highly-nonlinear multicomponent glass photonic crystal fibers for mid-infrared applications

    Science.gov (United States)

    Nemecek, Tomas; Komanec, Matej; Suslov, Dmytro; Peterka, Pavel; Pysz, Dariusz; Buczynski, Ryszard; Nelsen, Bryan; Zvanovec, Stanislav

    2017-05-01

    We present a detailed chromatic dispersion characterization of heavy-metal oxide (HMO) glass photonic crystal fibers (PCFs) suitable for mid-infrared applications. Based on previous work with hexagonal and suspended-core fibers the focus was placed on determination of the chromatic dispersion curve to reach precise correlation between simulation model and real fiber based on both a post-draw model correction and broadband chromatic dispersion measurement. The paper covers the fiber design, discusses fiber manufacturing, presents measurements of fiber chromatic dispersion, provides the simulation model correction and finally proposes further applications. Selected fiber designs from simulation model were fabricated by the stack-and-draw technique. The dispersion measurement setup was based on an unbalanced Mach-Zehnder interferometer. The influence of optical elements on the measurement results and broadband coupling is discussed. We have proved that the critical factor represents the accuracy of the refractive index equation of the HMO glass and real fiber structure. By improved technique we reached the zero-dispersion wavelength with a reasonable precision of less than 30 nm.

  4. Vacuum-UV to IR supercontinuum in hydrogen-filled photonic crystal fiber

    CERN Document Server

    Belli, Federico; Chang, Wonkeun; Travers, John C; Russell, Philip St J

    2015-01-01

    Although supercontinuum sources are readily available for the visible and near infrared, and recently also for the mid-IR, many areas of biology, chemistry and physics would benefit greatly from the availability of compact, stable and spectrally bright deep ultraviolet (DUV) and vacuum ultraviolet (VUV) supercontinuum sources. Such sources have however not yet been developed. Here we report the generation of a bright supercontinuum, spanning more than three octaves from 124 nm to beyond 1200 nm, in hydrogen-filled kagom\\'e-style hollow-core photonic crystal fiber (kagom\\'e-PCF). Few-{\\mu}J, 30 fs pump pulses at wavelength 805 nm are launched into the fiber, where they undergo self-compression via the Raman-enhanced Kerr effect. Modeling indicates that before reaching a minimum sub-cycle pulse duration of ~1 fs, much less than one period of molecular vibration (8 fs), nonlinear reshaping of the pulse envelope, accentuated by self-steepening and shock formation, creates an ultrashort feature that causes impulsi...

  5. Fiber

    Science.gov (United States)

    ... fiber you get from the food. Fiber-rich foods offer health benefits when eaten raw or cooked. Alternative Names Diet - fiber; Roughage; Bulk; Constipation - fiber Patient Instructions Constipation - ...

  6. Effects of structure parameters on the sensor performance of photonic crystal fiber

    Science.gov (United States)

    Xiao, Rui; Rong, Zhen; Pang, Yuanfeng; Bo, Xiaochen

    2015-02-01

    A simple and compact sensor based on a photonic crystal fiber (PCF) for the in-situ detection of fluorescence signals with high sensitivity is demonstrated. Several different kinds of PCF probes are studied. The effect of PCF parameters on sensitivity and the guiding mechanisms are analyzed, and the performance of PCF probes is experimentally evaluated by measuring the fluorescence signal of Cy3 dye. In addition, the detection sensitivity of the hollow-core PCF probe and the flat-tippedmulti-mode fiber probe is compared. The experimental results show that the hollow-core PCF probe provides a greater than five-fold increase in detection sensitivity compared with direct measurements by a flat-tippedmulti-mode fiber probe, which shows its potential for wide applications to in-situ detection in the medical, forensic, biological, geological, and environmental fields with high sensitivity.

  7. Determination of total dietary fiber of intact cereal food products by near-infrared reflectance.

    Science.gov (United States)

    Archibald, D D; Kays, S E

    2000-10-01

    Near-infrared reflectance spectra of cereal food products were acquired with a commercial dual-diode-array (Si, InGaAs) spectrometer customized to allow rapid acquisition of scans of intact breakfast cereals, snack foods, whole grains, and milled products. Substantial gains in the performance of multivariate calibration models generated from these data were obtained by a computational strategy that systematically analyzed the performance of various spectral windows. The calibration model based on 137 cereal food products determined the total dietary fiber (TDF) content of a test set of 45 intact diverse cereal food products with root-mean-squared error of cross-validation of between 1.8 and 2.0% TDF, relative to the laborious enzymatic-gravimetric reference method. The calibration performance is adequate to estimate TDF over the range of values found in diverse types of cereal food products (0.7-50.1%). The method requires no sample preparation and is relatively unaffected by specimen moisture content.

  8. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    Science.gov (United States)

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  9. Hybrid photonic-crystal fiber

    Science.gov (United States)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  10. Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast.

    Science.gov (United States)

    Totachawattana, Atcha; Liu, Hui; Mertiri, Alket; Hong, Mi K; Erramilli, Shyamsunder; Sander, Michelle Y

    2016-01-01

    We report on a mid-infrared photothermal spectroscopy system with a near-infrared fiber probe laser and a tunable quantum cascade pump laser. Photothermal spectra of a 6 μm-thick 4-octyl-4'-cyanobiphenyl liquid crystal sample are measured with a signal-to-baseline contrast above 103. As both the peak photothermal signal and the corresponding baseline increase linearly with probe power, the signal-to-baseline contrast converges to an asymptotic limit for a given pump power. This limit is independent of the probe power and characterizes the best contrast achievable for the system. This enables sensitive quantitative spectral characterization of linear infrared absorption features directly from photothermal spectroscopy measurements.

  11. Fiber-Drawn Metamaterial for THz Waveguiding and Imaging

    Science.gov (United States)

    Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu; Habib, Md. Samiul; Hayashi, Juliano Grigoleto; Tuniz, Alessandro; Tang, Xiaoli; Anthony, Jessienta; Lwin, Richard; Argyros, Alexander; Fleming, Simon C.; Kuhlmey, Boris T.

    2017-09-01

    In this paper, we review the work of our group in fabricating metamaterials for terahertz (THz) applications by fiber drawing. We discuss the fabrication technique and the structures that can be obtained before focusing on two particular applications of terahertz metamaterials, i.e., waveguiding and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28.

  12. Fiber-Drawn Metamaterial for THz Waveguiding and Imaging

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu

    2017-01-01

    In this paper, we review the work of our group in fabricating metamaterials for terahertz (THz) applications by fiber drawing. We discuss the fabrication technique and the structures that can be obtained before focusing on two particular applications of terahertz metamaterials, i.e., waveguiding...... and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased...... single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28....

  13. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    Energy Technology Data Exchange (ETDEWEB)

    England, R.J.; /SLAC; Colby, E.R.; /SLAC; Ischebeck, R.; /Munich, Max Planck Inst. Quantenopt.; McGuinness, C.M.; /SLAC; Noble, R.; /SLAC; Plettner, T.; /SLAC; Sears, C.M.S.; /Munich, Max Planck Inst. Quantenopt.; Siemann, R.H.; /SLAC; Spencer, J.E.; /SLAC; Walz, D.; /SLAC

    2011-11-21

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. They will describe the experimental plan and recent simulation studies of candidate fibers.

  14. 4.5 W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser

    Science.gov (United States)

    Kneis, C.; Donelan, B.; Berrou, A.; Manek-Hönninger, I.; Cadier, B.; Robin, T.; Poulain, M.; Joulain, F.; Eichhorn, M.; Kieleck, C.

    2015-02-01

    The generation of mid-infrared (mid-IR) supercontinuum (SC) radiation, ranging from 2 - 5 μm, is subject of intense research due to its wide range of applications. A very popular host media for mid-IR SC generation are soft glass fibers owing to their low-loss transmission in the mid-IR wavelength regime, particularly fluoride fibers are very attractive for high-power operation. In this research study, a diode-pumped Q-switched mode-locked (QML) thulium (Tm3+)-doped double-clad silica fiber laser is used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-IR SC generation. The QML regime of the fiber laser is actively generated by two acousto-optic modulators. The Tm3+-fiber laser provided up to 23.5 W (26 W) of average output power in QML (continuous wave) regime with a slope efficiency of 36 % (32 %). The measured beam quality has been close to the diffraction-limit in QML regime. The system delivered mode-locked pulses with a duration of 7.5 ps, measured with a commercial autocorrelator system, at a repetition rate of 46 MHz. The Q-switched envelopes had a width between 50 and 150 ns depending on the output power level and the adjustable repetition rate. Mid-IR SC with an average output power in all spectral bands of 4.5 W have been achieved with more than 3 W/ 1.7 W/ 1 W/ 0.36 W after a long-wave-pass filter with a 3 dB-edge at 2.15 μm/ 2.65 μm/ 3.1 μm/ 3.5 μm.

  15. Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers

    DEFF Research Database (Denmark)

    Kubat, Irnis; Petersen, Christian Rosenberg; Møller, Uffe Visbech

    2014-01-01

    of ZBLAN spanning the 0.9–4.1μm SC at the −30dB level. The ZBLAN fiber SC is then coupled into 10cm of As2Se3 chalcogenide Microstructured Optical Fiber (MOF) designed to have a zero-dispersion wavelength (λZDW) significantly below the 4.1μm InfraRed (IR) edge of the ZBLAN fiber SC, here 3.55μm...

  16. Passive and Portable Polymer Optical Fiber Cleaver

    DEFF Research Database (Denmark)

    Saez-Rodriguez, D.; Min, R.; Ortega, B.

    2016-01-01

    Polymer optical fiber (POF) is a growing technology in short distance telecommunication due to its flexibility, easy connectorization, and lower cost than the mostly deployed silica optical fiber technology. Microstructured POFs (mPOFs) have particular promising potential applications...... in the sensors and telecommunications field, and they could specially help to reduce losses in polymer fibers by using hollow-core fibers or reduce the modal dispersion by providing a large mode area endlessly single-mode. However, mPOFs are intrinsically more difficult to cut due to the cladding hole structure...... and it becomes necessary to have a high quality POF cleaver. In the well-known hot-blade cutting process, fiber and blade are heated, which requires electrical components and increases cost. A new method has recently been identified, allowing POF to be cut without the need for heating the blade and fiber, thus...

  17. In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor.

    Science.gov (United States)

    Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Yu, Haixia; Xu, Kexin

    2013-12-17

    Because mid-infrared (mid-IR) spectroscopy is not a promising method to noninvasively measure glucose in vivo, a method for minimally invasive high-precision glucose determination in vivo by mid-IR laser spectroscopy combined with a tunable laser source and small fiber-optic attenuated total reflection (ATR) sensor is introduced. The potential of this method was evaluated in vitro. This research presents a mid-infrared tunable laser with a broad emission spectrum band of 9.19 to 9.77[Formula: see text](1024~1088 cm(-1)) and proposes a method to control and stabilize the laser emission wavelength and power. Moreover, several fiber-optic ATR sensors were fabricated and investigated to determine glucose in combination with the tunable laser source, and the effective sensing optical length of these sensors was determined for the first time. In addition, the sensitivity of this system was four times that of a Fourier transform infrared (FT-IR) spectrometer. The noise-equivalent concentration (NEC) of this laser measurement system was as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. Furthermore, a partial least-squares regression and Clarke error grid were used to quantify the predictability and evaluate the prediction accuracy of glucose concentration in the range of 5 to 500 mg/dL (physiologically relevant range: 30~400 mg/dL). The experimental results were clinically acceptable. The high sensitivity, tunable laser source, low NEC and small fiber-optic ATR sensor demonstrate an encouraging step in the work towards precisely monitoring glucose levels in vivo.

  18. Partial least squares regression calibration for determining wax content in processed flax fiber by near-infrared spectroscopy.

    Science.gov (United States)

    Sohn, Miryeong; Himmelsbach, David S; Morrison, W Herbert; Akin, Danny E; Barton, Franklin E

    2006-04-01

    The quality of flax fiber in the textile industry is closely related to the wax content remaining on the fiber after the cleaning process. Extraction by organic solvents, which is currently used for determining wax content, is very time consuming and produces chemical waste. In this study, near-infrared (NIR) spectroscopy was used as a rapid analytical technique to develop models for wax content associated with flax fiber. Calibration samples (n=11) were prepared by manually mixing dewaxed fiber and isolated wax to provide a range of wax content from 0 to 5%. A total of fourteen flax fiber samples obtained after a cleaning process were used for prediction. Principal component analysis demonstrated that one principal component is enough to separate the flax fibers by their wax content. The most highly correlated wavelengths were 2312, 2352, 1732, and 1766 nm, in order of significance. Partial least squares models were developed with various chemometric preprocessing approaches to obtain the best model performance. Two models, one using the entire region (1100-2498 nm) and the other using the selected wavelengths, were developed and the accuracies compared. For the model using the entire region, the correlation coefficient (R2) between actual and predicted values was 0.996 and the standard error of prediction (RMSEP) was 0.289%. For the selected-wavelengths model, the R2 was 0.997 and RMSEP was 0.272%. The results suggested that NIR spectroscopy can be used to determine wax content in very clean flax fiber and that development of a low-cost device, using few wavelengths, should be possible.

  19. Generation of 70-fs pulses at 2.86  μm from a mid-infrared fiber laser.

    Science.gov (United States)

    Woodward, R I; Hudson, D D; Fuerbach, A; Jackson, S D

    2017-12-01

    We propose and demonstrate a simple route to few-optical-cycle pulse generation from a mid-infrared fiber laser through nonlinear compression of pulses from a holmium-doped fiber oscillator using a short length of chalcogenide fiber and a grating pair. Pulses from the oscillator with 265-fs duration at 2.86 μm are spectrally broadened through self-phase modulation in step-index As 2 S 3 fiber to 141-nm bandwidth and then re-compressed to 70 fs (7.3 optical cycles). These are the shortest pulses from a mid-infrared fiber system to date, and we note that our system is compact, robust, and uses only commercially available components. The scalability of this approach is also discussed, supported by numerical modeling.

  20. Switching and counting with atomic vapors in photonic-crystal fibers

    DEFF Research Database (Denmark)

    Peyronel, Thibault; Bajcsy, Michal; Hofferberth, Sebastian

    2012-01-01

    We review our recent experiments demonstrating a hollow-core photonic-crystal fiber loaded with laser-cooled atomic vapor as a system for all-optical switching with pulses containing few hundred photons. Additionally, we discuss the outlooks for improving the efficiency of this switching scheme a...... and present preliminary results geared toward using the system as a photon-number resolving detector....

  1. Analisis FTIR dan Minimum Loss pada Kaca Tellurite-Bismuth-Zinc-Plumbum untuk Aplikasi Fiber Optik Infrared

    Directory of Open Access Journals (Sweden)

    Wahyudi -

    2014-01-01

    Full Text Available Peneltian ini bertujuan menganalisis spektrum Fourier Transform Infra Red (FTIR dan menentukan minimum loss dari kaca Tellurite-Bismuth-Zinc-Plumbum (TBZP yang dipengaruhi oleh variasi (PbO. Kaca TBZP difabrikasi dengan teknik melt quenching dengan komposisi 55TeO2–2Bi2O3–[43-x]ZnO–xPbO (%mol dengan x=2, 3, 4, 5. Hasil uji spektrum Fourier Transform Infra Red (FTIR menunjukkan pita absorbsi terbesar berada pada panjang gelombang lebih dari 620nm. Absorbansi tersebut lebih diakibatkan oleh adanya transisi vibrasi pada daerah infrared. Minimum loss pada kaca TBZP diprediksikan secara teoritis melalui fitting data infrared edge dengan kurva Rayleigh scattering. Minimum loss kaca TBZP sebasar 2,94 dB/km hingga 2,35 dB/km pada λ=5534,2nm hingga 5821,2nm. Nilai minimum loss menurun seiring pertambahan konsentrasi ion Pb2+ dalam kaca TBZP. Sifat tersebut menjadikan kaca ini sebagai kandidat yang baik untuk aplikasi yang menggunakan gelombang infrared seperti fiber optik infrared. The aims of this research were to analyze the spectrum of Fourier Transform Infra Red (FTIR and determine the minimum loss of Tellurite-Bismuth-Zinc-Plumbum (TBZP based glass which affected by the variation of (PbO. The TBZP glass has been fabricated by melt quenching technique with composition 55TeO2–2Bi2O3–[43-x]ZnO–xPbO (mol% with x=2, 3, 4, 5. Fourier Transform Infra Red (FTIR spectra test results showed that the greatest absorption bands were at wavelengths over 620nm. Vibrational transition has the reason behind the absorbance in the infrared region. Minimum loss on glass TBZP theoretically was predicted by fitted data from the infrared edge and rayleigh scattering curve. The minimum loss of TBZP was of the range 2,94 dB/km to 2,35 dB/km at λ=5534,2nm to 5821,2nm. The minimum loss of TBZP glass decreases as the Pb2+ content in glass increases. This makes these glasses are good candidate for IR-application such as infrared optical fiber.

  2. Mid-infrared supercontinuum generation in tapered ZBLAN fiber with a standard Erbium mode-locked fiber laser

    DEFF Research Database (Denmark)

    Kubat, Irnis; Moselund, Peter M.; Bang, Ole

    2013-01-01

    with taper start at 8 m down to Dc=5.5 μm. At the taper waist a region of normal dispersion now appears in between the solitons, which generates MIR Dispersive Waves (DWs) between the second and third ZDW and also accelerates a large number of solitons towards the IR, as we will detail in the presentation...... realistic fiber and laser parameters and a short taper, which can be fabricated on a taper station....

  3. Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation

    DEFF Research Database (Denmark)

    Dantanarayana, Harshana G.; Abdel-Moneim, Nabil; Tang, Zhuoqi

    2014-01-01

    We select a chalcogenide core glass, AsSe, and cladding glass, GeAsSe, for their disparate refractive indices yet sufficient thermal-compatibility for fabricating step index fiber (SIF) for mid-infrared supercontinuum generation (MIR-SCG). The refractive index dispersion of both bulk glasses...... is measured over the 0.4 μm–33 μm wavelength-range, probing the electronic and vibrational behavior of these glasses. We verify that a two-term Sellmeier model is unique and sufficient to describe the refractive index dispersion over the wavelength range for which the experimentally determined extinction...

  4. Mid-infrared supercontinuum generation in a suspended core chalcogenide fiber

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Yu, Yi; Gai, Xin

    The mid-infrared spectral region is of great interest because virtually all organic compounds display distinctive spectral fingerprints herein that reveal chemical information about them [1], and the mid-infrared region is therefore of key importance to many applications, including food quality...

