WorldWideScience

Sample records for hole closure simulations

  1. Superresolving Black Hole Images with Full-Closure Sparse Modeling

    Science.gov (United States)

    Crowley, Chelsea; Akiyama, Kazunori; Fish, Vincent

    2018-01-01

    It is believed that almost all galaxies have black holes at their centers. Imaging a black hole is a primary objective to answer scientific questions relating to relativistic accretion and jet formation. The Event Horizon Telescope (EHT) is set to capture images of two nearby black holes, Sagittarius A* at the center of the Milky Way galaxy roughly 26,000 light years away and the other M87 which is in Virgo A, a large elliptical galaxy that is 50 million light years away. Sparse imaging techniques have shown great promise for reconstructing high-fidelity superresolved images of black holes from simulated data. Previous work has included the effects of atmospheric phase errors and thermal noise, but not systematic amplitude errors that arise due to miscalibration. We explore a full-closure imaging technique with sparse modeling that uses closure amplitudes and closure phases to improve the imaging process. This new technique can successfully handle data with systematic amplitude errors. Applying our technique to synthetic EHT data of M87, we find that full-closure sparse modeling can reconstruct images better than traditional methods and recover key structural information on the source, such as the shape and size of the predicted photon ring. These results suggest that our new approach will provide superior imaging performance for data from the EHT and other interferometric arrays.

  2. From binary black hole simulation to triple black hole simulation

    International Nuclear Information System (INIS)

    Bai Shan; Cao Zhoujian; Han, Wen-Biao; Lin, Chun-Yu; Yo, Hwei-Jang; Yu, Jui-Ping

    2011-01-01

    Black hole systems are among the most promising sources for a gravitational wave detection project. Now, China is planning to construct a space-based laser interferometric detector as a follow-on mission of LISA in the near future. Aiming to provide some theoretical support to this detection project on the numerical relativity side, we focus on black hole systems simulation in this work. Considering the globular galaxy, multiple black hole systems also likely to exist in our universe and play a role as a source for the gravitational wave detector we are considering. We will give a progress report in this paper on our black hole system simulation. More specifically, we will present triple black hole simulation together with binary black hole simulation. On triple black hole simulations, one novel perturbational method is proposed.

  3. Spontaneous traumatic macular hole closure in a 50-year-old woman: a case report

    Directory of Open Access Journals (Sweden)

    Rotsos Tryfon

    2011-07-01

    Full Text Available Abstract Introduction Traumatic macular holes (TMH are well-known complications of ocular contusion injury. Spontaneous closure occurs in approximately 50% of cases, but rarely after the age of thirty. We report a case of spontaneous closure of a full thickness macular hole due to a blunt trauma and we suggest possible mechanisms for this closure. Case presentation A 50-year-old Greek woman was referred with a history of reduced best-corrected visual acuity after blunt trauma to her right eye. Diagnosis was based on fundoscopic, optical coherence tomography as well as fluorescein angiography findings with follow-up visits at two days, 20 days and five months. Fundoscopy revealed a full-thickness TMH with a minor sub-retinal hemorrhage and posterior vitreous detachment. The presence of a coagulum in the TMH base was observed. Subsequently, TMH closure was observed. Conclusion The clot in the TMH base, potentially a hemorrhage by-product containing a significant quantity of platelets, may have simulated the clot observed after autologous serum use, thus facilitating a similar effect. This may have stimulated glial cell migration and proliferation, thus contributing to spontaneous hole closure.

  4. ATLAS simulated black hole event

    CERN Multimedia

    Pequenão, J

    2008-01-01

    The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  5. Simulations of nearly extremal binary black holes

    Science.gov (United States)

    Giesler, Matthew; Scheel, Mark; Hemberger, Daniel; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilagyi, Bela; Kidder, Lawrence; SXS Collaboration

    2015-04-01

    Astrophysical black holes could have nearly extremal spins; therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S /m2 = 0 . 93 . Using improved methods we simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S /m2 = 0 . 99 . We also use these methods to simulate a nearly extremal non-precessing binary black hole coalescence, where both black holes have S /m2 = 0 . 994 , nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; and we compare the evolution of the black-hole masses and spins with analytic predictions.

  6. Seeding black holes in cosmological simulations

    Science.gov (United States)

    Taylor, P.; Kobayashi, C.

    2014-08-01

    We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass-velocity dispersion relation, and the size-velocity dispersion relation of galaxies. The black hole seed mass is ˜103 M⊙, which is orders of magnitude smaller than that which has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.

  7. Dynamic hole closure behind a deep ocean sediment penetrator

    International Nuclear Information System (INIS)

    Dzwilewski, P.T.; Karnes, C.H.

    1982-01-01

    A freefall or boosted penetrator is one concept being considered to dispose of nuclear waste in the deep ocean seabed. For this technique to be acceptable, the sediment must be an effective barrier to the migration of radioactive nuclides, which means that the hole behind the advancing penetrator must close. One mechanism which can cause the hole to close immediately behind the penetrator is the reduction in water pressure in the wake as water tries to follow the penetrator into the sediment. An approximate solution to this complex problem is presented which analyzes the deformation of the sediment with a nonlinear, large displacement and strain, Lagrangian finite-difference computer code (STEALTH). The water was treated by Bernoulli's Principle for flow in a pipe resulting in a pressure boundary condition applied to the sediment surface along the path after passage of the penetrator. Two one-dimensional and eight two-dimensional calculations were performed with various penetrator velocities (15, 30, and 60 m/s) and sediment shear strengths. In two of the calculations, the dynamic pressure reduction was neglected to see if geostatic stresses alone would close the hole. The results of this study showed that geostatic stresses alone would not close the hole but the dynamic pressure reduction would. The largest uncertainty in the analysis was the pressure conditions in the water behind the penetrator in which frictionless, steady-state flow, in a uniform diameter pipe was assumed. A more sophisticated and realistic pressure condition has been formulated and will be implemented in the computer code in the near future

  8. Characterization of diagnostic hole-closure in Z-pinch driven hohlraums

    International Nuclear Information System (INIS)

    Baker, K. L.; Porter, J. L.; Ruggles, L. E.; Chandler, G. A.; Deeney, Chris; Vargas, M.; Moats, Ann; Struve, Ken; Torres, J.; McGurn, J. S.

    2000-01-01

    In this article we investigate the partial closure of diagnostic holes in Z-pinch driven hohlraums. These hohlraums differ from current laser-driven hohlraums in a number of ways such as their larger size, greater x-ray drive energy, and lower temperature. Although the diameter of the diagnostic holes on these Z-pinch driven hohlraums can be much greater than their laser-driven counterparts, 4 mm in diameter or larger, radiation impinges on the wall material surrounding the hole for the duration of the Z pinch, nearly 100 ns. This incident radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and partially obscure this diagnostic hole. This partial obscuration reduces the effective area over which diagnostics view the hohlraum's radiation. This reduction in area can lead to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. In this article we describe the techniques used to characterize the hole-closure in these hohlraums and present the experimental measurements of this process. (c) 2000 American Institute of Physics

  9. Characterization of diagnostic hole-closure in Z-pinch driven hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Porter, J. L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Ruggles, L. E. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Chandler, G. A. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Deeney, Chris [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Vargas, M. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Moats, Ann [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Struve, Ken [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Torres, J. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); McGurn, J. S. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)] (and others)

    2000-02-01

    In this article we investigate the partial closure of diagnostic holes in Z-pinch driven hohlraums. These hohlraums differ from current laser-driven hohlraums in a number of ways such as their larger size, greater x-ray drive energy, and lower temperature. Although the diameter of the diagnostic holes on these Z-pinch driven hohlraums can be much greater than their laser-driven counterparts, 4 mm in diameter or larger, radiation impinges on the wall material surrounding the hole for the duration of the Z pinch, nearly 100 ns. This incident radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and partially obscure this diagnostic hole. This partial obscuration reduces the effective area over which diagnostics view the hohlraum's radiation. This reduction in area can lead to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. In this article we describe the techniques used to characterize the hole-closure in these hohlraums and present the experimental measurements of this process. (c) 2000 American Institute of Physics.

  10. TOPOGRAPHIC CHANGES OF THE MACULA AFTER CLOSURE OF IDIOPATHIC MACULAR HOLE.

    Science.gov (United States)

    Pak, Kang Yeun; Park, Keun Heung; Kim, Kyong Ho; Park, Sung Who; Byon, Ik Soo; Kim, Hyun Woong; Chung, In Young; Lee, Joo Eun; Lee, Sang Joon; Lee, Ji Eun

    2017-04-01

    To investigate retinal displacement in the macula after surgical closure of idiopathic macular hole and to identify factors correlated with displacement. This retrospective multicenter study included 73 eyes of 73 patients having idiopathic macular hole. A custom program was developed to compare the position of the retinal vessels in the macula between preoperative and postoperative photographs. En face images of a 6 mm × 6 mm optical coherence tomography volume scans were registered to calculate the scale. A grid comprising 16 sectors in 2 rings (inner; 2-4 mm and outer; 4-6 mm) was superimposed. The displacement of the retinal vessels was measured as a vector value by comparing the location of the retinal vessels in each sector. The correlation between displacement and various clinical parameters was analyzed. The average displacement was 57.2 μm at an angle of -3.3° (nasal and slightly inferior). Displacement was larger in the inner ring (79.2 μm) than in the outer ring (35.3 μm, P macula was displaced centripetally, nasally, and slightly inferiorly after surgical closure of idiopathic macular hole. Hole closure, contraction of the nerve fiber layer, and gravity are the suggested mechanisms of macular displacement caused by internal limiting membrane peeling.

  11. Simulations of black holes in compactified spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Zilhao, Miguel; Herdeiro, Carlos [Centro de Fisica do Porto, Departamento de Fisica e Astronomia, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Cardoso, Vitor; Nerozzi, Andrea; Sperhake, Ulrich; Witek, Helvi [Centro Multidisciplinar de Astrofisica, Deptartamento de Fisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gualtieri, Leonardo, E-mail: mzilhao@fc.up.pt [Dipartimento di Fisica, Universita di Roma ' Sapienza' and Sezione INFN Roma1, P.A. Moro 5, 00185, Roma (Italy)

    2011-09-22

    From the gauge/gravity duality to braneworld scenarios, black holes in compactified spacetimes play an important role in fundamental physics. Our current understanding of black hole solutions and their dynamics in such spacetimes is rather poor because analytical tools are capable of handling a limited class of idealized scenarios, only. Breakthroughs in numerical relativity in recent years, however, have opened up the study of such spacetimes to a computational treatment which facilitates accurate studies of a wider class of configurations. We here report on recent efforts of our group to perform numerical simulations of black holes in cylindrical spacetimes.

  12. Spontaneous closure of the idiopathic macular hole. Follow-up of this case by optical coherence tomography and microperimetry MP1

    International Nuclear Information System (INIS)

    Molina Martin, Julio Cesar; Rodriguez Rodriguez, Violeta; Mendoza Santiesteban, Carlos

    2010-01-01

    The case of spontaneous closure of a stage 4 idiopathic macular hole at followed up by Optical Coherence Tomography and microperimetry MP1 before and after the closure was presented. The spontaneous closure of a stage 4 macular hole is rare but it can occur in patients with hole upper diameters less than 150 μm. The OCT and the microperimetry MP1 are very useful tools in the diagnosis, prognosis and follow-up of this maculopathy

  13. Significant skin-tightening by closure of fractional ablative laser holes.

    Science.gov (United States)

    Russe, Elisabeth; Purschke, Martin; Limpiangkanan, Wikunda; Farinelli, William A; Wang, Ying; Doukas, Apostolos G; Sakamoto, Fernanda H; Wechselberger, Gottfried; Anderson, Richard Rox

    2018-01-01

    Ablative fractional laser treatment uses thousands of very small laser beam wounds to damage a fraction of the skin, which stimulates tissue remodeling. Each open micro-wound heals without scarring, but the amount of skin tightening achieved is limited. This animal study was performed to test the hypothesis that immediate temporary closure of fractional laser wounds could increase skin tightening after fractional ablative laser treatment. Four adult swine were used for the study; 98 square test sites (3 × 3 cm) were tattooed on the abdomen and flanks of each pig. An ablative fractional Erbium:YAG laser (Sciton Profile, Sciton Inc, Palo Alto, CA) was used to treat the test areas. A laser micro-spot fluence of 375 J/cm 2 was delivered in 150-250 microseconds pulses, resulting in an array of ablation channels extending 1.5 mm deep into the skin, with a spot size of 250 µm, with 10% treatment density. Immediately following laser exposure the resulting holes were closed using a stretched elastic adhesive dressing, which, when applied, recoiled and compressed the diameter of the ablation holes. The compressive dressings were removed after 7 days. This procedure was compared to removing the same amount of skin (10%) mechanically by specially designed 19 gauge coring needles, as well as to the same laser and coring methods without compression closure. Area and shape of test sites were measured by digital photography before and 28 days after treatment. Data analysis included compensation for animal growth, as measured by increase in the area of the untreated control sites. All treated and control sites healed within a week, without scarring evident at 28 days. Laser treatment combined with compressive wound closure caused significant shrinkage at 28 days compared with untreated control sites. The treated skin area was reduced by 11.5% (P = 0.0001). Needle coring with wound closure produced similar, significant shrinkage (8%, P < 0.0021), whereas laser

  14. Analysis and simulation of BGK electron holes

    Directory of Open Access Journals (Sweden)

    L. Muschietti

    1999-01-01

    Full Text Available Recent observations from satellites crossing regions of magnetic-field-aligned electron streams reveal solitary potential structures that move at speeds much greater than the ion acoustic/thermal velocity. The structures appear as positive potential pulses rapidly drifting along the magnetic field, and are electrostatic in their rest frame. We interpret them as BGK electron holes supported by a drifting population of trapped electrons. Using Laplace transforms, we analyse the behavior of one phase-space electron hole. The resulting potential shapes and electron distribution functions are self-consistent and compatible with the field and particle data associated with the observed pulses. In particular, the spatial width increases with increasing amplitude. The stability of the analytic solution is tested by means of a two-dimensional particle-in-cell simulation code with open boundaries. We consider a strongly magnetized parameter regime in which the bounce frequency of the trapped electrons is much less than their gyrofrequency. Our investigation includes the influence of the ions, which in the frame of the hole appear as an incident beam, and impinge on the BGK potential with considerable energy. The nonlinear structure is remarkably resilient

  15. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals

    Science.gov (United States)

    Gawriluk, Thomas R.; Simkin, Jennifer; Thompson, Katherine L.; Biswas, Shishir K.; Clare-Salzler, Zak; Kimani, John M.; Kiama, Stephen G.; Smith, Jeramiah J.; Ezenwa, Vanessa O.; Seifert, Ashley W.

    2016-01-01

    Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ ‘healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury. PMID:27109826

  16. Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations

    Science.gov (United States)

    Foucart, Francois

    2018-04-01

    General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.

  17. RETINA EXPANSION TECHNIQUE FOR MACULAR HOLE APPOSITION REPORT 2: Efficacy, Closure Rate, and Risks of a Macular Detachment Technique to Close Large Full-Thickness Macular Holes.

    Science.gov (United States)

    Wong, Roger; Howard, Catherine; Orobona, Giancarlo Dellʼaversana

    2018-04-01

    To describe the safety and efficacy of a technique to close large thickness macular holes. A consecutive retrospective interventional case series of 16 patients with macular holes greater than 650 microns in "aperture" diameter were included. The technique involves vitrectomy, followed by internal limiting membrane peeling. The macula is detached using subretinal injection of saline. Fluid-air exchange is performed to promote detachment and stretch of the retina. After this, the standard fluid-air exchange is performed and perfluoropropane gas is injected. Face-down posturing is advised. Adverse effects, preoperative, and postoperative visual acuities were recorded. Optical coherence tomography scans were also taken. The mean hole size was 739 microns (SD: 62 microns; mean base diameter: 1,311 microns). Eighty-three percent (14 of 16) of eyes had successful hole closure after the procedure. At 12-month follow-up, no worsening in visual acuity was reported, and improvement in visual acuity was noted in 14 of 16 eyes. No patients lost vision because of the procedure. It is possible to achieve anatomical closure of large macular holes using RETMA. No patients experienced visual loss. The level of visual improvement is likely limited because of the size and chronicity of these holes.

  18. Modeling Supermassive Black Holes in Cosmological Simulations

    Science.gov (United States)

    Tremmel, Michael

    My thesis work has focused on improving the implementation of supermassive black hole (SMBH) physics in cosmological hydrodynamic simulations. SMBHs are ubiquitous in mas- sive galaxies, as well as bulge-less galaxies and dwarfs, and are thought to be a critical component to massive galaxy evolution. Still, much is unknown about how SMBHs form, grow, and affect their host galaxies. Cosmological simulations are an invaluable tool for un- derstanding the formation of galaxies, self-consistently tracking their evolution with realistic merger and gas accretion histories. SMBHs are often modeled in these simulations (generally as a necessity to produce realistic massive galaxies), but their implementations are commonly simplified in ways that can limit what can be learned. Current and future observations are opening new windows into the lifecycle of SMBHs and their host galaxies, but require more detailed, physically motivated simulations. Within the novel framework I have developed, SMBHs 1) are seeded at early times without a priori assumptions of galaxy occupation, 2) grow in a way that accounts for the angular momentum of gas, and 3) experience realistic orbital evolution. I show how this model, properly tuned with a novel parameter optimiza- tion technique, results in realistic galaxies and SMBHs. Utilizing the unique ability of these simulations to capture the dynamical evolution of SMBHs, I present the first self-consistent prediction for the formation timescales of close SMBH pairs, precursors to SMBH binaries and merger events potentially detected by future gravitational wave experiments.

  19. Delayed, spontaneous conversion of type 2 closure to type 1 closure following surgery for traumatic macular hole associated with submacular hemorrhage

    Directory of Open Access Journals (Sweden)

    Pukhraj Rishi

    2012-01-01

    Full Text Available A 45-year-old man presented with diminution of vision in the left eye following a firecracker injury. Best corrected visual acuity (BCVA was 20/20 in the right eye and 20/125 in the left eye. Fundus examination revealed vitreous hemorrhage, a macular hole, and submacular hemorrhage in the left eye. The patient underwent vitrectomy, tissue plasminogen activator (tPA-assisted evacuation of the submacular hemorrhage, internal limiting membrane (ILM peeling, and 14% C3F8 gas insufflation. After two months, the BCVA remained 20/125 and optical coherence tomography (OCT showed type 2 macular hole closure. On a follow-up, seven months after surgery, BCVA improved to 20/80, N6, with type 1 closure of the macular hole. The clinical findings were confirmed on OCT. Delayed and spontaneous conversion of the traumatic macular hole could occur several months after the primary surgery and may be associated with improved visual outcome. Larger studies are required to better understand the factors implicated in such a phenomenon.

  20. Closure Report for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this Closure Report is to provide a summary of the completed closure activities, to document waste disposal, and to present information confirming that the remediation goals were met. The closure alternatives consisted of closure in place with administrative controls for one CAS, and no further action with implementation of best management practices (BMPs) for the remaining five CASs

  1. Progress towards 3D black hole merger simulations

    International Nuclear Information System (INIS)

    Seidel, E.

    2001-01-01

    I review recent progress in 3D numerical relativity, focused on simulations involving black holes evolved with singularity avoiding slicings, but also touching on recent results in advanced techniques like black hole excision. After a long series of axisymmetric and perturbative studies of distorted black holes and black hole collisions, similar studies were carried out with full 3D codes. The results showed that such black hole simulations can be carried out extremely accurately, although instabilities plague the simulation at uncomfortably early times. However, new formulations of Einstein's equations allow much more stable 3D evolutions than ever before, enabling the first studies of 3D gravitational collapse to a black hole. With these new formulations, for example, it has been possible to perform the first detailed simulations of 3D grazing collisions of black holes with unequal mass, spin, and with orbital angular momentum. I discuss the 3D black hole physics that can now be studied, and prospects for the future, which look increasingly bright due to recent progress in formulations, black hole excision, new gauge conditions, and larger computers. Simulations may soon be able to provide information about the final plunge of two black holes, of relevance for gravitational wave astronomy. (author)

  2. Full Thickness Macular Hole Closure after Exchanging Silicone-Oil Tamponade with C3F8 without Posturing

    Directory of Open Access Journals (Sweden)

    Tina Xirou

    2011-05-01

    Full Text Available Purpose: To report a case of macular hole closure after the exchange of a silicone-oil tamponade with gas C3F8 14%. Method: A 64-year-old female patient with a stage IV macular hole underwent a three-port pars-plana vitrectomy and internal limiting membrane peeling. Due to the patient’s chronic illness (respiratory problems, a silicone-oil tamponade was preferred. However, the macula hole was still flat opened four months postoperatively. Therefore, the patient underwent an exchange of silicone oil with gas C3F8 14%. No face-down position was advised postoperatively due to her health problems. Results: Macular hole closure was confirmed with optical coherence tomography six weeks after exchanging the silicone oil with gas. Conclusions: Macular hole surgery using a silicone-oil tamponade has been proposed as treatment of choice for patients unable to posture. In our case, the use of a long-acting gas (C3F8 14%, even without posturing, proved to be more effective.

  3. Numerical simulation of responses for cased-hole density logging

    International Nuclear Information System (INIS)

    Wu, Wensheng; Fu, Yaping; Niu, Wei

    2013-01-01

    Stabilizing or stimulating oil production in old oil fields requires density logging in cased holes where open-hole logging data are either missing or of bad quality. However, measured values from cased-hole density logging are more severely influenced by factors such as fluid, casing, cement sheath and the outer diameter of the open-hole well compared with those from open-hole logging. To correctly apply the cased-hole formation density logging data, one must eliminate these influences on the measured values and study the characteristics of how the cased-hole density logging instrument responds to these factors. In this paper, a Monte Carlo numerical simulation technique was used to calculate the responses of the far detector of a cased-hole density logging instrument to in-hole fluid, casing wall thickness, cement sheath density and the formation and thus to obtain influence rules and response coefficients. The obtained response of the detector is a function of in-hole liquid, casing wall thickness, the casing's outer diameter, cement sheath density, open-hole well diameter and formation density. The ratio of the counting rate of the detector in the calibration well to that in the measurement well was used to get a fairly simple detector response equation and the coefficients in the equation are easy to acquire. These provide a new way of calculating cased-hole density through forward modelling methods. (paper)

  4. Magnetohydrodynamic Simulations of Black Hole Accretion

    Science.gov (United States)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  5. Binary black holes on a budget: simulations using workstations

    International Nuclear Information System (INIS)

    Marronetti, Pedro; Tichy, Wolfgang; Bruegmann, Bernd; Gonzalez, Jose; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich

    2007-01-01

    Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we show how the multi-layered refinement level code BAM can be used on dual processor workstations to simulate certain binary black hole systems. BAM, based on the moving punctures method, provides grid structures composed of boxes of increasing resolution near the centre of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particularly useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries with equal mass black holes with spins parallel to the binary axis and intrinsic magnitude of S/m 2 = 0.75. Our results compare favourably to those of previous simulations of this particular system. We show that the moving punctures method produces stable simulations at maximum spatial resolutions up to M/160 and for durations of up to the equivalent of 20 orbital periods

  6. Simulated production of a black hole in ATLAS

    CERN Multimedia

    2007-01-01

    This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was created in the proton-proton collision. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.

  7. Simulation of magnetic holes formation in the magnetosheath

    Science.gov (United States)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2017-12-01

    Magnetic holes have been frequently observed in the Earth's magnetosheath and are believed to be the consequence of the nonlinear evolution of the mirror instability. Mirror mode perturbations mainly form as magnetic holes in regions where the plasma is marginally mirror stable with respect to the linear instability criterion. We present an expanding box particle-in-cell simulation to mimic the changing conditions in the magnetosheath as the plasma is convected through it that produces mirror mode magnetic holes. We show that in the initial nonlinear evolution, where the plasma conditions are mirror unstable, the magnetic peaks are dominant, while later, as the plasma relaxes toward marginal stability, the fluctuations evolve into deep magnetic holes. While the averaged plasma parameters in the simulation remain close to the mirror instability threshold, the local plasma in the magnetic holes is highly unstable to mirror instability and locally mirror stable in the magnetic peaks.

  8. Thermoelastic/plastic analysis of waste-container sleeve: IV. Air gap influence on hole closure. Technical memorandum report (RSI-0019)

    International Nuclear Information System (INIS)

    Pariseau, W.G.

    1975-01-01

    A thermoelastic/plastic finite element analysis of the influence of an air-gap on hole closure about a waste-container/sleeve assembly emplaced in a typical repository room (SALT/4T Model) indicates that hole closure would be of the order of hundredths of an inch. Acceptable air-gap width is thus governed by the hole size required for emplacement efficiency. A refined mesh analysis and laboratory testing is suggested in order to further explore the possibility of eliminating the engineering necessity of the sleeve

  9. Simulating merging binary black holes with nearly extremal spins

    International Nuclear Information System (INIS)

    Lovelace, Geoffrey; Scheel, Mark A.; Szilagyi, Bela

    2011-01-01

    Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.

  10. Simulating school closure policies for cost effective pandemic decision making

    Directory of Open Access Journals (Sweden)

    Araz Ozgur M

    2012-06-01

    Full Text Available Abstract Background Around the globe, school closures were used sporadically to mitigate the 2009 H1N1 influenza pandemic. However, such closures can detrimentally impact economic and social life. Methods Here, we couple a decision analytic approach with a mathematical model of influenza transmission to estimate the impact of school closures in terms of epidemiological and cost effectiveness. Our method assumes that the transmissibility and the severity of the disease are uncertain, and evaluates several closure and reopening strategies that cover a range of thresholds in school-aged prevalence (SAP and closure durations. Results Assuming a willingness to pay per quality adjusted life-year (QALY threshold equal to the US per capita GDP ($46,000, we found that the cost effectiveness of these strategies is highly dependent on the severity and on a willingness to pay per QALY. For severe pandemics, the preferred strategy couples the earliest closure trigger (0.5% SAP with the longest duration closure (24 weeks considered. For milder pandemics, the preferred strategies also involve the earliest closure trigger, but are shorter duration (12 weeks for low transmission rates and variable length for high transmission rates. Conclusions These findings highlight the importance of obtaining early estimates of pandemic severity and provide guidance to public health decision-makers for effectively tailoring school closures strategies in response to a newly emergent influenza pandemic.

  11. The use of an impedance antenna for hole closure detection. Phase II: Detailed antenna design, electronics and software development

    International Nuclear Information System (INIS)

    Murray, C.N.; Fortescue, T.R.

    1991-01-01

    C.C.R. Euratom Ispra are currently involved in studies on the possibility of storing radioactive wastes in deep ocean sediment beds. The proposal involves sealing the wastes into torpedo shaped penetrators, which can then be dropped into the ocean over areas where the bottom is suitable. The weight and shape of the penetrators is such that they achieve high terminal velocities (30-50m/s), and in consequence, bury themselves to a considerable depth in suitable clay sediments. Fundamental to the concept is a requirement that the hole made by the entry of the penetrator shall close up again above it, and form an effective seal. This is because it is inevitable that over a period of several hundred years, the containers will become corroded, and when this happens, there must be no possibility of any radioactive species migrating, or being transported to the surface of the sediment. The Hole Closure Problem is thus fundamental to such studies

  12. The use of an impedance antenna for hole closure detection. Phase I: Definition of measurement problems and antenna type

    International Nuclear Information System (INIS)

    Murray, C.N.; Fortescue, T.R.

    1991-01-01

    C.C.R. Euratom Ispra are currently involved in studies on the possibility of storing radioactive wastes in deep ocean sediment beds. The proposal involves sealing the wastes into torpedo shaped penetrators, which can then be dropped into the ocean over areas where the bottom is suitable. The weight and shape of the penetrators is such that they achieve high terminal velocities (30-50m/s), and in consequence, bury themselves to a considerable depth in suitable clay sediments. Fundamental to the concept is a requirement that the hole made by the entry of the penetrator shall close up again above it, and form an effective seal. This is because it is inevitable that over a period of several hundred years, the containers will become corroded, and when this happens, there must be no possibility of any radioactive species migrating, or being transported to the surface of the sediment. The Hole Closure Problem is thus fundamental to such studies

  13. Satellite hole formation during dewetting: experiment and simulation

    International Nuclear Information System (INIS)

    Neto, Chiara; Jacobs, Karin; Seemann, Ralf; Blossey, Ralf; Becker, Juergen; Gruen, Guenther

    2003-01-01

    The dewetting of thin polymer films on solid substrates has been studied extensively in recent years. These films can decay either by nucleation events or by spinodal dewetting, essentially only depending on the interface potential describing the short- and long-range intermolecular interactions between the interfaces and the initial film thickness. Here, we describe experiments and simulations concerned with the decay of polystyrene thin films. The rupture of the film occurs by the formation of a correlated pattern of holes ('satellite holes') along the liquid rims accumulating at the channel borders. The development of this complex film rupture process, which is neither simply spinodal nor nucleation dewetting, can be mimicked precisely by making use of a novel simulation code based on a rigorous mathematical treatment of the thin film equation and on the knowledge of the effective interface potential of the system. The conditions that determine the appearance and the position of the satellite holes around pre-existing holes are discussed

  14. Satellite hole formation during dewetting: experiment and simulation

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    The dewetting of thin polymer films on solid substrates has been studied extensively in recent years. These films can decay either by nucleation events or by spinodal dewetting, essentially only depending on the interface potential describing the short- and long-range intermolecular interactions between the interfaces and the initial film thickness. Here, we describe experiments and simulations concerned with the decay of polystyrene thin films. The rupture of the film occurs by the formation of a correlated pattern of holes ('satellite holes') along the liquid rims accumulating at the channel borders. The development of this complex film rupture process, which is neither simply spinodal nor nucleation dewetting, can be mimicked precisely by making use of a novel simulation code based on a rigorous mathematical treatment of the thin film equation and on the knowledge of the effective interface potential of the system. The conditions that determine the appearance and the position of the satellite holes around ...

  15. Numerical Relativity Simulations for Black Hole Merger Astrophysics

    Science.gov (United States)

    Baker, John G.

    2010-01-01

    Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.

  16. The effects of school closures on influenza outbreaks and pandemics: systematic review of simulation studies.

    Science.gov (United States)

    Jackson, Charlotte; Mangtani, Punam; Hawker, Jeremy; Olowokure, Babatunde; Vynnycky, Emilia

    2014-01-01

    School closure is a potential intervention during an influenza pandemic and has been investigated in many modelling studies. To systematically review the effects of school closure on influenza outbreaks as predicted by simulation studies. We searched Medline and Embase for relevant modelling studies published by the end of October 2012, and handsearched key journals. We summarised the predicted effects of school closure on the peak and cumulative attack rates and the duration of the epidemic. We investigated how these predictions depended on the basic reproduction number, the timing and duration of closure and the assumed effects of school closures on contact patterns. School closures were usually predicted to be most effective if they caused large reductions in contact, if transmissibility was low (e.g. a basic reproduction number 90% reductions or even increases under certain assumptions). This partly reflected differences in model assumptions, such as those regarding population contact patterns. Simulation studies suggest that school closure can be a useful control measure during an influenza pandemic, particularly for reducing peak demand on health services. However, it is difficult to accurately quantify the likely benefits. Further studies of the effects of reactive school closures on contact patterns are needed to improve the accuracy of model predictions.

