WorldWideScience

Sample records for hole information paradox

  1. Black Hole Paradoxes

    International Nuclear Information System (INIS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-01-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals. (paper)

  2. Black hole remnants and the information loss paradox

    International Nuclear Information System (INIS)

    Chen, P.; Ong, Y.C.; Yeom, D.-H.

    2015-01-01

    Forty years after the discovery of Hawking radiation, its exact nature remains elusive. If Hawking radiation does not carry any information out from the ever shrinking black hole, it seems that unitarity is violated once the black hole completely evaporates. On the other hand, attempts to recover information via quantum entanglement lead to the firewall controversy. Amid the confusions, the possibility that black hole evaporation stops with a “remnant” has remained unpopular and is often dismissed due to some “undesired properties” of such an object. Nevertheless, as in any scientific debate, the pros and cons of any proposal must be carefully scrutinized. We fill in the void of the literature by providing a timely review of various types of black hole remnants, and provide some new thoughts regarding the challenges that black hole remnants face in the context of the information loss paradox and its latest incarnation, namely the firewall controversy. The importance of understanding the role of curvature singularity is also emphasized, after all there remains a possibility that the singularity cannot be cured even by quantum gravity. In this context a black hole remnant conveniently serves as a cosmic censor. We conclude that a remnant remains a possible end state of Hawking evaporation, and if it contains large interior geometry, may help to ameliorate the information loss paradox and the firewall controversy. We hope that this will raise some interests in the community to investigate remnants more critically but also more thoroughly.

  3. Black hole remnants and the information loss paradox

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P., E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Graduate Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, CA 94305 (United States); Ong, Y.C., E-mail: yenchin.ong@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Yeom, D.-H., E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-11-22

    Forty years after the discovery of Hawking radiation, its exact nature remains elusive. If Hawking radiation does not carry any information out from the ever shrinking black hole, it seems that unitarity is violated once the black hole completely evaporates. On the other hand, attempts to recover information via quantum entanglement lead to the firewall controversy. Amid the confusions, the possibility that black hole evaporation stops with a “remnant” has remained unpopular and is often dismissed due to some “undesired properties” of such an object. Nevertheless, as in any scientific debate, the pros and cons of any proposal must be carefully scrutinized. We fill in the void of the literature by providing a timely review of various types of black hole remnants, and provide some new thoughts regarding the challenges that black hole remnants face in the context of the information loss paradox and its latest incarnation, namely the firewall controversy. The importance of understanding the role of curvature singularity is also emphasized, after all there remains a possibility that the singularity cannot be cured even by quantum gravity. In this context a black hole remnant conveniently serves as a cosmic censor. We conclude that a remnant remains a possible end state of Hawking evaporation, and if it contains large interior geometry, may help to ameliorate the information loss paradox and the firewall controversy. We hope that this will raise some interests in the community to investigate remnants more critically but also more thoroughly.

  4. The black hole information paradox and highly squeezed interior quantum fluctuations

    Science.gov (United States)

    Oshita, Naritaka

    2017-10-01

    Almheiri, Marolf, Polchinski, and Sully argued that, for a consistent black hole evaporation process, the horizon of a sufficiently old black hole should be replaced by a ‘firewall’ at which an infalling observer burns up, which obviously leads to the violation of the equivalence principle. We propose that once the infalling partner of an outgoing Hawking particle approaches a black hole singularity, it experiences decoherence and the loss of its entanglement with the outgoing Hawking particle. This implies we would no longer need firewalls to avoid the black hole information paradox.

  5. The black hole information paradox and highly squeezed interior quantum fluctuations

    International Nuclear Information System (INIS)

    Oshita, Naritaka

    2017-01-01

    Almheiri, Marolf, Polchinski, and Sully argued that, for a consistent black hole evaporation process, the horizon of a sufficiently old black hole should be replaced by a ‘firewall’ at which an infalling observer burns up, which obviously leads to the violation of the equivalence principle. We propose that once the infalling partner of an outgoing Hawking particle approaches a black hole singularity, it experiences decoherence and the loss of its entanglement with the outgoing Hawking particle. This implies we would no longer need firewalls to avoid the black hole information paradox. (paper)

  6. Quantum mechanics, common sense and the black hole information paradox

    CERN Document Server

    Danielsson, U H; Danielsson, Ulf H.; Schiffer, Marcelo

    1993-01-01

    The purpose of this paper is to analyse, in the light of information theory and with the arsenal of (elementary) quantum mechanics (EPR correlations, copying machines, teleportation, mixing produced in sub-systems owing to a trace operation, etc.) the scenarios available on the market to resolve the so-called black-hole information paradox. We shall conclude that the only plausible ones are those where either the unitary evolution of quantum mechanics is given up, in which information leaks continuously in the course of black-hole evaporation through non-local processes, or those in which the world is polluted by an infinite number of meta-stable remnants.

  7. Black Holes and Information: A New Take on an Old Paradox

    Directory of Open Access Journals (Sweden)

    K. L. H. Bryan

    2017-01-01

    Full Text Available Interest in the black hole information paradox has recently been catalyzed by the newer “firewall” argument. The crux of the updated argument is that previous solutions which relied on observer complementarity are in violation of the quantum condition of monogamy of entanglement, with the prescribed remedy being to discard the equivalence principle in favor of an energy barrier (or firewall at the black hole horizon. Differing points of view have been put forward, including the “ER = EPR” counterargument and the final-state solution, both of which can be viewed as potential resolutions to the apparent conflict between quantum monogamy and Einstein equivalence. After reviewing these recent developments, this paper argues that the ER = EPR and final-state solutions can—thanks to observer complementarity—be seen as the same resolution of the paradox but from two different perspectives: inside and outside the black hole.

  8. The black hole information paradox and the fate of the infalling observer

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    General Relativity predicts that the horizon of a large black hole is smooth. On the other hand, Quantum Mechanics, and the requirement that no information is lost during black hole evaporation, suggests that the horizon may be dramatically modified at the quantum level, even when the local curvature is small. I will discuss recent developments related to this fundamental conflict between General Relativity and Quantum Mechanics. I will present a proposal, motivated by the AdS/CFT correspondence, which seems to resolve the paradox and which opens up a novel framework for a quantitatively precise description of the black hole interior.

  9. Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox.

    Science.gov (United States)

    Chen, Pisin; Mourou, Gerard

    2017-01-27

    The question of whether Hawking evaporation violates unitarity, and therefore results in the loss of information, has remained unresolved since Hawking's seminal discovery. To date, the investigations have remained mostly theoretical since it is almost impossible to settle this paradox through direct astrophysical black hole observations. Here, we point out that relativistic plasma mirrors can be accelerated drastically and stopped abruptly by impinging intense x-ray pulses on solid plasma targets with a density gradient. This is analogous to the late time evolution of black hole Hawking evaporation. A conception of such an experiment is proposed and a self-consistent set of physical parameters is presented. Critical issues, such as how the black hole unitarity may be preserved, can be addressed through the entanglement between the analog Hawking radiation photons and their partner modes.

  10. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole information loss paradox

    International Nuclear Information System (INIS)

    Zhang Baocheng; Cai Qingyu; Zhan Mingsheng; You Li

    2011-01-01

    Research Highlights: → Information is found to be encoded and carried away by Hawking radiations. → Entropy is conserved in Hawking radiation. → We thus conclude no information is lost. → The dynamics of black hole may be unitary. - Abstract: We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordstroem black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.

  11. Quantitative approaches to information recovery from black holes

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Vijay [David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Czech, Bartlomiej, E-mail: vijay@physics.upenn.edu, E-mail: czech@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)

    2011-08-21

    The evaporation of black holes into apparently thermal radiation poses a serious conundrum for theoretical physics: at face value, it appears that in the presence of a black hole, quantum evolution is non-unitary and destroys information. This information loss paradox has its seed in the presence of a horizon causally separating the interior and asymptotic regions in a black hole spacetime. A quantitative resolution of the paradox could take several forms: (a) a precise argument that the underlying quantum theory is unitary, and that information loss must be an artifact of approximations in the derivation of black hole evaporation, (b) an explicit construction showing how information can be recovered by the asymptotic observer, (c) a demonstration that the causal disconnection of the black hole interior from infinity is an artifact of the semiclassical approximation. This review summarizes progress on all these fronts. (topical review)

  12. Jerusalem lectures on black holes and quantum information

    Science.gov (United States)

    Harlow, D.

    2016-01-01

    These lectures give an introduction to the quantum physics of black holes, including recent developments based on quantum information theory such as the firewall paradox and its various cousins. An introduction is also given to holography and the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, focusing on those aspects which are relevant for the black hole information problem.

  13. The Weak Gravity Conjecture and the axionic black hole paradox

    Science.gov (United States)

    Hebecker, Arthur; Soler, Pablo

    2017-09-01

    In theories with a perturbatively massless 2-form (dual to an axion), a paradox may arise in the process of black hole evaporation. Schwarzschild black holes can support a non-trivial Wilson-line-type field, the integral of the 2-form around their horizon. After such an `axionic black hole' evaporates, the Wilson line must be supported by the corresponding 3-form field strength in the region formerly occupied by the black hole. In the limit of small axion decay-constant f, the energy required for this field configuration is too large. Thus, energy cannot be conserved in the process of black hole evaporation. The natural resolution of this paradox is through the presence of light strings, which allow the black hole to "shed" its axionic hair sufficiently early. This gives rise to a new Weak-Gravity-type argument in the 2-form context: small coupling, in this case f , enforces the presence of light strings or a low cutoff. We also discuss how this argument may be modified in situations where the weak coupling regime is achieved in the low-energy effective theory through an appropriate gauging of a model with a vector field and two 2-forms.

  14. Black hole information, unitarity, and nonlocality

    OpenAIRE

    Giddings, Steven B.

    2006-01-01

    The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arises from ultra-planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simul...

  15. Gravitational collapse, chaos in CFT correlators and the information paradox

    Energy Technology Data Exchange (ETDEWEB)

    Farahi, Arya, E-mail: aryaf@umich.edu; Pando Zayas, Leopoldo A., E-mail: lpandoz@umich.edu

    2014-06-27

    We consider gravitational collapse of a massless scalar field in asymptotically anti-de Sitter spacetime. Following the AdS/CFT dictionary we further study correlations in the field theory side by way of the Klein–Gordon equation of a probe scalar field in the collapsing background. We present evidence that in a certain regime the probe scalar field behaves chaotically, thus supporting Hawking's argument in the black hole information paradox proposing that although the information can be retrieved in principle, deterministic chaos impairs, in practice, the process of unitary extraction of information from a black hole. We emphasize that quantum chaos will change this picture.

  16. Black hole information, unitarity, and nonlocality

    International Nuclear Information System (INIS)

    Giddings, Steven B.

    2006-01-01

    The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arise from ultra-Planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simultaneous description of modes that have fallen into the black hole and outgoing Hawking modes can be given without appearance of a large kinematic invariant, or other dependence on ultra-Planckian physics. This indicates that a reliable argument for information loss has not been constructed, and that strong gravitational dynamics is important. Such dynamics has been argued to be fundamentally nonlocal in extreme situations, such as those required to investigate the fate of information

  17. Black Holes and the Information Paradox

    Science.gov (United States)

    't Hooft, Gerard

    In electromagnetism, like charges repel, opposite charges attract. A remarkable feature of the gravitational force is that like masses attract. This gives rise to an instability: the more mass you have, the stronger the attractive force, until an inevitable implosion follows, leading to a "black hole". It is in the black hole where an apparent conflict between Einstein's General Relativity and the laws of Quantum Mechanics becomes manifest. Most physicists now agree that a black hole should be described by a Schrödinger equation, with a Hermitean Hamiltonian, but this requires a modification of general relativity. Both General Relativity and Quantum mechanics are shaking on their foundations.

  18. Black holes, information, and the universal coefficient theorem

    Energy Technology Data Exchange (ETDEWEB)

    Patrascu, Andrei T. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-07-15

    General relativity is based on the diffeomorphism covariant formulation of the laws of physics while quantum mechanics is based on the principle of unitary evolution. In this article, I provide a possible answer to the black hole information paradox by means of homological algebra and pairings generated by the universal coefficient theorem. The unitarity of processes involving black holes is restored by the demanding invariance of the laws of physics to the change of coefficient structures in cohomology.

  19. Energy and information near black hole horizons

    International Nuclear Information System (INIS)

    Freivogel, Ben

    2014-01-01

    The central challenge in trying to resolve the firewall paradox is to identify excitations in the near-horizon zone of a black hole that can carry information without injuring a freely falling observer. By analyzing the problem from the point of view of a freely falling observer, I arrive at a simple proposal for the degrees of freedom that carry information out of the black hole. An infalling observer experiences the information-carrying modes as ingoing, negative energy excitations of the quantum fields. In these states, freely falling observers who fall in from infinity do not encounter a firewall, but freely falling observers who begin their free fall from a location close to the horizon are ''frozen'' by a flux of negative energy. When the black hole is ''mined,'' the number of information-carrying modes increases, increasing the negative energy flux in the infalling frame without violating the equivalence principle. Finally, I point out a loophole in recent arguments that an infalling observer must detect a violation of unitarity, effective field theory, or free infall

  20. Quantum information versus black hole physics: deep firewalls from narrow assumptions.

    Science.gov (United States)

    Braunstein, Samuel L; Pirandola, Stefano

    2018-07-13

    The prevalent view that evaporating black holes should simply be smaller black holes has been challenged by the firewall paradox. In particular, this paradox suggests that something different occurs once a black hole has evaporated to one-half its original surface area. Here, we derive variations of the firewall paradox by tracking the thermodynamic entropy within a black hole across its entire lifetime and extend it even to anti-de Sitter space-times. Our approach sweeps away many unnecessary assumptions, allowing us to demonstrate a paradox exists even after its initial onset (when conventional assumptions render earlier analyses invalid). The most natural resolution may be to accept firewalls as a real phenomenon. Further, the vast entropy accumulated implies a deep firewall that goes 'all the way down' in contrast with earlier work describing only a structure at the horizon.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  1. Quantum information versus black hole physics: deep firewalls from narrow assumptions

    Science.gov (United States)

    Braunstein, Samuel L.; Pirandola, Stefano

    2018-07-01

    The prevalent view that evaporating black holes should simply be smaller black holes has been challenged by the firewall paradox. In particular, this paradox suggests that something different occurs once a black hole has evaporated to one-half its original surface area. Here, we derive variations of the firewall paradox by tracking the thermodynamic entropy within a black hole across its entire lifetime and extend it even to anti-de Sitter space-times. Our approach sweeps away many unnecessary assumptions, allowing us to demonstrate a paradox exists even after its initial onset (when conventional assumptions render earlier analyses invalid). The most natural resolution may be to accept firewalls as a real phenomenon. Further, the vast entropy accumulated implies a deep firewall that goes `all the way down' in contrast with earlier work describing only a structure at the horizon. This article is part of a discussion meeting issue `Foundations of quantum mechanics and their impact on contemporary society'.

  2. Black Hole Information Problem and Wave Bursts

    Science.gov (United States)

    Gogberashvili, Merab; Pantskhava, Lasha

    2018-06-01

    By reexamination of the boundary conditions of wave equation on a black hole horizon it is found not harmonic, but real-valued exponentially time-dependent solutions. This means that quantum particles probably do not cross the Schwarzschild horizon, but are absorbed and some are reflected by it, what potentially can solve the famous black hole information paradox. To study this strong gravitational lensing we are introducing an effective negative cosmological constant between the Schwarzschild and photon spheres. It is shown that the reflected particles can obtain their additional energy in this effective AdS space and could explain properties of some unusually strong signals, like LIGO events, gamma ray and fast radio bursts.

  3. Extracting Information about the Initial State from the Black Hole Radiation.

    Science.gov (United States)

    Lochan, Kinjalk; Padmanabhan, T

    2016-02-05

    The crux of the black hole information paradox is related to the fact that the complete information about the initial state of a quantum field in a collapsing spacetime is not available to future asymptotic observers, belying the expectations from a unitary quantum theory. We study the imprints of the initial quantum state contained in a specific class of distortions of the black hole radiation and identify the classes of in states that can be partially or fully reconstructed from the information contained within. Even for the general in state, we can uncover some specific information. These results suggest that a classical collapse scenario ignores this richness of information in the resulting spectrum and a consistent quantum treatment of the entire collapse process might allow us to retrieve much more information from the spectrum of the final radiation.

  4. Black Holes: Eliminating Information or Illuminating New Physics?

    Directory of Open Access Journals (Sweden)

    Sumanta Chakraborty

    2017-07-01

    Full Text Available Black holes, initially thought of as very interesting mathematical and geometric solutions of general relativity, over time, have come up with surprises and challenges for modern physics. In modern times, they have started to test our confidence in the fundamental understanding of nature. The most serious charge on the black holes is that they eat up information, never to release and subsequently erase it. This goes absolutely against the sacred principles of all other branches of fundamental sciences. This realization has shaken the very base of foundational concepts, both in quantum theory and gravity, which we always took for granted. Attempts to get rid of of this charge, have led us to crossroads with concepts, hold dearly in quantum theory. The sphere of black hole’s tussle with quantum theory has readily and steadily grown, from the advent of the Hawking radiation some four decades back, into domain of quantum information theory in modern times, most aptly, recently put in the form of the firewall puzzle. Do black holes really indicate something sinister about their existence or do they really point towards the troubles of ignoring the fundamental issues, our modern theories are seemingly plagued with? In this review, we focus on issues pertaining to black hole evaporation, the development of the information loss paradox, its recent formulation, the leading debates and promising directions in the community.

  5. Dressed Hard States and Black Hole Soft Hair.

    Science.gov (United States)

    Mirbabayi, Mehrdad; Porrati, Massimo

    2016-11-18

    A recent, intriguing Letter by Hawking, Perry, and Strominger suggests that soft photons and gravitons can be regarded as black hole hair and may be relevant to the black hole information paradox. In this Letter we make use of factorization theorems for infrared divergences of the S matrix to argue that by appropriately dressing in and out hard states, the soft-quanta-dependent part of the S matrix becomes essentially trivial. The information paradox can be fully formulated in terms of dressed hard states, which do not depend on soft quanta.

  6. Antiparticle in Light of Einstein-Podolsky-Rosen Paradox and Klein Paradox

    OpenAIRE

    Ni, Guang-jiong; Guan, Hong; Zhou, Weimin; Yan, Jun

    2000-01-01

    The original version of Einstein-Podolsky-Rosen (EPR) paradox and the Klein paradox of Klein-Gordon (KG) equation are discussed to show the necessity of existence of antiparticle with its wavefunction being fixed unambiguously. No concept of "hole" is needed.

  7. Use of informed consent with therapeutic paradox.

    Science.gov (United States)

    Farkas, M M

    1992-01-01

    Debate persists in the literature and among clinicians about the ethical appropriateness of paradoxical interventions. It has been suggested that informed consent with therapeutic paradox would alleviate ethical concerns of deception, manipulation, harm to the client, and withholding of information from the client in therapy. The purpose of this study was to explore health care consumer reactions to the benefits and risks of therapeutic paradox as stated in a consent for treatment form. The study explored the responses of 32 medical patients to a hypothetical consent for treatment form for therapeutic paradox. Data were collected in a brief semistructured interview after subjects read the hypothetical consent form. Utilizing a case study, the investigator then offered an example of a successful paradoxical intervention and additional subject comments were solicited. Content analysis of the responses was made. Health care consumers had mixed responses to the consent form. While the consent form served as an obstacle for some consumers, many were willing to sign the consent form and accept treatment even though they had internal reservations and questions. Appropriateness of the consent form format is discussed.

  8. Black holes and holography

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2012-01-01

    The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.

  9. Black Holes and Firewalls

    Science.gov (United States)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  10. Horizons of description: Black holes and complementarity

    Science.gov (United States)

    Bokulich, Peter Joshua Martin

    Niels Bohr famously argued that a consistent understanding of quantum mechanics requires a new epistemic framework, which he named complementarity . This position asserts that even in the context of quantum theory, classical concepts must be used to understand and communicate measurement results. The apparent conflict between certain classical descriptions is avoided by recognizing that their application now crucially depends on the measurement context. Recently it has been argued that a new form of complementarity can provide a solution to the so-called information loss paradox. Stephen Hawking argues that the evolution of black holes cannot be described by standard unitary quantum evolution, because such evolution always preserves information, while the evaporation of a black hole will imply that any information that fell into it is irrevocably lost---hence a "paradox." Some researchers in quantum gravity have argued that this paradox can be resolved if one interprets certain seemingly incompatible descriptions of events around black holes as instead being complementary. In this dissertation I assess the extent to which this black hole complementarity can be undergirded by Bohr's account of the limitations of classical concepts. I begin by offering an interpretation of Bohr's complementarity and the role that it plays in his philosophy of quantum theory. After clarifying the nature of classical concepts, I offer an account of the limitations these concepts face, and argue that Bohr's appeal to disturbance is best understood as referring to these conceptual limits. Following preparatory chapters on issues in quantum field theory and black hole mechanics, I offer an analysis of the information loss paradox and various responses to it. I consider the three most prominent accounts of black hole complementarity and argue that they fail to offer sufficient justification for the proposed incompatibility between descriptions. The lesson that emerges from this

  11. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  12. An experimental study of the Online Information Paradox: Does en-route information improve road network performance?

    Science.gov (United States)

    Wijayaratna, Kasun P; Dixit, Vinayak V; Denant-Boemont, Laurent; Waller, S Travis

    2017-01-01

    This study investigates the empirical presence of a theoretical transportation paradox, defined as the "Online Information Paradox" (OIP). The paradox suggests that, for certain road networks, the provision of online information deteriorate travel conditions for all users of that network relative to the situation where no online information is provided to users. The analytical presence of the paradox was derived for a specific network structure by using two equilibrium models, the first being the Expected User Equilibrium (EUE) solution (no information scenario) and the other being the User Equilibrium with Recourse (UER) solution (with information scenario). An incentivised computerised route choice game was designed using the concepts of experimental economics and administered in a controlled laboratory environment to investigate the physical presence of the paradox. Aggregate statistics of path flows and Total System Travel Costs (TSTC) were used to compare the experimental results with the theoretical findings. A total of 12 groups of 12 participants completed the experiment and the OIP and the occurrence of the OIP being significant was observed in 11 of the 12 cases. Though information increased travel costs for users on average, it reduced the volatility of travel costs experienced in the no information scenario indicating that information can achieve a more reliable system. Further replications of similar experiments and more importantly field based identification of the phenomena will force transport professionals to be aware of the emergence of the paradox. In addition, studies such as this emphasise the need for the adoption of adaptive traffic assignment techniques to appropriately model the acquisition of information on a road network.

  13. Evaporation of large black holes in AdS

    International Nuclear Information System (INIS)

    Rocha, Jorge V

    2010-01-01

    The AdS/CFT correspondence offers a new perspective on the long-standing black hole information paradox. However, to be able to use the available gauge/gravity machinery one is forced to consider so-called 'large' black holes in AdS, and these objects are thermodynamically stable - they do not evaporate. We describe a simple toy model that allows large AdS black holes to decay, by coupling the emitted radiation to an external scalar field propagating in an auxiliary space. This effectively changes the properties of the boundary of AdS, making it partly absorbing. We demonstrate that the evaporation process never ceases by explicitly presenting (a) the transmission coefficient for a wave scattering from the bulk into auxiliary space and (b) the greybody factor for a black 3-brane in an AdS background. Therefore, the model provides an interesting framework to address the information paradox using AdS/CFT techniques.

  14. An experimental study of the Online Information Paradox: Does en-route information improve road network performance?

    Directory of Open Access Journals (Sweden)

    Kasun P Wijayaratna

    Full Text Available This study investigates the empirical presence of a theoretical transportation paradox, defined as the "Online Information Paradox" (OIP. The paradox suggests that, for certain road networks, the provision of online information deteriorate travel conditions for all users of that network relative to the situation where no online information is provided to users. The analytical presence of the paradox was derived for a specific network structure by using two equilibrium models, the first being the Expected User Equilibrium (EUE solution (no information scenario and the other being the User Equilibrium with Recourse (UER solution (with information scenario. An incentivised computerised route choice game was designed using the concepts of experimental economics and administered in a controlled laboratory environment to investigate the physical presence of the paradox. Aggregate statistics of path flows and Total System Travel Costs (TSTC were used to compare the experimental results with the theoretical findings. A total of 12 groups of 12 participants completed the experiment and the OIP and the occurrence of the OIP being significant was observed in 11 of the 12 cases. Though information increased travel costs for users on average, it reduced the volatility of travel costs experienced in the no information scenario indicating that information can achieve a more reliable system. Further replications of similar experiments and more importantly field based identification of the phenomena will force transport professionals to be aware of the emergence of the paradox. In addition, studies such as this emphasise the need for the adoption of adaptive traffic assignment techniques to appropriately model the acquisition of information on a road network.

  15. Black Hole Paradox Solved By NASA's Chandra

    Science.gov (United States)

    2006-06-01

    . Using Chandra, Miller and his team provided crucial evidence for the role of magnetic forces in the black hole accretion process. The X-ray spectrum, the number of X-rays at different energies, showed that the speed and density of the wind from J1655's disk corresponded to computer simulation predictions for magnetically-driven winds. The spectral fingerprint also ruled out the two other major competing theories to winds driven by magnetic fields. "In 1973, theorists came up with the idea that magnetic fields could drive the generation of light by gas falling onto black holes," said co-author John Raymond of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Now, over 30 years later, we finally may have convincing evidence." Evidence for Wind in the GRO J1655-40 Spectrum Evidence for Wind in the GRO J1655-40 Spectrum This deeper understanding of how black holes accrete matter also teaches astronomers about other properties of black holes, including how they grow. "Just as a doctor wants to understand the causes of an illness and not merely the symptoms, astronomers try to understand what causes phenomena they see in the Universe," said co-author Danny Steeghs also of the Harvard-Smithsonian Center for Astrophysics. "By understanding what makes material release energy as it falls onto black holes, we may also learn how matter falls onto other important objects." In addition to accretion disks around black holes, magnetic fields may play an important role in disks detected around young sun-like stars where planets are forming, as well as ultra-dense objects called neutron stars. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  16. The eight paradoxes of nuclear information

    International Nuclear Information System (INIS)

    Timbal-Duclaux, Louis

    1977-01-01

    As it now develops, the nuclear debate is essentially characterized by its technical, mythical and polemical fields. Due to the interrelation between these three characteristics, paradox tends to multiply, either on the requesters for information side or from those who answer it. As many problems the people or organizations, such as E.D.F. for example, have to cope with as there are parties in this debate. These different paradoxes are analyzed together with some means which permits a suitable answer to be found. To conclude it is noted that if the nuclear fear is mostly imaginary passional, irrational, the problem is not to ignore these characteristics but to 'give them a statute' [fr

  17. Klein paradox and vacuum polarization

    International Nuclear Information System (INIS)

    Damour, T.

    1977-01-01

    This contribution reviews some of the methods which can be used when studying quantum fields in a given stationary classical external field. The attention is mainly directed towards cases where real pair creation can occur in such a stationary background. The paradigm of this situation is the Klein paradox. This paradox is best approached by the introduction of some energy diagrams whose direct extension to black holes physics has proven to be very useful. Finally processes of real pair creation around a Kerr-Newman (charged and rotating) black hole and their feedback on the geometry are briefly discussed. It is also shown how the Hawking process can be recovered in this approach. (Auth.)

  18. Quantum information erasure inside black holes

    International Nuclear Information System (INIS)

    Lowe, David A.; Thorlacius, Larus

    2015-01-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  19. An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe

    International Nuclear Information System (INIS)

    Israel, W

    2006-01-01

    The evaporation of a black hole formed by the collapse of matter is a nonunitary process involving loss of information. At least, this is how it appears in Hawking's semiclassical description, in which gravity is not quantized and the emergent radiation appears thermal. Since unitarity is one of the pillars of quantum mechanics there has been an understandable reluctance to accept this as an ironclad conclusion. Conformal field theories in flat space are manifestly unitary, and the AdS/CFT correspondence therefore suggests that the information trapped in the depths of the hole must find some way to escape-a conclusion almost universally accepted today, at least among particle theorists. Just how it could escape remains a mystery, however, since nothing can escape without violating causality until the black hole has shrunk too far to hold much information. Gerard 't Hooft and the senior author of this book, Leonard Susskind, have been vocal advocates of the view that the information paradox poses a real crisis for physics requiring significant paradigm shifts. They suggest that locality must be given up as an objective property of physical phenomena (even on large scales) and replaced by a new principle of 'black hole complementarity'. Specifically, there are two very different ways to view the process of collapse and evaporation. To a free-falling observer, nothing unusual happens at the horizon and matter and information fall deep into the hole. To a stationary observer hovering just outside the hole it appears instead that the matter and information are deposited on the horizon (which he experiences as very hot because of his large acceleration), to be eventually re-emitted from there as Hawking radiation. According to 't Hooft and Susskind, these must be viewed as equally valid, 'complementary' descriptions of the same process. Black hole complementarity is essentially the statement (supported by operational arguments) that their simultaneous validity cannot

  20. Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  1. Local Operators in the Eternal Black Hole.

    Science.gov (United States)

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-11-20

    In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly.

  2. Quantum jump from singularity to outside of black hole

    Energy Technology Data Exchange (ETDEWEB)

    Dündar, Furkan Semih [Physics and Mathematics Departments, Sakarya University, 54050, Sakarya (Turkey); Hajian, Kamal [School of Physics, Institute for Research in Fundamental Sciences, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-02-26

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  3. Quantum jump from singularity to outside of black hole

    International Nuclear Information System (INIS)

    Dündar, Furkan Semih; Hajian, Kamal

    2016-01-01

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  4. Paradoxical self-esteem and selectivity in the processing of social information.

    Science.gov (United States)

    Tafarodi, R W

    1998-05-01

    Paradoxical self-esteem is defined as contrasting levels of self-liking and self-competence. Consideration of the social and motivational implications of this uncommon form of self-esteem suggests that heightened selectivity in the processing of social information may be behind its persistence. Two experiments were conducted to confirm the prediction of heightened selectivity in paradoxicals. As expected, those paradoxically low in self-liking were more negatively biased in their memory for personality feedback (Study 1) and interpretation of valuatively ambiguous phrases (Study 2) than were their counterparts who shared the same low self-liking but were also low in self-competence. Symmetrical with this result, those paradoxically high in self-liking exhibited a heightened positive bias relative to those who were high in both self-liking and self-competence. The findings are discussed in relation to attitudes and motivation.

  5. Quantum hair and the string-black hole correspondence

    CERN Document Server

    Veneziano, Gabriele

    2013-01-01

    We consider a thought experiment in which an energetic massless string probes a "stringhole" (a heavy string lying on the correspondence curve between strings and black holes) at large enough impact parameter for the regime to be under theoretical control. The corresponding, explicitly unitary, $S$-matrix turns out to be perturbatively sensitive to the microstate of the stringhole: in particular, at leading order in $l_s/b$, it depends on a projection of the stringhole's Lorentz-contracted quadrupole moment. The string-black hole correspondence is therefore violated if one assumes quantum hair to be exponentially suppressed as a function of black-hole entropy. Implications for the information paradox are briefly discussed.

  6. A unitary model of the black hole evaporation

    Science.gov (United States)

    Feng, Yu-Lei; Chen, Yi-Xin

    2014-12-01

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.

  7. Soft hair of dynamical black hole and Hawking radiation

    Science.gov (United States)

    Chu, Chong-Sun; Koyama, Yoji

    2018-04-01

    Soft hair of black hole has been proposed recently to play an important role in the resolution of the black hole information paradox. Recent work has emphasized that the soft modes cannot affect the black hole S-matrix due to Weinberg soft theorems. However as soft hair is generated by supertranslation of geometry which involves an angular dependent shift of time, it must have non-trivial quantum effects. We consider supertranslation of the Vaidya black hole and construct a non-spherical symmetric dynamical spacetime with soft hair. We show that this spacetime admits a trapping horizon and is a dynamical black hole. We find that Hawking radiation is emitted from the trapping horizon of the dynamical black hole. The Hawking radiation has a spectrum which depends on the soft hair of the black hole and this is consistent with the factorization property of the black hole S-matrix.

  8. Black holes, quantum theory and cosmology

    International Nuclear Information System (INIS)

    Penrose, Roger

    2009-01-01

    Some reasons are given for believing that the rules of quantum (field) theory must be changed when general relativity becomes seriously involved. If full quantum mechanical respect is paid to the principle of equivalence, we find that a superposition of gravitational fields leads to an illegal superposition of different vacua, giving support to a proposal for spontaneous quantum state reduction made earlier by Diosi, and then independently by the author. A different line of attack involves the over-riding role of black holes in the total entropy content of the universe, and in the operation of the 2nd Law of thermodynamics. The author's proposal of conformal cyclic cosmology is reviewed in order to highlight a seeming paradox, according to which the entropy of the universe of the remote future seems to return to the small kind of value that it had at the big bang. The paradox is resolved when we take into account the information loss that, from this perspective, necessarily occurs in Hawking's black-hole evaporation, with the accompanying loss of unitarity.

  9. Black holes, quantum theory and cosmology

    Science.gov (United States)

    Penrose, Roger

    2009-06-01

    Some reasons are given for believing that the rules of quantum (field) theory must be changed when general relativity becomes seriously involved. If full quantum mechanical respect is paid to the principle of equivalence, we find that a superposition of gravitational fields leads to an illegal superposition of different vacua, giving support to a proposal for spontaneous quantum state reduction made earlier by Diósi, and then independently by the author. A different line of attack involves the over-riding role of black holes in the total entropy content of the universe, and in the operation of the 2nd Law of thermodynamics. The author's proposal of conformal cyclic cosmology is reviewed in order to highlight a seeming paradox, according to which the entropy of the universe of the remote future seems to return to the small kind of value that it had at the big bang. The paradox is resolved when we take into account the information loss that, from this perspective, necessarily occurs in Hawking's black-hole evaporation, with the accompanying loss of unitarity.

  10. Black holes, quantum theory and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Penrose, Roger, E-mail: rouse@maths.ox.ac.u [Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB (United Kingdom)

    2009-06-01

    Some reasons are given for believing that the rules of quantum (field) theory must be changed when general relativity becomes seriously involved. If full quantum mechanical respect is paid to the principle of equivalence, we find that a superposition of gravitational fields leads to an illegal superposition of different vacua, giving support to a proposal for spontaneous quantum state reduction made earlier by Diosi, and then independently by the author. A different line of attack involves the over-riding role of black holes in the total entropy content of the universe, and in the operation of the 2nd Law of thermodynamics. The author's proposal of conformal cyclic cosmology is reviewed in order to highlight a seeming paradox, according to which the entropy of the universe of the remote future seems to return to the small kind of value that it had at the big bang. The paradox is resolved when we take into account the information loss that, from this perspective, necessarily occurs in Hawking's black-hole evaporation, with the accompanying loss of unitarity.

  11. One-Shot Decoupling and Page Curves from a Dynamical Model for Black Hole Evaporation.

    Science.gov (United States)

    Brádler, Kamil; Adami, Christoph

    2016-03-11

    One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.

  12. The information paradox and the locality bound

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Lippert, Matthew

    2004-01-01

    Hawking's argument for information loss in black hole evaporation rests on the assumption of independent Hilbert spaces for the interior and exterior of a black hole. We argue that such independence cannot be established without incorporating strong gravitational effects that undermine locality and invalidate the use of quantum field theory in a semiclassical background geometry. These considerations should also play a role in a deeper understanding of horizon complementarity

  13. Black hole thermodynamics based on unitary evolutions

    International Nuclear Information System (INIS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-01-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein–Hawking entropy S BH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics. (paper)

  14. The Content-Provider Paradox: Universities in the Information Ecosystem.

    Science.gov (United States)

    Vaidhyanathan, Siva

    2002-01-01

    Asserts that universities' rush to abandon their role as "national parks" in the information ecosystem in favor of becoming profitable "content providers" has led to a paradox: to generate new knowledge, researchers and teachers need broad content freedom, but the role of content provider requires highly restrictive policies to…

  15. Quantum Black Hole Model and HAWKING’S Radiation

    Science.gov (United States)

    Berezin, Victor

    The black hole model with a self-gravitating charged spherical symmetric dust thin shell as a source is considered. The Schroedinger-type equation for such a model is derived. This equation appeared to be a finite differences equation. A theory of such an equation is developed and general solution is found and investigated in details. The discrete spectrum of the bound state energy levels is obtained. All the eigenvalues appeared to be infinitely degenerate. The ground state wave functions are evaluated explicitly. The quantum black hole states are selected and investigated. It is shown that the obtained black hole mass spectrum is compatible with the existence of Hawking’s radiation in the limit of low temperatures both for large and nearly extreme Reissner-Nordstrom black holes. The above mentioned infinite degeneracy of the mass (energy) eigenvalues may appeared helpful in resolving the well known information paradox in the black hole physics.

  16. Black holes: just beyond the event horizon

    CERN Multimedia

    Vergano, Dan

    2007-01-01

    An upcoming study adds to the long history, suggesting blakc holes, now almost taken for granted, never actually comme fully into existence, and that the solution to a decades-old black hole paradox may be simpler than supposed. (1 page)

  17. Black holes as mirrors: quantum information in random subsystems

    International Nuclear Information System (INIS)

    Hayden, Patrick; Preskill, John

    2007-01-01

    We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the ''half-way'' point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis

  18. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  19. Entropy of localized states and black hole evaporation

    International Nuclear Information System (INIS)

    Olum, K.D.

    1997-01-01

    We call a state 'vacuum bounded' if every measurement performed outside a specified interior region gives the same result as in the vacuum. We compute the maximum entropy of a vacuum-bounded state with a given energy for a one-dimensional model, with the aid of numerical calculations on a lattice. The maximum entropy is larger than it would be for rigid wall boundary conditions by an amount δS, which for large energies is approx-lt(1)/(6)ln(L in T), where L in is the length of the interior region. Assuming that the state resulting from the evaporation of a black hole is similar to a vacuum-bounded state, and that the similarity between vacuum-bounded and rigid-wall-bounded problems extends from 1 to 3 dimensions, we apply these results to the black hole information paradox. Under these assumptions we conclude that large amounts of information cannot be emitted in the final explosion of a black hole. copyright 1997 The American Physical Society

  20. The capacity to transmit classical information via black holes

    Science.gov (United States)

    Adami, Christoph; Ver Steeg, Greg

    2013-03-01

    One of the most vexing problems in theoretical physics is the relationship between quantum mechanics and gravity. According to an argument originally by Hawking, a black hole must destroy any information that is incident on it because the only radiation that a black hole releases during its evaporation (the Hawking radiation) is precisely thermal. Surprisingly, this claim has never been investigated within a quantum information-theoretic framework, where the black hole is treated as a quantum channel to transmit classical information. We calculate the capacity of the quantum black hole channel to transmit classical information (the Holevo capacity) within curved-space quantum field theory, and show that the information carried by late-time particles sent into a black hole can be recovered with arbitrary accuracy, from the signature left behind by the stimulated emission of radiation that must accompany any absorption event. We also show that this stimulated emission turns the black hole into an almost-optimal quantum cloning machine, where the violation of the no-cloning theorem is ensured by the noise provided by the Hawking radiation. Thus, rather than threatening the consistency of theoretical physics, Hawking radiation manages to save it instead.

  1. Comment on self-consistent model of black hole formation and evaporation

    International Nuclear Information System (INIS)

    Ho, Pei-Ming

    2015-01-01

    In an earlier work, Kawai et al. proposed a model of black-hole formation and evaporation, in which the geometry of a collapsing shell of null dust is studied, including consistently the back reaction of its Hawking radiation. In this note, we illuminate the implications of their work, focusing on the resolution of the information loss paradox and the problem of the firewall.

  2. Remarks on the necessity and implications of state-dependence in the black hole interior

    NARCIS (Netherlands)

    Papadodimas, Kyriakos; Raju, Suvrat

    2016-01-01

    We revisit the "state-dependence" of the map that we proposed recently between bulk operators in the interior of a large anti-de Sitter black hole and operators in the boundary CFT. By refining recent versions of the information paradox, we show that this feature is necessary for the CFT to

  3. Comments on the Necessity and Implications of State-Dependence in the Black Hole Interior

    NARCIS (Netherlands)

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-01-01

    We revisit the "state-dependence" of the map that we proposed recently between bulk operators in the interior of a large AdS black hole and operators in the boundary CFT. By refining recent versions of the information paradox, we show that this feature is necessary for the CFT to successfully

  4. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  5. Charge loss (or the lack thereof) for AdS black holes

    International Nuclear Information System (INIS)

    Ong, Yen Chin; Chen, Pisin

    2014-01-01

    The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordström black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordström black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior.

  6. Quantum information and general relativity

    OpenAIRE

    Peres, Asher

    2004-01-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as one-way membranes for the propagation of quantum information, in particular black holes which act like sinks.

  7. Quantum information and general relativity

    Science.gov (United States)

    Peres, A.

    2004-11-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks.

  8. Information entropy for static spherically symmetric black holes

    Institute of Scientific and Technical Information of China (English)

    Jiang Ji-Jian; Li Chuan-An

    2009-01-01

    By using the new equation of state density derived from the generalized uncertainty relation, the number of the quantum states near event horizon is obtained, with which then the information entropy of static spherically symmetric black holes has been discussed. It is found that the divergent integral of quantum states near the event horizon can be naturally avoided if using the new equation of state density without introducing the ultraviolet cut-off. The information entropy of black holes can be obtained precisely by the residue theorem, which is shown to be proportional to the horizon area. The information entropy of black holes obtained agrees with the Bechenstein-Hawking entropy when the suitable cutoff factor is adopted.