  5. Integrated and miniaturized endoscopic devices for use during high power infrared fiber laser surgery

    Science.gov (United States)

    Wilson, Christopher Ryan

    The Thulium Fiber Laser (TFL) is currently being studied as a potential alternative to the conventional, solid-state Holmium:YAG laser (Ho:YAG) for the treatment of kidney stones. The TFL is an ideal candidate to replace the Ho:YAG for laser lithotripsy due to a higher absorption coefficient in water of the emitted wavelength, an ability to operate at high pulse rates, and a near single mode, Gaussian spatial beam profile. The higher absorption of the TFL wavelength by water translates to a decrease in ablation threshold by a factor of four. High pulse rate operation allows higher ablation rates than the Ho:YAG, thus decreasing operation time necessary to ablate the urinary stone. The Gaussian spatial beam profile allows the TFL to couple higher laser power into smaller optical fibers than those currently being used for Ho:YAG lithotripsy. This decrease in fiber diameter translates into a potential decrease in the size of ureteroscope working channel, higher saline irrigation rates for improved visibility and safety, and may also extend to a decrease in overall ureteroscope diameter. Furthermore, the improved spatial beam profile reduces the risk of damage to the input end of the fiber. Therefore, the trunk fiber, minus the distal fiber tip, may be preserved and re-used, resulting in significant cost savings. This thesis details rapid TFL lithotripsy at high pulse rates up to 500 Hz, both with and without the aid of a stone retrieval basket, in order to demonstrate the TFL's superior ablation rates over the Ho:YAG. Collateral damage testing of the TFL effect on the ureter wall and Nitinol stone baskets were conducted to ensure patient safety for future clinical use. Proximal fiber end damage testing was conducted to demonstrate fiber preservation, critical for permanent fiber integration. Optical fibers were fitted with fabricated hollow steel tips and integrated with stone retrieval baskets for testing. Ball tipped optical fibers were tested to maintain ablation

  6. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  7. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    Science.gov (United States)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  8. The limitation of the proposed collection efficiency for fiber probes on the visible and near-infrared diffuse spectroscopy

    Science.gov (United States)

    Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin

    2017-12-01

    A fiber is usually used as a probe in visible and near-infrared diffuse spectra measurement. However, the use of different fiber probes in the same measurement may cause data mismatch problems. Our group has researched the influence of the parameters of fiber probe, including the aperture angle, on the diffuse spectrum by a modified Monte Carlo model. To eliminate the influence of the aperture angle, we proposed a fitted equation of correction coefficient to correct its difference in practical range. However, we did not discuss the limitation of this method. In this work, we explored the collection efficiency in different optical environment with Monte Carlo simulation method, and find the suitable conditions-weak absorbing and strong scattering media, for the proposed collection efficiency. Furthermore, we tried to explain the stability of the collection efficiency in this condition. This work gives suitable conditions for the collection efficiency. The use of collection efficiency can help reduce the influence of different measurement systems and is also helpful to the model translation.

  9. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballato, John

    2018-01-22

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges2 and La2S3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositions were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have Tgs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger

  10. Near-infrared spectroscopy in the assessment of cotton fiber qualities

    Science.gov (United States)

    Cotton fiber is one of the most important agricultural commodities in the world. Its production and profitability are determined by at least three main factors including genotype, environment, and production practices that interact to one another and ultimately affects the yield and quality of cotto...

  11. Impact of temperature and relative humidity on the near infrared spectroscopy measurements of cotton fiber micronaire

    Science.gov (United States)

    A key cotton fiber property is micronaire, the indirect indicator of the fiber’s maturity (cell wall development or thickening) and fineness (linear density or size). Micronaire can impact the fiber’s quality, textile processing efficiency, and fabric dye consistency. As a key quality property, fi...

  12. Measurement of magnetocaloric effect in pulsed magnetic fields with the help of infrared fiber optical temperature sensor

    Science.gov (United States)

    Kamantsev, Alexander P.; Koledov, Victor V.; Mashirov, Alexey V.; Shavrov, Vladimir G.; Yen, N. H.; Thanh, P. T.; Quang, V. M.; Dan, N. H.; Los, Anton S.; Gilewski, Andrzej; Tereshina, Irina S.; Butvina, Leonid N.

    2017-10-01

    We present a new technique for experimental study of kinetics of phase transitions (PTs) and direct measurement of the magnetocaloric effect (MCE) in pulsed magnetic fields by using the fast response temperature probe with infrared fiber optical (IRFO) sensor. As demonstration of the new technique, the results are presented of MCE measurements for Gd near Curie point: ΔTad = 21.3 K under pulsed magnetic field μ0H = 12.7 T; and inverse MCE for Fe48Rh52 sample at initial temperature 305.1 K: ΔTad = -4.5 K under pulsed magnetic field μ0H = 8.5 T. Also, the energy losses on magnetization near the 1st order PT were calculated from the results of direct measurements of magnetization versus time for Fe48Rh52 sample: W = 45 J/kg.

  13. High-resolution fast temperature mapping of a gas turbine combustor simulator with femtosecond infrared laser written fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Ramachandran, Nanthan; Mihailov, Stephen J.

    2017-02-01

    Femtosecond infrared (fs-IR) written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to the advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring the sidewall and exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients contrasted with thermocouple data, discussion of deployment strategies and comments on reliability.

  14. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging

    Science.gov (United States)

    Zhang, Guojin; Senak, Laurence; Moore, David J.

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  15. A fiber-laser-pumped four-wavelength continuous-wave mid-infrared optical parametric oscillator

    Science.gov (United States)

    Wang, Peng; Shang, Yaping; Li, Xiao; Xu, Xiaojun

    2017-10-01

    In this paper, a four-wavelength continuous-wave mid-infrared optical parametric oscillator was demonstrated for the first time. The pump source was a home-built linearly polarized Yb-doped fiber laser and the maximum output power was 72.5 W. The pump source had three central wavelengths locating at 1060 nm, 1065 nm and 1080 nm. Four idler emissions with different wavelengths were generated which were 3132 nm, 3171 nm, 3310 nm and 3349 nm under the maximum pump power. The maximum idler output reached 8.7 W, indicating a 15% pump-to-idler slope efficiency. The signal wave generated in the experiment had two wavelengths which were 1595 nm and 1603 nm under the maximum pump power. It was analyzed that four nonlinear progresses occurred in the experiment, two of them being optical parametric oscillation and the rest two being intracavity difference frequency generation.

  16. Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared.

    Science.gov (United States)

    Shen, L; Healy, N; Xu, L; Cheng, H Y; Day, T D; Price, J H V; Badding, J V; Peacock, A C

    2014-10-01

    An octave-spanning supercontinuum is generated in a hydrogenated amorphous silicon core fiber when pumped in the mid-infrared regime. The broadband wavelength conversion which extends from the edge of the telecommunications band into the mid-infrared (1.64-3.37 μm) is generated by four-wave mixing (FWM) and subsequent pulse break-up, facilitated by the high material nonlinear figure of merit and the anomalous dispersion of the relatively small 1.7 μm diameter core fiber. The FWM sidebands and corresponding supercontinuum can be tuned through the pump parameters, and show good agreement with the predicted phase-matching curves for the fiber.

  17. Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers

    Science.gov (United States)

    Mo, Kundong; Zhai, Bo; Jianfeng, Li; Coscelli, E.; Poli, F.; Cucinotta, A.; Selleri, S.; Wei, Chen; Liu, Yong

    2017-05-01

    Not Available Project supported by the National Nature Science Foundation of China (Grant Nos. 61435003, 61377042, 61505024, and 61421002), Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, China (Grant No. 2015GZKF004), Open Found of Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, China (Grant No. SKLSFO2014-07), and Open Fund of Science and Technology on Solid-State Laser Laboratory, China (Grant No. H04010501W2015000604).

  18. Black phosphorus as a new broadband saturable absorber for infrared passively Q-switched fiber lasers

    CERN Document Server

    Jiang, Tian; Zheng, Xin; Yu, Hao; Cheng, Xiang-Ai

    2015-01-01

    Black phosphorus (BP) with its enticing electric and optical properties is intensely researched in the field of optoelectronics. In this paper, Q-switched pulses at 1550 nm and 2 um wavelengths are obtained by inserting bulk-structured BP based saturable absorber (SA) into an erbium-doped fiber laser (EDFL) and an thulium/holmium-doped fiber laser (THDFL), respectively. The BP-SA was prepared by depositing powered BP material on to the flat side of a side-polished single mode fiber. Q-switched 1550 nm pulses with width tuned from 9.35 to 31 us were obtained for the EDFL. For the THDFL, over 100 nm wavelength range could be achieved from 1832 to 1935 nm by adjusting the pump power. To the best of our knowledge, these results demonstrated the broadband saturable absorption property of BP and for the first time verified that BP as a new two-dimensional material for applications in saturable absorption devices.

  19. Fiber Based Mid Infrared Supercontinuum Source for Spectroscopic Analysis in Food Production

    DEFF Research Database (Denmark)

    Ramsay, Jacob; Dupont, Sune Vestergaard Lund; Keiding, Søren Rud

    Optimization of sustainable food production is a worldwide challenge that is undergoing continuous development as new technologies emerge. Applying solutions for food analysis with novel bright and broad mid-infrared (MIR) light sources has the potential to meet the increasing demands for food...... quality and production optimization. By combining a new MIR supercontinuum source with spectroscopy and chemometrics, we seek to enable faster and more precise analysis of grains, soils and dairy products....

  20. Interaction between pulsed infrared laser and carbon fiber reinforced polymer composite laminates

    Science.gov (United States)

    Liu, Yan-Chi; Wu, Chen-Wu; Song, Hong-Wei; Huang, Chen-Guang

    2016-10-01

    The Laser drilling processes, in particular the interaction between the pulsed infrared Laser and the target materials were investigated on the CFRP composite laminate. The incremental freezing method was designed to reveal experimentally the temporal patterns of the ablation profiles in the CFRP composite laminates subjected to pulsed Laser irradiation. The temperature characteristics of the specimens were analyzed with Finite Element Method (FEM) and the phase change history studied. The theoretical results match well with the experimental outcome.

  1. Fiber

    Science.gov (United States)

    ... white toast. Lunch and Dinner: Make sandwiches with whole-grain breads (rye, oat, or wheat) instead of white. Make a fiber-rich sandwich with whole-grain bread, peanut butter, and bananas. Use whole-grain spaghetti ...

  2. Long wavelength mid-infrared from mixing two colors from a fiber amplifier

    Science.gov (United States)

    Bian, Siyuan; Loranger, Sébastien; Kashyap, Raman; Strickland, Donna

    2015-05-01

    At Waterloo, we are developing a high power, short pulse, two-color, Yb:fiber amplifier system to generate the long wavelength (TATP) occur between 15 and 20 μm. To date, we have achieved a tuning range from 16 to 20 μm with a maximum average power of 1.7 mW. On the short wavelength side, the two colors would need to be pulled further apart, which requires a higher power seed to beat the amplified spontaneous emission that appears at the gain peak of the amplifiers between the two seed colors. On the long wavelength side, we are limited to 20 μm by the transparency region of the nonlinear crystals. We would like to find new nonlinear materials that have transparency from 1 to 30μm. If we could generate wavelengths from 15 to 30 μm with sufficient power, we could extend the spectral region to also cover 8 to 15μm by frequency doubling the longer wavelengths. We are currently working on replacing bulk optics in the system with fiber based optical elements to select the wavelengths as well as stretch and recompress the pulses in order to make the system compact and stable.

  3. Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Watanabe

    2012-02-01

    Full Text Available This paper describes the characteristics of optical fiber sensors with surface plasmon resonance (SPR at 1,310 nm in which the scattering loss of silica optical fiber is low. SPR operation in the infrared wavelength range is achieved by coating a thin tantalum pentaoxide (Ta2O5 film. The novelty of this paper lies in the verification of how the hetero-core scheme could be operated as a commercial base candidate in the sense of easy fabrication, sufficient mechanical strength, and significant sensitivity as a liquid detector under the basis of a low loss transmission network in the near infrared wavelength region. The effect of Ta2O5 layer thickness has been experimentally revealed in the wavelength region extending to 1,800 nm by using the hetero-core structured optical fiber. SPR characterizations have been made in the wavelength region 1,000–1,300 nm, showing the feasible operation at the near infrared wavelength and the possible practical applications. In addition, the technique developed in this work has been interestingly applied to a multi-point water-detection and a water-level gauge in which tandem-connected SPR sensors system using hetero-core structured fibers were incorporated. The detailed performance characteristics are also shown on these applications.

  4. An All Fiber Intrinsic Fabry-Perot Interferometer Based on an Air-Microcavity

    Directory of Open Access Journals (Sweden)

    Ruth I. Mata-Chávez

    2013-05-01

    Full Text Available In this work an Intrinsic Fabry-Perot Interferometer (IFPI based on an air-microcavity is presented. Here the air microcavity, with silica walls, is formed at a segment of a hollow core photonic crystal fiber (HCPCF, which is fusion spliced with a single mode fiber (SMF. Moreover, the spectral response of the IFPI is experimentally characterized and some results are provided. Finally, the viability to use the IFPI to implement a simple, compact size, and low cost refractive index sensor is briefly analyzed.

  5. Enhanced Infrared Image Processing for Impacted Carbon/Glass Fiber-Reinforced Composite Evaluation

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2017-12-01

    Full Text Available In this paper, an infrared pre-processing modality is presented. Different from a signal smoothing modality which only uses a polynomial fitting as the pre-processing method, the presented modality instead takes into account the low-order derivatives to pre-process the raw thermal data prior to applying the advanced post-processing techniques such as principal component thermography and pulsed phase thermography. Different cases were studied involving several defects in CFRPs and GFRPs for pulsed thermography and vibrothermography. Ultrasonic testing and signal-to-noise ratio analysis are used for the validation of the thermographic results. Finally, a verification that the presented modality can enhance the thermal image performance effectively is provided.

  6. A two-stage photonic crystal fiber / silicon photonic wire short-wave infrared wavelength converter/amplifier based on a 1064 nm pump source.

    Science.gov (United States)

    Kuyken, B; Leo, F; Mussot, A; Kudlinski, A; Roelkens, G

    2015-05-18

    We demonstrate a two-stage wavelength converter that uses compact near-infrared sources to amplify and convert short-wave infrared signals. The first stage consists of a photonic crystal fiber wavelength converter pumped by a Q-switched 1064 nm pump source, while the second stage consists of a silicon photonic wire waveguide wavelength converter. The system enables on-chip amplification and conversion of up to 30 dB . We demonstrate amplification in a broad wavelength range around 2344 nm using temporally long pulses (>300ps).

  7. Characterization of developmental immature fiber (im) mutant and Texas Marker-1 (TM-1) cotton fibers by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy

    Science.gov (United States)

    The immature fiber (im) mutant is one type of cotton fiber mutants with unique characteristics of non-fluffy cotton bolls. Compared to its near-isogenic wild type Texas Marker-1 (TM-1), im fiber has thin secondary cell wall and is less mature. In this work, we applied the previously proposed princip...

  8. Evaluation of visible and near-infrared spectroscopy as a tool for assessing fiber fineness during mechanical preparation of dew-retted flax.

    Science.gov (United States)

    Sharma, H S S; Reinard, N

    2004-12-01

    Flax fiber must be mechanically prepared to improve fineness and homogeneity of the sliver before chemical processing and wet-spinning. The changes in fiber characteristics are monitored by an airflow method, which is labor intensive and requires 90 minutes to process one sample. This investigation was carried out to develop robust visible and near-infrared calibrations that can be used as a rapid tool for quality assessment of input fibers and changes in fineness at the doubling (blending), first, second, third, and fourth drawing frames, and at the roving stage. The partial least squares (PLS) and principal component regression (PCR) methods were employed to generate models from different segments of the spectra (400-1100, 1100-1700, 1100-2498, 1700-2498, and 400-2498 nm) and a calibration set consisting of 462 samples obtained from the six processing stages. The calibrations were successfully validated with an independent set of 97 samples, and standard errors of prediction of 2.32 and 2.62 dtex were achieved with the best PLS (400-2498 nm) and PCR (1100-2498 nm) models, respectively. An optimized PLS model of the visible-near-infrared (vis-NIR) spectra explained 97% of the variation (R(2) = 0.97) in the sample set with a standard error of calibration (SEC) of 2.45 dtex and a standard error of cross-validation (SECV) of 2.51 dtex R(2) = 0.96). The mean error of the reference airflow method was 1.56 dtex, which is more accurate than the NIR calibration. The improvement in fiber fineness of the validation set obtained from the six production lines was predicted with an error range of -6.47 to +7.19 dtex for input fibers, -1.44 to +5.77 dtex for blended fibers at the doubling, and -4.72 to +3.59 dtex at the drawing frame stages. This level of precision is adequate for wet-spinners to monitor fiber fineness of input fibers and during the preparation of fibers. The advantage of visNIR spectroscopy is the potential capability of the technique to assess fineness and

  9. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers

    Science.gov (United States)

    Li, Jianfeng; Luo, Hongyu; Zhai, Bo; Lu, Rongguo; Guo, Zhinan; Zhang, Han; Liu, Yong

    2016-01-01

    Black phosphorus (BP) as a novel class of two-dimension (2D) materials has recently attracted enormous attention as a result of its unique physical and chemical features. The remarkably strong light-matter interaction and tunable direct band-gap at a wide range make it an ideal candidate especially in the mid-infrared wavelength region as the saturable absorber (SA). In this paper, the simple and effective liquid phase exfoliation (LPE) method was used to fabricate BP. By introducing the same BP SA into two specifically designed rare earth ions doped fluoride fiber lasers at mid-infrared wavebands, Q-switching with the pulse energy of 4.93 μJ and mode-locking with the pulse duration of 8.6 ps were obtained, respectively. The operation wavelength of ~2970 nm for generated pulse is the reported longest wavelength for BP SA based fiber lasers. PMID:27457338

  10. Preliminary Examinations for the Identification of U.S. Domestic and International Cotton Fibers by Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chanel Fortier

    2014-09-01

    Full Text Available Cotton is and has been a large cash crop in the United States and abroad for many years. Part of the widespread interest and utility of this product is due to its attractive chemical and physical properties for use in textiles. The textile industry could benefit from the presentation of a quick, reliable method to classify U.S. from foreign cottons so that the appropriate tariffs can be levied for non-American cottons. In addition, there is some interest in avoiding cotton identity theft. Thus, an accurate and precise instrumental method would be of interest to correctly identify the country of origin of cotton. This study provides an analytical method to identify domestic and foreign cotton fibers using near-infrared (NIR spectroscopy coupled with principal component analysis (PCA. Samples from American cottons were evaluated along with a representative amount of international samples. The results provide a proof of concept that indicates that PCA analysis can be used to separate the respective domestic and foreign cotton groups.