  17. Quantum simulations of small electron-hole complexes

    International Nuclear Information System (INIS)

    Lee, M.A.; Kalia, R.K.; Vashishta, P.D.

    1984-09-01

    The Green's Function Monte Carlo method is applied to the calculation of the binding energies of electron-hole complexes in semiconductors. The quantum simulation method allows the unambiguous determination of the ground state energy and the effects of band anisotropy on the binding energy. 22 refs., 1 fig

  18. Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2016-01-01

    We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R approx. 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.

  19. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2016-03-15

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  20. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Science.gov (United States)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  1. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network

    Science.gov (United States)

    Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun

    2016-01-01

    A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0–1 integer programming to describe passengers’ responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated. PMID:27935963

  2. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.

    Directory of Open Access Journals (Sweden)

    Haodong Yin

    Full Text Available A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1 A basic passenger behavior optimization model is mathematically constructed based on 0-1 integer programming to describe passengers' responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2 An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1, the impact of the closure can be somewhat mitigated.

  3. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.

    Science.gov (United States)

    Yin, Haodong; Han, Baoming; Li, Dewei; Wu, Jianjun; Sun, Huijun

    2016-01-01

    A station closure is an abnormal operational situation in which the entrances or exits of a rail transit station have to be closed for some time due to an unexpected incident. A novel approach is developed to estimate the impacts of the alternative station closure scenarios on both passenger behavioral choices at the individual level and passenger demand at the disaggregate level in a rail transit network. Therefore, the contributions of this study are two-fold: (1) A basic passenger behavior optimization model is mathematically constructed based on 0-1 integer programming to describe passengers' responses to alternative origin station closure scenarios and destination station closure scenarios; this model also considers the availability of multi-mode transportation and the uncertain duration of the station closure; (2) An integrated solution algorithm based on the passenger simulation is developed to solve the proposed model and to estimate the effects of a station closure on passenger demand in a rail transit network. Furthermore, 13 groups of numerical experiments based on the Beijing rail transit network are performed as case studies with 2,074,267 records of smart card data. The comparisons of the model outputs and the manual survey show that the accuracy of our proposed behavior optimization model is approximately 80%. The results also show that our model can be used to capture the passenger behavior and to quantitatively estimate the effects of alternative closure scenarios on passenger flow demand for the rail transit network. Moreover, the closure duration and its overestimation greatly influence the individual behavioral choices of the affected passengers and the passenger demand. Furthermore, if the rail transit operator can more accurately estimate the closure duration (namely, as g approaches 1), the impact of the closure can be somewhat mitigated.

  4. Simulation of hole mobility in two-dimensional systems

    International Nuclear Information System (INIS)

    Donetti, Luca; Gamiz, Francisco; Rodriguez, Noel

    2009-01-01

    We develop a fully self-consistent solver for the six-band k . p Schrödinger and Poisson equations to compute the valence-band structure of Si and Ge devices with arbitrary substrate orientation and uniaxial or biaxial strain. This allows us to compute the potential, charge distribution and subband energy dispersion relation for hole inversion layers in different devices and, using a simplex Monte Carlo simulator, to evaluate the low-field mobility. New procedures have been developed to calculate the scattering rates. The results obtained in the case of a (0 0 1) Si MOSFET device are compared with experimental mobility curves and a very good agreement is found. Then, hole mobility curves for different structures and crystallographic orientations both with strained and unstrained materials are evaluated

  5. Flow simulation in piping system dead legs using second moment, closure and k-epsilon model

    International Nuclear Information System (INIS)

    Deutsch, E.; Mechitoua, N.; Mattei, J.D.

    1996-01-01

    This paper deals with an industrial application of second moment closure turbulence model in in numerical simulation of 3D turbulent flows in piping system dead legs. Calculations performed with the 3D ESTET code are presented which contrast the performance of k-epsilon eddy viscosity model and second moment closure turbulence models. Coarse (100 000), medium (400 000) and fine (1 500 000) meshes were used. The second moment closure performs significantly better than eddy viscosity model and predicts with a good agreement the vortex penetration in dead legs provided to use sufficiently refined meshes. The results point out the necessity to be able to perform calculations using fine mesh before introducing refined physical models such as second moment closure turbulence model in a numerical code. This study illustrates the ability of second moment closure turbulence model to simulate 3D turbulent industrial flows. Reynolds stress model computation does not require special care, the calculation is carried on as simply as the k-ξ one. The CPU time needed is less that twice the CPU time needed using k-ξ model. (authors)

  6. Simulation of perovskite solar cells with inorganic hole transporting materials

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liu, Yiming

    2015-01-01

    Device modeling organolead halide perovskite solar cells with planar architecture based on inorganic hole transporting materials (HTMs) were performed. A thorough understanding of the role of the inorganic HTMs and the effect of band offset between HTM/absorber layers is indispensable for further...... improvement in power conversion efficiency (PCE). Here, we investigated the effect of band offset between inorganic HTM/absorber layers. The solar cell simulation program adopted in this work is named wxAMPS, an updated version of the AMPS tool (Analysis of Microelectronic and Photonic Structure)....

  7. Video studies of passage by Anopheles gambiae mosquitoes through holes in a simulated bed net: effects of hole size, hole orientation and net environment.

    Science.gov (United States)

    Sutcliffe, James; Colborn, Kathryn L

    2015-05-13

    Holes in netting provide potential routes for mosquitoes to enter ITNs. Despite this, there is little information on how mosquitoes respond to holes in bed nets and how their responses are affected by hole size, shape and orientation or by ambient conditions around the net. Female Anopheles gambiae (G3) were recorded in a simulated bed net consisting of two sizes of untreated netting-covered behavioural arenas placed above and beside (to simulate the bed net roof and sides respectively) the experimenter who was a source of host cues from 'inside' the net. A round hole of 9 mm or 13 mm diameter was cut into the centre of the netting of each arena. Videos of unfed female mosquitoes in arenas were analysed for time spent flying, walking and standing still and for exit through the hole. The effects of the experimenter on temperature and relative humidity around the simulated net were also measured. Mosquitoes were significantly more active in overhead arenas than in arenas to the side. Hole passage was significantly more likely in smaller arenas than larger ones and for larger holes than smaller ones. In arenas to the side, hole passage rate through small holes was about 50% less likely than what could be explained by area alone. Passage rate through holes in overhead arenas was consistent with hole area. Temperature in arenas did not strongly reflect the experimenter's presence in the simulated net. Relative humidity and absolute humidity in overhead arenas, but not in arenas to the side, were immediately affected by experimenter presence. Higher levels of activity in overhead arenas than in arenas to the side were likely due to the rising heat and humidity plume from the experimenter. Lower than expected passage rates through smaller vertically oriented holes may have been be due to an edge effect that does not apply to horizontally oriented holes. Results suggest that current methods of assessing the importance of physical damage to ITNs may not accurately reflect

  8. Reducing orbital eccentricity in binary black hole simulations

    International Nuclear Information System (INIS)

    Pfeiffer, Harald P; Brown, Duncan A; Kidder, Lawrence E; Lindblom, Lee; Lovelace, Geoffrey; Scheel, Mark A

    2007-01-01

    Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity) initial data have orbits with small but nonzero orbital eccentricities. In this paper, the quasi-equilibrium initial-data method is extended to allow nonzero radial velocities to be specified in binary black hole initial data. New low-eccentricity initial data are obtained by adjusting the orbital frequency and radial velocities to minimize the orbital eccentricity, and the resulting (∼5 orbit) evolutions are compared with those of quasi-circular initial data. Evolutions of the quasi-circular data clearly show eccentric orbits, with eccentricity that decays over time. The precise decay rate depends on the definition of eccentricity; if defined in terms of variations in the orbital frequency, the decay rate agrees well with the prediction of Peters (1964 Phys. Rev. 136 1224-32). The gravitational waveforms, which contain ∼8 cycles in the dominant l = m = 2 mode, are largely unaffected by the eccentricity of the quasi-circular initial data. The overlap between the dominant mode in the quasi-circular evolution and the same mode in the low-eccentricity evolution is about 0.99

  9. Simulated precipitation diurnal cycles over East Asia using different CAPE-based convective closure schemes in WRF model

    Science.gov (United States)

    Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun

    2018-03-01

    Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.

  10. GPU-accelerated simulations of isolated black holes

    Science.gov (United States)

    Lewis, Adam G. M.; Pfeiffer, Harald P.

    2018-05-01

    We present a port of the numerical relativity code SpEC which is capable of running on NVIDIA GPUs. Since this code must be maintained in parallel with SpEC itself, a primary design consideration is to perform as few explicit code changes as possible. We therefore rely on a hierarchy of automated porting strategies. At the highest level we use TLoops, a C++ library of our design, to automatically emit CUDA code equivalent to tensorial expressions written into C++ source using a syntax similar to analytic calculation. Next, we trace out and cache explicit matrix representations of the numerous linear transformations in the SpEC code, which allows these to be performed on the GPU using pre-existing matrix-multiplication libraries. We port the few remaining important modules by hand. In this paper we detail the specifics of our port, and present benchmarks of it simulating isolated black hole spacetimes on several generations of NVIDIA GPU.

  11. Many-particle and many-hole states in neutron-rich Ne isotopes related to broken N=20 shell closure

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Horiuchi, Hisashi

    2004-01-01

    The low-lying level structures of 26 Ne, 28 Ne and 30 Ne which are related to the breaking of the N=20 shell closure have been studied in the framework of the deformed-basis anti-symmetrized molecular dynamics plus generator coordinate method using the Gogny D1S force. The properties of the many-particle and many-hole states are studied as well as that of the ground band. We predict that the negative-parity states, in which neutrons are promoted into the pf-orbit from the sd orbit, have a small excitation energy in the cases of 28 Ne and 30 Ne. We regard this to be a typical phenomena accompanying the breaking of the N=20 shell closure. It is also found that the neutron 4p4h structure of 30 Ne appears at low excitation energy, which contains α + 16 O correlations. (author)

  12. Numerical simulation of binary black hole and neutron star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Kastaun, W.; Rezzolla, L. [Albert Einstein Institut, Potsdam-Golm (Germany)

    2016-11-01

    One of the last predictions of general relativity that still awaits direct observational confirmation is the existence of gravitational waves. Those fluctuations of the geometry of space and time are expected to travel with the speed of light and are emitted by any accelerating mass. Only the most violent events in the universe, such as mergers of two black holes or neutron stars, produce gravitational waves strong enough to be measured. Even those waves are extremely weak when arriving at Earth, and their detection is a formidable technological challenge. In recent years sufficiently sensitive detectors became operational, such as GEO600, Virgo, and LIGO. They are expected to observe around 40 events per year. To interpret the observational data, theoretical modeling of the sources is a necessity, and requires numerical simulations of the equations of general relativity and relativistic hydrodynamics. Such computations can only be carried out on large scale supercomputers, given that many scenarios need to be simulated, each of which typically occupies hundreds of CPU cores for a week. Our main goal is to predict the gravitational wave signal from the merger of two compact objects. Comparison with future observations will provide important insights into the fundamental forces of nature in regimes that are impossible to recreate in laboratory experiments. The waveforms from binary black hole mergers would allow one to test the correctness of general relativity in previously inaccessible regimes. The signal from binary neutron star mergers will provide input for nuclear physics, because the signal depends strongly on the unknown properties of matter at the ultra high densities inside neutron stars, which cannot be observed in any other astrophysical scenario. Besides mergers, we also want to improve the theoretical models of close encounters between black holes. A gravitational wave detector with even higher sensitivity, the Einstein Telescope, is already in the

  13. Monte Carlo simulation for thermal assisted reversal process of micro-magnetic torus ring with bistable closure domain structure

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Kenichi; Suzuki, Kenji; Yamaguchi, Katsuhiko, E-mail: yama@sss.fukushima-u.ac.jp

    2016-04-01

    Monte Carlo simulations were performed for temperature dependences of closure domain parameter for a magnetic micro-torus ring cluster under magnetic field on limited temperature regions. Simulation results show that magnetic field on tiny limited temperature region can reverse magnetic closure domain structures when the magnetic field is applied at a threshold temperature corresponding to intensity of applied magnetic field. This is one of thermally assisted switching phenomena through a self-organization process. The results show the way to find non-wasteful pairs between intensity of magnetic field and temperature region for reversing closure domain structure by temperature dependence of the fluctuation of closure domain parameter. Monte Carlo method for this simulation is very valuable to optimize the design of thermally assisted switching devices.

  14. Simulation of Residual Stresses at Holes in Tempered Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Poulsen, Peter Noe

    2010-01-01

    This work presents a full 3D numerical study of the residual stresses in tempered (toughened) glass near holes using Narayanaswamy’s model for the tempering process. It is the objective of the paper to elucidate the influence on the minimal residual compressive stresses at holes from variations in...

  15. Verification of Heat and Mass Transfer Closures in Industrial Scale Packed Bed Reactor Simulations

    Directory of Open Access Journals (Sweden)

    Arpit Singhal

    2018-03-01

    Full Text Available Particle-resolved direct numerical simulation (PR-DNS is known to provide an accurate detailed insight into the local flow phenomena in static particle arrays. Most PR-DNS studies in literature do not account for reactions taking place inside the porous particles. In this study, PR-DNS is performed for catalytic reactions inside the particles using the multifluid approach where all heat and mass transfer phenomena are directly resolved both inside and outside the particles. These simulation results are then used to verify existing 1D model closures from literature over a number of different reaction parameters including different reaction orders, multiple reactions and reactants, interacting reactions, and reactions involving gas volume generation/consumption inside the particle. Results clearly showed that several modifications to existing 1D model closures are required to reproduce PR-DNS results. The resulting enhanced 1D model was then used to accurately simulate steam methane reforming, which includes all of the aforementioned reaction complexities. The effect of multiple reactants was found to be the most influential in this case.

  16. Artificial Leaks in Container Closure Integrity Testing: Nonlinear Finite Element Simulation of Aperture Size Originated by a Copper Wire Sandwiched between the Stopper and the Glass Vial.

    Science.gov (United States)

    Nieto, Alejandra; Roehl, Holger; Brown, Helen; Adler, Michael; Chalus, Pascal; Mahler, Hanns-Christian

    2016-01-01

    Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against possible contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the container closure system with microorganisms under specified testing conditions. Physical CCI uses surrogate endpoints, such as coloration by dye solution ingress or gas flow (helium leakage testing). In order to correlate microbial CCI and physical CCI test methods and to evaluate the methods' capability to detect a given leak, artificial leaks are being introduced into the container closure system in a variety of different ways. In our study, artificial leaks were generated using inserted copper wires between the glass vial opening and rubber stopper. However, the insertion of copper wires introduces leaks of unknown size and shape. With nonlinear finite element simulations, the aperture size between the rubber stopper and the glass vial was calculated, depending on wire diameter and capping force. The dependency of the aperture size on the copper wire diameter was quadratic. With the data obtained, we were able to calculate the leak size and model leak shape. Our results suggest that the size as well as the shape of the artificial leaks should be taken into account when evaluating critical leak sizes, as flow rate does not, independently, correlate to hole size. Capping force also affected leak size. An increase in the capping force from 30 to 70 N resulted in a reduction of the aperture (leak size) by approximately 50% for all wire diameters. From 30 to 50 N, the reduction was approximately 33%. Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the

  17. Vlasov simulations of electron hole dynamics in inhomogeneous magnetic field

    Science.gov (United States)

    Kuzichev, Ilya; Vasko, Ivan; Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton

    2017-04-01

    Electron holes (EHs) or phase space vortices are solitary electrostatic waves existing due to electrons trapped within EH electrostatic potential. Since the first direct observation [1], EHs have been widely observed in the Earth's magnetosphere: in reconnecting current sheets [2], injection fronts [3], auroral region [4], and many other space plasma systems. EHs have typical spatial scales up to tens of Debye lengths, electric field amplitudes up to hundreds of mV/m and propagate along magnetic field lines with velocities of about electron thermal velocity [5]. The role of EHs in energy dissipation and supporting of large-scale potential drops is under active investigation. The accurate interpretation of spacecraft observations requires understanding of EH evolution in inhomogeneous plasma. The critical role of plasma density gradients in EH evolution was demonstrated in [6] using PIC simulations. Interestingly, up to date no studies have addressed a role of magnetic field gradients in EH evolution. In this report, we use 1.5D gyrokinetic Vlasov code to demonstrate the critical role of magnetic field gradients in EH dynamics. We show that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, the reflection points of decelerating EHs are independent of the average magnetic field gradient in the system and depend only on the EH parameters. EHs are decelerated (accelerated) faster than would follow from the "quasi-particle" concept assuming that EH is decelerated (accelerated) entirely due to the mirror force acting on electrons trapped within EH. We demonstrate that EH propagation in inhomogeneous magnetic fields results in development of a net potential drop along an EH, which depends on the magnetic field gradient. The revealed features will be helpful for interpreting spacecraft observations and results of advanced particle simulations. In

  18. Successful closure of treatment-naïve, flat edge (Type II, full-thickness macular hole using inverted internal limiting membrane flap technique

    Directory of Open Access Journals (Sweden)

    Hussain N

    2016-10-01

    Full Text Available Nazimul Hussain,1 Anjli Hussain2 1Department of Ophthalmology, Al Zahra Hospital, 2Al Zahra Medical Center, Dubai, United Arab Emirates Objective: The objective of this study was to present the outcome of the internal limiting membrane (ILM peeling flap technique for a treatment-naïve, flat edge (Type II, full-thickness macular hole (MH. Methods: A 52-year-old man presented with complaints of decreased vision and seeing black spot. He was diagnosed to have a flat edge, full-thickness MH, which was confirmed by optical coherence tomography (OCT. He underwent 23G vitrectomy with brilliant blue G-assisted inverted ILM peeling with an inverted flap over the hole followed by fluid gas exchange. Results: Postoperative follow-up until 3 months showed successful closure of the MH, which was confirmed by OCT. The best-corrected visual acuity improved from baseline 6/60 to 6/12 at the final follow-up. Conclusion: Using the inverted ILM flap technique, a treatment-naïve, flat edge (Type II, full thickness MH achieved successful anatomical and functional outcomes. Keywords: macular hole, inverted ILM, optical coherence tomography

  19. Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations

    Science.gov (United States)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-11-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  20. Nearly extremal apparent horizons in simulations of merging black holes

    Science.gov (United States)

    Lovelace, Geoffrey; Scheel, Mark; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilagyi, Bela; Chu, Tony; Demos, Nicholas; Hemberger, Daniel; Kidder, Lawrence; Pfeiffer, Harald; Afshari, Nousha; SXS Collaboration

    2015-04-01

    The spin S of a Kerr black hole is bounded by the surface area A of its apparent horizon: 8 πS A and e0 > 1 , but these surfaces are always surrounded by apparent horizons with 8 πS < A and e0 < 1 .

  1. Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation

    Science.gov (United States)

    Ahmadi, N.; Wilder, F. D.; Usanova, M.; Ergun, R.; Argall, M. R.; Goodrich, K.; Eriksson, S.; Germaschewski, K.; Torbert, R. B.; Lindqvist, P. A.; Le Contel, O.; Khotyaintsev, Y. V.; Strangeway, R. J.; Schwartz, S. J.; Giles, B. L.; Burch, J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission observed electron whistler waves at the center and at the gradients of magnetic holes on the dayside magnetosheath. The magnetic holes are nonlinear mirror structures which are anti-correlated with particle density. We used expanding box Particle-in-cell simulations and produced the mirror instability magnetic holes. We show that the electron whistler waves can be generated at the gradients and the center of magnetic holes in our simulations which is in agreement with MMS observations. At the nonlinear regime of mirror instability, the proton and electron temperature anisotropy are anti-correlated with the magnetic hole. The plasma is unstable to electron whistler waves at the minimum of the magnetic field structures. In the saturation regime of mirror instability, when magnetic holes are dominant, electron temperature anisotropy develops at the edges of the magnetic holes and electrons become isotropic at the magnetic field minimum. We investigate the possible mechanism for enhancing the electron temperature anisotropy and analyze the electron pitch angle distributions and electron distribution functions in our simulations and compare it with MMS observations.

  2. Expanding the catalog of binary black-hole simulations: aligned-spin configurations

    Science.gov (United States)

    Chu, Tony; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2015-04-01

    A major goal of numerical relativity is to model the inspiral and merger of binary black holes through sufficiently accurate and long simulations, to enable the successful detection of gravitational waves. However, covering the full parameter space of binary configurations is a computationally daunting task. The SXS Collaboration has made important progress in this direction recently, with a catalog of 174 publicly available binary black-hole simulations [black-holes.org/waveforms]. Nevertheless, the parameter-space coverage remains sparse, even for non-precessing binaries. In this talk, I will describe an addition to the SXS catalog to improve its coverage, consisting of 95 new simulations of aligned-spin binaries with moderate mass ratios and dimensionless spins as high as 0.9. Some applications of these new simulations will also be mentioned.

  3. Black hole-galaxy co-evolution in the Mufasa simulations

    Science.gov (United States)

    Dave, Romeel; Angles-Alcazar, Daniel

    2017-08-01

    The Mufasa simulations are large-scale cosmological and zoom simulations of galaxy formation that employ novel state of the art modules for star formation and feedback physics, resulting in very good agreement with many key galaxy observables over most of cosmic time. We have recently included black hole growth and feedback using the torque-limited accretion model, which has several advantages over the commonly-used Bondi accretion. We also include AGN feedback using a BAL mode at high Eddington rates and low black hole masses, and a jet mode at low Eddington rates that successfully quenches galaxies. In this talk I will describe preliminary results of the AGN population and its evolution over cosmic time within our new simulations, including cosmological simulations of the general black hole population as well as zoom simulations targeting massive galaxies, with a focus on understanding the co-growth of black holes and galaxies as a function of mass, environment, and cosmic epoch. I will also discuss multi-wavelength approaches to testing and constraining our black hole model in particular using upcoming X-ray and radio facilities such as Lynx and the SKA.

  4. Study on the Growth of Holes in Cold Spraying via Numerical Simulation and Experimental Methods

    Directory of Open Access Journals (Sweden)

    Guosheng Huang

    2016-12-01

    Full Text Available Cold spraying is a promising method for rapid prototyping due to its high deposition efficiency and high-quality bonding characteristic. However, many researchers have noticed that holes cannot be replenished and will grow larger and larger once formed, which will significantly decrease the deposition efficiency. No work has yet been done on this problem. In this paper, a computational simulation method was used to investigate the origins of these holes and the reasons for their growth. A thick copper coating was deposited around the pre-drilled, micro-size holes using a cold spraying method on copper substrate to verify the simulation results. The results indicate that the deposition efficiency inside the hole decreases as the hole become deeper and narrower. The repellant force between the particles perpendicular to the impaction direction will lead to porosity if the particles are too close. There is a much lower flattening ratio for successive particles if they are too close at the same location, because the momentum energy contributes to the former particle’s deformation. There is a high probability that the above two phenomena, resulting from high powder-feeding rate, will form the original hole, which will grow larger and larger once it is formed. It is very important to control the powder feeding rate, but the upper limit is yet to be determined by further simulation and experimental investigation.

  5. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    International Nuclear Information System (INIS)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-01-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  6. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C. [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Vanderbilt University, Nashville, TN (United States); Meeussen, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Nuclear Research and Consultancy Group, Petten (Netherlands); Van der Sloot, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Hans Van der Sloot Consultancy (Netherlands)

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  7. Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric J.; Duraisamy, Karthik

    2017-01-01

    This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.

  8. Tracing the Origin of Black Hole Accretion Through Numerical Hydrodynamic Simulations

    Science.gov (United States)

    Spicer, Sandy; Somerville, Rachel; Choi, Ena; Brennan, Ryan

    2018-01-01

    It is now widely accepted that supermassive black holes co-evolve with galaxies, and may play an important role in galaxy evolution. However, the origin of the gas that fuels black hole accretion, and the resulting observable radiation, is not well understood or quantified. We use high-resolution "zoom-in" cosmological numerical hydrodynamic simulations including modeling of black hole accretion and feedback to trace the inflow and outflow of gas within galaxies from the early formation period up to present day. We track gas particles that black holes interact with over time to trace the origin of the gas that feeds supermassive black holes. These gas particles can come from satellite galaxies, cosmological accretion, or be a result of stellar evolution. We aim to track the origin of the gas particles that accrete onto the central black hole as a function of halo mass and cosmic time. Answering these questions will help us understand the connection between galaxy and black hole evolution.

  9. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  10. Numeric simulations of en-masse space closure with sliding mechanics.

    Science.gov (United States)

    Kojima, Yukio; Fukui, Hisao

    2010-12-01

    En-masse sliding mechanics have been typically used for space closure. Because of friction created at the bracket-wire interface, the force system during tooth movement has not been clarified. Long-term tooth movements in en-masse sliding mechanics were simulated with the finite element method. Tipping of the anterior teeth occurred immediately after application of retraction forces. The force system then changed so that the teeth moved almost bodily, and friction occurred at the bracket-wire interface. Net force transferred to the anterior teeth was approximately one fourth of the applied force. The amount of the mesial force acting on the posterior teeth was the same as that acting on the anterior teeth. Irrespective of the amount of friction, the ratio of movement distances between the posterior and anterior teeth was almost the same. By increasing the applied force or decreasing the frictional coefficient, the teeth moved rapidly, but the tipping angle of the anterior teeth increased because of the elastic deflection of the archwire. Finite element simulation clarified the tooth movement and the force system in en-masse sliding mechanics. Long-term tooth movement could not be predicted from the initial force system. The friction was not detrimental to the anchorage. Increasing the applied force or decreasing the friction for rapid tooth movement might result in tipping of the teeth. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. HIGH JET EFFICIENCY AND SIMULATIONS OF BLACK HOLE MAGNETOSPHERES

    International Nuclear Information System (INIS)

    Punsly, Brian

    2011-01-01

    This Letter reports on a growing body of observational evidence that many powerful lobe-dominated (FR II) radio sources likely have jets with high efficiency. This study extends the maximum efficiency line (jet power ∼25 times the thermal luminosity) defined in Fernandes et al. so as to span four decades of jet power. The fact that this line extends over the full span of FR II radio power is a strong indication that this is a fundamental property of jet production that is independent of accretion power. This is a valuable constraint for theorists. For example, the currently popular 'no-net-flux' numerical models of black hole accretion produce jets that are two to three orders of magnitude too weak to be consistent with sources near maximum efficiency.

  12. Development and validation of a laparoscopic hysterectomy cuff closure simulation model for surgical training.

    Science.gov (United States)

    Tunitsky-Bitton, Elena; Propst, Katie; Muffly, Tyler

    2016-03-01

    The number of robotically assisted hysterectomies is increasing, and therefore, the opportunities for trainees to become competent in performing traditional laparoscopic hysterectomy are decreasing. Simulation-based training is ideal for filling this gap in training. The objective of the study was to design a surgical model for training in laparoscopic vaginal cuff closure and to present evidence of its validity and reliability as an assessment and training tool. Participants included gynecology staff and trainees at 2 tertiary care centers. Experienced surgeons were also recruited at the combined International Urogynecologic Association and American Urogynecologic Society scientific meeting. Participants included 19 experts and 21 trainees. All participants were recorded using the laparoscopic hysterectomy cuff closure simulation model. The model was constructed using the an advanced uterine manipulation system with a sacrocolopexy tip/vaginal stent, a vaginal cuff constructed from neoprene material and lined with a swimsuit material (nylon and spandex) secured to the vaginal stent with a plastic cable tie. The uterine manipulation system was attached to the fundamentals of laparoscopic surgery laparoscopic training box trainer using a metal bracket. Performance was evaluated using the Global Operative Assessment of Laparoscopic Skills scale. In addition, needle handling, knot tying, and incorporation of epithelial edge were also evaluated. The Student t test was used to compare the scores and the operating times between the groups. Intrarater reliability between the scores by the 2 masked experts was measured using the interclass correlation coefficient. Total and annual experience with laparoscopic suturing and specifically vaginal cuff closure varied greatly among the participants. For the construct validity, the participants in the expert group received significantly higher scores in each of the domains of the Global Operative Assessment of Laparoscopic Skills

  13. Frictional effects between Overton sand and a simulated casing for a bore hole

    International Nuclear Information System (INIS)

    Dong, R.G.

    1975-01-01

    A series of tests were run to simulate the frictional effects between Overton sand and the casing for a bore hole for an underground nuclear test. The objective was to find a description for this frictional interaction which can be applied to an analysis of stemming materials under field conditions

  14. Characterization of parallel-hole collimator using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Karunanithi, Sellam; Kumar, Praveen; Bal, Chandrasekhar; Kumar, Rakesh

    2015-01-01

    Accuracy of in vivo activity quantification improves after the correction of penetrated and scattered photons. However, accurate assessment is not possible with physical experiment. We have used Monte Carlo Simulation to accurately assess the contribution of penetrated and scattered photons in the photopeak window. Simulations were performed with Simulation of Imaging Nuclear Detectors Monte Carlo Code. The simulations were set up in such a way that it provides geometric, penetration, and scatter components after each simulation and writes binary images to a data file. These components were analyzed graphically using Microsoft Excel (Microsoft Corporation, USA). Each binary image was imported in software (ImageJ) and logarithmic transformation was applied for visual assessment of image quality, plotting profile across the center of the images and calculating full width at half maximum (FWHM) in horizontal and vertical directions. The geometric, penetration, and scatter at 140 keV for low-energy general-purpose were 93.20%, 4.13%, 2.67% respectively. Similarly, geometric, penetration, and scatter at 140 keV for low-energy high-resolution (LEHR), medium-energy general-purpose (MEGP), and high-energy general-purpose (HEGP) collimator were (94.06%, 3.39%, 2.55%), (96.42%, 1.52%, 2.06%), and (96.70%, 1.45%, 1.85%), respectively. For MEGP collimator at 245 keV photon and for HEGP collimator at 364 keV were 89.10%, 7.08%, 3.82% and 67.78%, 18.63%, 13.59%, respectively. Low-energy general-purpose and LEHR collimator is best to image 140 keV photon. HEGP can be used for 245 keV and 364 keV; however, correction for penetration and scatter must be applied if one is interested to quantify the in vivo activity of energy 364 keV. Due to heavy penetration and scattering, 511 keV photons should not be imaged with HEGP collimator

  15. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-09-01

    This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmented slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. The gate Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac SPECT system with segmented slant-hole

  16. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Yu, Zhicong [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Zeng, Gengsheng L. [Department of Radiology, Utah Center for Advanced Imaging Research (UCAIR), University of Utah, Salt Lake City, Utah 84108 and Department of Engineering, Weber State University, Ogden, Utah 84408 (United States)

    2015-09-15

    Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmented slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac

  17. Numerical Simulation and Optimization of Hole Spacing for Cement Grouting in Rocks

    Directory of Open Access Journals (Sweden)

    Ping Fu

    2013-01-01

    Full Text Available The fine fissures of V-diabase were the main stratigraphic that affected the effectiveness of foundation grout curtain in Dagang Mountain Hydropower Station. Thus, specialized in situ grouting tests were conducted to determine reasonable hole spacing and other parameters. Considering time variation of the rheological parameters of grout, variation of grouting pressure gradient, and evolution law of the fracture opening, numerical simulations were performed on the diffusion process of cement grouting in the fissures of the rock mass. The distribution of permeability after grouting was obtained on the basis of analysis results, and the grouting hole spacing was discussed based on the reliability analysis. A probability of optimization along with a finer optimization precision as 0.1 m could be adopted when compared with the accuracy of 0.5 m that is commonly used. The results could provide a useful reference for choosing reasonable grouting hole spacing in similar projects.