  9. Information entropy for static spherically symmetric black holes

    International Nuclear Information System (INIS)

    Ji-Jian, Jiang; Chuan-An, Li

    2009-01-01

    By using the new equation of state density derived from the generalized uncertainty relation, the number of the quantum states near event horizon is obtained, with which then the information entropy of static spherically symmetric black holes has been discussed. It is found that the divergent integral of quantum states near the event horizon can be naturally avoided if using the new equation of state density without introducing the ultraviolet cut-off. The information entropy of black holes can be obtained precisely by the residue theorem, which is shown to be proportional to the horizon area. The information entropy of black holes obtained agrees with the Bechenstein–Hawking entropy when the suitable cutoff factor is adopted. (general)

  10. Floating of Black Holes in Dimension of Information

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Ghasem; Gholibeigian, Kazem

    2016-10-01

    In our vision, there is dimension of information in addition of space-time's dimensions as the fifth dimension of the universe. All of the space-time, mater, and dark mater/energy are always floating in this dimension and whispering to its communication as well as black holes. Communication of information (CI) is done with each fundamental particle (string) from fifth dimension via its four animated sub-particles (sub-strings) for transferring a package of complete information of its quantum state in a Planck time. Fundamental particle after process of information by its sub-particles goes to its next stage while carries the stored processed information. CI as the ``fundamental symmetry'' leads all processes of the black holes as well as other phenomena. Every point of space-time needs on time to its new package, because duration of each processing is a Planck time. So, stored soft super-translation hairs in terms of soft gravitons or photons on black hole's horizon, or stored information on a holographic plate at the future boundary of the horizon [Hawking et al.] can be only accessible for particles which are in those positions (horizon and its boundary), not for other locations of black hole for their fast processing. AmirKabir University of Technology, Tehran, Iran.

  11. Black-hole thermodynamics: Entropy, information and beyond

    Indian Academy of Sciences (India)

    We review some recent advances in black-hole thermodynamics including statistical mechanical origins of black-hole entropy and its leading order corrections from the view points of various quantum gravity theories. We then examine the problem of information loss and some possible approaches to its resolution. Finally ...

  12. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  13. Quantum information and general relativity

    International Nuclear Information System (INIS)

    Peres, A.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  14. Klein paradox in the Breit equation

    International Nuclear Information System (INIS)

    Krolikowski, W.; Turski, A.; Rzewuski, J.

    1979-01-01

    We demonstrate that in the Breit equation with a central potential V(r) having the property V(r 0 )=E there appears a Klein paradox at r=r 0 . This phenomenon, besides the previously found Klein paradox at r→infinite appearing if V(r)→infinite at r→infinite, seems to indicate that in the Breit equation valid in the single-particle theory the sea of particle-antiparticle pairs is not well separated from the considered two-body configuration. We conjecture that both phenomena should be absent from the Salpeter equation which is consistent with the hole theory. We prove this conjecture in the limit of m( 1 )→infinite and m( 2 )→infinite, where we neglect the terms approx. 1/m( 1 ) and 1/m( 2 ). (orig./WL) [de

  15. Quantum corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z.W.; Zu, X.T. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Li, H.L. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Yang, S.Z. [China West Normal University, Physics and Space Science College, Nanchong (China)

    2016-04-15

    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle (GUP). The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of the Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of the black hole approaches the order of Planck scale, it stops radiating and leads to a black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomena imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at the Large Hadron Collider (LHC), and the results demonstrate that the black hole cannot be produced in the recent LHC. (orig.)

  16. The information entropy of a static dilaton black hole

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In accordance with holographic principle, by calculating the statistical entropy of the quantum field just at the event horizon of the Garfinkle-Horowitz-Strominger dilaton black hole, the information entropy of the black hole was investigated and the Bekenstein-Hawking formula was obtained. The results show that black hole entropy is identical with the statistical entropy of the quantum field at the horizon. Using the generalized uncertainty relation, the divergence of the state density near the event horizon in usual quantum field theory was removed, and the cutoffs and the little mass approximation in the heat gas method of black hole entropy were avoided. Thus, the microstates of the massive scalar field just at the event horizon of the static dilaton black hole were studied directly and a description on holograph principle was presented. By using residue theorem, the integral difficulty in the calculation was overcome, and the information entropy and the Bekenstein-Hawking formula were obtained quantitatively. Compared with the black hole entropy from the loop quantum gravity, the consistency of methods and results of calculating black hole entropy in non-commutative quantum field theory and loop quantum gravity was investigated. By this, the gravity correction constant in the generalized uncertainty relation was suggested and the sense of holographic principle was discussed.

  17. Entropy of the information retrieved from black holes

    International Nuclear Information System (INIS)

    Mersini-Houghton, Laura

    2016-01-01

    The retrieval of black hole information was recently presented in two interesting proposals in the ‘Hawking Radiation’ conference: a revised version by Hooft of a proposal he initially suggested 20 years ago and, a new proposal by Hawking. Both proposals address the problem of black hole information loss at the classical level and derive an expression for the scattering matrix. The former uses gravitation back reaction of incoming particles that imprints its information on the outgoing modes. The latter uses supertranslation symmetry of horizons to relate a phase delay of the outgoing wave packet compared to their incoming wave partners. The difficulty in both proposals is that the entropy obtained from them appears to be infinite. By including quantum effects into the Hawking and Hooft’s proposals, I show that a subtlety arising from the inescapable measurement process, the quantum Zeno effect, not only tames divergences but it actually recovers the correct 1/4 of the area Bekenstein–Hawking entropy law of black holes. (note)

  18. Quantum information and general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Peres, A. [Technion, Israel Institute of Technology, Haifa (Israel)

    2004-12-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  19. Black holes thermodynamics, information, and firewalls

    CERN Document Server

    Mann, Robert B

    2015-01-01

    This book reflects the resurgence of interest in the quantum properties of black holes, culminating most recently in controversial discussions about firewalls. On the thermodynamic side, it describes how new developments allowed the inclusion of pressure/volume terms in the first law, leading to a new understanding of black holes as chemical systems, experiencing novel phenomena such as triple points and reentrant phase transitions. On the quantum-information side, the reader learns how basic arguments undergirding quantum complementarity have been shown to be flawed; and how this suggests that a black hole may surround itself with a firewall: a violent and chaotic region of highly excited states. In this thorough and pedagogical treatment, Robert Mann traces these new developments from their roots to our present-day understanding, highlighting their relationships and the challenges they present for quantum gravity.

  20. The capacity of black holes to transmit quantum information

    International Nuclear Information System (INIS)

    Brádler, Kamil; Adami, Christoph

    2014-01-01

    We study the properties of the quantum information transmission channel that emerges from the quantum dynamics of particles interacting with a black hole horizon. We calculate the quantum channel capacity in two limiting cases where a single-letter capacity is known to exist: the limit of perfectly reflecting and perfectly absorbing black holes. We find that the perfectly reflecting black hole channel is closely related to the Unruh channel and that its capacity is non-vanishing, allowing for the perfect reconstruction of quantum information outside of the black hole horizon. We also find that the complementary channel (transmitting entanglement behind the horizon) is entanglement-breaking in this case, with vanishing capacity. We then calculate the quantum capacity of the black hole channel in the limit of a perfectly absorbing black hole and find that this capacity vanishes, while the capacity of the complementary channel is non-vanishing instead. Rather than inviting a new crisis for quantum physics, this finding instead is in accordance with the quantum no-cloning theorem, because it guarantees that there are no space-like surfaces that contain both the sender’s quantum state and the receiver’s reconstructed quantum state

  1. The capacity of black holes to transmit quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Brádler, Kamil [Department of Astronomy and Physics, Saint Mary’s University,Halifax, Nova Scotia, B3H 3C3 (Canada); Adami, Christoph [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States)

    2014-05-21

    We study the properties of the quantum information transmission channel that emerges from the quantum dynamics of particles interacting with a black hole horizon. We calculate the quantum channel capacity in two limiting cases where a single-letter capacity is known to exist: the limit of perfectly reflecting and perfectly absorbing black holes. We find that the perfectly reflecting black hole channel is closely related to the Unruh channel and that its capacity is non-vanishing, allowing for the perfect reconstruction of quantum information outside of the black hole horizon. We also find that the complementary channel (transmitting entanglement behind the horizon) is entanglement-breaking in this case, with vanishing capacity. We then calculate the quantum capacity of the black hole channel in the limit of a perfectly absorbing black hole and find that this capacity vanishes, while the capacity of the complementary channel is non-vanishing instead. Rather than inviting a new crisis for quantum physics, this finding instead is in accordance with the quantum no-cloning theorem, because it guarantees that there are no space-like surfaces that contain both the sender’s quantum state and the receiver’s reconstructed quantum state.

  2. Qubit transport model for unitary black hole evaporation without firewalls*

    Science.gov (United States)

    Osuga, Kento; Page, Don N.

    2018-03-01

    We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon, and it avoids a counterargument that has been raised for subsystem transfer models as resolutions of the firewall paradox. Furthermore, it fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitatively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.

  3. Better late than never: information retrieval from black holes.

    Science.gov (United States)

    Braunstein, Samuel L; Pirandola, Stefano; Życzkowski, Karol

    2013-03-08

    We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.

  4. Quantum Quasi-Paradoxes and Quantum Sorites Paradoxes

    CERN Document Server

    Smarandache, F

    1997-01-01

    There can be generated many paradoxes or quasi-paradoxes that may occur from the combination of quantum and non-quantum worlds in physics. Even the passage from the micro-cosmos to the macro-cosmos, and reciprocally, can generate unsolved questions or counter-intuitive ideas. We define a quasi-paradox as a statement which has a prima facie self-contradictory support or an explicit contradiction, but which is not completely proven as a paradox. We present herein four elementary quantum quasi-paradoxes and their corresponding quantum Sorites paradoxes, which form a class of quantum quasi-paradoxes.

  5. Hole-to-surface resistivity measurements at Gibson Dome (drill hole GD-1) Paradox basin, Utah

    Science.gov (United States)

    Daniels, J.J.

    1984-01-01

    Hole-to-surface resistivity measurements were made in a deep drill hole (GD-1), in San Juan County, Utah, which penetrated a sequence of sandstone, shale, and evaporite. These measurements were made as part of a larger investigation to study the suitability of an area centered around the Gibson Dome structure for nuclear waste disposal. The magnitude and direction of the total electric field resulting from a current source placed in a drill hole is calculated from potential difference measurements for a grid of closely-spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Computation of the apparent resistivity from the total electric field helps to interpret the data with respect to the ideal situation of a layered earth. Repeating the surface measurements for different source depths gives an indication of variations in the geoelectric section with depth. The quantitative interpretation of the field data at Gibson Dome was hindered by the pressure of a conductive borehole fluid. However, a qualitative interpretation of the field data indicates the geoelectric section around drill hole GD-1 is not perfectly layered. The geoelectric section appears to dip to the northwest, and contains anomalies in the resistivity distribution that may be representative of localized thickening or folding of the salt layers.

  6. Dark information of black hole radiation raised by dark energy

    Science.gov (United States)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  7. Quantum Quasi-Paradoxes and Quantum Sorites Paradoxes

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2005-04-01

    Full Text Available There can be generated many paradoxes or quasi-paradoxes that may occur from the combination of quantum and non-quantum worlds in physics. Even the passage from the micro-cosmos to the macro-cosmos, and reciprocally, can generate unsolved questions or counter-intuitive ideas. We define a quasi-paradox as a statement which has a prima facie self-contradictory support or an explicit contradiction, but which is not completely proven as a paradox. We present herein four elementary quantum quasi-paradoxes and their corresponding quantum Sorites paradoxes, which form a class of quantum quasi-paradoxes.

  8. Smooth causal patches for AdS black holes

    Science.gov (United States)

    Raju, Suvrat

    2017-06-01

    We review the paradox of low energy excitations of a black hole in anti-de Sitter space (AdS). An appropriately chosen unitary operator in the boundary theory can create a locally strong excitation near the black hole horizon, whose global energy is small as a result of the gravitational redshift. The paradox is that this seems to violate a general rule of statistical mechanics, which states that an operator with energy parametrically smaller than k T cannot create a significant excitation in a thermal system. When we carefully examine the position dependence of the boundary unitary operator that produces the excitation and the bulk observable necessary to detect the anomalously large effect, we find that they do not both fit in a single causal patch. This follows from a remarkable property of position-space AdS correlators that we establish explicitly and resolves the paradox in a generic state of the system, since no combination of observers can both create the excitation and observe its effect. As a special case of our analysis, we show how this resolves the "Born rule" paradox of Marolf and Polchinski [J. High Energy Phys. 01 (2016) 008, 10.1007/JHEP01(2016)008] and we verify our solution using an independent calculation. We then consider boundary states that are finely tuned to display a spontaneous excitation outside the causal patch of the infalling observer, and we propose a version of causal patch complementarity in AdS/CFT that resolves the paradox for such states as well.

  9. Unveiling consumer's privacy paradox behaviour in an economic exchange.

    Science.gov (United States)

    Motiwalla, Luvai F; Li, Xiao-Bai

    2016-01-01

    Privacy paradox is of great interest to IS researchers and firms gathering personal information. It has been studied from social, behavioural, and economic perspectives independently. However, prior research has not examined the degrees of influence these perspectives contribute to the privacy paradox problem. We combine both economic and behavioural perspectives in our study of the privacy paradox with a price valuation of personal information through an economic experiment combined with a behavioural study on privacy paradox. Our goal is to reveal more insights on the privacy paradox through economic valuation on personal information. Results indicate that general privacy concerns or individual disclosure concerns do not have a significant influence on the price valuation of personal information. Instead, prior disclosure behaviour in specific scenario, like with healthcare providers or social networks, is a better indicator of consumer price valuations.

  10. Geophysical Well-Log Measurements in Three Drill Holes at Salt Valley, Utah

    OpenAIRE

    Daniels, Jeffrey J.; Hite, Robert J.; Scott, James H.; U.S. Geological Survey

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material.

  11. $W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V

    2016-01-01

    We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from $W_\\infty$ generators in its vertex function. The latter correspond to delocalised, non-propagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (Stringy black hole) + infalling matter $\\rightarrow $ (Stringy black hole)$^\\star$, where the black hole is viewed as a stringy state with a specific configuration of $W_\\infty$ charges...

  12. Unveiling consumer’s privacy paradox behaviour in an economic exchange

    Science.gov (United States)

    Li, Xiao-Bai

    2015-01-01

    Privacy paradox is of great interest to IS researchers and firms gathering personal information. It has been studied from social, behavioural, and economic perspectives independently. However, prior research has not examined the degrees of influence these perspectives contribute to the privacy paradox problem. We combine both economic and behavioural perspectives in our study of the privacy paradox with a price valuation of personal information through an economic experiment combined with a behavioural study on privacy paradox. Our goal is to reveal more insights on the privacy paradox through economic valuation on personal information. Results indicate that general privacy concerns or individual disclosure concerns do not have a significant influence on the price valuation of personal information. Instead, prior disclosure behaviour in specific scenario, like with healthcare providers or social networks, is a better indicator of consumer price valuations. PMID:27708687

  13. No firewalls or information problem for black holes entangled with large systems

    Science.gov (United States)

    Stoltenberg, Henry; Albrecht, Andreas

    2015-01-01

    We discuss how under certain conditions the black hole information puzzle and the (related) arguments that firewalls are a typical feature of black holes can break down. We first review the arguments of Almheiri, Marolf, Polchinski and Sully favoring firewalls, focusing on entanglements in a simple toy model for a black hole and the Hawking radiation. By introducing a large and inaccessible system entangled with the black hole (representing perhaps a de Sitter stretched horizon or inaccessible part of a landscape), we show complementarity can be restored and firewalls can be avoided throughout the black hole's evolution. Under these conditions black holes do not have an "information problem." We point out flaws in some of our earlier arguments that such entanglement might be generically present in some cosmological scenarios and call out certain ways our picture may still be realized.

  14. Simpson's Paradox, Lord's Paradox, and Suppression Effects are the same phenomenon – the reversal paradox

    Directory of Open Access Journals (Sweden)

    Gunnell David

    2008-01-01

    Full Text Available Abstract This article discusses three statistical paradoxes that pervade epidemiological research: Simpson's paradox, Lord's paradox, and suppression. These paradoxes have important implications for the interpretation of evidence from observational studies. This article uses hypothetical scenarios to illustrate how the three paradoxes are different manifestations of one phenomenon – the reversal paradox – depending on whether the outcome and explanatory variables are categorical, continuous or a combination of both; this renders the issues and remedies for any one to be similar for all three. Although the three statistical paradoxes occur in different types of variables, they share the same characteristic: the association between two variables can be reversed, diminished, or enhanced when another variable is statistically controlled for. Understanding the concepts and theory behind these paradoxes provides insights into some controversial or contradictory research findings. These paradoxes show that prior knowledge and underlying causal theory play an important role in the statistical modelling of epidemiological data, where incorrect use of statistical models might produce consistent, replicable, yet erroneous results.

  15. Empty black holes, firewalls, and the origin of Bekenstein-Hawking entropy

    Science.gov (United States)

    Saravani, Mehdi; Afshordi, Niayesh; Mann, Robert B.

    2014-01-01

    We propose a novel solution for the endpoint of gravitational collapse, in which spacetime ends (and is orbifolded) at a microscopic distance from black hole event horizons. This model is motivated by the emergence of singular event horizons in the gravitational aether theory, a semiclassical solution to the cosmological constant problem(s) and thus suggests a catastrophic breakdown of general relativity close to black hole event horizons. A similar picture emerges in fuzzball models of black holes in string theory, as well as the recent firewall proposal to resolve the information paradox. We then demonstrate that positing a surface fluid in thermal equilibrium with Hawking radiation, with vanishing energy density (but nonvanishing pressure) at the new boundary of spacetime, which is required by Israel junction conditions, yields a thermodynamic entropy that is identical to the Bekenstein-Hawking area law, SBH, for charged rotating black holes. To our knowledge, this is the first derivation of black hole entropy that only employs local thermodynamics. Furthermore, a model for the microscopic degrees of freedom of the surface fluid (which constitute the microstates of the black hole) is suggested, which has a finite, but Lorentz-violating, quantum field theory. Finally, we comment on the effects of physical boundary on Hawking radiation and show that relaxing the assumption of equilibrium with Hawking radiation sets SBH as an upper limit for Black Hole entropy.

  16. Addressing the 21st Century Paradox: Integrating Entrepreneurship in the Computer Information Systems Curriculum

    Science.gov (United States)

    Lang, Guido; Babb, Jeffry

    2015-01-01

    The Computer Information Systems (CIS) discipline faces an identity crisis: although demand for CIS graduates is growing, student enrollment is either in decline, or is at least soft or flat in many cases. This has been referred to as the 21st century paradox. As one solution to this problem, we propose to integrate entrepreneurship in the CIS…

  17. Paradoxical empowerment of produsers in the context of informational capitalism

    Science.gov (United States)

    Proulx, Serge; Heaton, Lorna; Kwok Choon, Mary Jane; Millette, Mélanie

    2011-04-01

    This article develops a critical perspective on how online contribution practices participate in the creation of economic value under informational capitalism. It discusses the theoretical relevance of the concept of empowerment for exploring online contribution practices. We argue that produsage practices are paradoxical insofar as they can be simultaneously alienating and emancipatory. This theoretical lens allows us to take a fresh look at the collective intelligence of produsers and the role of communities in the collective production of content. We illustrate the fruitfulness of this conceptual approach with two case studies: Facebook and TelaBotanica, a platform for the collaborative production of scientific knowledge.

  18. A holographic model for black hole complementarity

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, David A. [Physics Department, Brown University,Providence, RI 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107, Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University,AlbaNova University Centre, 10691 Stockholm (Sweden)

    2016-12-07

    We explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holographically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are complementary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.

  19. On Neyman-Pearson Theory: Information Content of an Experiment and a Fancy Paradox

    Directory of Open Access Journals (Sweden)

    Benito Vittorio Frosini

    2007-10-01

    Full Text Available Two topics, connected with Neyman-Pearson theory of testing hypotheses, are treated in this article. The first topic is related to the information content of an experiment; after a short outline of ordinal comparability of experiments, the two most popular information measures – by Fisher and by Kullback-Leibler – are considered. As far as we require a comparison of two experiments at a time, the superiority of the couple (a,b of the two error probabilities in the Neyman-Pearson approach is easily established, owing to their clear operational meaning. The second topic deals with the so called Jeffreys – or Lindley – paradox: it can be shown that, if we attach a positive probability to a point null hypothesis, some «paradoxical» posterior probabilities – in a Bayesian approach – result in sharp contrast with the error probabilities in the Neyman-Pearson approach. It is argued that such results are simply the outcomes of absurd assumptions, and it is shown that sensible assumptions about interval – not point – hypotheses can yield posterior probabilities perfectly compatible with the Neyman-Pearson approach (although one must be very careful in making such comparisons, as the two approaches are radically different both in assumptions and in purposes.

  20. Cool horizons lead to information loss

    Science.gov (United States)

    Chowdhury, Borun D.

    2013-10-01

    There are two evidences for information loss during black hole evaporation: (i) a pure state evolves to a mixed state and (ii) the map from the initial state to final state is non-invertible. Any proposed resolution of the information paradox must address both these issues. The firewall argument focuses only on the first and this leads to order one deviations from the Unruh vacuum for maximally entangled black holes. The nature of the argument does not extend to black holes in pure states. It was shown by Avery, Puhm and the author that requiring the initial state to final state map to be invertible mandates structure at the horizon even for pure states. The proof works if black holes can be formed in generic states and in this paper we show that this is indeed the case. We also demonstrate how models proposed by Susskind, Papadodimas et al. and Maldacena et al. end up making the initial to final state map non-invertible and thus make the horizon "cool" at the cost of unitarity.

  1. Black hole firewalls require huge energy of measurement

    Science.gov (United States)

    Hotta, Masahiro; Matsumoto, Jiro; Funo, Ken

    2014-06-01

    The unitary moving mirror model is one of the best quantum systems for checking the reasoning of the original firewall paradox of Almheiri et al. [J. High Energy Phys. 02 (2013) 062] in quantum black holes. Though the late-time part of radiations emitted from the mirror is fully entangled with the early part, no firewall exists with a deadly, huge average energy flux in this model. This is because the high-energy entanglement structure of the discretized systems in almost maximally entangled states is modified so as to yield the correct description of low-energy effective field theory. Furthermore, the strong subadditivity paradox of firewalls is resolved using nonlocality of general one-particle states and zero-point fluctuation entanglement. Due to the Reeh-Schlieder theorem in quantum field theory, another firewall paradox is inevitably raised with quantum remote measurements in the model. We resolve this paradox from the viewpoint of the energy cost of measurements. No firewall appears, as long as the energy for the measurement is much smaller than the ultraviolet cutoff scale.

  2. Geologic appraisal of Paradox basin salt deposits for water emplacement

    Science.gov (United States)

    Hite, Robert J.; Lohman, Stanley William

    1973-01-01

    Thick salt deposits of Middle Pennsylvanian age are present in an area of 12,000 square miles in the Paradox basin of southeast Utah and southwest Colorado. The deposits are in the Paradox Member of the Hermosa Formation. The greatest thickness of this evaporite sequence is in a troughlike depression adjacent to the Uncompahgre uplift on the northeast side of the basin.The salt deposits consist of a cyclical sequence of thick halite units separated by thin units of black shale, dolomite, and anhydrite. Many halite units are several hundred feet thick and locally contain economically valuable potash deposits.Over much of the Paradox basin the salt deposits occur at depths of more than 5,000 feet. Only in a series of salt anticlines located along the northeastern side of the basin do the salt deposits rise to relatively shallow depths. The salt anticlines can be divided geographically and structurally into five major systems. Each system consists of a long undulating welt of thickened salt over which younger rocks are arched in anticlinal form. Locally there are areas along the axes of the anticlines where the Paradox Member was never covered by younger sediments. This allowed large-scale migration of Paradox strata toward and up through these holes in the sediment cover forming diapiric anticlines.The central or salt-bearing cores of the anticlines range in thickness from about 2,500 to 14,000 feet. Structure in the central core of the salt anticlines is the result of both regional-compression and flowage of the Paradox Member into the anticlines from adjacent synclines. Structure in the central cores of the salt anticlines ranges from relatively undeformed beds to complexly folded and faulted masses, in which stratigraphic continuity is undemonstrable.The presence of thick cap rock .over many of the salt anticlines is evidence of removal of large volumes of halite by groundwater. Available geologic and hydrologic information suggests that this is a relatively slow

  3. Remarks on the necessity and implications of state-dependence in the black hole interior

    Science.gov (United States)

    Papadodimas, Kyriakos; Raju, Suvrat

    2016-04-01

    We revisit the "state-dependence" of the map that we proposed recently between bulk operators in the interior of a large anti-de Sitter black hole and operators in the boundary CFT. By refining recent versions of the information paradox, we show that this feature is necessary for the CFT to successfully describe local physics behind the horizon—not only for single-sided black holes but even in the eternal black hole. We show that state-dependence is invisible to an infalling observer who cannot differentiate these operators from those of ordinary quantum effective field theory. Therefore the infalling observer does not observe any violations of quantum mechanics. We successfully resolve a large class of potential ambiguities in our construction. We analyze states where the CFT is entangled with another system and show that the ER =EPR conjecture emerges from our construction in a natural and precise form. We comment on the possible semiclassical origins of state-dependence.

  4. Remarks on the necessity and implications of state-dependence in the black hole interior

    CERN Document Server

    Papadodimas, Kyriakos

    2016-01-01

    We revisit the "state-dependence" of the map that we proposed recently between bulk operators in the interior of a large AdS black hole and operators in the boundary CFT. By refining recent versions of the information paradox, we show that this feature is necessary for the CFT to successfully describe local physics behind the horizon --- not only for single-sided black holes but even in the eternal black hole. We show that state-dependence is invisible to an infalling observer who cannot differentiate these operators from those of ordinary quantum effective field theory. Therefore the infalling observer does not observe any violations of quantum mechanics. We successfully resolve a large class of potential ambiguities in our construction. We analyze states where the CFT is entangled with another system and show that the ER=EPR conjecture emerges from our construction in a natural and precise form. We comment on the possible semi-classical origins of state-dependence.

  5. Paradoxes in carcinogenesis: New opportunities for research directions

    Directory of Open Access Journals (Sweden)

    Kramer Barnett S

    2007-08-01

    Full Text Available Abstract Background The prevailing paradigm in cancer research is the somatic mutation theory that posits that cancer begins with a single mutation in a somatic cell followed by successive mutations. Much cancer research involves refining the somatic mutation theory with an ever increasing catalog of genetic changes. The problem is that such research may miss paradoxical aspects of carcinogenesis for which there is no likely explanation under the somatic mutation theory. These paradoxical aspects offer opportunities for new research directions that should not be ignored. Discussion Various paradoxes related to the somatic mutation theory of carcinogenesis are discussed: (1 the presence of large numbers of spatially distinct precancerous lesions at the onset of promotion, (2 the large number of genetic instabilities found in hyperplastic polyps not considered cancer, (3 spontaneous regression, (4 higher incidence of cancer in patients with xeroderma pigmentosa but not in patients with other comparable defects in DNA repair, (5 lower incidence of many cancers except leukemia and testicular cancer in patients with Down's syndrome, (6 cancer developing after normal tissue is transplanted to other parts of the body or next to stroma previously exposed to carcinogens, (7 the lack of tumors when epithelial cells exposed to a carcinogen were transplanted next to normal stroma, (8 the development of cancers when Millipore filters of various pore sizes were was inserted under the skin of rats, but only if the holes were sufficiently small. For the latter paradox, a microarray experiment is proposed to try to better understand the phenomena. Summary The famous physicist Niels Bohr said "How wonderful that we have met with a paradox. Now we have some hope of making progress." The same viewpoint should apply to cancer research. It is easy to ignore this piece of wisdom about the means to advance knowledge, but we do so at our peril.

  6. Oscillating supertubes and neutral rotating black hole microstates

    International Nuclear Information System (INIS)

    Mathur, Samir D.; Turton, David

    2014-01-01

    The construction of neutral black hole microstates is an important problem, with implications for the information paradox. In this paper we conjecture a construction of non-supersymmetric supergravity solutions describing D-brane configurations which carry mass and angular momentum, but no other conserved charges. We first study a classical string solution which locally carries dipole winding and momentum charges in two compact directions, but globally carries no net winding or momentum charge. We investigate its backreaction in the D1-D5 duality frame, where this object becomes a supertube which locally carries oscillating dipole D1-D5 and NS1-NS5 charges, and again carries no net charge. In the limit of an infinite straight supertube, we find an exact supergravity solution describing this object. We conjecture that a similar construction may be carried out based on a class of two-charge non-supersymmetric D1-D5 solutions. These results are a step towards demonstrating how neutral black hole microstates may be constructed in string theory

  7. Exploratory shaft facility preliminary designs - Paradox Basin. Technical report

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Paradox Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Paradox Basin, Utah. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling Method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers is included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references

  8. Information paradox of new product development: A case of decision-makers' focus of attention

    DEFF Research Database (Denmark)

    Jespersen, Kristina Risom

    Drawing on theory of bounded rationality and the attention-based view of the company, decision-makers' focus of attention is examined within the new product development process. Attention, defined as something which occupies individual consciousness, should be directed at selecting development...... activities and applying information resulting from these activities to go/no-go decision-making. Based on the information behavior of 42 development managers collected through a virtual role-play simulation of new product development, this research finds two information paradoxes of new product development....... First, competitive behavior makes decision-makers apply logic of reassurances in their implementation of NPD activities. Second, the information processing competence of decision-makers is unbalanced as information increases uncertainty in the concrete decision-making situation....

  9. The absence of horizon in black-hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Pei-Ming, E-mail: pmho@phys.ntu.edu.tw

    2016-08-15

    With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.

  10. The absence of horizon in black-hole formation

    Directory of Open Access Journals (Sweden)

    Pei-Ming Ho

    2016-08-01

    Full Text Available With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.

  11. The absence of horizon in black-hole formation

    International Nuclear Information System (INIS)

    Ho, Pei-Ming

    2016-01-01

    With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.

  12. Stimulated-emission effects in particle creation near black holes

    International Nuclear Information System (INIS)

    Wald, R.M.

    1976-01-01

    It has recently been shown that if a black hole is formed by gravitational collapse, spontaneous particle creation will occur and a thermal spectrum of all species of particles will be emitted to infinity if the quantum matter was initially in the vacuum state. In this paper we investigate the stimulated-emission effects which occur if particles are present initially. We show in general that for a Hermitian scalar field in an external potential or in curved, asymptotically flat spacetime, stimulated-emission effects can occur precisely in those modes for which there is spontaneous particle creation from the vacuum. For the case of a Schwarzschild black hole, this result appears paradoxical, since spontaneous emission occurs at late times but there is no classical analog of stimulated emission at late times. The resolution of this paradox is that in order to induce emission of particles which emerge at late times one must send in particles at early times, so that they reach the black hole very near the instant of its formation. However, enormous energy is required of these incoming particles in order to stimulate emission of particles which emerge at late times. Thus, for a Schwarzschild black hole, even if particles are initially present (with limited energy) they will induce emission only at early times; at late times one will see only the spontaneously emitted blackbody thermal radiation. For the case of a Kerr black hole stimulated emission can be induced by particles sent in at late times with the appropriate frequencies and angular dependence. If the number of incoming particles is large, this quantum stimulated emission just gives the classical superradiant scattering

  13. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  14. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  15. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  16. Paradoxical Long-Timespan Opening of the Hole in Self-Supported Water Films of Nanometer Thickness.

    Science.gov (United States)

    Barkay, Z; Bormashenko, E

    2017-05-16

    The opening of holes in self-supported thin (nanoscaled) water films has been investigated in situ with the environmental scanning electron microscope. The opening of a hole occurs within a two-stage process. In the first stage, the rim surrounding a hole is formed, resembling the process that is observed under the puncturing of soap bubbles. In the second stage, the exponential growth of the hole is observed, with a characteristic time of a dozen seconds. We explain the exponential kinetics of hole growth by the balance between inertia (gravity) and viscous dissipation. The kinetics of opening a microscaled hole is governed by the processes taking place in the nanothick bulk of the self-supported liquid film. Nanoparticles provide markers for the visualization of the processes occurring in self-supported thin nanoscale liquid films.

  17. Paradoxical effects of alcohol information on alcohol outcome expectancies.

    Science.gov (United States)

    Krank, Marvin D; Ames, Susan L; Grenard, Jerry L; Schoenfeld, Tara; Stacy, Alan W

    2010-07-01

    Cognitive associations with alcohol predict both current and future use in youth and young adults. Much cognitive and social cognitive research suggests that exposure to information may have unconscious influences on thinking and behavior. The present study assessed the impact of information statements on the accessibility of alcohol outcome expectancies. The 2 studies reported here investigated the effects of exposure to alcohol statements typical of informational approaches to prevention on the accessibility of alcohol outcome expectancies. High school and university students were presented with information statements about the effects of alcohol and other commercial products. The alcohol statements were taken from expectancy questionnaires. Some of these statements were presented as facts and others as myths. The retention of detailed information about these statements was manipulated by (i) divided attention versus focused attention or (ii) immediate versus delayed testing. Accessibility of personal alcohol outcome expectancies was subsequently measured using an open-ended question about the expected effects of alcohol. Participants reported more alcohol outcomes seen during the information task as personal expectations about the effects of alcohol use than similar unseen items. Paradoxically, myth statements were also more likely to be reported as expectancies than unseen items in all conditions. Additionally, myth statements were generated less often than fact statements only under the condition of immediate testing with strong content processing instructions. These observations are consistent with findings from cognitive research where familiarity in the absence of explicit memory can have an unconscious influence on performance. In particular, the exposure to these items in an informational format increases accessibility of the seen items even when the participants were told that they were myths. The findings have implications for the development of

  18. Recovering information of tunneling spectrum from weakly isolated horizon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ge-Rui; Huang, Yong-Chang [Beijing University of Technology, Institute of Theoretical Physics, Beijing (China)

    2015-02-01

    In this paper we investigate the properties of tunneling spectrum from weakly isolated horizon (WIH) - a locally defined black hole. We find that there exist correlations among Hawking radiations from a WIH, information can be carried out by such correlations, and the radiation is an entropy conservation process. Through revisiting the calculation of the tunneling spectrum from a WIH, we find that Zhang et al.'s (Ann Phys 326:350, 2011) requirement that radiated particles have the same angular momenta of a unit mass as that of the black hole is unnecessary, and the energy and angular momenta of the emitted particles are very arbitrary, restricted only by keeping the cosmic censorship hypothesis of black holes. So we resolve the information loss paradox based on the method of Zhang et al. (Phys Lett B 675:98, 2009; Ann Phys 326:350, 2011; Int J Mod Phys D 22:1341014, 2013) in a general case. (orig.)

  19. Nonlocality versus complementarity: a conservative approach to the information problem

    International Nuclear Information System (INIS)

    Giddings, Steven B

    2011-01-01

    A proposal for resolution of the information paradox is that 'nice slice' states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information problem, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.

  20. Tachyons without paradoxes

    International Nuclear Information System (INIS)

    Barrowes, S.C.

    1977-01-01

    Tachyon paradoxes, including causality paradoxes, have persisted within tachyon theories and left little hope for the existence of observable tachyons. A way is presented to solve the causality paradoxes, along with two other paradoxes, by the introduction of an absolute frame of reference in which a tachyon effect may never precede its cause. Relativity for ordinary matter is unaffected by this, even if the tachyons couple to ordinary particles. Violations of the principle of relativity due to the absolute frame would appear only in the case of free tachyons

  1. Information-carrying Hawking radiation and the number of microstate for a black hole

    International Nuclear Information System (INIS)

    Cai, Qing-yu; Sun, Chang-pu; You, Li

    2016-01-01

    We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.

  2. Information-carrying Hawking radiation and the number of microstate for a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qing-yu, E-mail: qycai@wipm.ac.cn [State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Sun, Chang-pu, E-mail: cpsun@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China); Collaborative Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); You, Li, E-mail: lyou@mail.tsinghua.edu.cn [State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2016-04-15

    We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.

  3. Pervasive Technologies and the Paradoxes of Multimodal Digital Communication

    Directory of Open Access Journals (Sweden)

    Sandra Petroni

    2014-12-01

    Full Text Available Contemporary societies are greatly challenged by paradoxes in all facets of life. Digital communication encodes and produces meaning by making use of these contradictory relations. In this contribution, three digital paradoxes will be presented. The first paradox is grounded in the process of remediation in digital settings which mirrors a contradictory double logic. Digital culture, in fact, wants both to multiply its media and to eliminate all traces of mediation. The second antinomy has its origins in the new concept of linguistic entropy: a structured information disorder that is regulated by usability and multimodality. In accordance with the second paradox, the third one stems from further processes that are framing, a multimodal resource, and linking, a hypertextual resource.

  4. The information paradox: Conflicts and resolutions

    Indian Academy of Sciences (India)

    The quantum theory of black holes involves all three of the fundamental constants of .... reduced the entropy of the Universe and thus violated the second law of thermodynamics? ... But in the presence of the electric field, a pair can be created,.

  5. Information-carrying Hawking radiation and the number of microstate for a black hole

    Directory of Open Access Journals (Sweden)

    Qing-yu Cai

    2016-04-01

    Full Text Available We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.

  6. Is the EPR paradox really a paradox?

    OpenAIRE

    Tartaglia, A.

    1998-01-01

    The EPR paradox and the meaning of the Bell inequality are discussed. It is shown that considering the quantum objects as carrying with them ''instruction kits'' telling them what to do when meeting a measurement apparatus any paradox disappears. In this view the quantum state is characterized by the prescribed behaviour rather than by the specific value a parameter assumes as a result of an interaction.

  7. Generalized Hardy's Paradox

    Science.gov (United States)

    Jiang, Shu-Han; Xu, Zhen-Peng; Su, Hong-Yi; Pati, Arun Kumar; Chen, Jing-Ling

    2018-01-01

    Here, we present the most general framework for n -particle Hardy's paradoxes, which include Hardy's original one and Cereceda's extension as special cases. Remarkably, for any n ≥3 , we demonstrate that there always exist generalized paradoxes (with the success probability as high as 1 /2n -1) that are stronger than the previous ones in showing the conflict of quantum mechanics with local realism. An experimental proposal to observe the stronger paradox is also presented for the case of three qubits. Furthermore, from these paradoxes we can construct the most general Hardy's inequalities, which enable us to detect Bell's nonlocality for more quantum states.

  8. Cold black holes in the Harlow-Hayden approach to firewalls

    Science.gov (United States)

    Ong, Yen Chin; McInnes, Brett; Chen, Pisin

    2015-02-01

    Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow-Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark-gluon plasma. Firewalls aside, our work presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation.

  9. Cold black holes in the Harlow–Hayden approach to firewalls

    Directory of Open Access Journals (Sweden)

    Yen Chin Ong

    2015-02-01

    Full Text Available Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow–Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark–gluon plasma. Firewalls aside, our work presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation.

  10. Cold black holes in the Harlow–Hayden approach to firewalls

    International Nuclear Information System (INIS)

    Ong, Yen Chin; McInnes, Brett; Chen, Pisin

    2015-01-01

    Firewalls are controversial principally because they seem to imply departures from general relativistic expectations in regions of spacetime where the curvature need not be particularly large. One of the virtues of the Harlow–Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, is precisely that it operates in the context of cold black holes, which are not strongly curved outside the event horizon. Here we clarify this point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark–gluon plasma. Firewalls aside, our work presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relative to the decoding time of Hawking radiation

  11. Time symmetry and interpretation of quantum mechanics. [Paradoxes

    Energy Technology Data Exchange (ETDEWEB)

    de Beauregard, O.C.

    1976-10-01

    A drastic resolution of the quantum paradoxes is proposed, combining (I) von Neumann's postulate that collapse of the state vector is due to the act of observation, and (II) my reinterpretation of von Neumann's quantal irreversibility as an equivalence between wave retardation and entropy increase, both being ''factlike'' rather than ''lawlike'' (Mehlberg). This entails a coupling of the two de jure symmetries between (I) retarded and (II) advanced waves, and between Aristotle's information as (I) learning and (II) willing awareness. Symmetric acceptance of cognizance as a source of retarded waves, and of will as a sink of advanced waves, is submitted as a central ''paradox'' of the Copernican or Einsteinian sort, out of which new light is shed upon previously known paradoxes, such as the EPR paradox, Schroedinger's cat, and Wigner's friend. Parapsychology is thus found to creep into the picture.

  12. The quercetin paradox

    International Nuclear Information System (INIS)

    Boots, Agnes W.; Li, Hui; Schins, Roel P.F.; Duffin, Rodger; Heemskerk, Johan W.M.; Bast, Aalt; Haenen, Guido R.M.M.

    2007-01-01

    Free radical scavenging antioxidants, such as quercetin, are chemically converted into oxidation products when they protect against free radicals. The main oxidation product of quercetin, however, displays a high reactivity towards thiols, which can lead to the loss of protein function. The quercetin paradox is that in the process of offering protection, quercetin is converted into a potential toxic product. In the present study, this paradox is evaluated using rat lung epithelial (RLE) cells. It was found that quercetin efficiently protects against H 2 O 2 -induced DNA damage in RLE cells, but this damage is swapped for a reduction in GSH level, an increase in LDH leakage as well as an increase of the cytosolic free calcium concentration. To our knowledge, this is the first study that indicates that the quercetin paradox, i.e. the exchange of damage caused by quercetin and its metabolites, also occurs in living lung cells. Following depletion of GSH in the cells by BSO pre-treatment, this quercetin paradox becomes more pronounced, confirming that the formation of thiol reactive quercetin metabolites is involved in the quercetin paradox. The quercetin paradox in living cells implies that the anti-oxidant directs oxidative damage selectively to thiol arylation. Apparently, the potential toxicity of metabolites formed during the actual antioxidant activity of free radical scavengers should be considered in antioxidant supplementation

  13. Paradoxes in probability theory

    CERN Document Server

    Eckhardt, William

    2013-01-01

    Paradoxes provide a vehicle for exposing misinterpretations and misapplications of accepted principles. This book discusses seven paradoxes surrounding probability theory.  Some remain the focus of controversy; others have allegedly been solved, however the accepted solutions are demonstrably incorrect. Each paradox is shown to rest on one or more fallacies.  Instead of the esoteric, idiosyncratic, and untested methods that have been brought to bear on these problems, the book invokes uncontroversial probability principles, acceptable both to frequentists and subjectivists. The philosophical disputation inspired by these paradoxes is shown to be misguided and unnecessary; for instance, startling claims concerning human destiny and the nature of reality are directly related to fallacious reasoning in a betting paradox, and a problem analyzed in philosophy journals is resolved by means of a computer program.