  11. Carbon coatings on silica glass optical fibers studied by reflectance Fourier-transform infrared spectroscopy and focused ion beam scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stolov, Andrei A., E-mail: stolov@ofsoptics.com [OFS, Specialty Photonics Division, 55 Darling Drive, Avon, CT 06001 (United States); Lombardo, Jeffrey J. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States); Slyman, Brian E.; Li, Jie [OFS, Specialty Photonics Division, 55 Darling Drive, Avon, CT 06001 (United States); Chiu, Wilson K.S. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2012-04-30

    Carbon coatings applied on optical fibers via chemical vapor deposition were characterized by a resistance technique, focused ion beam/scanning electron microscopy (FIB/SEM), and reflectance Fourier-transform infrared spectroscopy (FTIR). The resistance technique measures the thickness of carbon film by measuring the resistance over a section of optical fiber, and backing out the film thickness. The FIB/SEM system was used to remove a cross section of the optical fiber and carbon coating and using a scanning transmission electron detector the thickness was measured. The FTIR approach is based on the fact that the wavelength of the light in the mid-infrared region ({approx} 10 {mu}m) is significantly larger than the typical thickness of the carbon coatings (< 0.1 {mu}m) which makes the coating 'semi-transparent' to the infrared light. Carbon coating deposition results in significant transformations of the band profiles of silica in the reflectance spectra that were found to correlate with the carbon coating thickness for films ranging from 0.7 nm to 54.6 nm. The observed transformations of the reflectance spectra were explained within the framework of Fresnel reflection of light from a dual-layer sample. The advantage of this approach is a much higher spatial resolution in comparison with many other known methods and can be performed more quickly than many direct measurement techniques. - Highlights: Black-Right-Pointing-Pointer Hermetic carbon films were grown on optical fibers using chemical vapor deposition. Black-Right-Pointing-Pointer Focused ion beam/scanning electron microscopy provided direct thickness values. Black-Right-Pointing-Pointer Transformations in reflectance infrared spectra correlate with carbon thickness. Black-Right-Pointing-Pointer Spectral transformations were modeled within the framework of Fresnel equations.

  12. Mid-infrared supercontinuum generation in concatenated fluoride and chalcogenide glass fibers covering more than three octaves

    DEFF Research Database (Denmark)

    Kubat, Irnis; Petersen, Christian Rosenberg; Møller, Uffe Visbech

    2014-01-01

    Supercontinuum is generated in concatenated ZBLAN and As2Se3 fibers. Initially, a 0.9-4.1mm supercontinuum is obtained by pumping the ZBLAN fiber with a Tm laser, which then continues to broaden to 0.9-9um in As2Se3 fiber......Supercontinuum is generated in concatenated ZBLAN and As2Se3 fibers. Initially, a 0.9-4.1mm supercontinuum is obtained by pumping the ZBLAN fiber with a Tm laser, which then continues to broaden to 0.9-9um in As2Se3 fiber...

  13. Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Belanche, A; Weisbjerg, M R; Allison, G G; Newbold, C J; Moorby, J M

    2014-01-01

    This study explored the potential of partial least squares (PLS) and Fourier-transform infrared spectroscopy (FTIR) to predict rumen dry matter (DM) and neutral detergent fiber (NDF) degradation parameters of a wide range of feeds for ruminants, as an alternative to the in situ method. In total, 663 samples comprising 80 different feed types were analyzed. In situ DM and NDF degradabilities were determined as follows: effective degradability (ED), rumen soluble fraction (A), degradable but not soluble fraction (B), rate of degradation of the B fraction (C), and indigestible NDF (iNDF). Infrared spectra of dry samples were collected by attenuated total reflectance from 600 to 4000cm(-1). Feeds were randomly classified into 2 subsets of samples with representation of all feed types; one subset was used to develop regression models using partial least squares, and the second subset was used to conduct an external validation of the models. This study indicated that universal models containing all feed types and specific models containing concentrate feeds could provide only a relatively poor estimation of in situ DM degradation parameters because of compositional heterogeneity. More research, such as a particle size distribution analysis, is required to determine whether this lack of accuracy was due to limitations of the FTIR approach, or simply due to methodological error associated with the in situ method. This latter hypothesis may explain the low accuracy observed in the prediction of degradation rates if there was physical leakage of fine particles from the mesh bags used during in situ studies. In contrast, much better predictions were obtained when models were developed for forage feeds alone. Models for forages led to accurate predictions of DMA, DMB, NDFED, and NDF concentration (R(2)=0.91, 0.89, 0.85, and 0.79, standard error = 4.34, 5.97, 4.59, and 4.41% of DM, respectively), and could be used for screening of DMED, NDFC, and iNDF. These models relied on

  14. Optical fiber sensors measurement system and special fibers improvement

    Science.gov (United States)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  15. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    Science.gov (United States)

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  16. Raman-tailored photonic crystal fiber for telecom band photon-pair generation

    Science.gov (United States)

    Cordier, M.; Orieux, A.; Gabet, R.; Harlé, T.; Dubreuil, N.; Diamanti, E.; Delaye, P.; Zaquine, I.

    2017-07-01

    We report on the experimental characterization of a novel nonlinear liquid-filled hollow-core photonic-crystal fiber for the generation of photon pairs at telecommunication wavelength through spontaneous four-wave-mixing. We show that the optimization procedure in view of this application links the choice of the nonlinear liquid to the design parameters of the fiber, and we give an example of such an optimization at telecom wavelengths. Combining the modeling of the fiber and classical characterization techniques at these wavelengths, we identify, for the chosen fiber and liquid combination, spontaneous four-wave-mixing phase matching frequency ranges with no Raman scattering noise contamination. This is a first step toward obtaining a telecom band fibered photon-pair source with a high signal-to-noise ratio.

  17. Washable hydrophobic smart textiles and multi-material fibers for wireless communication

    Science.gov (United States)

    Gorgutsa, Stepan; Bachus, Kyle; LaRochelle, Sophie; Oleschuk, Richard D.; Messaddeq, Younes

    2016-11-01

    This paper reports on the performance and environmental endurance of the recently presented wirelessly communicating smart textiles with integrated multi-material fiber antennas. Metal–glass–polymer fiber composites were fabricated using sub-1 mm hollow-core silica fibers and liquid state silver deposition technique. These fibers were then integrated into textiles in the form of center-fed dipole and loop antennas during standard weaving procedure. Fiber antennas performance was found to be directly comparable to classic ‘rigid’ solutions in terms of return loss, gain and radiation patterns, which allowed transmitting data through Bluetooth protocol at 2.4 GHz frequency. Applied superhydrophobic coatings (water contact angle = 152°, sliding angle = 6°) allow uninterrupted wireless communication of the textiles under direct water application even after multiple washing cycles.

  18. Strong Raman-induced non-instantaneous soliton interactions in gas-filled photonic crystal fibers

    CERN Document Server

    Saleh, Mohammed F; Marini, Andrea; Biancalana, Fabio

    2015-01-01

    We have developed an analytical model based on the perturbation theory in order to study the optical propagation of two successive intense solitons in hollow-core photonic crystal fibers filled with Raman-active gases. Based on the time delay between the two solitons, we have found that the trailing soliton dynamics can experience unusual nonlinear phenomena such as spectral and temporal soliton oscillations and transport towards the leading soliton. The overall dynamics can lead to a spatiotemporal modulation of the refractive index with a uniform temporal period and a uniform or chirped spatial period.

  19. Influence of ionization on ultrafast gas-based nonlinear fiber optics.

    Science.gov (United States)

    Chang, W; Nazarkin, A; Travers, J C; Nold, J; Hölzer, P; Joly, N Y; Russell, P St J

    2011-10-10

    We numerically investigate the effect of ionization on ultrashort high-energy pulses propagating in gas-filled kagomé-lattice hollow-core photonic crystal fibers by solving an established uni-directional field equation. We consider the dynamics of two distinct regimes: ionization induced blue-shift and resonant dispersive wave emission in the deep-UV. We illustrate how the system evolves between these regimes and the changing influence of ionization. Finally, we consider the effect of higher ionization stages.

  20. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator.

    Science.gov (United States)

    Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T

    2013-06-01

    We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.

  1. Recent progress in Fourier Transform Infrared (FTIR) spectroscopy study of compositional, structural, and physical attributes of developmental cotton fibers

    Science.gov (United States)

    Cotton fibers are natural plant products and their end-use qualities depend on their stages of development. In general, the quantity of natural fiber cellulose I (ß 1'4 linked glucose residues) increases rapidly, thus it leads to compositional, structural, and physical attribute variations among the...

  2. Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber

    CERN Document Server

    Yin, Ke; Zheng, Xin; Yu, Hao; Cheng, Xiangai; Hou, Jing

    2015-01-01

    The newly-emergent two-dimensional topological insulators (TIs) have shown their unique electronic and optical properties, such as good thermal management, high nonlinear refraction index and ultrafast relaxation time. Their narrow energy band gaps predict their optical absorption ability further into the mid-infrared region and their possibility to be very broadband light modulators ranging from the visible to the mid-infrared region. In this paper, a mid-infrared mode-locked fluoride fiber laser with TI Bi2Te3 nano-sheets as the saturable absorber is presented. Continuous wave lasing, Q-switched and continuous-wave mode-locking (CW-ML) operations of the laser are observed sequentially by increasing the pump power. The observed CW-ML pulse train has a pulse repetition rate of 10.4 MHz, a pulse width of ~6 ps, and a center wavelength of 2830 nm. The maximum achievable pulse energy is 8.6 nJ with average power up to 90 mW. This work forcefully demonstrates the promising applications of two-dimensional TIs for ...

  3. Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source.

    Science.gov (United States)

    Wang, Zefeng; Gu, Bo; Chen, Yubin; Li, Zhixian; Xi, Xiaoming

    2017-09-20

    We report here for the first time, to the best of our knowledge, a 100-kW-peak-power, GHz-linewidth, sub-nanosecond, 1.9-μm laser source by gas stimulated Raman scattering (SRS) in hollow-core fiber. A H2-filled, anti-resonance, hollow-core fiber is pumped with a sub-nanosecond, high-peak-power, 1064-nm microchip laser, generating a 1908-nm Stokes wave by vibrational SRS of H2 molecules. A maximum peak power of about 150 kW (average power 55 mW, pulse energy 55 μJ) is achieved with a 1.4-m fiber length and only 3 bar H2 pressure. The maximum quantum efficiency is about 54%, and the corresponding slope efficiency is about 37%. The linewidth of the Stokes wave is about 2 GHz, which decreases about 1-2 orders compared with the rare-earth-doped fiber lasers of the same peak-power level. Operation close to atmospheric pressure makes it more convenient in future applications. If a tunable pump laser is used, a high-peak-power, narrow-linewidth, broadly tunable, 2-μm fiber laser source can be easily achieved.

  4. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source.

    Science.gov (United States)

    Dave, Utsav D; Uvin, Sarah; Kuyken, Bart; Selvaraja, Shankar; Leo, Francois; Roelkens, Gunther

    2013-12-30

    A 1,000 nm wide supercontinuum, spanning from 1470 nm in the telecom band to 2470 nm in the mid-infrared is demonstrated in a 800 nm x 220 nm 1 cm long hydrogenated amorphous silicon strip waveguide. The pump source was a picosecond Thulium doped fiber laser centered at 1950 nm. The real part of the nonlinear parameter of this waveguide at 1950 nm is measured to be 100 ± 10 W -1m-1, while the imaginary part of the nonlinear parameter is measured to be 1.2 ± 0.2 W-1m-1. The supercontinuum is stable over a period of at least several hours, as the hydrogenated amorphous silicon waveguides do not degrade when exposed to the high power picosecond pulse train.

  5. Mid-infrared supercontinuum generation to 4.5 μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm

    DEFF Research Database (Denmark)

    Kubat, Irnis; Agger, Christian; Moselund, Peter M.

    2013-01-01

    We present a numerical design optimization of step-index ZBLAN fibers for developing mid-infrared (IR) supercontinuum sources with spectra covering the 1–4.5 μm regime using direct pumping with 10 ps pulses (FWHM) from mode-locked Yb (12.5 kW peak power) and Er lasers (10 kW peak power). Even...

  6. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2017-11-01

    Full Text Available The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF, namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm−1, which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  7. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Sandfort, Vincenz; Trabold, Barbara M; Abdolvand, Amir; Bolwien, Carsten; Russell, Philip St. J; Wöllenstein, Jürgen; Palzer, Stefan

    2017-11-24

    The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF), namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm -1 , which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  8. Infrared Optical Properties of β-Spodumene Solid Solution Glass-Ceramic for Fiber-Optic Devices

    Science.gov (United States)

    Sakamoto, Akihiko; Yamamoto, Shigeru

    2006-09-01

    The IR optical properties of an opaque β-spodumene solid solution (s.s.) glass-ceramic for fiber-optic devices were studied in relation to its refractive indices in both crystalline and glass phases. We investigated the refractive indices of both phases on the basis of IR transmittance change due to the structural relaxation of the glass phase. The refractive indices of this β-spodumene s.s. glass-ceramic at a wavelength of 1550 nm in the crystalline and glass phases were first determined to be 1.530 and 1.495, respectively. It was found from the refractive index data that the optical scattering intensity of this glass-ceramic approximately follows the Rayleigh-Gans model. We also demonstrated that the inner diameter of an opaque glass-ceramic capillary used in optical fiber connectors can be optically measured with a sub-micrometer accuracy using an IR laser.

  9. Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing

    Science.gov (United States)

    Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam

    2015-09-01

    An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.

  10. Design and analysis of a highly nonlinear composite photonic crystal fiber for supercontinuum generation: visible to mid-infrared.

    Science.gov (United States)

    Jamatia, Purniya; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-08-20

    A composite photonic crystal fiber structure has been designed with tellurite as the cladding and chalcogenide as a core material. To increase nonlinearity, rods of the chalcogenide glass material have been inserted around the core region. The reported structure offers very high nonlinearity of 1042  W-1 Km-1 at 2800 nm pump wavelength with low and flattened dispersion of approximately -11  ps·nm-1 Km-1. An effective mode area of 6.46  μm2 of the propagating mode has been achieved as at pump wavelength. Such a highly nonlinear composite photonic crystal fiber structure is a potential candidate for nonlinear applications, such as slow-light and supercontinuum generation. Pumping at 2800 nm results in a supercontinuum spectrum spanning 0.5-4.7 μm using 8 mm long photonic crystal fiber pumped with femtosecond laser pulses with peak power of 3 kW.

  11. Sub-Nanosecond Infrared Optical Parametric Pulse Generation in Periodically Poled Lithium Niobate Pumped by a Seeded Fiber Amplifier

    Science.gov (United States)

    2008-02-01

    nonlinear crystal is 19 engineered such that changing from one domain to the next produces a change in the sign of the nonlinear coefficient. In this...225.225.225 cm GW µm W A Power I kW Pulse J X Pulse µJ X X s WmW === = = = == π While the bulk damage threshold of silica fibers is 50 GW/cm2 [35,36...45469-2314 Ivan T. Lima, Jr. Department of Electrical and Computer Engineering , North Dakota State University, Fargo ND 58105 Abstract: Sub

  12. Optical Sensing: Fiber Structures and Interrogation Techniques

    Science.gov (United States)

    Carvalho, Joel Pedro

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  13. Feasibility of an optical fiber clock

    Science.gov (United States)

    Ilinova, Ekaterina; Babb, James F.; Derevianko, Andrei

    2017-09-01

    We explore the feasibility of a fiber clock, i.e., a compact, high-precision, optical lattice atomic clock based on atoms trapped inside a hollow-core optical fiber. Such a setup offers an intriguing potential both for a substantially increased number of interrogated atoms (and thereby an improved clock stability) and for miniaturization. We evaluate the sensitivity of the 1S0-3P0 clock transition in Hg and other divalent atoms to the fiber inner core surface at nonzero temperatures. The Casimir-Polder interaction induced 1S0-3P0 transition frequency shift is calculated for the atom inside the hollow capillary as a function of atomic position, capillary material, and geometric parameters. For Hg atoms on the axis of a silica capillary with inner radius ≥15 μ m and optimally chosen thickness d ˜1 μ m , the atom-surface interaction induced 1S0-3P0 clock transition frequency shift can be kept on the level δ ν /νHg˜10-19 . We also estimate the atom loss and heating due to collisions with the buffer gas, lattice intensity noise induced heating, spontaneous photon scattering heating, and residual birefringence induced frequency shifts.

  14. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models

    Directory of Open Access Journals (Sweden)

    Tingting Gang

    2016-12-01

    Full Text Available A micro-fiber-optic Fabry-Perot interferometer (FPI is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF. The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs, especially to the high-frequency (up to 10 MHz UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  15. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  16. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-01-01

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction. PMID:27983639

  17. Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field.

    Science.gov (United States)

    Zhang, Peng; Tang, Ming; Gao, Feng; Zhu, Benpeng; Fu, Songnian; Ouyang, Jun; Shum, Perry Ping; Liu, Deming

    2014-08-11

    We report a highly sensitive fiber-optic sensor based on two cascaded intrinsic fiber Fabry-Perot interferometers (IFFPIs). The cascaded IFFPIs have different free spectral ranges (FSRs) and are formed by a short section of hollow core photonic crystal fiber sandwiched by two single mode fibers. With the superposition of reflective spectrum with different FSRs, the Vernier effect will be generated in the proposed sensor and we found that the strain sensitivity of the proposed sensor can be improved from 1.6 pm/με for a single IFFPI sensor to 47.14 pm/με by employing the Vernier effect. The sensor embed with a metglas ribbon can be also used to measure the magnetic field according to the similar principle. The sensitivity of the magnetic field measurement is achieved to be 71.57 pm/Oe that is significantly larger than the 2.5 pm/Oe for a single IFFPI sensor.

  18. Optical fiber humidity sensor based on the direct response of the polyimide film.

    Science.gov (United States)

    Bian, Ce; Hu, Manli; Wang, Ruohui; Gang, Tingting; Tong, Rongxin; Zhang, Lisong; Guo, Teng; Liu, Xiaobo; Qiao, Xueguang

    2018-01-10

    An optical fiber humidity sensor based on an optical Fabry-Perot interferometer is proposed and experimentally demonstrated. The sensor is constructed by a short section of hollow-core fiber coated with a polyimide (PI) film. Taking advantage of the direct response of the PI film, a sensitivity of up to 1.309 nm/%RH can be achieved in the humidity change range from 40% RH to 80% RH. The temperature sensitivity is measured to be 43.57 pm/°C when the temperature changes from 25°C to 55°C. Because of its simple structure, fast response time, convenient production, and good reproducibility, the proposed sensor will be competitive in the field of cultural relic humidity monitoring and pharmaceutical storage.

  19. Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Belanche, A.; Weisbjerg, Martin Riis; Allison, G.G.

    2014-01-01

    .91, 0.89, 0.85, and 0.79, standard error = 4.34, 5.97, 4.59, and 4.41% of DM, respectively), and could be used for screening of DMED, NDFC, and iNDF. These models relied on certain regions of the FTIR spectrum (900–1150 and 1500–1700 cm−1), which are mainly compatible with absorption of plant cell wall......NDF). Infrared spectra of dry samples were collected by attenuated total reflectance from 600 to 4000 cm−1. Feeds were randomly classified into 2 subsets of samples with representation of all feed types; one subset was used to develop regression models using partial least squares, and the second subset was used...... rates if there was physical leakage of fine particles from the mesh bags used during in situ studies. In contrast, much better predictions were obtained when models were developed for forage feeds alone. Models for forages led to accurate predictions of DMA, DMB, NDFED, and NDF concentration (R2 = 0...