  18. Computer simulation of the formation of Langmuir solitons and holes in a cylindrical magnetized plasma column

    International Nuclear Information System (INIS)

    Turikov, V.A.

    1978-06-01

    Nonlinear plasma oscillations in a cylindrical plasma resulting from a short localized external excitation are examined by means of a particle-in-cell simulation scheme. Computer calculations are performed for describing the experimental results obtained in a single-ended Q-machine plasma in a cylindrical waveguide. It is assumed that there is a strong magnetic field in the direction of the column axis. When the amplitude of the excitation potential is close to the kinetic energy of electrons having a phase velocity of the electron plasma wave, the formation is observed of solitons and holes in phase space. After formation, the solitons and holes move with constant velocities. The velocities of solitons are close to the wave-phase velocity, while holes move with smaller velocities. When the external potential amplitude is increased, there is a tendency that the number of holes grows. The potential amplitude of the self-consistent field in the soliton region damps in time with increasing soliton width. The potential profile of the hole does not change after its formation. (Auth.)

  19. Simulated Leaching (Migration) Study for a Model Container-Closure System Applicable to Parenteral and Ophthalmic Drug Products.

    Science.gov (United States)

    Jenke, Dennis; Egert, Thomas; Hendricker, Alan; Castner, James; Feinberg, Tom; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank; Markovic, Ingrid

    2017-01-01

    A simulating leaching (migration) study was performed on a model container-closure system relevant to parenteral and ophthalmic drug products. This container-closure system consisted of a linear low-density polyethylene bottle (primary container), a polypropylene cap and an elastomeric cap liner (closure), an adhesive label (labeling), and a foil overpouch (secondary container). The bottles were filled with simulating solvents (aqueous salt/acid mixture at pH 2.5, aqueous buffer at pH 9.5, and 1/1 v/v isopropanol/water), a label was affixed to the filled and capped bottles, the filled bottles were placed into the foil overpouch, and the filled and pouched units were stored either upright or inverted for up to 6 months at 40 °C. After storage, the leaching solutions were tested for leached substances using multiple complementary analytical techniques to address volatile, semi-volatile, and non-volatile organic and inorganic extractables as potential leachables.The leaching data generated supported several conclusions, including that (1) the extractables (leachables) profile revealed by a simulating leaching study can qualitatively be correlated with compositional information for materials of construction, (2) the chemical nature of both the extracting medium and the individual extractables (leachables) can markedly affect the resulting profile, and (3) while direct contact between a drug product and a system's material of construction may exacerbate the leaching of substances from that material by the drug product, direct contact is not a prerequisite for migration and leaching to occur. LAY ABSTRACT: The migration of container-related extractables from a model pharmaceutical container-closure system and into simulated drug product solutions was studied, focusing on circumstances relevant to parenteral and ophthalmic drug products. The model system was constructed specifically to address the migration of extractables from labels applied to the outside of the

  20. Numerical simulation of residual stresses at holes near edges and corners in tempered glass: A parametric study

    DEFF Research Database (Denmark)

    Pourmoghaddam, Navid; Nielsen, Jens Henrik; Schneider, Jens

    2016-01-01

    This work presents 3D results of the thermal tempering simulation by the Finite Element Method in order to calculate the residual stresses in the area of the holes near edges and corners of a tem-pered glass plate. A viscoelastic material behavior of the glass is considered for the tempering...... process. The structural relaxation is taken into account using Narayanaswamy’s model. The motiva-tion for this work is to study the effect of the reduction of the hole and edge minimum distances, which are defined according to EN 12150-1. It is the objective of the paper to demonstrate and elucidate...... the influence of the hole and edge distances on the minimal residual compressive stress-es at holes after the tempering process. The residual stresses in the area of the holes are calculat-ed varying the following parameters: the hole diameter, the plate thickness and the interaction between holes and edges...

  1. An effective fractal-tree closure model for simulating blood flow in large arterial networks.

    Science.gov (United States)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2015-06-01

    The aim of the present work is to address the closure problem for hemodynamic simulations by developing a flexible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure outflow boundary condition. To achieve this goal, we model blood flow in the sub-pixel vasculature by using a non-linear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime (radii [Formula: see text]). We introduce a variable vessel length-to-radius ratio for small arteries and arterioles, while also addressing non-Newtonian blood rheology and arterial wall viscoelasticity effects in small arteries and arterioles. This methodology aims to overcome substantial cut-off radius sensitivities, typically arising in structured tree and linearized impedance models. The proposed model is not sensitive to outflow boundary conditions applied at the end points of the fractal network, and thus does not require calibration of resistance/capacitance parameters typically required for outflow conditions. The proposed model convergences to a periodic state in two cardiac cycles even when started from zero-flow initial conditions. The resulting fractal-trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have scaled up a Discontinuous Galerkin solver that utilizes the MPI/OpenMP hybrid programming paradigm to thousands of computer cores, and can simulate blood flow in networks of millions of arterial segments at the rate of one cycle per 5 min. The proposed model has been extensively tested on a large and complex cranial network with 50 parent, patient-specific arteries and 21 outlets to which fractal trees where attached, resulting to a network of up to 4,392,484 vessels in total, and a detailed network of the arm with 276 parent arteries and 103 outlets (a total of 702,188 vessels

  2. Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction

    Science.gov (United States)

    Zhao, Dan; Pan, Jingtao

    2018-04-01

    To overcome the low efficiency of extracting gas in coal reservoirs with a low gas permeability, some boreholes were drilled for gas extraction in No. 2 coal reservoir of Wangjialing Coalmine in Shanxi Province, China and reasonably sealed. Aiming at shortfalls such as rapid attenuation of volume for extracted gas as well as low gas permeability when using boreholes in the No. 2 coal reservoir, the traditional COMSOL MultiphysicsMT Earth Science Module was used to couple the three governing equations (Darcy-Brinkman-Navier-Stokes) for fluids. On this basis, numerical simulation on the seepage law along the directions of roadways and boreholes was carried out. The simulation results indicated that when the hole-sealing length was within the width range of fractures in roadways, the negative pressure not only led the gas in surrounding rock masses to flow to the boreholes, but also made the air flow in roadways to permeate into coal walls. As a result, gas and air flows both entered into the boreholes through the loosening zone containing fractures, resulting in seepage of air in roadway to the boreholes. The seepage velocity along the roadway direction under condition with a hole-sealing length of 12 m was obviously slower than that when the hole-sealing length was 8 m. While, the method by simply increasing the length of the hole-sealing section for boreholes failed to effectively stop the air flow in roadways from permeating into the coal wall and then entering the boreholes. Moreover, the increase in the hole-sealing length brought about much more difficulties to the hole-sealing construction. So, the method is not operable in practical condition of the coal mine. Therefore, it is necessary to improve the traditional hole-sealing technology based on foamed macromolecular materials which are mainly made of polyurethane (PU) and use the fluid wall-type hole-sealing technology based on solid-liquid coupling. Then, the effects of gas extraction before and after using

  3. Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction

    Directory of Open Access Journals (Sweden)

    Dan Zhao

    2018-04-01

    Full Text Available To overcome the low efficiency of extracting gas in coal reservoirs with a low gas permeability, some boreholes were drilled for gas extraction in No. 2 coal reservoir of Wangjialing Coalmine in Shanxi Province, China and reasonably sealed. Aiming at shortfalls such as rapid attenuation of volume for extracted gas as well as low gas permeability when using boreholes in the No. 2 coal reservoir, the traditional COMSOL MultiphysicsMT Earth Science Module was used to couple the three governing equations (Darcy-Brinkman–Navier-Stokes for fluids. On this basis, numerical simulation on the seepage law along the directions of roadways and boreholes was carried out. The simulation results indicated that when the hole-sealing length was within the width range of fractures in roadways, the negative pressure not only led the gas in surrounding rock masses to flow to the boreholes, but also made the air flow in roadways to permeate into coal walls. As a result, gas and air flows both entered into the boreholes through the loosening zone containing fractures, resulting in seepage of air in roadway to the boreholes. The seepage velocity along the roadway direction under condition with a hole-sealing length of 12 m was obviously slower than that when the hole-sealing length was 8 m. While, the method by simply increasing the length of the hole-sealing section for boreholes failed to effectively stop the air flow in roadways from permeating into the coal wall and then entering the boreholes. Moreover, the increase in the hole-sealing length brought about much more difficulties to the hole-sealing construction. So, the method is not operable in practical condition of the coal mine. Therefore, it is necessary to improve the traditional hole-sealing technology based on foamed macromolecular materials which are mainly made of polyurethane (PU and use the fluid wall-type hole-sealing technology based on solid-liquid coupling. Then, the effects of gas extraction

  4. Robust identification and localization of intramedullary nail holes for distal locking using CBCT: a simulation study.

    Science.gov (United States)

    Kamarianakis, Z; Buliev, I; Pallikarakis, N

    2011-05-01

    Closed intramedullary nailing is a common technique for treatment of femur and tibia fractures. The most challenging step in this procedure is the precise placement of the lateral screws that stabilize the fragmented bone. The present work concerns the development and the evaluation of a method to accurately identify in the 3D space the axes of the nail hole canals. A limited number of projection images are acquired around the leg with the help of a C-arm. On two of them, the locking hole entries are interactively selected and a rough localization of the hole axes is performed. Perpendicularly to one of them, cone-beam computed tomography (CBCT) reconstructions are produced. The accurate identification and localization of the hole axes are done by an identification of the centers of the nail holes on the tomograms and a further 3D linear regression through principal component analysis (PCA). Various feature-based approaches (RANSAC, least-square fitting, Hough transform) have been compared for best matching the contours and the centers of the holes on the tomograms. The robustness of the suggested method was investigated using simulations. Programming is done in Matlab and C++. Results obtained on synthetic data confirm very good localization accuracy - mean translational error of 0.14 mm (std=0.08 mm) and mean angular error of 0.84° (std=0.35°) at no radiation excess. Successful localization can be further used to guide a surgeon or a robot for correct drilling the bone along the nail openings. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Study on the Gap Flow Simulation in EDM Small Hole Machining with Ti Alloy

    Directory of Open Access Journals (Sweden)

    Shengfang Zhang

    2017-01-01

    Full Text Available In electrical discharge machining (EDM process, the debris removed from electrode material strongly affects the machining efficiency and accuracy, especially for the deep small hole machining process. In case of Ti alloy, the debris movement and removal process in gap flow between electrodes for small hole EDM process is studied in this paper. Based on the solid-liquid two-phase flow equation, the mathematical model on the gap flow field with flushing and self-adaptive disturbation is developed. In our 3D simulation process, the count of debris increases with number of EDM discharge cycles, and the disturbation generated by the movement of self-adaptive tool in the gap flow is considered. The methods of smoothing and remeshing are also applied in the modeling process to enable a movable tool. Under different depth, flushing velocity, and tool diameter, the distribution of velocity field, pressure field of gap flow, and debris movement are analyzed. The statistical study of debris distribution under different machining conditions is also carried out. Finally, a series of experiments are conducted on a self-made machine to verify the 3D simulation model. The experiment results show the burn mark at hole bottom and the tapered wall, which corresponds well with the simulating conclusion.

  6. THREE-DIMENSIONAL SIMULATIONS OF VERTICAL MAGNETIC FLUX IN THE IMMEDIATE VICINITY OF BLACK HOLES

    International Nuclear Information System (INIS)

    Punsly, Brian; Igumenshchev, Igor V.; Hirose, Shigenobu

    2009-01-01

    This article reports on three-dimensional MHD simulations of non-rotating and rapidly rotating black holes and the adjacent black hole accretion disk magnetospheres. A particular emphasis is placed on the vertical magnetic flux that is advected inward from large radii and threads the equatorial plane near the event horizon. In both cases of non-rotating and rotating black holes, the existence of a significant vertical magnetic field in this region is like a switch that creates powerful jets. There are many similarities in the vertical flux dynamics in these two cases in spite of the tremendous enhancement of azimuthal twisting of the field lines and enhancement of the jet power because of an 'ergospheric disk' in the Kerr metric. A three-dimensional approach is essential because two-dimensional axisymmetric flows are incapable of revealing the nature of the vertical flux near a black hole. Poloidal field lines from the ergospheric accretion region have been visualized in three dimensions and much of the article is devoted to a formal classification of the different manifestations of the vertical flux in the Kerr case.

  7. SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO

    International Nuclear Information System (INIS)

    Guedes, J.; Madau, P.; Diemand, J.; Kuhlen, M.; Zemp, M.

    2009-01-01

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a M BH = 3.7 x 10 6 M sun MBH remnant in the 'Via Lactea I' simulation, a Milky Way-sized dark matter halo. The black hole receives a recoil velocity of V kick = 80, 120, 200, 300, and 400 km s -1 at redshift 1.5, and its orbit is followed for over 1 Gyr within a 'live' host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible effects. We find that MBHs ejected with initial recoil velocities V kick ∼> 500 km s -1 do not return to the host center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial mass ∼M BH may shine as a quasar for a substantial fraction of its 'wandering' phase. The long decay timescales of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.

  8. General Relativistic Simulations of Magnetized Plasmas Around Merging Supermassive Black Holes

    Science.gov (United States)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-01-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe, total amplification of the magnetic field of approx 2 orders of magnitude which is driven by the accretion onto the binary and that leads to stronger electromagnetic signals than in the force-free regime where such amplifications are not possible.

  9. New methods to benchmark simulations of accreting black holes systems against observations

    Science.gov (United States)

    Markoff, Sera; Chatterjee, Koushik; Liska, Matthew; Tchekhovskoy, Alexander; Hesp, Casper; Ceccobello, Chiara; Russell, Thomas

    2017-08-01

    The field of black hole accretion has been significantly advanced by the use of complex ideal general relativistic magnetohydrodynamics (GRMHD) codes, now capable of simulating scales from the event horizon out to ~10^5 gravitational radii at high resolution. The challenge remains how to test these simulations against data, because the self-consistent treatment of radiation is still in its early days, and is complicated by dependence on non-ideal/microphysical processes not yet included in the codes. On the other extreme, a variety of phenomenological models (disk, corona, jet, wind) can well-describe spectra or variability signatures in a particular waveband, although often not both. To bring these two methodologies together, we need robust observational “benchmarks” that can be identified and studied in simulations. I will focus on one example of such a benchmark, from recent observational campaigns on black holes across the mass scale: the jet break. I will describe new work attempting to understand what drives this feature by searching for regions that share similar trends in terms of dependence on accretion power or magnetisation. Such methods can allow early tests of simulation assumptions and help pinpoint which regions will dominate the light production, well before full radiative processes are incorporated, and will help guide the interpretation of, e.g. Event Horizon Telescope data.

  10. Gravitational waveforms for neutron star binaries from binary black hole simulations

    Science.gov (United States)

    Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew

    2016-03-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.

  11. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    Science.gov (United States)

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  12. Study on Gap Flow Field Simulation in Small Hole Machining of Ultrasonic Assisted EDM

    Science.gov (United States)

    Liu, Yu; Chang, Hao; Zhang, Wenchao; Ma, Fujian; Sha, Zhihua; Zhang, Shengfang

    2017-12-01

    When machining a small hole with high aspect ratio in EDM, it is hard for the flushing liquid entering the bottom gap and the debris could hardly be removed, which results in the accumulation of debris and affects the machining efficiency and machining accuracy. The assisted ultrasonic vibration can improve the removal of debris in the gap. Based on dynamics simulation software Fluent, a 3D model of debris movement in the gap flow field of EDM small hole machining assisted with side flushing and ultrasonic vibration is established in this paper. When depth to ratio is 3, the laws of different amplitudes and frequencies on debris distribution and removal are quantitatively analysed. The research results show that periodic ultrasonic vibration can promote the movement of debris, which is beneficial to the removal of debris in the machining gap. Compared to traditional small hole machining in EDM, the debris in the machining gap is greatly reduced, which ensures the stability of machining process and improves the machining efficiency.

  13. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  14. Simulation of hole-mobility in doped relaxed and strained Ge layers

    Science.gov (United States)

    Watling, Jeremy R.; Riddet, Craig; Chan, Morgan Kah H.; Asenov, Asen

    2010-11-01

    As silicon based metal-oxide-semiconductor field-effect transistors (MOSFETs) are reaching the limits of their performance with scaling, alternative channel materials are being considered to maintain performance in future complementary metal-oxide semiconductor technology generations. Thus there is renewed interest in employing Ge as a channel material in p-MOSFETs, due to the significant improvement in hole mobility as compared to Si. Here we employ full-band Monte Carlo to study hole transport properties in Ge. We present mobility and velocity-field characteristics for different transport directions in p-doped relaxed and strained Ge layers. The simulations are based on a method for over-coming the potentially large dynamic range of scattering rates, which results from the long-range nature of the unscreened Coulombic interaction. Our model for ionized impurity scattering includes the affects of dynamic Lindhard screening, coupled with phase-shift, and multi-ion corrections along with plasmon scattering. We show that all these effects play a role in determining the hole carrier transport in doped Ge layers and cannot be neglected.

  15. Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

    Science.gov (United States)

    Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard; Strachan, Alejandro

    2015-05-01

    We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement.

  16. Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

    International Nuclear Information System (INIS)

    Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard; Strachan, Alejandro

    2015-01-01

    We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement

  17. Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Strachan, Alejandro, E-mail: strachan@purdue.edu [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-05-07

    We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement.

  18. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    Science.gov (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  19. Numerical calculation of backfilling of scour holes

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Baykal, Cüneyt; Fuhrman, David R.

    2014-01-01

    A fully-coupled hydrodynamic and morphologic CFD model is presented for simulating backfilling processes around structures. The hydrodynamic model is based on Reynolds-averaged Navier-Stokes equations, coupled with two-equation k-ω turbulence closure. The sediment transport model consists of sepa...... of structures: piles, and pipelines. Initial scour holes are generated by the same model. The numerical results appear to be in accord with the existing experimental information....

  20. 2003 Initial Assessments of Closure for the C Tank Farm Field Investigation Report (FIR):Numerical Simulations

    International Nuclear Information System (INIS)

    Zhang, Z F.; Freedman, Vicky L.; White, Mark D.

    2003-01-01

    In support of CH2M HILL Hanford Group, Inc.'s (CHG) preparation of a Field Investigative Report (FIR) for the closure of the Hanford Site Single-Shell Tank (SST) Waste Management Area (WMA) tank farms, a set of numerical simulations of flow and solute transport was executed to predict the performance of surface barriers for reducing long-term risks from potential groundwater contamination at the C Farm WMA. This report documents the simulation of 14 cases (and two verification cases) involving two-dimensional cross sections through the C Farm WMA tanks C-103 - C-112. Utilizing a unit release scenario at Tank C-112, four different types of leaks were simulated. These simulations assessed the impact of leakage during retrieval, past leaks, and tank residual wastes and tank ancillary equipment following closure activities. . Two transported solutes were considered: uranium-238 (U-238) and technetium-99 (Tc-99). To evaluate the impact of sorption to the subsurface materials, six different retardation coefficients were simulated for U-238. Overall, simulations results for the C Farm WMA showed that only a small fraction of the U-238 with retardation factors greater than 0.6 migrated from the vadose zone in all of the cases. For the conservative solute, Tc-99, results showed that the simulations investigating leakages during retrieval demonstrated the highest WMA peak concentrations and the earliest arrival times due to the high infiltration rate before the use of surface barriers and the addition of water into the system. Simulations investigating past leaks showed similar peaks and arrival times as the retrieval leak cases. Several different release rates were used to investigate contaminant transport from residual tank wastes. All showed similar peak concentrations and arrival times, except for the lowest initial release rate, which was 1,000 times slower than the highest release rate. Past leaks were also investigated with different release rate models, including

  1. Closure simulation of the MSIV of Unit 1 of the Laguna Verde nuclear power plant using the Simulate 3K code

    International Nuclear Information System (INIS)

    Alegria A, A.

    2015-09-01

    In this paper the simulation of closure transient of all main steam isolation valves (MSIV) was performed with the Simulate-3K (S-3K) code for the Unit 1 of the Laguna Verde nuclear power plant (NPP-LV), which operates to thermal power of 2317 MWt, corresponding to the cycle 15 of operation. The set points for the performance of systems correspond to those set out in transient analysis: 3 seconds for the closure of all MSIV; the start of Scram when 121% of the neutron flux is reached, respect from baseline before the transient; the opening by peer of safety relief valves (SRV) in relief mode when the set point of the pressure is reached, the shoot of the feedwater flow seconds after the start of closing of the MSIV and the shoot of the recirculation water pumps when the pressure is reached in the dome of 1048 psig. The simulation time was of 57 seconds, with the top 50 to reach the steady state, from which the closure of all MSIV starts. In this paper the behavior of the pressure in the dome are analyzed, thermal power, neutron flux, the collapsed water level, the flow at the entrance of core, the steam flow coming out of vessel and the flow through of the SRV; the fuel temperature, the minimal critical power ratio, the readings in the instrumentation systems and reactivities. Instrumentation systems were implemented to analyze the neutron flux, these consist of 96 local power range monitors (LPRM) located in different radial and axial positions of the core and 4 channels of average power range monitors, which grouped at 24 LPRM each one. LPRM response to the change of neutron flux in the center of the core, at different axial positions is also shown. Finally, the results show that the safety limit MCPR is not exceeded. (Author)

  2. A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations

    Science.gov (United States)

    Guinot, Vincent

    2017-11-01

    The validity of flux and source term formulae used in shallow water models with porosity for urban flood simulations is assessed by solving the two-dimensional shallow water equations over computational domains representing periodic building layouts. The models under assessment are the Single Porosity (SP), the Integral Porosity (IP) and the Dual Integral Porosity (DIP) models. 9 different geometries are considered. 18 two-dimensional initial value problems and 6 two-dimensional boundary value problems are defined. This results in a set of 96 fine grid simulations. Analysing the simulation results leads to the following conclusions: (i) the DIP flux and source term models outperform those of the SP and IP models when the Riemann problem is aligned with the main street directions, (ii) all models give erroneous flux closures when is the Riemann problem is not aligned with one of the main street directions or when the main street directions are not orthogonal, (iii) the solution of the Riemann problem is self-similar in space-time when the street directions are orthogonal and the Riemann problem is aligned with one of them, (iv) a momentum balance confirms the existence of the transient momentum dissipation model presented in the DIP model, (v) none of the source term models presented so far in the literature allows all flow configurations to be accounted for(vi) future laboratory experiments aiming at the validation of flux and source term closures should focus on the high-resolution, two-dimensional monitoring of both water depth and flow velocity fields.

  3. Sealing behavior of Container Closure Systems under Frozen Storage Conditions: Nonlinear Finite Element Simulation of Serum Rubber Stoppers.

    Science.gov (United States)

    Nieto, Alejandra; Roehl, Holger

    2018-03-15

    There has been a growing interest in recent years in the assessment of suitable vial/stopper combinations for storage and shipment of frozen drug products. Considering that the glass transition temperature (Tg) of butyl rubber stoppers used in Container Closure Systems (CCS) is between -55°C to -65°C, a storage or shipment temperature of a frozen product below the Tg of the rubber stopper, may require special attention, since below the Tg the rubber becomes more plastic-like and loses its elastic (sealing) characteristics. Thus they risk maintaining Container Closure Integrity (CCI). Given that the rubber regains its elastic properties and reseals after rewarming to ambient temperature, leaks during frozen temperature storage and transportation are transient and the CCI methods used at room temperature conditions are unable to confirm CCI in the frozen state. Hence, several experimental methods have been developed in recent years in order to evaluate CCI at low temperatures. Finite Element (FE) simulations were applied in order to investigate the sealing behaviour of rubber stoppers for the drug product CCS under frozen storage conditions. FE analysis can help reducing the experimental design space and thus number of measurements needed, as they can be used as an ad-on to experimental testing. Several scenarios have been simulated including the effect of thermal history, rubber type, storage time, worst case CCS geometric tolerances and capping pressure. The results of these calculations have been validated with experimental data derived from laboratory experiments (CCI at low temperatures), and a concept for tightness has been developed. It has been concluded that FE simulations have the potential to become a powerful predictive tool towards a better understanding of the influence of cold storage on the rubber sealing properties (and hence on CCI) when dealing with frozen drug products. Copyright © 2018, Parenteral Drug Association.

  4. Flow and transport simulation of Madeira River using three depth-averaged two-equation turbulence closure models

    Directory of Open Access Journals (Sweden)

    Li-ren Yu

    2012-03-01

    Full Text Available This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k˜−ε˜,k˜−w˜, and k˜−ω˜ , were used to close the non-simplified quasi-three dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k˜−ω˜ model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.

  5. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  6. Reconnection-driven Magnetohydrodynamic Turbulence in a Simulated Coronal-hole Jet

    Energy Technology Data Exchange (ETDEWEB)

    Uritsky, Vadim M.; Roberts, Merrill A. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); DeVore, C. Richard; Karpen, Judith T., E-mail: vadim.uritsky@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-03-10

    Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated by an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller–Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.

  7. LOW-FREQUENCY OSCILLATIONS IN GLOBAL SIMULATIONS OF BLACK HOLE ACCRETION

    International Nuclear Information System (INIS)

    O'Neill, Sean M.; Reynolds, Christopher S.; Coleman Miller, M.; Sorathia, Kareem A.

    2011-01-01

    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles have previously been seen in local shearing box simulations, but we discuss their evolution over 1500 inner disk orbits of a global π/4 disk wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are 10-20 times lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the cycles manifest themselves at discrete, narrowband frequencies that often share power across broad radial ranges. We explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies, however, fail to feature peaks with rms amplitudes comparable to LFQPO observations, suggesting that further theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on timescales much longer than those derived from test particle considerations.

  8. RETRAN simulation of Oyster Creek MSIV closure and bypass valve tests

    International Nuclear Information System (INIS)

    Alammar, M.A.

    1987-01-01

    A series of benchmarks against start-up tests have been performed on the Oyster Creek boiling water reactor unit 2 RETRAN model in support of developing an in-house reload capability. The liquid and the pressure regulator models have been benchmarked against level and pressure setpoint changes, where small setpoint perturbations were made at rated power. The purpose of the present benchmark is to check the liquid level behavior during a severe level drop as during void collapse following a scram and to size the bypass valves by benchmarking the valves' contraction coefficient. The main steam isolation valves (MSIVs) closure start-up test was chosen for the former, while the bypass valve test was chosen for the latter. The two benchmarks complete the qualification of the upper downcomer liquid level for small and large level changes and the pressure regulator system for the Oyster Creek RETRAN model

  9. Road Closures

    Data.gov (United States)

    Montgomery County of Maryland — This is an up to date map of current road closures in Montgomery County.This dataset is updated every few minutes from the Department of Transportation road closure...

  10. Numerical simulation of the hole-flanging process for steel-polymer sandwich sheets

    Science.gov (United States)

    Griesel, Dominic; Keller, Marco C.; Groche, Peter

    2018-05-01

    In light of increasing demand for lightweight structures, hybrid materials are frequently used in load-optimized parts. Sandwich structures like metal-polymer sandwich sheets provide equal bending stiffness as their monolithic counterparts at a drastically reduced weight. In addition, sandwich sheets have noise-damping properties, thus they are well-suited for a large variety of parts, e.g. façade and car body panels, but also load-carrying components. However, due to the creep tendency and low heat resistance of the polymer cores, conventional joining technologies are only applicable to a limited degree. Through hole-flanging it is possible to create branches in sandwich sheets to be used as reinforced joints. While it is state of the art for monolithic materials, hole-flanging of sandwich sheets has not been investigated yet. In order to simulate this process for different material combinations and tool geometries, an axisymmetric model has been developed in the FE software Abaqus/CAE. In the present paper, various modeling strategies for steel-polymer sandwich sheets are examined, including volume elements, shell elements and combinations thereof. Different methods for joining the distinct layers in the FE model are discussed. By comparison with CT scans and optical 3D measurements of experimentally produced hole-flanges, the feasibility of the presented models is evaluated. Although a good agreement of the numerical and experimental results has been achieved, it becomes clear that the classical forming limit diagram (FLD) does not adequately predict failure of the steel skins.

  11. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    Science.gov (United States)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  12. The impact of rural hospital closures on equity of commuting time for haemodialysis patients: simulation analysis using the capacity-distance model

    Directory of Open Access Journals (Sweden)

    Matsumoto Masatoshi

    2012-07-01

    Full Text Available Abstract Background Frequent and long-term commuting is a requirement for dialysis patients. Accessibility thus affects their quality of lives. In this paper, a new model for accessibility measurement is proposed in which both geographic distance and facility capacity are taken into account. Simulation of closure of rural facilities and that of capacity transfer between urban and rural facilities are conducted to evaluate the impacts of these phenomena on equity of accessibility among dialysis patients. Methods Post code information as of August 2011 of all the 7,374 patients certified by municipalities of Hiroshima prefecture as having first or third grade renal disability were collected. Information on post code and the maximum number of outpatients (capacity of all the 98 dialysis facilities were also collected. Using geographic information systems, patient commuting times were calculated in two models: one that takes into account road distance (distance model, and the other that takes into account both the road distance and facility capacity (capacity-distance model. Simulations of closures of rural and urban facilities were then conducted. Results The median commuting time among rural patients was more than twice as long as that among urban patients (15 versus 7 minutes, p  Conclusions Closures of dialysis facilities in rural areas have a substantially larger impact on equity of commuting times among dialysis patients than closures of urban facilities. The accessibility simulations using thecapacity-distance model will provide an analytic framework upon which rational resource distribution policies might be planned.