  14. Paradoxes and Innovation in Family Firms

    DEFF Research Database (Denmark)

    Ingram, Amy E.; Lewis, Marianne W.; Barton, Sid

    2016-01-01

    thinkers are more likely to manage these tensions and fuel innovative behavior. Leveraging family business and organizational paradox literatures, this multi-stage exploratory study develops measures of paradoxical tensions and paradoxical thinking in family firms, and tests these propositions. Findings...... indicate that paradoxical tensions may stymie innovative behavior, but that leaders' paradoxical thinking is positively related to innovative behavior....

  15. Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole

    International Nuclear Information System (INIS)

    Hutchinson, John; Stojkovic, Dejan

    2016-01-01

    We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model. (paper)

  16. Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole

    Science.gov (United States)

    Hutchinson, John; Stojkovic, Dejan

    2016-07-01

    We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model.

  17. Paradoxes in Practice

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland; Schulze, Pernille; Larsen, Mette Vinther

    The purpose of this paper is to explore how paradoxes unfold in management practices and how moments of relational dialogic, self-reflexive learning can transform these paradoxes into new understandings of the complexities of organizing and management. We work with paradox, not as a label...... to explore ‘the flux of reality from within’ with the managers. We therefore draw on Bakhtin’s ideas regarding ongoing centripetal (monologic) and centrifugal (dialogic) forces of language and aim to demonstrate how working with language and the awareness of the embodied embedded practices at the same time...

  18. Fuzzy spaces topology change and BH thermodynamics

    International Nuclear Information System (INIS)

    Silva, C A S; Landim, R R

    2014-01-01

    What is the ultimate fate of something that falls into a black hole? From this question arises one of the most intricate problems of modern theoretical physics: the black hole information loss paradox. Bekenstein and Hawking have been shown that the entropy in a black hole is proportional to the surface area of its event horizon, which should be quantized in a multiple of the Planck area. This led G.'t Hooft and L. Susskind to propose the holographic principle which states that all the information inside the black hole can be stored on its event horizon. From this results, one may think if the solution to the information paradox could lies in the quantum properties of the black hole horizon. One way to quantize the event horizon is to see it as a fuzzy sphere, which posses a closed relation with Hopf algebras. This relation makes possible a topology change process where a fuzzy sphere splits in two others. In this work it will be shown that, if one quantize the black hole event horizon as a fuzzy sphere taking into account its quantum symmetry properties, a topology change process to black holes can be defined without break unitarity or locality, and we can obtain a possible solution to the information paradox. Moreover, we show that this model can explain the origin of the black hole entropy, and why black holes obey a generalized second law of thermodynamics

  19. The Oxygen Paradox, the French Paradox, and age-related diseases.

    Science.gov (United States)

    Davies, Joanna M S; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R; Lundquist, Adam J; Jakowec, Nicolaus A; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, Henry J; Finch, Caleb E; Sun, Patrick Y; Pomatto, Laura C D; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J A

    2017-12-01

    A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal

  20. Accounting for Local Dependence with the Rasch Model: The Paradox of Information Increase.

    Science.gov (United States)

    Andrich, David

    Test theories imply statistical, local independence. Where local independence is violated, models of modern test theory that account for it have been proposed. One violation of local independence occurs when the response to one item governs the response to a subsequent item. Expanding on a formulation of this kind of violation between two items in the dichotomous Rasch model, this paper derives three related implications. First, it formalises how the polytomous Rasch model for an item constituted by summing the scores of the dependent items absorbs the dependence in its threshold structure. Second, it shows that as a consequence the unit when the dependence is accounted for is not the same as if the items had no response dependence. Third, it explains the paradox, known, but not explained in the literature, that the greater the dependence of the constituent items the greater the apparent information in the constituted polytomous item when it should provide less information.

  1. Exact solutions for shells collapsing towards a pre-existing black hole

    International Nuclear Information System (INIS)

    Liu Yuan; Zhang Shuangnan

    2009-01-01

    The gravitational collapse of a star is an important issue both for general relativity and astrophysics, which is related to the well-known 'frozen star' paradox. This paradox has been discussed intensively and seems to have been solved in the comoving-like coordinates. However, to a real astrophysical observer within a finite time, this problem should be discussed in the point of view of the distant rest-observer, which is the main purpose of this Letter. Following the seminal work of Oppenheimer and Snyder (1939), we present the exact solution for one or two dust shells collapsing towards a pre-existing black hole. We find that the metric of the inner region of the shell is time-dependent and the clock inside the shell becomes slower as the shell collapses towards the pre-existing black hole. This means the inner region of the shell is influenced by the property of the shell, which is contrary to the result in Newtonian theory. It does not contradict the Birkhoff's theorem, since in our case we cannot arbitrarily select the clock inside the shell in order to ensure the continuity of the metric. This result in principle may be tested experimentally if a beam of light travels across the shell, which will take a longer time than without the shell. It can be considered as the generalized Shapiro effect, because this effect is due to the mass outside, but not inside as the case of the standard Shapiro effect. We also found that in real astrophysical settings matter can indeed cross a black hole's horizon according to the clock of an external observer and will not accumulate around the event horizon of a black hole, i.e., no 'frozen star' is formed for an external observer as matter falls towards a black hole. Therefore, we predict that only gravitational wave radiation can be produced in the final stage of the merging process of two coalescing black holes. Our results also indicate that for the clock of an external observer, matter, after crossing the event horizon

  2. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  3. Brane holes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Mukohyama, Shinji

    2011-01-01

    The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.

  4. Geophysical well-log measurements in three drill holes at Salt Valley, Utah

    International Nuclear Information System (INIS)

    Daniels, J.J.; Hite, R.J.; Scott, J.H.

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material. The following geophysical well-log measurements were made in each of the three drill holes: (1) density, (2) neutron, (3) acoustic velocity, (4) normal resistivity, and (5) gamma ray. Widely spaced resistivity and conductivity well-log measurements were made in the deep drill hole. Each of these well-log measurements shows the division of the evaporite sequence into halite and interbed sections. At the present time the most useful well-logging measurements for determining the individual lithologies in an evaporite sequence are gamma ray, neutron, density, and acoustic velocity. The high resistivity contrast between the drilling fluid (0.5 ohm-m) and salt (10,000 ohm-m) makes it difficult to obtain quantitative measurements of electrical properties in an evaporite sequence. Tests of widely spaced electrode configurations show that the effects of the brine on the resistivity measurements can be reduced, and the depth of investigation increased, by increasing the source-receiver electrode spacing. Tests of a single-coil induction probe show good resolution of the contrasting electrical properties of the various interbed lithologies

  5. Multisetting Greenberger-Horne-Zeilinger paradoxes

    Science.gov (United States)

    Tang, Weidong; Yu, Sixia; Oh, C. H.

    2017-01-01

    The Greenberger-Horne-Zeilinger (GHZ) paradox provides an all-versus-nothing test for the quantum nonlocality. In most of the GHZ paradoxes known so far each observer is allowed to measure only two alternative observables. Here we present a general construction for GHZ paradoxes in which each observer measures more than two observables given that the system is prepared in the n -qudit GHZ state. By doing so we are able to construct a multisetting GHZ paradox for the n -qubit GHZ state, with n being arbitrary, which is genuine n -partite; i.e., no GHZ paradox exists when restricted to a subset of a number of observers for a given set of Mermin observables. Our result fills up the gap of the absence of a genuine GHZ paradox for the GHZ state of an even number of qubits, especially the four-qubit GHZ state as used in GHZ's original proposal.

  6. A paradox for traffic dynamics in complex networks with ATIS

    International Nuclear Information System (INIS)

    Zheng Jianfeng; Gao Ziyou

    2008-01-01

    In this work, we study the statistical properties of traffic (e.g., vehicles) dynamics in complex networks, by introducing advanced transportation information systems (ATIS). The ATIS can provide the information of traffic flow pattern throughout the network and have an obvious effect on path routing strategy for such vehicles equipped with ATIS. The ATIS can be described by the understanding of link cost functions. Different indices such as efficiency and system total cost are discussed in depth. It is found that, for random networks (scale-free networks), the efficiency is effectively improved (decreased) if ATIS is properly equipped; however the system total cost is largely increased (decreased). It indicates that there exists a paradox between the efficiency and system total cost in complex networks. Furthermore, we report the simulation results by considering different kinds of link cost functions, and the paradox is recovered. Finally, we extend our traffic model, and also find the existence of the paradox

  7. Black-hole information puzzle: a generic string-inspired approach

    International Nuclear Information System (INIS)

    Nikolic, H.

    2008-01-01

    Given the insight stemming from string theory, the origin of the black-hole (BH) information puzzle is traced back to the assumption that it is physically meaningful to trace out the density matrix over negative-frequency Hawking particles. Instead, treating them as virtual particles necessarily absorbed by the BH in a manner consistent with the laws of BH thermodynamics, and tracing out the density matrix only over physical BH states, complete evaporation becomes compatible with unitarity. (orig.)

  8. Tachyons and causal paradoxes

    International Nuclear Information System (INIS)

    Maund, J.B.

    1979-01-01

    Although the existence of tachyons is not ruled out by special relativity, it appears that causal paradoxes will arise if there are tachyons. The usual solutions to these paradoxes employ some form of the reinterpretation principle. In this paper it is argued first that, the principle is incoherent, second, that even if it is not, some causal paradoxes remain, and third, the most plausible ''solution,'' which appeals to boundary conditions of the universe, will conflict with special relativity

  9. Paradoxical Personality and Academic Achievement in College Students From Buenos Aires

    Directory of Open Access Journals (Sweden)

    Agustín Freiberg Hoffmann

    2015-11-01

    Full Text Available This paper presents a study on paradoxical personality, defined as a distinctive feature in creative persons, developed with 350 college students from Buenos Aires. Goals aimed at describing and analysing possible significant differences of paradoxical traits in students from diverse majors representing seven different fields of study, and examining the relationship between each bipolar trait and academic achievement. The sample was composed of 7 groups (n = 50 by group representing fields of study typically offered in public universities, Biology, Computer Science, Engineering, Law, Nutrition, Psychology, and History of Art. Analyses by career provided descriptive information about students of these majors, concerning their paradoxical personality profiles. Correlational studies verified significant associations between academic achievement and most paradoxical traits in majors such as Computer Science, Nutrition and Psychology. Results are discussed regarding practical outcomes and teaching programs.

  10. Quantum paradoxes and physical reality

    International Nuclear Information System (INIS)

    Van der Merwe, Alwyn; Selleri, Franco

    1990-01-01

    This book is devoted to the most fundamental themes of quantum physics: acausality, wave-particle duality, Einstein-Podolsky-Rosen (EPR) paradox, and so on. These are matters of growing interest for physicists. Several paradoxes have plagued quantum physics since its beginnings, the easiest of which to solve are the paradoxes of completeness (Schroedinger's cat, Wigner's friend, de Broglie's box, etc.). At a deeper level is the paradox of wave-particle duality whose solution probably requires the Einstein-de Broglie picture of atomic systems. The most difficult of them all is the EPR paradox (incompatibility between local realism and quantum theory). The book shows that experimental research can, in principle, solve paradoxes such as EPR and wave-particle duality but that the experiments performed on Bell-type inequalities have instead left the conceptual situation fundamentally unmodified. For a fair understanding of the Einstein-de Broglie and of the Bohr-Heisenberg ideas, an 'internal' lecture of physics is not enough. Such 'external' elements as individual biographies, history of culture, and philosophical preconceptions prove also to be important. (author). refs.; figs.; tabs

  11. Electromagnetic reaction paradox

    International Nuclear Information System (INIS)

    Aspden, H.

    1984-01-01

    Alternative explanations for free-electron diamagnetism appear paradoxical and inconsistent with the reactive induction properties of magnetic materials. It is shown that the paradox can be eliminated by a generalized definition of the magnetic field with interesting spin-off consequences, including a justification for the anomalous doubling of the positron's effective mass in a free-electron environment

  12. Radwaste paradox

    International Nuclear Information System (INIS)

    Carter, L.J.

    1983-01-01

    The Paradox Basin is one of the places where the US Department of Energy is looking for a site for a deep-mined repository for high-level radioactive waste. This seems appropriately symbolic because the geologic disposal problem has increasingly taken on the aspect of a political and technical conundrum, replete with real or seeming contradictions and paradoxes. A central paradox is that, while the concept of sequestering long-lived wastes in mined repositories is attractive intuitively, the very efforts made to confirm the suitability of particular rock formations give rise to further uncertainties. The new law contemplates repository construction will start as early as 1989. Experience so far at the several sites suggests that the technical and political questions tend to proliferate rather than diminish as more becomes known about the geology and hydrology. The following sites were discussed: the Hanford basalt; the Nevada tuff; and salt beds and salt domes (Utah, Texas, Mississippi). (DP)

  13. Comment on the extinct paradox

    International Nuclear Information System (INIS)

    Levine, D.M.

    1983-11-01

    The extinction paradox is a contradiction between geometrical optics results which predict that at high frequencies the scattering cross section of an object should equal its geometrical cross section and rigorous scattering theory which shows that at high frequencies the scattering cross section approaches twice the geometrical cross section of the object. Confusion about the reason for this paradox persists today even though the nature of the paradox was correctly identified many years ago by Brillouin. The resolution of the paradox is restated and illustrated with an example, and then the implications to the interpretation of scattering cross sections are identified

  14. The three-box paradox revisited

    International Nuclear Information System (INIS)

    Ravon, Tamar; Vaidman, Lev

    2007-01-01

    The classical three-box paradox of Kirkpatrick (2003 J. Phys. A: Math. Gen. 36 4891) is compared to the original quantum three-box paradox of Aharonov and Vaidman (1991 J. Phys. A: Math. Gen. 24 2315). It is argued that the quantum three-box experiment is a 'quantum paradox' in the sense that it is an example of a classical task which cannot be accomplished using classical means, but can be accomplished using quantum devices. It is shown that Kirkpatrick's card game is analogous to a different game with a particle in three boxes which does not contain paradoxical features

  15. The Simpson's paradox unraveled

    DEFF Research Database (Denmark)

    Hernán, Miguel A; Clayton, David; Keiding, Niels

    2011-01-01

    Background In a famous article, Simpson described a hypothetical data example that led to apparently paradoxical results. Methods We make the causal structure of Simpson’s example explicit. Results We show how the paradox disappears when the statistical analysis is appropriately guided by subject......-matter knowledge. We also review previous explanations of Simpson’s paradox that attributed it to two distinct phenomena: confounding and non-collapsibility. Conclusion Analytical errors may occur when the problem is stripped of its causal context and analyzed merely in statistical terms....

  16. Resolving the Innovation Diffusion Paradox in Mobile App Stores

    DEFF Research Database (Denmark)

    Xiong, Bingqing; Tan, Chee-Wee; Wang, Weiquan

    2017-01-01

    to the abundance of apps and multitudinous promotional information. To this end, this study proposes branding as a strategy to tackle the innovation diffusion paradox. Specifically, we construct a research model that posits consumers’ brand awareness as an antecedent affecting their brand association and quality......The growing number of apps released on a daily basis has contributed to an innovation diffusion paradox whereby the frequency and intensity by which innovations are crowdsourced are stymieing their own diffusion. In mobile app stores, consumers are often constrained in their selection due...

  17. Quantum paradoxes and physical reality

    Energy Technology Data Exchange (ETDEWEB)

    Van der Merwe, Alwyn (Denver Univ., CO (USA). Dept. of Physics) (ed.); Selleri, Franco (Bologna Univ. (Italy). Ist. di Fisica)

    1990-01-01

    This book is devoted to the most fundamental themes of quantum physics: acausality, wave-particle duality, Einstein-Podolsky-Rosen (EPR) paradox, and so on. These are matters of growing interest for physicists. Several paradoxes have plagued quantum physics since its beginnings, the easiest of which to solve are the paradoxes of completeness (Schroedinger's cat, Wigner's friend, de Broglie's box, etc.). At a deeper level is the paradox of wave-particle duality whose solution probably requires the Einstein-de Broglie picture of atomic systems. The most difficult of them all is the EPR paradox (incompatibility between local realism and quantum theory). The book shows that experimental research can, in principle, solve paradoxes such as EPR and wave-particle duality but that the experiments performed on Bell-type inequalities have instead left the conceptual situation fundamentally unmodified. For a fair understanding of the Einstein-de Broglie and of the Bohr-Heisenberg ideas, an 'internal' lecture of physics is not enough. Such 'external' elements as individual biographies, history of culture, and philosophical preconceptions prove also to be important. (author). refs.; figs.; tabs.

  18. Paradoxical embolism: computed tomography demonstration

    International Nuclear Information System (INIS)

    Kaye, J.; Hayward, M.

    2001-01-01

    Paradoxical emboli are rare and often presumptively diagnosed. A case of paradoxical embolism, in which both the arterial and venous emboli were documented on CT, is described. While paradoxical emboli are not infrequently diagnosed clinically on a presumptive basis, it is rare to document them with imaging such as CT which, in the present case, confirmed the diagnosis. Copyright (2001) Blackwell Science Pty Ltd

  19. Perceptual organization reconsidered in the light of the watercolor illusion: The problem of perception of holes and the object-hole effect.

    Science.gov (United States)

    Pinna, Baingio; Tanca, Maria

    2008-05-23

    The watercolor illusion is a long-range color assimilation (coloration effect) imparting a figure-ground segregation (figural effect) across large enclosed areas (B. Pinna, 1987; B. Pinna, G. Brelstaff, & L. Spillmann, 2001; B. Pinna, L. Spillmann, & J. S. Werner, 2003; B. Pinna, J. S. Werner, & L. Spillmann, 2003). The watercolored figure has a very poorly reversible or univocal figure-ground segregation and strongly enhances the unilateral belongingness of the boundaries (E. Rubin, 1915), a principle stating that the boundaries belong only to the figure and not to the background. The figural effect determines grouping and figure-ground segregation more strongly than the well-known Gestalt principles. Under watercolor conditions both the figure and the background assume new properties becoming respectively bulging object and hole both with a 3-D volumetric appearance (object-hole effect). Our purposes were: (i) to demonstrate that the hole induced by the watercolor illusion has unique figural properties comparable to those of the object and not present in the background induced by the known figure-ground principles; (ii) to demonstrate a dissociation of the object-hole effect from the coloration one; (iii) to demonstrate that the object-hole effect depends on a new principle. This was psychophysically tested by weakening (ungrouping) the whole figural organization of the watercolor illusion, i.e. by imparting motion to only some components of a stimulus, while other components remain stationary. The results showed that (i) subjects perceived moving holes more strongly than moving figures or objects enlarging and shrinking. (ii) Paradoxically, moving holes appear more as figures than the bulging surfaces. (iii) When motion was imparted to components that while stationary were perceived as objects, their figurality is further enhanced (summation effect). (iv) When object-hole and coloration effects were dissociated no significant difference compared to illusory

  20. An American Paradox

    International Nuclear Information System (INIS)

    Jamieson, D.

    2006-01-01

    This paper explores the paradox that while Americans generally identify themselves as environmentalists, they show little willingness to voluntarily restrain their behavior or to support specific fiscal policies that would result in increased levels of environmental protection. I explore the role of values in the explanation of this paradox, and discuss some of the difficulties involved in studying values and their role in human behavior

  1. Qualities and Inequalities in Online Social Networks through the Lens of the Generalized Friendship Paradox

    OpenAIRE

    Momeni, Naghmeh; Rabbat, Michael

    2016-01-01

    The friendship paradox is the phenomenon that in social networks, people on average have fewer friends than their friends do. The generalized friendship paradox is an extension to attributes other than the number of friends. The friendship paradox and its generalized version have gathered recent attention due to the information they provide about network structure and local inequalities. In this paper, we propose several measures of nodal qualities which capture different aspects of their act...

  2. Einstein and the twin paradox

    International Nuclear Information System (INIS)

    Pesic, Peter

    2003-01-01

    Einstein was the first to discuss and resolve the 'twin paradox', which in 1905 he did not consider paradoxical and treated as a consequence of lack of simultaneity. He maintained this view until at least 1914. However, in 1918 Einstein brought forward arguments about accelerated frames of reference that tended to overshadow his initial resolution. His earlier arguments were gradually rediscovered during the subsequent controversy about this 'paradox'

  3. String-theoretic breakdown of effective field theory near black hole horizons

    Science.gov (United States)

    Dodelson, Matthew; Silverstein, Eva

    2017-09-01

    We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.

  4. Managing operational paradoxes

    International Nuclear Information System (INIS)

    Olson, J.; Baker, K.; Thurber, J.

    1992-01-01

    The economic, regulatory, and social environment of commercial nuclear power has changed dramatically in the last 10 yr. In addition to the increased regulatory pressure resulting from the Three Mile Island incident and other factors, nuclear utilities have experienced increasing financial pressure from state public utility commissions and investors. To successfully manage nuclear power plants in today's environment requires different skills and strategies than were required 10 yr ago. External pressures on the utility and plant organization have created a series of operational paradoxes unmatched in the history of commercial nuclear power. This paper is based on a synthesis of findings and observations from a series of studies conducted by the authors over the past 10 yr. The authors identify a series of specific paradoxes facing managers of nuclear power plants and suggest several strategies for managing these paradoxes

  5. Five paradox on energy system management

    International Nuclear Information System (INIS)

    Frisch, J.R.

    1995-01-01

    Five paradox are detailed on energy management: internationalization of energy questions but always regional management is present, short term problems must be solved but without forgetting long term problems in environment, the third paradox is : we have time but we are in a hurry, we have reserves but ten, twenty or thirty years are necessary to adapt our energy system; the fourth paradox is : we cannot manage energy by managing only energy, for example : finances system development and environment importance. The last and fifth paradox is : the market, yes, but state too, as regulative force

  6. Extending Cantor Paradox

    OpenAIRE

    Leon, Antonio

    2008-01-01

    The inconsistencies involved in the foundation of set theory were invariably caused by infinity and self-reference; and only with the opportune axiomatic restrictions could them be obviated. Throughout history, both concepts have proved to be an exhaustible source of paradoxes and contradictions. It seems therefore legitimate to pose some questions concerning their formal consistency. This is just the objective of this paper. Starting from an extension of Cantor's paradox that suggests the in...

  7. The social dominance paradox.

    Science.gov (United States)

    Cook, Jennifer Louise; den Ouden, Hanneke E M; Heyes, Cecilia M; Cools, Roshan

    2014-12-01

    Dominant individuals report high levels of self-sufficiency, self-esteem, and authoritarianism. The lay stereotype suggests that such individuals ignore information from others, preferring to make their own choices. However, the nonhuman animal literature presents a conflicting view, suggesting that dominant individuals are avid social learners, whereas subordinates focus on learning from private experience. Whether dominant humans are best characterized by the lay stereotype or the animal view is currently unknown. Here, we present a "social dominance paradox": using self-report scales and computerized tasks, we demonstrate that socially dominant people explicitly value independence, but, paradoxically, in a complex decision-making task, they show an enhanced reliance (relative to subordinate individuals) on social learning. More specifically, socially dominant people employed a strategy of copying other agents when the agents' responses had a history of being correct. However, in humans, two subtypes of dominance have been identified: aggressive and social. Aggressively dominant individuals, who are as likely to "get their own way" as socially dominant individuals but who do so through the use of aggressive or Machiavellian tactics, did not use social information, even when it was beneficial to do so. This paper presents the first study of dominance and social learning in humans and challenges the lay stereotype in which all dominant individuals ignore others' views. The more subtle perspective we offer could have important implications for decision making in both the boardroom and the classroom. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Paradoxical aortic stenosis: A systematic review.

    Science.gov (United States)

    Cavaca, Rita; Teixeira, Rogério; Vieira, Maria João; Gonçalves, Lino

    2017-04-01

    Aortic stenosis (AS) is a complex systemic valvular and vascular disease with a high prevalence in developed countries. The new entity "paradoxical low-flow, low-gradient aortic stenosis" refers to cases in which patients have severe AS based on assessment of aortic valve area (AVA) (≤1 cm 2 ) or indexed AVA (≤0.6 cm 2 /m 2 ), but paradoxically have a low mean transvalvular gradient (<40 mmHg) and a low stroke volume index (≤35 ml/m 2 ), despite preserved left ventricular ejection fraction (≥50%). A search was carried out in the PubMed database on paradoxical AS for the period 2007-2014. A total of 57 articles were included for this review. The prevalence of paradoxical AS ranged from 3% to 35% of the population with severe degenerative AS. It was more frequent in females and in older patients. Paradoxical AS was associated with characteristic left ventricular remodeling as well as an increase in systemic arterial stiffness. It was noted that there may be errors and inaccuracies in the calculation of AVA by the continuity equation, which could erroneously suggest the paradoxical phenotype. There are new diagnostic methods to facilitate the study of AS, such as aortic valve calcium score, valvuloarterial impedance and the longitudinal mechanics of the left ventricle. With regard to its natural history, it is not clear whether paradoxical AS corresponds to an advance stage of the disease or if paradoxical AS patients have a distinct phenotype with specific characteristics. Valve replacement, either surgical or percutaneous, may be indicated in patients with severe and symptomatic paradoxical AS. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Tunnel vision information: a paradox of ethics, economics, politics and science.

    Science.gov (United States)

    Bilton, D; Stephens, D; Gorman, F

    1998-09-01

    Improvement in vision with spinal manipulation was first observed in the early 1970s. Reports of the phenomenon appeared in the 1980s in the popular press and at scientific meetings, but it was not until the mid-1990s that general discussion of the potential value of this knowledge occurred. Considering the far-reaching implications of the possible ability to improve brain function by spinal manipulation, the delay in consideration and implementation of this concept is a paradox in general terms and a total mystery in the case of the chiropractic profession. To provide explanations for the delay in scientific assessment of the discovery that vision improves, in appropriate patients, when the spine is manipulated and to discuss the implications of this finding. This discovery is now called the "tunnel vision information." A schema of pathological hierarchy is depicted in which the level of intervention of spinal manipulation outranks other forms of treatment. The significance of this precedence is portrayed. Possible reasons for the failure to address this hierarchy in light of the tunnel vision information are discussed with reference to established protocols, medical politics, the presentation of the data, the failure of scientific editorship and the illogical aspects of the illness itself. In the future, the delay from the initial observation of the tunnel vision discovery to its free discussion in scientific literature may seem incongruous, particularly if the health benefits which it augurs are realized.

  10. Explaining the harmonic sequence paradox.

    Science.gov (United States)

    Schmidt, Ulrich; Zimper, Alexander

    2012-05-01

    According to the harmonic sequence paradox, an expected utility decision maker's willingness to pay for a gamble whose expected payoffs evolve according to the harmonic series is finite if and only if his marginal utility of additional income becomes zero for rather low payoff levels. Since the assumption of zero marginal utility is implausible for finite payoff levels, expected utility theory - as well as its standard generalizations such as cumulative prospect theory - are apparently unable to explain a finite willingness to pay. This paper presents first an experimental study of the harmonic sequence paradox. Additionally, it demonstrates that the theoretical argument of the harmonic sequence paradox only applies to time-patient decision makers, whereas the paradox is easily avoided if time-impatience is introduced. ©2011 The British Psychological Society.

  11. The core paradox.

    Science.gov (United States)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  12. From the BMI paradox to the obesity paradox: the obesity-mortality association in coronary heart disease.

    Science.gov (United States)

    Antonopoulos, A S; Oikonomou, E K; Antoniades, C; Tousoulis, D

    2016-10-01

    Despite a strong association between body weight and mortality in the general population, clinical evidence suggests better clinical outcome of overweight or obese individuals with established coronary heart disease. This finding has been termed the 'obesity paradox', but its existence remains a point of debate, because it is mostly observed when body mass index (BMI) is used to define obesity. Inherent limitations of BMI as an index of adiposity, as well as methodological biases and the presence of confounding factors, may account for the observed findings of clinical studies. In this review, our aim is to present the data that support the presence of a BMI paradox in coronary heart disease and then explore whether next to a BMI paradox a true obesity paradox exists as well. We conclude by attempting to link the obesity paradox notion to available translational research data supporting a 'healthy', protective adipose tissue phenotype. © 2016 World Obesity. © 2016 World Obesity.

  13. Paradoxical cerebral air embolism

    International Nuclear Information System (INIS)

    Lopez-Negrete, L.; Garcia-Lozano, J.; Sanchez, J. L.; Sala, J.

    2000-01-01

    We present a fatal case of intracranial air embolism produced by the passage of intravenous air to the arteries owing to the existence of a patent foremen ovale associated with pulmonary hypertension, which permitted a right-left shunt (paradoxical embolism). The pathophysiological mechanisms of pneumcephalus and paradoxical embolism are discussed and the pertinent literature is reviewed. (Author) 6 refs

  14. Simpson’s Paradox in the interpretation of “leaky pipeline” data

    Directory of Open Access Journals (Sweden)

    Walton Paul H.

    2016-12-01

    Full Text Available The traditional ‘leaky pipeline’ plots are widely used to inform gender equality policy and practice. Herein, we demonstrate how a statistical phenomenon known as Simpson’s paradox can obscure trends in gender ‘leaky pipeline’ plots. Our approach has been to use Excel spreadsheets to generate hypothetical ‘leaky pipeline’ plots of gender inequality within an organisation. The principal factors, which make up these hypothetical plots, can be input into the model so that a range of potential situations can be modelled. How the individual principal factors are then reflected in ‘leaky pipeline’ plots is shown. We find that the effect of Simpson’s paradox on leaky pipeline plots can be simply and clearly illustrated with the use of hypothetical modelling and our study augments the findings in other statistical reports of Simpson’s paradox in clinical trial data and in gender inequality data. The findings in this paper, however, are presented in a way, which makes the paradox accessible to a wide range of people.

  15. Qualities and Inequalities in Online Social Networks through the Lens of the Generalized Friendship Paradox.

    Science.gov (United States)

    Momeni, Naghmeh; Rabbat, Michael

    2016-01-01

    The friendship paradox is the phenomenon that in social networks, people on average have fewer friends than their friends do. The generalized friendship paradox is an extension to attributes other than the number of friends. The friendship paradox and its generalized version have gathered recent attention due to the information they provide about network structure and local inequalities. In this paper, we propose several measures of nodal qualities which capture different aspects of their activities and influence in online social networks. Using these measures we analyse the prevalence of the generalized friendship paradox over Twitter and we report high levels of prevalence (up to over 90% of nodes). We contend that this prevalence of the friendship paradox and its generalized version arise because of the hierarchical nature of the connections in the network. This hierarchy is nested as opposed to being star-like. We conclude that these paradoxes are collective phenomena not created merely by a minority of well-connected or high-attribute nodes. Moreover, our results show that a large fraction of individuals can experience the generalized friendship paradox even in the absence of a significant correlation between degrees and attributes.

  16. Qualities and Inequalities in Online Social Networks through the Lens of the Generalized Friendship Paradox.

    Directory of Open Access Journals (Sweden)

    Naghmeh Momeni

    Full Text Available The friendship paradox is the phenomenon that in social networks, people on average have fewer friends than their friends do. The generalized friendship paradox is an extension to attributes other than the number of friends. The friendship paradox and its generalized version have gathered recent attention due to the information they provide about network structure and local inequalities. In this paper, we propose several measures of nodal qualities which capture different aspects of their activities and influence in online social networks. Using these measures we analyse the prevalence of the generalized friendship paradox over Twitter and we report high levels of prevalence (up to over 90% of nodes. We contend that this prevalence of the friendship paradox and its generalized version arise because of the hierarchical nature of the connections in the network. This hierarchy is nested as opposed to being star-like. We conclude that these paradoxes are collective phenomena not created merely by a minority of well-connected or high-attribute nodes. Moreover, our results show that a large fraction of individuals can experience the generalized friendship paradox even in the absence of a significant correlation between degrees and attributes.

  17. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  18. Managerial Challenges Within Networks - Emphasizing the Paradox of Network Participation

    DEFF Research Database (Denmark)

    Jakobsen, Morten

    2003-01-01

    Flexibility and access to numerous resources are essential benefits associated with network participation. An important aspect of managing the network participation of a company is to maintain a dynamic portfolio of partners, and thereby keep up the strategic opportunities for development. However......, maintaining the dynamics within a network seems to be a complex challenge. There is a risk that the network ends up in The Paradox of Network Participation. The desired renewal and flexibility are not utilised because the involved parties preserve the existing networks structure consisting of the same...... and thereby sort out the paradox of network participation. Trust and information are mechanisms employed to absorb uncertainty. The relationship between trust and the requirement for information depends on the maturity of the relationship. When trust becomes too important as uncertainty absorption mechanism...

  19. Managerial challenges within networks: emphasizing the paradox of network participation

    DEFF Research Database (Denmark)

    Jakobsen, Morten

    Flexibility and access to numerous resources are essential benefits associated with network participation. An important aspect of managing the network participation of a company is to maintain a dynamic portfolio of partners, and thereby keep up the strategic opportunities for development. However......, maintaining the dynamics within a network seems to be a complex challenge. There is a risk that the network ends up in The Paradox of Network Participation. The desired renewal and flexibility are not utilised because the involved parties preserve the existing networks structure consisting of the same...... and thereby sort out the paradox of network participation. Trust and information are mechanisms employed to absorb uncertainty. The relationship between trust and the requirement for information depends on the maturity of the relationship. When trust becomes too important as uncertainty absorption mechanism...

  20. Middle ground approach to paradox: Within- and between-culture examination of the creative benefits of paradoxical frames.

    Science.gov (United States)

    Leung, Angela K-Y; Liou, Shyhnan; Miron-Spektor, Ella; Koh, Brandon; Chan, David; Eisenberg, Roni; Schneider, Iris

    2018-03-01

    Thriving in increasingly complex and ambiguous environments requires creativity and the capability to reconcile conflicting demands. Recent evidence with Western samples has suggested that paradoxical frames, or mental templates that encourage individuals to recognize and embrace contradictions, could produce creative benefits. We extended the timely, but understudied, topic by studying the nuances of for whom and why creative advantages of paradoxical frames emerge. We suggest that people endorsing a middle ground approach are less likely to scrutinize conflict and reconcile with integrative solutions, thus receiving less creative benefits of paradoxical frames. Five studies that examined individual and cultural differences in middle ground endorsement support our theory. Study 1 found that paradoxical frames increased creativity, but failed to replicate that experienced conflict mediated the relationship in a Taiwanese sample. In both within- and between-culture analysis, we showed that the creative advantages of thinking paradoxically and experiencing conflict emerged among individuals who endorse lower (vs. higher) levels of middle ground (Study 2) and among Israelis whose culture predominantly endorses middle ground strategy less, but not among Singaporeans whose culture predominantly endorses middle ground more (Study 3). Study 4 further demonstrated the causal role of middle ground in the paradox-conflict-creativity link. To answer "why," Study 5 situationally induced integrative complex thinking that sets distinctions and forms syntheses among contradictory elements, and found that low endorsers of middle ground performed more creatively when they engaged integrative complex thinking to cope with paradoxes. This program of studies offers important insights on harnessing paradoxical experiences to catalyze creativity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Proposed demonstration of the Einstein-Poldosky-Rosen paradox using trapped electrons

    International Nuclear Information System (INIS)

    Martins, Ana M.

    2002-01-01

    Correlations of the type discussed by Einstein, Poldosky, and Rosen in their original 1935 paradox may be generated between the positions and the momenta of two electrons confined in two spatially separated Penning traps when they are allowed to be coupled for a certain time interval. An experimental demonstration of the paradox could be done using the accurate techniques of manipulation and measurement of confined charged particles. The basic ideas presented in this paper might be extended in order to enable quantum information transfer of continuous variables between massive particles

  2. Paradoxical implications of personal social media use for work

    NARCIS (Netherlands)

    van Zoonen, W.; Rice, R.E.

    2017-01-01

    New information and communication technologies can have paradoxical implications: they may be liberating and constraining at the same time. This field study examines the direct implications of personal social media use for work on employees’ autonomy and work pressure, and the indirect effects on

  3. Musings on Firewalls and the Information Paradox

    Science.gov (United States)

    Devin, Michael

    2014-04-01

    The past year has seen an explosion of new and old ideas about black hole physics. Prior to the firewall paper, the dominant picture was the thermofield model apparently implied by ADS/CFT duality\\cite{mal2}. While some seek a narrow responce to Almheiri, Marolf, Polchinski, and Sully,(AMPS)\\cite{amps}, there are a number of competing models. One problem in the field is the ambiguity of the competing proposals. Some are equivalent while others incompatible. This paper will attempt to define and classify a few models representative of the current discussions.

  4. Musings on Firewalls and the Information Paradox

    Directory of Open Access Journals (Sweden)

    Michael Devin

    2014-04-01

    Full Text Available The past year has seen an explosion of new and old ideas about black hole physics. Prior to the firewall paper, the dominant picture was the thermofield model apparently implied by anti-de Sitter conformal field theory duality. While some seek a narrow responce to Almheiri, Marolf, Polchinski, and Sully (AMPS , there are a number of competing models. One problem in the field is the ambiguity of the competing proposals. Some are equivalent while others incompatible. This paper will attempt to define and classify a few models representative of the current discussions.

  5. What Paradox?

    DEFF Research Database (Denmark)

    Holt, Robin; Zundel, Mike

    2017-01-01

    This chapter investigates the relationship between paradox and the logical typing of classes and members. Class-based thinking affords efficiency in communication and the progressive, additive development of knowledge, but also creates fissures, shortcuts, truncations, and delimitations that gene......This chapter investigates the relationship between paradox and the logical typing of classes and members. Class-based thinking affords efficiency in communication and the progressive, additive development of knowledge, but also creates fissures, shortcuts, truncations, and delimitations...... that emphasizes interconnectedness and interdependency, which Gregory Bateson calls “grace”: the successful integration of smaller with wider arcs of awareness. This is developed here into a method for studying organizational phenomena using the example of an organizational routine, arguing that this may be one...

  6. Simpson's Paradox in the Interpretation of "Leaky Pipeline" Data

    Science.gov (United States)

    Walton, Paul H.; Walton, Daniel J.

    2016-01-01

    The traditional "leaky pipeline" plots are widely used to inform gender equality policy and practice. Herein, we demonstrate how a statistical phenomenon known as Simpson's paradox can obscure trends in gender "leaky pipeline" plots. Our approach has been to use Excel spreadsheets to generate hypothetical "leaky…

  7. Optical tweezers and paradoxes in electromagnetism

    International Nuclear Information System (INIS)

    Pfeifer, Robert N C; Nieminen, Timo A; Heckenberg, Norman R; Rubinsztein-Dunlop, Halina

    2011-01-01

    The widespread application of optical forces and torques has contributed to renewed interest in the fundamentals of the electromagnetic force and torque, including long-standing paradoxes such as the Abraham–Minkowski controversy and the angular momentum density of a circularly polarized plane wave. We discuss the relationship between these electromagnetic paradoxes and optical tweezers. In particular, consideration of possible optical tweezers experiments to attempt to resolve these paradoxes strongly suggests that they are beyond experimental resolution, yielding identical observable results in all cases

  8. Another paradox involving the second law of thermodynamics

    International Nuclear Information System (INIS)

    Sheehan, D.P.

    1996-01-01

    Recently a paradox has been posed that appears to challenge the second law of thermodynamics in a plasma blackbody environment [D. P. Sheehan, Phys. Plasmas 2, 1893 (1995)]. In this paper another, related paradox is posed in an unmagnetized Q plasma. Laboratory experiments simulating some necessary conditions for the paradoxical system corroborate theoretical predictions and fail to resolve the paradox in favor of the second law. copyright 1996 American Institute of Physics

  9. 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.

    Directory of Open Access Journals (Sweden)

    Francisco J Valverde-Albacete

    Full Text Available The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA, a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT, a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to "cheat" using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers.

  10. Yule-Simpson's Paradox in Research

    Science.gov (United States)

    Goltz, Heather Honore; Smith, Matthew Lee

    2010-01-01

    Yule (1903) and Simpson (1951) described a statistical paradox that occurs when data is aggregated. In such situations, aggregated data may reveal a trend that directly contrasts those of sub-groups trends. In fact, the aggregate data trends may even be opposite in direction of sub-group trends. To reveal Yule-Simpson's paradox (YSP)-type…

  11. Identification and Assessment of Paradoxical Ventricular Wall Motion Using ECG Gated Blood Pool Scan - Comparison of cine Loop , Phase Analysis and Paradox Image -

    International Nuclear Information System (INIS)

    Lee, Jae Tae; Kim, Gwang Weon; Lee, Kyu Bo; Chung, Byung Chun; Whang, Kee Suk; Chae, Sung Chul; Paek, Wee Hyun; Cheon, Jae Eun; Lee, Hyong Woo; Chung, Jin Hong

    1990-01-01

    Sixty-four patients with paradoxical ventricular wall motion noticed both in angiocardiography or 2-dimensional echocardiography were assessed by ECG gated blood pool scan (GBPS). Endless cine loop image, phase and amplitude images and paradox image obtained by visual inspection of each cardiac beat or Fourier transformation of acquired raw data were investigated to determine the incremental value of GBPS with these processing methods for identification of paradoxical ventricular wall motion. The results were as follows:1) Paradoxical wall motions were observed on interventricular septum in 34 cases, left ventricular free wall in 26 and right ventricular wall in 24. Underlying heart diseases were is chemic (23 cases) valvular(9), congenital heart disease (12), cardiomyopathy (5), pericardial effusion(5), post cardiac surgery(3), corpulmonale (2), endocarditis (l) and right ventricular tumor(l). 2) Left ventricular ejection fractions of patients with paradoxical left ventricular wall motion were significantly lower than those with paradoxical septal motion (p <0.005). 3) The sensitivity of each processing methods for detecting paradoxical wall motion was 76.9% by phase analysis, 74.6% by endless cine loop mapping and 68.4% by paradox image manipulation respectively. Paradoxial motions visualized only in phase, paradox or both images were appeared as hypokinesia or akinesia in cine loop image. 4) All events could be identified by at least one of above three processing methods, however only 34 cases (48.4%) showed the paradoxical motions in all of the three images. By these findings, we concluded that simultaneous inspection of all above three processing methods-endless cine loop, phase analysis and paradox image is necessary for accurate identification and assessment of paradoxical ventricular wall motion when performing GBPS.