  20. On the Identification of Rayon/Viscose as a Major Fraction of Microplastics in the Marine Environment: Discrimination between Natural and Manmade Cellulosic Fibers Using Fourier Transform Infrared Spectroscopy.

    Science.gov (United States)

    Comnea-Stancu, Ionela Raluca; Wieland, Karin; Ramer, Georg; Schwaighofer, Andreas; Lendl, Bernhard

    2017-05-01

    This work was sparked by the reported identification of man-made cellulosic fibers (rayon/viscose) in the marine environment as a major fraction of plastic litter by Fourier transform infrared (FT-IR) transmission spectroscopy and library search. To assess the plausibility of such findings, both natural and man-made fibers were examined using FT-IR spectroscopy. Spectra acquired by transmission microscopy, attenuated total reflection (ATR) microscopy, and ATR spectroscopy were compared. Library search was employed and results show significant differences in the identification rate depending on the acquisition method of the spectra. Careful selection of search parameters and the choice of spectra acquisition method were found to be essential for optimization of the library search results. When using transmission spectra of fibers and ATR libraries it was not possible to differentiate between man-made and natural fibers. Successful differentiation of natural and man-made cellulosic fibers has been achieved for FT-IR spectra acquired by ATR microscopy and ATR spectroscopy, and application of ATR libraries. As an alternative, chemometric methods such as unsupervised hierarchical cluster analysis, principal component analysis, and partial least squares-discriminant analysis were employed to facilitate identification based on intrinsic relationships of sample spectra and successful discrimination of the fiber type could be achieved. Differences in the ATR spectra depending on the internal reflection element (Ge versus diamond) were observed as expected; however, these did not impair correct classification by chemometric analysis. Moreover, the effects of different levels of humidity on the IR spectra of natural and man-made fibers were investigated, too. It has been found that drying and re-humidification leads to intensity changes of absorption bands of the carbohydrate backbone, but does not impair the identification of the fiber type by library search or cluster

  1. Mid-infrared supercontinuum generation spanning from 1.9 to 5.7 μm in a chalcogenide fiber taper with ultra-high NA

    Science.gov (United States)

    Wang, Yingying; Dai, Shixun; Peng, Xuefeng; Zhang, Peiqing; Wang, Xunsi; You, Chenyang

    2018-01-01

    We report a broadband supercontinuum generation in a chalcogenide fiber taper with an ultra-high numerical aperture. The chalcogenide step-index fiber consisting of As2Se3 core and As2S3 cladding was fabricated by using the isolated stacked extrusion method. The fiber taper with a core diameter of 1.75 μm was prepared by employing a homemade tapering setup. By pumping the fiber taper with a femtosecond laser pulses at 3.3 μm, a broadband supercontinuum generation spanning from 1.9 to 5.7 μm was achieved.

  2. Raman-induced temporal condensed matter physics in gas-filled photonic crystal fibers.

    Science.gov (United States)

    Saleh, Mohammed F; Armaroli, Andrea; Tran, Truong X; Marini, Andrea; Belli, Federico; Abdolvand, Amir; Biancalana, Fabio

    2015-05-04

    Raman effect in gases can generate an extremely long-living wave of coherence that can lead to the establishment of an almost perfect temporal periodic variation of the medium refractive index. We show theoretically and numerically that the equations, regulate the pulse propagation in hollow-core photonic crystal fibers filled by Raman-active gas, are exactly identical to a classical problem in quantum condensed matter physics - but with the role of space and time reversed - namely an electron in a periodic potential subject to a constant electric field. We are therefore able to infer the existence of Wannier-Stark ladders, Bloch oscillations, and Zener tunneling, phenomena that are normally associated with condensed matter physics, using purely optical means.

  3. Calibration of a hysteretic model for glass fiber reinforced gypsum wall panels

    Science.gov (United States)

    Janardhana, Maganti; Robin Davis, P.; Ravichandran, S. S.; Prasad, A. M.; Menon, D.

    2014-06-01

    Glass fiber reinforced gypsum (GFRG) wall panels are prefabricated panels with hollow cores, originally developed in Australia and subsequently adopted by India and China for use in buildings. This paper discusses identification and calibration of a suitable hysteretic model for GFRG wall panels filled with reinforced concrete. As considerable pinching was observed in the experimental results, a suitable hysteretic model with pinched hysteretic rule is used to conduct a series of quasi-static as inelastic hysteretic response analyses of GFRG panels with two different widths. The calibration of the pinching model parameters was carried out to approximately match the simulated and experimental responses up to 80% of the peak load in the post peak region. Interestingly, the same values of various parameters (energy dissipation and pinching related parameters) were obtained for all five test specimens.

  4. Fiber Optics for Metrology in Nuclear Research Reactors—Applications to Dimensional Measurements

    Science.gov (United States)

    Cheymol, G.; Brichard, B.; Villard, J. F.

    2011-08-01

    In-situ measurement is a key issue for advanced irradiation programs in nuclear research reactors, especially in Material Testing Reactors (MTR). In that prospect, Optical Fiber Sensors (OFS) can feature unique intrinsic properties that bring substantial advantages over conventional sensing approaches. One of the objectives of the Joint Instrumentation Laboratory (JIL), gathering SCK·CEN (Belgium) and CEA (France) resources and know-how, is to develop Optical Fiber Sensors (OFS) for metrology under high radiation. A preliminary condition to the development of OFS is to ensure that the Radiation Induced Absorption (RIA) of the light in the fiber does not exceed a pre-defined threshold. We report the results of a long lasting irradiation experiment, at higher dose than previously reported: up to a fast neutron fluence of 1020 n/cm2 and an ionising dose of 16 GGy, carried out on various fibers, including hollow core photonic band gap (PBG) fibers, singlemode (SM) and multimode (MM) fibers. If we consider that RIA measurements losses steel plate is planed in 2009 in the BR2 reactor facility of SCK·CEN in Mol/Belgium using a dedicated irradiation rig. The purpose of this experiment will be to assess, in a first step, the survivability and the level of signal drift under high radiation when a stable strain is applied on the sensor.

  5. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  6. Advances in near-infrared measurements

    CERN Document Server

    Patonay, Gabor

    1991-01-01

    Advances in Near-Infrared Measurements, Volume 1 provides an overview of near-infrared spectroscopy. The book is comprised of six chapters that tackle various areas of near-infrared measurement. Chapter 1 discusses remote monitoring techniques in near-infrared spectroscopy with an emphasis on fiber optics. Chapter 2 covers the applications of fibers using Raman techniques, and Chapter 3 tackles the difficulties associated with near-infrared data analysis. The subsequent chapters present examples of the capabilities of near-infrared spectroscopy from various research groups. The text wi

  7. Mid-infrared supercontinuum generation in chalcogenide step-index fibers pumped at 2.9 and 4.5µm

    DEFF Research Database (Denmark)

    Kubat, Irnis; Agger, Christian; Møller, Uffe Visbech

    using actual measured fiber loss obtained using FTIR spectrometry. Pumping the fiber at 2.9µm and 4.5µm yields a SC spanning the 3-10 and 3-12.5µm range with around 10 and 20mW converted into the 8-10µm band, respectively. Using specially designed CHALC SIF in conjunction with pulsed MIR fiber lasers...... at 2.9 and 4.5µm it is thus possible to generate a MIR SC spanning almost the entire spectral region of interest with ample power being converted into the MIR....

  8. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  9. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation.

    Science.gov (United States)

    Spagnolo, Vincenzo; Patimisco, Pietro; Borri, Simone; Scamarcio, Gaetano; Bernacki, Bruce E; Kriesel, Jason

    2012-11-01

    A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 μm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-IR fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor. The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and microresonator tubes. SF(6) was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7×10(-10) W·cm(-1)/Hz(1/2).

  10. Towards the mid-infrared optical biopsy

    DEFF Research Database (Denmark)

    Seddon, Angela B.; Benson, Trevor M.; Sujecki, Slawomir

    2016-01-01

    portable, bright sources. We set a record in demonstrating extreme broad-band supercontinuum generated light 1.4 to 13.3 microns in a specially engineered, high numerical aperture mid-infrared optical fiber. The active mid-infrared fiber broadband supercontinuum for the first time offers the possibility...

  11. Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier.

    Science.gov (United States)

    Malevich, Pavel; Kanai, Tsuneto; Hoogland, Heinar; Holzwarth, Ronald; Baltuška, Andrius; Pugžlys, Audrius

    2016-03-01

    We present a concept of a white-light-seeded-cascaded mid-infrared (mid-IR) optical parametric amplifier (OPA) based on potassium titanyl arsenate and zinc germanium phosphate nonlinear optical crystals and producing 100-μJ level pulses centered at 5300 nm, with the spectrum supporting four-optical-cycle pulse duration. The OPA is pumped by 2090-nm master oscillator/power amplifier based on a Tm,Ho-fiber laser seeder and a Ho:YAG regenerative amplifier delivering 3.8-mJ sub-ps pulses at a repetition rate of 1 kHz. We validate that output parameters of the OPA are scalable by means of increasing the pulse energy, decreasing the pulse duration and redshifting the central wavelength.

  12. Characterization and application of chirped photonic crystal fiber in multiphoton imaging.

    Science.gov (United States)

    Yu, Jiali; Zeng, Haishan; Lui, Harvey; Skibina, Julia S; Steinmeyer, Günter; Tang, Shuo

    2014-05-05

    Fiber delivery of ultrashort pulses is important for multiphoton endoscopy. A chirped photonic crystal fiber (CPCF) is first characterized for its transmission bandwidth, propagation loss, and dispersion properties. Its extremely low dispersion (~150 fs(2)/m) enables the delivery of sub-30 fs pulses through a ~1 m-long CPCF. The CPCF is then incorporated into a multiphoton imaging system and its performance is demonstrated by imaging various biological samples including yew leaf, mouse tendon, and human skin. The imaging quality is further compared with images acquired by a multiphoton imaging system with free-space or hollow-core photonic band-gap fiber (PBF) delivery of pulses. Compared with free-space system, the CPCF delivered system maintains the same ultrashort pulsewidth and the image qualities are comparable. Compared with the PBF delivery, CPCF provides a 35 times shorter pulsewidth at the sample location, which results in a ~12 and 50 times improvement in two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) signals respectively. Our results show that CPCF has great potential for fiber delivery of ultrashort pulses for multiphoton endoscopy.

  13. Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response.

    Science.gov (United States)

    Chiarelli, Antonio M; Libertino, Sebania; Zappasodi, Filippo; Mazzillo, Massimo; Pompeo, Francesco Di; Merla, Arcangelo; Lombardo, Salvatore; Fallica, Giorgio

    2017-07-01

    We report development, testing, and in vivo characterization of a multichannel optical probe for continuous wave (CW) functional near-infrared spectroscopy (fNIRS) that relies on silicon photomultipliers (SiPMs) detectors. SiPMs are cheap, low voltage, and robust semiconductor light detectors with performances analogous to photomultiplier tubes (PMTs). In contrast with PMTs, SiPMs allow direct contact with the head and transfer of the analog signals through thin cables greatly increasing the system flexibility avoiding optical fibers. The coupling of SiPMs and light-emitting diodes (LEDs) made the optical probe lightweight and robust against motion artifacts. After characterization of SiPM performances, which was proven to provide a noise equivalent power below 3 fW, the apparatus was compared through an in vivo experiment to a commercial system relying on laser diodes, PMTs, and optical fibers for light probing and detection. The optical probes were located over the primary sensorimotor cortex and the similarities between the hemodynamic responses to the contralateral motor task were assessed. When compared to other state-of-the-art wearable fNIRS systems, where photodiode detectors are employed, the single photon sensitivity and dynamic range of SiPMs can fully exploit the long and variable interoptode distances needed for correct estimation of brain hemodynamics using CW-fNIRS.

  14. All-fiber versatile laser frequency reference at 2 μm for CO2 space-borne lidar applications

    Science.gov (United States)

    Schilt, Stéphane; Matthey, Renaud; Hey Tow, Kenny; Thévenaz, Luc; Südmeyer, Thomas

    2017-12-01

    We present a frequency stabilized laser at 2051 nm based on a versatile all-fibered stabilization setup. A modulation sideband locking technique is implemented to lock the laser at a controlled frequency detuning from the center of the CO2 R(30) transition envisaged for space-borne differential absorption lidar (DIAL) applications. This method relies on the use of a compact all-fibered gas reference cell that makes the setup robust and immune to mechanically induced optical misalignments. The gas cell is fabricated using a hollow-core photonic crystal fiber filled with pure CO2 at a low pressure of 20 mbar and hermetically sealed at both ends by splices to silica fibers. Different configurations of this fibered cell have been developed and are presented. With this technique, frequency stabilities below 40 kHz at 1-s integration time and laser detuning by around 1 GHz from the center of the CO2 transition. These stabilities are compliant with typical requirements for the reference seed source for a space CO2 DIAL.

  15. All-fiber versatile laser frequency reference at 2 μm for CO2 space-borne lidar applications

    Science.gov (United States)

    Schilt, Stéphane; Matthey, Renaud; Hey Tow, Kenny; Thévenaz, Luc; Südmeyer, Thomas

    2017-06-01

    We present a frequency stabilized laser at 2051 nm based on a versatile all-fibered stabilization setup. A modulation sideband locking technique is implemented to lock the laser at a controlled frequency detuning from the center of the CO2 R(30) transition envisaged for space-borne differential absorption lidar (DIAL) applications. This method relies on the use of a compact all-fibered gas reference cell that makes the setup robust and immune to mechanically induced optical misalignments. The gas cell is fabricated using a hollow-core photonic crystal fiber filled with pure CO2 at a low pressure of 20 mbar and hermetically sealed at both ends by splices to silica fibers. Different configurations of this fibered cell have been developed and are presented. With this technique, frequency stabilities below 40 kHz at 1-s integration time and <100 kHz up to 1000-s averaging time were achieved for a laser detuning by around 1 GHz from the center of the CO2 transition. These stabilities are compliant with typical requirements for the reference seed source for a space CO2 DIAL.

  16. Visible and near infrared up-conversion luminescence in Yb{sup 3+}/Tm{sup 3+} co-doped yttria-alumino-silicate glass based optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Arindam [Fiber Optics and Photonics Division, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India); Chandra Paul, Mukul, E-mail: mcpal1266@gmail.com [Fiber Optics and Photonics Division, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India); Wadi Harun, Sulaiman [Depertment of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kumar Bhadra, Shyamal, E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India); Bysakh, Sandip [Electron Microscopy Section, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India); Das, Shyamal; Pal, Mrinmay [Fiber Optics and Photonics Division, Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), Jadavpur, Kolkata-700032 (India)

    2013-11-15

    We report blue light up-conversion (UC) emission in Yb–Tm co-doped nano-phase separated yttria-alumino-silicate (YAS) glass based D-shaped with low-index cladding optical fibers. Y{sub 2}O{sub 3} creates an environment of nano structured YAS glass phases with Yb and Tm rich zone into the core glass which confirmed from TEM analyses. This kind of glass host assists in distributing of Yb and Tm rich zone uniformly throughout the core region. Yb and Tm doped regions exist mainly into nano YAS phases, defined as RE rich nano YAS-RE phases. All samples exhibit UC luminescence peaks at 483 nm, 650 nm and 817 nm for Tm{sup 3+} and 1044 nm for Yb{sup 3+} under excitation by 975 nm laser light. In such type of nano-engineered glass–ceramic based host, almost all the Yb ions transferred its energy to the nearer Tm ions. In particular 483 nm emission is attributed to {sup 1}G{sub 4}→{sup 3}H{sub 6} transition through a three step resonance energy transfer (ET) from excited Yb{sup 3+}. The highest emission intensity is obtained with a concentration of 0.5 wt% Tm{sup 3+} and 2.0 wt% Yb{sup 3+}. The ET between Yb{sup 3+} and Tm{sup 3+} is increased with increase of Yb{sup 3+} concentration with respect to Tm{sup 3+}. The experimental fluorescence life-times of Tm{sup 3+} upconversion emission at visible wavelengths into such kind of fiber is reported under 975 nm pump excitation. The present study is important for development of an efficient tunable 483 nm fluorescence light source. -- Highlights: • We report nano-phase separated YAS glass host based Yb–Tm co-doped optical fibers. • Almost all the Yb transferred its energy to the neighboring Tm ions. • We report strong UC luminescence peaks at 483 nm and 817 nm wavelengths. • We report third ET coefficient as 1.6723 Hz for such kind of Yb–Tm codoped fiber. • We report suitable fiber as an efficient tunable 483 nm fluorescence light source.

  17. Optimizing Compression Zone of Flanged Hollow Cored Concrete ...

    African Journals Online (AJOL)

    Equations were derived using double integration method to determine the moment of inertia of the sections and corresponding deflections as the load increased up to failure, while maintaining a constant cross-sectional area and varying the section dimensions randomly in steps of 10mm from 150mm to 190mm flange width ...

  18. Optimal design of plates with cell type hollow core

    Science.gov (United States)

    Frolovs, G.; Rocens, K.; Sliseris, J.

    2017-10-01

    This research relates to the composite sandwich plywood plates with skin layers of birch plywood and a core of straight and waved plywood cell-type ribs. This specific form of ribs allows to simplify manufacturing processes, to increase the glued area and the ways of load transferring paths and to tailor the stiffness in both (longitudinal and transversal) directions providing increased specific stiffness, strength or load bearing capacity (stiffness, strength or load bearing capacity to mass ratio). The various results depending on chosen variables (according to strength-stiffness criteria) were obtained for one span plate in bending. A various thicknesses of plywood sheets are taken for skins and straight rib parts while for waved part of ribs the 3 layer plywood was taken.

  19. Single-Crystal Germanium Core Optoelectronic Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaoyu [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Page, Ryan L. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Chaudhuri, Subhasis [Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Liu, Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Yu, Shih-Ying [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Mohney, Suzanne E. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Badding, John V. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Department of Physics, Pennsylvania State University, University Park PA 16802 USA; Gopalan, Venkatraman [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA

    2016-09-19

    Synthesis and fabrication of high-quality, small-core single-crystal germanium fibers that are photosensitive at the near-infrared and have low optical losses ≈1 dB cm-1 at 2 μm are reported. These fibers have potential applications in fiber-based spectroscopic imaging, nonlinear optical devices, and photodetection at the telecommunication wavelengths.

  20. Optical fiber sensors technology for supervision, control and protection of high power systems

    Science.gov (United States)

    Nascimento, Ivo Maciel

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  1. High peak-power mid-infrared ZnGeP₂ optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system.

    Science.gov (United States)

    Gebhardt, Martin; Gaida, Christian; Kadwani, Pankaj; Sincore, Alex; Gehlich, Nils; Jeon, Cheonha; Shah, Lawrence; Richardson, Martin

    2014-03-01

    We report on the utilization of a novel Tm:fiber laser source for mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumping. The pump laser is built in a master oscillator power-amplifier configuration delivering up to 3.36 W of polarized, diffraction limited output power with 7 ns pulse duration and 4 kHz repetition rate. This corresponds to a peak power of ∼121  kW and a pulse energy of ∼0.84  mJ. With this source, we generated 27.9 kW of total mid-IR peak power in a doubly resonant oscillator (DRO) configuration. This is, to the best of our knowledge, the highest ever demonstrated mid-IR peak power from a directly Tm:fiber laser pumped ZGP OPO. Moreover, a DRO output with about 284 μJ of total mid-IR pulse energy was demonstrated using 100 ns pump pulses. The wavelength tuning of the idler was extended to 6 μm with lower output power in another OPO experiment.