  13. SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Jae; Hyung, Siek [School of Science Education (Astronomy), Chungbuk National University, Chungbuk 28644 (Korea, Republic of); Chattopadhyay, Indranil; Kumar, Rajiv [ARIES, Manora Peak, Nainital-263002, Uttarakhand (India); Ryu, Dongsu, E-mail: seong@chungbuk.ac.kr [Department of Physics, School of Natural Sciences UNIST, Ulsan 44919 (Korea, Republic of)

    2016-11-01

    We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.

  14. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    Science.gov (United States)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  15. A Dancing Black Hole

    Science.gov (United States)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  16. The impact of rural hospital closures on equity of commuting time for haemodialysis patients: simulation analysis using the capacity-distance model.

    Science.gov (United States)

    Matsumoto, Masatoshi; Ogawa, Takahiko; Kashima, Saori; Takeuchi, Keisuke

    2012-07-23

    Frequent and long-term commuting is a requirement for dialysis patients. Accessibility thus affects their quality of lives. In this paper, a new model for accessibility measurement is proposed in which both geographic distance and facility capacity are taken into account. Simulation of closure of rural facilities and that of capacity transfer between urban and rural facilities are conducted to evaluate the impacts of these phenomena on equity of accessibility among dialysis patients. Post code information as of August 2011 of all the 7,374 patients certified by municipalities of Hiroshima prefecture as having first or third grade renal disability were collected. Information on post code and the maximum number of outpatients (capacity) of all the 98 dialysis facilities were also collected. Using geographic information systems, patient commuting times were calculated in two models: one that takes into account road distance (distance model), and the other that takes into account both the road distance and facility capacity (capacity-distance model). Simulations of closures of rural and urban facilities were then conducted. The median commuting time among rural patients was more than twice as long as that among urban patients (15 versus 7 minutes, psimulation, when five rural public facilitiess were closed, Gini coefficient of commuting times among the patients increased by 16%, indicating a substantial worsening of equity, and the number of patients with commuting times longer than 90 minutes increased by 72 times. In contrast, closure of four urban public facilities with similar capacities did not affect these values. Closures of dialysis facilities in rural areas have a substantially larger impact on equity of commuting times among dialysis patients than closures of urban facilities. The accessibility simulations using the capacity-distance model will provide an analytic framework upon which rational resource distribution policies might be planned.

  17. Post-Newtonian Dynamical Modeling of Supermassive Black Holes in Galactic-scale Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, Antti; Pihajoki, Pauli; Johansson, Peter H.; Lahén, Natalia; Sawala, Till [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a (Finland); Naab, Thorsten, E-mail: antti.rantala@helsinki.fi [Max-Planck-Insitut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748, Garching (Germany)

    2017-05-01

    We present KETJU, a new extension of the widely used smoothed particle hydrodynamics simulation code GADGET-3. The key feature of the code is the inclusion of algorithmically regularized regions around every supermassive black hole (SMBH). This allows for simultaneously following global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs, SMBH binaries, and surrounding stellar systems at subparsec scales. The KETJU code includes post-Newtonian terms in the equations of motions of the SMBHs, which enables a new SMBH merger criterion based on the gravitational wave coalescence timescale, pushing the merger separation of SMBHs down to ∼0.005 pc. We test the performance of our code by comparison to NBODY7 and rVINE. We set up dynamically stable multicomponent merger progenitor galaxies to study the SMBH binary evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from the final-parsec problem, which we attribute to the nonspherical shape of the merger remnants. For bulge-only models, the hardening rate decreases with increasing resolution, whereas for models that in addition include massive dark matter halos, the SMBH binary hardening rate becomes practically independent of the mass resolution of the stellar bulge. The SMBHs coalesce on average 200 Myr after the formation of the SMBH binary. However, small differences in the initial SMBH binary eccentricities can result in large differences in the SMBH coalescence times. Finally, we discuss the future prospects of KETJU, which allows for a straightforward inclusion of gas physics in the simulations.

  18. Simulation optimization of filament parameters for uniform depositions of diamond films on surfaces of ultra-large circular holes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinchang, E-mail: wangxinchangz@163.com; Shen, Xiaotian; Sun, Fanghong; Shen, Bin

    2016-12-01

    Highlights: • A verified simulation model using a novel filament arrangement is constructed. • Influences of filament parameters are clarified. • A coefficient between simulated and experimental results is proposed. • Orthogonal simulations are adopted to optimize filament parameters. • A general filament arrangement suitable for different conditions is determined. - Abstract: Chemical vapor deposition (CVD) diamond films have been widely applied as protective coatings on varieties of anti-frictional and wear-resistant components, owing to their excellent mechanical and tribological properties close to the natural diamond. In applications of some components, the inner hole surface will serve as the working surface that suffers severe frictional or erosive wear. It is difficult to realize uniform depositions of diamond films on surfaces of inner holes, especially ultra-large inner holes. Adopting a SiC compact die with an aperture of 80 mm as an example, a novel filament arrangement with a certain number of filaments evenly distributed on a circle is designed, and specific effects of filament parameters, including the filament number, arrangement direction, filament temperature, filament diameter, circumradius and the downward translation, on the substrate temperature distribution are studied by computational fluid dynamics (CFD) simulations based on the finite volume method (FVM), adopting a modified computational model well consistent with the actual deposition environment. Corresponding temperature measurement experiments are also conducted to verify the rationality of the computational model. From the aspect of depositing uniform boron-doped micro-crystalline, undoped micro-crystalline and undoped fine-grained composite diamond (BDM-UMC-UFGCD) film on such the inner hole surface, filament parameters as mentioned above are accurately optimized and compensated by orthogonal simulations. Moreover, deposition experiments adopting compensated optimized

  19. GLOBAL GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF BLACK HOLE ACCRETION FLOWS: A CONVERGENCE STUDY

    International Nuclear Information System (INIS)

    Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F.; Noble, Scott C.

    2012-01-01

    Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 × 96 × 64 to 384 × 384 × 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma β; (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma β decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ( s hearing box ) calculations and with the recent non-relativistic global convergence studies of Hawley et al.

  20. UNDERSTANDING BLACK HOLE MASS ASSEMBLY VIA ACCRETION AND MERGERS AT LATE TIMES IN COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Kulier, Andrea; Ostriker, Jeremiah P.; Lackner, Claire N.; Cen, Renyue; Natarajan, Priyamvada

    2015-01-01

    Accretion is thought to primarily contribute to the mass accumulation history of supermassive black holes (SMBHs) throughout cosmic time. While this may be true at high redshifts, at lower redshifts and for the most massive black holes (BHs) mergers themselves might add significantly to the mass budget. We explore this in two disparate environments—a massive cluster and a void region. We evolve SMBHs from 4 > z > 0 using merger trees derived from hydrodynamical cosmological simulations of these two regions, scaled to the observed value of the stellar mass fraction to account for overcooling. Mass gains from gas accretion proportional to bulge growth and BH-BH mergers are tracked, as are BHs that remain ''orbiting'' due to insufficient dynamical friction in a merger remnant, as well as those that are ejected due to gravitational recoil. We find that gas accretion remains the dominant source of mass accumulation in almost all SMBHs; mergers contribute 2.5% ± 0.1% for all SMBHs in the cluster and 1.0% ± 0.1% in the void since z = 4. However, mergers are significant for massive SMBHs. The fraction of mass accumulated from mergers for central BHs generally increases for larger values of the host bulge mass: in the void, the fraction is 2% at M *, bul = 10 10 M ☉ , increasing to 4% at M *, bul ≳ 10 11 M ☉ , and in the cluster it is 4% at M *, bul = 10 10 M ☉ and 23% at 10 12 M ☉ . We also find that the total mass in orbiting SMBHs is negligible in the void, but significant in the cluster, in which a potentially detectable 40% of SMBHs and ≈8% of the total SMBH mass (where the total includes central, orbiting, and ejected SMBHs) is found orbiting at z = 0. The existence of orbiting and ejected SMBHs requires modification of the Soltan argument. We estimate this correction to the integrated accreted mass density of SMBHs to be in the range 6%-21%, with a mean value of 11% ± 3%. Quantifying the growth due to mergers at these late times

  1. Closure requirements

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    Closure of a waste management unit can be either permanent or temporary. Permanent closure may be due to: economic factors which make it uneconomical to mine the remaining minerals; depletion of mineral resources; physical site constraints that preclude further mining and beneficiation; environmental, regulatory or other requirements that make it uneconomical to continue to develop the resources. Temporary closure can occur for a period of several months to several years, and may be caused by factors such as: periods of high rainfall or snowfall which prevent mining and waste disposal; economic circumstances which temporarily make it uneconomical to mine the target mineral; labor problems requiring a cessation of operations for a period of time; construction activities that are required to upgrade project components such as the process facilities and waste management units; and mine or process plant failures that require extensive repairs. Permanent closure of a mine waste management unit involves the provision of durable surface containment features to protect the waters of the State in the long-term. Temporary closure may involve activities that range from ongoing maintenance of the existing facilities to the installation of several permanent closure features in order to reduce ongoing maintenance. This paper deals with the permanent closure features

  2. Terahertz-dependent identification of simulated hole shapes in oil-gas reservoirs

    Science.gov (United States)

    Bao, Ri-Ma; Zhan, Hong-Lei; Miao, Xin-Yang; Zhao, Kun; Feng, Cheng-Jing; Dong, Chen; Li, Yi-Zhang; Xiao, Li-Zhi

    2016-10-01

    Detecting holes in oil-gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil-gas reservoirs by adopting terahertz time-domain spectroscopy (THz-TDS). We evaluate the THz absorption responses of punched silicon (Si) wafers having micro-holes with sizes of 20 μm-500 μm. Principal component analysis (PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil-gas reservoirs. Project supported by the National Natural Science Foundation of China (Grant No. 61405259), the National Basic Research Program of China (Grant No. 2014CB744302), and the Specially Founded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005).

  3. Potential application of CuSbS2 as the hole transport material in perovskite solar cell: A simulation study

    Science.gov (United States)

    Teimouri, R.; Mohammadpour, R.

    2018-06-01

    CH3 NH3 PbI3 (MAPbI3) thin film solar cells, which are reported at laboratory efficiency scale of nearly 22%, are the subject of much attention by energy researchers due to their low cost buildup, acceptable efficiency, high absorption coefficient and diffusion length. The main purpose of this research is to simulate the structure of thin film perovskite solar cells through numerical simulation of SCAPS based on the empirical data for different hole transport layers. After simulating the initial structure of FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD solar cell, the hole transport layer Spiro-OMeTAD thickness was optimized on a small scale using modeling. The researchers also sought to reduce the amount of this material and the cost of construction. Ultimately, an optimum thickness of 140 nm was obtained for this cell with efficiency of 22.88%. The effect of employing alternative inorganic hole transport layer was investigated as a substitute for Spiro-OMeTAD; Copper antimony sulphide (CuSbS2) was selected due to abundant and available material and high open circuit voltage of about 988 mV. Thickness variations were also performed on a MAPbI3/CuSbS2 solar cell. Finally, It has obtained that perovskite solar cell with 120 nm-thick of CuSbS2 has 23.14% conversion efficiency with acceptable VOC and JSC values.

  4. Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars

    Science.gov (United States)

    Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.

    2018-04-01

    There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.

  5. Numerical simulation of evolution of electron-hole avalanches and streamers in silicon in a uniform electric field

    International Nuclear Information System (INIS)

    Kyuregyan, A. S.

    2010-01-01

    Numerical simulation of origination and evolution of streamers in Si is performed for the first time. It is assumed that an external electric field E 0 is constant and uniform, the avalanche and streamer are axially symmetric, and background electrons and holes are absent. The calculations have been performed in the context of the diffusion-drift approximation with impact and tunneling ionization, Auger recombination, and electron-hole scattering taken into account. The most realistic values of the ionization and recombination rates, diffusion coefficients, and drift mobilities of electrons and holes have been used. It is shown that the features of evolution of avalanches and streamers are generally consistent with the result obtained previously for a hypothetic semiconductor with equal kinetic coefficients for electrons and holes. Asymmetry of these coefficients (mostly, the impact-ionization coefficients) manifests itself only at the initial stage of evolution. However, with time, two exponentially self-similar streamers are formed, differing only in the sign of charge of fronts and directions of their propagation. Empirical dependences of the main parameters of streamers on E 0 in the range of 0.34-0.75 MV/cm have been derived for this most important stage of evolution.

  6. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is

  7. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman; McKinney, Jonathan C. [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Johnson, Michael D.; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  8. Cierre espontáneo de agujero macular idiopático:: seguimiento por tomografía de coherencia óptica y microperimetría MP1 Spontaneous closure of the idiopathic macular hole.: Follow-up of this case by optical coherence tomography and microperimetry MP1

    Directory of Open Access Journals (Sweden)

    Julio César Molina Martín

    2010-12-01

    Full Text Available Se presenta un caso de cierre espontáneo de agujero macular idiopático seguido por tomografía de coherencia óptica y microperimetría MP1 antes y después del cierre. El cierre espontáneo de un estadio 4 no ocurre con frecuencia, sin embargo, puede aparecer fundamentalmente en pacientes con diámetro superior del agujero menor a 150 micras. La tomografía de coherencia óptica y la microperimetría constituyen herramientas útiles en el diagnóstico, pronóstico y seguimiento de esta entidad.The case of spontaneous closure of a stage 4 idiopathic macular hole at followed up by Optical Coherence Tomography and microperimetry MP1 before and after the closure was presented. The spontaneous closure of a stage 4 macular hole is rare but it can occur in patients with hole upper diameters less than 150 µm. The OCT and the microperimetry MP1 are very useful tools in the diagnosis, prognosis and follow-up of this maculopathy.

  9. High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole

    Science.gov (United States)

    Tanikawa, Ataru

    2018-05-01

    We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.

  10. Simulation of polarization-dependent film with subwavelength nano-hole array

    Science.gov (United States)

    Yu, Yue; Wei, Dong; Long, Huabao; Xin, Zhaowei; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    When lightwave passes through a metal thin film with a periodic subwavelength hole arrays structure, its transmittance is significantly improved in the partial band compared to other wavelength. Changing the size of the hole, the period or metal material, will make the transmission curve different. Here, we add a layer of dielectric material on the surface of the metal film, such as liquid crystal(LC), by controlling voltage on LC to change the refractive index of this layer, then we can change the transmission curve, and achieve using voltage to move the transmission curve. When there is need for polarization, the holes can be made of a rectangle whose length and width are different or other shapes, for different polarization state of the light, and the film will display different transmission characteristics.

  11. What is a black hole

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1979-01-01

    A definition of a black hole is proposed that should work in any stably causal space-time. This is that a black hole is the closure of the smaller future set that contains all noncosmological trapped surfaces and which has its boundary generated by null geodesic segments that are boundary generators of TIPs. This allows precise definitions of cosmic censorship and white holes. (UK)

  12. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    Science.gov (United States)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three

  13. Numerical simulation of temperature's sensitivity of chamfer hole's resistance on hydraulic step cylinder

    International Nuclear Information System (INIS)

    Jinhua, Wang; Hanliang, Bo; Wenxiang, Zheng; Jinnong, Yang

    2003-01-01

    The control rod drive is a very important device for controlling nuclear reactor startup, operation, shut down, and power change. The ability of the control rod drive to move safely and reliably directly relates to reactor safety. The Hydraulic Control Rod Drive System (HCRDS) is a new type of control rod drive system developed by the Institute of Nuclear Energy Technology (INET) of Tsinghua University for Nuclear Heating Reactors. The HCRDS, designed using the hydrodynamic principle, has many advantages, including having the structure complete in the vessel, no possible ejection accident, short drive line, simple movable parts structure and safe shutdown during accidents. The hydraulic step cylinder is the key part for the HCRDS. In the process of reactor startup, the variation of temperature could make the water's density and viscosity change, and the force from the water flow would change accordingly. These factors could influence the performance of the hydraulic step cylinder. In this paper, the temperature sensitivity of the chamfer hole's resistance in the hydraulic step cylinder was studied with the Computational Fluid Dynamics (CFD) program CFX5.5. The results were satisfactory: the discipline of variation of the chamfer hole's resistance with the outer tube's position was the same at different temperatures, the discrepancy of the chamfer hole's resistance was small for the same position at different temperatures, the chamfer hole's resistance decreased gradually with the increase of temperature, and the decrease extent was relatively small

  14. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    OpenAIRE

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, Rana X.; Anderson, R.; Anderson, S. B.; Arai, K.; Araya, M. C.; Austin, L.; Barayoga, J. C.; Barish, B. C.; Billingsley, G.; Black, E.; Blackburn, J. K.

    2014-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion mo...

  15. Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity

    Science.gov (United States)

    Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew

    2017-04-01

    We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.

  16. A patient specific finite element simulation of intramedullary nailing to predict the displacement of the distal locking hole.

    Science.gov (United States)

    Mortazavi, Javad; Farahmand, Farzam; Behzadipour, Saeed; Yeganeh, Ali; Aghighi, Mohammad

    2018-05-01

    Distal locking is a challenging subtask of intramedullary nailing fracture fixation due to the nail deformation that makes the proximally mounted targeting systems ineffective. A patient specific finite element model was developed, based on the QCT data of a cadaveric femur, to predict the position of the distal hole of the nail postoperatively. The mechanical interactions of femur and nail (of two sizes) during nail insertion was simulated using ABAQUS in two steps of dynamic pushing and static equilibrium, for the intact and distally fractured bone. Experiments were also performed on the same specimen to validate the simulation results. A good agreement was found between the model predictions and the experimental observations. There was a three-point contact pattern between the nail and medullary canal, only on the proximal fragment of the fractured bone. The nail deflection was much larger in the sagittal plane and increased for the larger diameter nail, as well as for more distally fractured or intact femur. The altered position of the distal hole was predicted by the model with an acceptable error (mean: 0.95; max: 1.5 mm, in different tests) to be used as the compensatory information for fine tuning of proximally mounted targeting systems. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. A Particular Appetite: Cosmological Hydrodynamic Simulations of Preferential Accretion in the Supermassive Black Holes of Milky Way Size Galaxies

    Science.gov (United States)

    Sanchez, Natalie; Bellovary, Jillian M.; Holley-Bockelmann, Kelly

    2016-01-01

    With the use of cosmological hydrodynamic simulations of Milky Way-type galaxies, we identify the preferential source of gas that is accreted by the supermassive black holes (SMBHs) they host. We examine simulations of two Milky Way analogs, each distinguished by a differing merger history. One galaxy is characterized by several major mergers and the other has a more quiescent history. By examining and comparing these two galaxies, which have a similar structure at z=0, we asses the importance of merger history on black hole accretion. This study is an extension of Bellovary et. al. 2013, which studied accretion onto SMBHs in massive, high redshift galaxies. Bellovary found that the fraction of gas accreted by the galaxy was proportional to that which was accreted by its SMBH. Contrary to Bellovary's previous results, we found that though the gas accreted by a quiescent galaxy will mirror the accretion of its central SMBH, a galaxy that is characterized by an active merger history will have a SMBH that preferentially accretes gas gained through mergers. We move forward by examining the angular momentum of the gas accreted by these Milky Way-type galaxies to better understand the mechanisms fueling their central SMBH.

  18. Restaurant closures

    CERN Document Server

    Novae Restauration

    2012-01-01

    Christmas Restaurant closures Please note that the Restaurant 1 and Restaurant 3 will be closed from Friday, 21 December at 5 p.m. to Sunday, 6 January, inclusive. They will reopen on Monday, 7 January 2013.   Restaurant 2 closure for renovation To meet greater demand and to modernize its infrastructure, Restaurant 2 will be closed from Monday, 17 December. On Monday, 14 January 2013, Sophie Vuetaz’s team will welcome you to a renovated self-service area on the 1st floor. The selections on the ground floor will also be expanded to include pasta and pizza, as well as snacks to eat in or take away. To ensure a continuity of service, we suggest you take your break at Restaurant 1 or Restaurant 3 (Prévessin).

  19. Direct numerical simulation of free convection in a vertical channel: a tool for second moment closure modeling

    International Nuclear Information System (INIS)

    Maupu, V.; Laurence, D.; Boudjemadi, R.; Le Quere, P.

    1996-03-01

    Natural turbulent convection in a differentially heated infinite vertical slot is computed with a mixed finite differences/Fourier code. At a Rayleigh number of 10 5 , periodic perturbations from the laminar solution develop and transition to a fully turbulent flow occurs. From then on, a database of high order correlations is constituted and used for testing a second moment closure based on the LRR model and elliptic relaxation near wall effects. Counter gradient turbulent transport, found in the central part of the channel, requires an algebraic model for the triple correlations instead of the standard DH or HL, gradient diffusion models. (authors). 18 refs., 14 figs., 1 tab

  20. Direct numerical simulation of natural convection in a vertical channel: a tool for second moment closure modeling

    International Nuclear Information System (INIS)

    Maupu, V.; Laurence, D.

    1996-01-01

    Natural turbulent convection in a differentially heated infinite vertical slot is computed with a mixed finite differences/Fourier code. At a Rayleigh number of 10 5 , in the case without mean stratification, periodic perturbations from the laminar solution develop and transition to a fully turbulent flow occurs. From then on, a database of one-point statistics is presented: mean velocity and temperature, Reynolds stress components, turbulent heat fluxes and variance of temperature, but also budgets of second moment equations. This database is then used for testing of a second moment closure based on the Launder-Reece-Rodi model on an elliptic relaxation for near wall effects on pressure redistribution. This level of modelling is required by the presence of counter gradient fluxes, which cannot be accounted for eddy viscosity and eddy diffusivity assumptions. Furthermore, an algebraic third order moment closure was found necessary because of counter gradient turbulent transport terms which appear to mainly originate from the mean velocity and temperature gradient terms usually neglected in conventional transport models, such as the standard Daly-Harlow or Hanjalic-Launder models. (authors)

  1. Simulations of the pipe overpack to compute constitutive model parameters for use in WIPP room closure calculations

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Hansen, Francis D.

    2004-01-01

    The regulatory compliance determination for the Waste Isolation Pilot Plant includes the consideration of room closure. Elements of the geomechanical processes include salt creep, gas generation and mechanical deformation of the waste residing in the rooms. The WIPP was certified as complying with regulatory requirements based in part on the implementation of room closure and material models for the waste. Since the WIPP began receiving waste in 1999, waste packages have been identified that are appreciably more robust than the 55-gallon drums characterized for the initial calculations. The pipe overpack comprises one such waste package. This report develops material model parameters for the pipe overpack containers by using axisymmetrical finite element models. Known material properties and structural dimensions allow well constrained models to be completed for uniaxial, triaxial, and hydrostatic compression of the pipe overpack waste package. These analyses show that the pipe overpack waste package is far more rigid than the originally certified drum. The model parameters developed in this report are used subsequently to evaluate the implications to performance assessment calculations

  2. GPU based 3D feature profile simulation of high-aspect ratio contact hole etch process under fluorocarbon plasmas

    Science.gov (United States)

    Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.

  3. RELAP-7 Closure Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, R. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andrs, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansel, J. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sharpe, J. P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johns, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s and TRACE’s capabilities and extends their analysis capabilities for all reactor system simulation scenarios. The RELAP-7 code utilizes the well-posed 7-equation two-phase flow model for compressible two-phase flow. Closure models used in the TRACE code has been reviewed and selected to reflect the progress made during the past decades and provide a basis for the colure correlations implemented in the RELAP-7 code. This document provides a summary on the closure correlations that are currently implemented in the RELAP-7 code. The closure correlations include sub-grid models that describe interactions between the fluids and the flow channel, and interactions between the two phases.

  4. Research on Impact Stress and Fatigue Simulation of a New Down-to-the-Hole Impactor Based on ANSYS

    Science.gov (United States)

    Wu, Tao; Wang, Wei; Yao, Aiguo; Li, Yongbo; He, Wangyong; Fei, Dongdong

    2018-06-01

    In the present work, a down-to-the-hole electric hammer driven by linear motor is reported for drilling engineering. It differs from the common hydraulic or pneumatic hammers in that it can be applied to some special occasions without circulating medium due to its independence of the drilling fluid. The impact stress caused by the reciprocating motion between stator and rotor and the fatigue damage in key components of linear motor are analyzed by the ANSYS Workbench software and 3D model. Based on simulation results, the hammer's structure is optimized by using special sliding bearing, increasing the wall thickness of key and multilayer buffer gasket. Fatigue life and coefficient issues of the new structure are dramatically improved. However buffer gasket reduces the impactor's energy, different bumper structure effect on life improving and energy loss have also been elaborated.

  5. BOOSTED TIDAL DISRUPTION BY MASSIVE BLACK HOLE BINARIES DURING GALAXY MERGERS FROM THE VIEW OF N -BODY SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Berczik, Peter; Spurzem, Rainer [National Astronomical Observatories and Key Laboratory of Computational Astrophysics, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, Beijing 100012 (China); Liu, F. K., E-mail: lishuo@nao.cas.cn [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China)

    2017-01-10

    Supermassive black hole binaries (SMBHBs) are productions of the hierarchical galaxy formation model. There are many close connections between a central SMBH and its host galaxy because the former plays very important roles on galaxy formation and evolution. For this reason, the evolution of SMBHBs in merging galaxies is a fundamental challenge. Since there are many discussions about SMBHB evolution in a gas-rich environment, we focus on the quiescent galaxy, using tidal disruption (TD) as a diagnostic tool. Our study is based on a series of numerical, large particle number, direct N -body simulations for dry major mergers. According to the simulation results, the evolution can be divided into three phases. In phase I, the TD rate for two well separated SMBHs in a merging system is similar to that for a single SMBH in an isolated galaxy. After two SMBHs approach close enough to form a bound binary in phase II, the disruption rate can be enhanced by ∼2 orders of magnitude within a short time. This “boosted” disruption stage finishes after the SMBHB evolves to a compact binary system in phase III, corresponding to a reduction in disruption rate back to a level of a few times higher than in phase I. We also discuss how to correctly extrapolate our N -body simulation results to reality, and the implications of our results to observations.

  6. Numerical simulation and experimental validation of inverted planar perovskite solar cells based on NiOx hole transport layer

    Science.gov (United States)

    Wei, Xiaoqing; Wang, Xian; Jiang, Hailong; Huang, Yongliang; Han, Anjun; Gao, Qi; Bian, Jiantao; Liu, Zhengxin

    2017-12-01

    Numerical simulation of inverted planar perovskite solar cells based on NiOx hole transport layer was performed with AMPS-1D program. The simulated device parameters were shown to agree well with our experimental work. The simulated results revealed that the device contained typical p-i-n junction configuration. The optimum thickness of the absorber, the effects of the absorber quality, the defect density of interfaces, the effects of VBO and CBO, the interface contact at front and back electrodes were analyzed. Open-circuit voltage mainly depended on the defect density in CH3NH3PbI3 layer, the recombination at HTL/CH3NH3PbI3 and ETL/CH3NH3PbI3 interface, the values of VBO and CBO, while short-circuit current mainly depended on the thickness of CH3NH3PbI3 layer. Fill factor was significantly influenced by the interface contact at front and back electrodes. Remarkably, a power conversion efficiency of 21.8% is obtained under optimised conditions. Real devices with PCE of up to 15% were obtained by initially optimizing the preparation of CH3NH3PbI3 absorber layer. Our work can provide some important guidance for device design and optimization from the considerations of both theory and experiment.

  7. Effect of diameter of the drill hole on torque of screw insertion and pushout strength for headless tapered compression screws in simulated fractures of the lateral condyle of the equine third metacarpal bone.

    Science.gov (United States)

    Carpenter, Ryan S; Galuppo, Larry D; Stover, Susan M

    2006-05-01

    To compare variables for screw insertion, pushout strength, and failure modes for a headless tapered compression screw inserted in standard and oversize holes in a simulated lateral condylar fracture model. 6 pairs of third metacarpal bones from horse cadavers. Simulated lateral condylar fractures were created, reduced, and stabilized with a headless tapered compression screw by use of a standard or oversize hole. Torque, work, and time for drilling, tapping, and screw insertion were measured during site preparation and screw implantation. Axial load and displacement were measured during screw pushout. Effects of drill hole size on variables for screw insertion and screw pushout were assessed by use of Wilcoxon tests. Drill time was 59% greater for oversize holes than for standard holes. Variables for tapping (mean maximum torque, total work, positive work, and time) were 42%, 70%, 73%, and 58% less, respectively, for oversize holes, compared with standard holes. Variables for screw pushout testing (mean yield load, failure load, failure displacement, and failure energy) were 40%, 40%, 47%, and 71% less, respectively, for oversize holes, compared with standard holes. Screws could not be completely inserted in 1 standard and 2 oversize holes. Enlarging the diameter of the drill hole facilitated tapping but decreased overall holding strength of screws. Therefore, holes with a standard diameter are recommended for implantation of variable pitch screws whenever possible. During implantation, care should be taken to ensure that screw threads follow tapped bone threads.

  8. Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Context

    International Nuclear Information System (INIS)

    Levine, Robyn Deborah; JILA, Boulder

    2008-01-01

    Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmological scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Lyα forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting completely

  9. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  10. Hole-Collection Mechanism in Passivating Metal-Oxide Contacts on Si Solar Cells: Insights From Numerical Simulations

    KAUST Repository

    Vijayan, Ramachandran Ammapet

    2018-02-14

    Silicon heterojunction solar cells enable high conversion efficiencies, thanks to their passivating contacts which consist of layered stacks of intrinsic and doped amorphous silicon. However, such contacts may reduce the photo current, when present on the illuminated side of the cell. This motivates the search for wider bandgap contacting materials, such as metal oxides. In this paper, we elucidate the precise impact of the material parameters of MoO$_{x}$ on device characteristics, based on numerical simulations. The simulation results allow us to propose design principles for hole-collecting induced junctions. We find that if MoO$_{x}$ has a sufficiently high electron affinity ($\\\\ge\\\\! \\\\text{{5.7 eV}}$), direct band-to-band tunneling is the dominant transport mechanism; whereas if it has a lower electron affinity ($ <\\\\! \\\\text{{5.7 eV}}$), trap-assisted tunneling dominates, which might introduce additional series resistance. At even lower electron affinity, S-shaped J–V curves may appear for these solar cells, which are found to be due to an insufficient trap state density in the MoO$_{x}$ film in contrast to the expectation of better performance at low trap density. These traps may assist carrier transport when present near the conduction band edge of the MoO$_{x}$ film. Our simulations predict that performance optimization for the MoO$_{x}$ film has to target either 1) a high electron affinity and a moderate doping density film or, 2) if the electron affinity is lower than the optimum value, a high defect density not exceeding the doping density inside the film.