  12. Identification and Assessment of Paradoxical Ventricular Wall Motion Using ECG Gated Blood Pool Scan - Comparison of cine Loop , Phase Analysis and Paradox Image -

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Tae; Kim, Gwang Weon; Lee, Kyu Bo; Chung, Byung Chun; Whang, Kee Suk; Chae, Sung Chul; Paek, Wee Hyun; Cheon, Jae Eun [Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Lee, Hyong Woo; Chung, Jin Hong [Yeongnam National University College of Medicine, Daegu (Korea, Republic of)

    1990-07-15

    Sixty-four patients with paradoxical ventricular wall motion noticed both in angiocardiography or 2-dimensional echocardiography were assessed by ECG gated blood pool scan (GBPS). Endless cine loop image, phase and amplitude images and paradox image obtained by visual inspection of each cardiac beat or Fourier transformation of acquired raw data were investigated to determine the incremental value of GBPS with these processing methods for identification of paradoxical ventricular wall motion. The results were as follows:1) Paradoxical wall motions were observed on interventricular septum in 34 cases, left ventricular free wall in 26 and right ventricular wall in 24. Underlying heart diseases were is chemic (23 cases) valvular(9), congenital heart disease (12), cardiomyopathy (5), pericardial effusion(5), post cardiac surgery(3), corpulmonale (2), endocarditis (l) and right ventricular tumor(l). 2) Left ventricular ejection fractions of patients with paradoxical left ventricular wall motion were significantly lower than those with paradoxical septal motion (p <0.005). 3) The sensitivity of each processing methods for detecting paradoxical wall motion was 76.9% by phase analysis, 74.6% by endless cine loop mapping and 68.4% by paradox image manipulation respectively. Paradoxial motions visualized only in phase, paradox or both images were appeared as hypokinesia or akinesia in cine loop image. 4) All events could be identified by at least one of above three processing methods, however only 34 cases (48.4%) showed the paradoxical motions in all of the three images. By these findings, we concluded that simultaneous inspection of all above three processing methods-endless cine loop, phase analysis and paradox image is necessary for accurate identification and assessment of paradoxical ventricular wall motion when performing GBPS.

  13. Man Is a Paradox

    Institute of Scientific and Technical Information of China (English)

    王茂娟

    2009-01-01

    In the poem "Always", the author Pablo Neruda employs the first person narration to incisively reveal the paradoxical traits in human nature by exploring man in relation to love. "I" play a role shifting from a calm narrator to a furious one, and the last recovering to a mild one, which offers a multiple visual angle to observe humanity. In sum, by means of continuous changes of my inner feelings in the poem, Pablo Neruda reveals the paradoxical humanity .

  14. Privacy Awareness: A Means to Solve the Privacy Paradox?

    Science.gov (United States)

    Pötzsch, Stefanie

    People are limited in their resources, i.e. they have limited memory capabilities, cannot pay attention to too many things at the same time, and forget much information after a while; computers do not suffer from these limitations. Thus, revealing personal data in electronic communication environments and being completely unaware of the impact of privacy might cause a lot of privacy issues later. Even if people are privacy aware in general, the so-called privacy paradox shows that they do not behave according to their stated attitudes. This paper discusses explanations for the existing dichotomy between the intentions of people towards disclosure of personal data and their behaviour. We present requirements on tools for privacy-awareness support in order to counteract the privacy paradox.

  15. Starchild Presents...StarChild: A Learning Center for Young Astronomers. Black Holes. An Information and Activity Booklet. Grades K-8, 1998-1999.

    Science.gov (United States)

    Truelove, Elizabeth; Dejoie, Joyce

    The information provided in this booklet is meant to give the necessary background information so that the science of black holes can be taught confidently to elementary students. The featured activities can be used to engage and excite students about the topic of black holes in different disciplines and in a number of ways. Activities include:…

  16. Seismicity of the Paradox Basin and the Colorado Plateau interior

    International Nuclear Information System (INIS)

    Wong, I.G.

    1984-04-01

    National Waste Terminal Storage Program site qualification criteria require that a nuclear waste repository be located so that ground motion associated with the maximum credible and maximum probable earthquakes or other earthquake-associated effects will not have an unacceptable adverse impact on system performance. To determine whether a potential repository site located in the Paradox salt formation in the Paradox Basin of southeastern Utah satisfies these criteria, seismological studies were undertaken by Woodward-Clyde Consultants (WCC) in March 1978. These studies included: (1) analysis of historical seismicity; (2) analysis of contemporary seismicity and tectonics of both the Paradox Basin and surrounding Colorado Plateau, including an extensive program of microearthquake monitoring; (3) evaluation of the Paradox Basin crustal structure; (4) evaluation of mining-induced seismicity; and (5) characterization of design-related earthquake-induced ground motions pertinent to a potential repository site through studies of attentation and subsurface ground motions. A detailed discussion of the results of the seismological studies performed through December 1980 is contained in WCC (1982). The purpose of this topical report is to update and summarize the studies on the local, regional, and mining-induced seismicity conducted through December 1982. The limitations of any interpretations are also discussed and additional information that remains to be acquired is identified. 56 references, 45 figures, 4 tables

  17. Gapless topological order, gravity, and black holes

    Science.gov (United States)

    Rasmussen, Alex; Jermyn, Adam S.

    2018-04-01

    In this work we demonstrate that linearized gravity exhibits gapless topological order with an extensive ground state degeneracy. This phenomenon is closely related both to the topological order of the pyrochlore U (1 ) spin liquid and to recent work by Hawking and co-workers, who used the soft-photon and graviton theorems to demonstrate that the vacuum in linearized gravity is not unique. We first consider lattice models whose low-energy behavior is described by electromagnetism and linearized gravity, and then argue that the topological nature of these models carries over into the continuum. We demonstrate that these models can have many ground states without making assumptions about the topology of spacetime or about the high-energy nature of the theory, and show that the infinite family of symmetries described by Hawking and co-workers is simply the different topological sectors. We argue that in this context black holes appear as topological defects in the infrared theory, and that this suggests a potential approach to understanding both the firewall paradox and information encoding in gravitational theories. Finally, we use insights from the soft-boson theorems to make connections between deconfined gauge theories with continuous gauge groups and gapless topological order.

  18. Quantum Mechanics of Black Holes

    OpenAIRE

    Giddings, Steven B.

    1994-01-01

    These lectures give a pedagogical review of dilaton gravity, Hawking radiation, the black hole information problem, and black hole pair creation. (Lectures presented at the 1994 Trieste Summer School in High Energy Physics and Cosmology)

  19. Quantum Zeno and anti-Zeno paradoxes

    Indian Academy of Sciences (India)

    Abstract. Continuous observation of a time independent projection operator is known to prevent change of state (the quantum Zeno paradox). We discuss the recent result that generic continuous measurement of time dependent projection operators will in fact ensure change of state: an anti-Zeno paradox.

  20. Ultralarge lotteries : Analyzing the Lottery Paradox using non-standard analysis

    NARCIS (Netherlands)

    Wenmackers, Sylvia

    2013-01-01

    A popular way to relate probabilistic information to binary rational beliefs is the Lockean Thesis, which is usually formalized in terms of thresholds. This approach seems far from satisfactory: the value of the thresholds is not well-specified and the Lottery Paradox shows that the model violates

  1. Bosonic analog of the Klein paradox

    International Nuclear Information System (INIS)

    Wagner, R. E.; Ware, M. R.; Su, Q.; Grobe, R.

    2010-01-01

    The standard Klein paradox describes how an incoming electron scatters off a supercritical electrostatic barrier that is so strong that it can generate electron-positron pairs. This fermionic system has been widely discussed in textbooks to illustrate some of the discrepancies between quantum mechanical and quantum field theoretical descriptions for the pair creation process. We compare the fermionic dynamics with that of the corresponding bosonic system. We point out that the direct counterpart of the Pauli exclusion principle (the central mechanism to resolve the fermionic Klein paradox) is stimulated emission, which leads to the resolution of the analogous bosonic paradox.

  2. Three Paradoxes of the Future Prediction

    Directory of Open Access Journals (Sweden)

    D. V. Pivovarov

    2012-01-01

    Full Text Available The paper is devoted to the issue of predicting the future. While creating the future image of the mankind as a whole, and Russia in particular, extrapolated some 50 or 100 years ahead, such cultural forms as religion, philosophy, education and art make their significant impact. However, philosophy plays a special role of critical methodology in coordinating the futurological efforts. It works as a tuning fork that tunes up the orchestra of various sciences and other forms of social consciousness. Being dialectical, philosophers find out and analyze the contradictions – paradoxes, antinomies, and aporias - involved in such activities as prophesizing, prognosticating, predicting and foreseeing. On the basis of the retrospective analysis, the author considers the most significant paradoxes facing the futurologists engaged in predicting the general course of historic events; the paradoxes being denoted as follows: the antinomy of academic ignorance, paradox of newness and paradox of an emergent effect. The analysis results in conclusion that the large-scale, long-term «scientific predictions of the future», claiming to be the truth and pretending for historical value and accuracy, are impossible or at least doubtful. Nevertheless, global prognoses are highly valued, widely discussed and always in demand in society due to the purposeful human intellect. 

  3. Three Paradoxes of the Future Prediction

    Directory of Open Access Journals (Sweden)

    D. V. Pivovarov

    2015-02-01

    Full Text Available The paper is devoted to the issue of predicting the future. While creating the future image of the mankind as a whole, and Russia in particular, extrapolated some 50 or 100 years ahead, such cultural forms as religion, philosophy, education and art make their significant impact. However, philosophy plays a special role of critical methodology in coordinating the futurological efforts. It works as a tuning fork that tunes up the orchestra of various sciences and other forms of social consciousness. Being dialectical, philosophers find out and analyze the contradictions – paradoxes, antinomies, and aporias - involved in such activities as prophesizing, prognosticating, predicting and foreseeing. On the basis of the retrospective analysis, the author considers the most significant paradoxes facing the futurologists engaged in predicting the general course of historic events; the paradoxes being denoted as follows: the antinomy of academic ignorance, paradox of newness and paradox of an emergent effect. The analysis results in conclusion that the large-scale, long-term «scientific predictions of the future», claiming to be the truth and pretending for historical value and accuracy, are impossible or at least doubtful. Nevertheless, global prognoses are highly valued, widely discussed and always in demand in society due to the purposeful human intellect. 

  4. Andreev reflections and the quantum physics of black holes

    Science.gov (United States)

    Manikandan, Sreenath K.; Jordan, Andrew N.

    2017-12-01

    We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.

  5. Quantum black holes

    OpenAIRE

    Hooft, G. 't

    1987-01-01

    This article is divided into three parts. First, a systematic derivation of the Hawking radiation is given in three different ways. The information loss problem is then discussed in great detail. The last part contains a concise discussion of black hole thermodynamics. This article was published as chapter $6$ of the IOP book "Lectures on General Relativity, Cosmology and Quantum Black Holes" (July $2017$).

  6. The Policy Maker's Anguish: Regulating Personal Data Behavior Between Paradoxes and Dilemmas

    Science.gov (United States)

    Compañó, Ramón; Lusoli, Wainer

    Regulators in Europe and elsewhere are paying great attention to identity, privacy and trust in online and converging environments. Appropriate regulation of identity in a ubiquitous information environment is seen as one of the major drivers of the future Internet economy. Regulation of personal identity data has come to the fore including mapping conducted on digital personhood by the OECD; work on human rights and profiling by the Council of Europe andmajor studies by the European Commission with regard to self-regulation in the privacy market, electronic identity technical interoperability and enhanced safety for young people. These domains overlap onto an increasingly complex model of regulation of individuals' identity management, online and offline. This chapter argues that policy makers struggle to deal with issues concerning electronic identity, due to the apparently irrational and unpredictable behavior of users when engaging in online interactions involving identity management. Building on empirical survey evidence from four EU countries, we examine the first aspect in detail - citizens' management of identity in a digital environment. We build on data from a large scale (n = 5,265) online survey of attitudes to electronic identity among young Europeans (France, Germany, Spain, UK) conducted in August 2008. The survey asked questions about perceptions and acceptance of risks, general motivations, attitudes and behaviors concerning electronic identity. Four behavioral paradoxes are identified in the analysis: a privacy paradox (to date well known), but also a control paradox, a responsibility paradox and an awareness paradox. The chapter then examines the paradoxes in relation of three main policy dilemmas framing the debate on digital identity. The paper concludes by arguing for an expanded identity debate spanning policy circles and the engineering community.

  7. Adiposopathy and Obesity Paradox

    Directory of Open Access Journals (Sweden)

    Indriyanti Rafi Sukmawati

    2013-04-01

    Full Text Available BACKGROUND: Obesity has reached global epidemic proportions in both adults and children and is associated with numerous comorbidities, including hypertension, type 2 diabetes mellitus (T2DM, dyslipidemia and major cardiovascular diseases (CVD. CONTENT: Adiposity may cause adipocyte and adipose tissue anatomic and functional abnormalities, termed adiposopathy (adipose-opathy or "sick fat," that result in endocrine and immune derangements. Adiposopathy may directly contribute to CVD through pericardiac and perivascular effects on the myocardium and blood vessels. Adiposopathy may also indirectly contribute to CVD through promoting or worsening major CVD risk factors such as T2DM, high blood pressure, and dyslipidemia. Despite this adverse association, numerous studies have documented an obesity paradox in which overweight and obese people with established CVD, including hypertension, heart failure, coronary heart disease, and peripheral arterial disease, have a better prognosis compared with nonoverweight/nonobese patients. These paradoxical findings are made less paradoxical when the pathogenic potential of excessive body fat is assessed based on adipose tissue dysfunction rather than simply on increased fat mass alone. SUMMARY: Adiposopathy is defined as pathological adipose tissue function that may be promoted and exacerbated by fat accumulation (adiposity and sedentary lifestyle in genetically susceptible patients. Adiposopathy is a root cause of some of the most common metabolic diseases observed in clinical practice, including T2DM, hypertension and dyslipidemia. KEYWORDS: adiposopathy, adiposity, obesity paradox, adipocyte dysfunction, adipose hypertrophy, adipose hyperplasia.

  8. Negative freedom and the liberal paradoxes

    NARCIS (Netherlands)

    van Hees, M.V.B.P.M

    In their game-theoretic formulations, the liberal paradoxes of Amartya Sm and Alan Gibbard show a tension between freedom on the one hand, and Pareto optimality and stability on the other. This article examines what happens to the liberal paradoxes if a negative conception of freedom is used. Given

  9. Simpson’s Paradox in Psychological Science: A Practical Guide

    Directory of Open Access Journals (Sweden)

    Rogier eKievit

    2013-08-01

    Full Text Available The direction of an association at the population-level may be reversed within the subgroups comprising that population—a striking observation called Simpson’s paradox. When facing this pattern, psychologists often view it as anomalous. Here, we argue that Simpson’s paradox is more common than conventionally thought, and typically results in incorrect interpretations – potentially with harmful consequences. We support this claim by drawing on empirical results from cognitive neuroscience, behavior genetics, psychopathology, personality psychology, educational psychology, intelligence research, and simulation studies. We show that Simpson’s Paradox is most likely to occur when inferences are drawn across different levels of explanation (e.g., from populations to subgroups, or subgroups to individuals. We propose a set of statistical markers indicative of the paradox, and offer psychometric solutions for dealing with the paradox when encountered—including a toolbox in R for detecting Simpson’s Paradox. We show that explicit modeling of situations in which the paradox might occur not only prevents incorrect interpretations of data, but also results in a deeper understanding of what data tell us about the world.

  10. Consciousness and the "Causal Paradox"

    OpenAIRE

    Velmans, Max

    1996-01-01

    Viewed from a first-person perspective consciousness appears to be necessary for complex, novel human activity - but viewed from a third-person perspective consciousness appears to play no role in the activity of brains, producing a "causal paradox". To resolve this paradox one needs to distinguish consciousness of processing from consciousness accompanying processing or causing processing. Accounts of consciousness/brain causal interactions switch between first- and third-person perspectives...

  11. ysteries, Puzzles, and Paradoxes in Quantum Mechanics. Proceedings

    International Nuclear Information System (INIS)

    Rodolfo, B.

    1999-01-01

    These proceedings represent papers presented at the Mysteries, Puzzles, and Paradoxes in Quantum Mechanics Workshop held in Italy, in August 1998. The Workshop was devoted to recent experimental and theoretical advances such as new interference, effects, the quantum eraser, non-disturbing and Schroedinger-cat-like states, experiments, EPR correlations, teleportation, superluminal effects, quantum information and computing, locality and causality, decoherence and measurement theory. Tachyonic information transfer was also discussed. There were 45 papers presented at the conference,out of which 2 have been abstracted for the Energy, Science and Technology database

  12. Is there life inside black holes?

    International Nuclear Information System (INIS)

    Dokuchaev, V I

    2011-01-01

    Bound inside rotating or charged black holes, there are stable periodic planetary orbits, which neither come out nor terminate at the central singularity. Stable periodic orbits inside black holes exist even for photons. These bound orbits may be defined as orbits of the third kind, following the Chandrasekhar classification of particle orbits in the black hole gravitational field. The existence domain for the third-kind orbits is rather spacious, and thus there is place for life inside supermassive black holes in the galactic nuclei. Interiors of the supermassive black holes may be inhabited by civilizations, being invisible from the outside. In principle, one can get information from the interiors of black holes by observing their white hole counterparts. (paper)

  13. Second Parrondo's Paradox in Scale Free Networks

    OpenAIRE

    Toyota, Norihito

    2012-01-01

    Parrondo's paradox occurs in sequences of games in which a winning expectation value of a payoff may be obtained by playing two games in a random order, even though each game in the sequence may be lost when played individually.Several variations of Parrondo's games apparently with the same paradoxical property have been introduced by G.P. Harmer and D. Abbott; history dependence, one dimensional line, two dimensional lattice and so on. I have shown that Parrondo's paradox does not occur in s...

  14. A Paradoxical Approach to Vocational Indecision.

    Science.gov (United States)

    Lopez, Frederick G.

    1983-01-01

    Describes a case study in which a paradoxical intervention was effectively used in treating a vocationally indecisive college student and his overly involved father. The quality of the father-son interaction improved as the student's anxiety decreased. Implications for the use of paradox in other situations are discussed. (Author/JAC)

  15. New Paradoxes of Risky Decision Making

    Science.gov (United States)

    Birnbaum, Michael H.

    2008-01-01

    During the last 25 years, prospect theory and its successor, cumulative prospect theory, replaced expected utility as the dominant descriptive theories of risky decision making. Although these models account for the original Allais paradoxes, 11 new paradoxes show where prospect theories lead to self-contradiction or systematic false predictions.…

  16. Black hole quantum spectrum

    Science.gov (United States)

    Corda, Christian

    2013-12-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.

  17. Virtue Acquisition: The Paradox of Striving

    Science.gov (United States)

    Snow, Nancy

    2016-01-01

    Aristotelian-inspired accounts of virtue acquisition stress guided practice and habituated action to develop virtue. This emphasis on action can lead to the "paradox of striving". The paradox occurs when we try too hard to act well and thereby spoil our efforts. I identify four forms of striving--forcing, impulsivity, overthinking, and…

  18. Family Fathers Lost in Theatre Paradox

    DEFF Research Database (Denmark)

    Kuhlmann, Annelis

    2008-01-01

    Diderot's influence on theatre is well known through The Paradox of Acting (Paradoxe sur le comédien). However, Diderot also wrote a few drames bourgeois, among which is The Family Father (Le Père de famille), which still in Diderot's days was edited in Copenhagen in French, and which in Danish...

  19. Paradox, reprimand and extinction in adults with mental handicap.

    Science.gov (United States)

    Wood, V E; Chamove, A S

    1991-08-01

    To assess the efficacy of paradoxical directives, levels of challenging behaviour during 2 weeks of paradox, reprimand and extinction were compared with baseline levels in four adults with mental handicaps attending a day centre. Paradox was the most effective procedure for reducing the frequency and severity of challenging behaviour by an average of over 70% by the end of 2 weeks and up to 90% in certain subjects; extinction was least effective. Paradox was most effective with more defiant subjects, when staff rated treatment success as low, when improvement using extinction and reprimand was poorest, and in reducing aggressive behaviour. The present authors suggest the overjustification effect offers an explanation for the effects of paradox.

  20. New paradoxes in intertemporal choice

    Directory of Open Access Journals (Sweden)

    Li-Lin Rao

    2011-02-01

    Full Text Available Similar to research on risky choice, the traditional analysis of intertemporal choice takes the view that an individual behaves so as to maximize the discounted sum of all future utilities. The well-known Allais paradox contradicts the fundamental postulates of maximizing the expected value or utility of a risky option. We describe a violation of the law of diminishing marginal utility as well as an intertemporal version of the Allais paradox.

  1. Paradoxical therapy in conversion disorder

    OpenAIRE

    ATAOĞLU, Ahmet

    1998-01-01

    Paradoxical therapy consists of suggesting that the patient intentionally engages in the unwanted behaviour, such as performing complusive ritual or bringing on a conversion attack. In this study paradoxical intention (PI) was used with to half of the patients with conversion disorders, while the other half were treated with diazepam in order to examine the efficiency of the PI versus diazepam in conversion disorder. Patients treated with PI appeared to have a greater improvement r...

  2. Before Inflation and after Black Holes

    Science.gov (United States)

    Stoltenberg, Henry

    This dissertation covers work from three research projects relating to the physics before the start of inflation and information after the decay of a black hole. For the first project, we analyze the cosmological role of terminal vacua in the string theory landscape, and point out that existing work on this topic makes very strong assumptions about the properties of the terminal vacua. We explore the implications of relaxing these assumptions (by including "arrival" as well as "departure" terminals) and demonstrate that the results in earlier work are highly sensitive to their assumption of no arrival terminals. We use our discussion to make some general points about tuning and initial conditions in cosmology. The second project is a discussion of the black hole information problem. Under certain conditions the black hole information puzzle and the (related) arguments that firewalls are a typical feature of black holes can break down. We first review the arguments of Almheiri, Marolf, Polchinski and Sully (AMPS) favoring firewalls, focusing on entanglements in a simple toy model for a black hole and the Hawking radiation. By introducing a large and inaccessible system entangled with the black hole (representing perhaps a de Sitter stretched horizon or inaccessible part of a landscape) we show complementarity can be restored and firewalls can be avoided throughout the black hole's evolution. Under these conditions black holes do not have an "information problem". We point out flaws in some of our earlier arguments that such entanglement might be generically present in some cosmological scenarios, and call out certain ways our picture may still be realized. The third project also examines the firewall argument. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and

  3. Thermoeconomic diagnosis and entropy generation paradox

    DEFF Research Database (Denmark)

    Sigthorsson, Oskar; Ommen, Torben Schmidt; Elmegaard, Brian

    2017-01-01

    In the entropy generation paradox, the entropy generation number, as a function of heat exchanger effectiveness, counter-intuitively approaches zero in two limits symmetrically from a single maximum. In thermoeconomic diagnosis, namely in the characteristic curve method, the exergy destruction...... to the entropy generation paradox, as a decreased heat exchanger effectiveness (as in the case of an operation anomaly in the component) can counter-intuitively result in decreased exergy destruction rate of the component. Therefore, along with an improper selection of independent variables, the heat exchanger...... increases in case of an operation anomaly in a component. The normalised exergy destruction rate as the dependent variable therefore resolves the relation of the characteristic curve method with the entropy generation paradox....

  4. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    Strominger, A.

    1996-01-01

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  5. On Hardy's paradox, weak measurements, and multitasking diagrams

    International Nuclear Information System (INIS)

    Meglicki, Zdzislaw

    2011-01-01

    We discuss Hardy's paradox and weak measurements by using multitasking diagrams, which are introduced to illustrate the progress of quantum probabilities through the double interferometer system. We explain how Hardy's paradox is avoided and elaborate on the outcome of weak measurements in this context. -- Highlights: → Hardy's paradox explained and eliminated. → Weak measurements: what is really measured? → Multitasking diagrams: introduced and used to discuss quantum mechanical processes.

  6. Patient centered decision making in palliative cancer treatment: a world of paradoxes

    NARCIS (Netherlands)

    de Haes, Hanneke; Koedoot, Nelleke

    2003-01-01

    Patient centered palliative cancer care would imply, first, the introduction of psychosocial endpoints when evaluating treatment and making decisions. Second, patient control would have to be enhanced by information giving and increased decision involvement. We have indicated that paradoxes exist

  7. Paradox in a non-linear capacitated transportation problem

    Directory of Open Access Journals (Sweden)

    Dahiya Kalpana

    2006-01-01

    Full Text Available This paper discusses a paradox in fixed charge capacitated transportation problem where the objective function is the sum of two linear fractional functions consisting of variables costs and fixed charges respectively. A paradox arises when the transportation problem admits of an objective function value which is lower than the optimal objective function value, by transporting larger quantities of goods over the same route. A sufficient condition for the existence of a paradox is established. Paradoxical range of flow is obtained for any given flow in which the corresponding objective function value is less than the optimum value of the given transportation problem. Numerical illustration is included in support of theory.

  8. A Krein quantization approach to Klein paradox

    International Nuclear Information System (INIS)

    Payandeh, Farrin; Fathi, Mohsen; Mohammad Pur, Toradj; Moghaddam, Zahra Gh.

    2013-01-01

    In this paper we first introduce the famous Klein paradox. Afterwards by proposing the Krein quantization approach and taking the negative modes into account, we will show that the expected and exact current densities could be achieved without confronting any paradox. (authors)

  9. The paradoxes of the interaction-free measurements

    International Nuclear Information System (INIS)

    Vaidman, L.; Tel Aviv Univ.

    2001-01-01

    Interaction-free measurements introduced by Elitzur and Vaidman (1993) allow finding infinitely fragile objects without destroying them. Paradoxical features of these and related measurements are discussed. The resolution of the paradoxes in the framework of the Many-Worlds Interpretation is proposed. (orig.)

  10. The clock paradox as a cosmological problem

    International Nuclear Information System (INIS)

    Fu, K.Y.

    1975-01-01

    In this paper the clock paradox is discussed within the framework of the general theory of relativity. It is shown that in general the aging asymmetry exists. It is also argued that the clock paradox, according to Mach's principle, is essentially a cosmological problem. (author)

  11. RECONCILING AGN-STAR FORMATION, THE SOLTAN ARGUMENT, AND MEIER’S PARADOX

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, David [Department of Physics, Kennesaw State University, Marietta GA, 30060 (United States); Kim, Matthew I.; Christian, Damian J. [Department of Physics and Astronomy, California State University, Northridge CA, 91330 (United States); Hollingworth, Emily [Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta GA, 30332 (United States); Lowery, Aaron [Department of Geosciences, Mississippi State University, MS, 39762 (United States); Harmon, Matthew [Department of Physics, Southern Polytechnic State University, Marietta GA, 30060 (United States)

    2016-02-01

    We provide a theoretical context for understanding the recent work of Kalfountzou et al. showing that star formation is enhanced at lower optical luminosity in radio-loud quasars. Our proposal for coupling the assumption of collimated FRII quasar-jet-induced star formation with lower accretion optical luminosity also explains the observed jet power peak in active galaxies at higher redshift compared to the peak in accretion power, doing so in a way that predicts the existence of a family of radio-quiet active galactic nuclei associated with rapidly spinning supermassive black holes at low redshift, as mounting observations suggest. The relevance of this work lies in its promise to explain the observed cosmological evolution of accretion power, jet power, and star formation in a way that is both compatible with the Soltan argument and resolves the so-called “Meier Paradox.”.

  12. Making Games Not Work: Paradoxes Embedded in Game-Based Training and Concepts for Overcoming Them

    Science.gov (United States)

    Jones, Phillip N.; Cuper, Taryn

    2010-01-01

    An interest in game-based training solutions is natural. All one has to do is watch someone fully engaged in a modern game to see the potential of harnessing that attention for training. However, the reality of game-based training has not fully satisfied these expectations. This paper explains two paradoxes that must be overcome for games to support training. These paradoxes are a result of the realities of the basic human condition clashing with the requirements of learning theory. 80th paradoxes arise from the concept of "engagement" that is central to games. The first comes from a more robust definition of engagement, which is the condition of Flow or Optimal Experience. Flow is the state game developers want to see in users. One aspect of Flow is loss of sense of self as the individual becomes immersed in the experience. The paradox arises because this loss of self directly contradicts the learning requirement of self-reflection. The second paradox comes from theories of play, which state in part that play requires a level of individual freedom. The contradiction arises when game-based play must be harnessed to an organizational training program or regimen. The paper will discuss these paradoxes in the context of an effort to design a game-based training modality to train combat medics and will close with a review of compensating strategies identified by the designers. The paper will provide information important to anyone interested in conceptualizing and designing game-based training.

  13. The paradox of scientific expertise

    DEFF Research Database (Denmark)

    Alrøe, Hugo Fjelsted; Noe, Egon

    2011-01-01

    Modern societies depend on a growing production of scientific knowledge, which is based on the functional differentiation of science into still more specialised scientific disciplines and subdisciplines. This is the basis for the paradox of scientific expertise: The growth of science leads to a f...... cross-disciplinary research and in the collective use of different kinds of scientific expertise, and thereby make society better able to solve complex, real-world problems.......Modern societies depend on a growing production of scientific knowledge, which is based on the functional differentiation of science into still more specialised scientific disciplines and subdisciplines. This is the basis for the paradox of scientific expertise: The growth of science leads...... to a fragmentation of scientific expertise. To resolve this paradox, the present paper investigates three hypotheses: 1) All scientific knowledge is perspectival. 2) The perspectival structure of science leads to specific forms of knowledge asymmetries. 3) Such perspectival knowledge asymmetries must be handled...

  14. Ending the myth of the St Petersburg Paradox

    Directory of Open Access Journals (Sweden)

    Robert Vivian

    2013-09-01

    Full Text Available Nicolas Bernoulli suggested the St Petersburg game, nearly 300 years ago, which is widely believed to produce a paradox in decision theory. This belief stems from a long standing mathematical error in the original calculation of the expected value of the game. This article argues that, in addition to the mathematical error, there are also methodological considerations which gave rise to the paradox. This article explains these considerations and why because of the modern computer, the same considerations, when correctly applied, also demonstrate that no paradox exists. Because of the longstanding belief that a paradox exists it is unlikely the mere mathematical correction will end the myth. The article explains why it is the methodological correction which will dispel the myth.

  15. Greenberger-Horne-Zeilinger paradoxes from qudit graph states.

    Science.gov (United States)

    Tang, Weidong; Yu, Sixia; Oh, C H

    2013-03-08

    One fascinating way of revealing quantum nonlocality is the all-versus-nothing test due to Greenberger, Horne, and Zeilinger (GHZ) known as the GHZ paradox. So far genuine multipartite and multilevel GHZ paradoxes are known to exist only in systems containing an odd number of particles. Here we shall construct GHZ paradoxes for an arbitrary number (greater than 3) of particles with the help of qudit graph states on a special kind of graphs, called GHZ graphs. Furthermore, based on the GHZ paradox arising from a GHZ graph, we derive a Bell inequality with two d-outcome observables for each observer, whose maximal violation attained by the corresponding graph state, and a Kochen-Specker inequality testing the quantum contextuality in a state-independent fashion.

  16. Temperature relaxation and the Kapitza boundary resistance paradox

    OpenAIRE

    Brink, Alec Maassen van den; Dekker, H.

    1994-01-01

    The calculation of the Kapitza boundary resistance between dissimilar harmonic solids has since long (Little [Can. J. Phys. 37, 334 (1959)]) suffered from a paradox: this resistance erroneously tends to a finite value in the limit of identical solids. We resolve this paradox by calculating temperature differences in the final heat-transporting state, rather than with respect to the initial state of local equilibrium. For a one-dimensional model we thus derive an exact, paradox-free formula fo...

  17. A Dichotomic Analysis of the Surprise Examination Paradox

    OpenAIRE

    Franceschi, Paul

    2002-01-01

    This paper presents a dichotomic analysis of the surprise examination paradox. In section 1, I analyse the surprise notion in detail. I introduce then in section 2, the distinction between a monist and dichotomic analysis of the paradox. I also present there a dichotomy leading to distinguish two basically and structurally different versions of the paradox, respectively based on a conjoint and a disjoint definition of the surprise. In section 3, I describe the solution to SEP corresponding to...

  18. Contralateral paradoxical response to chemotherapy in tuberculous ...

    African Journals Online (AJOL)

    Pleural effusions may occur as a complication of primary tuberculosis or an established pulmonary or extrapulmonary infection. New formation or expansion of a tuberculous lesion during chemotherapy is referred to as paradoxical response. Paradoxical response has been described to occur weeks or months after starting ...

  19. Braneworld black holes and entropy bounds

    Directory of Open Access Journals (Sweden)

    Y. Heydarzade

    2018-01-01

    Full Text Available The Bousso's D-bound entropy for the various possible black hole solutions on a 4-dimensional brane is checked. It is found that the D-bound entropy here is apparently different from that of obtained for the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information, associated to the extra dimension, when an extra-dimensional black hole is moved outward the observer's cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for the excited black holes, the obtained results are written also in terms of the black hole excited states.

  20. Black holes and everyday physics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    Black holes have piqued much curiosity. But thus far they have been important only in ''remote'' subjects like astrophysics and quantum gravity. It is shown that the situation can be improved. By a judicious application of black hole physics, one can obtain new results in ''everyday physics''. For example, black holes yield a quantum universal upper bound on the entropy-to-energy ratio for ordinary thermodynamical systems which was unknown earlier. It can be checked, albeit with much labor, by ordinary statistical methods. Black holes set a limitation on the number of species of elementary particles-quarks, leptons, neutrinos - which may exist. And black holes lead to a fundamental limitation on the rate at which information can be transferred for given message energy by any communication system. (author)

  1. Imagine the Universe! The Anatomy of Black Holes. Probing the Structure & Evolution of the Cosmos. An Information and Activity Booklet. Grades 9-12, 1998-1999.

    Science.gov (United States)

    Whitlock, Laura A.; Granger, Kara C.; Mahon, Jane D.

    The information provided in this booklet is meant to give the necessary background information so that the science of black holes can be taught confidently to secondary students. The featured activities can be used to engage and excite students about the topic of black holes in different disciplines and in a number of ways. Activities include: (1)…

  2. The Lindley paradox in optical interferometry

    International Nuclear Information System (INIS)

    Mauri, Camillo; Paris, Matteo G.A.

    2016-01-01

    The so-called Lindley paradox is a counterintuitive statistical effect where the Bayesian and frequentist approaches to hypothesis testing give radically different answers, depending on the choice of the prior distribution. In this paper we address the occurrence of the Lindley paradox in optical interferometry and discuss its implications for high-precision measurements. In particular, we focus on phase estimation by Mach–Zehnder interferometers and show how to mitigate the conflict between the two approaches by using suitable priors. - Highlights: • We address the occurence of Lindley paradox in interferometry and discuss its implications for high-precision measurements. • We show how to mitigate the conflict between Bayesian and frequentist approach to interferometry using suitable priors. • Our results apply to calibration of homodyne detectors for quantum tomography.

  3. Mathematical fallacies and paradoxes

    CERN Document Server

    Bunch, Bryan

    1982-01-01

    Stimulating, thought-provoking analysis of the most interesting intellectual inconsistencies in mathematics, physics, and language, including being led astray by algebra (De Morgan's paradox). 1982 edition.

  4. On the Mathematics of the Jeffreys-Lindley Paradox

    OpenAIRE

    Villa, Cristiano; Walker, Stephen

    2015-01-01

    This paper is concerned with the well known Jeffreys-Lindley paradox. In a Bayesian set up, the so-called paradox arises when a point null hypothesis is tested and an objective prior is sought for the alternative hypothesis. In particular, the posterior for the null hypothesis tends to one when the uncertainty, i.e. the variance, for the parameter value goes to infinity. We argue that the appropriate way to deal with the paradox is to use simple mathematics, and that any philosophical argumen...

  5. Black hole quantum spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Corda, Christian [Institute for Theoretical Physics and Advanced Mathematics (IFM) Einstein-Galilei, Prato (Italy); Istituto Universitario di Ricerca ' ' Santa Rita' ' , Prato (Italy); International Institute for Applicable Mathematics and Information Sciences (IIAMIS), Hyderabad (India)

    2013-12-15

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  6. Optimal management of idiopathic macular holes.

    Science.gov (United States)

    Madi, Haifa A; Masri, Ibrahim; Steel, David H

    2016-01-01

    This review evaluates the current surgical options for the management of idiopathic macular holes (IMHs), including vitrectomy, ocriplasmin (OCP), and expansile gas use, and discusses key background information to inform the choice of treatment. An evidence-based approach to selecting the best treatment option for the individual patient based on IMH characteristics and patient-specific factors is suggested. For holes without vitreomacular attachment (VMA), vitrectomy is the only option with three key surgical variables: whether to peel the inner limiting membrane (ILM), the type of tamponade agent to be used, and the requirement for postoperative face-down posturing. There is a general consensus that ILM peeling improves primary anatomical hole closure rate; however, in small holes (holes, but large (>400 µm) and chronic holes (>1-year history) are usually treated with long-acting gas and posturing. Several studies on posturing and gas choice were carried out in combination with ILM peeling, which may also influence the gas and posturing requirement. Combined phacovitrectomy appears to offer more rapid visual recovery without affecting the long-term outcomes of vitrectomy for IMH. OCP is licensed for use in patients with small- or medium-sized holes and VMA. A greater success rate in using OCP has been reported in smaller holes, but further predictive factors for its success are needed to refine its use. It is important to counsel patients realistically regarding the rates of success with intravitreal OCP and its potential complications. Expansile gas can be considered as a further option in small holes with VMA; however, larger studies are required to provide guidance on its use.

  7. Paradoxical response to dexamethasone and spontaneous hypocortisolism in Cushing's disease

    Science.gov (United States)

    Lila, Anurag R; Sarathi, Vijaya; Bandgar, Tushar R; Shah, Nalini S

    2013-01-01

    Paradoxical response to dexamethasone and spontaneous development of hypocortisolism are rare features of Cushing's disease. We report a 13-year-old boy with Cushing's disease owing to a pituitary macroadenoma. On initial evaluation, he had partial suppression of serum cortisol by dexamethasone. He developed transient hypocortisolism after first adenomectomy, but the disease recurred after 1 year. Repeat evaluation showed recurrent hypercortisolism and paradoxical response to dexamethasone. He underwent second surgery and, postoperatively, hypercostisolism persisted even after 2 years of surgery. Repeat evaluations after 8 years of second surgery revealed persistent hypocortisolism despite residual tumour of same size and similar plasma adrenocorticotropic hormone (ACTH) levels. We have also shown that the paradoxical increase in serum cortisol was preceded by a paradoxical increase in ACTH. The paradoxical response persisted despite hypocortisolism. This patient with Cushing's disease had two very rare features: paradoxical response to dexamethasone and spontaneous development of hypocortisolism. PMID:23365169

  8. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  9. Paradoxes of maternal mourning.

    Science.gov (United States)

    Brice, C W

    1991-02-01

    It has been customary to conceptualize mourning as a phasic or stage phenomenon (Lindemann 1944; Parkes 1972; Bowlby 1980; Knapp 1986). Such a conceptualization has proved to be of tremendous didactic value, especially in terms of succinctly organizing and communicating the major affects, behaviors, and reactions of mourning. It is, however, my belief, based upon clinical experience with many forms of bereavement, that the phenomenon of mourning is not comprised of clearly delineated stages and phases. I have come to conceptualize the phenomenon of mourning the death of a loved person as involving the bereaved's struggle with a series of more or less unresolvable paradoxes rather than as a progression through stages that possess relatively distinct and predictable beginning and ending points. The specific paradoxes encountered by a bereaved person differ, of course, in accordance with the relationship that was lost (mother, father, spouse, child, or sibling), the developmental stage of the bereaved (childhood, adolescence, adulthood, or maturity), the type of death (sudden or prolonged), and the cause of death (illness, murder, suicide, or accident). In this paper, I will address those paradoxes that seem specific to maternal mourning - that is, to mothers who are mourning the death of a child.

  10. Does evaporation paradox exist in China?

    Directory of Open Access Journals (Sweden)

    Z. T. Cong

    2009-03-01

    Full Text Available One expected consequence of global warming is the increase in evaporation. However, lots of observations show that the rate of evaporation from open pans of water has been steadily decreasing all over the world in the past 50 years. The contrast between expectation and observation is called "evaporation paradox". Based on data from 317 weather stations in China from 1956 to 2005, the trends of pan evaporation and air temperature were obtained and evaporation paradox was analyzed. The conclusions include: (1 From 1956 to 2005, pan evaporation paradox existed in China as a whole while pan evaporation kept decreasing and air temperature became warmer and warmer, but it does not apply to Northeast and Southeast China; (2 From 1956 to 1985, pan evaporation paradox existed narrowly as a whole with unobvious climate warming trend, but it does not apply to Northeast China; (3 From 1986 to 2005, in the past 20 years, pan evaporation paradox did not exist for the whole period while pan evaporation kept increasing, although it existed in South China. Furthermore, the trend of other weather factors including sunshine duration, windspeed, humidity and vapor pressure deficit, and their relations with pan evaporation are discussed. As a result, it can be concluded that pan evaporation decreasing is caused by the decreasing in radiation and wind speed before 1985 and pan evaporation increasing is caused by the decreasing in vapor pressure deficit due to strong warming after 1986. With the Budyko curve, it can be concluded that the actual evaporation decreased in the former 30 years and increased in the latter 20 year for the whole China.