  2. Fiber-Based, Injection-Molded Optofluidic Systems: Improvements in Assembly and Applications

    Directory of Open Access Journals (Sweden)

    Marco Matteucci

    2015-12-01

    Full Text Available We present a method to fabricate polymer optofluidic systems by means of injection molding that allow the insertion of standard optical fibers. The chip fabrication and assembly methods produce large numbers of robust optofluidic systems that can be easily assembled and disposed of, yet allow precise optical alignment and improve delivery of optical power. Using a multi-level chip fabrication process, complex channel designs with extremely vertical sidewalls, and dimensions that range from few tens of nanometers to hundreds of microns can be obtained. The technology has been used to align optical fibers in a quick and precise manner, with a lateral alignment accuracy of 2.7 ± 1.8 μm. We report the production, assembly methods, and the characterization of the resulting injection-molded chips for Lab-on-Chip (LoC applications. We demonstrate the versatility of this technology by carrying out two types of experiments that benefit from the improved optical system: optical stretching of red blood cells (RBCs and Raman spectroscopy of a solution loaded into a hollow core fiber. The advantages offered by the presented technology are intended to encourage the use of LoC technology for commercialization and educational purposes.

  3. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  4. Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Maksim Skorobogatiy

    2009-01-01

    Full Text Available We review application of microstructured and photonic bandgap fibers for designing resonant optical sensors of changes in the value of analyte refractive index. This research subject has recently invoked much attention due to development of novel fiber types, as well as due to development of techniques for the activation of fiber microstructure with functional materials. Particularly, we consider two sensors types. The first sensor type employs hollow core photonic bandgap fibers where core guided mode is confined in the analyte filled core through resonant effect in the surrounding periodic reflector. The second sensor type employs metalized microstructured or photonic bandgap waveguides and fibers, where core guided mode is phase matched with a plasmon propagating at the fiber/analyte interface. In resonant sensors one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers-Kronig relation this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte refractive index (10−6–10−4 RIU, as well as in the imaginary part of the analyte refractive index in the vicinity of absorption lines. In the following we detail various resonant sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for bio- and chemical sensing applications. Sensor designs considered in this review span spectral operation regions from the visible to terahertz.

  5. Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany.

    Science.gov (United States)

    Mignani, Anna Grazia; Ciaccheri, Leonardo; Ottevaere, Heidi; Thienpont, Hugo; Conte, Lanfranco; Marega, Milena; Cichelli, Angelo; Attilio, Cristina; Cimato, Antonio

    2011-01-01

    Because of its high price, extra virgin olive oil is frequently targeted for adulteration with lower quality oils. This paper presents an innovative optical technique capable of quantifying and discriminating the adulteration of extra virgin olive oil caused by lower-grade olive oils. An original set-up for diffuse-light absorption spectroscopy in the wide 400-1,700 nm spectral range was experimented. It made use of an integrating sphere containing the oil sample and of optical fibers for illumination and detection; it provided intrinsically scattering-free absorption spectroscopy measurements. This set-up was used to collect spectroscopic fingerprints of authentic extra virgin olive oils from the Italian Tuscany region, adulterated by different concentrations of olive-pomace oil, refined olive oil, deodorized olive oil, and refined olive-pomace oil. Then, a straightforward multivariate processing of spectroscopic data based on principal component analysis and linear discriminant analysis was applied which was successfully capable of predicting the fraction of adulterant in the mixture, and of discriminating its type. The results achieved by means of optical spectroscopy were compared with the analysis of fatty acids, which was carried out by standard gas chromatography.

  6. Improved tympanic thermometer based on a fiber optic infrared radiometer and an otoscope and its use as a new diagnostic tool for acute otitis media

    Science.gov (United States)

    Fishman, Gadi; DeRowe, Ari; Ophir, Eyal; Scharf, Vered; Shabtai, Abraham; Ophir, Dov; Katzir, Abraham

    1999-06-01

    Clinical diagnosis of acute otitis media (AOM) in children is not easy. It was assumed that there is a difference ΔT between the Tympanic Membrane (TM) temperatures in the two ears in unilateral AOM and that an accurate measurement of ΔT may improve the diagnosis accuracy. An IR transmitting fiber, made of AgClBr, was coupled into a hand held otoscope and was used for the non-contact (radiometric) measurements of TT, the TM temperature. Experiments were carried out, first, on a laboratory model that simulated the human ear, including an artificial tympanic membrane and an artificial ear canal. Measurements carried out using commercially available tympanic thermometers shown that the temperature Tc of the ear canal affected the results. Tc did not affect the fiberoptic radiometer, and this device accurately measured the true temperature, TT of the tympanic membrane. A prospective blinded sampling of the TM temperature was then performed on 48 children with suspected AOM. The mean temperature difference between the ears, for children with unilateral AOM was ΔT = (0.68 +/- 0.27)°C. For children with bilateral AOM it was ΔT = (0.14+/-0.10)°C (pmeasurements of the TM can be a useful non-invasive diagnostic tool for AOM, when combined with other data.

  7. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. Consales

    2008-01-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  8. Natural fibers

    Science.gov (United States)

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  9. Fiber optic hydrogen sensor

    Science.gov (United States)

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  10. HCPCF-based in-line fiber Fabry-Perot refractometer and high sensitivity signal processing method

    Science.gov (United States)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Geng, Xiangyi; Song, Furong

    2017-12-01

    An in-line fiber Fabry-Perot interferometer (FPI) based on the hollow-core photonic crystal fiber (HCPCF) for refractive index (RI) measurement is proposed in this paper. The FPI is formed by splicing both ends of a short section of the HCPCF to single mode fibers (SMFs) and cleaving the SMF pigtail to a proper length. The RI response of the sensor is analyzed theoretically and demonstrated experimentally. The results show that the FPI sensor has linear response to external RI and good repeatability. The sensitivity calculated from the maximum fringe contrast is -136 dB/RIU. A new spectrum differential integration (SDI) method for signal processing is also presented in this study. In this method, the RI is obtained from the integrated intensity of the absolute difference between the interference spectrum and its smoothed spectrum. The results show that the sensitivity obtained from the integrated intensity is about -1.34×105 dB/RIU. Compared with the maximum fringe contrast method, the new SDI method can provide the higher sensitivity, better linearity, improved reliability, and accuracy, and it's also convenient for automatic and fast signal processing in real-time monitoring of RI.

  11. HCPCF-based in-line fiber Fabry-Perot refractometer and high sensitivity signal processing method

    Science.gov (United States)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Geng, Xiangyi; Song, Furong

    2017-04-01

    An in-line fiber Fabry-Perot interferometer (FPI) based on the hollow-core photonic crystal fiber (HCPCF) for refractive index (RI) measurement is proposed in this paper. The FPI is formed by splicing both ends of a short section of the HCPCF to single mode fibers (SMFs) and cleaving the SMF pigtail to a proper length. The RI response of the sensor is analyzed theoretically and demonstrated experimentally. The results show that the FPI sensor has linear response to external RI and good repeatability. The sensitivity calculated from the maximum fringe contrast is-136 dB/RIU. A new spectrum differential integration (SDI) method for signal processing is also presented in this study. In this method, the RI is obtained from the integrated intensity of the absolute difference between the interference spectrum and its smoothed spectrum. The results show that the sensitivity obtained from the integrated intensity is about-1.34×105 dB/RIU. Compared with the maximum fringe contrast method, the new SDI method can provide the higher sensitivity, better linearity, improved reliability, and accuracy, and it's also convenient for automatic and fast signal processing in real-time monitoring of RI.

  12. Small Business Innovations (Fiber Optics)

    Science.gov (United States)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  13. Fiber biology

    Science.gov (United States)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  14. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  15. All fiber based supercontinuum light source utilized for IR microscopy

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan

    2012-01-01

    An all fiber based supercontinuum light source is demonstrated for infrared microscopy. The high brightness and spatial coherence of the source facilitate fast high resolution measurements.......An all fiber based supercontinuum light source is demonstrated for infrared microscopy. The high brightness and spatial coherence of the source facilitate fast high resolution measurements....

  16. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  17. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  18. Modification of the internal surface of photonic crystal fibers with Ag and Au nanoparticles for application as sensor elements

    Science.gov (United States)

    Pidenko, Pavel S.; Borzov, Victor M.; Savenko, Olga A.; Skaptsov, Alexander A.; Skibina, Yulia S.; Goryacheva, Irina Yu.; Rusanova, Tatiana Yu.

    2017-03-01

    Photonic crystal fibers (PCFs) are one of the most promising materials for biosensors construction due to their unique optical properties. The modification of PCF by noble metal nanoparticles (NPs) provides the SPR and SERS signal detection where as the application amino group-containing compounds allows efficient binding of biomolecules. In this work the internal surface of glass hollow core photonic crystal fibers (HC-PCFs) has been modified Ag and Au nanoparticles using three different approaches. PCFs were treated by: 1) mixture of NPs and precursors for silanization (tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES)); 2) alternately deposition of polyelectrolytes and NPs, 3) mixture of chitosan with NPs. The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of NPs on the HC-PCF inner surface. The most efficient techniques were the chitosan application for Ag NPs and silanization for Au NPs. The obtaining PCFs could be useful for creating biosensitive elements.

  19. Fabry-Perot based strain insensitive photonic crystal fiber modal interferometer for inline sensing of refractive index and temperature.

    Science.gov (United States)

    Dash, Jitendra Narayan; Jha, Rajan

    2015-12-10

    We report a highly stable, compact, strain insensitive inline microcavity-based solid-core photonic crystal fiber (SCPCF) modal interferometer for the determination of the refractive index (RI) of an analyte and its temperature. The interferometer is fabricated by splicing one end of SCPCF with single-mode fiber (SMF) and the other end with hollow-core PCF. This is followed by cleaving the part of the solid glass portion possibly present after the microcavity. The formation of the cavities at the end faces of the SCPCF results in reduction of the period of the interference pattern that helps in achieving distinctiveness in the measurement. Three sensor heads have been fabricated, and each has a different length of the collapsed region formed by splicing SMF with SCPCF. The response of the sensors is found to be sensitive to the length of this collapsed region between SMF and SCPCF with a sensitivity of 53 nm/RI unit (RIU) and resolution of 1.8×10(-4) RIU. The temperature response of the sensor is found to be linear, having a temperature sensitivity of 12 pm/°C. In addition to these findings, the effect of strain on the proposed structure is analyzed in both wavelength and intensity interrogation.

  20. An in-line fiber-optic modal interferometer for simultaneous measurement of twist and ambient temperature

    Directory of Open Access Journals (Sweden)

    Yongqin Yu

    2014-12-01

    Full Text Available A novel and simple sensor based on fiber-optic modal interferometer fabricated by a segment of low elliptical hollow-core photonic bandgap fiber for simultaneous temperature and twist measurements is demonstrated. Meanwhile the sensor can also measure the twist angle and determine the twist direction simultaneously. The mode distribution of EHC-PBGF is demonstrated both in theory and experiments. There is an obvious difference of two transmission dips on the temperature and twist. The twist sensitivities of Dip 1 and Dip 2 are obtained to be −31.95 and −585.8 pm/(rad/m, respectively. The temperature sensitivities are 12.99 pm/°C for Dip 1 and 5.09 pm/°C for Dip 2, respectively. Two parameters of twist and temperature can be distinguished and measured simultaneously by using a sensing matrix. Meanwhile the structure is found to be weakly sensitive to the axial strain. It has the advantage of avoiding the crosstalk of strain in the applications.

  1. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber.

    Science.gov (United States)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-05-12

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  2. Dietary Fiber

    Science.gov (United States)

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  3. Use of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy in direct, non-destructive, and rapid assessment of developmental cotton fibers grown in planta and in culture

    Science.gov (United States)

    Cotton fibers are routinely harvested from cotton plants (in planta), and their end-use qualities depend on their development stages. Cotton fibers are also cultured at controlled laboratory environments, so that cotton researchers can investigate many aspects of experimental protocols in cotton bre...

  4. Templated Chemically Deposited Semiconductor Optical Fiber Materials

    Science.gov (United States)

    Sparks, Justin R.; Sazio, Pier J. A.; Gopalan, Venkatraman; Badding, John V.

    2013-07-01

    Chemical deposition is a powerful technology for fabrication of planar microelectronics. Optical fibers are the dominant platform for telecommunications, and devices such as fiber lasers are forming the basis for new industries. High-pressure chemical vapor deposition (HPCVD) allows for conformal layers and void-free wires of precisely doped crystalline unary and compound semiconductors inside the micro-to-nanoscale-diameter pores of microstructured optical fibers (MOFs). Drawing the fibers to serve as templates into which these semiconductor structures can be fabricated allows for geometric design flexibility that is difficult to achieve with planar fabrication. Seamless coupling of semiconductor optoelectronic and photonic devices with existing fiber infrastructure thus becomes possible, facilitating all-fiber technological approaches. The deposition techniques also allow for a wider range of semiconductor materials compositions to be exploited than is possible by means of preform drawing. Gigahertz bandwidth junction-based fiber devices can be fabricated from doped crystalline semiconductors, for example. Deposition of amorphous hydrogenated silicon, which cannot be drawn, allows for the exploitation of strong nonlinear optical function in fibers. Finally, crystalline compound semiconductor fiber cores hold promise for high-power infrared light-guiding fiber devices and subwavelength-resolution, large-area infrared imaging.

  5. Water Fibers

    CERN Document Server

    Douvidzon, Mark L; Martin, Leopoldo L; Carmon, Tal

    2016-01-01

    Fibers constitute the backbone of modern communication and are used in laser surgeries; fibers also genarate coherent X-ray, guided-sound and supercontinuum. In contrast, fibers for capillary oscillations, which are unique to liquids, were rarely considered in optofluidics. Here we fabricate fibers by water bridging an optical tapered-coupler to a microlensed coupler. Our water fibers are held in air and their length can be longer than a millimeter. These hybrid fibers co-confine two important oscillations in nature: capillary- and electromagnetic-. We optically record vibrations in the water fiber, including an audio-rate fundamental and its 3 overtones in a harmonic series, that one can hear in soundtracks attached. Transforming Micro-Electro-Mechanical-Systems [MEMS] to Micro-Electro-Capillary-Systems [MECS], boosts the device softness by a million to accordingly improve its response to minute forces. Furthermore, MECS are compatible with water, which is a most important liquid in our world.

  6. Spectral properties of thulium doped optical fibers for fiber lasers around 2 micrometers

    Science.gov (United States)

    Kamrádek, M.; Aubrecht, J.; Peterka, P.; Podrazký, O.; Honzátko, P.; Cajzl, J.; Mrázek, J.; Kubeček, V.; Kašik, I.

    2017-05-01

    Silica optical fibers doped with rare-earth elements are key components of high-power fiber lasers operating in near-infrared region up to 2.1 μm. In this contribution we deal with preparation and optical characterization of silica-based optical preforms and fibers doped with thulium for fiber lasers operating around 2 μm. A set of fibers with thulium concentration ranges 1000-5000 ppm was prepared by the MCVD solution doping method and characterized. A decrease of fluorescence lifetime of thulium from 487 μs to 378 μs was observed with increasing rare-earth concentration in fiber core. This phenomenon can be explained by energy transfer between ions and ion clustering. Fabricated fibers were suitable for use in fiber lasers.

  7. Infrared Camera

    Science.gov (United States)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  8. Infrared photoretinoscope.

    Science.gov (United States)

    Schaeffel, F; Farkas, L; Howland, H C

    1987-04-15

    A modification of the technique of photoretinoscopy is presented which allows measurement of the refractive state of the eye in noncooperative subjects and in very small eyes. Infrared light provided by high-output infrared LEDs permits measurement at large pupil sizes and thereby better resolution. Arrangement of the IR LEDs at different eccentricities from the optical axis of the video camera markedly increases the range of measurement. The current sensitivity for a measurement distance of 1.5 m in a human eye is +/- 0.3 diopter or better over a range of +/-5 diopters. Higher amounts of defocus can be better determined at shorter distances.

  9. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  10. Surface modification and characterization of aramid fibers with hybrid coating

    Science.gov (United States)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin; Fu, Xiang

    2014-12-01

    Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO2/shape memory polyurethane (SiO2/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO2/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special "pizza-like" structure on the fiber surface.

  11. Infrared Thermometers

    Science.gov (United States)

    Schaefers, John

    2006-01-01

    An infrared (IR) thermometer lab offers the opportunity to give science students a chance to measure surface temperatures, utilizing off-the-shelf technology. Potential areas of study include astronomy (exoplanets), electromagnetic spectrum, chemistry, evaporation rates, anatomy, crystal formation, and water or liquids. This article presents one…

  12. Continuous Fiber Ceramic Composites (CFCC)

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  13. FY 2006 Infrared Photonics Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  14. Infrared retina

    Science.gov (United States)

    Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  15. Ultrafast all-optical flip-flop based on passive micro Sagnac waveguide ring with photonic crystal fiber.

    Science.gov (United States)

    Xu, Ming; Yang, Wan; Hong, Tao; Kang, TangZhen; Ji, JianHua; Wang, Ke

    2017-06-01

    Ultrafast all-optical flip-flop based on a passive micro Sagnac waveguide ring is studied through theoretical analysis and numerical simulation in this paper. The types of D, R-S, J-K, and T flip-flop are designed by controlling the cross-phase modulation effect of lights in this special microring. The high nonlinearity of the hollow-core photonic crystal fiber is implanted on a chip to shorten the length of the ring and reduce input power. By sensible management, the pulse width ratio of the input and the control signal, problems of pulse narrowing, and residual pedestal at the out port are solved. The parameters affecting the performance of flip-flops are optimized. The results show that the all-optical flip-flops have stable performance, low power consumption, high transmission rate (up to 100  Gb/s), and response time in picosecond order. The small size microwaveguide structure is suitable for photonic integration.

  16. Surface modification and characterization of aramid fibers with hybrid coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin, E-mail: fyq01@zstu.edu.cn; Fu, Xiang

    2014-12-01

    Graphical abstract: - Highlights: • Aramid fibers modification sizing synthesized by sol–gel in the absence of water. • The strength and interfacial adhesion property of modified fibers were improved. • Modified fibers show a special surface structure. • The mechanism explains the function of structure. - Abstract: Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO{sub 2}/shape memory polyurethane (SiO{sub 2}/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO{sub 2}/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special “pizza-like” structure on the fiber surface.

  17. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe.