  11. Effects of Geomechanical Mechanism on the Gas Production Behavior: A Simulation Study of Class-3 Type Four-Way-Closure Ridge Hydrate Deposit Offshore Southwestern Taiwan

    Science.gov (United States)

    Wu, Cheng-Yueh; Chiu, Yung-Cheng; Huang, Yi-Jyun; Hsieh, Bieng-Zih

    2017-04-01

    The future energy police of Taiwan will heavily rely on the clean energy, including renewable energy and low-carbon energy, to meet the target of mitigating CO2 emission. In addition to developing the renewable energies like solar and wind resources, Taiwan will increase the natural gas consumption to obtain enough electrical power with low-carbon emission. The vast resources of gas hydrates recognized in southwestern offshore Taiwan makes a great opportunity for Taiwan to have own energy resources in the future. Therefore, Taiwan put significant efforts on the evaluation of gas hydrate reserves recently. Production behavior of natural gas dissociated from gas hydrate deposits is an important issue to the hydrate reserves evaluation. The depressurization method is a useful engineering recovery method for gas production from a class-3 type hydrate deposit. The dissociation efficiency will be affected by the pressure drawdown disturbance. However, when the pore pressure of hydrate deposits is depressurized for gas production, the rock matrix will surfer more stresses and the formation deformation might be occurred. The purpose of this study was to investigate the effects of geomechanical mechanism on the gas production from a class-3 hydrate deposit using depressurization method. The case of a class-3 type hydrate deposit of Four-Way-Closure Ridge was studied. In this study a reservoir simulator, STARS, was used. STARS is a multiphase flow, heat transfer, geo-chemical and geo-mechanical mechanisms coupling simulator which is capable to simulate the dissociation/reformation of gas hydrate and the deformation of hydrate reservoirs and overburdens. The simulating ability of STARTS simulator was validated by duplicating the hydrate comparison projects of National Energy Technology Lab. The study target, Four-Way-Closure (FWC) Ridge hydrate deposit, was discovered by the bottom simulating reflectors (BSRs). The geological parameters were collected from the geological and

  12. Simulation and analysis of a main steam line transient with isolation valves closure and subsequent pipe break

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, Vladimir; Studovic, Milovan [Faculty of Mechanical Engineering, University of Belgrade, Belgrade (Yugoslavia); Bratic, Aleksandar [Thermal Power Plant Nikola Tesla (Yugoslavia)

    1993-11-01

    Simulation and analysis of a real main steam line break transient at the coal fired 300 MW Drmno Thermal Power Plant have been performed by the computer code TEA-01. The methods and procedures used could be applied to a nuclear power plant. 9 refs., 6 figs.

  13. Some Recent Developments in Turbulence Closure Modeling

    Science.gov (United States)

    Durbin, Paul A.

    2018-01-01

    Turbulence closure models are central to a good deal of applied computational fluid dynamical analysis. Closure modeling endures as a productive area of research. This review covers recent developments in elliptic relaxation and elliptic blending models, unified rotation and curvature corrections, transition prediction, hybrid simulation, and data-driven methods. The focus is on closure models in which transport equations are solved for scalar variables, such as the turbulent kinetic energy, a timescale, or a measure of anisotropy. Algebraic constitutive representations are reviewed for their role in relating scalar closures to the Reynolds stress tensor. Seamless and nonzonal methods, which invoke a single closure model, are reviewed, especially detached eddy simulation (DES) and adaptive DES. Other topics surveyed include data-driven modeling and intermittency and laminar fluctuation models for transition prediction. The review concludes with an outlook.

  14. Borehole closure in salt

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1988-12-01

    Constitutive law parameters are determined from salt behavior characterization experiments. The results are applied to predict creep (time-dependent) closure of boreholes in salt specimens subjected to various loading configurations. Rheological models (linear and nonlinear viscoelastic and viscoplastic models), empirical models, and physical theory models have been formulated from the results of uniaxial creep tests, strain and stress rate controlled uniaxial tests, constant strain rate triaxial tests, cyclic loading tests, and seismic velocity measurements. Analytical solutions for a thick-walled cylinder subjected to internal and external pressures and for a circular hole in an infinite plate subjected to a biaxial or uniaxial stressfield have been derived from each of the linear viscoelastic models and from one of the empirical laws. The experimental results indicate that the salt samples behave as an elastic-viscoplastic material. The elastic behavior tends to be linear and time-independent. The plastic deformation is time-dependent. The stress increment to strain rate increment ratio gradually decreases as the stress level increases. The transient potential creep law seems to give the simplest satisfactory governing equation describing the viscoplastic behavior of salt during the transient phase. 204 refs., 27 figs., 29 tabs

  15. Quarter elliptical crack growth using three dimensional finite element method and crack closure technique

    Energy Technology Data Exchange (ETDEWEB)

    Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)

    2014-06-15

    Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.

  16. GLOBAL STRUCTURE OF THREE DISTINCT ACCRETION FLOWS AND OUTFLOWS AROUND BLACK HOLES FROM TWO-DIMENSIONAL RADIATION-MAGNETOHYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Ohsuga, Ken; Mineshige, Shin

    2011-01-01

    We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, ρ 0 , we can reproduce three distinct modes of accretion flow. In model A, which has the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of mild beaming, the apparent (isotropic) photon luminosity is ∼22L E (where L E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B, which has moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ∼7 R S (where R S is the Schwarzschild radius), while the flow is radiatively inefficient otherwise. The magnetic-pressure-driven disk wind appears in this model. In model C, the density is too low for the flow to be radiatively efficient. The flow thus becomes radiatively inefficient accretion flow, which is geometrically thick and optically thin. The magnetic-pressure force, together with the gas-pressure force, drives outflows from the disk surface, and the flow releases its energy via jets rather than via radiation. Observational implications are briefly discussed.

  17. Full closure strategic analysis.

    Science.gov (United States)

    2014-07-01

    The full closure strategic analysis was conducted to create a decision process whereby full roadway : closures for construction and maintenance activities can be evaluated and approved or denied by CDOT : Traffic personnel. The study reviewed current...

  18. Sternal exploration or closure

    Science.gov (United States)

    VAC - vacuum-assisted closure - sternal wound; Sternal dehiscence; Sternal infection ... in the wound to look for signs of infection Remove dead or infected ... use a VAC (vacuum-assisted closure) dressing. It is a negative ...

  19. Black Holes

    OpenAIRE

    Townsend, P. K.

    1997-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usu...

  20. Black Holes

    OpenAIRE

    Horowitz, Gary T.; Teukolsky, Saul A.

    1998-01-01

    Black holes are among the most intriguing objects in modern physics. Their influence ranges from powering quasars and other active galactic nuclei, to providing key insights into quantum gravity. We review the observational evidence for black holes, and briefly discuss some of their properties. We also describe some recent developments involving cosmic censorship and the statistical origin of black hole entropy.

  1. Simulation of groundwater flow to assess future withdrawals associated with Base Realignment and Closure (BRAC) at Fort George G. Meade, Maryland

    Science.gov (United States)

    Raffensperger, Jeff P.; Fleming, Brandon J.; Banks, William S.L.; Horn, Marilee A.; Nardi, Mark R.; Andreasen, David C.

    2010-01-01

    Increased groundwater withdrawals from confined aquifers in the Maryland Coastal Plain to supply anticipated growth at Fort George G. Meade (Fort Meade) and surrounding areas resulting from the Department of Defense Base Realignment and Closure Program may have adverse effects in the outcrop or near-outcrop areas. Specifically, increased pumping from the Potomac Group aquifers (principally the Patuxent aquifer) could potentially reduce base flow in small streams below rates necessary for healthy biological functioning. Additionally, water levels may be lowered near, or possibly below, the top of the aquifer within the confined-unconfined transition zone near the outcrop area. A three-dimensional groundwater flow model was created to incorporate and analyze data on water withdrawals, streamflow, and hydraulic head in the region. The model is based on an earlier model developed to assess the effects of future withdrawals from well fields in Anne Arundel County, Maryland and surrounding areas, and includes some of the same features, including model extent, boundary conditions, and vertical discretization (layering). The resolution (horizontal grid discretization) of the earlier model limited its ability to simulate the effects of withdrawals on the outcrop and near-outcrop areas. The model developed for this study included a block-shaped higher-resolution local grid, referred to as the child model, centered on Fort Meade, which was coupled to the coarser-grid parent model using the shared node Local Grid Refinement capability of MODFLOW-LGR. A more detailed stream network was incorporated into the child model. In addition, for part of the transient simulation period, stress periods were reduced in length from 1 year to 3 months, to allow for simulation of the effects of seasonally varying withdrawals and recharge on the groundwater-flow system and simulated streamflow. This required revision of the database on withdrawals and estimation of seasonal variations in

  2. Numerical simulations of heat transfer distribution of a two-pass square channel with V-rib turbulator and bleed holes

    Science.gov (United States)

    Kumar, Sourabh; Amano, R. S.; Lucci, Jose Martinez

    2013-08-01

    The blade tip region in gas turbine encounters high thermal loads due to temperature difference and hence efforts for high durability and safe operations are essential. Improved and robust methods of cooling are required to downgrade heat transfer rate to turbine blades. The blade tip regions, which are exposed to high gas flow, suffers high local thermal load which are due to external tip leakage. Jet impingement, pin cooling etc. are techniques used for cooling blades. A more usual way is to use serpentine passage with 180-degree turn. In this study, numerical simulation of heat transfer distribution of a two-pass square channel with rib turbulators and bleed holes were done. Periodical rib turbulators and bleed holes were used in the channel. The ribs arrangement were 60 degree V rib, 60 degree inverted V ribs, combination of 60 degree V rib at inlet and 60 inverted V rib at outlet section and combination of Inverted V at inlet and V rib at the outlet. The results were numerically computed using Fluent with Reynolds number of 12,500 and 28,500. Turbulence models used for computations were k-ω-SST and RSM. Temperature based and shear stress based techniques were used for heat transfer distribution prediction. The results for 60 degree V rib, 60 degree inverted V ribs were compared with the experimental results for validation of the results obtained. Detailed distribution shows distinctive peaks in heat transfer around bleed holes and rib turbulator. Comparisons of the overall performance of the models with different orientation of rib turbulator are presented. It is found that due to the combination of 60 degree inverted V rib in inlet and 60 V rib in outlet with bleed holes provides better heat treatment. It is suggested that the use of rib turbulator with bleed holes provides suitable for augmenting blade cooling to achieve an optimal balance between thermal and mechanical design requirements.

  3. Closure The Definitive Guide

    CERN Document Server

    Bolin, Michael

    2010-01-01

    If you're ready to use Closure to build rich web applications with JavaScript, this hands-on guide has precisely what you need to learn this suite of tools in depth. Closure makes it easy for experienced JavaScript developers to write and maintain large and complex codebases -- as Google has demonstrated by using Closure with Gmail, Google Docs, and Google Maps. Author and Closure contributor Michael Bolin has included numerous code examples and best practices, as well as valuable information not available publicly until now. You'll learn all about Closure's Library, Compiler, Templates, tes

  4. Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber : II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex.

    Science.gov (United States)

    Tenhunen, J D; Lange, O L; Braun, M

    1981-08-01

    Shrubs of the Mediterranean sclerophyllous species Arbutus unedo and Quercus ilex were studied under simulated habitat conditions in an environmental chamber. Temperature, humidity, and light intensity were altered stepwise to simulate diurnal changes in conditions similar to those measured in an evergreen macchia in Sobreda, Portugal. Leaves were enclosed in cuvettes which reproduced the growth chamber climate and which allowed measurement of gas exchange. Increasing atmospheric stress in the form of higher temperature and lower humidity on successive days gradually results in midday depression of transpiration rate and net photosynthesis rate of leaves due to midday stomatal closure.

  5. Evaluation of tomographic image quality of extended and conventional parallel hole collimators using maximum likelihood expectation maximization algorithm by Monte Carlo simulations.

    Science.gov (United States)

    Moslemi, Vahid; Ashoor, Mansour

    2017-10-01

    One of the major problems associated with parallel hole collimators (PCs) is the trade-off between their resolution and sensitivity. To solve this problem, a novel PC - namely, extended parallel hole collimator (EPC) - was proposed, in which particular trapezoidal denticles were increased upon septa on the side of the detector. In this study, an EPC was designed and its performance was compared with that of two PCs, PC35 and PC41, with a hole size of 1.5 mm and hole lengths of 35 and 41 mm, respectively. The Monte Carlo method was used to calculate the important parameters such as resolution, sensitivity, scattering, and penetration ratio. A Jaszczak phantom was also simulated to evaluate the resolution and contrast of tomographic images, which were produced by the EPC6, PC35, and PC41 using the Monte Carlo N-particle version 5 code, and tomographic images were reconstructed by using maximum likelihood expectation maximization algorithm. Sensitivity of the EPC6 was increased by 20.3% in comparison with that of the PC41 at the identical spatial resolution and full-width at tenth of maximum here. Moreover, the penetration and scattering ratio of the EPC6 was 1.2% less than that of the PC41. The simulated phantom images show that the EPC6 increases contrast-resolution and contrast-to-noise ratio compared with those of PC41 and PC35. When compared with PC41 and PC35, EPC6 improved trade-off between resolution and sensitivity, reduced penetrating and scattering ratios, and produced images with higher quality. EPC6 can be used to increase detectability of more details in nuclear medicine images.

  6. SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE IN BLACK HOLE SOURCES: MONTE CARLO SIMULATIONS AND AN ANALYTICAL DESCRIPTION

    International Nuclear Information System (INIS)

    Laurent, Philippe; Titarchuk, Lev

    2011-01-01

    We present herein a theoretical study of correlations between spectral indexes of X-ray emergent spectra and mass accretion rate ( m-dot ) in black hole (BH) sources, which provide a definitive signature for BHs. It has been firmly established, using the Rossi X-ray Timing Explorer (RXTE) in numerous BH observations during hard-soft state spectral evolution, that the photon index of X-ray spectra increases when m-dot increases and, moreover, the index saturates at high values of m-dot . In this paper, we present theoretical arguments that the observationally established index saturation effect versus mass accretion rate is a signature of the bulk (converging) flow onto the BH. Also, we demonstrate that the index saturation value depends on the plasma temperature of converging flow. We self-consistently calculate the Compton cloud (CC) plasma temperature as a function of mass accretion rate using the energy balance between energy dissipation and Compton cooling. We explain the observable phenomenon, index- m-dot correlations using a Monte Carlo simulation of radiative processes in the innermost part (CC) of a BH source and we account for the Comptonization processes in the presence of thermal and bulk motions, as basic types of plasma motion. We show that, when m-dot increases, BH sources evolve to high and very soft states (HSS and VSS, respectively), in which the strong blackbody(BB)-like and steep power-law components are formed in the resulting X-ray spectrum. The simultaneous detections of these two components strongly depends on sensitivity of high-energy instruments, given that the relative contribution of the hard power-law tail in the resulting VSS spectrum can be very low, which is why, to date RXTE observations of the VSS X-ray spectrum have been characterized by the presence of the strong BB-like component only. We also predict specific patterns for high-energy e-fold (cutoff) energy (E fold ) evolution with m-dot for thermal and dynamical (bulk

  7. Epiretinal proliferation in lamellar macular holes and full-thickness macular holes: clinical and surgical findings.

    Science.gov (United States)

    Lai, Tso-Ting; Chen, San-Ni; Yang, Chung-May

    2016-04-01

    To report the clinical findings and surgical outcomes of lamellar macular holes (LMH) with or without lamellar hole-associated epiretinal proliferation (LHEP), and those of full-thickness macular holes (FTMH) presenting with LHEP. From 2009 to 2013, consecutive cases of surgically treated LMH, and all FTMH cases with LHEP were reviewed, given a follow-up time over 1 year. In the LMH group (43 cases), those with LHEP (19 cases) had significantly thinner bases and larger openings than those without (24 cases). The rate of disrupted IS/OS line was higher in the LHEP subgroup preoperatively (68.4 % vs 37.5 %), but similar between subgroups postoperatively (36.8 % and 33.3 %). The preoperative and postoperative visual acuity showed no significant difference between two subgroups. In the FTMH group (13 cases), the average hole size was 219.2 ± 92.1 μm. Permanent or transient spontaneous hole closure was noted in 69.2 % of cases. An intact IS-OS line was found in only 23 % of cases at the final follow-up. In the LMH group, LHEP was associated with a more severe defect but didn't affect surgical outcomes. In the FTMH group, spontaneous hole closure was frequently noted. Despite small holes, disruption of IS-OS line was common after hole closure.

  8. The Converging Inflow Spectrum Is an Intrinsic Signature for a Black Hole: Monte Carlo Simulations of Comptonization on Free-falling Electrons

    Science.gov (United States)

    Laurent, Philippe; Titarchuk, Lev

    1999-01-01

    An accreting black hole is, by definition, characterized by the drain. Namely, matter falls into a black hole much the same way as water disappears down a drain: matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole,'' a unique observational signature of black holes. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we calculate (by using Monte Carlo simulations) the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) within about 3 Schwarzschild radii of the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Green's) function. The latter boosted photon component is seen as an extended power law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index (α=1.8+/-0.1) over a wide range of the plasma temperature, 0-10 keV, and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high-energy cutoff occurs at energies of 200-400 keV, which are related to the average energy of electrons mec2 impinging on the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum (Hua & Titarchuk) when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies, where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore, we demonstrate that the change of spectral shapes from

  9. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  10. Dancing with Black Holes

    Science.gov (United States)

    Aarseth, S. J.

    2008-05-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  11. Tubular closure device

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1982-01-01

    This invention relates to a closure mechanism for closing openings such as the bore of a conduit and for releasably securing members within the bore. More particularly, this invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holders used in nuclear reactors

  12. Development of an arid site closure plan

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Barnes, F.J.

    1987-01-01

    This document describes the development of a prototype plan for the effective closure and stabilization of an arid low-level waste disposal site. This plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Precautions for determining parameter values for model input and for interpreting simulation results are discussed. A specific example is presented showing how the field-validated hydrologic models can be used to develop a final prototype closure plan. 15 refs., 13 figs., 3 tabs

  13. Closure simulation of the MSIV of Unit 1 of the Laguna Verde nuclear power plant using the Simulate 3K code; Simulacion del cierre de las MSIV de la Unidad 1 de la central nuclear Laguna Verde empleando el codigo Simulate-3K

    Energy Technology Data Exchange (ETDEWEB)

    Alegria A, A., E-mail: aalegria@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2015-09-15

    In this paper the simulation of closure transient of all main steam isolation valves (MSIV) was performed with the Simulate-3K (S-3K) code for the Unit 1 of the Laguna Verde nuclear power plant (NPP-LV), which operates to thermal power of 2317 MWt, corresponding to the cycle 15 of operation. The set points for the performance of systems correspond to those set out in transient analysis: 3 seconds for the closure of all MSIV; the start of Scram when 121% of the neutron flux is reached, respect from baseline before the transient; the opening by peer of safety relief valves (SRV) in relief mode when the set point of the pressure is reached, the shoot of the feedwater flow seconds after the start of closing of the MSIV and the shoot of the recirculation water pumps when the pressure is reached in the dome of 1048 psig. The simulation time was of 57 seconds, with the top 50 to reach the steady state, from which the closure of all MSIV starts. In this paper the behavior of the pressure in the dome are analyzed, thermal power, neutron flux, the collapsed water level, the flow at the entrance of core, the steam flow coming out of vessel and the flow through of the SRV; the fuel temperature, the minimal critical power ratio, the readings in the instrumentation systems and reactivities. Instrumentation systems were implemented to analyze the neutron flux, these consist of 96 local power range monitors (LPRM) located in different radial and axial positions of the core and 4 channels of average power range monitors, which grouped at 24 LPRM each one. LPRM response to the change of neutron flux in the center of the core, at different axial positions is also shown. Finally, the results show that the safety limit MCPR is not exceeded. (Author)

  14. Occupancy estimation and the closure assumption

    Science.gov (United States)

    Rota, Christopher T.; Fletcher, Robert J.; Dorazio, Robert M.; Betts, Matthew G.

    2009-01-01

    1. Recent advances in occupancy estimation that adjust for imperfect detection have provided substantial improvements over traditional approaches and are receiving considerable use in applied ecology. To estimate and adjust for detectability, occupancy modelling requires multiple surveys at a site and requires the assumption of 'closure' between surveys, i.e. no changes in occupancy between surveys. Violations of this assumption could bias parameter estimates; however, little work has assessed model sensitivity to violations of this assumption or how commonly such violations occur in nature. 2. We apply a modelling procedure that can test for closure to two avian point-count data sets in Montana and New Hampshire, USA, that exemplify time-scales at which closure is often assumed. These data sets illustrate different sampling designs that allow testing for closure but are currently rarely employed in field investigations. Using a simulation study, we then evaluate the sensitivity of parameter estimates to changes in site occupancy and evaluate a power analysis developed for sampling designs that is aimed at limiting the likelihood of closure. 3. Application of our approach to point-count data indicates that habitats may frequently be open to changes in site occupancy at time-scales typical of many occupancy investigations, with 71% and 100% of species investigated in Montana and New Hampshire respectively, showing violation of closure across time periods of 3 weeks and 8 days respectively. 4. Simulations suggest that models assuming closure are sensitive to changes in occupancy. Power analyses further suggest that the modelling procedure we apply can effectively test for closure. 5. Synthesis and applications. Our demonstration that sites may be open to changes in site occupancy over time-scales typical of many occupancy investigations, combined with the sensitivity of models to violations of the closure assumption, highlights the importance of properly addressing

  15. Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: a two-step dissociation mechanism

    International Nuclear Information System (INIS)

    Offermans, Ton; Meskers, Stefan C.J.; Janssen, Rene A.J.

    2005-01-01

    The Monte-Carlo simulations are used to investigate the dissociation of a Coulomb correlated charge pair at an idealized interface between an electron accepting and an electron donating molecular material. In the simulations the materials are represented by cubic lattices of sites, with site the energies spread according to Gaussian distributions. The influence of temperature, applied external fields, and the width of the Gaussian densities of states distribution for both the electron and the hole transporting material are investigated. The results show that the dissociation of geminate charge pairs is assisted by disorder and the results can be understood in terms of a two-step model. In the first step, the slow carrier in the most disordered material jumps away from the interface. In the following, second step, the reduced Coulombic attraction allows the faster carrier in the less disordered material to escape from the interface by thermally activated hopping. When the rate for geminate recombination at the interface is very low ( -1 ) the simulations predict a high yield for carrier collection, as observed experimentally. Comparison of the simulated and experimentally observed temperature dependence of the collection efficiency indicates that at low temperature dissociation of the geminate charge pairs may be one of the factors limiting the device performance

  16. Eyelid closure at death

    Directory of Open Access Journals (Sweden)

    A D Macleod

    2009-01-01

    Full Text Available Aim: To observe the incidence of full or partial eyelid closure at death. Materials and Methods: The presence of ptosis was recorded in 100 consecutive hospice patient deaths. Results: Majority (63% of the patients died with their eyes fully closed, however, 37% had bilateral ptosis at death, with incomplete eye closure. In this study, central nervous system tumor involvement and/or acute hepatic encephalopathy appeared to be pre-mortem risk factors of bilateral ptosis at death. Conclusion: Organicity and not psychogenicity is, therefore, the likely etiology of failure of full eyelid closure at death.

  17. RCRA corrective action and closure

    International Nuclear Information System (INIS)

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators' interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE's permitted facilities and interim status facilities

  18. Scope and closures

    CERN Document Server

    Simpson, Kyle

    2014-01-01

    No matter how much experience you have with JavaScript, odds are you don’t fully understand the language. This concise yet in-depth guide takes you inside scope and closures, two core concepts you need to know to become a more efficient and effective JavaScript programmer. You’ll learn how and why they work, and how an understanding of closures can be a powerful part of your development skillset.

  19. Brane holes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Mukohyama, Shinji

    2011-01-01

    The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.

  20. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  1. Black holes go supersonic

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Ulf [School of Physics and Astronomy, University of St. Andrews (United Kingdom)

    2001-02-01

    In modern physics, the unification of gravity and quantum mechanics remains a mystery. Gravity rules the macroscopic world of planets, stars and galaxies, while quantum mechanics governs the micro-cosmos of atoms, light quanta and elementary particles. However, cosmologists believe that these two disparate worlds may meet at the edges of black holes. Now Luis Garay, James Anglin, Ignacio Cirac and Peter Zoller at the University of Innsbruck in Austria have proposed a realistic way to make an artificial 'sonic' black hole in a tabletop experiment (L J Garay et al. 2000 Phys. Rev. Lett. 85 4643). In the February issue of Physics World, Ulf Leonhardt of the School of Physics and Astronomy, University of St. Andrews, UK, explains how the simulated black holes work. (U.K.)

  2. Internal limiting membrane flap transposition for surgical repair of macular holes in primary surgery and in persistent macular holes.

    Science.gov (United States)

    Leisser, Christoph; Hirnschall, Nino; Döller, Birgit; Varsits, Ralph; Ullrich, Marlies; Kefer, Katharina; Findl, Oliver

    2018-03-01

    Classical or temporal internal limiting membrane (ILM) flap transposition with air or gas tamponade are current trends with the potential to improve surgical results, especially in cases with large macular holes. A prospective case series included patients with idiopathic macular holes or persistent macular holes after 23-G pars plana vitrectomy (PPV) and ILM peeling with gas tamponade. In all patients, 23-G PPV and ILM peeling with ILM flap transposition with gas tamponade and postoperative face-down position was performed. In 7 of 9 eyes, temporal ILM flap transposition combined with pedicle ILM flap could be successfully performed and macular holes were closed in all eyes after surgery. The remaining 2 eyes were converted to pedicle ILM flap transposition with macular hole closure after surgery. Three eyes were scheduled as pedicle ILM flap transposition due to previous ILM peeling. In 2 of these eyes, the macular hole could be closed with pedicle ILM flap transposition. In 3 eyes, free ILM flap transposition was performed and in 2 of these eyes macular hole could be closed after surgery, whereas in 1 eye a second surgery, performed as pedicle ILM flap transposition, was performed and led to successful macular hole closure. Use of ILM flaps in surgical repair of macular hole surgery is a new option of treatment with excellent results independent of the diameter of macular holes. For patients with persistent macular holes, pedicle ILM flap transposition or free ILM flap transposition are surgical options.

  3. Evaluation of the Momentum Closure Schemes in MPAS-Ocean

    Science.gov (United States)

    Zhao, Shimei; Liu, Yudi; Liu, Wei

    2018-04-01

    In order to compare and evaluate the performances of the Laplacian viscosity closure, the biharmonic viscosity closure, and the Leith closure momentum schemes in the MPAS-Ocean model, a variety of physical quantities, such as the relative reference potential energy (RPE) change, the RPE time change rate (RPETCR), the grid Reynolds number, the root mean square (RMS) of kinetic energy, and the spectra of kinetic energy and enstrophy, are calculated on the basis of results of a 3D baroclinic periodic channel. Results indicate that: 1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests. The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures: the largest value is in the biharmonic viscosity closure, followed by that in the Laplacian viscosity closure, and that in the Leith closure is the smallest. 2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR, but they can also damage certain physical processes. Generally, the damage to the rotation process is greater than that to the advection process. 3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales. Most dissipation concentrates on small scales, and the energy of small-scale eddies is often transferred to large-scale kinetic energy. The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales, followed by that in the Leith closure. Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure. 4) The characteristic length scale L and the dimensionless parameter D in the Leith closure are inherently coupled. The RPETCR is inversely proportional to the product of D and L. When the product of D and L is constant, both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith

  4. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  5. Uranium ISR Mine Closure — General Concepts and Model-Based Simulation of Natural Attenuation for South-Australian Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Jeuken, B.; Märten, H.; Woods, P., E-mail: horst.maerten@heathgate.com.au [Heathgate Resources Pty. Ltd. (Heathgate), Adelaide (Australia); Kalka, H.; Nicolai, J. [Umwelt- und Ingenieurtechnik GmbH Dresden (UIT), Dresden (Germany)

    2014-05-15

    Heathgate has demonstrated the effect of natural attenuation (NA) in post in-situ recovery (ISR) aquifer regions during the operation of the Beverley mine since 2001. Enhanced natural attenuation (ENA) has been considered as the key component of the mine closure concept for the new Beverley Four Mile (BFM) project, complemented by an extensive monitoring program. Data from batch and column tests for BFM core samples was used to calibrate a reactive transport model, whose application in conjunction with the hydrological modelling of the BFM aquifer has shown that NA will result in the restoration of the aquifer in time. ENA within a staged mine development program under the site-specific circumstances is discussed. (author)

  6. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  7. When Supermassive Black Holes Wander

    Science.gov (United States)

    Kohler, Susanna

    2018-05-01

    Are supermassive black holes found only at the centers of galaxies? Definitely not, according to a new study in fact, galaxies like the Milky Way may harbor several such monsters wandering through their midst.Collecting Black Holes Through MergersIts generally believed that galaxies are built up hierarchically, growing in size through repeated mergers over time. Each galaxy in a major merger likely hosts a supermassive black hole a black hole of millions to billions of times the mass of the Sun at its center. When a pair of galaxies merges, their supermassive black holes will often sink to the center of the merger via a process known as dynamical friction. There the supermassive black holes themselves will eventually merge in a burst of gravitational waves.Spatial distribution and velocities of wandering supermassive black holes in three of the authors simulated galaxies, shown in edge-on (left) and face-on (right) views of the galaxy disks. Click for a closer look. [Tremmel et al. 2018]But if a galaxy the size of the Milky Way was built through a history of many major galactic mergers, are we sure that all its accumulated supermassive black holes eventually merged at the galactic center? A new study suggests that some of these giants might have escaped such a fate and they now wander unseen on wide orbits through their galaxies.Black Holes in an Evolving UniverseLed by Michael Tremmel (Yale Center for Astronomy Astrophysics), a team of scientists has used data from a large-scale cosmological simulation, Romulus25, to explore the possibility of wandering supermassive black holes. The Romulus simulations are uniquely suited to track the formation and subsequent orbital motion of supermassive black holes as galactic halos are built up through mergers over the history of the universe.From these simulations, Tremmel and collaborators find an end total of 316 supermassive black holes residing within the bounds of 26 Milky-Way-mass halos. Of these, roughly a third are

  8. Application of a hybrid breakup model for the spray simulation of a multi-hole injector used for a DISI gasoline engine

    International Nuclear Information System (INIS)

    Li, Zhi-Hua; He, Bang-Quan; Zhao, Hua

    2014-01-01

    A hybrid atomization and breakup model was developed for the simulation of the fuel injection processes of multi-hole injectors for direct injection spark ignition (DISI) gasoline engines. In modeling primary breakup, a competition between the Huh–Gosman and Kelvin–Helmholtz (KH) breakup mechanisms was adopted. In addition to the two breakup mechanisms above, the Rayleigh–Taylor (RT) model was selected as a third competing mechanism in simulating secondary breakup. The hybrid model was implemented in the Star-CD software to simulate the effect of the background and injection pressures on the breakup processes of gasoline jets in a constant volume vessel, and on the mixture stratification of a wall-guided DISI gasoline engine with a newly-designed cavity in the piston. Results indicate that a higher background pressure intensifies the aerodynamically induced breakup along the tip of spray although it tends to reduce the overall breakup of spray. The spray atomization enhanced by increasing injection pressures is more pronounced at elevated background pressures. With the retard of fuel injection timing, the inhomogeneity of mixture increases in the DISI gasoline engine. Double injection with elevated second injection pressure can reduce the overall inhomogeneity of the mixture and effectively direct the mixture towards the spark plug. - Highlights: •A hybrid breakup model was developed to simulate injection process in a DISI engine. •Higher fuel injection pressure enhances breakup and evaporation at the spray tip. •Single fuel injection leads to a narrow spark timing range. •Two-stage fuel injection improves the homogeneity of the mixture. •The second injection with higher fuel pressure decreases over-rich mixture

  9. Physical modeling and numerical simulation of V-die forging ingot with central void

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels

    2014-01-01

    Numerical simulation and physical modeling performed on small-scale ingots made from pure lead, having a hole drilled through their centerline to mimic porosity, are utilized to characterize the deformation mechanics of a single open die forging compression stage and to identify the influence...... of the lower V-die angle on porosity closure and forging load requirements of large cast ingots. Results show that a lower V-die angle of 120 provides the best closure of centerline porosity without demanding the highest forging loads or developing unreasonably asymmetric shapes that may create difficulties...... in multi-stage open die forging procedures....