  11. Evaluation of seismic reflection data in the Davis and Lavender Canyons study area, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.

    1986-08-01

    Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included the tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector

  12. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  13. Linear perspective and framing in the vista paradox

    DEFF Research Database (Denmark)

    Costa, Marco; Bonetti, Leonardo

    2017-01-01

    The vista paradox is the illusion in which an object seen through a frame appears to shrink in apparent size as the observer approaches the frame. In four studies, we tested the effect of framing and fixating on the target object. The first two studies assessed the vista paradox in a large scale...... inserted within five frames differing in size. In the fourth study linear perspective was added to the images. The results showed that both frame size and linear perspective cues were critical factors for the vista paradox illusion....

  14. The happiness paradox

    NARCIS (Netherlands)

    Bollen, Johan; Gonçalves, Bruno; Leemput, van de Ingrid; Ruan, Guangchen

    2017-01-01

    Most individuals in social networks experience a so-called Friendship Paradox: they are less popular than their friends on average. This effect may explain recent findings that widespread social network media use leads to reduced happiness. However the relation between popularity and happiness is

  15. The Hydrostatic Paradox.

    Science.gov (United States)

    Wilson, Alpha E.

    1995-01-01

    Presents an example demonstrating the quantitative resolution of the hydrostatic paradox which is the realization that the force due to fluid pressure on the bottom of a vessel can be considerably greater or considerably less than the weight of the fluid in the vessel. (JRH)

  16. The "Paradox of Interdisciplinarity" in Australian Research Governance

    Science.gov (United States)

    Woelert, Peter; Millar, Victoria

    2013-01-01

    This paper identifies what can be called the "paradox of interdisciplinarity" (Weingart 2000) in Australian higher education research governance and explores some of its constitutive dimensions. In the Australian context, the paradox of interdisciplinarity primarily concerns the proliferation of a programmatic discourse of…

  17. Paradox image: a noninvasive index of regional left-ventricular dyskinesis

    International Nuclear Information System (INIS)

    Holman, B.L.; Wynne, J.; Idoine, J.; Zielonka, J.; Neill, J.

    1979-01-01

    The paradox image, a functional image of regional dyskinesis derived from the equilibrium (gated) radionuclide ventriculogram, was constructed by subtracting the background-corrected end-diastolic frame from the background-corrected end-systolic frame. In 11 patients showing dyskinesis by contrast ventriculography, the percentage of left-ventricular picture elements containing paradox ranged from 3.6 to 55.6% (21.44% +- 4.45 s.e.m.). In 11 patients with normokinesis and in eight patients with hypookinesis by contrast ventriculography, the left-ventricular picture elements demonstrating paradox were less than 1.1% in all cases. In nine patients with akinesis, the percentage of left-ventricular picture elements containing paradox was 2.05% +- 0.96 s.e.m. and was less than 2% in seven patients. There was also an excellent agreement between the location of dyskinesis on the paradox image and that by contrast ventriculography. The paradox image is a sensitive indicator of left-ventricular dyskinesis and should be useful in the evaluation of patients with suspected left-ventricular asynergy

  18. Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics

    Science.gov (United States)

    He, Q. Y.; Reid, M. D.

    2013-11-01

    We describe how to generate an Einstein-Podolsky-Rosen (EPR) paradox between a mesoscopic mechanical oscillator and an optical pulse. We find two types of paradox, defined by whether it is the oscillator or the pulse that shows the effect Schrödinger called “steering”. Only the oscillator paradox addresses the question of mesoscopic local reality for a massive system. In that case, EPR's “elements of reality” are defined for the oscillator, and it is these elements of reality that are falsified (if quantum mechanics is complete). For this sort of paradox, we show that a thermal barrier exists, meaning that a threshold level of pulse-oscillator interaction is required for a given thermal occupation n0 of the oscillator. We find there is no equivalent thermal barrier for the entanglement of the pulse with the oscillator or for the EPR paradox that addresses the local reality of the optical system. Finally, we examine the possibility of an EPR paradox between two entangled oscillators. Our work highlights the asymmetrical effect of thermal noise on quantum nonlocality.

  19. Correlation properties of entangled multiphoton states and Bernstein’s paradox

    International Nuclear Information System (INIS)

    Chirkin, A. S.; Belyaeva, O. V.; Belinsky, A. V.

    2013-01-01

    A normally ordered characteristic function (NOCF) of Bose operators is calculated for a number of discrete-variable entangled states (Greenberger-Horne-Zeilinger (GHZ) and Werner (W) qubit states and a cluster state). It is shown that such NOCFs contain visual information on two types of correlations: pseudoclassical and quantum correlations. The latter manifest themselves in the interference terms of the NOCFs and lead to quantum paradoxes, whereas the pseudoclassical correlations of photons and their cumulants satisfy the relations for classical random variables. Three- and four-qubit states are analyzed in detail. An implementation of an analog of Bernstein’s paradox on discrete quantum variables is discussed. A measure of quantumness of an entangled state is introduced that is not related to the entropy approach. It is established that the maximum of the degree of quantumness substantiates the numerical values of the coefficients in multiqubit vector states derived from intuitive considerations.

  20. Circular orbits and acceleration of particles by near-extremal dirty rotating black holes: general approach

    International Nuclear Information System (INIS)

    Zaslavskii, Oleg B

    2012-01-01

    We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, E c.m. ∼ κ −n where for the ISCO, n= 1/3 in case (i) or n= 1/2 in case (ii). For the MBO and PhCO, n= 1/2 in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon. (paper)

  1. Circular orbits and acceleration of particles by near-extremal dirty rotating black holes: general approach

    Science.gov (United States)

    Zaslavskii, Oleg B.

    2012-10-01

    We study the effect of collisions of ultrahigh energy particles near the black hole horizon (BSW effect) for two scenarios: when one of the particles either (i) moves on a circular orbit or (ii) plunges from it toward the horizon. It is shown that such circular near-horizon orbits can exist for near-extremal black holes only. This includes the innermost stable orbit (ISCO), marginally bound orbit (MBO) and photon one (PhO). We consider generic ‘dirty’ rotating black holes not specifying the metric and show that the energy in the center-of-mass frame has the universal scaling dependence on the surface gravity κ. Namely, Ec.m. ˜ κ-n where for the ISCO, n=\\frac{1}{3} in case (i) or n=\\frac{1}{2} in case (ii). For the MBO and PhCO, n=\\frac{1}{2} in both scenarios that agrees with recent calculations of Harada and Kimura for the Kerr metric. We also generalize the Grib and Pavlov observations made for the Kerr metric. The magnitude of the BSW effect on the location of collision has a somewhat paradoxical character: it decreases when approaching the horizon.

  2. Simpson's paradox in psychological science: a practical guide

    NARCIS (Netherlands)

    Kievit, R.A.; Frankenhuis, W.E.; Waldorp, L.J.; Borsboom, D.

    2013-01-01

    The direction of an association at the population-level may be reversed within the subgroups comprising that population—a striking observation called Simpson's paradox. When facing this pattern, psychologists often view it as anomalous. Here, we argue that Simpson's paradox is more common than

  3. Rescuing complementarity with little drama

    Science.gov (United States)

    Bao, Ning; Bouland, Adam; Chatwin-Davies, Aidan; Pollack, Jason; Yuen, Henry

    2016-12-01

    The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it "little-drama") which is the "complementarity dual" of scrambling of information on the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the information-theoretic task that an observer must perform after crossing the event horizon of a Schwarzschild black hole in order to verify a violation of monogamy of entanglement. We find that the time required to complete a necessary subroutine of this task, namely the decoding of Bell pairs from the interior and the late radiation, takes longer than the maximum amount of time that an observer can spend inside the black hole before hitting the singularity. Therefore, an infalling observer cannot observe monogamy violation before encountering the singularity.

  4. From Rindler horizon to mini black holes at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ghaffary, Tooraj [Islamic Azad University, Department of Science, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2017-02-15

    Recently researchers (A. Sepehri et al., Astrophys. Space Sci. 344, 79 (2013)) have considered the signature of superstring balls near mini black holes at LHC and calculate the information loss for these types of strings. Motivated by their work, we consider the evolution of events in high energy experiments from lower energies for which the Rindler horizon is formed to higher energies in which mini black holes and string balls are emerged. Extending the Gottesman and Preskill method to string theory, we find the information loss for excited strings ''string balls'' in mini black holes at LHC and calculate the information transformation from the collapsing matter to the state of outgoing Hawking radiation for strings. We come to the conclusion that information transformation for high energy strings is complete. Then the thermal distribution of excited strings near mini black holes at LHC is calculated. In order to obtain the total string cross section near black holes produced in proton-proton collision, we multiply the black hole production cross section by the thermal distribution of strings. It is observed that many high energy excited strings are produced near the event horizon of TeV black holes. These excited strings evaporate to standard model particles like Higgs boson and top quark at Hagedorn temperature. We derive the production cross section for these particles due to string ball decay at LHC and consider their decay to light particles like bottom quarks and gluons. (orig.)

  5. The Tolman-Regge antitelephone paradox: Its solution by tachyon mechanics

    International Nuclear Information System (INIS)

    Recami, E.

    The possibility of solving (at least 'in microphysics') all the ordinary causal paradoxes devised for Tachyons is not yet widely recognized; on the contrary, the effectiveness of the Stuckelberg-Feynman 'switching principle' is often misunderstood. It is therefore shown in details and rigorously how to solve the oldest causal paradox, originally proposed by Tolman, which is the Kernel of so many further tachyon paradoxes. The key to the solution is a careful application of Tachyon Kinematics. Which can be unambiguously derived from Special Relativity. A systematic, thorough analysis of all tachyon paradoxes is going to appear elsewhere. (Author) [pt

  6. Nietzsche et les paradoxes de la force

    Directory of Open Access Journals (Sweden)

    Arnaud François

    2011-06-01

    Full Text Available According to this paper, the Nietzschean notion of force actually consists of a number of paradoxes, which I seek to formulate through the philosophical problems they pose. These paradoxes revolve around this fundamental paradox: on the one hand, force is able to rise and fall, but precisely how could such an increase and such a decrease be designed, as far as only what is given once for all can accept quantitative determinations? I come to draw two methods to answer this question (contrariety between two positive forces, reactivity of one force against the other, which suggest two ways of posing the biological and medical problems today, related to the notions of health and disease, in the scope of which Nietzsche has encountered it.

  7. The Surprise Examination Paradox and the Second Incompleteness Theorem

    OpenAIRE

    Kritchman, Shira; Raz, Ran

    2010-01-01

    We give a new proof for Godel's second incompleteness theorem, based on Kolmogorov complexity, Chaitin's incompleteness theorem, and an argument that resembles the surprise examination paradox. We then go the other way around and suggest that the second incompleteness theorem gives a possible resolution of the surprise examination paradox. Roughly speaking, we argue that the flaw in the derivation of the paradox is that it contains a hidden assumption that one can prove the consistency of the...

  8. Nonlinearities in personalization-privacy paradox in mHealth adoption: the mediating role of perceived usefulness and attitude.

    Science.gov (United States)

    Zhang, Xiaofei; Guo, Xitong; Guo, Feng; Lai, Kee-Hung

    2014-01-01

    Personalization in healthcare refers to individualizing services and products based on patients' health conditions and interests. In order to deliver highly personalized offerings, mHealth providers need to use patients' health information, which provokes patients' concerns over personal health information leakage. So the personalization-privacy paradox is an important issue in the mHealth context. To gain a better understanding of this paradox, we take the personalization and privacy paradox factors as independent variables, incorporating the nonlinear relationships between personalization and privacy, and take attitude and perceived usefulness as middle variables to study mHealth adoption. The hypothesized model is tested through an empirical research of a 489-respondent sample in China. PLS is used for data analysis. (1) Personalization and privacy are found to influence mHealth adoption intention via attitude and perceived usefulness; (2) there is a substitution relationship, also called negative synergy between personalization and privacy in mHealth contexts; (3) attitude mediates the effect of perceived usefulness on intention, indicating a significant role of attitude.

  9. Proper-time quantum-mechanics and the Klein paradox

    International Nuclear Information System (INIS)

    Thaller, B.

    1981-01-01

    Scattering at high potential-steps is treated in the framework of relativistic proper-time theory. No paradox arises in contrast to Dirac's wavemechanics (''Klein's paradox''); pair creation may happen with a certain probability and may be described as a scattering process with ordinary quantum-mechanical methods. (author)

  10. Effects of slim holes on hydrothermal exploration costs

    International Nuclear Information System (INIS)

    Entingh, D.; Petty, S.

    1992-01-01

    This paper estimates hydrothermal exploration costs and the effects that using slim holes could have on those costs using a computer code developed for the US-DOE. The primary goal of exploration is to generate decision driving information about particular geothermal reservoirs. Compared to today's exploration strategies, the main effect of using slim holes would be to reduce the cost of exploration by about 40 percent. Slim hole exploration does not reduce the overall cost of electricity by much; however, the cost burden is shifted later in the project when outside financing is more likely. The reduced costs of slim holes may also encourage developers to drill more holes that better characterize the reservoir, thus reducing long term reservoir risk. The cost of power could then be cut as much as six percent and project financial risks related to reservoir uncertainties could be reduced by up to one quarter. In order to realize these improvements, the amount of reservoir information recovered from small diameter bore holes needs to be significantly increased

  11. Temperature relaxation at the Kapitza-boundary-resistance paradox

    NARCIS (Netherlands)

    Maassen van den Brink, A.; Dekker, H.

    1995-01-01

    The calculation of the Kapitza boundary resistance between dissimilar harmonic solids has for a long time [W. A. Little, Can. J. Phys. 37, 334 (1959)] presented a paradox: this resistance erroneously tends to a finite value in the limit of identical solids. We resolve this paradox by calculating

  12. Black holes by analytic continuation

    CERN Document Server

    Amati, Daniele

    1997-01-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation --accessible in the 1+1 gravity theory considered-- is implicit in an S matrix approach and provides in this way a possible solution to the problem of information loss.

  13. Un théoricien paradoxal

    Directory of Open Access Journals (Sweden)

    Jacques Dubois

    2009-08-01

    Full Text Available Professeur de littérature française à Paris-VIII et psychanalyste, Pierre Bayard a publié en quinze ans une dizaine d’ouvrages critiques dans la collection « Paradoxe » des éditions de Minuit. À croire que cette collection a été créée à sa seule intention tant chacun de ses livres inverse radicalement un principe bien établi et pousse le paradoxe jusqu’à ses ultimes conséquences, voire jusqu’à l’absurde. L’exemple le plus flagrant est ce Comment parler des livres que l’on n’a pas lus ?, qui, ...

  14. A Resolution of the Paradox of Enrichment

    Science.gov (United States)

    Feng, Z. C.; Li, Y. Charles

    2015-06-01

    The paradox of enrichment was observed by Rosenzweig [1971] in a class of predator-prey models. Two of the parameters in the models are crucial for the paradox. These two parameters are the prey's carrying capacity and prey's half-saturation for predation. Intuitively, increasing the carrying capacity due to enrichment of the prey's environment should lead to a more stable predator-prey system. Analytically, it turns out that increasing the carrying capacity always leads to an unstable predator-prey system that is susceptible to extinction from environmental random perturbations. This is the so-called paradox of enrichment. Our resolution here rests upon a closer investigation on a dimensionless number H formed from the carrying capacity and the prey's half-saturation. By recasting the models into dimensionless forms, the models are in fact governed by a few dimensionless numbers including H. The effects of the two parameters: carrying capacity and half-saturation are incorporated into the number H. In fact, increasing the carrying capacity is equivalent (i.e. has the same effect on H) to decreasing the half-saturation which implies more aggressive predation. Since there is no paradox between more aggressive predation and instability of the predator-prey system, the paradox of enrichment is resolved. The so-called instability of the predator-prey system is characterized by the existence of a stable limit cycle in the phase plane, which gets closer and closer to the predator axis and prey axis. Due to random environmental perturbations, this can lead to extinction. We also further explore spatially dependent models for which the phase space is infinite-dimensional. The spatially independent limit cycle which is generated by a Hopf bifurcation from an unstable steady state, is linearly stable in the infinite-dimensional phase space. Numerical simulations indicate that the basin of attraction of the limit cycle is riddled. This shows that spatial perturbations can

  15. Paradox Lost? No, Paradox Found! Reply to Tomasello and Akhtar (2003).

    Science.gov (United States)

    Naigles, Letitia R.

    2003-01-01

    Asserts that the posited paradox between infancy and toddlerhood language was not eliminated by Tomasello and Akhtar's appeal to infants' robust statistical learning abilities. Maintains that scrutiny of their studies supports the resolution that abstracting linguistic form is easy for infants and that toddlers find it difficult to integrate…

  16. Interface state generation after hole injection

    International Nuclear Information System (INIS)

    Zhao, C. Z.; Zhang, J. F.; Groeseneken, G.; Degraeve, R.; Ellis, J. N.; Beech, C. D.

    2001-01-01

    After terminating electrical stresses, the generation of interface states can continue. Our previous work in this area indicates that the interface state generation following hole injection originates from a defect. These defects are inactive in a fresh device, but can be excited by hole injection and then converted into interface states under a positive gate bias after hole injection. There is little information available on these defects. This article investigates how they are formed and attempts to explain why they are sensitive to processing conditions. Roles played by hydrogen and trapped holes will be clarified. A detailed comparison between the interface state generation after hole injection in air and that in forming gas is carried out. Our results show that there are two independent processes for the generation: one is caused by H 2 cracking and the other is not. The rate limiting process for the interface state generation after hole injection is discussed and the relation between the defects responsible for this generation and hole traps is explored. [copyright] 2001 American Institute of Physics

  17. Spin entanglement, decoherence and Bohm's EPR paradox.

    Science.gov (United States)

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  18. Universality of black hole quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); New York Univ., NY (United States). Center for Cosmology and Particle Physics; Gomez, Cesar [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM-CSIC; Luest, Dieter [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Omar, Yasser [Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico; Richter, Benedikt [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico

    2017-01-15

    By analyzing the key properties of black holes from the point of view of quantum information, we derive a model-independent picture of black hole quantum computing. It has been noticed that this picture exhibits striking similarities with quantum critical condensates, allowing the use of a common language to describe quantum computing in both systems. We analyze such quantum computing by allowing coupling to external modes, under the condition that the external influence must be soft-enough in order not to offset the basic properties of the system. We derive model-independent bounds on some crucial time-scales, such as the times of gate operation, decoherence, maximal entanglement and total scrambling. We show that for black hole type quantum computers all these time-scales are of the order of the black hole half-life time. Furthermore, we construct explicitly a set of Hamiltonians that generates a universal set of quantum gates for the black hole type computer. We find that the gates work at maximal energy efficiency. Furthermore, we establish a fundamental bound on the complexity of quantum circuits encoded on these systems, and characterize the unitary operations that are implementable. It becomes apparent that the computational power is very limited due to the fact that the black hole life-time is of the same order of the gate operation time. As a consequence, it is impossible to retrieve its information, within the life-time of a black hole, by externally coupling to the black hole qubits. However, we show that, in principle, coupling to some of the internal degrees of freedom allows acquiring knowledge about the micro-state. Still, due to the trivial complexity of operations that can be performed, there is no time advantage over the collection of Hawking radiation and subsequent decoding. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Linear optics implementation of weak values in Hardy's paradox

    International Nuclear Information System (INIS)

    Ahnert, S.E.; Payne, M.C.

    2004-01-01

    We propose an experimental setup for the implementation of weak measurements in the context of the gedanken experiment known as Hardy's paradox. As Aharonov et al. [Y. Aharonov, A. Botero, S. Popescu, B. Reznik, and J. Tollaksen, Phys. Lett. A301, 130 (2002)] showed, these weak values form a language with which the paradox can be resolved. Our analysis shows that this language is indeed consistent and experimentally testable. It also reveals exactly how a combination of weak values can give rise to an apparently paradoxical result

  20. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  1. Video studies of passage by Anopheles gambiae mosquitoes through holes in a simulated bed net: effects of hole size, hole orientation and net environment.

    Science.gov (United States)

    Sutcliffe, James; Colborn, Kathryn L

    2015-05-13

    Holes in netting provide potential routes for mosquitoes to enter ITNs. Despite this, there is little information on how mosquitoes respond to holes in bed nets and how their responses are affected by hole size, shape and orientation or by ambient conditions around the net. Female Anopheles gambiae (G3) were recorded in a simulated bed net consisting of two sizes of untreated netting-covered behavioural arenas placed above and beside (to simulate the bed net roof and sides respectively) the experimenter who was a source of host cues from 'inside' the net. A round hole of 9 mm or 13 mm diameter was cut into the centre of the netting of each arena. Videos of unfed female mosquitoes in arenas were analysed for time spent flying, walking and standing still and for exit through the hole. The effects of the experimenter on temperature and relative humidity around the simulated net were also measured. Mosquitoes were significantly more active in overhead arenas than in arenas to the side. Hole passage was significantly more likely in smaller arenas than larger ones and for larger holes than smaller ones. In arenas to the side, hole passage rate through small holes was about 50% less likely than what could be explained by area alone. Passage rate through holes in overhead arenas was consistent with hole area. Temperature in arenas did not strongly reflect the experimenter's presence in the simulated net. Relative humidity and absolute humidity in overhead arenas, but not in arenas to the side, were immediately affected by experimenter presence. Higher levels of activity in overhead arenas than in arenas to the side were likely due to the rising heat and humidity plume from the experimenter. Lower than expected passage rates through smaller vertically oriented holes may have been be due to an edge effect that does not apply to horizontally oriented holes. Results suggest that current methods of assessing the importance of physical damage to ITNs may not accurately reflect

  2. The nuclear paradox

    International Nuclear Information System (INIS)

    Eibenschutz, J.

    1989-01-01

    In this work it is discussed the nuclear paradox. One side, the nuclear power is important for technological development, on the other hand, it has been frequently questioned by society. It is pointed out as well, that many other factors are more dangerous to man such as environment polution. (A.C.A.S.)

  3. Einstein-Podolsky-Rosen paradox and measurement of quantum system

    OpenAIRE

    Kladko, Konstantin

    1999-01-01

    Einstein-Podolsky-Rosen (EPR) paradox is considered in a relation to a measurement of an arbitrary quantum system . It is shown that the EPR paradox always appears in a gedanken experiment with two successively joined measuring devices.

  4. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  5. Quantum tunneling radiation from self-dual black holes

    International Nuclear Information System (INIS)

    Silva, C.A.S.; Brito, F.A.

    2013-01-01

    Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton–Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included

  6. Black Hole Entanglement and Quantum Error Correction

    NARCIS (Netherlands)

    Verlinde, E.; Verlinde, H.

    2013-01-01

    It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic

  7. Paradoxical perception of surfaces in the Shepard tabletop illusion

    Science.gov (United States)

    Tyler, Christopher W

    2011-01-01

    The Shepard tabletop illusion, consisting of different perspective embeddings of two identical parallelograms as tabletops, affords a profound difference in their perceived surface shapes. My analysis reveals three further paradoxical aspects of this illusion, in addition to its susceptibility to the ‘inverse perspective illusion’ of the implied orthographic perspective of the table images. These novel aspects of the illusion are: a paradoxical slant of the tabletops, a paradoxical lack of perceived depth, and a paradoxical distortion of the length of the rear legs. The construction of the illusion resembles scenes found in ancient Chinese scroll paintings, and an analysis of the source of the third effect shows that the interpretation in terms of surfaces can account for the difference in treatment of the filled-in versus open forms in the Chinese painting from more than 1000 years ago. PMID:23145230

  8. Dynamical evolution of quasicircular binary black hole data

    International Nuclear Information System (INIS)

    Alcubierre, Miguel; Bruegmann, Bernd; Diener, Peter; Guzman, F. Siddhartha; Hawke, Ian; Hawley, Scott; Herrmann, Frank; Pollney, Denis; Thornburg, Jonathan; Koppitz, Michael; Seidel, Edward

    2005-01-01

    We study the fully nonlinear dynamical evolution of binary black hole data, whose orbital parameters are specified via the effective potential method for determining quasicircular orbits. The cases studied range from the Cook-Baumgarte innermost stable circular orbit (ISCO) to significantly beyond that separation. In all cases we find the black holes to coalesce (as determined by the appearance of a common apparent horizon) in less than half an orbital period. The results of the numerical simulations indicate that the initial holes are not actually in quasicircular orbits, but that they are in fact nearly plunging together. The dynamics of the final horizon are studied to determine physical parameters of the final black hole, such as its spin, mass, and oscillation frequency, revealing information about the inspiral process. We show that considerable resolution is required to extract accurate physical information from the final black hole formed in the merger process, and that the quasinormal modes of the final hole are strongly excited in the merger process. For the ISCO case, by comparing physical measurements of the final black hole formed to the initial data, we estimate that less than 3% of the total energy is radiated in the merger process

  9. Overview of the regional geology of the Paradox Basin Study Region

    International Nuclear Information System (INIS)

    1983-03-01

    The Geologic Project Manager for the Paradox Basin Salt Region (PBSR), Woodward-Clyde Consultants, has conducted geologic studies to characterize the region and evaluate selected geologic formations as potential repositories for the storage and disposal of nuclear waste. Evaluations have been made from the standpoint of engineering feasibility, safety, public health, and resource conflicts. The Regulatory Project Manager for the PBSR, Bechtel National, Inc., has performed environmental characterizations to ensure that data on ecological, socioeconomic, and other environmental factors required by the National Environmental Policy Act of 1969 are considered. This report characterizes, at a regional overview level of detail, the Paradox Basin Study Region Geology. Information sources include the published literature, field trip guidebooks, open file data of the US Geological Survey (USGC) and Utah Geologic and Mineral Survey, university theses, Geo-Ref Computer Search, and various unpublished sources of subsurface data such as well logs. Existing information has been synthesized and characterized. No field work was conducted as part of this study. Where possible, attempts were made to evaluate the data. All results of this study are subject to change as more data become available

  10. An Applet for the Investigation of Simpson's Paradox

    Science.gov (United States)

    Schneiter, Kady; Symanzik, Jurgen

    2013-01-01

    This article describes an applet that facilitates investigation of Simpson's Paradox in the context of a number of real and hypothetical data sets. The applet builds on the Baker-Kramer graphical representation for Simpson's Paradox. The implementation and use of the applet are explained. This is followed by a description of how the applet has…

  11. An alternative resolution to the Mansuripur paradox

    Science.gov (United States)

    Redfern, Francis

    2016-04-01

    In 2013 an article published online by the journal Science declared that the paradox proposed by Masud Mansuripur was resolved. This paradox concerns a point charge-Amperian magnetic dipole system as seen in a frame of reference where they are at rest and one in which they are moving. In the latter frame an electric dipole appears on the magnetic dipole. A torque is then exerted upon the electric dipole by the point charge, a torque that is not observed in the at-rest frame. Mansuripur points out this violates the relativity principle and suggests the Lorentz force responsible for the torque be replaced by the Einstein-Laub force. The resolution of the paradox reported by Science, based on numerous papers in the physics literature, preserves the Lorentz force but depends on the concept of hidden momentum. Here I propose a different resolution based on the overlooked fact that the charge-magnetic dipole system contains linear and angular electromagnetic field momentum. The time rate of change of the field angular-momentum in the frame through which the system is moving cancels that due to the charge-electric dipole interaction. From this point of view hidden momentum is not needed in the resolution of the paradox.

  12. An alternative resolution to the Mansuripur paradox

    International Nuclear Information System (INIS)

    Redfern, Francis

    2016-01-01

    In 2013 an article published online by the journal Science declared that the paradox proposed by Masud Mansuripur was resolved. This paradox concerns a point charge-Amperian magnetic dipole system as seen in a frame of reference where they are at rest and one in which they are moving. In the latter frame an electric dipole appears on the magnetic dipole. A torque is then exerted upon the electric dipole by the point charge, a torque that is not observed in the at-rest frame. Mansuripur points out this violates the relativity principle and suggests the Lorentz force responsible for the torque be replaced by the Einstein–Laub force. The resolution of the paradox reported by Science, based on numerous papers in the physics literature, preserves the Lorentz force but depends on the concept of hidden momentum. Here I propose a different resolution based on the overlooked fact that the charge-magnetic dipole system contains linear and angular electromagnetic field momentum. The time rate of change of the field angular–momentum in the frame through which the system is moving cancels that due to the charge-electric dipole interaction. From this point of view hidden momentum is not needed in the resolution of the paradox. (paper)

  13. The nature of quantum paradoxes

    International Nuclear Information System (INIS)

    Tarozzi, G.; Van der Merwe, A.

    1988-01-01

    The nature of Quantum Paradoxes provides an exhaustive general view of the most recent studies and research carried out by Italian scientists and philosophers of science in the field of the foundations of quantum physics, employing a critical stance and an alternative to the orthodox Copenhagen interpretation. During the last twenty years the Italians have produced a remarkable amount of work on the quantum-mechanical theory of measurement, the interpretation of the wave-function, the axiomatization of quantum formalism, Bell-type theorems and realistic local theories, thus creating one of the most advanced contributions to the problems of understanding Nature and clarifying the origin of the quantum paradoxes. (author). refs.; figs.; tabs

  14. On Hardy's paradox, weak measurements, and multitasking diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Meglicki, Zdzislaw, E-mail: gustav@indiana.edu [Indiana University, Office of the Vice President for Information Technology, 601 E. Kirkwood Ave., Room 116, Bloomington, IN 47405-1223 (United States)

    2011-07-04

    We discuss Hardy's paradox and weak measurements by using multitasking diagrams, which are introduced to illustrate the progress of quantum probabilities through the double interferometer system. We explain how Hardy's paradox is avoided and elaborate on the outcome of weak measurements in this context. -- Highlights: → Hardy's paradox explained and eliminated. → Weak measurements: what is really measured? → Multitasking diagrams: introduced and used to discuss quantum mechanical processes.

  15. A Simple Explanation of the Classic Hydrostatic Paradox

    Science.gov (United States)

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2016-01-01

    An interesting problem in fluid mechanics, with significant educational importance, is the classic hydrostatic paradox. The hydrostatic paradox states the fact that in different shaped containers, with the same base area, which are filled with a liquid of the same height, the applied force by the liquid on the base of each container is exactly the…

  16. Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado

    Science.gov (United States)

    Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.

    2015-01-01

    In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.

  17. Correlation properties of entangled multiphoton states and Bernstein's paradox

    Energy Technology Data Exchange (ETDEWEB)

    Chirkin, A. S., E-mail: aschirkin@rambler.ru; Belyaeva, O. V., E-mail: lisenok.msu@gmail.com; Belinsky, A. V., E-mail: belinsky@inbox.ru [Moscow State University (Russian Federation)

    2013-01-15

    A normally ordered characteristic function (NOCF) of Bose operators is calculated for a number of discrete-variable entangled states (Greenberger-Horne-Zeilinger (GHZ) and Werner (W) qubit states and a cluster state). It is shown that such NOCFs contain visual information on two types of correlations: pseudoclassical and quantum correlations. The latter manifest themselves in the interference terms of the NOCFs and lead to quantum paradoxes, whereas the pseudoclassical correlations of photons and their cumulants satisfy the relations for classical random variables. Three- and four-qubit states are analyzed in detail. An implementation of an analog of Bernstein's paradox on discrete quantum variables is discussed. A measure of quantumness of an entangled state is introduced that is not related to the entropy approach. It is established that the maximum of the degree of quantumness substantiates the numerical values of the coefficients in multiqubit vector states derived from intuitive considerations.

  18. Unified geometric description of black hole thermodynamics

    International Nuclear Information System (INIS)

    Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto

    2008-01-01

    In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.

  19. ‘Firewall’ phenomenology with astrophysical neutrinos

    Science.gov (United States)

    Afshordi, Niayesh; Yazdi, Yasaman K.

    2016-12-01

    One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, ‘firewalls’ have been proposed as an alternative to black hole event horizons. In this paper, we explore the phenomenological implications of black holes possessing a surface or ‘firewall’, and predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. This opens up a new area of research, bridging the non-perturbative physics of quantum gravity with the observational black hole and high energy astrophysics.

  20. ‘Firewall’ phenomenology with astrophysical neutrinos

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Yazdi, Yasaman K

    2016-01-01

    One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, ‘firewalls’ have been proposed as an alternative to black hole event horizons. In this paper, we explore the phenomenological implications of black holes possessing a surface or ‘firewall’, and predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. This opens up a new area of research, bridging the non-perturbative physics of quantum gravity with the observational black hole and high energy astrophysics. (paper)

  1. Intimate partner violence against women and the Nordic paradox.

    Science.gov (United States)

    Gracia, Enrique; Merlo, Juan

    2016-05-01

    Nordic countries are the most gender equal countries in the world, but at the same time they have disproportionally high prevalence rates of intimate partner violence (IPV) against women. High prevalence of IPV against women, and high levels of gender equality would appear contradictory, but these apparently opposite statements appear to be true in Nordic countries, producing what could be called the 'Nordic paradox'. Despite this paradox being one of the most puzzling issues in the field, this is a research question rarely asked, and one that remains unanswered. This paper explores a number of theoretical and methodological issues that may help to understand this paradox. Efforts to understand the Nordic paradox may provide an avenue to guide new research on IPV and to respond to this major public health problem in a more effective way. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Paradoxical choice in rats: Subjective valuation and mechanism of choice.

    Science.gov (United States)

    Ojeda, Andrés; Murphy, Robin A; Kacelnik, Alex

    2018-07-01

    Decision-makers benefit from information only when they can use it to guide behavior. However, recent experiments found that pigeons and starlings value information that they cannot use. Here we show that this paradox is also present in rats, and explore the underlying decision process. Subjects chose between two options that delivered food probabilistically after a fixed delay. In one option ("info"), outcomes (food/no-food) were signaled immediately after choice, whereas in the alternative ("non-info") the outcome was uncertain until the delay lapsed. Rats sacrificed up to 20% potential rewards by preferring the info option, but reversed preference when the cost was 60%. This reversal contrasts with the results found with pigeons and starlings and may reflect species' differences worth of further investigation. Results are consistent with predictions of the Sequential Choice Model (SCM), that proposes that choices are driven by the mechanisms that control action in sequential encounters. As expected from the SCM, latencies to respond in single-option trials predicted preferences in choice trials, and latencies in choice trials were the same or shorter than in single-option trials. We argue that the congruence of results in distant vertebrates probably reflects evolved adaptations to shared fundamental challenges in nature, and that the apparently paradoxical overvaluing of information is not sub-optimal as has been claimed, even though its functional significance is not yet understood. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Scientific information and public opinion. Daily press analysis about ozone hole in the years 1996-1997

    International Nuclear Information System (INIS)

    Bertuzzi, D.; Borrelli, G.

    1999-01-01

    One of ENEA's many activities consists in dealing with the analysis of information strategies. In this case the analysis concerns an environmental issue, the ozone hole which, in spite of the consideration given by the media, is not sufficiently highlighted, as well as in the case of climate changes issue. A survey of the coverage of four daily newspapers was realized; the time period covered by the analysis spans form January 1996 to December 1997, 77 articles in total. The newspapers involved are: La Repubblica, Il Corriere della Sera, L'Unita' on a national scale, and Il Resto del Carlino on a regional scale. The number of articles analyzed is divided as follows: 26 for the Repubblica, 24 for the Corriere della Sera, 21 for the Unita', 6 for the Resto del Carlino. The purpose of the work was to detect quality and quantity indicators of the Italian press about the ozone hole issue and possible environmental risks conveyed to the public, using the classical methods of the Content analysis. The analysis, carried out through a questionnaire realized for another research on climate change and daily press and appropriately readapted, consisted of 35 questions pointing out the fundamental characteristics of each article: (i) morphological characteristics; (ii) modalities describing the ozone hole; (iii) communication connotations [it

  4. Unveiling the Mobile Learning Paradox.

    Science.gov (United States)

    Mather, Carey; Cummings, Elizabeth

    2015-01-01

    A mobile learning paradox exists in Australian healthcare settings. Although it is increasingly acknowledged that timely, easy, and convenient access to health information using mobile learning technologies can enhance care and improve patient outcomes, currently there is an inability for nurses to access information at the point of care. Rapid growth in the use of mobile technology has created challenges for learning and teaching in the workplace. Easy access to educational resources via mobile devices challenges traditional strategies of knowledge and skill acquisition. Redesign of learning and teaching in the undergraduate curriculum and the development of policies to support the use of mobile learning at point of care is overdue. This study explored mobile learning opportunities used by clinical supervisors in tertiary and community-based facilities in two Australian States. Individual, organisation and systems level governance were sub-themes of professionalism that emerged as the main theme and impacts on learning and teaching in situ in healthcare environments. It is imperative healthcare work redesign includes learning and teaching that supports professional identity formation of students during work integrated learning.

  5. The Black Star: Lived Paradoxes in the Poetry of Paul Celan

    Directory of Open Access Journals (Sweden)

    Dorit Lemberger

    2017-12-01

    Full Text Available Celan’s poetry is deemed universal and experimental, and its main characteristic is to “explore possibilities of sense-making.” His poetry is also acknowledged to be the apex of Jewish post-Holocaust poetry, contending with existentialist questions such as the existence God in the Holocaust and the possibility of restoring Jewish identity. In this paper I will examine how Celan uses paradoxes in his poetry to create atheistic and skeptical expressions. The technique of paradox expresses the concurrent existence of two contradictory possibilities; the article will present three types of paradox typical of Celan’s poetry: (1 the affirmation and denial of the existence of God; (2 the mention of rituals from Jewish tradition, while voiding them of their conventional meaning; (3 the use of German, specifically, for the reconstitution of Jewish identity. My main argument is that paradox in Celan’s work creates a unique voice of atheism and skepticism, since it preserves the ideas that it rejects as a source for fashioning meaning. In order to explore how Celan constructs paradox, I will use Wittgenstein’s resolutions of the paradoxes that emerge from the use of language, and I will show how they illuminate Celan’s use of this technique. The article will examine three Wittgensteinian methods of resolving the paradoxes that Celan employs in his oeuvre: highlighting, containing, and dissolving.

  6. Time symmetry and the Einstein paradox

    International Nuclear Information System (INIS)

    Costa de Beauregard, O.

    1977-01-01

    The characteristic difference between the paleoquantal calculation (addition of partial probabilities) and the neoquantal one (addition of partial amplitudes) for the correlation of photon polarizations in cascade transitions is derived in terms of elementary trigonometry. This deliberate use of simple formulae aims at a transparent rendering of the change in paradigm required by the so-called EPR paradox (which is truly the 1927 Einstein paradox), namely that 1) the two photons do not possess polarizations of their own when leaving the source C, but borrow one later, when interacting with the analysers L and N; 2) the die is thus not cast at C, but later, at L and N; 3) the correlation between the measurements at L and N is tied through C, in their common past. The tight connection between this ''Einstein nonseparability'' and the nonlocality in Feynman's ''theory of positrons'' is demonstrated through an analysis of the e + e - annihilation into two photons. Thus the Einstein paradox corresponds, in the ''new wavelike probability calculus'', to the Loschmid and Zermelo sort of paradox in the old probability calculus. That is, it contrasts the intrinsic time symmetry existing at the elementary level to the factlike macroscopic time asymmetry. The discussion deliberately by-passes the hidden-variable problem, the model in this being Einstein's by-passing of the mechanical aether when proposing special relativity. It is believed today, like in 1905, the problem is tayloring the wording after the (operationally good) mathematics. Moreover, that the change in paradigm, which is needed, comes through a victory of formalism over modelism. (author)

  7. Navigating Instructional Dialectics: Empirical Exploration of Paradox in Teaching

    Science.gov (United States)

    Thompson, Blair; Rudick, C. Kyle; Kerssen-Griep, Jeff; Golsan, Kathryn

    2018-01-01

    Navigating contradiction represents an integral part of the teaching process. While educational literature has discussed the paradoxes that teachers experience in the classroom, minimal empirical research has analyzed the strategies teachers employ to address these paradoxes. Using relational dialectics as a theoretical framework for understanding…

  8. Mimesis, fiction, paradoxes

    Directory of Open Access Journals (Sweden)

    Françoise Lavocat

    2010-04-01

    Full Text Available Les théories contemporaines de la fiction, comme les poétiques de la Renaissance, privilégient une conception de la mimesis fondée sur la vraisemblance : la démonstration du profit cognitif et moral de la fiction passe toujours par une définition de l’imitation (de quelque façon qu’on la définisse fondée sur la rationalité. L’auteur de cet article examine tout d’abord le statut des contradictions et de l’impossible chez quelques théoriciens actuels (principalement J.-M. Schaeffer, M.-L. Ryan, L. Doležel et poéticiens du 16e siècle (L. Castelvetro et F. Patrizi. Sont ensuite étudiées la forme et la fonction que prend l’impossible dans trois fictions narratives de la Renaissance. L’hypothèse majeure qui est défendue est que ces paradoxes permettent de penser le non-existant, dans la continuité de la scolastique médiévale et en relation avec une problématique religieuse, sérieuse ou parodique. Par là même, et en raison de leur auto-référentialité constitutive, les paradoxes inscrivent dans la fiction une réflexion sur elle-même qui n’a rien d’une apologie. La pensée de la fiction s’articule en définitive de façon bien différente dans les théories et dans les fictions elles-mêmes.Like Renaissance poetics, contemporary theories of fiction do favour a conception of mimesis based on likelihood. In order to underscore the benefits of fiction, in terms of cognition or ethics, both ancient and present-day authors usually identify imitation (however this is understood as a kind of rationality. The aim of this article is to question the status of contradictions and impossibilities, first in current theories of fiction (J-M Schaeffer, M.-L. Ryan, L. Doležel, then in two sixteenth century comments of Aristotle (by L. Castelvetro and F. Patrizi. In the following steps, forms and functions of the impossible are studied in three narratives of the Renaissance. The main hypothesis here is the following: in

  9. New physics and paradox

    International Nuclear Information System (INIS)

    Van der Spuy, E.