    Science.gov (United States)

    Dinish, U S; Balasundaram, Ghayathri; Chang, Young Tae; Olivo, Malini

    2014-11-01

    Surface-enhanced Raman scattering (SERS) spectroscopy possesses the most promising advantage of multiplex detection for biosensing applications, which is achieved due to the narrow 'fingerprint' Raman spectra from the analyte molecules. We developed an ultrasensitive platform for the multiplex detection of cancer biomarkers by combining the SERS technique with a hollow-core photonic crystal fiber (HCPCF). Axially aligned air channels inside the HCPCF provide an excellent platform for optical sensing using SERS. In addition to the flexibility of optical fibers, HCPCF provides better light confinement and a larger interaction length for the guided light and the analyte, resulting in an improvement in sensitivity to detect low concentrations of bioanalytes in extremely low sample volumes. Herein, for the first time, we demonstrate the sensitive multiplex detection of biomarkers immobilized inside the HCPCF using antibody-conjugated SERS-active nanoparticles (SERS nanotags). As a proof-of-concept for targeted multiplex detection, initially we carried out the sensing of epidermal growth factor receptor (EGFR) biomarker in oral squamous carcinoma cell lysate using three different SERS nanotags. Subsequently, we also achieved simultaneous detection of hepatocellular carcinoma (HCC) biomarkers-alpha fetoprotein (AFP) and alpha-1-antitrypsin (A1AT) secreted in the supernatant from Hep3b cancer cell line. Using a SERS-HCPCF sensing platform, we could successfully demonstrate the multiplex detection in an extremely low sample volume of ∼20 nL. In future, this study may lead to sensitive biosensing platform for the low concentration detection of biomarkers in an extremely low sample volume of body fluids to achieve early diagnosis of multiple diseases. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optical Fibers

    Science.gov (United States)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  19. Vacuum fiber-fiber coupler

    Science.gov (United States)

    Heinrici, Axel; Bjelajac, Goran; Jonkers, Jeroen; Jakobs, Stefan; Olschok, Simon; Reisgen, Uwe

    2017-02-01

    Research and development carried out by the ISF Welding and Joining Institute of RWTH Aachen University has proven that combining high power laser and low vacuum atmosphere provides a welding performance and quality, which is comparable to electron beam welding. The developed welding machines are still using a beam forming which takes place outside the vacuum and the focusing laser beam has to be introduced to the vacuum via a suitable window. This inflexible design spoils much of the flexibility of modern laser welding. With the target to bring a compact, lightweight flying optics with flexible laser transport fibers into vacuum chambers, a high power fiber-fiber coupler has been adapted by II-VI HIGHYAG that includes a reliable vacuum interface. The vacuum-fiber-fiber coupler (V-FFC) is tested with up to 16 kW sustained laser power and the design is flexible in terms of a wide variety of laser fiber plug systems and vacuum flanges. All that is needed to implement the V-FFC towards an existing or planned vacuum chamber is an aperture of at least 100 mm (4 inch) diameter with any type of vacuum or pressure flange. The V-FFC has a state-of-the-art safety interface which allows for fast fiber breakage detection for both fibers (as supported by fibers) by electric wire breakage and short circuit detection. Moreover, the System also provides connectors for cooling and electric signals for the laser beam optics inside the vacuum. The V-FFC has all necessary adjustment options for coupling the laser radiation to the receiving fiber.

  20. Tracking Polymer Cure Via Embedded Optical Fibers

    Science.gov (United States)

    Dean, David L.; Davidson, T. Fred

    1993-01-01

    Fourier-transform infrared spectroscopy applied in interior of specimen of material by bringing infrared light through specimen in optical fiber. Light interacts with material via evanescent-wave effect. Spectra obtained in this way at various times during curing process also combined with data from ultrasonic, thermographic, and dielectric-impedance monitoring, and other measurement techniques to obtain more complete characterization of progress of curing process.

  1. Electrically-Tunable Multi-Color Ultrafast Cherenkov FiberLaser

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Liu, Xiaomin; Lægsgaard, Jesper

    2014-01-01

    We demonstrate the broadband electrical tunability of ultrafast fiber laser output across the visible range, from the deep blue to the infrared.......We demonstrate the broadband electrical tunability of ultrafast fiber laser output across the visible range, from the deep blue to the infrared....

  2. High-power parametric conversion from near-infrared to short-wave infrared.

    Science.gov (United States)

    Billat, Adrien; Cordette, Steevy; Tseng, Yu-Pei; Kharitonov, Svyatoslav; Brès, Camille-Sophie

    2014-06-16

    We report the design of an all-fiber continuous wave Short-Wave Infrared source capable to output up to 700 mW of power at 1940 nm. The source is tunable over wavelength intervals comprised between 1850 nm and 2070 nm depending on its configuration. The output can be single or multimode while the optical signal to noise ratio ranges from 25 and 40 dB. The architecture is based on the integrated association of a fiber optical parametric amplifier and a Thulium doped fiber amplifier.

  3. Mechanism of cadmium ion removal by base treated juniper fiber

    Science.gov (United States)

    Soo-Hong Min; J.K. Park; James S. Han; Eun Woo Shin

    2003-01-01

    Pinyon juniper, Juniperus Monosperma, is a small-diameter and underutilized (SDU) lignocellulosic material. Evaluated were efficacy of base-treated juniper fiber (BTJF) sample for cadmium (Cd 2+ ) sorption and the viability of juniper fiber as a sorbent for the removal of Cd 2+ from water. Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated that...

  4. Properties of ligno-cellulose ficus religiosa leaf fibers

    CSIR Research Space (South Africa)

    Reddy, KO

    2010-04-01

    Full Text Available The native (untreated) and alkali treated fibers from the ficus leaves were analyzed by Fourier transform infrared (FTIR), Chemical, X-ray and Thermo gravimetric methods. The morphology of the fibers before and after alkali treatment was studied...

  5. Near infrared spectroscopy of food systems using a supercontinuum laser

    DEFF Research Database (Denmark)

    Ringsted, Tine

    Mid-infrared and particularly near-infrared spectroscopy is extremely useful for food analysis because they measure chemical and physical properties fast and non-destructively. The advancement of a supercontinuum light source covering the near-infrared and parts of the ultraviolet and mid......)) can be obtained, (c) that the supercontinuum light is fiber compatible i.e. it can couple directly to fibers, and (d) that the fast repetition rate of the supercontinuum pulses makes it possible to do very fast measurements. For these reasons, the supercontinuum light stands out from the commonly...... applied near- and mid-infrared incandescent light bulbs. This thesis aim to explore the utility of using a supercontinuum source in two food applications. (1) The supercontinuum light was applied for the first time to barley seeds in transmission mode in the long wavelength near-infrared region from 2260...

  6. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber

    Directory of Open Access Journals (Sweden)

    Jose Luis Cenis

    2016-07-01

    Full Text Available This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells.

  7. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, without skin Green beans Wax beans Asparagus Beets ...

  8. Soluble vs. insoluble fiber

    Science.gov (United States)

    Insoluble vs. soluble fiber; Fiber - soluble vs. insoluble ... There are 2 different types of fiber -- soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows ...

  9. Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers.

    Science.gov (United States)

    Tao, Guangming; Shabahang, Soroush; Banaei, Esmaeil-Hooman; Kaufman, Joshua J; Abouraddy, Ayman F

    2012-07-01

    The development of robust infrared fibers is crucial for harnessing the capabilities of new mid-infrared lasers. We present a novel approach to the fabrication of chalcogenide glass fiber preforms: one-step multimaterial extrusion. The preform consists of a glass core and cladding surrounded by a built-in, thermally compatible, polymer jacket for mechanical support. Using this approach we extrude several preform structures and draw them into robust composite fibers. Furthermore, the polymer cladding allows us to produce robust tapers with submicrometer core diameter.

  10. Explosive detection using infrared laser spectroscopy

    Science.gov (United States)

    Hildenbrand, J.; Herbst, J.; Wöllenstein, J.; Lambrecht, A.

    2009-01-01

    Stand-off and extractive explosive detection methods for short distances are investigated using mid-infrared laser spectroscopy. A quantum cascade laser (QCL) system for TATP-detection by open path absorption spectroscopy in the gas phase was developed. In laboratory measurements a detection limit of 5 ppm*m was achieved. For explosives with lower vapor pressure an extractive hollow fiber based measurement system was investigated. By thermal desorption gaseous TATP or TNT is introduced into a heated fiber. The small sample volume and a fast gas exchange rate enable fast detection. TNT and TATP detection levels below 100 ng are feasible even in samples with a realistic contaminant background.

  11. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    Science.gov (United States)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  12. Fiber resources

    Science.gov (United States)

    P. J. Ince

    2004-01-01

    In economics, primary inputs or factors of production define the term ‘resources.’ Resources include land resources (plants, animals, and minerals), labor, capital, and entrepreneurship. Almost all pulp and paper fiber resources are plant materials obtained from trees or agricultural crops. These resources encompass plant materials harvested directly from the land (...

  13. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    OpenAIRE

    Marie Pospíšilová; Gabriela Kuncová; Josef Trögl

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in ...

  14. Multiphoton microscopy with near infrared contrast agents

    Science.gov (United States)

    Yazdanfar, Siavash; Joo, Chulmin; Zhan, Chun; Berezin, Mikhail Y.; Akers, Walter J.; Achilefu, Samuel

    2010-05-01

    While multiphoton microscopy (MPM) has been performed with a wide range of excitation wavelengths, fluorescence emission has been limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared (NIR) fluorescent molecular probes via nonlinear excitation at 1550 nm. This all-NIR system expands the range of available MPM fluorophores, virtually eliminates background autofluorescence, and allows for use of fiber-based, turnkey ultrafast lasers developed for telecommunications.

  15. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  16. Predicting Digestibilities of Alfalfa Hays with Near Infrared Reflectance Spectroscopy

    OpenAIRE

    Clark, David H.

    1985-01-01

    Forty-four alfalfa hays from different cuttings, maturities, and locations were fed to sheep in a digestion study. Subsamples of the hays along with corresponding fecal samples were ground and analyzed for dry matter, (DM), organic matter (OM), crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and permanganate lignin. In vivo digestibility (IVDMD) were also determined fro each hay. The hay and fecal samples were scanned with a near infrared reflectance spectrop...

  17. Upconversion imaging using short-wave infrared picosecond pulses

    DEFF Research Database (Denmark)

    Mathez, Morgan David; Rodrigo, Peter John; Tidemand-Lichtenberg, Peter

    2017-01-01

    To the best of our knowledge, we present the first demonstration of short-wavelength infrared image upconversion that employs intense picosecond signal and pump beams. We use a fiber laser that emits a signal beam at 1877 nm and a pump beam at 1550 nm—both with a pulse width of 1 ps and a pulse...... by an improved model that considers the combined image blurring effect due to finite pump beam size, thick nonlinear crystal, and polychromatic infrared illumination....

  18. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  19. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    During this ph.d. work, attention has been focused on understanding and analyzing the modal behavior of micro-structured fibers. Micro-structured fibers are fibers with a complex dielectric toplogy, and offer a number of novel possibilities, compared to standard silica based optical fibers....... The thesis focuses on understanding the basic mechanisms controlling the modal properties of micro-structured fibers. One important sub-class of micro-structured fibers are fibers that guide light by index effects similar to those index effects that ensure guidance of light in standard optical fibers....... Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  20. Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The end goal of this project is to develop proof-of-concept infrared detectors which can be integrated in future infrared instruments engaged in remote...

  1. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  2. Multispectral mid-infrared imaging using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Jensen, Ole Bjarlin

    2013-01-01

    It has recently been shown that it is possible to upconvert infrared images to the near infrared region with high quantum efficiency and low noise by three-wave mixing with a laser field [1]. If the mixing laser is single-frequency, the upconverted image is simply a band-pass filtered version...... feedback grating. The output from a tunable laser is used as seed for a fiber amplifier system, boosting the power to approx. 3 W over the tuning range from 1025 to 1085 nm. Using a periodically poled lithium niobate crystal, the infrared wavelength that can be phase-matched is tunable over more than 200...

  3. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  4. Nonlinear frequency conversion in fiber lasers

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian

    nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method......The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...

  5. Crystal-free Formation of Non-Oxide Optical Fiber

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  6. Distributed gas detection system and method

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William Albert; Palit, Sabarni; Karp, Jason Harris; Kasten, Ansas Matthias; Choudhury, Niloy

    2017-11-21

    A distributed gas detection system includes one or more hollow core fibers disposed in different locations, one or more solid core fibers optically coupled with the one or more hollow core fibers and configured to receive light of one or more wavelengths from a light source, and an interrogator device configured to receive at least some of the light propagating through the one or more solid core fibers and the one or more hollow core fibers. The interrogator device is configured to identify a location of a presence of a gas-of-interest by examining absorption of at least one of the wavelengths of the light at least one of the hollow core fibers.

  7. Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells

    DEFF Research Database (Denmark)

    Benabid, F.; Roberts, John; Couny, F.

    2009-01-01

    optical waveguide guidance. For the second type of fibre, which can guide over a broad wavelength range, we examine the nature of the inhibited coupling. We describe a technique for the fabrication of photonic microcells that can accommodate vacuum pressures, and we finish by showing the latest results...

  8. Yeast Cells-Derived Hollow Core/Shell Heteroatom-Doped Carbon Microparticles for Sustainable Electrocatalysis

    Czech Academy of Sciences Publication Activity Database

    Huang, X.; Zou, X.; Meng, Y.; Mikmeková, Eliška; Chen, H.; Voiry, D.; Goswami, A.; Chhowalla, M.; Asefa, T.

    2015-01-01

    Roč. 7, č. 3 (2015), s. 1978-1986 ISSN 1944-8244 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : yeast * heteroatom-doped carbon * oxygen reduction * ORR * hydrazine electrooxidation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 7.145, year: 2015

  9. One step fabrication of hydrogel microcapsules with hollow core for assembly and cultivation of hepatocyte spheroids.

    Science.gov (United States)

    Siltanen, Christian; Diakatou, Michalitsa; Lowen, Jeremy; Haque, Amranul; Rahimian, Ali; Stybayeva, Gulnaz; Revzin, Alexander

    2017-03-01

    3D hepatic microtissues can serve as valuable liver analogues for cell-based therapies and for hepatotoxicity screening during preclinical drug development. However, hepatocytes rapidly dedifferentiate in vitro, and typically require 3D culture systems or co-cultures for phenotype rescue. In this work we present a novel microencapsulation strategy, utilizing coaxial flow-focusing droplet microfluidics to fabricate microcapsules with liquid core and poly(ethylene glycol) (PEG) gel shell. When entrapped inside these capsules, primary hepatocytes rapidly formed cell-cell contacts and assembled into compact spheroids. High levels of hepatic function were maintained inside the capsules for over ten days. The microencapsulation approach described here is compatible with difficult-to-culture primary epithelial cells, allows for tuning gel mechanical properties and diffusivity, and may be used in the future for high density suspension cell cultures. Our paper combines an interesting new way for making capsules with cultivation of difficult-to-maintain primary epithelial cells (hepatocytes). The microcapsules described here will enable high density suspension culture of hepatocytes or other cells and may be used as building blocks for engineering tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Short-term and long-term deflection of reinforced hollow core ...

    African Journals Online (AJOL)

    This paper presents a study on different methods of analysis that are currently used by design codes to predict the short-term and long-term deflection of reinforced concrete slab systems and compares the predicted deflections with measured deflections. The experimental work to measure deflections involved the testing of ...

  11. Single-Photon Nonlinear Optics in Integrated Hollow-Core Waveguides

    Science.gov (United States)

    2010-10-13

    157 Table A.1 Coupling lens calculation ................................................................. 199 Table A.2 Calibration of TEC ...97.7 1.9 104.6 2.0 112.0 Table A.2 Calibration of TEC plate for ARROW chip testing Current (A) T (C) 0.2 31.1 0.3 35.9 0.4 43.9 0.5 55.6...DEM-451 machine for 50 minutes. d. Perform a 5 minute oxygen plasma descum. e. Remove SU-8 residue in Nano -Strip at 90°C for 60 minutes, followed by

  12. Hollow core MOEMS Bragg grating microphone for distributed and remote sensing

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    We present the design and fabrication of a completely new high sensitivity all-optical frequency modulated MOEMS microphone for distributed and remote sensing applications. Due to immunity to electromagnetic interference, no parasitic capacitances and easy wavelength division multiplexing (WDM...

  13. Ultra-Low Loss, Chip-Based Hollow-Core Waveguide Using High-Contrast Grating

    Science.gov (United States)

    2011-09-28

    delay circuit can be realized with a device loss that is order of magnitude lower than the current state- of-the-art in on-chip semiconductor...demonstrated as a high reflection mirrors at normal incident angle for VCSELs [5-7]. An HCG structure consists of a single layer of grating composed of a...nonlinearity measurement is currently limited by maximum power level of our EDF A ( ~ 18 dBm), the noise floor of OSA and the insufficient length of the

  14. Innovative fiber systems for laser medicine and technology

    Science.gov (United States)

    Artiouchenko, Viatcheslav G.; Wojciechowski, Cezar

    2004-09-01

    Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4 - 18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared (FTIR) spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR-fiber probes to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high spectral resolution of TDL spectrometers with Δν=10-4cm-1, provides the unique tool for gas analysis, specifically when PIR-fibers are coupled as pigtails with MCT-detectors and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis at 1 ppb level of detectivity for various applications in medicine and biotechnology.

  15. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  16. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  17. Fiber-Optic Anemometer Based on Silicon Fabry-Perot Interferometer

    Science.gov (United States)

    2015-11-05

    finding vast applications in all kinds of industrial processes, such as process control, food quality surveillance, wind turbines, environment...infrared wavelength, while it absorbs visible light. Thus, the silicon FPI can be heated by a beam injected from a red diode laser while the infrared...environment, over the passive ones. These fiber-optic hot-wire anemometers are based on a laser -heated fiber Bragg grating (FBG), which proves a

  18. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  19. Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared

    Science.gov (United States)

    Moselund, Peter M.; Petersen, Christian; Dupont, Sune; Agger, Christian; Bang, Ole; Keiding, Søren R.

    2012-06-01

    Based on the experience gained developing our market leading visible spectrum supercontinuum sources NKT Photonics has built the first mid-infrared supercontinuum source based on modelocked picosecond fiber lasers. The source is pumped by a ~ 2 um laser based on a combination of erbium and thulium and use ZBLAN fibers to generate a 1.75-4.4 μm spectrum. We will present results obtained by applying the source for mid-infrared microscopy where absorption spectra can be used to identify the chemical nature of different parts of a sample. Subsequently, we discuss the possible application of a mid-IR supercontinuum source in other areas including infrared countermeasures.

  20. Fiber optic temperature sensor

    Science.gov (United States)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  1. Prediction of Canola Residue Characteristics Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Tami L. Stubbs

    2017-01-01

    Full Text Available Little work has been done to characterize and quantify the residue traits affecting decomposition of winter and spring canola (Brassica napus L. residue in dryland farming systems of the Pacific Northwest United States. Traditional methods of characterizing residue fiber and nutrients are time-consuming and expensive and require large quantities of chemical reagents. The goal of this research was to determine whether near-infrared spectroscopy (NIRS could accurately predict neutral detergent fiber (NDF, acid detergent fiber (ADF, acid detergent lignin (ADL, carbon (C, and nitrogen (N of canola stems, litter, and roots and decomposition of canola stems. Canola residue varied in decomposition, fiber, and nutrients by year, location, and type. NIRS predictions were successful for NDF and ADF in 2011 (standard error of prediction SEP0.95 and NDF, ADF, and N in 2012 (SEP0.91. Other predictions for residue fiber and nutrient characteristics were considered moderately successful. Prediction of canola residue decomposition with NIRS was useful for screening purposes. Near-infrared spectroscopy shows promise for rapidly and reproducibly predicting some canola residue fiber and nutrient traits and may be useful for estimating residue decomposition potential in dryland conservation cropping systems.