  10. Comparison of high-accuracy numerical simulations of black-hole binaries with stationary-phase post-Newtonian template waveforms for initial and advanced LIGO

    International Nuclear Information System (INIS)

    Boyle, Michael; Brown, Duncan A; Pekowsky, Larne

    2009-01-01

    We study the effectiveness of stationary-phase approximated post-Newtonian waveforms currently used by ground-based gravitational-wave detectors to search for the coalescence of binary black holes by comparing them to an accurate waveform obtained from numerical simulation of an equal-mass non-spinning binary black hole inspiral, merger and ringdown. We perform this study for the initial- and advanced-LIGO detectors. We find that overlaps between the templates and signal can be improved by integrating the match filter to higher frequencies than used currently. We propose simple analytic frequency cutoffs for both initial and advanced LIGO, which achieve nearly optimal matches, and can easily be extended to unequal-mass, spinning systems. We also find that templates that include terms in the phase evolution up to 3.5 post-Newtonian (pN) order are nearly always better, and rarely significantly worse, than 2.0 pN templates currently in use. For initial LIGO we recommend a strategy using templates that include a recently introduced pseudo-4.0 pN term in the low-mass (M ≤ 35 M o-dot ) region, and 3.5 pN templates allowing unphysical values of the symmetric reduced mass η above this. This strategy always achieves overlaps within 0.3% of the optimum, for the data used here. For advanced LIGO we recommend a strategy using 3.5 pN templates up to M = 12 M o-dot , 2.0 pN templates up to M = 21 M o-dot , pseudo-4.0 pN templates up to 65 M o-dot , and 3.5 pN templates with unphysical η for higher masses. This strategy always achieves overlaps within 0.7% of the optimum for advanced LIGO.

  11. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  12. Tubular closure mechanism

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1982-01-01

    This invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holder used in nuclear reactors. The closure mechanism is composed of a latching member which includes a generally circular chamber with a plurality of elongated latches depending therefrom. The latching member circumscribes part of an actuator member which is disposed within the latching member so as to be axially movable. The axial movement of the actuator actuates positioning of the latches between positions in which the latches are locked and secured within the actuator member. Means, capable of being remotely manipulated, are provided to move the actuator in order to position the latches and load the articles within the tube

  13. Tank closure reducing grout

    International Nuclear Information System (INIS)

    Caldwell, T.B.

    1997-01-01

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr 90 , the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel

  14. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  15. Modeling the bacterial photosynthetic reaction center. VII. Full simulation of the intervalence hole-transfer absorption spectrum of the special-pair radical cation

    International Nuclear Information System (INIS)

    Reimers, Jeffrey R.; Hush, Noel S.

    2003-01-01

    ENDOR data suggests that the special-pair radical cation P + from Rhodobacter sphaeroides is 68% localized on P L while simple interpretations of FTIR difference spectra based primarily on intensity information, but to some extent also bandwidths, suggest near-complete charge localization. We provide a complete a priori spectral simulation of the spectrum of P + in the range 0-5000 cm-1, including explicit treatment of the high-resolution vibrational transitions, the low-resolution hole-transfer absorption centered at 2700 cm-1, and the resonance with the SHOMO to HOMO transition at 2200 cm-1 that resolve the issues concerning the nature of P + . The description of the vibrational aspects of the problem were taken from results of previous density-functional calculations, and a qualitatively realistic large number of vibrational modes (50 antisymmetric and 18-20 symmetric) were included. To facilitate the calculations, a new representation of the vibronic-coupling Hamiltonian for intervalence hole-transfer or electron-transfer problems is introduced, allowing the spectrum to be simulated efficiently using only up to 4x10 9 vibronic basis functions and leading also to new general analytical relationships. Observed spectra are fitted using seven adjustable chemical parameters describing the interactions between the four electronic states involved. The resulting fits provide unique descriptions of the parameters that are insensitive to the source of the observed spectrum or the nature of the symmetric modes used in the model, and all fitted parameters are found to be close in value to those from independent estimates. We determine the electronic coupling, antisymmetric-mode reorganization energy, and redox asymmetry to be J=0.126±0.002 eV, λ=0.139±0.003 eV, and E 0 =0.069±0.002 eV, respectively. Our description forms the basis of understanding for a wide range of other properties observed for Rhodobacter sphaeroides mutants, as well as the properties of the

  16. Professional Closure Beyond State Authorization

    Directory of Open Access Journals (Sweden)

    Gitte Sommer Harrits

    2014-03-01

    Full Text Available For decades, the Weberian approach to the study of professions has been strong, emphasizing state authorization and market monopolies as constituting what is considered a profession. Originally, however, the Weberian conception of closure, or the ways in which a profession is constituted and made separate, was broader. This article suggests a revision of the closure concept, integrating insights from Pierre Bourdieu, and conceptualizing professional closure as the intersection of social, symbolic and legal closure. Based on this revision, this article demonstrates how to apply such a concept in empirical studies. This is done by exploring social, symbolic and legal closure across sixteen professional degree programs. The analyses show a tendency for some overlap between different forms of closure, with a somewhat divergent pattern for legal closure. Results support the argument that we need to study these processes as an intersection of different sources of closure, including capital, lifestyles and discourse

  17. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  18. MNC Subsidiary Closures

    DEFF Research Database (Denmark)

    Sofka, Wolfgang; Torres Preto, Miguel; de Faria, Pedro

    2014-01-01

    We investigate the consequences of MNC subsidiary closures for employees who lose their jobs. In particular, we examine the extent to which the human capital that these employees acquired while employed by the MNC influences the wages they receive in their new jobs. We propose an employee...

  19. Friction or Closure

    DEFF Research Database (Denmark)

    Lundahl, Mikela

    2014-01-01

    Heritage is a discourse that aims at closure. It fixates the narrative of the past through the celebration of specific material (or sometimes immaterial non-) ob-jects. It organizes temporality and construct events and freezes time. How does this unfold in the case of the UNESCO World Heritage si...

  20. Mail Office annual closure

    CERN Multimedia

    2013-01-01

    On the occasion of the annual closure of CERN, there will be no mail distributed on Friday 20 December 2013 but mail will be collected in the morning. Nevertheless, you will still be able to bring your outgoing mail to Building 555-R-002 until 12 noon.  

  1. Black holes escaping from domain walls

    International Nuclear Information System (INIS)

    Flachi, Antonino; Sasaki, Misao; Pujolas, Oriol; Tanaka, Takahiro

    2006-01-01

    Previous studies concerning the interaction of branes and black holes suggested that a small black hole intersecting a brane may escape via a mechanism of reconnection. Here we consider this problem by studying the interaction of a small black hole and a domain wall composed of a scalar field and simulate the evolution of this system when the black hole acquires an initial recoil velocity. We test and confirm previous results, however, unlike the cases previously studied, in the more general set-up considered here, we are able to follow the evolution of the system also during the separation, and completely illustrate how the escape of the black hole takes place

  2. Ring closure in actin polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Supurna, E-mail: supurna@rri.res.in [Raman Research Institute, Bangalore 560080 (India); Chattopadhyay, Sebanti [Doon University, Dehradun 248001 (India)

    2017-03-18

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers. - Highlights: • Ring closure of biopolymers. • Worm like chain model. • Predictions for experiments.

  3. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  4. CIRSE Vascular Closure Device Registry

    NARCIS (Netherlands)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. The CIRSE registry of closure devices

  5. Crack closure, a literature study

    Science.gov (United States)

    Holmgren, M.

    1993-08-01

    In this report crack closure is treated. The state of the art is reviewed. Different empirical formulas for determining the crack closure are compared with each other, and their benefits are discussed. Experimental techniques for determining the crack closure stress are discussed, and some results from fatigue tests are also reported. Experimental data from the literature are reported.

  6. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole

    Science.gov (United States)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya; Thielemann, Friedrich-Karl

    2018-06-01

    We study the final fate of a very massive star by performing full general relativistic (GR), three-dimensional (3D) simulation with three-flavour multi-energy neutrino transport. Utilizing a 70 solar mass zero-metallicity progenitor, we self-consistently follow the radiation-hydrodynamics from the onset of gravitational core-collapse until the second collapse of the proto-neutron star (PNS), leading to black hole (BH) formation. Our results show that the BH formation occurs at a post-bounce time of Tpb ˜ 300 ms for the 70 M⊙ star. This is significantly earlier than those in the literature where lower mass progenitors were employed. At a few ˜10 ms before BH formation, we find that the stalled bounce shock is revived by intense neutrino heating from the very hot PNS, which is aided by violent convection behind the shock. In the context of 3D-GR core-collapse modelling with multi-energy neutrino transport, our numerical results present the first evidence to validate a fallback BH formation scenario of the 70 M⊙ star.

  7. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole

    Science.gov (United States)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya; Thielemann, Friedrich-Karl

    2018-04-01

    We study the final fate of a very massive star by performing full general relativistic (GR), three-dimensional (3D) simulation with three-flavor multi-energy neutrino transport. Utilizing a 70 solar mass zero metallicity progenitor, we self-consistently follow the radiation-hydrodynamics from the onset of gravitational core-collapse until the second collapse of the proto-neutron star (PNS), leading to black hole (BH) formation. Our results show that the BH formation occurs at a post-bounce time of Tpb ˜ 300 ms for the 70 M⊙ star. This is significantly earlier than those in the literature where lower mass progenitors were employed. At a few ˜10 ms before BH formation, we find that the stalled bounce shock is revived by intense neutrino heating from the very hot PNS, which is aided by violent convection behind the shock. In the context of 3D-GR core-collapse modeling with multi-energy neutrino transport, our numerical results present the first evidence to validate a fallback BH formation scenario of the 70M⊙ star.

  8. Hamiltonian closures in fluid models for plasmas

    Science.gov (United States)

    Tassi, Emanuele

    2017-11-01

    This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and

  9. Summer season | Cafeteria closures

    CERN Multimedia

    2013-01-01

    Please note the following cafeteria closures over the summer season: Bldg. 54 closed from 29/07/2013 to 06/09/2013. Bldg. 13: closed from 13/07/2013 to 06/09/2013. Restaurant No. 2, table service (brasserie and restaurant): closed from 01/08/2013 to 06/09/2013. Bldg. 864: closed from 29/07/2013 to 06/09/2013. Bldg. 865: closed from 29/07/2013 to 06/09/2013.

  10. Plasma electron hole kinematics. I. Momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, I. H.; Zhou, C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-08-15

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  11. Urethrovaginal fistula closure.

    Science.gov (United States)

    Clifton, Marisa M; Goldman, Howard B

    2017-01-01

    In the developed world, urethrovaginal fistulas are most the likely the result of iatrogenic injury. These fistulas are quite rare. Proper surgical repair requires careful dissection and tension-free closure. The objective of this video is to demonstrate the identification and surgical correction of an urethrovaginal fistula. The case presented is of a 59-year-old woman with a history of pelvic organ prolapse and symptomatic stress urinary incontinence who underwent vaginal hysterectomy, anterior colporrhaphy, posterior colporrhaphy, and synthetic sling placement. Postoperatively, she developed a mesh extrusion and underwent sling excision. After removal of her synthetic sling, she began to experience continuous urinary incontinence. Physical examination and cystourethroscopy demonstrated an urethrovaginal fistula at the midurethra. Options were discussed and the patient wished to undergo transvaginal fistula repair. The urethrovaginal fistula was intubated with a Foley catheter. The fistula tract was isolated and removed. The urethra was then closed with multiple tension-free layers. This video demonstrates several techniques for identifying and subsequently repairing an urethrovaginal fistula. Additionally, it demonstrates the importance of tension-free closure. Urethrovaginal fistulas are rare. They should be repaired with careful dissection and tension-free closure.

  12. Effect of turbulent model closure and type of inlet boundary condition on a Large Eddy Simulation of a non-reacting jet with co-flow stream

    International Nuclear Information System (INIS)

    Payri, Raul; López, J. Javier; Martí-Aldaraví, Pedro; Giraldo, Jhoan S.

    2016-01-01

    Highlights: • LES in a non-reacting jet with co-flow is performed with OpenFoam. • Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are compared. • A turbulent pipe is used to generate and map coherent inlet turbulence structure. • Fluctuating inlet boundary condition requires much less computational cost. - Abstract: In this paper, the behavior and turbulence structure of a non-reacting jet with a co-flow stream is described by means of Large Eddy Simulations (LES) carried out with the computational tool OpenFoam. In order to study the influence of the sub-grid scale (SGS) model on the main flow statistics, Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are used to model the smallest scales involved in the turbulence of the jet. The impact of cell size and turbulent inlet boundary condition in resulting velocity profiles is analyzed as well. Four different tasks have been performed to accomplish these objectives. Firstly, the simulation of a turbulent pipe, which is necessary to generate and map coherent turbulence structure into the inlet of the non-reacting jet domain. Secondly, a structured mesh based on hexahedrons has been built for the jet and its co-flow. The third task consists on performing four different simulations. In those, mapping statistics from the turbulent pipe is compared with the use of fluctuating inlet boundary condition available in OpenFoam; OEE and SMAG approaches are contrasted; and the effect of changing cell size is investigated. Finally, as forth task, the obtained results are compared with experimental data. As main conclusions of this comparison, it has been proved that the fluctuating boundary condition requires much less computational cost, but some inaccuracies were found close to the nozzle. Also, both SGS models are capable to simulate this kind of jets with a co-flow stream with exactitude.

  13. Semiclassical Approach to Black Hole Evaporation

    OpenAIRE

    Lowe, David A.

    1992-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two dimensional black hole models. The first is the original CGHS model, the second is another two dimensional dilaton-gravity model, but with properties much closer to physics in the real, four dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are fou...

  14. Long-term Follow-up and Outcomes in Traumatic Macular Holes.

    Science.gov (United States)

    Miller, John B; Yonekawa, Yoshihiro; Eliott, Dean; Kim, Ivana K; Kim, Leo A; Loewenstein, John I; Sobrin, Lucia; Young, Lucy H; Mukai, Shizuo; Vavvas, Demetrios G

    2015-12-01

    To review presenting characteristics, clinical course, and long-term visual and anatomic outcomes of patients with traumatic macular holes at a tertiary referral center. Retrospective case series. Twenty-eight consecutive patients with traumatic macular holes at a single tertiary referral center were reviewed. In addition to visual acuities and treatments throughout the clinical course, specific dimensions of the macular hole, including diameters, height, configuration, shape, and the presence of a cuff of fluid, were examined using spectral-domain optical coherence tomography (OCT). Twenty-eight patients were identified with a mean initial visual acuity (VA) of logMAR 1.3 (20/400) and a mean follow-up of 2.2 years. Eleven holes (39.3%) closed spontaneously in median 5.7 weeks. Eleven underwent vitrectomy with a median time to intervention of 35.1 weeks. Median time to surgery for the 5 eyes with successful hole closure was 11.0 weeks vs 56.3 weeks for the 6 eyes that failed to close (P = .02). VA improved in closed holes (P holes that did not close (P = .22). There was no relation between initial OCT dimensions and final hole closure status, although there was a trend, which did not reach statistical significance, toward small dimensions for those that closed spontaneously. A fairly high spontaneous closure rate was observed, with a trend toward smaller OCT dimensions. We found no relationship between hole closure and the OCT characteristics of the hole. Surgical intervention was less successful at hole closure when elected after 3 months. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations

    Science.gov (United States)

    Dubois, Yohan; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2012-03-01

    We develop a subgrid model for the growth of supermassive black holes (BHs) and their associated active galactic nucleus (AGN) feedback in hydrodynamical cosmological simulations. This model transposes previous attempts to describe BH accretion and AGN feedback with the smoothed particle hydrodynamics (SPH) technique to the adaptive mesh refinement framework. It also furthers their development by implementing a new jet-like outflow treatment of the AGN feedback which we combine with the heating mode traditionally used in the SPH approach. Thus, our approach allows one to test the robustness of the conclusions derived from simulating the impact of self-regulated AGN feedback on galaxy formation vis-à-vis the numerical method. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates on to the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates which not only deposits energy, but also deposits mass and momentum on the grid. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the co-evolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be able to efficiently prevent the accumulation of and/or expel cold gas out of haloes/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion

  16. Artificial black holes

    CERN Document Server

    Visser, Matt; Volovik, Grigory E

    2009-01-01

    Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.

  17. Nevada Test Site closure program

    International Nuclear Information System (INIS)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use

  18. Optimal management of idiopathic macular holes.

    Science.gov (United States)

    Madi, Haifa A; Masri, Ibrahim; Steel, David H

    2016-01-01

    This review evaluates the current surgical options for the management of idiopathic macular holes (IMHs), including vitrectomy, ocriplasmin (OCP), and expansile gas use, and discusses key background information to inform the choice of treatment. An evidence-based approach to selecting the best treatment option for the individual patient based on IMH characteristics and patient-specific factors is suggested. For holes without vitreomacular attachment (VMA), vitrectomy is the only option with three key surgical variables: whether to peel the inner limiting membrane (ILM), the type of tamponade agent to be used, and the requirement for postoperative face-down posturing. There is a general consensus that ILM peeling improves primary anatomical hole closure rate; however, in small holes (holes, but large (>400 µm) and chronic holes (>1-year history) are usually treated with long-acting gas and posturing. Several studies on posturing and gas choice were carried out in combination with ILM peeling, which may also influence the gas and posturing requirement. Combined phacovitrectomy appears to offer more rapid visual recovery without affecting the long-term outcomes of vitrectomy for IMH. OCP is licensed for use in patients with small- or medium-sized holes and VMA. A greater success rate in using OCP has been reported in smaller holes, but further predictive factors for its success are needed to refine its use. It is important to counsel patients realistically regarding the rates of success with intravitreal OCP and its potential complications. Expansile gas can be considered as a further option in small holes with VMA; however, larger studies are required to provide guidance on its use.

  19. MNC Subsidiary Closure

    DEFF Research Database (Denmark)

    de Faria, Pedro; Sofka, Wolfgang; Torres Preto, Miguel

    2013-01-01

    We investigate the consequences of MNC subsidiary closures for employees who lose their jobs. We ask to what degree the foreign knowledge that they were exposed to is valued in their new job. We argue theoretically that this foreign knowledge is both valuable and not readily available in the host...... country but is also distant and therefore difficult to absorb. We predict an inverse u-shaped relationship between the exposure to foreign knowledge and the salary in the new job. We empirically support our predictions for a sample of almost 140,000 affected employees in Portugal from 2002 to 2009....

  20. ATLAS: Black hole production and decay

    CERN Multimedia

    2004-01-01

    This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was produced in the proton-proton collision. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.

  1. Non-destructive vacuum decay method for pre-filled syringe closure integrity testing compared with dye ingress testing and high-voltage leak detection.

    Science.gov (United States)

    Simonetti, Andrea; Amari, Filippo

    2015-01-01

    In reaction to the limitations of the traditional sterility test methods, in 2008, the U.S. Food and Drug Administration issued the guidance "Container and Closure System Integrity Testing in Lieu of Sterility Testing as a Component of the Stability Protocol for Sterile Products" encouraging sterile drug manufacturers to use properly validated physical methods, apart from conventional microbial challenge testing, to confirm container closure integrity as part of the stability protocol. The case study presented in this article investigated the capability of four container closure integrity testing methods to detect simulated defects of different sizes and types on glass syringes, prefilled both with drug product intended for parenteral administration and sterile water. The drug product was a flu vaccine (Agrippal, Novartis Vaccines, Siena, Italy). Vacuum decay, pharmacopoeial dye ingress test, Novartis specific dye ingress test, and high-voltage leak detection were, in succession, the methods involved in the comparative studies. The case study execution was preceded by the preparation of two independent sets of reference prefilled syringes, classified, respectively, as examples of conforming to closure integrity requirements (negative controls) and as defective (positive controls). Positive controls were, in turn, split in six groups, three of with holes laser-drilled through the prefilled syringe glass barrel, while the other three with capillary tubes embedded in the prefilled syringe plunger. These reference populations were then investigated by means of validated equipment used for container closure integrity testing of prefilled syringe commercial production; data were collected and analyzed to determine the detection rate and the percentage of false results. Results showed that the vacuum decay method had the highest performance in terms of detection sensitivity and also ensured the best reliability and repeatability of measurements. An innovative technical

  2. Chernobyl: closure by 2000

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Discussions on the future of the Chernobyl nuclear plant between the Ukrainian government, the Group of Seven Industrial nations (GT) and the European Union (EU) are summarized. At the G7 meeting, a timetable for the closure of the entire station by 2000 was presented by Ukrainian officials. The timetable depends on financial commitments from Western governments. Without these, the project would take 10 to 15 years. Following this meeting, which took place on 16-17th May 1995. EU finance ministers authorized release of a ECU 85 million loan. On 23 May, the European Parliament's Committee on Research, Technology and Energy held a public hearing on the Chernobyl station. The primary topic was a feasibility study on the clean-up of Chernobyl 4 and plans for the sarcophagus. Other matters discussed included the effect of the delays and indecision in settling the plants's future. Safety improvements being made to other RBMKs were not being carried out at Chernobyl because of the expected closure. The replacement of the power now supplied to the Ukraine by the Chernobyl reactors is also an issue. The solution favoured by the Ukraine is to being on-line three VVER-1000s that are currently close to completion. Western governments find this solution difficult to accept, however. (UK)

  3. Application of the order-of-magnitude analysis to a fourth-order RANS closure for simulating a 2D boundary layer

    Science.gov (United States)

    Poroseva, Svetlana V.

    2013-11-01

    Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.

  4. Tight closure and vanishing theorems

    International Nuclear Information System (INIS)

    Smith, K.E.

    2001-01-01

    Tight closure has become a thriving branch of commutative algebra since it was first introduced by Mel Hochster and Craig Huneke in 1986. Over the past few years, it has become increasingly clear that tight closure has deep connections with complex algebraic geometry as well, especially with those areas of algebraic geometry where vanishing theorems play a starring role. The purpose of these lectures is to introduce tight closure and to explain some of these connections with algebraic geometry. Tight closure is basically a technique for harnessing the power of the Frobenius map. The use of the Frobenius map to prove theorems about complex algebraic varieties is a familiar technique in algebraic geometry, so it should perhaps come as no surprise that tight closure is applicable to algebraic geometry. On the other hand, it seems that so far we are only seeing the tip of a large and very beautiful iceberg in terms of tight closure's interpretation and applications to algebraic geometry. Interestingly, although tight closure is a 'characteristic p' tool, many of the problems where tight closure has proved useful have also yielded to analytic (L2) techniques. Despite some striking parallels, there had been no specific result directly linking tight closure and L∼ techniques. Recently, however, the equivalence of an ideal central to the theory of tight closure was shown to be equivalent to a certain 'multiplier ideal' first defined using L2 methods. Presumably, deeper connections will continue to emerge. There are two main types of problems for which tight closure has been helpful: in identifying nice structure and in establishing uniform behavior. The original algebraic applications of tight closure include, for example, a quick proof of the Hochster-Roberts theorem on the Cohen-Macaulayness of rings of invariants, and also a refined version of the Brianqon-Skoda theorem on the uniform behaviour of integral closures of powers of ideals. More recent, geometric

  5. Merging Black Holes and Gravitational Waves

    Science.gov (United States)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  6. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  7. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  8. Interaction between Electron Holes in a Strongly Magnetized Plasma

    DEFF Research Database (Denmark)

    Lynov, Jens-Peter; Michelsen, Poul; Pécseli, Hans

    1980-01-01

    The interaction between electron holes in a strongly magnetized, plasma-filled waveguide is investigated by means of computer simulation. Two holes may or may not coalesce, depending on their amplitudes and velocities. The interaction between holes and Trivelpiece-Gould solitons is demonstrated...

  9. Formation of black hole and emission of gravitational waves.

    Science.gov (United States)

    Nakamura, Takashi

    2006-12-01

    Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed.

  10. Tubular closure mechanism

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1981-01-01

    An apparatus is provided for closing the bore of a tube and releasably securing articles within the tube under longitudinal load. A latching member has a cylindrical section and several circumferentially-spaced elongated latches hanging down from one end of the cylinder. An elongated actuator has integral cam and spline and is partly located within the latch with the cam radially contacting the latches and the spline projecting into the circumferential spaces between the latches. The actuator is axially movable between a position in which the latches are locked to the tube walls and a position in which the latches are secured from contact with the tube walls. Means are provided for axially moving the actuator such that the cam positions the latches; and means are also provided for engaging the articles within the tube. The closure is particularly applicable to tubular irradiation surveillance specimen assembly holders used in reactors

  11. Airport Movement Area Closure Planner, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR research develops an automation tool improving temporary and permanent runway closure management. The Movement Area Closure Planner (MACP) provides airport...

  12. Obturation and holding back device for a leakproof closure plug for a steam generator tube

    International Nuclear Information System (INIS)

    Lenoble, R.

    1991-01-01

    This leak proof closure plug has a bolt with at least a transversal aperture perpendicular to its axis. In the aperture is jammed a bracking piece. When screwing the bolt in the expander, the extremity part of the bracking piece is jammed in the tapped hole of the expander [fr

  13. Influence of heat flow on drift closure during Climax granite spent-fuel test: measurements and calculations

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Yow, J.L. Jr.; Montan, D.N.

    1982-01-01

    Measurements of drift closure caused by the thermal load have been made routinely during the Spent Fuel Test in Climax granite since about six weeks after emplacement of the fuel. Horizontal and vertical closure was measured with a manually operated tape extensometer at various locations along the lengths of the drifts. Average closures ranged from 0 to 0.6 mm, horizontal and vertical, out to about 2.2 years since the start of the test. At the same time, displacements from the thermal loads were measured with rod extensometers emplaced to measure relative displacements between hole collars and anchor points in holes drilled from two parallel heater drifts. These data are compared with thermo-elastic finite element calculations which utilized measured properties of the Climax granite. The calculations show that more than half of the closures occur between fuel installation and the first closure measurement. The comparisons show that the results track each other, in that where closure followed by dilation is measured, the calculations also show this effect. The agreement is excellent, considering the averaged measured closures remain within 30% of the total calculated drift closures and the extremely small magnitude of the relative displacements (0.5 mm), measured or calculated

  14. Positive Catch & Economic Benefits of Periodic Octopus Fishery Closures: Do Effective, Narrowly Targeted Actions 'Catalyze' Broader Management?

    Science.gov (United States)

    Oliver, Thomas A; Oleson, Kirsten L L; Ratsimbazafy, Hajanaina; Raberinary, Daniel; Benbow, Sophie; Harris, Alasdair

    2015-01-01

    Eight years of octopus fishery records from southwest Madagascar reveal significant positive impacts from 36 periodic closures on: (a) fishery catches and (b) village fishery income, such that (c) economic benefits from increased landings outweigh costs of foregone catch. Closures covered ~20% of a village's fished area and lasted 2-7 months. Octopus landings and catch per unit effort (CPUE) significantly increased in the 30 days following a closure's reopening, relative to the 30 days before a closure (landings: +718%, poctopus fishery income doubled in the 30 days after a closure, relative to 30 days before (+132%, p<0.001, n = 28). Control villages not implementing a closure showed no increase in income after "no ban" closures and modest increases after "ban" closures. Villages did not show a significant decline in income during closure events. Landings in closure sites generated more revenue than simulated landings assuming continued open-access fishing at that site (27/36 show positive net earnings; mean +$305/closure; mean +57.7% monthly). Benefits accrued faster than local fishers' time preferences during 17-27 of the 36 closures. High reported rates of illegal fishing during closures correlated with poor economic performance. We discuss the implications of our findings for broader co-management arrangements, particularly for catalyzing more comprehensive management.

  15. Evaluation of Two Energy Balance Closure Parametrizations

    Science.gov (United States)

    Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias

    2014-05-01

    A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.

  16. Closure report for N Reactor

    International Nuclear Information System (INIS)

    1994-01-01

    This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule

  17. Closure report for N Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.

  18. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  19. Efficacy of autologous platelets in macular hole surgery

    Directory of Open Access Journals (Sweden)

    Konstantinidis A

    2013-04-01

    Full Text Available Aristeidis Konstantinidis,1,2 Mark Hero,2 Panagiotis Nanos,1 Georgios D Panos1,3 1Department of Ophthalmology, University Hospital of Alexandroupolis, Alexandroupolis, Greece; 2Opthalmology Department, University Hospital Coventry and Warwickshire, Coventry, UK; 3Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland Abstract: The introduction of optical coherence tomography has allowed accurate measurement of the size of macular holes. A retrospective consecutive review was performed of 21 patients undergoing macular hole repair with vitrectomy, gas tamponade, and autologous platelet injection and we assessed the effect of macular hole parameters on anatomic and functional outcomes. We looked at the demographic features, final visual outcome, and anatomical closure. Twenty-one patients were included in the study. They underwent routine vitrectomy with gas tamponade (C3F8 and injection of autologous platelets. All patients were advised to maintain a facedown posture for 2 weeks. Anatomical closure was confirmed in all cases and 20 out of 21 of patients had improved postoperative visual acuity by two or more lines. In our series, the macular hole dimensions did not have much effect on the final results. The use of autologous platelets and strict facedown posture seems to be the deciding factor in good anatomical and visual outcome irrespective of macular hole dimensions. Keywords: macular hole, platelets, vitrectomy

  20. Dynamics of Coronal Hole Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F. [Universities Space Research Association, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2017-03-10

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  1. Closure and Sealing Design Calculation

    International Nuclear Information System (INIS)

    T. Lahnalampi; J. Case

    2005-01-01

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not

  2. Self-testing security sensor for monitoring closure of vault doors and the like

    International Nuclear Information System (INIS)

    Cawthorne, D.C.

    1997-01-01

    A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member. 5 figs

  3. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    large values of Ф, black holes do form and for small values the scalar field ... on the near side of the ridge ultimately evolve to form black holes while those configu- ... The inset shows a bird's eye view looking down on the saddle point.