    1983-01-01

    Conflict between the finite and infinite in theoretical physics often results in paradox. By measuring phenomena for which such conflict exists, physicists may be able to discover in each case the basis of the conflict and thus may eventually reformulate physical laws

  10. A Zeno-like paradox in linear interaction

    International Nuclear Information System (INIS)

    Weiss, J.

    1998-01-01

    The so-called Zeno-like paradox of infinite regressions and progressions connected by light cones, typical to particle dynamics of direct-interaction (ADD) theory, is examined for linear AAD interaction. It is shown that the paradox is resolved via convenient evaluating integral expressions which determine conserved quantities of Lorentz group to exhibit integral-free forms. As a result the formalism is also permitted to emerge the field confinement as one of substantial properties of linear interaction. (author)

  11. Spin entanglement, decoherence and Bohm's EPR paradox

    OpenAIRE

    Cavalcanti, E. G.; Drummond, P. D.; Bachor, H. A.; Reid, M. D.

    2007-01-01

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with cu...

  12. A Resolution of the Paradox of Enrichment

    OpenAIRE

    Feng, Z. C.; Li, Y. Charles

    2011-01-01

    The paradox of enrichment was observed by M. Rosenzweig in a class of predator-prey models. Two of the parameters in the models are crucial for the paradox. These two parameters are the prey's carrying capacity and prey's half-saturation for predation. Intuitively, increasing the carrying capacity due to enrichment of the prey's environment should lead to a more stable predator-prey system. Analytically, it turns out that increasing the carrying capacity always leads to an unstable predator-p...

  13. Black holes as critical point of quantum phase transition.

    Science.gov (United States)

    Dvali, Gia; Gomez, Cesar

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  14. Rescuing complementarity with little drama

    International Nuclear Information System (INIS)

    Bao, Ning; Bouland, Adam; Chatwin-Davies, Aidan; Pollack, Jason; Yuen, Henry

    2016-01-01

    The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it “little-drama”) which is the “complementarity dual” of scrambling of information on the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the information-theoretic task that an observer must perform after crossing the event horizon of a Schwarzschild black hole in order to verify a violation of monogamy of entanglement. We find that the time required to complete a necessary subroutine of this task, namely the decoding of Bell pairs from the interior and the late radiation, takes longer than the maximum amount of time that an observer can spend inside the black hole before hitting the singularity. Therefore, an infalling observer cannot observe monogamy violation before encountering the singularity.

  15. Rescuing complementarity with little drama

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 East California Boulevard, Pasadena (United States); Bouland, Adam [Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge (United States); Chatwin-Davies, Aidan; Pollack, Jason [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 East California Boulevard, Pasadena (United States); Yuen, Henry [Computer Science Division, University of California, Berkeley,Berkeley (United States)

    2016-12-07

    The AMPS paradox challenges black hole complementarity by apparently constructing a way for an observer to bring information from the outside of the black hole into its interior if there is no drama at its horizon, making manifest a violation of monogamy of entanglement. We propose a new resolution to the paradox: this violation cannot be explicitly checked by an infalling observer in the finite proper time they have to live after crossing the horizon. Our resolution depends on a weak relaxation of the no-drama condition (we call it “little-drama”) which is the “complementarity dual” of scrambling of information on the stretched horizon. When translated to the description of the black hole interior, this implies that the fine-grained quantum information of infalling matter is rapidly diffused across the entire interior while classical observables and coarse-grained geometry remain unaffected. Under the assumption that information has diffused throughout the interior, we consider the difficulty of the information-theoretic task that an observer must perform after crossing the event horizon of a Schwarzschild black hole in order to verify a violation of monogamy of entanglement. We find that the time required to complete a necessary subroutine of this task, namely the decoding of Bell pairs from the interior and the late radiation, takes longer than the maximum amount of time that an observer can spend inside the black hole before hitting the singularity. Therefore, an infalling observer cannot observe monogamy violation before encountering the singularity.

  16. Women's understanding of the "Nice guy paradox": a phenomenological study

    OpenAIRE

    2010-01-01

    M.A. The Nice Guy Paradox is a provocative perception that is commonly expressed within society and the mass media. According to this perception, nice guys are less successful in their relationships with women than other men. The Nice Guy Paradox causes much frustration and confusion for self-proclaimed nice guys. In addition, the implications of this perception may negatively influence the way in which men relate to women. For instance, the Nice Guy Paradox implies that if men want to be ...

  17. The Banach-Tarski paradox

    CERN Document Server

    Wagon, Stan

    1985-01-01

    The Banach-Tarski paradox is a most striking mathematical construction: it asserts that a solid ball may be taken apart into finitely many pieces that can be rearranged using rigid motions to form a ball twice as large as the original. This volume explore

  18. Separating models, ideas, and data to avoid a paradox : Rejoinder to Humphry

    NARCIS (Netherlands)

    Sijtsma, K.; Emons, W.H.M.

    2013-01-01

    This article is a rejoinder to Humphry’s (2013) comment on Sijtsma (2012). Sijtsma argued that the Rasch paradox does not exist but Humphry replies that the Rasch paradox can occur provided the measurement procedure is precise enough. The rejoinder argues that the debates about the Rasch paradox

  19. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    International Nuclear Information System (INIS)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil

    1985-01-01

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  20. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1985-03-15

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  1. No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox

    International Nuclear Information System (INIS)

    Perez, Alejandro

    2015-01-01

    In an approach to quantum gravity where space-time arises from coarse graining of fundamentally discrete structures, black hole formation and subsequent evaporation can be described by a unitary evolution without the problems encountered by the standard remnant scenario or the schemes where information is assumed to come out with the radiation during evaporation (firewalls and complementarity). The final state is purified by correlations with the fundamental pre-geometric structures (in the sense of Wheeler), which are available in such approaches, and, like defects in the underlying space-time weave, can carry zero energy. (paper)

  2. No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox

    Science.gov (United States)

    Perez, Alejandro

    2015-04-01

    In an approach to quantum gravity where space-time arises from coarse graining of fundamentally discrete structures, black hole formation and subsequent evaporation can be described by a unitary evolution without the problems encountered by the standard remnant scenario or the schemes where information is assumed to come out with the radiation during evaporation (firewalls and complementarity). The final state is purified by correlations with the fundamental pre-geometric structures (in the sense of Wheeler), which are available in such approaches, and, like defects in the underlying space-time weave, can carry zero energy.

  3. Does black-hole entropy make sense

    International Nuclear Information System (INIS)

    Wilkins, D.

    1979-01-01

    Bekenstein and Hawking saved the second law of thermodynamics near a black hole by assigning to the hole an entropy Ssub(h) proportional to the area of its event horizon. It is tempting to assume that Ssub(h) possesses all the features commonly associated with the physical entropy. Kundt has shown, however, that Ssub(h) violates several reasonable physical expectations. This criticism is reviewed, augmenting it as follows: (a) Ssub(h) is a badly behaved state function requiring knowledge of the hole's future history; and (b) close analogs of event horizons in other space-times do not possess an 'entropy'. These questions are also discussed: (c) Is Ssub(h) suitable for all regions of a black-hole space-time. And (b) should Ssub(h) be attributed to the exterior of a white hole. One can retain Ssub(h) for the interior (respectively, exterior) of a black (respectively, white) hole, but is rejected as contrary to the information-theoretic derivation of horizon entropy given by Berkenstein. The total entropy defined by Kundt (all ordinary entropy on space-section cutting through the hole, no horizon term) and that of Bekenstein-Hawking (ordinary entropy outside horizon plus horizon term) appear to be complementary concepts with separate domains of validity. In the most natural choice, an observer inside a black hole will use Kundt's entropy, and one remaining outside that of Bekenstein-Hawking. (author)

  4. Disability reconsidered: the paradox of physical therapy.

    Science.gov (United States)

    Roush, Susan E; Sharby, Nancy

    2011-12-01

    The purposes of this perspective article are: (1) to explore models of disability from the perspective of the academic discipline of disability studies (DS), (2) to consider the paradox of improving functional capacities while valuing disability as diversity, (3) to identify how physical therapy's use of the International Classification of Functioning, Disability and Health (ICF) disablement model intersects with various disability models, and (4) to apply this broader understanding of disability to physical therapist practice, education, and research. The DS literature has been critical of rehabilitation professionals, particularly targeting the medical model of disability. In contrast, advocates for a social model of disability recognize disability as diversity. It is paradoxical for physical therapy to simultaneously work to ameliorate disability while celebrating it as diversity. The ICF biopsychosocial disablement model offers a mechanism to practice within this paradox and suggests that it is no longer sufficient to conceptualize disability as a purely individual matter that requires attention in isolation from the impact of the larger society.

  5. Identifying Quantum Structures in the Ellsberg Paradox

    Science.gov (United States)

    Aerts, Diederik; Sozzo, Sandro; Tapia, Jocelyn

    2014-10-01

    Empirical evidence has confirmed that quantum effects occur frequently also outside the microscopic domain, while quantum structures satisfactorily model various situations in several areas of science, including biological, cognitive and social processes. In this paper, we elaborate a quantum mechanical model which faithfully describes the Ellsberg paradox in economics, showing that the mathematical formalism of quantum mechanics is capable to represent the ambiguity present in this kind of situations, because of the presence of contextuality. Then, we analyze the data collected in a concrete experiment we performed on the Ellsberg paradox and work out a complete representation of them in complex Hilbert space. We prove that the presence of quantum structure is genuine, that is, interference and superposition in a complex Hilbert space are really necessary to describe the conceptual situation presented by Ellsberg. Moreover, our approach sheds light on `ambiguity laden' decision processes in economics and decision theory, and allows to deal with different Ellsberg-type generalizations, e.g., the Machina paradox.

  6. The Amazon's energetic paradox

    International Nuclear Information System (INIS)

    Silva, Marcos Vinicius Miranda da; Bermann, Celio

    1999-01-01

    The main energy sources in Amazon region are hydroelectric, biomass, and natural gas. Although abundance of these resources, the energy consumption in this region is one of the most low of Brazil. The article overviews this paradox. In this context, economical, geopolitical, and technical aspects are presented

  7. Reinterpretaion of the friendship paradox

    Science.gov (United States)

    Fu, Jingcheng; Wu, Jianliang

    The friendship paradox (FP) is a sociological phenomenon stating that most people have fewer friends than their friends do. It is to say that in a social network, the number of friends that most individuals have is smaller than the average number of friends of friends. This has been verified by Feld. We call this interpreting method mean value version. But is it the best choice to portray the paradox? In this paper, we propose a probability method to reinterpret this paradox, and we illustrate that the explanation using our method is more persuasive. An individual satisfies the FP if his (her) randomly chosen friend has more friends than him (her) with probability not less than 1/2. Comparing the ratios of nodes satisfying the FP in networks, rp, we can see that the probability version is stronger than the mean value version in real networks both online and offline. We also show some results about the effects of several parameters on rp in random network models. Most importantly, rp is a quadratic polynomial of the power law exponent γ in Price model, and rp is higher when the average clustering coefficient is between 0.4 and 0.5 in Petter-Beom (PB) model. The introduction of the probability method to FP can shed light on understanding the network structure in complex networks especially in social networks.

  8. Policy commercializing nonprofits in health: the history of a paradox from the 19th century to the ACA.

    Science.gov (United States)

    Fox, Daniel M

    2015-03-01

    POLICY POINTS: Health policy in the United States has, for more than a century, simultaneously and paradoxically incentivized the growth as well as the commercialization of nonprofit organizations in the health sector. This policy paradox persists during the implementation of the Affordable Care Act of 2010. For more than a century, policy in the United States has incentivized both expansion in the number and size of tax-exempt nonprofit organizations in the health sector and their commercialization. The implementation of the Affordable Care Act of 2010 (ACA) began yet another chapter in the history of this policy paradox. This article explores the origin and persistence of the paradox using what many scholars call "interpretive social science." This methodology prioritizes history and contingency over formal theory and methods in order to present coherent and plausible narratives of events and explanations for them. These narratives are grounded in documents generated by participants in particular events, as well as conversations with them, observing them in action, and analysis of pertinent secondary sources. The methodology achieves validity and reliability by gathering information from multiple sources and making disciplined judgments about its coherence and correspondence with reality. A paradox with deep historical roots persists as a result of consensus about its value for both population health and the revenue of individuals and organizations in the health sector. Participants in this consensus include leaders of governance who have disagreed about many other issues. The paradox persists because of assumptions about the burden of disease and how to address it, as well as about the effects of biomedical science that is translated into professional education, practice, and the organization of services for the prevention, diagnosis, treatment, and management of illness. The policy paradox that has incentivized the growth and commercialization of nonprofits in

  9. What does a black hole look like?

    CERN Document Server

    Bailyn, Charles D

    2014-01-01

    Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...

  10. Optimal management of idiopathic macular holes

    Directory of Open Access Journals (Sweden)

    Madi HA

    2016-01-01

    Full Text Available Haifa A Madi,1,* Ibrahim Masri,1,* David H Steel1,2 1Sunderland Eye Infirmary, Sunderland, 2Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle, UK *These authors contributed equally to this work Abstract: This review evaluates the current surgical options for the management of idiopathic macular holes (IMHs, including vitrectomy, ocriplasmin (OCP, and expansile gas use, and discusses key background information to inform the choice of treatment. An evidence-based approach to selecting the best treatment option for the individual patient based on IMH characteristics and patient-specific factors is suggested. For holes without vitreomacular attachment (VMA, vitrectomy is the only option with three key surgical variables: whether to peel the inner limiting membrane (ILM, the type of tamponade agent to be used, and the requirement for postoperative face-down posturing. There is a general consensus that ILM peeling improves primary anatomical hole closure rate; however, in small holes (<250 µm, it is uncertain whether peeling is always required. It has been increasingly recognized that long-acting gas and face-down positioning are not always necessary in patients with small- and medium-sized holes, but large (>400 µm and chronic holes (>1-year history are usually treated with long-acting gas and posturing. Several studies on posturing and gas choice were carried out in combination with ILM peeling, which may also influence the gas and posturing requirement. Combined phacovitrectomy appears to offer more rapid visual recovery without affecting the long-term outcomes of vitrectomy for IMH. OCP is licensed for use in patients with small- or medium-sized holes and VMA. A greater success rate in using OCP has been reported in smaller holes, but further predictive factors for its success are needed to refine its use. It is important to counsel patients realistically regarding the rates of success with

  11. The Paradox of Openness

    DEFF Research Database (Denmark)

    Laursen, Keld; Salter, Ammon

    2014-01-01

    To innovate, firms often need to draw from, and collaborate with, a large number of actors from outside their organization. At the same time, firms need also to be focused on capturing the returns from their innovative ideas. This gives rise to a paradox of openness—the creation of innovations of...... or collaborate with competitors. We explore the implications of these findings for the literature on open innovation and innovation strategy.......To innovate, firms often need to draw from, and collaborate with, a large number of actors from outside their organization. At the same time, firms need also to be focused on capturing the returns from their innovative ideas. This gives rise to a paradox of openness—the creation of innovations...... often requires openness, but the commercialization of innovations requires protection. Based on econometric analysis of data from a UK innovation survey, we find a concave relationship between firms’ breadth of external search and formal collaboration for innovation, and the strength of the firms...

  12. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  13. Bernstein's paradox of entangled quantum states

    International Nuclear Information System (INIS)

    Belinsky, A V; Chirkin, A S

    2013-01-01

    Bernstein's classical paradox of a regular colored-faced tetrahedron, while designed to illustrate the subtleties of probability theory, is strongly flawed in being asymmetric. Faces of tetrahedron are nonequivalent: three of them are single-colored, and one is many-colored. Therefore, even prior to formal calculations, a strong suspicion as to the independence of the color resulting statistics arises. Not so with entangled quantum states. In the schematic solutions proposed, while photon detection channels are completely symmetric and equivalent, the events that occur in them turn out to be statistically dependent, making the Bernstein paradox even more impressive due to the unusual behavior of quantum particles not obeying classical laws. As an illustrative example of the probability paradox, Greenberger–Horne–Zeilinger multiqubit states are considered. (methodological notes)

  14. Where Was Everybody? Olaf Stapledon and the Fermi Paradox

    Science.gov (United States)

    Baxter, S.

    In 1948 Olaf Stapledon gave an address to the BIS in which he summarised his vision of mankind's cosmic future: `One can imagine some sort of cosmical community of worlds ...' One might ask, however, since the universe is vastly older than mankind, why races on other worlds have not already built such a community. This is a `Fermi Paradox' question. The Paradox is based on the observation that there has been time for extraterrestrial intelligence to arise and colonise the Galaxy many times over, yet we see no sign of such endeavours. In this paper Stapledon's novels are retrospectively analysed from the point of view of the Fermi Paradox. In Last and First Men (1930) humanity is forever isolated because life and mind are rare in the Galaxy, and interstellar distances are too large ever to be traversed. These are classic candidate Fermi `solutions'. The `solution' implicit in Star Maker (1937) might be criticised in that it posits that humanity lives at a special epoch, with the cosmically transforming development of interstellar travel occurring a `mere' ten billion years after mankind, in a universe supposedly ~200bn years old. Stapledon died in 1950, the year the Paradox was formulated, and was probably unaware of the Paradox. However to apply retrospectively Fermi thinking to Stapledon's cosmologies is to gain a new insight into the author's philosophy.

  15. Quantum Bayesian networks with application to games displaying Parrondo's paradox

    Science.gov (United States)

    Pejic, Michael

    Bayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market---it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples. Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.

  16. Phases of information release during black hole evaporation

    International Nuclear Information System (INIS)

    Brustein, Ram; Medved, A.J.M.

    2014-01-01

    In a recent article, we have shown how quantum fluctuations of the background geometry modify Hawking’s density matrix for black hole (BH) radiation. Hawking’s diagonal matrix picks up small off-diagonal elements whose influence becomes larger with the number of emitted particles. We have calculated the “time-of-first-bit', when the first bit of information comes out of the BH, and the “transparency time', when the rate of information release becomes order unity. We have found that the transparency time is equal to the “Page time”, when the BH has lost half of its initial entropy to the radiation, in agreement with Page’s results. Here, we improve our previous calculation by keeping track of the time of emission of the Hawking particles and their back-reaction on the BH. Our analysis reveals a new time scale, the radiation “coherence time”, which is equal to the geometric mean of the evaporation time and the light crossing time. We find, as for our previous treatment, that the time-of-first-bit is equal to the coherence time, which is much shorter than the Page time. But the transparency time is now much later than the Page time, just one coherence time before the end of evaporation. Close to the end, when the BH is parametrically of Planckian dimensions but still large, the coherence time becomes parametrically equal to the evaporation time, thus allowing the radiation to purify. We also determine the time dependence of the entanglement entropy of the early and late-emitted radiation. This entropy is small during most of the lifetime of the BH, but our qualitative analysis suggests that it becomes parametrically maximal near the end of evaporation

  17. Virtual Black Holes and Space-Time Structure

    Science.gov (United States)

    't Hooft, Gerard

    2018-01-01

    In the standard formalism of quantum gravity, black holes appear to form statistical distributions of quantum states. Now, however, we can present a theory that yields pure quantum states. It shows how particles entering a black hole can generate firewalls, which however can be removed, replacing them by the `footprints' they produce in the out-going particles. This procedure can preserve the quantum information stored inside and around the black hole. We then focus on a subtle but unavoidable modification of the topology of the Schwarzschild metric: antipodal identification of points on the horizon. If it is true that vacuum fluctuations include virtual black holes, then the structure of space-time is radically different from what is usually thought.

  18. Galileo's kinematical paradox and the role of resistive forces

    International Nuclear Information System (INIS)

    Aguiar, C E; Soares, V; Tort, A C

    2014-01-01

    We discuss Galileo's kinematical ‘paradox’ taking into account the effects of sliding friction and of resistive forces proportional to velocity. We show that sliding friction eliminates the paradox but still allows for very simple synchronous curves. Perhaps surprisingly, Galileo's paradox is preserved when the resistive force is proportional to velocity. (paper)

  19. Hawking's bid to save quantum theory from black holes

    Science.gov (United States)

    Cho, Adrian

    2018-03-01

    When Albert Einstein died in 1955, he had spent lonely decades trying in vain to unify the theories of gravity and electromagnetism. Stephen Hawking, the great British physicist who died last week at age 76, also worked until the end. But he focused on perhaps the most important problem in his area of physics, one his own work had posed: How do black holes preserve information encoded in the material that falls into them? Hawking realized in 1974 that through a subtle quantum effect a black hole can radiate energy and evaporate. But then a black hole should destroy any infalling information, which cannot come back out in the random radiation. Such information loss would wreck quantum mechanics, and Hawking spent much of his later years trying to figure out how a black hole could preserve information after all, even as the degenerative nerve disease amyotrophic lateral sclerosis rendered him immobile and able to speak only through a computerized voice synthesizer. Ironically, Hawking's disability may have helped him avoid the isolation that enveloped Einstein, as Hawking had to rely on collaborators to flesh out his ideas and so remained connected to his peers.

  20. Energy flow in a bound electromagnetic field: resolution of apparent paradoxes

    International Nuclear Information System (INIS)

    Kholmetskii, A L; Yarman, T

    2008-01-01

    In this paper, we present a resolution of apparent paradoxes formulated in (Kholmetskii A L 2006 Apparent paradoxes in classical electrodynamics: the energy-momentum conservation law for a bound electromagnetic field Eur. J. Phys. 27 825-38; Kholmetskii A L and Yarman T 2008 Apparent paradoxes in classical electrodynamics: a fluid medium in an electromagnetic field Eur. J. Phys. 29 1127) and dealing with the energy flux in a bound electromagnetic field

  1. Consistent resolution of some relativistic quantum paradoxes

    International Nuclear Information System (INIS)

    Griffiths, Robert B.

    2002-01-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics

  2. A new explanation of the extinction paradox

    International Nuclear Information System (INIS)

    Berg, M.J.; Sorensen, C.M.; Chakrabarti, A.

    2011-01-01

    This work presents a new explanation for the extinction paradox and shows that the canonical explanations are incorrect. This paradox refers to the large size limit of a particle's extinction cross section. It is called a paradox because the geometrical optics approximation, which should be valid in this limit, predicts a cross section that is half of the true value. The new explanation is achieved by formulating the scattered wave in terms of an integral over the particle's surface where the seemingly unrelated Ewald-Oseen theorem appears in the formulation. By expressing the cross section in terms of this surface integral, the Ewald-Oseen theorem is analytically connected to the cross section. Several illustrations are used to reveal the significance of this connection: The paradox is seen to be a consequence of the requirement that the incident wave be canceled within the particle by secondary radiation from its own internal field. Following this, the canonical explanations are examined to reveal serious problems. In the process, the same asymptotic extinction behavior is shown to occur for small highly refractive dielectric particles, and thus is not just a large particle size or small wavelength effect as is often stated. The traditional explanations cannot account for this behavior while the new one actually predicts it. All in all, this work constitutes a fundamental reworking of 60 years of accepted understanding for the cause of the asymptotic behavior of the extinction cross section.

  3. Design principles of paradoxical signaling in the immune system

    Science.gov (United States)

    Hart, Yuval

    A widespread feature of cell-cell signaling systems is paradoxical pleiotropy: the same secreted signaling molecule can induce opposite effects in the responding cells. For example, the cytokine IL-2 can promote proliferation and death of T-cells. The role of such paradoxical signaling remains unclear. We suggest that this mechanism provides homeostatic concentration of cells, independent of initial conditions. The crux of the paradoxical mechanism is the combination of a positive and a negative feedback loops creating two stable states - an OFF state and an ON state. Experimentally, we found that CD4 + cells grown in culture with a 30-fold difference in initial concentrations reached a homeostatic concentration nearly independent of initial cell levels (ON-state). Below an initial threshold, cell density decayed to extinction (OFF-state). Mathematical modeling explained the observed cell and cytokine dynamics and predicted conditions that shifted cell fate from homeostasis to the OFF-state. We suggest that paradoxical signaling provides cell circuits with specific dynamical features that are robust to environmental perturbations.

  4. The green paradox of the economics of exhaustible resources

    International Nuclear Information System (INIS)

    Cairns, Robert D.

    2014-01-01

    The green paradox states that an increasing tax on emissions of carbon dioxide, consonant with the expected increase in their marginal damages, may induce oil producers to shift their production toward the present and thereby to exacerbate the problem of climatic change. The model is based on Hotelling models of resource use that do not take the natural and technical features of oil production into account. Natural features include the decline of production through time according to a decline curve. Technical features include the requirement to sink investment in productive capacity. A model of a profit-maximizing firm indicates that, if these features are taken into account, the prediction of the green paradox is unlikely. - Highlights: • The green paradox is a direct application of Hotelling′s rule from the economics of exhaustible resources. • Hotelling′s analysis was a profound contribution to economic thought but evidence for it is weak. • Hotelling-style analysis assumes incorrectly that production can be rearranged at will among time periods. • Technological and geological features of oil production make the prediction of the green paradox unlikely

  5. σ-holes and π-holes: Similarities and differences.

    Science.gov (United States)

    Politzer, Peter; Murray, Jane S

    2018-04-05

    σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  7. Traversing boundaries: thrombus in transit with paradoxical embolism

    Directory of Open Access Journals (Sweden)

    Varun Miriyala

    2016-09-01

    Full Text Available A 72-year-old male is diagnosed with paradoxical embolus after he presented with concurrent deep vein thrombosis, stroke, and multiple arterial emboli in the presence of a patent foramen ovale (PFO. Paradoxical embolus requires the passage of a thrombus from the venous into the arterial circulation through a right-to-left shunt leading to systemic embolism. But, despite the high incidence of PFO (27.3% across all age groups by autopsy, paradoxical embolism (PDE is uncommon, representing <2% of all arterial emboli. We present a case report where a thrombus has been directly observed passing through the PFO during an echocardiogram study; thus, clearly delineating the true cause of multiple thromboemboli and stoke in our patient. Subsequent Transesophageal Echocardiography (TEE also interestingly showed the thrombus in transit in the aorta and pulmonary artery.

  8. Progress towards 3D black hole merger simulations

    International Nuclear Information System (INIS)

    Seidel, E.

    2001-01-01

    I review recent progress in 3D numerical relativity, focused on simulations involving black holes evolved with singularity avoiding slicings, but also touching on recent results in advanced techniques like black hole excision. After a long series of axisymmetric and perturbative studies of distorted black holes and black hole collisions, similar studies were carried out with full 3D codes. The results showed that such black hole simulations can be carried out extremely accurately, although instabilities plague the simulation at uncomfortably early times. However, new formulations of Einstein's equations allow much more stable 3D evolutions than ever before, enabling the first studies of 3D gravitational collapse to a black hole. With these new formulations, for example, it has been possible to perform the first detailed simulations of 3D grazing collisions of black holes with unequal mass, spin, and with orbital angular momentum. I discuss the 3D black hole physics that can now be studied, and prospects for the future, which look increasingly bright due to recent progress in formulations, black hole excision, new gauge conditions, and larger computers. Simulations may soon be able to provide information about the final plunge of two black holes, of relevance for gravitational wave astronomy. (author)

  9. Explaining seemingly paradoxical consumer experiences: conjoining weekly road rage and church attendance.

    Science.gov (United States)

    Gau, Li-Shiue; Woodside, Arch G; Martin, Drew

    2015-02-01

    The purposes of the current study are threefold: Provide evidence that an extreme paradoxical group exists-people frequently attending church and exhibiting road rage, profile this group, and frame possible explanations for the seemingly paradoxical behaviors. This study employs data from a national (USA) lifestyle survey conducted by Market Facts with 3,350 American respondents. The major questions asked about church participation and road-rage behavior ("giving a finger" and "flashing headlights"). Nomologically, relevant activities include 3 items for church goers and 3 items for road-rage givers. Additionally, 14 items profiled the lifestyles of the unique paradoxical behavior segment. Utilizing cross-tabulation tables, property space analyses identify the double extreme (XX) group (18 people) and other 6 groups with a significant chi-square test, confirming the extreme group exists. Analyses of variance test results show that comparing nomologically relevant activities among the seven groups is all statistically significant, indicating the nomological validity is met. Overall, the XX group tends to have more males, be younger, and have a higher proportion of people working in sales. The profile of lifestyle analyses shows the XX group members have both high ambitions and expectations, might be very frustrated individuals, and equip with the adventurous and masculine traits related to aggression. The XX behavior group's demographic and psychographic characteristics portray similar lifestyles that differ from other groups. Case-based analyses provide further contextual information of nuances to XX segment individuals. The limited energy theory, the Eagleman's theory of unconscious mind, and justification theory help to explain why people conjointly go to church and commit road rage. Addressing chronic paradoxical behaviors provides implications for social de-marketing to reduce aggressive anti-social behavior such as road rage. Frequent church attendance may

  10. Horizon strings and interior states of a black hole

    Directory of Open Access Journals (Sweden)

    K.P. Yogendran

    2015-11-01

    Full Text Available We provide an explicit construction of classical strings that have endpoints on the horizons of the 2D Lorentzian black hole. We argue that this is a dual description of geodesics that are localized around the horizon which are the Lorentzian counterparts of the winding strings of the Euclidean black hole (the cigar geometry. Identifying these with the states of the black hole, we can expect that issues of black hole information loss can be posed sharply in terms of a fully quantizable string theory.

  11. Mechanical paradox: the uphill roller

    International Nuclear Information System (INIS)

    Cortes, Emilio; Cortes-Poza, D

    2011-01-01

    We analyse in detail the dynamics of a mechanical system which is a rigid body with the geometry of a double cone. This double cone is apparently able to spontaneously roll uphill along inclined rails. The experiment has been known for some centuries, and because of its peculiar behaviour, it has been named 'mechanical paradox'. Although this instrument is well known today, we have not found in the literature a dynamical study like the one we are presenting. A deeper analysis of this mechanical object will allow us to go further than explaining the apparent paradox in the system; it will show interesting features of the dynamics that are not evident or intuitive. In this work, we follow a complete study of the geometry, the kinematic variables and the Lagrangian dynamics of the problem for any set of the angular parameters and initial values, and obtain as a result a full description of the dynamic variables of this mechanical device. In addition to studying the dynamics of the system with the angles that yield the typical paradoxical behaviour, we study carefully what we call the constant potential geometry regime, where the centre of mass maintains its height, and found in this particular case some features of the dynamics which are not common in rolling objects. We believe that this work can offer the student good material to review some fundamental concepts of analytical mechanics.

  12. Excluding black hole firewalls with extreme cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Page, Don N., E-mail: profdonpage@gmail.com [Department of Physics, 4-183 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-06-01

    The AMPS argument for black hole firewalls seems to arise not only from the assumption of local effective field theory outside the stretched horizon but also from an overcounting of internal black hole states that include states that are singular in the past. Here I propose to exclude such singular states by Extreme Cosmic Censorship (the conjectured principle that the universe is entirely nonsingular, except for transient singularities inside black and/or white holes). I argue that the remaining set of nonsingular realistic states do not have firewalls but yet preserve information in Hawking radiation from black holes that form from nonsingular initial states.

  13. Excluding black hole firewalls with extreme cosmic censorship

    International Nuclear Information System (INIS)

    Page, Don N.

    2014-01-01

    The AMPS argument for black hole firewalls seems to arise not only from the assumption of local effective field theory outside the stretched horizon but also from an overcounting of internal black hole states that include states that are singular in the past. Here I propose to exclude such singular states by Extreme Cosmic Censorship (the conjectured principle that the universe is entirely nonsingular, except for transient singularities inside black and/or white holes). I argue that the remaining set of nonsingular realistic states do not have firewalls but yet preserve information in Hawking radiation from black holes that form from nonsingular initial states

  14. A Paraconsistentist Approach to Chisholm's Paradox

    Directory of Open Access Journals (Sweden)

    Marcelo Esteban Coniglio

    2009-12-01

    Full Text Available The Logics of Deontic (InConsistency (LDI’s can be considered as the deontic counterpart of the paraconsistent logics known as Logics of Formal (InConsistency. This paper introduces and studies new LDI’s and other paraconsistent deontic logics with different properties: systems tolerant to contradictory obligations; systems in which contradictory obligations trivialize; and a bimodal paraconsistent deontic logic combining the features of previous systems. These logics are used to analyze the well-known Chisholm’s paradox, taking profit of the fact that, besides contradictory obligations do not trivialize in LDI’s, several logical dependencies of classical logic are blocked in the context of LDI’s, allowing to dissolve the paradox.

  15. Fermi's paradox: The last challenge for copernicanism?

    Directory of Open Access Journals (Sweden)

    Ćirković M.M.

    2009-01-01

    Full Text Available We review Fermi's paradox (or the 'Great Silence' problem, not only arguably the oldest and crucial problem for the Search for ExtraTerrestrial Intelligence (SETI, but also a conundrum of profound scientific, philosophical and cultural importance. By a simple analysis of observation selection effects, the correct resolution of Fermi's paradox is certain to tell us something about the future of humanity. Already more than three quarters of century old puzzle and a quarter of century since the last major review paper in the field by G. David Brin has generated many ingenious discussions and hypotheses. We analyze the often tacit methodological assumptions built in various answers to this puzzle and attempt a new classification of the numerous solutions proposed in an already huge literature on the subject. Finally, we consider the ramifications of various classes of hypotheses for the practical SETI projects. Somewhat paradoxically, it seems that the class of (neocatastrophic hypotheses gives, on the balance, the strongest justification to optimism regarding our current and near-future SETI efforts.

  16. Laying the ghost of twin paradox

    Directory of Open Access Journals (Sweden)

    Popović Marko

    2009-01-01

    Full Text Available Someone's true age is not written in his ID, but in his biomarkers. Aging process is not caused by time passing, but by thermodynamically laws. Entropy, extent of metabolic reaction, and temperature are Lorentz invariant, so these facts make twin paradox impossible because there is no way for one twin to age slower than the other even if the time in his frame is dilated. Entropy is the function of state, not time. So as much as standard thermodynamics concerns, the path between two points in space is equivalent to the path between two states. Whether the point B is reached by moving faster using the longer way (with time dilatation, or slower by using shortcut (without time dilatation, the state of the system after completing the road should be the same. This is supported by the fact that when two twins reach the same space-time point (point B in which the state parameters are the same. If we use entropy as an age parameter, then both twins have the same entropy value and are exactly the same biological age. Therefore, the twin paradox is a logical mistake based on wrong first premise. Bergson symmetry is not necessary any more to explain the impossibility of twin paradox.

  17. Dovetailing talent management and diversity management: The exclusion-inclusion paradox

    NARCIS (Netherlands)

    Daubner, D.; Vinkenburg, C.J.; Jansen, Paul

    2017-01-01

    Purpose The purpose of this paper is to adopt a paradox lens for dovetailing the human resource management sub-domains of talent management (TM) and diversity management (DM), in the attempt to create closer alignment between the two. Design/methodology/approach The authors review paradox theory, TM

  18. The Neutrosophic Logic View to Schrodinger's Cat Paradox, Revisited

    Directory of Open Access Journals (Sweden)

    Florentin Smarandache

    2008-07-01

    Full Text Available The present article discusses Neutrosophic logic view to Schrodinger's cat paradox. We argue that this paradox involves some degree of indeterminacy (unknown which Neutrosophic logic can take into consideration, whereas other methods including Fuzzy logic cannot. To make this proposition clear, we revisit our previous paper by offering an illustration using modified coin tossing problem, known as Parrondo's game.

  19. Paradoxes in virtual team knowledge communication and trust building

    DEFF Research Database (Denmark)

    Petersen, Nils Braad

    2012-01-01

    This thesis proposal presents paradoxes within current trust and knowledge management literatures as a lens for understanding challenges in virtual teams working across organisational and geographic boundaries. By exposing contradictions within current virtual team research, the author proposes...... a need for a different, multi-level, multi-theoretical approach to virtual team research in order to overcome the paradoxes. A moderate constructionist research position building on Critical Realism is proposed. To situate the project within current literatures, trust, knowledge management and virtual...... team literatures are reviewed. These are used to support the paradoxes used as a lens for understanding. A research design is presented building on interviews, documentary analysis and observations analysed using Social Network Analysis and James Gee’s framework for discourse analysis. Finally...

  20. The Colombian Left: A Paradoxical Past; A Promising Future?

    Directory of Open Access Journals (Sweden)

    Charles Bergquist

    2017-07-01

    Full Text Available The essay explores the paradoxical history of the left in Colombia: how and why one of the weakest lefts in Latin America brought about the strongest and most lasting Marxist insurrection in the hemisphere in the decades following the Cuban Revolution. The article argues that the terms of this paradox are related, that the historic weakness of the left partly explains the force and longevity of revolutionary guerrillas, and that said paradox helps clarify not only the failure of several attempts to achieve a negotiated settlement of the armed conflict, but also the negative vote in the October 2016 plebiscite. Finally, it envisions a more promising future for the country’s left, provided that a lasting peace is consolidated.

  1. The klein paradox as a many particle problem

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.; Ruijsenaars, S.N.M.

    1976-01-01

    A mathematically rigorous analysis of the Klein paradox is given in the many-particle formulation of the Dirac theory. This paradox was meant as an example demonstrating the negative energy problems of the single particle Dirac equation. However, it is shown that this problem does not disappear in the second quantized version of the Dirac theory. It corresponds with a situation which cannot be described properly within the framework of a field theory with an external potential

  2. Status Report: Black Hole Complementarity Controversy

    International Nuclear Information System (INIS)

    Lee, Bum-Hoon; Yeom, Dong-han

    2014-01-01

    Black hole complementarity was a consensus among string theorists for the interpretation of the information loss problem. However, recently some authors find inconsistency of black hole complementarity: large N rescaling and Almheiri, Marolf, Polchinski and Sully (AMPS) argument. According to AMPS, the horizon should be a firewall so that one cannot penetrate there for consistency. There are some controversial discussions on the firewall. Apart from these papers, the authors suggest an assertion using a semi-regular black hole model and we conclude that the firewall, if it exists, should affect to asymptotic observer. In addition, if any opinion does not consider the duplication experiment and the large N rescaling, then the argument is difficult to accept

  3. On Johnson's Paradox: Hypothesis Verification

    Science.gov (United States)

    Noble, Clyde E.

    1975-01-01

    When H. M. Johnson argued that all inductive reasoning is based on the fallacy of affirming the consequent and cannot therefore establish the 'truth' of scientific hypotheses, he posed a paradox for strict empiricists. Author examined Johnson's argument. (Editor/RK)

  4. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  5. Introduction, Copyright's Paradox

    OpenAIRE

    Netanel, Neil

    2008-01-01

    The United States Supreme Court famously labeled copyright “the engine of free expression” because it provides a vital economic incentive for much of the literature, commentary, music, art, and film that makes up our public discourse. Yet today’s greatly expanded copyright law often does the opposite—it can be used to quash news reporting, political commentary, church dissent, historical scholarship, cultural critique, and artistic expression. In Copyright’s Paradox, Neil Weinstock ...

  6. Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness

    OpenAIRE

    Aguirre, E.; Mahr, D.; Grewal, D.; de Ruyter, K.; Wetzels, M.

    2015-01-01

    Retailers gather data about customers' online behavior to develop personalized service offers. Greater personalization typically increases service relevance and customer adoption, but paradoxically, it also may increase customers' sense of vulnerability and lower adoption rates. To demonstrate this contradiction, an exploratory field study on Facebook and secondary data about a personalized advertising campaign indicate sharp drops in click-through rates when customers realize their personal ...

  7. The mean, the median, and the St. Petersburg paradox.

    Science.gov (United States)

    Hayden, Benjamin Y; Platt, Michael L

    2009-06-01

    The St. Petersburg Paradox is a famous economic and philosophical puzzle that has generated numerous conflicting explanations. To shed empirical light on this phenomenon, we examined subjects' bids for one St. Petersburg gamble with a real monetary payment. We found that bids were typically lower than twice the smallest payoff, and thus much lower than is generally supposed. We also examined bids offered for several hypothetical variants of the St. Petersburg Paradox. We found that bids were weakly affected by truncating the gamble, were strongly affected by repeats of the gamble, and depended linearly on the initial "seed" value of the gamble. One explanation, which we call the median heuristic , strongly predicts these data. Subjects following this strategy evaluate a gamble as if they were taking the median rather than the mean of the payoff distribution. Finally, we argue that the distribution of outcomes embodied in the St. Petersburg paradox is so divergent from the Gaussian form that the statistical mean is a poor estimator of expected value, so that the expected value of the St. Petersburg gamble is undefined. These results suggest that this classic paradox has a straightforward explanation rooted in the use of a statistical heuristic.

  8. Einstein, Podolsky, and Rosen paradox in atomic, nuclear, and particle physics

    CERN Document Server

    Afriat, Alexander

    1999-01-01

    This text is the first exhaustive treatise on the Einstein, Podolsky, and Rosen (EPR) Paradox - the incompatibility, at empirical level, between local realism and the existing quantum theory The volume collates all the data and thought on the Paradox, from its original formulation in 1935, to some very recent theoretical developments The authors devote an entire chapter to the EPR Paradox for pairs of neutral kaons In addition, their text provides 6 different proofs of Bell's Theorem, about 150 references to the literature, and 74 illustrations

  9. Managing paradoxical tensions during the implementation of Lean capabilities for improvement

    DEFF Research Database (Denmark)

    Maalouf, Malek Miguel; Gammelgaard, Britta

    2016-01-01

    Purpose: – Through the identification and investigation of the organisational paradoxes in lean, the purpose of this paper is to deepen the understanding of lean implementation intricacies, and contribute to sustaining lean in companies. Design/methodology/approach: – Case study based on semi...... also points to a range managerial responses used for dealing with the three paradoxes and facilitating lean transformation. Research limitations/implications: – This is a theory development paper which increases the understanding regarding the role of the organisational paradoxes in facilitating...