  2. 730-nm optical parametric conversion from near- to short-wave infrared band

    DEFF Research Database (Denmark)

    Boggio, J.M.C.; Windmiller, J.R.; Knutzen, M.

    2008-01-01

    A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling sin...... single-pass one-pump parametric architecture and high efficiency is achieved by a combination of high peak power and a nonlinear fiber with a reduced fourth-order dispersion coefficient.......A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling...

  3. Blackening of metals using femtosecond fiber laser.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-01-10

    This study presents an unprecedented high throughput processing for super-blackening and superhydrophobic/hydrophilic surface on both planar and nonplanar metals surfaces. By using a high pulse repetition rate femtosecond (fs) fiber laser, a light trapping microstructure and nanostructure is generated to absorb light from UV, visible to long-wave infrared spectral region. Different types of surface structures are produced with varying laser scanning conditions (scanning speed and pitch). The modified surface morphologies are characterized using scanning electron microscope and the blackening effect is investigated through spectral measurements. Spectral measurements show that the reflectance of the processed materials decreases sharply in a wide wavelength range and the decrease occurs at different rates for different scanning pitches and speeds. Above 98% absorption over the entire visible wavelength region and above 95% absorption over the near-infrared, middle-wave infrared and long-wave infrared regions range has been demonstrated for the surface structures, and the absorption for specific wavelengths can go above 99%. Furthermore, the processing efficiency of this fs fiber laser blackening technique is 1 order of magnitude higher than that of solid-state fs laser and 4 times higher than that of picosecond (ps) laser. Further increasing of the throughput is expected by using higher repetition and higher scanning speed. This technology offers the great potential in applications such as constructing sensitive detectors and sensors, solar energy absorber, and biomedicine.

  4. Introduction to fiber optics: Sensors for biomedical applications.

    Science.gov (United States)

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  5. Improvement of cadmium ion removal by base treatment of juniper fiber

    Science.gov (United States)

    S.H. Min; J.S. Han; E.W. Shin; J.K. Park

    2004-01-01

    Juniper is a small-diameter underutilized lignocellulosic material. We evaluated the efficacy of base-treated juniper fiber (BTJF) for cadmium (Cd2+) sorption and the viability of juniper fiber as a sorbent for removing Cd2+ from water. Fourier transform infrared spectroscopy analysis indicated that carboxylate ion is a major functional group responsible for Cd2+...

  6. Selective control of small versus large diameter axons using infrared laser light (Conference Presentation)

    Science.gov (United States)

    Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.

    2016-03-01

    Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.

  7. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  8. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  9. In vitro bioactivity and cytotoxicity of chemically treated glass fibers

    Directory of Open Access Journals (Sweden)

    Ângela Leão Andrade

    2004-12-01

    Full Text Available Samples of a commercial glass fiber FM® (Fiber Max were used to test the efficacy of a chemical sol-gel surface treatment to enhance their bioactivity. After treatment with tetraethoxysilane (TEOS, individual fiber samples were soaked into a simulated body fluid (SBF solution, from which they were removed at intervals of 5 and 10 days. Micrographs obtained by scanning electron microscopy (SEM analysis of samples chemically treated with TEOS revealed the formation of a hydroxyapatite (HA coating layer after 5 days into SBF solution. Fourier transform infrared spectroscopic (FTIR analyses confirmed that the coating layer has P-O vibration bands characteristic of HA. The in vitro cytotoxicity was evaluated using a direct contact test, minimum essential medium elution test (ISO 10993-5 and MTT assay. Fibers immersed in SBF and their extracts exhibited lower cytotoxicity than the controls not subjected to immersion, suggesting that SBF treatment improves the biocompatibility of the fiber.

  10. High Power Fiber Lasers and Applications to Manufacturing

    Science.gov (United States)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  11. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements

    Science.gov (United States)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2017-02-01

    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization

  12. Effects of wood fiber surface chemistry on strength of wood-plastic composites

    Science.gov (United States)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-07-01

    Because wood-plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same conclusions were found with FTIR where WPC strength decreases as lignin peaks intensity increases. Esterification reaction of fibers with MAPE occurs on polar sites of carbohydrates, such as hydroxyls (Osbnd H). Thus, fibers with carbohydrates-rich surface, such as cellulose pulp, produced stronger WPC samples. Other factors such as mechanical interlocking and fiber morphology interfered with the effects of fiber surface chemistry.

  13. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  14. Reducing fiber cross-talk in mineral fiber arrays

    OpenAIRE

    Daniel Lee Stark

    2017-01-01

    Monocentric optics replace current systems with diffraction limited performance. The fiber arrays have been the issue. Commercial expensive fiber arrays are available, but enhanced mineral fiber arrays offer very inexpensive fiber arrays.

  15. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation; Extracao de nanofibras a partir do mesocarpo do dende para incorporacao em polimeros biodegradsveis

    Energy Technology Data Exchange (ETDEWEB)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C., E-mail: ayu.kuana@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil); Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M. [Embrapa Instrumentacao (EMBRAPA/CNPDIA), Sao Carlos, SP (Brazil)

    2015-07-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  16. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  17. The Effects of Environmental Exposure on the Optical, Physical, and Chemical Properties of Manufactured Fibers of Natural Origin.

    Science.gov (United States)

    Brinsko, Kelly M; Sparenga, Sebastian; King, Meggan

    2016-09-01

    Manufactured fibers derived from natural origins include viscose rayon, azlon, and polylactic acid (PLA). A 2-year study was conducted to document any changes these fibers undergo as a result of exposure to various environmental conditions. Fabric swatches representing each fiber type were exposed to freshwater, saltwater, heat, cold, ultraviolet light, or composter conditions. Fibers from the swatches were periodically analyzed using polarized light microscopy and Fourier transform infrared microspectroscopy. Fiber solubility and melting-point behavior were measured every 6 months. Except for the complete degradation of viscose rayon in the composter, saltwater, and freshwater environs, no changes in the optical properties, infrared spectra, solubility, or melting points of the remaining fibers in any of the environments were observed. However, microscopic morphological changes were observed in fibers from two azlon swatches submerged in freshwater and saltwater, two PLA swatches exposed to ultraviolet light, and two viscose rayon swatches exposed to ultraviolet light. © 2016 American Academy of Forensic Sciences.

  18. Shaped fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  19. High-fiber foods

    Science.gov (United States)

    ... that have higher amounts of fiber, such as whole-wheat bread versus white bread. ... cereals, such as oatmeal and farina (Cream of Wheat) Whole-grain breads Brown rice Popcorn High-fiber cereals, such as ...

  20. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  1. High power Raman-converter based on H2-filled inhibited coupling HC-PCF

    Science.gov (United States)

    Benoit, A.; Beaudou, B.; Debord, B.; Gerome, F.; Benabid, F.

    2017-02-01

    We report on high power Raman-converter frequency stage based on hydrogen-filled inhibited-coupling hollow-core photonic crystal fibers pumped by an Yb-fiber picosecond laser. This fiber Raman-convertor can operate in two SRS emission regimes by simply controlling the fiber length or the gas pressure. It can set to either generate favorably single laser line or to generate an extremely wide Raman comb. Based on this we demonstrate a pico-second pulse Raman source of 9.3 W average-power at 1.8 μm, and an ultra-wide Raman comb spanning over more than five octaves from UV to mid-infrared, containing around 70 laser lines.

  2. Infrared radiative properties and thermal modeling of ceramic-embedded textile fabrics.

    Science.gov (United States)

    Anderson, David M; Fessler, John R; Pooley, Matthew A; Seidel, Scott; Hamblin, Michael R; Beckham, Haskell W; Brennan, James F

    2017-03-01

    The infrared optical properties of textiles are of great importance in numerous applications, including infrared therapy and body thermoregulation. Tuning the spectral response of fabrics by the engineering of composite textile materials can produce fabrics targeted for use in these applications. We present spectroscopic data for engineered polyester fabric containing varying amounts of ceramic microparticles within the fiber core and report a spectrally-dependent shift in infrared reflectance, transmittance and absorptance. A thermal transport model is subsequently implemented to study the effect of these modified properties on the spectral distribution of infrared radiation incident upon the wearer of a garment constructed of this fabric.

  3. Superlattice Microstructured Optical Fiber

    Directory of Open Access Journals (Sweden)

    Ming-Leung Vincent Tse

    2014-06-01

    Full Text Available A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure.

  4. Fundamentals of fiber lasers and fiber amplifiers

    CERN Document Server

    Ter-Mikirtychev, Valerii (Vartan)

    2014-01-01

    This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries, etc.

  5. Fiber optic coupled optical sensor

    Science.gov (United States)

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  6. Mineral Fiber Toxicology

    Science.gov (United States)

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  7. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser ...

  8. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  9. Development of femtosecond infrared fiber laser for multiphoton silicon micromachining

    OpenAIRE

    Rezaei, Hossein Salmani

    2016-01-01

    Cataloged from PDF version of article. Thesis (M.S.): Bilkent University, Department of Electrical and Electronics Engineering, İhsan Doğramacı Bilkent University, 2016. Includes bibliographical references (leaves 45-49). Femtosecond laser is widely used in material processing. Application of ultrashort lasers makes it possible to process with higher precision compared to picosecond and nanosecond lasers. Moreover, a major challenge in picosecond and nanosecond laser processing is pr...

  10. Mid-Infrared Fiber Lasers (Les fibres laser infrarouge moyen)

    Science.gov (United States)

    2010-09-01

    The approval of the RTA Information Management Systems Branch is required for more than one copy to be made or an extract included in another...conventional solid state lasers, offering optical confinement, reduced environmental sensitivity, and simplified thermal management . Although recent years...d’ondes supérieures à 3 microns, valeur basse de la fin de la fenêtre de transmission atmosphérique en IR moyen. L’objet de cet atelier a été de réunir

  11. Nondestructive Evaluation of Carbon Fiber Bicycle Frames Using Infrared Thermography

    Science.gov (United States)

    Ibarra-Castanedo, Clemente; Klein, Matthieu; Maldague, Xavier; Sanchez-Beato, Alvaro

    2017-01-01

    Bicycle frames made of carbon fibre are extremely popular for high-performance cycling due to the stiffness-to-weight ratio, which enables greater power transfer. However, products manufactured using carbon fibre are sensitive to impact damage. Therefore, intelligent nondestructive evaluation is a required step to prevent failures and ensure a secure usage of the bicycle. This work proposes an inspection method based on active thermography, a proven technique successfully applied to other materials. Different configurations for the inspection are tested, including power and heating time. Moreover, experiments are applied to a real bicycle frame with generated impact damage of different energies. Tests show excellent results, detecting the generated damage during the inspection. When the results are combined with advanced image post-processing methods, the SNR is greatly increased, and the size and localization of the defects are clearly visible in the images. PMID:29156650

  12. Evanescent-wave Infrared Optical Fiber Gas Sensor

    Science.gov (United States)

    Wang, Yiding; Wang, Di; Zhong, Hong-Jie; Zhang, Zhiguo

    2000-03-01

    We propose the treatment of amblyopia using yellow-green laser diodes.There are amblyopia children in excess of fifty million in the world.Because the causative agent of amblyopia hasn't been well understood,only roughly considered to be concerned with visual sense cell,optic nerve network and function of nerve center,no appropriate treatment is found up to date.The vision of person is determined by the center hollow region of retina,where there are three kinds of cone cell.The corresponding peak wavelength in absorption spectrum locates 447nm(blue light),532nm (green light)and 565nm(yellow light), respectively.When stimulated by white light, excited degree of three kinds of cone cell are identical,or yellow-green light,to which person eye is most sensitive, will significantly takes effects.Therefore the yellow-green laser diode is suitable for treating amblyopia. The weak laser,namely laser power less than mW order of magnitude,shows curative by stimulating bion tissue.When stimulating light power density is less than 0.001W/cm,the compounding speed of nucleic acid DNA is significantly increased.The growth rate of cell,activity of enzyme,content of hemoglobin and the growth of blood vessel,are all increased.However,it's key to control the dose of light.When the dose transcend some value,a inhibition will occur.The little dose of weak laser treatment can be accumulated with a parabolic characteristics,that is the weak laser generate bion response stengthening gradually versus time.Then it will weaken gradually after the peak.When the treatment duration is longer than a certain time,a inhibition also takes place.A suggested theraphy is characterized by little dose and short treatment course. In a conclusion, the yellow-green laser diode should be used for the treatment of amblyopia.The little dose and short treatment couse are to be adopted.

  13. Infrared Solar Physics

    Directory of Open Access Journals (Sweden)

    Matthew J. Penn

    2014-05-01

    Full Text Available The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  14. Watt-level passively Q-switched heavily Er(3+)-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror

    National Research Council Canada - National Science Library

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai

    2016-01-01

    A diode-cladding pumped mid-infrared passively Q-switched Er(3+)-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated...

  15. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror

    National Research Council Canada - National Science Library

    Yanlong Shen; Yishan Wang; Kunpeng Luan; Ke Huang; Mengmeng Tao; Hongwei Chen; Aiping Yi; Guobin Feng; Jinhai Si

    2016-01-01

    A diode-cladding pumped mid-infrared passively Q-switched Er3+ -doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated...

  16. Infrared Sky Surveys

    Science.gov (United States)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  17. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  18. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  19. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  20. Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility.

    Science.gov (United States)

    Wang, Xiang; Wu, Tong; Wang, Wei; Huang, Chen; Jin, Xiangyu

    2016-01-01

    A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Characterization of the major reactions during conversion of lignin to carbon fiber

    Directory of Open Access Journals (Sweden)

    Hendrik Mainka

    2015-10-01

    Full Text Available Lightweight design is an essential part of the overall Volkswagen strategy for reducing the CO2 emissions. The use of carbon fiber offers an enormous lightweight potential. In comparison to steel enabling a mass reduction of up to 70% in automotive parts without a degradation of the functionalities is possible. Today, the use of carbon fiber is limited in mass series applications of the automotive industry by the cost of the conventional C-fiber precursor polyacrylonitrile (PAN. 50% of the cost of a conventional carbon fiber already belongs to the cost of the PAN precursor. Lignin as a precursor for carbon fiber production can realize enormous savings in cost. For qualifying lignin-based carbon fiber for automotive mass production a detailed characterization of this new material is necessary. Therefore, nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy are used. Using the results of these experiments, the major reactions during conversion of lignin to carbon fiber are proposed.

  2. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiangling; Su Shi; Kundrat, Vojtech; Abbot, Andrew M.; Ye, Haitao [School of Engineering and Applied Science, Aston University, Birmingham B4 7ET (United Kingdom); Zhou Lei [Department of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); Mushtaq, Fajer [Department of Mechanical Engineering, ETH Zurich, Zurich 8092 (Switzerland); Ouyang Defang [School of Life and Health Science, Aston University, Birmingham B4 7ET (United Kingdom); James, David; Roberts, Darren [Thermo Fisher Scientific, Stafford House, Hemel Hempstead HP2 7GE (United Kingdom)

    2013-01-14

    We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

  3. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Robson Fleming Ribeiro

    2015-12-01

    Full Text Available A low cost and environmental friendly extrusion process of the Polyacrylonitrile (PAN polymer was viabilized by using the 1,2,3-propanetriol (glycerol as a plasticizer. The characterization of the fibers obtained by this process was the object of study in the present work. The PAN fibers were heat treated in the range of 200 °C to 300 °C, which is the temperature range related to the stabilization/oxidation step. This is a limiting phase during the carbon fiber processing. The characterization of the fibers was made using infrared spectroscopy, thermal analysis and microscopy. TGA revealed that the degradation of the extruded PAN co-VA fibers between 250 °C and 350 °C, corresponded to a 9% weight loss to samples analyzed under oxidizing atmosphere and 18% when the samples were analyzed under inert atmosphere. DSC showed that the exothermic reactions on the extruded PAN co-VA fibers under oxidizing synthetic air was broader and the cyclization started at a lower temperature compared under inert atmosphere. Furthermore, FT-IR analysis correlated with thermal anlysis showed that the stabilization/oxidation process of the extruded PAN fiber were coherent with other works that used PAN fibers obtained by other spinning processes.

  4. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI.

    Science.gov (United States)

    Mayacela Rojas, Celia Margarita; Rivera Velásquez, María Fernanda; Tavolaro, Adalgisa; Molinari, Antonio; Fallico, Carmine

    2017-06-24

    The Zero Valent Iron (ZVI) is the material most commonly used for permeable reactive barriers (PRB). For technical and economic reasons, hoter reactive substances usable in alternative to ZVI are investigated. The present study takes into account a vegetable fibers, the cabuya, investigating its capacity to retain heavy metals. The capacity of the cabuya fibers to adsorb heavy metals was verified in laboratory, by batch and column tests. The batch tests were carried out with cabuya and ZVI, using copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb). The results obtained by the cabuya fibers showed a very high adsorption capacity of heavy metals and resulted very similar to those obtained for the broom fibers in a previous study. The high value of the absorption capacity of the cabuya fibers was also confirmed by the analogous comparison made with the results of the batch tests carried out with ZVI. Column tests, using copper, zinc and cadmium, allowed to determine for the cabuya fibers the maximum removal percentage of the heavy metals considered, the corresponding times and the time ranges of the release phase. For each metal considered, for a given length and three different times, the constant of degradation of cabuya fibers was determined, obtaining values very close to those reported for broom fibers. The scalar behavior of heavy metal removal percentage was verified. An electron microscope analysis allowed to compare, by SEM images, the characteristics of the cabuya and broom fibers. Finally, to investigate the chemical structure of cabuya and broom fibers, the FTIR technique was used, obtaining their respective infrared spectra.

  5. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone

    Energy Technology Data Exchange (ETDEWEB)

    Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Shahre Rey Branch, Tehran (Iran, Islamic Republic of); Ebrahimi, Izadyar [Young Researchers Club, Islamic Azad University, Shahre Rey Branch, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Influence of atmospheric air plasma treatment on performance of nanoemulsion silicone softener on polyethylene terephthalate fibers was investigated by the use of fourier transform infrared spectroscopy (FTIR), bending lengths (BL), wrinkle recovery angles (WRA), fiber friction coefficient analysis (FFCA), moisture absorbency (MA), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). Results indicated that the plasma pretreatment modifies the surface of fibers and increases the reactivity of substrate toward nanoemulsion silicone. Moisture regain and microscopic tests showed that the combination of plasma and silicone treatments on polyethylene terephthalate can decrease moisture absorption due to uniform coating of silicone emulsion on surface of fibers.