  4. Does Internal Limiting Membrane Peeling in Macular Hole Surgery Improve Reading Vision?

    Directory of Open Access Journals (Sweden)

    Das Taraprasad

    2003-01-01

    Full Text Available Purpose: To document the effect of internal limiting membrane (ILM peeling in macular hole closure and reading vision. Method: Fifty-four patients with idiopathic and traumatic macular hole underwent standard vitreous surgery and received either ILM peeling (n= 25 or no ILM peeling (n= 29. The hole closure, and Snellen acuity (distant and near were recorded 12 weeks after surgery and statistically analysed. Results: The macular hole closure rate was 96% (24 of 25 and 72.4% (21 of 29 with and without ILM peeling respectively (P = 0.028. Distant vision improvement of two or more lines was recorded in 64% (16 of 25 and 51.7% (15 of 29 eyes (P = 0.417 with and without ILM peeling respectively. Near vision improvement of two or more lines was seen in 68% (17 of 25 and 41.2% (12 of 29 eyes (P = 0.048 with and without ILM peeling respectively. Conclusion: ILM peeling in macular hole surgery improves the macular hole closure rate and reading vision.

  5. Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation

    Science.gov (United States)

    Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner

    2017-11-01

    Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.

  6. Autologous transplantation of the internal limiting membrane for refractory macular holes.

    Science.gov (United States)

    Morizane, Yuki; Shiraga, Fumio; Kimura, Shuhei; Hosokawa, Mio; Shiode, Yusuke; Kawata, Tetsuhiro; Hosogi, Mika; Shirakata, Yukari; Okanouchi, Toshio

    2014-04-01

    To determine the effectiveness of autologous transplantation of the internal limiting membrane (ILM) for refractory macular holes. Prospective, interventional case series. Ten eyes of 10 consecutive patients who underwent autologous transplantation of the ILM for the treatment of refractory macular holes were studied. The primary diseases in these patients were large idiopathic macular holes that had existed for more than 1 year (4 eyes), a traumatic macular hole (1 eye), myopic foveoschisis (2 eyes), foveoschisis resulting from pit-macular syndrome (2 eyes), and proliferative diabetic retinopathy (1 eye). Apart from the 5 eyes with idiopathic or traumatic macular holes, macular holes developed in the other 5 eyes after initial vitrectomies with ILM removal. In all eyes, regular macular hole surgery failed to achieve closure. The main outcome measures used in this study were macular hole closure and best-corrected visual acuity (BCVA). Macular holes were closed successfully in 9 eyes (90%) after autologous transplantation of the ILM. The postoperative BCVAs were significantly better than the preoperative BCVAs (P = .007, paired t test). Postoperative BCVAs improved by more than 0.2 logarithm of the minimal angle of resolution units in 8 eyes (80%) and were unchanged in 2 eyes (20%). Although this is a pilot study, the results suggest that autologous transplantation of the ILM may contribute to improved anatomic and visual outcomes in the treatment of refractory macular holes and may warrant further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Black hole accretion: the quasar powerhouse

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A program is described which calculates the effects of material falling into the curved space-time surrounding a rotation black hole. The authors have developed a two-dimensional, general-relativistic hydrodynamics code to simulate fluid flow in the gravitational field of a rotating black hole. Such calculations represent models that have been proposed for the energy sources of both quasars and jets from radiogalaxies. In each case, the black hole that powers the quasar or jet would have a mass of about 100 million times the mass of the sun. The black hole would be located in the center of a galaxy whose total mass is 1000 time greater than the black hole mass. (SC)

  8. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  9. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  10. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  11. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  12. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, Ian G; Shiiki, N; Winstanley, E

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  13. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  14. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  15. Value of internal limiting membrane peeling in surgery for idiopathic macular hole and the correlation between function and retinal morphology

    DEFF Research Database (Denmark)

    Christensen, Ulrik Correll

    2009-01-01

    conducted a randomized clinical trial including 78 pseudophakic patients with idiopathic macular hole stages 2 and 3. Patients were randomly assigned to macular hole surgery consisting of (i) vitrectomy alone without instrumental retinal surface contact (non-peeling), (ii) vitrectomy plus 0.05% isotonic ICG...... rate than surgery without ILM peeling (95% versus 45%). The overall functional results confirm that surgery for macular hole generally leads to favourable visual results, with two-thirds of eyes regaining reading vision (>or=20/40). Macular hole surgery can be considered a safe procedure with a low...... incidence of sight-threatening adverse events; the retinal detachment rate was 2.2%. Visual outcomes in eyes with primary hole closure were not significantly different between the intervention groups; however, for the stage 2 subgroup with primary macular hole closure, there was a trend towards a better...

  16. Positive Catch & Economic Benefits of Periodic Octopus Fishery Closures: Do Effective, Narrowly Targeted Actions ‘Catalyze’ Broader Management?

    Science.gov (United States)

    Oliver, Thomas A.; Oleson, Kirsten L. L.; Ratsimbazafy, Hajanaina; Raberinary, Daniel; Benbow, Sophie; Harris, Alasdair

    2015-01-01

    Overview Eight years of octopus fishery records from southwest Madagascar reveal significant positive impacts from 36 periodic closures on: (a) fishery catches and (b) village fishery income, such that (c) economic benefits from increased landings outweigh costs of foregone catch. Closures covered ~20% of a village’s fished area and lasted 2-7 months. Fishery Catches from Each Closed Site Octopus landings and catch per unit effort (CPUE) significantly increased in the 30 days following a closure’s reopening, relative to the 30 days before a closure (landings: +718%, poctopus fishery income doubled in the 30 days after a closure, relative to 30 days before (+132%, p<0.001, n = 28). Control villages not implementing a closure showed no increase in income after “no ban” closures and modest increases after “ban” closures. Villages did not show a significant decline in income during closure events. Net Economic Benefits from Each Closed Site Landings in closure sites generated more revenue than simulated landings assuming continued open-access fishing at that site (27/36 show positive net earnings; mean +$305/closure; mean +57.7% monthly). Benefits accrued faster than local fishers’ time preferences during 17-27 of the 36 closures. High reported rates of illegal fishing during closures correlated with poor economic performance. Broader Co-Management We discuss the implications of our findings for broader co-management arrangements, particularly for catalyzing more comprehensive management. PMID:26083862

  17. Defining Higher-Order Turbulent Moment Closures with an Artificial Neural Network and Random Forest

    Science.gov (United States)

    McGibbon, J.; Bretherton, C. S.

    2017-12-01

    Unresolved turbulent advection and clouds must be parameterized in atmospheric models. Modern higher-order closure schemes depend on analytic moment closure assumptions that diagnose higher-order moments in terms of lower-order ones. These are then tested against Large-Eddy Simulation (LES) higher-order moment relations. However, these relations may not be neatly analytic in nature. Rather than rely on an analytic higher-order moment closure, can we use machine learning on LES data itself to define a higher-order moment closure?We assess the ability of a deep artificial neural network (NN) and random forest (RF) to perform this task using a set of observationally-based LES runs from the MAGIC field campaign. By training on a subset of 12 simulations and testing on remaining simulations, we avoid over-fitting the training data.Performance of the NN and RF will be assessed and compared to the Analytic Double Gaussian 1 (ADG1) closure assumed by Cloudy Layers Unified By Binormals (CLUBB), a higher-order turbulence closure currently used in the Community Atmosphere Model (CAM). We will show that the RF outperforms the NN and the ADG1 closure for the MAGIC cases within this diagnostic framework. Progress and challenges in using a diagnostic machine learning closure within a prognostic cloud and turbulence parameterization will also be discussed.

  18. Shaping Globular Clusters with Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    , single and binary star evolution, galactic tides, and multi-body encounters. From their grid of models with varying input parameters, the authors then determine which fit best to NGC 3201s final observational properties.Surface brightness profiles for all globular-cluster models at late times compared to observations of NGC 3201 (yellow circles). Blue lines represent models with few retained black holes; black lines represent models with many retained black holes. [Kremer et al. 2018]Retention MattersKremer and collaborators find that the models that best represent NGC 3201 all retain more than 200 black holes at the end of the simulation; models that lost too many black holes due to natal kicks did not match observations of NGC 3201 as well. The models with large numbers of retained black holes also harbored binaries just like the one recently detected in NGC 3201.Models that retain few black holes, on the other hand, may instead be good descriptions of so-called core-collapsed globular clusters observed in the Milky Way. The authors demonstrate that these clusters could contain black holes in binaries with stars known as blue stragglers, which may also be detectable with radial velocity techniques.Kremer and collaborators results suggest that globular clusters similar to NGC 3201 contain hundreds of invisible black holes waiting to be discovered, and they indicate some of the differences in cluster properties caused by hosting such a large population of black holes. We can hope that future observations and modeling will continue to illuminate the complicated relationship between globular clusters and the black holes that live in them.CitationKyle Kremer et al 2018 ApJL 855 L15. doi:10.3847/2041-8213/aab26c

  19. Semiclassical approach to black hole evaporation

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1993-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two-dimensional black hole models. The first is the original Callan-Giddings-Harvey-Strominger (CGHS) model, the second is another two-dimensional dilaton-gravity model, but with properties much closer to physics in the real, four-dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are found to agree qualitatively with the exactly solved modified CGHS models, namely, that the semiclassical approximation breaks down just before a naked singularity appears

  20. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  1. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  2. Black hole information, unitarity, and nonlocality

    OpenAIRE

    Giddings, Steven B.

    2006-01-01

    The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arises from ultra-planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simul...

  3. Understanding the fate of merging supermassive black holes

    International Nuclear Information System (INIS)

    Campanelli, Manuela

    2005-01-01

    Understanding the fate of merging supermassive black holes in galactic mergers, and the gravitational wave emission from this process, are important LISA science goals. To this end, we present results from numerical relativity simulations of binary black hole mergers using the so-called Lazarus approach to model gravitational radiation from these events. In particular, we focus here on some recent calculations of the final spin and recoil velocity of the remnant hole formed at the end of a binary black hole merger process, which may constrain the growth history of massive black holes at the core of galaxies and globular clusters

  4. Efficacy of autologous platelets in macular hole surgery.

    Science.gov (United States)

    Konstantinidis, Aristeidis; Hero, Mark; Nanos, Panagiotis; Panos, Georgios D

    2013-01-01

    The introduction of optical coherence tomography has allowed accurate measurement of the size of macular holes. A retrospective consecutive review was performed of 21 patients undergoing macular hole repair with vitrectomy, gas tamponade, and autologous platelet injection and we assessed the effect of macular hole parameters on anatomic and functional outcomes. We looked at the demographic features, final visual outcome, and anatomical closure. Twenty-one patients were included in the study. They underwent routine vitrectomy with gas tamponade (C3F8) and injection of autologous platelets. All patients were advised to maintain a facedown posture for 2 weeks. Anatomical closure was confirmed in all cases and 20 out of 21 of patients had improved postoperative visual acuity by two or more lines. In our series, the macular hole dimensions did not have much effect on the final results. The use of autologous platelets and strict facedown posture seems to be the deciding factor in good anatomical and visual outcome irrespective of macular hole dimensions.

  5. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    Science.gov (United States)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  6. Hole history, rotary hole DC-3

    International Nuclear Information System (INIS)

    1977-10-01

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation

  7. Optimal management of idiopathic macular holes

    Directory of Open Access Journals (Sweden)

    Madi HA

    2016-01-01

    Full Text Available Haifa A Madi,1,* Ibrahim Masri,1,* David H Steel1,2 1Sunderland Eye Infirmary, Sunderland, 2Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle, UK *These authors contributed equally to this work Abstract: This review evaluates the current surgical options for the management of idiopathic macular holes (IMHs, including vitrectomy, ocriplasmin (OCP, and expansile gas use, and discusses key background information to inform the choice of treatment. An evidence-based approach to selecting the best treatment option for the individual patient based on IMH characteristics and patient-specific factors is suggested. For holes without vitreomacular attachment (VMA, vitrectomy is the only option with three key surgical variables: whether to peel the inner limiting membrane (ILM, the type of tamponade agent to be used, and the requirement for postoperative face-down posturing. There is a general consensus that ILM peeling improves primary anatomical hole closure rate; however, in small holes (<250 µm, it is uncertain whether peeling is always required. It has been increasingly recognized that long-acting gas and face-down positioning are not always necessary in patients with small- and medium-sized holes, but large (>400 µm and chronic holes (>1-year history are usually treated with long-acting gas and posturing. Several studies on posturing and gas choice were carried out in combination with ILM peeling, which may also influence the gas and posturing requirement. Combined phacovitrectomy appears to offer more rapid visual recovery without affecting the long-term outcomes of vitrectomy for IMH. OCP is licensed for use in patients with small- or medium-sized holes and VMA. A greater success rate in using OCP has been reported in smaller holes, but further predictive factors for its success are needed to refine its use. It is important to counsel patients realistically regarding the rates of success with

  8. Fuel channel closure and adapter

    International Nuclear Information System (INIS)

    Cashen, W.S.

    1985-01-01

    This invention provides a mechanical closure/actuating ram combination particularly suited for use in sealing the ends of the pressure tubes when a CANDU-type reactor is refueled. It provides a cluster that may be inserted into a fuel channel end fitting to provide at least partial closing off of a pressure tube while permitting the disengagement of the fueling machine and its withdrawal from the closure for other purposes. The invention also provides a ram/closure combination wherein the application of loading force to a deformable sealing disk is regulated by a massive load bar component forming part of the fueling machine and being therefore accessible for maintenance or replacement

  9. Black and white holes

    International Nuclear Information System (INIS)

    Zeldovich, Ya.; Novikov, I.; Starobinskij, A.

    1978-01-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius Rsub(r). At t>>Rsub(r)/c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius. (J.B.)

  10. Black and white holes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya; Novikov, I; Starobinskii, A

    1978-07-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius R/sub r/. At t>>R/sub r//c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius.

  11. Primary black holes

    International Nuclear Information System (INIS)

    Novikov, I.; Polnarev, A.

    1981-01-01

    Proves are searched for of the formation of the so-called primary black holes at the very origin of the universe. The black holes would weigh less than 10 13 kg. The formation of a primary black hole is conditional on strong fluctuations of the gravitational field corresponding roughly to a half of the fluctuation maximally permissible by the general relativity theory. Only big fluctuations of the gravitational field can overcome the forces of the hot gas pressure and compress the originally expanding matter into a black hole. Low-mass black holes have a temperature exceeding that of the black holes formed from stars. A quantum process of particle formation, the so-called evaporation takes place in the strong gravitational field of a black hole. The lower the mass of the black hole, the shorter the evaporation time. The analyses of processes taking place during the evaporation of low-mass primary black holes show that only a very small proportion of the total mass of the matter in the universe could turn into primary black holes. (M.D.)

  12. 40 CFR 265.280 - Closure and post-closure.

    Science.gov (United States)

    2010-07-01

    ... contaminants caused by wind erosion; and (4) Compliance with § 265.276 concerning the growth of food-chain... and post-closure care objectives of paragraph (a) of this section: (1) Type and amount of hazardous..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and...

  13. Low-scale gravity black holes at LHC

    CERN Document Server

    Regos, E; Gamsizkan, H; Trocsanyi, Z

    2009-01-01

    We search for extra dimensions by looking for black holes at LHC. Theoretical investigations provide the basis for the collider experiments. We use black hole generators to simulate the experimental signatures (colour, charge, spectrum of emitted particles, missing transverse energy) of black holes at LHC in models with TeV scale quantum gravity, rotation, fermion splitting, brane tension and Hawking radiation. We implement the extra-dimensional simulations at the CMS data analysis and test further beyond standard models of black holes too.

  14. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  15. Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Science.gov (United States)

    Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.

    2017-08-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment

  16. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  17. 50 CFR 648.161 - Closures.

    Science.gov (United States)

    2010-10-01

    ... Bluefish Fishery § 648.161 Closures. (a) EEZ closure. NMFS shall close the EEZ to fishing for bluefish by... dealer permit holders that no commercial quota is available for landing bluefish in that state. ...

  18. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  19. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  20. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  1. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  2. Tracking black holes in numerical relativity

    International Nuclear Information System (INIS)

    Caveny, Scott A.; Anderson, Matthew; Matzner, Richard A.

    2003-01-01

    This work addresses the problem of generically tracking black hole event horizons in computational simulation of black hole interactions. Solutions of the hyperbolic eikonal equation, solved on a curved spacetime manifold containing black hole sources, are employed in development of a robust tracking method capable of continuously monitoring arbitrary changes of topology in the event horizon as well as arbitrary numbers of gravitational sources. The method makes use of continuous families of level set viscosity solutions of the eikonal equation with identification of the black hole event horizon obtained by the signature feature of discontinuity formation in the eikonal's solution. The method is employed in the analysis of the event horizon for the asymmetric merger in a binary black hole system. In this first such three dimensional analysis, we establish both qualitative and quantitative evidence for our method and its application to the asymmetric problem. We focus attention on (1) the topology of the throat connecting the holes following merger, (2) the time of merger, and (3) continuing to account for the surface of section areas of the black hole sources

  3. CIRSE Vascular Closure Device Registry

    International Nuclear Information System (INIS)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Purpose: Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods: The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results: Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0–14.5] for antegrade access and 1.8% (95% CI 1.1–2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only 5.9 cm, and two vessel occlusions. Conclusion: The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters.

  4. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  5. Telephone switchboard closure | 19 December

    CERN Multimedia

    2014-01-01

    Exceptionally, the telephone switchboard will close at 4 p.m. on Friday, 19 December, instead of the usual time of 6 p.m., to allow time for closing all systems properly before the annual closure. Therefore, switchboard operator assistance to transfer calls from/to external lines will stop. All other phone services will run as usual.

  6. CIRSE Vascular Closure Device Registry

    Science.gov (United States)

    Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2010-01-01

    Purpose Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0–14.5] for antegrade access and 1.8% (95% CI 1.1–2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only 5.9 cm, and two vessel occlusions. Conclusion The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters. PMID:20981425

  7. 75 FR 29322 - Base Closure and Realignment

    Science.gov (United States)

    2010-05-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary Base Closure and Realignment AGENCY: Office of...)(ii) of the Defense Base Closure and Realignment Act of 1990. It provides a partial list of military installations closing or realigning pursuant to the 2005 Base Closure and Realignment (BRAC) Report. It also...

  8. Primordial Black Holes from First Principles (Overview)

    Science.gov (United States)

    Lam, Casey; Bloomfield, Jolyon; Moss, Zander; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    Given a power spectrum from inflation, our goal is to calculate, from first principles, the number density and mass spectrum of primordial black holes that form in the early universe. Previously, these have been calculated using the Press- Schechter formalism and some demonstrably dubious rules of thumb regarding predictions of black hole collapse. Instead, we use Monte Carlo integration methods to sample field configurations from a power spectrum combined with numerical relativity simulations to obtain a more accurate picture of primordial black hole formation. We demonstrate how this can be applied for both Gaussian perturbations and the more interesting (for primordial black holes) theory of hybrid inflation. One of the tools that we employ is a variant of the BBKS formalism for computing the statistics of density peaks in the early universe. We discuss the issue of overcounting due to subpeaks that can arise from this approach (the ``cloud-in-cloud'' problem). MIT UROP Office- Paul E. Gray (1954) Endowed Fund.

  9. Value of internal limiting membrane peeling in surgery for idiopathic macular hole stage 2 and 3: a randomised clinical trial

    DEFF Research Database (Denmark)

    Christensen, U C; Krøyer, K; Sander, B

    2009-01-01

    AIM: To determine the effect of internal limiting membrane (ILM) peeling on anatomical and functional success rates in stage 2 and 3 idiopathic macular hole surgery (MHS). METHODS: Randomised clinical trial of stage 2 and 3 idiopathic macular hole without visible epiretinal fibrosis and with less...... than 1 year's duration of symptoms. Eyes were randomised to (1) vitrectomy alone without retinal surface manipulation, (2) vitrectomy plus 0.05% isotonic Indocyanine Green (ICG)-assisted ILM peeling or (3) vitrectomy plus 0.15% Trypan Blue (TB)-assisted ILM peeling. Main outcomes were hole closure...... after 3 and 12 months and best-corrected visual acuity after 12 months. RESULTS: 78 eyes were enrolled. Primary closure rates were significantly higher with ILM peeling than without peeling for both stage 2 holes (ICG peeling 100%, non-peeling 55%, p = 0.014) and for stage 3 holes (ICG peeling 91%, TB...

  10. Heat Transfer and Friction Studies in a Tilted and Rib-Roughened Trailing-Edge Cooling Cavity with and without the Trailing-Edge Cooling Holes

    Directory of Open Access Journals (Sweden)

    M. E. Taslim

    2014-01-01

    Full Text Available Local and average heat transfer coefficients and friction factors were measured in a test section simulating the trailing-edge cooling cavity of a turbine airfoil. The test rig with a trapezoidal cross-sectional area was rib-roughened on two opposite sides of the trapezoid (airfoil pressure and suction sides with tapered ribs to conform to the cooling cavity shape and had a 22-degree tilt in the flow direction upstream of the ribs that affected the heat transfer coefficients on the two rib-roughened surfaces. The radial cooling flow traveled from the airfoil root to the tip while exiting through 22 cooling holes along the airfoil trailing-edge. Two rib geometries, with and without the presence of the trailing-edge cooling holes, were examined. The numerical model contained the entire trailing-edge channel, ribs, and trailing-edge cooling holes to simulate exactly the tested geometry. A pressure-correction based, multiblock, multigrid, unstructured/adaptive commercial software was used in this investigation. Realizable k-ε turbulence model in conjunction with enhanced wall treatment approach for the near wall regions was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. Comparisons are made between the experimental and numerical results.

  11. Ocriplasmin for treatment of stage 2 macular holes: early clinical results.

    Science.gov (United States)

    Miller, John B; Kim, Leo A; Wu, David M; Vavvas, Demetrios G; Eliott, Dean; Husain, Deeba

    2014-01-01

    To review clinical and structural outcomes of ocriplasmin for treatment of stage 2 macular holes. A retrospective review of the first patients with stage 2 macular holes to be treated with ocriplasmin at Massachusetts Eye and Ear Infirmary. All patients were imaged with spectral-domain optical coherence tomography (SD-OCT). Eight patients with stage 2 macular holes received a single injection of 125 μg of ocriplasmin. One patient (12.5%) demonstrated macular hole closure. The posterior hyaloid separated from the macula in six eyes (75%). All seven holes that remained open showed enlargement in hole diameters (narrowest, apical, and basal) at 1 week and 1 month. All seven were successfully closed with surgery. Ellipsoid zone disruptions were observed by OCT in four eyes (50%) and persisted throughout follow-up (more than 6 months on average). In early clinical results, the authors found a lower macular hole closure rate with ocriplasmin than previously reported. Enlargement was observed in all holes that failed to close with ocriplasmin. The authors found ellipsoid zone disruptions that persisted through 6 months of follow-up after ocriplasmin injection. Further work is needed to investigate the cause for these ellipsoid zone changes. Copyright 2014, SLACK Incorporated.

  12. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part II

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this second lecture, we focus on simulations of black hole binary mergers. We hig hlight the instabilities that plagued the codes for many years, the r ecent breakthroughs that led to the first accurate simulations, and the current state of the art.

  13. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    Science.gov (United States)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  14. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  15. Black hole Berry phase

    NARCIS (Netherlands)

    de Boer, J.; Papadodimas, K.; Verlinde, E.

    2009-01-01

    Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the

  16. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  17. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  18. Quantum black holes

    OpenAIRE

    Hooft, G. 't

    1987-01-01

    This article is divided into three parts. First, a systematic derivation of the Hawking radiation is given in three different ways. The information loss problem is then discussed in great detail. The last part contains a concise discussion of black hole thermodynamics. This article was published as chapter $6$ of the IOP book "Lectures on General Relativity, Cosmology and Quantum Black Holes" (July $2017$).

  19. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  20. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  1. Economic Evaluation of Individual School Closure Strategies: The Hong Kong 2009 H1N1 Pandemic.

    Directory of Open Access Journals (Sweden)

    Zoie Shui-Yee Wong

    Full Text Available School closures as a means of containing the spread of disease have received considerable attention from the public health community. Although they have been implemented during previous pandemics, the epidemiological and economic effects of the closure of individual schools remain unclear.This study used data from the 2009 H1N1 pandemic in Hong Kong to develop a simulation model of an influenza pandemic with a localised population structure to provide scientific justifications for and economic evaluations of individual-level school closure strategies.The estimated cost of the study's baseline scenario was USD330 million. We found that the individual school closure strategies that involved all types of schools and those that used a lower threshold to trigger school closures had the best performance. The best scenario resulted in an 80% decrease in the number of cases (i.e., prevention of about 830,000 cases, and the cost per case prevented by this intervention was USD1,145; thus, the total cost was USD1.28 billion.This study predicts the effects of individual school closure strategies on the 2009 H1N1 pandemic in Hong Kong. Further research could determine optimal strategies that combine various system-wide and district-wide school closures with individual school triggers across types of schools. The effects of different closure triggers at different phases of a pandemic should also be examined.

  2. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  3. Facility Closure Report for Tunnel U16a, Area 16, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    U16a is not listed in the Federal Facility Agreement and Consent Order. The closure of U16a was sponsored by the Defense Threat Reduction Agency (DTRA) and performed with the cooperation of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the Nevada Division of Environmental Protection. This report documents closure of this site as identified in the DTRA Fiscal Year 2008 Statement of Work, Task 6.3. Closure activities included: (1) Removing and disposing of a shack and its contents; (2) Disposing of debris from within the shack and in the vicinity of the tunnel entrance; (3) Verifying that the tunnel is empty; (4) Welding screened covers over tunnel vent holes to limit access and allow ventilation; and (5) Constructing a full-tunnel cross-section fibercrete bulkhead to prevent access to the tunnel Field activities were conducted from July to August 2008.

  4. Revisiting the Landau fluid closure.

    Science.gov (United States)

    Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.

    2017-12-01

    Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.

  5. Observations on early and delayed colostomy closure.

    Science.gov (United States)

    Tade, A O; Salami, B A; Ayoade, B A

    2011-06-01

    Traditional treatment of a variety of colorectal pathologies had included a diverting colostomy that was closed eight or more weeks later during a readmission. The aim of this retrospective study was to determine the outcomes of early colostomy closure and delayed colostomy closure in patients with temporary colostomies following traumatic and non-traumatic colorectal pathologies. In this study early colostomy closure was the closure of a colostomy within three weeks of its construction, while delayed colostomy closure referred to closure after 3 weeks. Complete records of the 37 adult patients who had temporary colostomy constructed and closed between Jan. 1997 December 2003 for various colorectal pathologies were studied. Fourteen patients had early colostomy closure while 23 had delayed closure. In the early colostomy closure group there were 10 men and 4 women. The mean age of the patients was 28yr with a range of 18-65yr. Colostomies were closed 9-18 days after initial colostomy construction. There was no mortality. Morbidity rate 28.6% (4 out of 14). There were two faecal fistulas (14.3%). Twenty-three patients had delayed colostomy closure 8 weeks to 18 months after initial colostomy construction. These were patients unfit for early surgery after initial colostomy construction because of carcinoma, significant weight loss, or sepsis. There was no mortality. Morbidity rate was 26.1%. There were 3 faecal fistulas (13.2%). Outcomes following early colostomy closure and delayed closure were comparable. Patients fit for surgery should have early closure whilst patients who may have compromised health should have delayed closure.

  6. 304 Concretion Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with Zircaloy-2 and copper silicon allo , uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets (7.5-gal containers) in the 304 Concretion Facility (304 Facility), located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA) and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040 (Ecology 1991). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Facility. The strategy for closure of the 304 Facility is presented in Section 6.0

  7. Repository Closure and Sealing Approach

    International Nuclear Information System (INIS)

    A.T. Watkins

    2000-01-01

    The scope of this analysis will be to develop the conceptual design of the closure seals and their locations in the Subsurface Facilities. The design will be based on the recently established program requirements for transitioning to the Site Recommendation (SR) design as outlined by ''Approach to Implementing the Site Recommendation Baseline'' (Stroupe 2000) and the ''Monitored Geologic Repository Project Description Document'' (CRWMS M andO 1999b). The objective of this analysis will be to assist in providing a description for the Subsurface Facilities System Description Document, Section 2 and finally to document any conclusions reached in order to contribute and provide support to the SR. This analysis is at a conceptual level and is considered adequate to support the SR design. The final closure barriers and seals for the ventilation shafts, and the north and south ramps will require these openings to be permanently sealed to limit excessive air and water inflows and prevent human intrusion. The major tasks identified with closure in this analysis are: (1) Developing the overall subsurface seal layout and identifying design and operational interfaces for the Subsurface Facilities. (2) Summarizing the general site conditions and general rock characteristic with respect to seal location and describing the seal selected. (3) Identify seal construction materials, methodology of construction and strategic locations including design of the seal and plugs. (4) Discussing methods to prevent human intrusion

  8. Large Eddy Simulation of a Film Cooling Flow Injected from an Inclined Discrete Cylindrical Hole into a Crossflow with Zero-Pressure Gradient Turbulent Boundary Layer

    Science.gov (United States)

    Johnson, Perry L.; Shyam, Vikram

    2012-01-01

    A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics

  9. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  10. RECURRENT MACULAR HOLES IN THE ERA OF SMALL-GAUGE VITRECTOMY: A Review of Incidence, Risk Factors, and Outcomes.

    Science.gov (United States)

    Abbey, Ashkan M; Van Laere, Lily; Shah, Ankoor R; Hassan, Tarek S

    2017-05-01

    To evaluate the preoperative features, intraoperative management, and postoperative outcomes of recurrent macular holes that developed after initial successful repair with small-gauge vitrectomy techniques. We retrospectively reviewed 392 eyes with idiopathic macular holes successfully treated with small-gauge vitrectomy. Thirteen of these eyes underwent reoperation after macular hole reopening. We assessed patient demographics, visual acuity, postoperative anatomical success, potential precipitating clinical factors of hole reopening, and details of the surgical repairs of these eyes. Macular hole reopening occurred in 13 (3.3%) of 392 eyes in a mean of 28 months (range, 1-120 months) after initial repair. All 13 recurrent holes closed after a second vitrectomy, but 4 (31%) holes reopened again and had vitrectomy. Of these, 2 reopened a third time. Ultimately, 11 (85%) holes were closed at the most recent follow-up. The mean best-corrected visual acuity was 20/81 before initial repair, 20/148 after the first reopening, 20/115 after repair of the first reopening, and 20/55 after repair of >1 reopening. Ten of 13 (77%) patients had, or later developed, macular holes in the other eye during follow-up. Reoperation successfully achieved hole closure and ultimate visual improvement in most eyes with recurrent macular holes. Most patients with recurrent holes previously had, or later developed, full-thickness macular holes in the other eye.