  10. Investigating Dark Energy with Black Hole Binaries

    International Nuclear Information System (INIS)

    Mersini-Houghton, Laura; Kelleher, Adam

    2009-01-01

    The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accrete dark energy. The accretion induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state w[z] of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. This talk describes how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy.

  11. On the extinction paradox, the finiteness of resources, and the nature of probability

    International Nuclear Information System (INIS)

    Munera, H.

    1991-01-01

    A talk by Lewins is discussed. Lewins addressed the subject of randomness in nature, and some implications for nuclear reactors. In particular, Lewins described the extinction paradox: a critical ''reactor is self-sustaining in the mean, nevertheless it will shut down with certainty!'' According to Lewins, the paradox arises because the idealized chain process leaves out the fact that resources are always finite (ie, the number of initial neutrons is finite, and the amount of fissile atoms in a reactor depends upon Avogadro's number). This explanation, however, only implies that the model used to reach the paradox is too naive to represent a real reactor (indeed, Lewins immediately explains more realistic models), but the paradox still remains in the context of the idealized chain reaction. Two ways of explaining the paradox are considered. (author)

  12. Nonviolent unitarization: basic postulates to soft quantum structure of black holes

    Science.gov (United States)

    Giddings, Steven B.

    2017-12-01

    A first-principles approach to the unitarity problem for black holes is systematically explored, based on the postulates of 1) quantum mechanics 2) the ability to approximately locally divide quantum gravitational systems into subsystems 3) correspondence with quantum field theory predictions for appropriate observers and (optionally) 4) universality of new gravitational effects. Unitarity requires interactions between the internal state of a black hole and its surroundings that have not been identified in the field theory description; correspondence with field theory indicates that these are soft. A conjectured information-theoretic result for information transfer between subsystems, partly motivated by a perturbative argument, then constrains the minimum coupling size of these interactions of the quantum atmosphere of a black hole. While large couplings are potentially astronomically observable, given this conjecture one finds that the new couplings can be exponentially small in the black hole entropy, yet achieve the information transfer rate needed for unitarization, due to the large number of black hole internal states. This provides a new possible alternative to arguments for large effects near the horizon. If universality is assumed, these couplings can be described as small, soft, state-dependent fluctuations of the metric near the black hole. Open questions include that of the more fundamental basis for such an effective picture.

  13. A Hydrostatic Paradox Revisited

    Science.gov (United States)

    Ganci, Salvatore

    2012-01-01

    This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…

  14. EVIDENCE FOR THREE ACCRETING BLACK HOLES IN A GALAXY AT z ∼ 1.35: A SNAPSHOT OF RECENTLY FORMED BLACK HOLE SEEDS?

    International Nuclear Information System (INIS)

    Schawinski, Kevin; Urry, Meg; Treister, Ezequiel; Simmons, Brooke; Natarajan, Priyamvada; Glikman, Eilat

    2011-01-01

    One of the key open questions in cosmology today pertains to understanding when, where, and how supermassive black holes form. While it is clear that mergers likely play a significant role in the growth cycles of black holes, the issue of how supermassive black holes form, and how galaxies grow around them, still needs to be addressed. Here, we present Hubble Space Telescope Wide Field Camera 3/IR grism observations of a clumpy galaxy at z = 1.35, with evidence for 10 6 -10 7 M ☉ rapidly growing black holes in separate sub-components of the host galaxy. These black holes could have been brought into close proximity as a consequence of a rare multiple galaxy merger or they could have formed in situ. Such holes would eventually merge into a central black hole as the stellar clumps/components presumably coalesce to form a galaxy bulge. If we are witnessing the in situ formation of multiple black holes, their properties can inform seed formation models and raise the possibility that massive black holes can continue to emerge in star-forming galaxies as late as z = 1.35 (4.8 Gyr after the big bang).

  15. A paradox in the global description of the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael [Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720-7300 (United States); Freivogel, Ben [Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720-7300 (United States)

    2007-06-15

    We use an argument by Page to exhibit a paradox in the global description of the multiverse: the overwhelming majority of observers arise from quantum fluctuations and not by conventional evolution. Unless we are extremely atypical, this contradicts observation. The paradox does not arise in the local description of the multiverse, but similar arguments yield interesting constraints on the maximum lifetime of metastable vacua.

  16. A paradox in the global description of the multiverse

    International Nuclear Information System (INIS)

    Bousso, Raphael; Freivogel, Ben

    2007-01-01

    We use an argument by Page to exhibit a paradox in the global description of the multiverse: the overwhelming majority of observers arise from quantum fluctuations and not by conventional evolution. Unless we are extremely atypical, this contradicts observation. The paradox does not arise in the local description of the multiverse, but similar arguments yield interesting constraints on the maximum lifetime of metastable vacua

  17. The Schroedinger's paradox and the tranformation of quantum systems

    International Nuclear Information System (INIS)

    Bitsakis, E.I.

    1980-01-01

    The Schroedinger's paradox is analysed, as an illustration of certain weaknesses of the Copenhagen's interpretation of quantum mechanics and of the limits of the quantum-mechanical description of phenomena. A realistic approach of the paradox indicates the necessity of a theory that would permit not only the calculation of probabilities, but also the description of physical processes, as taking place in space and time

  18. On the present status of the Klein Paradox

    International Nuclear Information System (INIS)

    Wergeland, H.

    1980-01-01

    Klein's paradox is a solution of Dirac's equation which implies that electrons may penetrate an electrostatic potential barrier even when their kinetic energy is lower than the barrier. Since the barrier is infinitely broad this is not a case of tunneling. A number of treatments of the paradox, by Sauter, Hylleraas, Jenssen and others are discussed, and the Boundary Value Problem is treated at some length. Examples are presented with an infinitely broad barrier and with a barrier of finite breadth. (JIW)

  19. Testing the Transivity Explanation of the Allais Paradox

    DEFF Research Database (Denmark)

    Groes, Ebbe; Jacobsen, Hans Jørgen; Sloth, Birgitte

    1999-01-01

    This paper uses a two-dimensional version of a standard common consequence experiment to test the intransitivity explanation of Allais-paradox-type violations of expected utility theory. We compare the common consequence effect of two choice problems differing only with respect to whether...... intransitivity as an explanation of the Allais Paradox. The question whether violations of expected utility are mainly due to intransitivity or to violation of independence is important since it is exactly on this issue the main new decision theories differ...

  20. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    Science.gov (United States)

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  1. A history of the Allais paradox.

    Science.gov (United States)

    Heukelom, Floris

    2015-03-01

    This article documents the history of the Allais paradox, and shows that underneath the many discussions of the various protagonists lay different, irreconcilable epistemological positions. Savage, like his mentor von Neumann and similar to economist Friedman, worked from an epistemology of generalized characterizations. Allais, on the other hand, like economists Samuelson and Baumol, started from an epistemology of exact descriptions in which every axiom was an empirical claim that could be refuted directly by observations. As a result, the two sides failed to find a common ground. Only a few decades later was the now so-called Allais paradox rediscovered as an important precursor when a new behavioural economic subdiscipline started to adopt the epistemology of exact descriptions and its accompanying falsifications of rational choice theory.

  2. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  3. Killing Mosquitoes and Keeping Practice: Teacher Education as Sustaining Paradox

    Science.gov (United States)

    Keiser, David Lee

    2013-01-01

    The moral and ethical charge of teaching and teacher education includes sustaining equanimity and paradox, and maintaining poise amongst contradicting policies and interests. This paper draws upon the wisdom of the Tao Te Ching to address some paradoxes in education and teacher preparation. Specifically, the article looks at four chapters of the…

  4. Black holes in loop quantum gravity.

    Science.gov (United States)

    Perez, Alejandro

    2017-12-01

    This is a review of results on black hole physics in the context of loop quantum gravity. The key feature underlying these results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields, and especially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues, such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads, also, to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program; this review reports its achievements and open questions in a pedagogical manner, with an emphasis on quantum aspects of black hole physics.

  5. Black Holes Are The Rhythm at The Heart of Galaxies

    Science.gov (United States)

    2008-11-01

    circulatory systems to keep us alive, black holes give galaxies a vital warm component. They are a careful creation of nature, allowing a galaxy to maintain a fragile equilibrium," Finoguenov said. X-rayChandra X-ray Image This finding helps to explain a decades-long paradox of the existence of large amounts of warm gas around certain galaxies, making them appear bright to the Chandra X-ray telescope. "For decades astronomers were puzzled by the presence of the warm gas around these objects. The gas was expected to cool down and form a lot of stars," said Mateusz Ruszkowski, an assistant professor in the University of Michigan Department of Astronomy. "Now, we see clear and direct evidence that the heating mechanism of black holes is persistent, producing enough heat to significantly suppress star formation. These plasma bubbles are caused by bursts of energy that happen one after another rather than occasionally, and the direct evidence for such periodic behavior is difficult to find." The bubbles form one inside to another, for a sort of Russian doll effect that has not been seen before, Ruszkowski said. One of the bubbles of hot plasma appears to be bursting and its contents spilling out, further contributing to the heating of the interstellar gas. "Disturbed gas in old galaxies is seen in many images that NASA's Chandra observatory obtained, but seeing multiple events is a really impressive evidence for persistent black hole activity," says Christine Jones, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics. A paper on the research called "In-depth Chandra study of the AGN feedback in Virgo Elliptical Galaxy M84" has been published in Astrophysical Journal.

  6. Naked Black Hole Firewalls.

    Science.gov (United States)

    Chen, Pisin; Ong, Yen Chin; Page, Don N; Sasaki, Misao; Yeom, Dong-Han

    2016-04-22

    In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the "teleological" event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that firewalls are the "most conservative" solution to the information loss paradox.

  7. Naked Black Hole Firewalls

    Science.gov (United States)

    Chen, Pisin; Ong, Yen Chin; Page, Don N.; Sasaki, Misao; Yeom, Dong-han

    2016-04-01

    In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the "teleological" event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that firewalls are the "most conservative" solution to the information loss paradox.

  8. New loophole for the EPR paradox

    OpenAIRE

    Feldmann, Michel

    1999-01-01

    We exhibit a classical model free from any paradox which exactly simulates the spin EPR test. We conclude that Bell's inequality violation is a strictly classical phenomenon, contrary to a general belief.

  9. On Aerts' overlooked solution to the EPR paradox

    OpenAIRE

    de Bianchi, Massimiliano Sassoli

    2018-01-01

    The Einstein-Podolsky-Rosen (EPR) paradox was enunciated in 1935 and since then it has made a lot of ink flow. Being a subtle result, it has also been largely misunderstood. Indeed, if questioned about its solution, many physicists will still affirm today that the paradox has been solved by the Bell-test experimental results, which have shown that entangled states are real. However, this remains a wrong view, as the validity of the EPR ex-absurdum reasoning is independent from the Bell-test e...

  10. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    Science.gov (United States)

    Montgomery, S.L.; Chidsey, T.C.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-01-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer

  11. Scientific progress despite irreproducibility: A seeming paradox.

    Science.gov (United States)

    Shiffrin, Richard M; Börner, Katy; Stigler, Stephen M

    2018-03-13

    It appears paradoxical that science is producing outstanding new results and theories at a rapid rate at the same time that researchers are identifying serious problems in the practice of science that cause many reports to be irreproducible and invalid. Certainly, the practice of science needs to be improved, and scientists are now pursuing this goal. However, in this perspective, we argue that this seeming paradox is not new, has always been part of the way science works, and likely will remain so. We first introduce the paradox. We then review a wide range of challenges that appear to make scientific success difficult. Next, we describe the factors that make science work-in the past, present, and presumably also in the future. We then suggest that remedies for the present practice of science need to be applied selectively so as not to slow progress and illustrate with a few examples. We conclude with arguments that communication of science needs to emphasize not just problems but the enormous successes and benefits that science has brought and is now bringing to all elements of modern society.

  12. The Paradox of Analogy

    Directory of Open Access Journals (Sweden)

    David Botting

    2012-03-01

    Full Text Available I will show that there is a type of analogical reasoning that instantiates a pattern of reasoning in confirmation theory that is considered at best paradoxical and at worst fatal to the entire syntactical approach to confirmation and explanation. However, I hope to elaborate conditions under which this is a sound (although not necessarily strong method of reasoning.

  13. Paradoxes of unstable electron

    International Nuclear Information System (INIS)

    Okun, L.B.; Zeldovich, Ya.B.

    1978-01-01

    The hypothesis that electron is unstable - when it is consistent with the vanishing mass of the photon- leads to a number of paradoxical statements. The lifetime of the electron is determined by emission of a huge number of longitudinal photons and exponentially depends on the amount of emitted energy. This suggests to discuss searches for charge nonconservation in experiments with high energy particles

  14. Art's Pedagogical Paradox

    Science.gov (United States)

    Kalin, Nadine M.

    2014-01-01

    This article contributes to conversations concerning art education futures through engaging alternative relations between art, education, and democracy that mobilize education as art projects associated with the "pedagogical turn" as sites of liminality and paradox. An analysis of the art project, Pedagogical Factory, is used to outline…

  15. The Paradox of Modern Suffering

    DEFF Research Database (Denmark)

    Dræby, Anders

    The Paradox of Suffering in modern western Culture In non-western cultures and pre-modern western cultures suffering is considered the normal state of life. Corrispondingly the suffering of oneself and that of other people form a central focus to most religions, their practices and philosophies...

  16. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  17. O paradoxo de Chalmers Chalmers' paradox

    Directory of Open Access Journals (Sweden)

    Gustavo Leal-Toledo

    2009-01-01

    Full Text Available O Argumento dos Zumbis proposto por Chalmers, ao contrário de defender o dualismo, bane as qualia para um "mundo" onde elas não podem influenciar o julgamento que fazemos sobre nós mesmos. Por este motivo, pelo próprio argumento, podemos ser um zumbi e não saber. A isso Chalmers chamou de The Paradox of Phenomenal Judgment. O problema é que ele aceita tal paradoxo como parte de sua própria teoria. No entanto, este movimento filosófico não é aceitável e este paradoxo mina a teoria de Chalmers por dentro mostrando que o argumento dos zumbis é, na verdade, um argumento contra o dualismo. Chalmers tenta resolver este problema com uma série de argumentos que tem como base o fato de que a consciência é um bruto explanandum indubitável. No entanto, tal tentativa fracassa por uma série de razões que mostram que mesmo se ele estivesse correto, ainda poderíamos ser um zumbi e não saber.The Zombie Argument proposed by Chalmers, instead of working as a defense of dualism, banishes qualia to a 'world' where they cannot influence our judgments about ourselves. For this reason, according to the argument itself, we may be all zombies and not know it. This is what Chalmers called The Paradox of Phenomenal Judgment. The problem is that he accepts this paradox as part of his theory. This philosophical move, however, is not acceptable, for the paradox undermines Chalmers' theory, by showing that the zombie argument is, actually, an argument against dualism. Chalmers tries to solve this problem with many arguments based on the status of consciousness as brute indubitable explanandum. However, this attempt is a failure by a series of reasons showing that, even if he were right, we could still be zombies and not know it.

  18. Bolzano's Approach to the Paradoxes of Infinity: Implications for Teaching

    Science.gov (United States)

    Waldegg, Guillermina

    2005-01-01

    In this paper we analyze excerpts of "Paradoxes of the Infinite", the posthumous work of Bernard Bolzano (1781-1848), in order to show that Georg Cantor's (1845-1918) approach to the problem of defining actual mathematical infinity is not the most natural. In fact, Bolzano's approach to the paradoxes of infinity is more intuitive, while remaining…

  19. Globalization and Religion in Historical Perspective: A Paradoxical Relationship

    Directory of Open Access Journals (Sweden)

    Luke M. Herrington

    2013-03-01

    Full Text Available Religion has long been a driving force in the process of globalization. This idea is not controversial or novel thinking, nor is it meant to be. However, the dominant reasoning on the subject of globalization, expressed by authors like Thomas Friedman, places economics at the center of analysis, skewing focus from the ideational factors at work in this process. By expanding the definition of globalization to accommodate ideational factors and cultural exchange, religion’s agency in the process can be enabled. Interestingly, the story of religion and globalization is in some ways the history of globalization, but it is riddled with paradoxes, including the agent-opponent paradox, the subject of this article. Religion and globalization have a co-constitutive relationship, but religious actors are both agents of globalization and principals in its backlash. While some actors might benefit from a mutually reinforcing relationship with globalization, others are marginalized in some way or another, so it is necessary to expose the links and wedges that allow for such a paradox. To that end, the concepts of globalization and religious actors must be defined, and the history of the agent-opponent paradox, from the Buddhists of the Silk Road to the Jubilee campaign of 2000, must be elucidated.

  20. The mean, the median, and the St. Petersburg paradox

    Directory of Open Access Journals (Sweden)

    Benjamin Y. Hayden

    2009-06-01

    Full Text Available The St.~Petersburg Paradox is a famous economic and philosophical puzzle that has generated numerous conflicting explanations. To shed empirical light on this phenomenon, we examined subjects' bids for one St.~Petersburg gamble with a real monetary payment. We found that bids were typically lower than twice the smallest payoff, and thus much lower than is generally supposed. We also examined bids offered for several hypothetical variants of the St.~Petersburg Paradox. We found that bids were weakly affected by truncating the gamble, were strongly affected by repeats of the gamble, and depended linearly on the initial ``seed'' value of the gamble. One explanation, which we call the extit{median} extit{heuristic}, strongly predicts these data. Subjects following this strategy evaluate a gamble as if they were taking the median rather than the mean of the payoff distribution. Finally, we argue that the distribution of outcomes embodied in the St.~Petersburg paradox is so divergent from the Gaussian form that the statistical mean is a poor estimator of expected value, so that the expected value of the St.~Petersburg gamble is undefined. These results suggest that this classic paradox has a straightforward explanation rooted in the use of a statistical heuristic.

  1. Lethal mutants and truncated selection together solve a paradox of the origin of life.

    Directory of Open Access Journals (Sweden)

    David B Saakian

    Full Text Available BACKGROUND: Many attempts have been made to describe the origin of life, one of which is Eigen's cycle of autocatalytic reactions [Eigen M (1971 Naturwissenschaften 58, 465-523], in which primordial life molecules are replicated with limited accuracy through autocatalytic reactions. For successful evolution, the information carrier (either RNA or DNA or their precursor must be transmitted to the next generation with a minimal number of misprints. In Eigen's theory, the maximum chain length that could be maintained is restricted to 100-1000 nucleotides, while for the most primitive genome the length is around 7000-20,000. This is the famous error catastrophe paradox. How to solve this puzzle is an interesting and important problem in the theory of the origin of life. METHODOLOGY/PRINCIPAL FINDINGS: We use methods of statistical physics to solve this paradox by carefully analyzing the implications of neutral and lethal mutants, and truncated selection (i.e., when fitness is zero after a certain Hamming distance from the master sequence for the critical chain length. While neutral mutants play an important role in evolution, they do not provide a solution to the paradox. We have found that lethal mutants and truncated selection together can solve the error catastrophe paradox. There is a principal difference between prebiotic molecule self-replication and proto-cell self-replication stages in the origin of life. CONCLUSIONS/SIGNIFICANCE: We have applied methods of statistical physics to make an important breakthrough in the molecular theory of the origin of life. Our results will inspire further studies on the molecular theory of the origin of life and biological evolution.

  2. Dispelling Black Hole Pathologies Through Theory and Observation

    Directory of Open Access Journals (Sweden)

    Spivey R. J.

    2015-10-01

    Full Text Available Astrophysical black holes are by now routinely identified with metrics representing eter- nal black holes obtained as exact mathematical solutions of Einstein’s field equations. However, the mere existence and discovery of stationary solutions is no guarantee that they can be attained through dynamical processes. If a straightforward physical caveat is respected throughout a spacetime manifold then the ingress of matter across an event horizon is prohibited, in accordance with Einstein’s expectation. As black hole forma- tion and growth would be inhibited, the various pathological traits of black holes such as information loss, closed timelike curves and singularities of infinite mass density would be obviated. Gravitational collapse would not terminate with the formation of black holes possessing event horizons but asymptotically slow as the maximal time dilation between any pair of worldlines tends towards infinity. The remnants might be better described as dark holes, often indistinguishable from black holes except in certain as- trophysically important cases. The absence of trapped surf aces circumvents topological censorship, with potentially observable consequences for astronomy, as exemplified by the remarkable electromagnetic characteristics, extreme energetics and abrupt extinc- tion of quasars within low redshift galaxies.

  3. The Klein paradox: a new treatment

    International Nuclear Information System (INIS)

    Truebenbacher, E

    2015-01-01

    The Dirac equation requires a treatment of the step potential that differs fundamentally from the traditional treatment, because the Dirac plane waves, besides momentum and spin, are characterized by a quantum number with the physical meaning of sign of charge. Since the Hermitean operator corresponding to this quantum number does not commute with the step potential, the time displacement parameter used in the ansatz of the stationary state does not have the physical meaning of energy. Therefore there are no paradoxal values of the ‘energy’. The new solution of the Dirac equation with a step potential is obtained. This solution, again, allows for phenomena of the Klein paradox type, but in addition it contains a positron amplitude localized at the threshold point of the step potential. (paper)

  4. Entropy and black-hole thermodynamics

    International Nuclear Information System (INIS)

    Wald, R.M.

    1979-01-01

    The concept of entropy is examined with an eye toward gaining insight into the nature of black-hole thermodynamics. Definitions of entropy are given for ordinary classical and quantum-mechanical systems which lead to plausibility arguments for the ordinary laws of thermodynamics. The treatment of entropy for a classical system is in the spirit of the information-theory viewpoint, but by explicitly incorporating the coarse-grained observable into the definition of entropy, we eliminate any nonobjective features. The definition of entropy for a quantum-mechanical system is new, but directly parallels the classical treatment. We then apply these ideas to a self-gravitating quantum system which contains a black hole. Under some assumptions: which, although nontrivial, are by no means exotic: about the nature of such a system, it is seen that the same plausibility arguments which lead to the ordinary laws of thermodynamics for ordinary systems now lead to the laws of black-hole mechanics, including the generalized second law of thermodynamics. Thus, it appears perfectly plausible that black-hole thermodynamics is nothing more than ordinary thermodynamics applied to a self-gravitating quantum system

  5. Moving towards a geocentric, polycultural theory of organizational paradox

    OpenAIRE

    Keller, J.; Lewis, M. W.

    2016-01-01

    Purpose\\ud This paper comments on “Global implications of the indigenous epistemological system from the east” (Li, 2016), which provides an indigenous Chinese perspective on organizational paradox. Li introduces Yin-Yang balancing as an epistemological system that can help scholars examine and practitioners manage paradoxes. In this commentary, the purpose of this paper is to discuss the merits of Yin-Yang balancing and how this approach and other indigenous theories might enrich organizatio...

  6. Black Holes from Particle Physics Perspective (1/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  7. Black Holes from Particle Physics Perspective (2/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  8. Continuous creation of matter across the black holes

    International Nuclear Information System (INIS)

    Manjunath, R

    2006-01-01

    The mass distribution in a galaxy that gets evolved around a black hole exhibits a certain degree of deterministic abstraction. The present work is based on the outcome of this abstraction. A black hole or a neutron star at the centre of a galaxy emits radiation when the edge of the galaxy gets disintegrated by getting absorbed in to another black hole or becomes a member of another galactic distribution. This is necessary for the existence of the black hole to counter for the surrounding structure with its own internal formation. The radiation is emitted as self similar pulses that exactly resemble the pattern of absorption of the rim of the galaxy. This concept is based on information geometry. An additional term that accounts for the feedback energy is appended to the energy momentum tensor. It has been shown that the mass around the black hole is distributed in bands that exhibit multiple resolutions. This translates on to self similarity in the emission pattern from the black hole. The recent emission of radiation from a neutron star is interpreted as one such phenomenon

  9. Chronic Illness as a Source of Happiness: Paradox or perfectly normal?

    NARCIS (Netherlands)

    Hoppe, S.

    2013-01-01

    In this paper I analyse the relation between happiness and chronic illness from the perspective of medical anthropology and disability studies. By looking at the disability paradox I deconstruct society’s view of people with a disability. I argue that the disability paradox is problematic as it

  10. Game theory and non-linear dynamics: the Parrondo Paradox case study

    International Nuclear Information System (INIS)

    Arena, P.; Fazzino, S.; Fortuna, L.; Maniscalco, P.

    2003-01-01

    In this paper a new research topic is explored on the role of chaos in a particular game problem: the Parrondo Paradox. In the original formulation of this paradox, it has been proved that two separate losing games can be combined following a random or periodic strategy in order to have a resulting winning game. In this paper, three key points will be dealt with. The first one regards the introduction of a strategy based on various chaotic time series: this could improve the gain in the classical two games Parrondo problem. The second one concerns with the introduction of a third loosing game based on the history of the game and not on the capital as in the classical Parrondo two games Problem. Finally, the Parrondo Paradox has been generalized for N games and an algorithm has been proposed in order to investigate through an optimization approach the region of probability parameter space in which Parrondo Paradox can occur

  11. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  12. Reconstructing the massive black hole cosmic history through gravitational waves

    International Nuclear Information System (INIS)

    Sesana, Alberto; Gair, Jonathan; Berti, Emanuele; Volonteri, Marta

    2011-01-01

    The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of 'electromagnetically invisible' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ''feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of 'model mixing', by drawing the observed population from some combination of the 'pure' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ''mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.

  13. Primary black holes

    International Nuclear Information System (INIS)

    Novikov, I.; Polnarev, A.

    1981-01-01

    Proves are searched for of the formation of the so-called primary black holes at the very origin of the universe. The black holes would weigh less than 10 13 kg. The formation of a primary black hole is conditional on strong fluctuations of the gravitational field corresponding roughly to a half of the fluctuation maximally permissible by the general relativity theory. Only big fluctuations of the gravitational field can overcome the forces of the hot gas pressure and compress the originally expanding matter into a black hole. Low-mass black holes have a temperature exceeding that of the black holes formed from stars. A quantum process of particle formation, the so-called evaporation takes place in the strong gravitational field of a black hole. The lower the mass of the black hole, the shorter the evaporation time. The analyses of processes taking place during the evaporation of low-mass primary black holes show that only a very small proportion of the total mass of the matter in the universe could turn into primary black holes. (M.D.)

  14. Quantum loop corrections of a charged de Sitter black hole

    Science.gov (United States)

    Naji, J.

    2018-03-01

    A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.

  15. Selected stratigraphic data for drill holes located in Frenchman Flat, Nevada Test Site. Rev. 1

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.

    1997-02-01

    Stratigraphic data are presented in tabular form for 72 holes drilled in Frenchman Flat, Nevada Test Site, between 1950 and 1993. Three pairs of data presentations are included for each hole: depth to formation tops, formation thicknesses, and formation elevations are presented in both field (English) and metric units. Also included for each hole, where available, are various construction data (hole depth, hole diameter, surface location coordinates) and certain information of hydrogeologic significance (depth to water level, top of zeolitization). The event name is given for holes associated with a particular nuclear test. An extensive set of footnotes is included, which indicates data sources and provides other information. The body of the report describes the stratigraphic setting of Frenchman Flat, gives drill-hole naming conventions and database terminology, and provides other background and reference material

  16. From binary black hole simulation to triple black hole simulation

    International Nuclear Information System (INIS)

    Bai Shan; Cao Zhoujian; Han, Wen-Biao; Lin, Chun-Yu; Yo, Hwei-Jang; Yu, Jui-Ping

    2011-01-01

    Black hole systems are among the most promising sources for a gravitational wave detection project. Now, China is planning to construct a space-based laser interferometric detector as a follow-on mission of LISA in the near future. Aiming to provide some theoretical support to this detection project on the numerical relativity side, we focus on black hole systems simulation in this work. Considering the globular galaxy, multiple black hole systems also likely to exist in our universe and play a role as a source for the gravitational wave detector we are considering. We will give a progress report in this paper on our black hole system simulation. More specifically, we will present triple black hole simulation together with binary black hole simulation. On triple black hole simulations, one novel perturbational method is proposed.

  17. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  18. Authority as paradox: the transformations of Don Quijote.

    Science.gov (United States)

    Priel, Beatriz

    2006-12-01

    The author's contention is that the analysand's temporary attribution of authority to the analyst is inherent in the analytic situation; this is seen as a transitional and paradoxical form of authority pertaining neither to internal nor external reality, but dwelling in the analytic third. The author proposes a conceptualization of psychoanalytic authority as a form of aesthetic authority according to Gadamer's definitions. While the scientific and hermeneutic codes for the understanding of authority in psychoanalysis assume that the main issue at stake is the delimitation of the objectivity or the subjectivity of the analyst's knowledge, this aesthetic perspective centres on the analysand's attribution of a claim of truth to analytic interpretations, and on the experience of recognition. The experience of recognition of a possible truth is particular and context-bound, as well as self-transformational. A reading of three episodes from Cervantes's The history of Don Quixote de la Mancha illuminates the transitional and paradoxical character of aesthetic authority within a transformational dialogue. These episodes are read as dramatizations of different positions vis-à-vis the paradoxical authority that characterizes transformational dialogues.

  19. Paradoxical sphincter contraction is rarely indicative of anismus.

    Science.gov (United States)

    Voderholzer, W A; Neuhaus, D A; Klauser, A G; Tzavella, K; Müller-Lissner, S A; Schindlbeck, N E

    1997-08-01

    Anismus is thought to be a cause of chronic constipation by producing outlet obstruction. The underlying mechanism is paradoxical contraction of the anal sphincter or puborectalis muscle. However, paradoxical sphincter contraction (PSC) also occurs in healthy controls, so anismus may be diagnosed too often because it may be based on a non-specific finding related to untoward conditions during the anorectal examination. To investigate the pathophysiological importance of PSC found at anorectal manometry in constipated patients and in patients with stool incontinence. Digital rectal examination and anorectal manometry were performed in 102 chronically constipated patients, 102 patients with stool incontinence, and in 18 controls without anorectal disease. In 120 of the 222 subjects defaecography was also performed. Paradoxical sphincter contraction was defined as a sustained increase in sphincter pressure during straining. Anismus was assumed when PSC was present on anorectal manometry and digital rectal examination and the anorectal angle did not widen on defaecography. Manometric PSC occurred about twice as often in constipated patients as in incontinent patients (41.2% versus 25.5%, p anismus is rare.

  20. The Merger Paradox and R&D

    OpenAIRE

    MIYAGIWA, Kaz; WAN, Jiangyun(Yunyun)

    2015-01-01

    The merger paradox is revisited in the presence of cost-reducing R&D in Cournot oligopoly. Two cases are found, in which merger is profitable without satisfying the 80-percent threshold requirement of Salant et al (1983).

  1. Hole Detection for Quantifying Connectivity in Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Pearl Antil

    2014-01-01

    Full Text Available Owing to random deployment, environmental factors, dynamic topology, and external attacks, emergence of holes in wireless sensor networks is inescapable. Hole is an area in sensor network around which sensors cease to sense or communicate due to drainage of battery or any fault, either temporary or permanent. Holes impair sensing and communication functions of network; thus their identification is a major concern. This paper discusses different types of holes and significance of hole detection in wireless sensor networks. Coverage hole detection schemes have been classified into three categories based on the type of information used by algorithms, computation model, and network dynamics for better understanding. Then, relative strengths and shortcomings of some of the existing coverage hole detection algorithms are discussed. The paper is concluded by highlighting various future research directions.

  2. "Paradox fikce" a emoce ve sportovních filmech

    OpenAIRE

    Sýkora, Matěj

    2013-01-01

    This bachelor thesis deals with the paradox of fiction and emotion of recipients of sports films. The work is divided into four main chapters. The first two aim to define the key terms fiction (the fictional world) and emotion. The third chapter briefly summarizes the most important theories dealing with the paradox of fiction (Radford and Weston, Walton, etc.) and offers an outline of a possible solution to the problem following neurobiological explorations of Antonio Damasio and selected co...

  3. Black Holes

    OpenAIRE

    Townsend, P. K.

    1997-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usu...

  4. Educating geographers in an era of the anthropocene: paradoxical natures - paradoxical cultures

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2015-01-01

    Geographical imaginations are vital to make sense of challenges to sustainability which are produced and distributed across scale. Yet, a number of studies find that geography has been reluctant to integrate sustainability issues in its curricula. Geography is particularly interesting and can con...... of this finding is significant across disciplines. Thus, scholars and students should learn to go beyond the geopolitics of education in order to transcend the paradoxical-culture-natures identified...

  5. MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity.

    Science.gov (United States)

    Das, Mitali; Singh, Sunita; Pradhan, Satyajit; Narayan, Gopeshwar

    2014-01-01

    As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2-7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the "MCM paradox." Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

  6. Service Recovery Paradox In Indian Banking Industry: An Empirical Investigation

    Directory of Open Access Journals (Sweden)

    Arunesh Garg

    2013-10-01

    Full Text Available The present study examines existence of service recovery paradox in Indian banking industry. The study is taken up in the tri-city of Chandigarh, Panchkula and Mohali. The respondents are catego- rized into failure and no-failure groups on the basis of their service experience. Failure group consti- tutes those respondents who have experienced service recovery, and has been further divided into five sub-groups ranging from service recovery++ (service recovery better than expected to service recovery- - (service recovery worse than expected. Service recovery paradox is examined by com- paring service recovery++ group with no-failure group. The study shows evidence for existence of service recovery paradox in relation to satisfaction. It has been concluded that for service recovery paradox to exist, recovery effort has to be exceptionally good and much better than expectation level of the customer. The study suggests that service managers should take service failure as an opportunity to appease customers by providing a much better than expected recovery experience. However, organizations should not plan to create service failure situations because if they falter on imparting the recovery, customer satisfaction may be influenced negatively.

  7. Adaptationism fails to resolve Fermi's paradox

    Directory of Open Access Journals (Sweden)

    Ćirković Milan M.

    2005-01-01

    Full Text Available One of the most interesting problems in the nascent discipline of astrobiology is more than half-century old Fermi's paradox: why, considering extraordinary young age of Earth and the Solar System in the Galactic context, don't we perceive much older intelligent communities or signposts of their activity? In spite of a vigorous research activity in recent years, especially bolstered by successes of astrobiology in finding extrasolar planets and extremophiles, this problem (also known as the "Great Silence" or "astrosociological" paradox remains as open as ever. In a previous paper, we have discussed a particular evolutionary solution suggested by Karl Schroeder based on the currently dominant evolutionary doctrine of adaptationism. Here, we extend that discussion with emphasis on the problems such a solution is bound to face, and conclude that it is ultimately quite unlikely. .

  8. The black hole quantum atmosphere

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-11-01

    Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  9. The black hole quantum atmosphere

    Directory of Open Access Journals (Sweden)

    Ramit Dey

    2017-11-01

    Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  10. Control of black hole evaporation?

    International Nuclear Information System (INIS)

    Ahn, Doyeol

    2007-01-01

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  11. The periodontal pain paradox: Difficulty on pain assesment in dental patients (The periodontal pain paradox hypothesis

    Directory of Open Access Journals (Sweden)

    Haryono Utomo

    2006-12-01

    Full Text Available In daily dental practice, the majority of patients’ main complaints are related to pain. Most patients assume that all pains inside the oral cavity originated from the tooth. One particular case is thermal sensitivity; sometimes patients were being able to point the site of pain, although there is neither visible caries nor secondary caries in dental radiograph. In this case, gingival recession and dentin hypersensitivity are first to be treated to eliminate the pain. If these treatments failed, pain may misdiagnose as pulpal inflammation and lead to unnecessary root canal treatment. Study in pain during periodontal instrumentation of plaque-related periodontitis revealed that the majority of patients feel pain and discomfort during probing and scaling. It seems obvious because an inflammation, either acute or chronic is related to a lowered pain threshold. However, in contrast, in this case report, patient suffered from chronic gingivitis and thermal sensitivity experienced a relative pain-free sensation during probing and scaling. Lowered pain threshold which accompanied by a blunted pain perception upon periodontal instrumentation is proposed to be termed as the periodontal pain paradox. The objective of this study is to reveal the possibility of certain factors in periodontal inflammation which may involved in the periodontal pain paradox hypothesis. Patient with thermal hypersensitivity who was conducted probing and scaling, after the relative pain-free instrumentation, thermal hypersensitivity rapidly disappeared. Based on the successful periodontal treatment, it is concluded that chronic gingivitis may modulate periodontal pain perception which termed as periodontal pain paradox

  12. The Obesity Paradox in Kidney Disease: How to Reconcile It With Obesity Management

    Directory of Open Access Journals (Sweden)

    Kamyar Kalantar-Zadeh

    2017-03-01

    Full Text Available Obesity, a risk factor for de novo chronic kidney disease (CKD, confers survival advantages in advanced CKD. This so-called obesity paradox is the archetype of the reverse epidemiology of cardiovascular risks, in addition to the lipid, blood pressure, adiponectin, homocysteine, and uric acid paradoxes. These paradoxical phenomena are in sharp contradistinction to the known epidemiology of cardiovascular risks in the general population. In addition to advanced CKD, the obesity paradox has also been observed in heart failure, chronic obstructive lung disease, liver cirrhosis, and metastatic cancer, as well as in elderly individuals. These are populations in whom protein−energy wasting and inflammation are strong predictors of early death. Both larger muscle mass and higher body fat provide longevity in these patients, whereas thinner body habitus and weight loss are associated with higher mortality. Muscle mass appears to be superior to body fat in conferring an even greater survival. The obesity paradox may be the result of a time discrepancy between competing risk factors, that is, overnutrition as the long-term killer versus undernutrition as the short-term killer. Hemodynamic stability of obesity, lipoprotein defense against circulating endotoxins, protective cytokine profiles, toxin sequestration of fat mass, and antioxidation of muscle may play important roles. Despite claims that the obesity paradox is a statistical fallacy and a result of residual confounding, the consistency of data and other causality clues suggest a high biologic plausibility. Examining the causes and consequences of the obesity paradox may help uncover important pathophysiologic mechanisms leading to improved outcomes in patients with CKD.

  13. Gravitational interaction of a black hole with nearby matter

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.; Redmount, I.H.

    1986-01-01

    The interaction of a black hole with nearby matter is examined with a membrane paradigm which includes a 3+1 formalism that splits spacetime coordinates into a family of three-dimensional spacelike hypersurfaces and one-dimensional time. Emphasis is placed on the influence of matter and its gravity on the shape and evolution of the hole horizon and the effects of the hole on the matter. Universal time coordinates and fiduciary observers are defined outside a dynamically perturbed black hole and tidal gravitational fields are assumed to carry information on the disturbances. The exterior of the hole is examined in terms of the perturbed tidal fields and the material energy, momentum and stress which produce the perturbations. Finally, a membrane model is derived for the interaction of matter and its tidal fields with the stretched null horizon

  14. Governance and Developing Asia: Concepts, Measurements, Determinants, and Paradoxes

    OpenAIRE

    Quibria, M.G.

    2014-01-01

    Recent years have seen the emergence of a considerable volume of literature on governance and its role in economic and social development of a country. This paper provides a critical review of the literature. This review brings into the open a number of serious conceptual, measurement, and data issues as well as the existence of an Asian governance paradox - i.e., a general disjunction between growth and governance in most Asian economies. This paradox seems to suggest that much of the curren...

  15. Extensitivity of entropy and modern form of Gibbs paradox

    International Nuclear Information System (INIS)

    Home, D.; Sengupta, S.

    1981-01-01

    The extensivity property of entropy is clarified in the light of a critical examination of the entropy formula based on quantum statistics and the relevant thermodynamic requirement. The modern form of the Gibbs paradox, related to the discontinuous jump in entropy due to identity or non-identity of particles, is critically investigated. Qualitative framework of a new resolution of this paradox, which analyses the general effect of distinction mark on the Hamiltonian of a system of identical particles, is outlined. (author)

  16. Life history, immunity, Peto's paradox and tumours in birds.

    Science.gov (United States)

    Møller, A P; Erritzøe, J; Soler, J J

    2017-05-01

    Cancer and tumours may evolve in response to life-history trade-offs between growth and duration of development on one hand, and between growth and maintenance of immune function on the other. Here, we tested whether (i) bird species with slow developmental rates for their body size experience low incidence of tumours because slow development allows for detection of rapid proliferation of cell lineages. We also test whether (ii) species with stronger immune response during development are more efficient at detecting tumour cells and hence suffer lower incidence of tumours. Finally, we tested Peto's paradox, that there is a positive relationship between tumour incidence and body mass. We used information on developmental rates and body mass from the literature and of tumour incidence (8468 birds) and size of the bursa of Fabricius for 7659 birds brought to a taxidermist in Denmark. We found evidence of the expected negative relationship between incidence of tumours and developmental rates and immunity after controlling for the positive association between tumour incidence and body size. These results suggest that evolution has modified the incidence of tumours in response to life history and that Peto's paradox may be explained by covariation between body mass, developmental rates and immunity. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications

    International Nuclear Information System (INIS)

    Reid, M. D.; Drummond, P. D.; Bowen, W. P.; Cavalcanti, E. G.; Lam, P. K.; Bachor, H. A.; Andersen, U. L.; Leuchs, G.

    2009-01-01

    This Colloquium examines the field of the Einstein, Podolsky, and Rosen (EPR) gedanken experiment, from the original paper of Einstein, Podolsky, and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discrete versions of the EPR paradox. The relationship with entanglement and Bell's theorem are analyzed, and the progress to date towards experimental confirmation of the EPR paradox is summarized, with a detailed treatment of the continuous-variable paradox in laser-based experiments. Practical techniques covered include continuous-wave parametric amplifier and optical fiber quantum soliton experiments. Current proposals for extending EPR experiments to massive-particle systems are discussed, including spin squeezing, atomic position entanglement, and quadrature entanglement in ultracold atoms. Finally, applications of this technology to quantum key distribution, quantum teleportation, and entanglement swapping are examined.