  6. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone

    Science.gov (United States)

    Parvinzadeh, Mazeyar; Ebrahimi, Izadyar

    2011-02-01

    Influence of atmospheric air plasma treatment on performance of nanoemulsion silicone softener on polyethylene terephthalate fibers was investigated by the use of fourier transform infrared spectroscopy (FTIR), bending lengths (BL), wrinkle recovery angles (WRA), fiber friction coefficient analysis (FFCA), moisture absorbency (MA), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). Results indicated that the plasma pretreatment modifies the surface of fibers and increases the reactivity of substrate toward nanoemulsion silicone. Moisture regain and microscopic tests showed that the combination of plasma and silicone treatments on polyethylene terephthalate can decrease moisture absorption due to uniform coating of silicone emulsion on surface of fibers.

  7. Thermally tunable bandgaps in a hybrid As2S3/silica photonic crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Stefani, Alessio; Bang, Ole

    2015-01-01

    We report the fabrication and characterization of a hybrid silica photonic crystal fiber (PCF) with integrated chalcogenide glass layers and we show how the bandgaps of the fiber can be thermally tuned. The formation of the high-index chalcogenide films on the inner surface of the PCF holes...... revealed resonances as strong as similar to 35 dB both in the visible and infrared regime. Temperature measurements indicate that the transmission windows can be tuned with a sensitivity as high as similar to 3.5 nm/degrees C. The proposed fiber has potential for all-fiber filtering and temperature sensing....

  8. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  9. Study of Polydiacetylene-Poly (Ethylene Oxide Electrospun Fibers Used as Biosensors

    Directory of Open Access Journals (Sweden)

    A K M Mashud Alam

    2016-03-01

    Full Text Available Polydiacetylene (PDA is an attractive conjugated material for use in biosensors due to its unique characteristic of undergoing a blue-to-red color change in response to external stimuli. 10,12-Pentacosadiynoic acid (PCDA and poly (ethylene oxide (PEO were used in this study to develop fiber composites via an electrospinning method at various mass ratios of PEO to PCDA, solution concentrations, and injection speeds. The PEO-PDA fibers in blue phase were obtained via photo-polymerization upon UV-light irritation. High mass ratios of PEO to PCDA, low polymer concentrations of spinning solution, and low injection speeds promoted fine fibers with small diameters and smooth surfaces. The colorimetric transition of the fibers was investigated when the fibers were heated at temperatures ranging from 25 °C to 120 °C. A color switch from blue to red in the fibers was observed when the fibers were heated at temperatures greater than 60 °C. The color transition was more sensitive in the fibers made with a low mass ratio of PEO to PCDA due to high fraction of PDA in the fibers. The large diameter fibers also promoted the color switch due to high reflectance area in the fibers. All of the fibers were analyzed using Fourier transform infrared spectroscopy (FT-IR and differential scanning calorimetry (DSC and compared before and after the color change occurred. The colorimetric transitional mechanism is proposed to occur due to conformational changes in the PDA macromolecules.

  10. Preliminary Study of Linear Density, Tenacity, and Crystallinity of Cotton Fibers

    Directory of Open Access Journals (Sweden)

    Yongliang Liu

    2014-07-01

    Full Text Available An investigation of the relationships among fiber linear density, tenacity, and structure is important to help cotton breeders modify varieties for enhanced fiber end-use qualities. This study employed the Stelometer instrument, which is the traditional fiber tenacity reference method and might still be an option as a rapid screening tool because of its low cost and portable attributes. In addition to flat bundle break force and weight variables from a routine Stelometer test, the number of fibers in the bundle were counted manually and the fiber crystallinity (CIIR was characterized by the previously proposed attenuated total reflection-sampling device based Fourier transform infrared (ATR-FTIR protocol. Based on the plots of either tenacity vs. linear density or fiber count vs. mass, the fibers were subjectively divided into fine or coarse sets, respectively. Relative to the distinctive increase in fiber tenacity with linear density, there was an unclear trend between the linear density and CIIR for these fibers. Samples with similar linear density were found to increase in tenacity with fiber CIIR. In general, Advanced Fiber Information System (AFIS fineness increases with fiber linear density.

  11. SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration

    NARCIS (Netherlands)

    Bershady, Matthew A.; Andersen, David R.; Harker, Justin; Ramsey, Larry W.; Verheijen, Marc A. W.

    2004-01-01

    We describe the design and construction of a formatted fiber field unit, SparsePak, and characterize its optical and astrometric performance. This array is optimized for spectroscopy of low surface brightness extended sources in the visible and near-infrared. SparsePak contains 82, 4.7" fibers

  12. 730-nm optical parametric conversion from near- to short-wave infrared band.

    Science.gov (United States)

    Chavez Boggio, J M; Windmiller, J R; Knutzen, M; Jiang, R; Bres, C; Alic, N; Stossel, B; Rottwitt, K; Radic, S

    2008-04-14

    A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling single-pass one-pump parametric architecture and high efficiency is achieved by a combination of high peak power and a nonlinear fiber with a reduced fourth-order dispersion coefficient.

  13. Supercontinuum - broad as a lamp, bright as a laser, now in the mid-infrared

    DEFF Research Database (Denmark)

    Moselund, Peter M.; Petersen, Christian; Dupont, Sune

    2012-01-01

    Based on the experience gained developing our market leading visible spectrum supercontinuum sources NKT Photonics has built the first mid-infrared supercontinuum source based on modelocked picosecond fiber lasers. The source is pumped by a ≈ 2 um laser based on a combination of erbium and thulium...... and use ZBLAN fibers to generate a 1.75-4.4 μm spectrum. We will present results obtained by applying the source for mid-infrared microscopy where absorption spectra can be used to identify the chemical nature of different parts of a sample. Subsequently, we discuss the possible application of a mid...

  14. Multicolor, Fluorescent Supercapacitor Fiber.

    Science.gov (United States)

    Liao, Meng; Sun, Hao; Zhang, Jing; Wu, Jingxia; Xie, Songlin; Fu, Xuemei; Sun, Xuemei; Wang, Bingjie; Peng, Huisheng

    2017-10-05

    Fiber-shaped supercapacitors have attracted broad attentions from both academic and industrial communities due to the demonstrated potentials as next-generation power modules. However, it is important while remains challenging to develop dark-environment identifiable supercapacitor fibers for enhancement on operation convenience and security in nighttime applications. Herein, a novel family of colorful fluorescent supercapacitor fibers has been produced from aligned multi-walled carbon nanotube sheets. Fluorescent dye particles are introduced and stably anchored on the surfaces of aligned multi-walled carbon nanotubes to prepare hybrid fiber electrodes with a broad range of colors from red to purple. The fluorescent component in the dye introduces fluorescent indication capability to the fiber, which is particularly promising for flexible and wearable devices applied in dark environment. In addition, the colorful fluorescent supercapacitor fibers also maintain high electrochemical performance under cyclic bending and charge-discharge processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  16. Core-Shell Fibers Electrospun from Phase-Separated Blend Solutions: Fiber Formation Mechanism and Unique Energy Dissipation for Synergistic Fiber Toughness.

    Science.gov (United States)

    Wang, Chi; Hsiue, Ting-Ting

    2017-09-11

    Through single-tube electrospinning, the biodegradable core-shell fibers of poly(3-hydroxybutyrate) (PHB) and poly(d,l-lactic acid) (PDLLA) were obtained from blend solutions with different compositions at a total polymer concentration of 7 wt %. Regardless whether PHB is the major or minor component (PHB/PDLLA = 90/10, 75/25, 50/50, and 25/75 wt. ratio), these phase-separated solutions all yielded core-shell fibers with PHB as core and PDLLA as shell. A new scenario of core-shell fiber formation was proposed on the basis of the relative magnitude of the intrinsic relaxation rate of fluids and external extension rate during electrospinning. The effects of blend compositions on the morphologies of the Taylor cone, whipping jet, and as-spun fibers were investigated. The diameters of core-shell fibers can be tailored by simply varying the PHB/PDLLA ratios. Two scaling laws describing the apparent viscosity (ηo) dependence of the outer fiber diameter (dfo) and core fiber diameter (dfc) were derived. That is, dfo ∼ ηo(0.38) and dfc ∼ ηo(0.86). The microstructures of the as-spun fibers were determined by differential scanning calorimetry, Fourier transform infrared spectroscopy, and synchrotron wide-angle and small-angle X-ray scatterings. Results showed that the PDLLA component was in the amorphous state, and the crystallizability of PHB component remained unchanged, except the amorphous 10/90 fibers electrospun from a miscible solution state. The synergistic mechanical properties of the core-shell fibers were obtained, along with the ductile PDLLA shell enclosing the brittle PHB core. The enhanced toughness was attributed to the fragmentation of the brittle PHB core and necking fracture of the ductile PDLLA shell, which served as an effective route for energy dissipation. Compared with the neat PHB fiber, the 90/10 and 75/25 core-shell fibers possessed larger elastic moduli, which was attributed to the high PHB crystal orientation in their core sections despite

  17. Fiber Bragg Grating Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Stephen J. Mihailov

    2012-02-01

    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  18. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  19. Oriented Fiber Filter Media

    OpenAIRE

    R. Bharadwaj; A. Patel, S. Chokdeepanich, Ph.D.; G.G. Chase, Ph.D.

    2008-01-01

    Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a t...

  20. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  1. Near infrared measurment of cotton fiber micronaire by portable near infrared instrumentation

    Science.gov (United States)

    Cotton production and usage is a global enterprise, and the export of U.S. cotton has increased dramatically. In the U.S., cotton is classed (and its primary quality parameters determined) by the Uster® High Volume Instrument (HVI), which must be maintained under tightly controlled laboratory envir...

  2. Infrared source test

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  3. Variable waveband infrared imager

    Science.gov (United States)

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  4. Infrared drying of strawberry.

    Science.gov (United States)

    Adak, Nafiye; Heybeli, Nursel; Ertekin, Can

    2017-03-15

    The effects of different drying conditions, such as infrared power, drying air temperature and velocity, on quality of strawberry were evaluated. Drying time decreased with increased infrared power, air temperature and velocity. An increase in power from 100W to 300W, temperature from 60 to 80°C and velocity from 1.0m.s(-1) to 2.0m.s(-1) decreased fruit color quality index. For total phenol and anthocyanin content, 300W, 60°C, and 1.0m.s(-1) were superior to the other experimental conditions. The drying processes increased N, P and K and decreased Ca, Mg, Fe, Mn, Zn and Cu contents. The optimal conditions to preserve nutrients in infrared drying of strawberry were 200W, 100°C and 1.5m.s(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  6. Mid-infrared (MIR) photonics: MIR passive and active fiberoptics chemical and biomedical, sensing and imaging

    Science.gov (United States)

    Seddon, Angela B.

    2016-10-01

    The case for new, portable, real-time mid-infrared (MIR) molecular sensing and imaging is discussed. We set a record in demonstrating extreme broad-band supercontinuum (SC) generated light 1.4-13.3 μm in a specially engineered, step-index MIR optical fiber of high numerical aperture. This was the first experimental demonstration truly to reveal the potential of MIR fibers to emit across the MIR molecular "fingerprint spectral region" and a key first step towards bright, portable, broadband MIR sources for chemical and biomedical, molecular sensing and imaging in real-time. Potential applications are in the healthcare, security, energy, environmental monitoring, chemical-processing, manufacturing and the agriculture sectors. MIR narrow-line fiber lasers are now required to pump the fiber MIR-SC for a compact all-fiber solution. Rare-earth-ion (RE-) doped MIR fiber lasers are not yet demonstrated >=4 μm wavelength. We have fabricated small-core RE-fiber with photoluminescence across 3.5-6 μm, and long excited-state lifetimes. MIR-RE-fiber lasers are also applicable as discrete MIR fiber sensors in their own right, for applications including: ship-to-ship free-space communications, aircraft counter-measures, coherent MIR imaging, MIR-optical coherent tomography, laser-cutting/ patterning of soft materials and new wavelengths for fiber laser medical surgery.

  7. Preface to the Special Issue on short pulse fiber lasers

    Science.gov (United States)

    Delavaux, Jean-Marc P.; Grelu, Philippe; Pu, Wang; Ilday, Fatih Ömer

    2014-12-01

    In the last two decades the fiber laser has evolved from a laboratory curiosity to a viable tool in an increasing number of applications in such diverse areas as material processing, atmospheric monitoring, high energy physics, medicine, telecommunications, and defense. The reasons for the growing acceptance of fiber lasers lie in the combination of their many attractive features. Indeed, fiber lasers are together power efficient, compact, light weight, versatile and reliable. Initially, the development of fiber laser technology was led to challenge the dominance of well entrenched solid state lasers used in the lucrative manufacturing industry. Traditionally, the emission wavelength band of interest was mostly limited to the near infrared (NIR) region (i.e. from 1 to 1.6 μm). More recently, extensive fiber laser R&D advances have extended the laser applications to a broader spectrum, from the ultra violet (UV) to the mid-infrared (Mid-IR) wavelength region, and investigated the specific advantages associated with different pulse widths, from ns to fs, and different operating regimes.

  8. Add Fiber without Extra Calories

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_166315.html Add Fiber Without Extra Calories How to fill up, not ... 6, 2017 (HealthDay News) -- Are you getting enough fiber in your diet? According to the National Fiber ...

  9. Soluble and insoluble fiber (image)

    Science.gov (United States)

    ... stool. There are two types of dietary fiber, soluble and insoluble. Soluble fiber retains water and turns to gel during ... and nutrient absorption from the stomach and intestine. Soluble fiber is found in foods such as oat ...

  10. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  11. Compression of Infrared images

    DEFF Research Database (Denmark)

    Mantel, Claire; Forchhammer, Søren

    2017-01-01

    This paper investigates the compression of infrared images with three codecs: JPEG2000, JPEG-XT and HEVC. Results are evaluated in terms of SNR, Mean Relative Squared Error (MRSE) and the HDR-VDP2 quality metric. JPEG2000 and HEVC perform fairy similar and better than JPEG-XT. JPEG2000 performs...

  12. Infrared Celestial Backgrounds Studies

    Science.gov (United States)

    Walker, Russell G.; Cohen, Martin

    1998-09-01

    The purpose of this program was to extend and improve the present capability to predict celestial phenomenology pertinent to the design and successful operation of space based surveillance systems using the ultraviolet, optical, and infrared spectral regions. We pursued this goal through analysis and application of existing datasets and, in particular, by analysis of new satellite measurements that became available during the course of the project. Our work was concentrated in four major areas: (1) extension of an existing analytical model of the infrared point source sky (SKY), (2) development of a set of absolutely calibrated spectral stellar irradiance standards for the infrared, (3) analysis of new celestial data obtained by satellite, and (4) support of the infrared celestial measurements taken by the Midcourse Space Experiment (MSX) satellite. Volume 1 summarizes the work performed under the contract, and includes reprints of the major papers published during the contractual period. Volume 2 presents the final release of an all sky network of 422 stars with absolutely calibrated stellar spectra in the 1.2 to 35 um region. Volume 2 also contains reprints of the complete series of published papers documenting the spectral calibration process and assumptions.

  13. Decoherence and infrared divergence

    Indian Academy of Sciences (India)

    Abstract. The dynamics of a particle which is linearly coupled to a boson field is investigated. The boson field induces superselection rules for the momentum of the particle, if the field is infrared divergent. Thereby the Hamiltonian of the total system remains bounded from below.

  14. Infrared upconversion hyperspectral imaging

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin

    2015-01-01

    conversion process. From this, a sequence of monochromatic images in the 3.2-3.4 mu m range is generated. The imaged object consists of a standard United States Air Force resolution target combined with a polystyrene film, resulting in the presence of both spatial and spectral information in the infrared...

  15. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    Science.gov (United States)

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  16. Effects of γ-ray radiation grafting on aramid fibers and its composites

    Science.gov (United States)

    Zhang, Y. H.; Huang, Y. D.; Liu, L.; Cai, K. L.

    2008-03-01

    Armos fiber was modified by Co 60 γ-ray radiation in the different concentrations' mixtures of phenol-formaldehyde and ethanol. Interlaminar shear strength (ILSS) was examined to characterize the effects of the treatment upon the interfacial bonding properties of Armos fibers/epoxy resin composites. The results showed that the ILSS of the composite, whose fibers were treated by 500 kGy radiation in 1.5 wt% PF, was improved by 25.4%. Nanoindentation technique analysis showed that the nanohardnesses of the various phases (the fiber, the interface and the matrix) in the composite, whose fibers were treated, were correspondingly higher than those in the composite, whose fibers were untreated. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectrum confirmed the increase in the polar groups at the fibers' surface. Atomic force microscopy (AFM) results revealed that the surface of the fibers treated was rougher than that of the fibers untreated. The wettability of the fibers' surface was also enhanced by the treatment. The conclusion that γ-ray irradiation grafting significantly improved the surface properties of Armos fibers could be drawn.

  17. Effects of {gamma}-ray radiation grafting on aramid fibers and its composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.H. [Department of Applied Chemistry, Harbin Institute of Technology, P.O. Box 410, Harbin 150001 (China); Huang, Y.D. [Department of Applied Chemistry, Harbin Institute of Technology, P.O. Box 410, Harbin 150001 (China)], E-mail: ydhuang.hit1@yahoo.com.cn; Liu, L.; Cai, K.L. [Department of Applied Chemistry, Harbin Institute of Technology, P.O. Box 410, Harbin 150001 (China)

    2008-03-15

    Armos fiber was modified by Co{sup 60} {gamma}-ray radiation in the different concentrations' mixtures of phenol-formaldehyde and ethanol. Interlaminar shear strength (ILSS) was examined to characterize the effects of the treatment upon the interfacial bonding properties of Armos fibers/epoxy resin composites. The results showed that the ILSS of the composite, whose fibers were treated by 500 kGy radiation in 1.5 wt% PF, was improved by 25.4%. Nanoindentation technique analysis showed that the nanohardnesses of the various phases (the fiber, the interface and the matrix) in the composite, whose fibers were treated, were correspondingly higher than those in the composite, whose fibers were untreated. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectrum confirmed the increase in the polar groups at the fibers' surface. Atomic force microscopy (AFM) results revealed that the surface of the fibers treated was rougher than that of the fibers untreated. The wettability of the fibers' surface was also enhanced by the treatment. The conclusion that {gamma}-ray irradiation grafting significantly improved the surface properties of Armos fibers could be drawn.

  18. Super capacitor with fibers

    Science.gov (United States)

    Farmer, Joseph Collin; Kaschmitter, James

    2015-02-17

    An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.

  19. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  20. Fiber reinforced engineering plastics

    Science.gov (United States)

    Daniel F. Caulfield; Rodney E. Jacobson; Karl D. Sears; John H. Underwood

    2001-01-01

    Although natural fiber reinforced commodity thermoplastics have a wide range of nonstructural applications in the automotive and decking industries, there have been few reports of cellulosic fiber-reinforced engineering thermoplastics. The commonly held belief has been that the only thermoplastics amenable to natural-fibre reinforcement are limited to low-melting (...