  18. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications

    Energy Technology Data Exchange (ETDEWEB)

    Reid, M. D.; Drummond, P. D.; Bowen, W. P.; Cavalcanti, E. G.; Lam, P. K.; Bachor, H. A.; Andersen, U. L.; Leuchs, G. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, P.O. Box 218, Melbourne, Victoria 3122 Australia (Australia); School of Physical Sciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111 (Australia); ARC Centre of Excellence for Quantum-Atom Optics, Building 38, The Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Department of Physics, Technical University of Denmark, Building 309, 2800 Lyngby (Denmark); Max-Planck Institute for the Science of Light and Department of Physics, Universitaet Erlangen-Nuernberg, D-91058 Erlangen (Germany)

    2009-10-15

    This Colloquium examines the field of the Einstein, Podolsky, and Rosen (EPR) gedanken experiment, from the original paper of Einstein, Podolsky, and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discrete versions of the EPR paradox. The relationship with entanglement and Bell's theorem are analyzed, and the progress to date towards experimental confirmation of the EPR paradox is summarized, with a detailed treatment of the continuous-variable paradox in laser-based experiments. Practical techniques covered include continuous-wave parametric amplifier and optical fiber quantum soliton experiments. Current proposals for extending EPR experiments to massive-particle systems are discussed, including spin squeezing, atomic position entanglement, and quadrature entanglement in ultracold atoms. Finally, applications of this technology to quantum key distribution, quantum teleportation, and entanglement swapping are examined.

  19. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications

    Science.gov (United States)

    Reid, M. D.; Drummond, P. D.; Bowen, W. P.; Cavalcanti, E. G.; Lam, P. K.; Bachor, H. A.; Andersen, U. L.; Leuchs, G.

    2009-10-01

    This Colloquium examines the field of the Einstein, Podolsky, and Rosen (EPR) gedanken experiment, from the original paper of Einstein, Podolsky, and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discrete versions of the EPR paradox. The relationship with entanglement and Bell’s theorem are analyzed, and the progress to date towards experimental confirmation of the EPR paradox is summarized, with a detailed treatment of the continuous-variable paradox in laser-based experiments. Practical techniques covered include continuous-wave parametric amplifier and optical fiber quantum soliton experiments. Current proposals for extending EPR experiments to massive-particle systems are discussed, including spin squeezing, atomic position entanglement, and quadrature entanglement in ultracold atoms. Finally, applications of this technology to quantum key distribution, quantum teleportation, and entanglement swapping are examined.

  20. Paradoxical reaction to the treatment of tuberculosis uncovering previously silent meningeal disease Reação paradoxal ao tratamento da tuberculose revelando doença meníngea previamente silenciosa

    Directory of Open Access Journals (Sweden)

    Walter A. Eyer-Silva

    2002-02-01

    Full Text Available The development of paradoxical clinical worsening following initiation of tuberculosis treatment may complicate the clinical course of both HIV-infected and uninfected patients. We report a severe manifestation of the so called paradoxical reaction to the treatment of tuberculosis that unmasked previously silent meningeal disease in a 34-year-old HIV-infected male patient.O desenvolvimento de piora clínica paradoxal como resposta ao início do tratamento da tuberculose pode complicar a evolução de pacientes com e sem infecção pelo HIV. Apresentamos uma grave manifestação da chamada reação paradoxal ao tratamento da tuberculose, que revelou doença meníngea previamente silenciosa em um paciente HIV-positivo de 34 anos.

  1. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  2. The Teacher's Paradox

    Science.gov (United States)

    Lilyquist, J. Gary

    1998-06-01

    New findings suggest that the way in which schools conduct their business is blocking our educational system from improving at a rate required to meet society's needs. A ground theory developed by exploring six organizational dimensions: external and internal environment cultures, leadership, strategy, structure, and results, verified the existence of the teacher's paradox. Implications suggest educational reformers must rethink approaches to school improvement by work within cultural boundaries. The forth coming book, "Are schools really like this?" presents "The Balance Alignment Model and Theory" to improve our schools using system thinking.

  3. Perspectives on Games, Computers, and Mental Health: Questions about Paradoxes, Evidences, and Challenges

    OpenAIRE

    Desseilles, Martin

    2016-01-01

    In the field of mental health, games and computerized games present questions about paradoxes, evidences, and challenges. This perspective article offers perspectives and personal opinion about these questions, evidences, and challenges with an objective of presenting several ideas and issues in this rapidly developing field. First, games raise some questions in the sense of the paradox between a game and an issue, as well as the paradox of using an amusing game to treat a serious pathology. ...

  4. Progressive paradoxical sleep deprivation impairs partial memory following learning tasks in rats

    Institute of Scientific and Technical Information of China (English)

    Chunmin Zhu; Xiangrong Yao; Weisheng Zhang; Yanfeng Song; Yiping Hou

    2008-01-01

    BACKGROUND: Complex learning tasks result in a greater number of paradoxical sleep phases, which can improve memory. The effect of paradoxical sleep deprivation, induced by "flower pot" technique, on spatial reference memory and working memory require further research. OBJECTIVE: To observe the effect of progressive paradoxical sleep deprivation in rats, subsequent to learning, on memory using the Morris Water Maze. DESIGN, TIME AND SETTING: Controlled observation experiment. The experiment was performed at the Laboratory of Neurobiology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University from December 2006 to October 2007. MATERIALS: Twenty-eight, male, Wistar rats, 3-4 months old, were provided by the Experimental Animal Center of Lanzhou University. The Morris Water Maze and behavioral analyses system was purchased from Genheart Company, Beijing, China. METHODS: All animals, according to a random digits table, were randomly divided into paradoxical sleep deprivation, tank control, and home cage control groups. Paradoxical sleep deprivation was induced by the "flower pot" technique for 72 hours, housing the rats on small platforms over water. Rats in the "tank control" and "home cage control" groups were housed either in a tank with large platforms over the water or in normal cages without paradoxical sleep deprivation. MAIN OUTCOME MEASURES: Morris Water Maze was employed for task learning and spatial memory testing. Rats in all groups were placed at six random starting points each day for four consecutive days. Each placement was repeated for two trials; the first trial represented reference memory and the second working memory. Rats in the first trial were allowed to locate the submerged platform within 120 seconds. Data, including swimming distance, escape latency, swimming velocity, percentage of time in correct quarter, and memory scores were recorded and analyzed automatically by behavioral analyses

  5. Einstein-Podolsky-Rosen paradox in single pairs of images.

    Science.gov (United States)

    Lantz, Eric; Denis, Séverine; Moreau, Paul-Antoine; Devaux, Fabrice

    2015-10-05

    Spatially entangled twin photons provide a test of the Einstein-Podolsky-Rosen (EPR) paradox in its original form of position (image plane) versus impulsion (Fourier plane). We show that recording a single pair of images in each plane is sufficient to safely demonstrate an EPR paradox. On each pair of images, we have retrieved the fluctuations by subtracting the fitted deterministic intensity shape and then have obtained an intercorrelation peak with a sufficient signal to noise ratio to safely distinguish this peak from random fluctuations. A 95% confidence interval has been determined, confirming a high degree of paradox whatever the considered single pairs. Last, we have verified that the value of the variance of the difference between twin images is always below the quantum (poissonian) limit, in order to ensure the particle character of the demonstration. Our demonstration shows that a single image pattern can reveal the quantum and non-local behavior of light.

  6. NASA Observatory Confirms Black Hole Limits

    Science.gov (United States)

    2005-02-01

    cosmic time. Such "cosmic downsizing" was previously observed for galaxies undergoing star formation. These results connect well with the observations of nearby galaxies, which find that the mass of a supermassive black hole is proportional to the mass of the central region of its host galaxy. The other co-authors on the paper in the February 2005 issue of The Astronomical Journal were Len Cowie, Wei-Hao Wang, and Peter Capak (Institute for Astronomy, Univ. of Hawaii), Yuxuan Yang (GSFC and the Univ. of Maryland, College Park), and Aaron Steffen (Univ. of Wisconsin, Madison). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Space Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  7. Teaching Quantum Physics without Paradoxes

    Science.gov (United States)

    Hobson, Art

    2007-01-01

    Although the resolution to the wave-particle paradox has been known for 80 years, it is seldom presented. Briefly, the resolution is that material particles and photons are the quanta of extended spatially continuous but energetically quantized fields. But because the resolution resides in quantum field theory and is not usually spelled out in…

  8. Micro-Macro Paradoxes of Entrepreneurship

    DEFF Research Database (Denmark)

    Søgaard, Villy

    2008-01-01

    Artiklen tager afsæt i det såkaldte micro-macro paradox fra Aids-Efficiency litteraturen og argumenterer for, at en tilsvarende problemstilling bør inddrages i vurderingen af f.eks. de beskæftigelsesmæssige konsekvenser af entrepreneuriel virksomhed. Den påviser også i en gennemgang af litteratur...

  9. Lectures on Black Hole Quantum Mechanics

    Science.gov (United States)

    Wilczek, Frank

    The lectures that follow were originally given in 1992, and written up only slightly later. Since then there have been dramatic developments in the quantum theory of black holes, especially in the context of string theory. None of these are reflected here. The concept of quantum hair, which is discussed at length in the lectures, is certainly of permanent interest, and I continue to believe that in some generalized form it will prove central to the whole question of how information is stored in black holes. The discussion of scattering and emission modes from various classes of black holes could be substantially simplified using modern techniques, and from currently popular perspectives the choice of examples might look eccentric. On the other hand fashions have changed rapidly in the field, and the big questions as stated and addressed here, especially as formulated for "real" black holes (nonextremal, in four-dimensional, asymptotically flat space-time, with supersymmetry broken), remain pertinent even as the tools to address them may evolve. The four lectures I gave at the school were based on two lengthy papers that have now been published, "Black Holes as Elementary Particles," Nuclear Physics B380, 447 (1992) and "Quantum Hair on Black Holes," Nuclear Physics B378, 175 (1992). The unifying theme of this work is to help make plausible the possibility that black holes, although they are certainly unusual and extreme states of matter, may be susceptible to a description using concepts that are not fundamentally different from those we use in describing other sorts of quantum-mechanical matter. In the first two lectures I discussed dilaton black holes. The fact that apparently innocuous changes in the "matter" action can drastically change the properties of a black hole is already very significant: it indicates that the physical properties of small black holes cannot be discussed reliably in the abstract, but must be considered with due regard to the rest of

  10. Paradoxical response to dexamethasone and spontaneous hypocortisolism in Cushing's disease

    OpenAIRE

    Lila, Anurag R; Sarathi, Vijaya; Bandgar, Tushar R; Shah, Nalini S

    2013-01-01

    Paradoxical response to dexamethasone and spontaneous development of hypocortisolism are rare features of Cushing's disease. We report a 13-year-old boy with Cushing's disease owing to a pituitary macroadenoma. On initial evaluation, he had partial suppression of serum cortisol by dexamethasone. He developed transient hypocortisolism after first adenomectomy, but the disease recurred after 1 year. Repeat evaluation showed recurrent hypercortisolism and paradoxical response to dexamethasone. H...

  11. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    Science.gov (United States)

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-11-01

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  12. Fault-tolerant Greenberger-Horne-Zeilinger paradox based on non-Abelian anyons.

    Science.gov (United States)

    Deng, Dong-Ling; Wu, Chunfeng; Chen, Jing-Ling; Oh, C H

    2010-08-06

    We propose a scheme to test the Greenberger-Horne-Zeilinger paradox based on braidings of non-Abelian anyons, which are exotic quasiparticle excitations of topological states of matter. Because topological ordered states are robust against local perturbations, this scheme is in some sense "fault-tolerant" and might close the detection inefficiency loophole problem in previous experimental tests of the Greenberger-Horne-Zeilinger paradox. In turn, the construction of the Greenberger-Horne-Zeilinger paradox reveals the nonlocal property of non-Abelian anyons. Our results indicate that the non-Abelian fractional statistics is a pure quantum effect and cannot be described by local realistic theories. Finally, we present a possible experimental implementation of the scheme based on the anyonic interferometry technologies.

  13. Experimental test of the irreducible four-qubit Greenberger-Horne-Zeilinger paradox

    Science.gov (United States)

    Su, Zu-En; Tang, Wei-Dong; Wu, Dian; Cai, Xin-Dong; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Żukowski, Marek; Pan, Jian-Wei

    2017-03-01

    The paradox of Greenberger-Horne-Zeilinger (GHZ) disproves directly the concept of EPR elements of reality, based on the EPR correlations, in an all-versus-nothing way. A three-qubit experimental demonstration of the GHZ paradox was achieved nearly 20 years ago, followed by demonstrations for more qubits. Still, the GHZ contradictions underlying the tests can be reduced to a three-qubit one. We show an irreducible four-qubit GHZ paradox, and report its experimental demonstration. The bound of a three-setting-per-party Bell-GHZ inequality is violated by 7 σ . The fidelity of the GHZ state was around 81 % , and an entanglement witness reveals a violation of the separability threshold by 19 σ .

  14. Black Hole Complementarity and Violation of Causality

    OpenAIRE

    Rozenblit, Moshe

    2017-01-01

    Analysis of a massive shell collapsing on a solid sphere shows that black hole complementarity (BHC) violates causality in its effort to save information conservation. In particular, this note describes a hypothetical contraption based on BHC that would allow the transfer of information from the future to the present.

  15. A Canadian paradox: Tommy Douglas and eugenics.

    Science.gov (United States)

    Shevell, Michael

    2012-01-01

    Tommy Douglas is an icon of Canadian 20th Century political history and is considered by many as the "Father" of Medicare, a key component of our national identity. Throughout his career, he was associated at both the provincial and federal levels with progressive causes concerning disadvantaged populations. In his sociology Master's thesis written in the early 1930's, Douglas endorsed eugenic oriented solutions such as segregation and sterilization to address what was perceived to be an endemic and biologically determined problem. At first glance, this endorsement of eugenics appears to be paradoxical, but careful analysis revealed that this paradox has multiple roots in religion, political belief, historical exposure and our own desire to view our collective history in a favourable light.

  16. Rotating model for the equivalence principle paradox

    International Nuclear Information System (INIS)

    Wilkins, D.C.

    1975-01-01

    An idealized system is described in which two inertial frames rotate relative to one another. When a (scalar) dipole is locally at rest in one frame, a paradox arises as to whether or not it will radiate. Fluxes of energy and angular momentum and the time development of the system are discussed. Resolution of the paradox involves several unusual features, including (i) radiation by an unmoving charge, an effect discussed by Chitre, Price, and Sandberg, (ii) different power seen by relatively accelerated inertial observers, and (iii) radiation reaction due to gravitational backscattering of radiation, in agreement with the work of C. and B. DeWitt. These results are obtained, for the most part, without the complications of curved space--time

  17. Steering, Entanglement, Nonlocality, and the EPR Paradox

    Science.gov (United States)

    Wiseman, Howard; Jones, Steve; Andrew, Doherty

    2007-06-01

    The concept of steering was introduced by Schroedinger in 1935 as a generalization of the EPR paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and Isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell-nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original EPR paradox.

  18. Decoding Mode-mixing in Black-hole Merger Ringdown

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.

    2013-01-01

    Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some |m| = modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes the anomalous (3, 2) harmonic mode measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.

  19. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  20. Introducing the Levinthal's Protein Folding Paradox and Its Solution

    Science.gov (United States)

    Martínez, Leandro

    2014-01-01

    The protein folding (Levinthal's) paradox states that it would not be possible in a physically meaningful time to a protein to reach the native (functional) conformation by a random search of the enormously large number of possible structures. This paradox has been solved: it was shown that small biases toward the native conformation result…

  1. Mechanical Paradox: The Uphill Roller

    Science.gov (United States)

    Cortes, Emilio; Cortes-Poza, D.

    2011-01-01

    We analyse in detail the dynamics of a mechanical system which is a rigid body with the geometry of a double cone. This double cone is apparently able to spontaneously roll uphill along inclined rails. The experiment has been known for some centuries, and because of its peculiar behaviour, it has been named "mechanical paradox". Although this…

  2. The Paradox of Painful Art

    Science.gov (United States)

    Smuts, Aaron

    2007-01-01

    Many of the most popular genres of narrative art are designed to elicit negative emotions: emotions that are experienced as painful or involving some degree of pain, which people generally avoid in their daily lives. Traditionally, the question of why people seek out such experiences of painful art has been presented as the paradox of tragedy, and…

  3. Bifurcation from stable holes to replicating holes in vibrated dense suspensions.

    Science.gov (United States)

    Ebata, H; Sano, M

    2013-11-01

    In vertically vibrated starch suspensions, we observe bifurcations from stable holes to replicating holes. Above a certain acceleration, finite-amplitude deformations of the vibrated surface continue to grow until void penetrates fluid layers, and a hole forms. We studied experimentally and theoretically the parameter dependence of the holes and their stabilities. In suspensions of small dispersed particles, the circular shapes of the holes are stable. However, we find that larger particles or lower surface tension of water destabilize the circular shapes; this indicates the importance of capillary forces acting on the dispersed particles. Around the critical acceleration for bifurcation, holes show intermittent large deformations as a precursor to hole replication. We applied a phenomenological model for deformable domains, which is used in reaction-diffusion systems. The model can explain the basic dynamics of the holes, such as intermittent behavior, probability distribution functions of deformation, and time intervals of replication. Results from the phenomenological model match the linear growth rate below criticality that was estimated from experimental data.

  4. The Paradoxes of Liberalism

    DEFF Research Database (Denmark)

    Thompson, Grahame

    2011-01-01

    Jakob Vestergaard has produced one of the most telling analyses of the international financial architecture by deploying a broadly Foucauldian framework that invokes a novel description of neo-liberal governance, one organized around discipline, conditional exceptions and the pursuit of a ‘proper...... economy’. This review both welcomes but challenges some of Vestergaard's analysis. In so doing it explores further the paradoxes of liberalism and the fate of sovereignty in the current international context....

  5. Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics

    International Nuclear Information System (INIS)

    Everett, Allen

    2004-01-01

    We consider two approaches to evading paradoxes in quantum mechanics with closed timelike curves. In a model similar to Politzer's, assuming pure states and using path integrals, we show that the problems of paradoxes and of unitarity violation are related; preserving unitarity avoids paradoxes by modifying the time evolution so that improbable events become certain. Deutsch has argued, using the density matrix, that paradoxes do not occur in the 'many worlds interpretation'. We find that in this approach account must be taken of the resolution time of the device that detects objects emerging from a wormhole or other time machine. When this is done one finds that this approach is viable only if macroscopic objects traversing a wormhole interact with it so strongly that they are broken into microscopic fragments

  6. The Chinese Classroom Paradox: A Cross-Cultural Comparison of Teacher Controlling Behaviors

    Science.gov (United States)

    Zhou, Ning; Lam, Shui-Fong; Chan, Kam Chi

    2012-01-01

    Chinese classrooms present an intriguing paradox to the claim of self-determination theory that autonomy facilitates learning. Chinese teachers appear to be controlling, but Chinese students do not have poor academic performance in international comparisons. The present study addressed this paradox by examining the cultural differences in…

  7. Gamma radiation scanning of nuclear waste storage tile holes

    International Nuclear Information System (INIS)

    Das, A.; Yue, S.; Sur, B.; Johnston, J.; Gaudet, M.; Wright, M.; Burton, N.

    2010-01-01

    Nuclear waste management facilities at Chalk River Laboratories use below-ground 'tile holes' to store solid waste from various activities such as medical radioisotope production. A silicon PIN (p-type-intrinsic-n-type semiconductor) diode based gamma radiation scanning system has been developed and used to profile the gamma radiation fields along the depth of waste storage tile holes by deploying the sensor into verification tubes adjacent to the tile holes themselves. The radiation field measurements were consistent with expected radiation fields in the tile holes based on administrative knowledge of the radioactive contents and their corresponding decay rates. Such measurements allow non-invasive verification of tile hole contents and provide input to the assessment of radiological risk associated with removal of the waste. Using this detector system, radioactive waste that has decayed to very low levels may be identified based on the radiation profile. This information will support planning for possible transfer of this waste to a licensed waste storage facility designed for low level waste, thus freeing storage space for possible tile hole re-use for more highly radioactive waste. (author)

  8. Obesity and poverty paradox in developed countries.

    Science.gov (United States)

    Żukiewicz-Sobczak, Wioletta; Wróblewska, Paula; Zwoliński, Jacek; Chmielewska-Badora, Jolanta; Adamczuk, Piotr; Krasowska, Ewelina; Zagórski, Jerzy; Oniszczuk, Anna; Piątek, Jacek; Silny, Wojciech

    2014-01-01

    Obesity is a civilization disease and the proportion of people suffering from it continues to grow, especially in the developed countries. Number of obese people in Europe has increased threefold over the last 20 years. The paradox of obesity and poverty relationship is observed especially in the developed and developing countries. In developing countries, along with economic development and income growth, the number of people with overweight and obesity is increasing. This paradox has a relationship with both the easy availability and low cost of highly processed foods containing 'empty calories' and no nutritional value. To date, this paradox has been described in the United States and the United Kingdom, although many European countries are also experiencing high percentages of obese people. Among the reasons for the growing obesity in the population of poor people are: higher unemployment, lower education level, and irregular meals. Another cause of obesity is low physical activity, which among the poor is associated with a lack of money for sports equipment. Due to the large rate of deaths caused by diseases directly linked to obesity, the governments of many countries implement prevention programmes of overweight and obesity. These programmes are based primarily on educating the public about a healthy lifestyle based on healthy eating, daily physical activity and avoiding alcohol and cigarettes.

  9. Obesity and poverty paradox in developed countries

    Directory of Open Access Journals (Sweden)

    Wioletta Żukiewicz-Sobczak

    2014-09-01

    Full Text Available Obesity is a civilization disease and the proportion of people suffering from it continues to grow, especially in the developed countries. Number of obese people in Europe has increased threefold over the last 20 years. The paradox of obesity and poverty relationship is observed especially in the developed and developing countries. In developing countries, along with economic development and income growth, the number of people with overweight and obesity is increasing. This paradox has a relationship with both the easy availability and low cost of highly processed foods containing ‘empty calories’ and no nutritional value. To date, this paradox has been described in the United States and the United Kingdom, although many European countries are also experiencing high percentages of obese people. Among the reasons for the growing obesity in the population of poor people are: higher unemployment, lower education level, and irregular meals. Another cause of obesity is low physical activity, which among the poor is associated with a lack of money for sports equipment. Due to the large rate of deaths caused by diseases directly linked to obesity, the governments of many countries implement prevention programmes of overweight and obesity. These programmes are based primarily on educating the public about a healthy lifestyle based on healthy eating, daily physical activity and avoiding alcohol and cigarettes.

  10. Black Holes

    OpenAIRE

    Horowitz, Gary T.; Teukolsky, Saul A.

    1998-01-01

    Black holes are among the most intriguing objects in modern physics. Their influence ranges from powering quasars and other active galactic nuclei, to providing key insights into quantum gravity. We review the observational evidence for black holes, and briefly discuss some of their properties. We also describe some recent developments involving cosmic censorship and the statistical origin of black hole entropy.

  11. Permeability of granular beds emplaced in vertical drill holes

    International Nuclear Information System (INIS)

    Griffiths, S.K.; Morrison, F.A. Jr.

    1979-01-01

    To determine the permeabilities of granular materials emplaced in vertical drill holes used for underground nuclear tests, an experiment at the USDOE Nevada Test Site (NTS) was conducted. As the hole is being filled, falling material increases pressure above and within the granular beds beneath. When the filling operation starts or stops, a transient pressure response occurs within the beds; measurements of this response in beds of various compositions were made. The permeabilities after emplacement were found by matching analytical predictions of the response to these data. This information is useful in assuring the containment of nuclear tests conducted in such drill holes

  12. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  13. Chronic Illness as a Source of Happiness: Paradox or perfectly normal?

    Directory of Open Access Journals (Sweden)

    S. Hoppe

    2013-11-01

    Full Text Available In this paper I analyse the relation between happiness and chronic illness from the perspective of medical anthropology and disability studies. By looking at the disability paradox I deconstruct society’s view of people with a disability. I argue that the disability paradox is problematic as it ignores the views of people with a disability. Moreover, such a paradox reinforces the idea that living with a chronic illness or disability is a devastating experience and that happiness and disability are mutally exclusive realities. Based on empiric examples of people who suffer from Multiple Sclerosis I demonstrate that people with a chronic illness can experience happiness in spite of illness, but also as a consequence of it. 

  14. Paradoxical hypotension during dobutamine infusion for myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Erguen, E.L.; Caner, B.; Atalar, E.; Karanfil, A.; Tokgoezoglu, L.

    1998-01-01

    Dobutamine as a predominant beta-1 agonist increases heart rate and myocardial contractility and at sufficient high doses, it also increases systolic blood pressure. This study was undertaken to describe instances of paradoxical hypotension during dobutamine infusion for Tl-201 myocardial perfusion SPECT study and the relationship between scintigraphic findings and hypotension occurred during dobutamine infusion. Methods: In 201 consecutive patients unable to perform adequate exercise, dobutamine Tl-201 myocardial SPECT was performed. Dobutamine was infused starting from 10 μg/kg/min increasing to 40 μ/kg/min. Paradoxical hypotension was defined as a decrease in systolic blood pressure ≥ 20 mmHg compared with baseline study. Paradoxical hypotension was observed in 40 patients (Group A) out of 201 (19.9%) while no significant change in systolic blood pressure was detected in the remaining 161 patients (Group B). Mean maximum fall in systolic blood pressure was 39±18 mmHg (range: 20-90). In 33 of 40 patients (83%) with paradoxical hypotension, scintigraphy was normal compared to 131 (81%) of the remaining 161 patients. In patients of Group A, angiography, echocardiography and tilt table tests were performed in 13, 11 and 6 patients respectively. Nine of 13 angiographic evaluations (69%), 10 of 11 echocardiographic evaluations (91%), all of the tilt table tests were normal. Additionally, all of the patients of Group A were clinically followed up at least 6 months after the myocardial perfusion scintigraphy. None of the patients had a cardiac event except one patient during the follow-up period. Conclusion: Paradoxical hypotension during dobutamine infusion for myocardial scintigraphy is not an uncommon finding and up to 19.9% patients may develop such hypotension. To maximize test safety, precautions should be taken during dobutamine myocardial stress test, since remarkable decrease in systolic blood pressure may occur. Unlike hypotension occurring with exercise

  15. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  16. R&D ADMINISTRATION IN THE HIGH TECHNOLOGY INDUSTRY: HOW TO MANAGE A PARADOX

    Directory of Open Access Journals (Sweden)

    Nobuiuki Costa Ito

    2010-10-01

    Full Text Available The competitive environment of the knowledge age is getting more complex, dynamic, and fast-moving each day. The high tech industry is intensively tied to its effects and demands for innovation, so the field of Research and Development must act strategically, generating innovations and granting success and sustainability to the business. However, there is a paradox in R&D which may lay traps and obstacles disguised by the busy day-to-day activity of the organization. The purpose of this paper is to point out directions that managers may take to cope with these contradictions in R&D administration. The R&D paradox is rooted in the conflict between exploitation, achieved by continual improvement through incremental innovation, and by exploration, which seeks new opportunities in the creation of new technologies through disruptive innovations. These two sides of the paradox demand different, and sometimes even divergent, organizations. Top management leadership is crucial for the acceptance and balancing of the contradictions created by this paradox, and can align exploitation/exploration through distributive and integrative decisions and transform companies into truly ambidextrous organizations.    Key-words:  Research & Development. Innovation. Paradox. Ambidextrous organizations. Strategy. 

  17. Paradoxical motion of interventricular septum on Tc-99m MIBI gated SPECT study

    International Nuclear Information System (INIS)

    Ergun, E.L.; Erbas, B.; Beylergil, V.; Demirturk, O.S.; Pasaoglu, I.

    2004-01-01

    After uncomplicated cardiac surgery, abnormal motion of the interventricular septum is frequently observed. The interventricular septum has often been found to display dyskinetic, or paradoxical motion by echocardiographic studies. This study was undertaken to describe instances of paradoxical motion of interventricular septum on Tc-99m MIBI gated SPECT studies in patients after coronary artery by pass graft surgery. Tc-99m MIBI gated SPECT in conjunction with stress myocardial perfusion SPECT was performed in 18 patients who had history of cardiac bypass graft surgery. Paradoxical motion of the interventricular septum was defined visually from Tc-99m MIBI gated SPECT. Perfusion of the interventricular septum was examined from myocardial perfusion images in the same study. Paradoxical motion of the interventricular septum was observed in 4 patients (22%). The interventricular septum was normally perfused in all patients. It was concluded that paradoxical motion of the interventricular septum in patients who had a history of cardiac by-pass graft surgery is not an uncommon finding and it can be observed with gated SPECT. The exact mechanism of this phenomenon is not well-known. A normal perfusion in interventricular wall helps to discriminate this situation from a real abnormality. (author)

  18. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    large values of Ф, black holes do form and for small values the scalar field ... on the near side of the ridge ultimately evolve to form black holes while those configu- ... The inset shows a bird's eye view looking down on the saddle point.

  19. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  20. Zeno's paradox in quantum cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Groessing, G [Atominst. der Oesterreichischen Universitaeten, Vienna (Austria); Zeilinger, A [Inst. fuer Experimentalphysik, Univ. Innsbruck (Austria)

    1991-07-01

    The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.).

  1. Zeno's paradox in quantum cellular automata

    International Nuclear Information System (INIS)

    Groessing, G.; Zeilinger, A.

    1991-01-01

    The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.)

  2. Holographic shell model: Stack data structure inside black holes?

    Science.gov (United States)

    Davidson, Aharon

    2014-03-01

    Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.

  3. MODELING PARADOXES IN NOVICE AND EXPERT DESIGN

    DEFF Research Database (Denmark)

    Dorst, Kees; Hansen, Claus Thorp

    2011-01-01

    In their ICED09 paper ‘Problem formulation as a discursive activity’, the authors have used an extensive educational case study to explore a framework for describing design as a discursive activity, centered around the paradoxical nature of the problem situation. The ‘working definition’ for para......In their ICED09 paper ‘Problem formulation as a discursive activity’, the authors have used an extensive educational case study to explore a framework for describing design as a discursive activity, centered around the paradoxical nature of the problem situation. The ‘working definition...... at play in a design situation, and extract themes that can lead to reformulation of the problem as well as the creation of innovative solutions. This behaviour is compared to the ways of working of novice designers (students) in the original case study....

  4. The Einstein-Podolsky-Rosen paradox

    International Nuclear Information System (INIS)

    Roy, S.M.

    1980-01-01

    The celebrated arguments of Einstein, Podolsky and Rosen claiming that quantum mechanics cannot be a complete theory are reviewed. Recent research climaxed by Bell's theorem shows that Einstein's locality or ''no telepathy'' postulate conflicts with quantum theory. It adds a new dimension to the paradox by catapulting the problem from the domain of metaphysics into that of experimental physics. (auth.)

  5. Time and situatedness Merleau-Ponty,s Response to McTaggart,s Paradox

    Directory of Open Access Journals (Sweden)

    Claudio Javier Cormick

    2014-12-01

    Full Text Available The article seeks to establish a relationship that has not yet been explored satisfactorily between Merleau-Ponty᾿s phenomenology of time and a central issue of analytical “theory of time”: McTaggart᾿s paradox. By clarifying the authentic meaning of Merleau-Ponty᾿s “subjectivism” regarding time, against Priest᾿s interpretation (1998, the article points out a convergence between the phenomenological approach and Michael Dummett᾿s theses developed in response to the abovementioned paradox. A “situational” solution to the paradox is attempted on the basis of Dummett᾿s ideas and Bimbenet᾿s interpretation of Merleau-Ponty᾿s “perspectivism”.

  6. Soft Hair on Black Holes

    Science.gov (United States)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  7. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  8. Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation

    International Nuclear Information System (INIS)

    Olsen, M.K.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal

  9. Corporal punishment contestations, paradoxes and implications for ...

    African Journals Online (AJOL)

    Corporal punishment contestations, paradoxes and implications for school leadership: A case study of two South African high schools. ... South African Journal of Education. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current ...

  10. Canister positioning. Influence of fracture system on deposition hole stability

    International Nuclear Information System (INIS)

    Hoekmark, Harald

    2003-11-01

    The study concerns the mechanical behaviour of rock surrounding tunnels and deposition holes in a nuclear waste repository. The mechanical effects of tunnel excavation and deposition hole excavation are investigated by use of a tunnel scale numerical model representing a part of a KBS-3 type repository. The excavation geometry, the initial pre-mining state of stress, and the geometrical features of the fracture system are defined according to conditions that prevail in the TBM tunnel rock mass in Aespoe HRL. Comparisons are made between results obtained without consideration of fractures and results obtained with inclusion of the fracture system. The focus is on the region around the intersection of a tunnel and a deposition hole. A general conclusion is that a fracture system of the type found in the TBM rock mass does not have a decisive influence on the stability of the deposition holes. To estimate the expected extent of spalling, information about other conditions, e.g. the orientation of the initial stresses and the strength properties of the intact rock, is more important than detailed information about the fracture system

  11. Some reflections on the Renewal-theory paradox in queueing theory

    Directory of Open Access Journals (Sweden)

    Robert B. Cooper

    1998-01-01

    Full Text Available The classical renewal-theory (waiting time, or inspection paradox states that the length of the renewal interval that covers a randomly-selected time epoch tends to be longer than an ordinary renewal interval. This paradox manifests itself in numerous interesting ways in queueing theory, a prime example being the celebrated Pollaczek-Khintchine formula for the mean waiting time in the M/G/1 queue. In this expository paper, we give intuitive arguments that “explain” why the renewal-theory paradox is ubiquitous in queueing theory, and why it sometimes produces anomalous results. In particular, we use these intuitive arguments to explain decomposition in vacation models, and to derive formulas that describe some recently-discovered counterintuitive results for polling models, such as the reduction of waiting times as a consequence of forcing the server to set up even when no work is waiting.

  12. Curing Black Hole Singularities with Local Scale Invariance

    Directory of Open Access Journals (Sweden)

    Predrag Dominis Prester

    2016-01-01

    Full Text Available We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1 singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2 instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3 in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4 if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical geometric description; (5 the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.

  13. six six six paradox : [luuletused] / Triin Tasuja

    Index Scriptorium Estoniae

    Tasuja, Triin

    2008-01-01

    Sisu: six six six paradox ; cat stevens ; "vahel tundub, et mu ümber..." ; sääse ; Salaalaealised ; kolkalapsed ; longin mööda lumiseid tänavaid ; punkrock dekadents ; "Igast kirjaneitsist..." ; "mina olengi see saikochick..."

  14. Black hole based quantum computing in labs and in the sky

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Arnold Sommerfeld Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY (United States); Panchenko, Mischa [Arnold Sommerfeld Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2016-08-15

    Analyzing some well established facts, we give a model-independent parameterization of black hole quantum computing in terms of a set of macro and micro quantities and their relations. These include the relations between the extraordinarily-small energy gap of black hole qubits and important time-scales of information-processing, such as, scrambling time and Page's time. We then show, confirming and extending previous results, that other systems of nature with identical quantum informatics features are attractive Bose-Einstein systems at the critical point of quantum phase transition. Here we establish a complete isomorphy between the quantum computational properties of these two systems. In particular, we show that the quantum hair of a critical condensate is strikingly similar to the quantum hair of a black hole. Irrespectively whether one takes the similarity between the two systems as a remarkable coincidence or as a sign of a deeper underlying connection, the following is evident. Black holes are not unique in their way of quantum information processing and we can manufacture black hole based quantum computers in labs by taking advantage of quantum criticality. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Black hole based quantum computing in labs and in the sky

    International Nuclear Information System (INIS)

    Dvali, Gia; Panchenko, Mischa

    2016-01-01

    Analyzing some well established facts, we give a model-independent parameterization of black hole quantum computing in terms of a set of macro and micro quantities and their relations. These include the relations between the extraordinarily-small energy gap of black hole qubits and important time-scales of information-processing, such as, scrambling time and Page's time. We then show, confirming and extending previous results, that other systems of nature with identical quantum informatics features are attractive Bose-Einstein systems at the critical point of quantum phase transition. Here we establish a complete isomorphy between the quantum computational properties of these two systems. In particular, we show that the quantum hair of a critical condensate is strikingly similar to the quantum hair of a black hole. Irrespectively whether one takes the similarity between the two systems as a remarkable coincidence or as a sign of a deeper underlying connection, the following is evident. Black holes are not unique in their way of quantum information processing and we can manufacture black hole based quantum computers in labs by taking advantage of quantum criticality. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. A Dancing Black Hole

    Science.gov (United States)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  17. The role of causal reasoning in understanding Simpson's paradox, Lord's paradox, and the suppression effect: covariate selection in the analysis of observational studies

    Directory of Open Access Journals (Sweden)

    Arah Onyebuchi A

    2008-02-01

    Full Text Available Abstract Tu et al present an analysis of the equivalence of three paradoxes, namely, Simpson's, Lord's, and the suppression phenomena. They conclude that all three simply reiterate the occurrence of a change in the association of any two variables when a third variable is statistically controlled for. This is not surprising because reversal or change in magnitude is common in conditional analysis. At the heart of the phenomenon of change in magnitude, with or without reversal of effect estimate, is the question of which to use: the unadjusted (combined table or adjusted (sub-table estimate. Hence, Simpson's paradox and related phenomena are a problem of covariate selection and adjustment (when to adjust or not in the causal analysis of non-experimental data. It cannot be overemphasized that although these paradoxes reveal the perils of using statistical criteria to guide causal analysis, they hold neither the explanations of the phenomenon they depict nor the pointers on how to avoid them. The explanations and solutions lie in causal reasoning which relies on background knowledge, not statistical criteria.

  18. [Five paradoxes in health promotion].

    Science.gov (United States)

    López-Dicastillo, Olga; Canga-Armayor, Navidad; Mujika, Agurtzane; Pardavila-Belio, Miren Idoia; Belintxon, Maider; Serrano-Monzó, Inmaculada; Pumar-Méndez, María J

    The World Health Organization states that health promotion is a key strategy to improve health, and it is conceived as a global process of enabling people to increase control over, and to improve, their health. Health promotion does not focus solely on empowering individuals dealing with their knowledge, attitudes and skills, but it also takes political, social, economic and environmental aspects influencing health and wellbeing into account. The complexity of applying these concepts is reflected in the five paradoxes in health promotion; these arise in between the rhetoric in health promotion and implementation. The detected paradoxes which are described herein involve the patient versus the person, the individual versus the group, disease professionals versus health professionals, disease indicators versus health indicators, and health as an expense versus health as an investment. Making these contradictions explicit can help determine why it is so complex to put the concepts related to health promotion into practice. It can also help to put forward aspects that need further work if health promotion is to put into practice. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. The paradox of strategic environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bidstrup, Morten, E-mail: bidstrup@plan.aau.dk; Hansen, Anne Merrild, E-mail: merrild@plan.aau.dk

    2014-07-01

    Strategic Environmental Assessment (SEA) is a tool that can facilitate sustainable development and improve decision-making by introducing environmental concern early in planning processes. However, various international studies conclude that current planning practice is not taking full advantage of the tool, and we therefore define the paradox of SEA as the methodological ambiguity of non-strategic SEA. This article explores causality through at three-step case study on aggregates extraction planning in Denmark, which consists of a document analysis; a questionnaire survey and follow-up communication with key planners. Though the environmental reports on one hand largely lack strategic considerations, practitioners express an inherent will for strategy and reveal that their SEAs in fact have been an integrated part of the planning process. Institutional context is found to be the most significant barrier for a strategy and this suggests that non-strategic planning setups can prove more important than non-strategic planning in SEA practice. Planners may try to execute strategy within the confinements of SEA-restricted planning contexts; however, such efforts can be overlooked if evaluated by a narrow criterion for strategy formation. Consequently, the paradox may also spark from challenged documentation. These findings contribute to the common understanding of SEA quality; however, further research is needed on how to communicate and influence the strategic options which arguably remain inside non-strategic planning realities. - Highlights: • International studies conclude that SEAs are not strategic. = The paradox of SEA. • Even on the highest managerial level, some contexts do not leave room for strategy. • Non-strategic SEA can derive from challenged documentation. • Descriptive and emergent strategy formation can, in practice, be deemed non-strategic.

  20. The paradox of strategic environmental assessment

    International Nuclear Information System (INIS)

    Bidstrup, Morten; Hansen, Anne Merrild

    2014-01-01

    Strategic Environmental Assessment (SEA) is a tool that can facilitate sustainable development and improve decision-making by introducing environmental concern early in planning processes. However, various international studies conclude that current planning practice is not taking full advantage of the tool, and we therefore define the paradox of SEA as the methodological ambiguity of non-strategic SEA. This article explores causality through at three-step case study on aggregates extraction planning in Denmark, which consists of a document analysis; a questionnaire survey and follow-up communication with key planners. Though the environmental reports on one hand largely lack strategic considerations, practitioners express an inherent will for strategy and reveal that their SEAs in fact have been an integrated part of the planning process. Institutional context is found to be the most significant barrier for a strategy and this suggests that non-strategic planning setups can prove more important than non-strategic planning in SEA practice. Planners may try to execute strategy within the confinements of SEA-restricted planning contexts; however, such efforts can be overlooked if evaluated by a narrow criterion for strategy formation. Consequently, the paradox may also spark from challenged documentation. These findings contribute to the common understanding of SEA quality; however, further research is needed on how to communicate and influence the strategic options which arguably remain inside non-strategic planning realities. - Highlights: • International studies conclude that SEAs are not strategic. = The paradox of SEA. • Even on the highest managerial level, some contexts do not leave room for strategy. • Non-strategic SEA can derive from challenged documentation. • Descriptive and emergent strategy formation can, in practice, be deemed non-strategic