  11. Multivariate moment closure techniques for stochastic kinetic models

    International Nuclear Information System (INIS)

    Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.

    2015-01-01

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs

  12. Multivariate moment closure techniques for stochastic kinetic models

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H., E-mail: m.stumpf@imperial.ac.uk [Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.

  13. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  14. Sensitivity of GRETINA position resolution to hole mobility

    Energy Technology Data Exchange (ETDEWEB)

    Prasher, V.S. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Cromaz, M. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Merchan, E.; Chowdhury, P. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Crawford, H.L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lister, C.J. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Campbell, C.M.; Lee, I.Y.; Macchiavelli, A.O. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Radford, D.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wiens, A. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-02-21

    The sensitivity of the position resolution of the gamma-ray tracking array GRETINA to the hole charge-carrier mobility parameter is investigated. The χ{sup 2} results from a fit of averaged signal (“superpulse”) data exhibit a shallow minimum for hole mobilities 15% lower than the currently adopted values. Calibration data on position resolution is analyzed, together with simulations that isolate the hole mobility dependence of signal decomposition from other effects such as electronics cross-talk. The results effectively exclude hole mobility as a dominant parameter for improving the position resolution for reconstruction of gamma-ray interaction points in GRETINA.

  15. The theory of optical black hole lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gaona-Reyes, José L., E-mail: jgaona@fis.cinvestav.mx; Bermudez, David, E-mail: dbermudez@fis.cinvestav.mx

    2017-05-15

    The event horizon of black holes and white holes can be achieved in the context of analogue gravity. It was proven for a sonic case that if these two horizons are close to each other their dynamics resemble a laser, a black hole laser, where the analogue of Hawking radiation is trapped and amplified. Optical analogues are also very successful and a similar system can be achieved there. In this work we develop the theory of optical black hole lasers and prove that the amplification is also possible. Then, we study the optical system by determining the forward propagation of modes, obtaining an approximation for the phase difference which governs the amplification, and performing numerical simulations of the pulse propagation of our system. - Highlights: • We develop the conditions to obtain the kinematics of the optical black hole laser. • We prove the amplification of Hawking radiation for the optical case. • We derive the forward propagation of modes and check the result of the backward case. • A model is proposed to calculate the phase difference and the amplification rate. • We perform numerical simulations of a pulse between two solitons forming a cavity.

  16. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  17. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  18. Do Hypervolumes Have Holes?

    Science.gov (United States)

    Blonder, Benjamin

    2016-04-01

    Hypervolumes are used widely to conceptualize niches and trait distributions for both species and communities. Some hypervolumes are expected to be convex, with boundaries defined by only upper and lower limits (e.g., fundamental niches), while others are expected to be maximal, with boundaries defined by the limits of available space (e.g., potential niches). However, observed hypervolumes (e.g., realized niches) could also have holes, defined as unoccupied hyperspace representing deviations from these expectations that may indicate unconsidered ecological or evolutionary processes. Detecting holes in more than two dimensions has to date not been possible. I develop a mathematical approach, implemented in the hypervolume R package, to infer holes in large and high-dimensional data sets. As a demonstration analysis, I assess evidence for vacant niches in a Galapagos finch community on Isabela Island. These mathematical concepts and software tools for detecting holes provide approaches for addressing contemporary research questions across ecology and evolutionary biology.

  19. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  20. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  1. Laboratory testing of closure cap repair techniques

    International Nuclear Information System (INIS)

    Persoff, P.; Moridis, G.; Tuck, D.M.

    1996-10-01

    Landfill design requires a low permeability closure cap as well as a low permeability liner. The Savannah River Site, in South Carolina, has approximately 85 acres of mixed waste landfills covered with compacted kaolin clay. Maintaining low permeability of the clay cap requires both that the permeability of the compacted clay itself remain low and that the integrity of the barrier be maintained. Barrier breaches typically result from penetration by roots or animals, and especially cracks caused by uneven settling or desiccation. In this study, clay layers, 0.81 m in diameter and 7.6 cm thick, were compacted in 7 lysimeters to simulate closure caps. The hydraulic conductivity of each layer was measured, and the compacted clay layers (CCL's) were cracked by drying. Then various repair techniques were applied and the effectiveness of each repair was assessed by remeasuring the hydraulic conductivity. Finally the repaired CCL was again dried and measured to determine how the repair responded to the conditions that caused the original failure. For a full report of this investigation see Persoff et al. Six repair techniques have been tested, four of which involve the use of injectable barrier liquids colloidal silica (CS) and polysiloxane (PSX) described below: (I) covering the crack with a bentonite geosynthetic clay liner (GCL), (ii) recompaction of new kaolinite at STD+3 moisture content joined to existing kaolinite that had dried and shrunk, (iii) direct injection of colloidal silica to a crack, (iv) injection of colloidal silica (CS) to wells in an overlying sand layer, (v) direct injection of polysiloxane to a crack, and (vi), injection of polysiloxane (PSX) to wells in an overlying soil layer

  2. White dwarfs - black holes

    International Nuclear Information System (INIS)

    Sexl, R.; Sexl, H.

    1975-01-01

    The physical arguments and problems of relativistic astrophysics are presented in a correct way, but without any higher mathematics. The book is addressed to teachers, experimental physicists, and others with a basic knowledge covering an introductory lecture in physics. The issues dealt with are: fundamentals of general relativity, classical tests of general relativity, curved space-time, stars and planets, pulsars, gravitational collapse and black holes, the search for black holes, gravitational waves, cosmology, cosmogony, and the early universe. (BJ/AK) [de

  3. Magnonic black holes

    OpenAIRE

    Roldán-Molina, A.; Nunez, A.S.; Duine, R. A.

    2017-01-01

    We show that the interaction between spin-polarized current and magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons - the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the imp...

  4. Supersymmetric black holes

    OpenAIRE

    de Wit, Bernard

    2005-01-01

    The effective action of $N=2$, $d=4$ supergravity is shown to acquire no quantum corrections in background metrics admitting super-covariantly constant spinors. In particular, these metrics include the Robinson-Bertotti metric (product of two 2-dimensional spaces of constant curvature) with all 8 supersymmetries unbroken. Another example is a set of arbitrary number of extreme Reissner-Nordstr\\"om black holes. These black holes break 4 of 8 supersymmetries, leaving the other 4 unbroken. We ha...

  5. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  6. Macular hole formation, progression, and surgical repair: case series of serial optical coherence tomography and time lapse morphing video study

    Science.gov (United States)

    2010-01-01

    Background To use a new medium to dynamically visualize serial optical coherence tomography (OCT) scans in order to illustrate and elucidate the pathogenesis of idiopathic macular hole formation, progression, and surgical closure. Case Presentations Two patients at the onset of symptoms with early stage macular holes and one patient following repair were followed with serial OCTs. Images centered at the fovea and at the same orientation were digitally exported and morphed into an Audiovisual Interleaving (avi) movie format. Morphing videos from serial OCTs allowed the OCTs to be viewed dynamically. The videos supported anterior-posterior vitreofoveal traction as the initial event in macular hole formation. Progression of the macular hole occurred with increased cystic thickening of the fovea without evidence of further vitreofoveal traction. During cyst formation, the macular hole enlarged as the edges of the hole became elevated from the retinal pigment epithelium (RPE) with an increase in subretinal fluid. Surgical repair of a macular hole revealed initial closure of the macular hole with subsequent reabsorption of the sub-retinal fluid and restoration of the foveal contour. Conclusions Morphing videos from serial OCTs are a useful tool and helped illustrate and support anterior-posterior vitreofoveal traction with subsequent retinal hydration as the pathogenesis of idiopathic macular holes. PMID:20849638

  7. Macular morphology and visual acuity after macular hole surgery with or without internal limiting membrane peeling

    DEFF Research Database (Denmark)

    Christensen, U.C.; Kroyer, K.; Sander, B.

    2010-01-01

    Aim: To examine postoperative macular morphology and visual outcome after 12 months in relation to internal limiting membrane (ILM) peeling versus no peeling, indocyanine green (ICG) staining and re-operation in eyes that achieved macular hole closure after surgery. Methods: Seventy-four eyes...... with closed stage 2 or 3 macular holes were recruited from a randomised clinical trial comparing: (1) vitrectomy without ILM peeling; (2) vitrectomy with 0.05% isotonic ICG-assisted ILM peeling; and (3) vitrectomy with 0.15% trypan blue-assisted ILM peeling. Contrast-enhanced Stratus optical coherence...... between subgroups. Conclusions: Poor vision after 12 months despite macular hole closure was associated with attenuation and disruption of the foveolar photoreceptor matrix. The extent of attenuation and disruption was independent of peeling and staining....

  8. Storage shaft definitive closure plug and method

    International Nuclear Information System (INIS)

    Dardaine, M.

    1992-01-01

    A definitive closure plug system for radioactive waste storage at any deepness, is presented. The inherent weight of the closure materials is used to set in the plug: these materials display an inclined sliding surface in such a way that when the closure material rests on a stable surface of the shaft storage materials, the relative sliding of the different materials tends to spread them towards the shaft internal wall so as to completely occlude the shaft

  9. Single night postoperative prone posturing in idiopathic macular hole surgery.

    LENUS (Irish Health Repository)

    2012-02-01

    Purpose. To evaluate the role of postoperative prone posturing for a single night in the outcome of trans pars plana vitrectomy (TPPV) with internal limiting membrane (ILM) peel and 20% perfluoroethane (C2F6) internal tamponade for idiopathic macular hole. Methods. This prospective trial enrolled 14 eyes in 14 consecutive patients with idiopathic macular hole. All eyes underwent TPPV with vision blue assisted ILM peeling with and without phacoemulsification and intraocular lens (IOL) for macular hole. Intraocular gas tamponade (20% C2F6) was used in all cases with postoperative face-down posturing overnight and without specific posturing afterwards. LogMAR visual acuity, appearance by slit-lamp biomicroscopy, and ocular coherence tomography (OCT) scans were compared preoperatively and postoperatively to assess outcome. Results. Among 14 eyes recruited, all eyes were phakic; 50% of patients underwent concurrent phacoemulsification with IOL. The macular holes were categorized preoperatively by OCT appearance, 4 (28.57%) were stage 2, 7 (50%) were stage 3, and 3 (21.43%) were stage 4. Mean macular hole size was 0.35 disk diameters. Symptoms of macular hole had been present for an average of 6.5 months. All holes (100%) were closed 3 and 6 months postoperatively. Mean visual acuity (logMAR) was improved to 0.61 at 3 months and was stable at 6 months after the surgery. None of the eyes had worse vision postoperatively. Conclusions. Vitrectomy with ILM peeling and 20% C2F6 gas with a brief postoperative 1 night prone posturing regimen is a reasonable approach to achieve anatomic closure in idiopathic macular hole. Concurrent cataract extraction did not alter outcomes and was not associated with any additional complications.

  10. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  11. 100-D Ponds closure plan. Revision 1

    International Nuclear Information System (INIS)

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure

  12. Closure Welding of Plutonium Bearing Storage Containers

    International Nuclear Information System (INIS)

    Cannell, G.R.

    2002-01-01

    A key element in the Department of Energy (DOE) strategy for the stabilization, packaging and storage of plutonium-bearing materials involves closure welding of DOE-STD-3013 Outer Containers (3013 container). The 3013 container provides the primary barrier and pressure boundary preventing release of plutonium-bearing materials to the environment. The final closure (closure weld) of the 3013 container must be leaktight, structurally sound and meet DOE STD 3013 specified criteria. This paper focuses on the development, qualification and demonstration of the welding process for the closure welding of Hanford PFP 3013 outer containers

  13. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  14. Reinvestigation of moving punctured black holes with a new code

    International Nuclear Information System (INIS)

    Cao Zhoujian; Yo Hweijang; Yu Juiping

    2008-01-01

    We report on our code, in which the moving puncture method is applied and an adaptive/fixed mesh refinement is implemented, and on its preliminary performance on black hole simulations. Based on the Baumgarte-Sharpiro-Shibata-Nakamura (BSSN) formulation, up-to-date gauge conditions and the modifications of the formulation are also implemented and tested. In this work, we present our primary results about the simulation of a single static black hole, of a moving single black hole, and of the head-on collision of a binary black hole system. For the static punctured black hole simulations, different modifications of the BSSN formulation are applied. It is demonstrated that both the currently used sets of modifications lead to a stable evolution. For cases of a moving punctured black hole with or without spin, we search for viable gauge conditions and study the effect of spin on the black hole evolution. Our results confirm previous results obtained by other research groups. In addition, we find a new gauge condition, which has not yet been adopted by any other researchers, which can also give stable and accurate black hole evolution calculations. We examine the performance of the code for the head-on collision of a binary black hole system, and the agreement of the gravitational waveform it produces with that obtained in other works. In order to understand qualitatively the influence of matter on the binary black hole collisions, we also investigate the same head-on collision scenarios but perturbed by a scalar field. The numerical simulations performed with this code not only give stable and accurate results that are consistent with the works by other numerical relativity groups, but also lead to the discovery of a new viable gauge condition, as well as clarify some ambiguities in the modification of the BSSN formulation. These results demonstrate that this code is reliable and ready to be used in the study of more realistic astrophysical scenarios and of numerical

  15. Closure for spent-fuel transport and storage containers

    International Nuclear Information System (INIS)

    Ahner, S.; Knackstedt, H.G.; Srostlik, P.

    1980-01-01

    The container has a transport closure and a shielding closure. This shielding closure consists of two pieces (double closure system), which can be fartened to one another like a bayonet fixing. A central motion of rotation is enough to open the closure. It can be done remote-controlled as well as manually. (DG) [de

  16. Quasars, pulsars and black holes (a bibliography with abstracts). Report for 1964--Feb 77

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-04-01

    Astronomical surveys of quasars, pulsars, and black holes are cited. Computer simulations, mathematical models and other methods used for the verification of hypotheses about astrophysical processes are included

  17. Top-down and Bottom-up aerosol-cloud-closure: towards understanding sources of unvertainty in deriving cloud radiative flux

    Science.gov (United States)

    Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.

    2017-12-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after

  18. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  19. Criticality assessment of LLRWDF closure

    International Nuclear Information System (INIS)

    Sarrack, A.G.; Weber, J.H.; Woody, N.D.

    1992-01-01

    During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of the LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted

  20. Closure behavior of spherical void in slab during hot rolling process

    Science.gov (United States)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  1. σ-holes and π-holes: Similarities and differences.

    Science.gov (United States)

    Politzer, Peter; Murray, Jane S

    2018-04-05

    σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  3. Black-hole production from ultrarelativistic collisions

    International Nuclear Information System (INIS)

    Rezzolla, Luciano; Takami, Kentaro

    2013-01-01

    Determining the conditions under which a black hole can be produced is a long-standing and fundamental problem in general relativity. We use numerical simulations of colliding self-gravitating fluid objects to study the conditions of black-hole formation when the objects are boosted to ultrarelativistic speeds. Expanding on the previous work, we show that the collision is characterized by a type-I critical behaviour, with a black hole being produced for masses above a critical value, M c , and a partially bound object for masses below the critical one. More importantly, we show for the first time that the critical mass varies with the initial effective Lorentz factor 〈γ〉 following a simple scaling of the type M c ∼ K〈γ〉 −1.0 , thus indicating that a black hole of infinitesimal mass is produced in the limit of a diverging Lorentz factor. Furthermore, because a scaling is present also in terms of the initial stellar compactness, we provide a condition for black-hole formation in the spirit of the hoop conjecture. (fast track communication)

  4. BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING

    International Nuclear Information System (INIS)

    Dehnen, Walter; King, Andrew

    2013-01-01

    We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations

  5. Hospital closure: Phoenix, Hydra or Titanic?

    Science.gov (United States)

    Dunne, T; Davis, S

    1996-01-01

    Very little has been published about the effects of hospital closure in terms of the service, financial or management issues of the process. Attempts through a case-study format to redress the balance and as such represents the reflections of practitioners who have recently undergone the experience of hospital closure and the often neglected issues arising both during and after the process.

  6. Key financial ratios can foretell hospital closures.

    Science.gov (United States)

    Lynn, M L; Wertheim, P

    1993-11-01

    An analysis of various financial ratios sampled from open and closed hospitals shows that certain leverage, liquidity, capital efficiency, and resource availability ratios can predict hospital closure up to two years in advance of the closure with an accuracy of nearly 75 percent.

  7. 40 CFR 264.178 - Closure.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of Containers § 264.178 Closure. At closure, all hazardous waste and hazardous waste residues must be removed...

  8. Hanford Patrol Academy Demolition Sites Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    From 1975 to 1991 the Hanford Patrol Academy Demolition Sites (HPADS) were used for demolition events. These demolition events were a form of thermal treatment for spent or abandoned chemical waste. Because the HPADS will no longer be used for this thermal activity, the sites will be closed. Closure will be conducted pursuant to the requirements of the Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and 40 CFR 270.1. Closure also will satisfy closure requirements of WAC 173-303-680 and for the thermal treatment closure requirements of 40 CFR 265.381. This closure plan presents a description of the HPADS, the history of the waste treated, and the approach that will be followed to close the HPADS. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. Only dangerous constituents derived from HPADS operations will be addressed in this closure plan in accordance with WAC 173-303-610(2)(b)(i). The HPADS are actually two distinct soil closure areas within the Hanford Patrol Academy training area

  9. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  10. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  11. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  12. Anyon black holes

    Science.gov (United States)

    Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes

    2018-05-01

    We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.

  13. Black Hole Paradoxes

    International Nuclear Information System (INIS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-01-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals. (paper)

  14. Bringing Black Holes Home

    Science.gov (United States)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  15. Detecting Boundary Nodes and Coverage Holes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Li-Hui Zhao

    2016-01-01

    Full Text Available The emergence of coverage holes in wireless sensor networks (WSNs means that some special events have broken out and the function of WSNs will be seriously influenced. Therefore, the issues of coverage holes have attracted considerable attention. In this paper, we focus on the identification of boundary nodes and coverage holes, which is crucially important to preventing the enlargement of coverage holes and ensuring the transmission of data. We define the problem of coverage holes and propose two novel algorithms to identify the coverage holes in WSNs. The first algorithm, Distributed Sector Cover Scanning (DSCS, can be used to identify the nodes on hole borders and the outer boundary of WSNs. The second scheme, Directional Walk (DW, can locate the coverage holes based on the boundary nodes identified with DSCS. We implement the algorithms in various scenarios and fully evaluate their performance. The simulation results show that the boundary nodes can be accurately detected by DSCS and the holes enclosed by the detected boundary nodes can be identified by DW. The comparisons confirm that the proposed algorithms outperform the existing ones.

  16. CLOSING MACULAR HOLES WITH "MACULAR PLUG" WITHOUT GAS TAMPONADE AND POSTOPERATIVE POSTURING.

    Science.gov (United States)

    Chakrabarti, Meena; Benjamin, Preethi; Chakrabarti, Keya; Chakrabarti, Arup

    2017-03-01

    To investigate the surgical results of macular hole surgery without gas tamponade or postoperative posturing in patients with Stage 3 and Stage 4 macular holes with ≥500 μm mean base diameter. Retrospective interventional case series. Twenty-six patients with Stage 3 and Stage 4 macular holes. Twenty-six eyes of 26 patients with Stage 3 and Stage 4 macular holes and a mean base diameter of 892.8 ± 349 μm underwent pars plana 23-gauge vitrectomy with broad internal limiting membrane peel (ILM peel), inverted ILM flap repositioning (ILMR), and use of autologous gluconated blood clumps as a macular plug to close the macular hole. No fluid-air exchange, endotamponade, or postoperative posturing was used. The subjects were followed up for 12 months. The anatomical outcome of the procedure was evaluated by fundus examination and optical coherence tomography. Spectral domain optical coherence tomography was used to study the restoration of the outer retinal layer integrity in the postoperative period. The preoperative and postoperative best-corrected visual acuities in logMAR units were compared to evaluate functional outcome. Macular hole closure and best-corrected visual acuity before and after surgery. Twenty-six patients with mean age 62.8 ± 7.3 years, preoperative median best-corrected visual acuity 6/60 (1.0 logMAR units), and a mean base diameter of 892.8 ± 349 μm underwent surgery to close macular holes without gas tamponade or postoperative posturing. Twenty patients (76.9%) were phakic. Twenty eyes (76.92%) had Stage 3 macular holes and 6 eyes (23.10%) had Stage 4 macular holes. After a single surgery, hole closure was achieved in 100% of eyes. The median best-corrected visual acuity improved from 6/60 (1.0 logMAR units) to 6/18 (0.50 logMAR units) (P hole closure with statically significant functional improvement for large Stage 3 and Stage 4 macular holes.

  17. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  18. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  19. Moulting Black Holes

    OpenAIRE

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2011-01-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that ...

  20. Are black holes springlike?

    Science.gov (United States)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  1. Scattering from black holes

    International Nuclear Information System (INIS)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  2. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  3. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  4. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  5. Partons and black holes

    International Nuclear Information System (INIS)

    Susskind, L.; Griffin, P.

    1994-01-01

    A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection

  6. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  7. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  8. Pit closures - effects and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Stott, A G

    1987-02-01

    During the last decade, British Coal has closed around 100 mines. This article illustrates the effect of pit closures on the colliery's workforce, and the local community and its economy. Working conditions at Newmarket Colliery and the Selby coalfield are compared within the context of British Coal's national transfer market. British Coal's transfer benefits include resettlement payments and mortgage subsidies. The job creation venture of British Coal Enterprise Ltd. has helped to create over 3700 new jobs in 264 projects, involving a total investment of 38 M pounds sterling. The article also discusses deputies' qualifications and prospects for recently qualified management staff, and gives a comparison of losses suffered by the different mining unions.

  9. Closure for milliliter scale bioreactor

    Science.gov (United States)

    Klein, David L.; Laidlaw, Robert D.; Andronaco, Gregory; Boyer, Stephen G.

    2010-12-14

    A closure for a microreactor includes a cap that is configured to be inserted into a well of the microreactor. The cap, or at least a portion of the cap, is compliant so as to form a seal with the well when the cap is inserted. The cap includes an aperture that provides an airway between the inside of the well to the external environment when the cap is inserted into the well. A porous plug is inserted in the aperture, e.g., either directly or in tube that extends through the aperture. The porous plug permits gas within the well to pass through the aperture while preventing liquids from passing through to reduce evaporation and preventing microbes from passing through to provide a sterile environment. A one-way valve may also be used to help control the environment in the well.

  10. Closure of Microcosm for refurbishment

    CERN Multimedia

    2014-01-01

    Since 1994, the Microcosm exhibition has given the opportunity to visitors of all ages and backgrounds to have a first glimpse into the secrets of physics.   To ensure that Microcosm can continue fulfilling its educational aims at the same level of quality for many years to come, it is closing for renovation work on 8 December 2014 and is expected to reopen during Summer 2015. During the closure, the “Fun with Physics” workshop will not take place, but the Universe of Particles exhibition in the Globe and the Passport to the Big Bang circuit will remain accessible to the public, free of charge and with no need to book in advance.  Guided tours of CERN are also available (advance booking required via this page).

  11. Innovative real CSF leak simulation model for rhinology training: human cadaveric design.

    Science.gov (United States)

    AlQahtani, Abdulaziz A; Albathi, Abeer A; Alhammad, Othman M; Alrabie, Abdulkarim S

    2018-04-01

    To study the feasibility of designing a human cadaveric simulation model of real CSF leak for rhinology training. The laboratory investigation took place at the surgical academic center of Prince Sultan Military Medical City between 2016 and 2017. Five heads of human cadaveric specimens were cannulated into the intradural space through two frontal bone holes. Fluorescein-dyed fluid was injected intracranialy, then endoscopic endonasal iatrogenic skull base defect was created with observation of fluid leak, followed by skull base reconstruction. The outcome measures included subjective assessment of integrity of the design, the ability of creating real CSF leak in multiple site of skull base and the possibility of watertight closure by various surgical techniques. The fluid filled the intradural space in all specimens without spontaneous leak from skull base or extra sinus areas. Successfully, we demonstrated fluid leak from all areas after iatrogenic defect in the cribriform plate, fovea ethmoidalis, planum sphenoidale sellar and clival regions. Watertight closure was achieved in all defects using different reconstruction techniques (overly, underlay and gasket seal closure). The design is simulating the real patient with CSF leak. It has potential in the learning process of acquiring and maintaining the surgical skills of skull base reconstruction before direct involvement of the patient. This model needs further evaluation and competence measurement as training tools in rhinology training.

  12. Reversal of Flux Closure States in Cobalt Nanoparticle Rings With Coaxial Magnetic Pulses

    DEFF Research Database (Denmark)

    Kasama, T; Dunin-Borkowski, Rafal E.; Scheinfein, MR

    2008-01-01

    Bistable flux closure (FC) states in Co nanoparticle rings can be switched reversibly by applying a coaxial magnetic field (H-z). The FC switching phenomena can be reproduced by micromagnetics simulations, which also reveal novel magnetic states at intermediate applied field strengths.......Bistable flux closure (FC) states in Co nanoparticle rings can be switched reversibly by applying a coaxial magnetic field (H-z). The FC switching phenomena can be reproduced by micromagnetics simulations, which also reveal novel magnetic states at intermediate applied field strengths....

  13. Black Holes, Gravitational Waves, and LISA

    Science.gov (United States)

    Baker, John

    2009-01-01

    Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.

  14. Elemental logging in the KTB Pilot Hole. Pt. 1

    International Nuclear Information System (INIS)

    Grau, J.A.; Schweitzer, J.S.; Draxler, J.K.; Gatto, H.; Lauterjung, J.

    1993-01-01

    Neutron-induced γ-ray spectrometry, of prompt capture and delayed activation, together with natural γ-ray measurements, provide a borehole elemental analysis to characterize rock matrix composition. Elemental concentrations from the prompt capture measurements are derived through the use of a closure model that was developed from data on rocks in a sedimentary environment. This set of spectrometers was used to log the 4000 m of the German Continental Deep Drilling Project (KTB) Pilot Hole. The model was tested, with a minor change, for suitability to the crystalline rock environment. Good overall agreement was found between the logging measurements and laboratory analyses performed on cuttings and cores. (Author)

  15. Nonsingular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [American University of Beirut, Physics Department, Beirut (Lebanon); I.H.E.S., Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Niels Bohr Institute, Niels Bohr International Academy, Copenhagen (Denmark); Ludwig-Maximilians University, Theoretical Physics, Munich (Germany); MPI for Physics, Munich (Germany)

    2017-03-15

    We consider the Schwarzschild black hole and show how, in a theory with limiting curvature, the physical singularity ''inside it'' is removed. The resulting spacetime is geodesically complete. The internal structure of this nonsingular black hole is analogous to Russian nesting dolls. Namely, after falling into the black hole of radius r{sub g}, an observer, instead of being destroyed at the singularity, gets for a short time into the region with limiting curvature. After that he re-emerges in the near horizon region of a spacetime described by the Schwarzschild metric of a gravitational radius proportional to r{sub g}{sup 1/3}. In the next cycle, after passing the limiting curvature, the observer finds himself within a black hole of even smaller radius proportional to r{sub g}{sup 1/9}, and so on. Finally after a few cycles he will end up in the spacetime where he remains forever at limiting curvature. (orig.)

  16. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  17. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  18. Quantum gravity effects in black holes at the LHC

    International Nuclear Information System (INIS)

    Alberghi, G L; Casadio, R; Tronconi, A

    2007-01-01

    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around 1 TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC

  19. Black Holes, the Brightest Objects in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan (Stanford University)

    2009-04-28

    Black holes are everywhere in the Universe. They form when massive stars end their life in a simultaneous violent collapse and energetic explosion. Galaxies end up littered with small black holes, each roughly the mass of ten Suns. Nearly every galaxy center ends up with a single huge black hole, with the mass of a million to a billion Suns. During their lifetimes, black holes chew up their surroundings and spew out ultra-energetic beams of radiation and matter that are visible from across the Universe. In this lecture, I will discuss how black holes form, outline how we detect them, and show movies that illustrate how they work according to Einstein and state-of-the-art computer simulations. We will see that these blackest of all objects in the Universe actually shine the brightest.

  20. Black holes and quantum mechanics

    CERN Document Server

    Wilczek, Frank

    1995-01-01

    1. Qualitative introduction to black holes : classical, quantum2. Model black holes and model collapse process: The Schwarzschild and Reissner-Nordstrom metrics, The Oppenheimer-Volkov collapse scenario3. Mode mixing4. From mode mixing to radiance.

  1. Quantum Mechanics of Black Holes

    OpenAIRE

    Giddings, Steven B.

    1994-01-01

    These lectures give a pedagogical review of dilaton gravity, Hawking radiation, the black hole information problem, and black hole pair creation. (Lectures presented at the 1994 Trieste Summer School in High Energy Physics and Cosmology)

  2. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  3. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  4. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  5. Perturbation methods and closure approximations in nonlinear systems

    International Nuclear Information System (INIS)

    Dubin, D.H.E.

    1984-01-01

    In the first section of this thesis, Hamiltonian theories of guiding center and gyro-center motion are developed using modern symplectic methods and Lie transformations. Littlejohn's techniques, combined with the theory of resonant interaction and island overlap, are used to explore the problem of adiabatic invariance and onset of stochasticity. As an example, the breakdown of invariance due to resonance between drift motion and gyromotion in a tokamak is considered. A Hamiltonian is developed for motion in a straight magnetic field with electrostatic perturbations in the gyrokinetic ordering, from which nonlinear gyrokinetic equations are constructed which have the property of phase-space preservation, useful for computer simulation. Energy invariants are found and various limits of the equations are considered. In the second section, statistical closure theories are applied to simple dynamical systems. The logistic map is used as an example because of its universal properties and simple quadratic nonlinearity. The first closure considered is the direct interaction approximation of Kraichnan, which is found to fail when applied to the logistic map because it cannot approximate the bounded support of the map's equilibrium distribution. By imposing a periodically constraint on a Langevin form of the DIA a new stable closure is developed

  6. Slim hole drilling and testing strategies

    Science.gov (United States)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  7. The dynamics of electron and ion holes in a collisionless plasma

    Directory of Open Access Journals (Sweden)

    B. Eliasson

    2005-01-01

    Full Text Available We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly

  8. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  9. Warped products and black holes

    International Nuclear Information System (INIS)

    Hong, Soon-Tae

    2005-01-01

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  10. Magnetohydrodynamics near a black hole

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    A numerical computer study of hydromagnetic flow near a black hole is presented. First, the equations of motion are developed to a form suitable for numerical computations. Second, the results of calculations describing the magnetic torques exerted by a rotating black hole on a surrounding magnetic plasma and the electric charge that is induced on the surface of the black hole are presented. (auth)

  11. Social and macro economic impact of closure

    International Nuclear Information System (INIS)

    Medeliene, D.

    1999-01-01

    The social consequences of closure of Ignalina NPP will largely depend on the actions the Government takes. If it puts in place the conditions which enable the International Financial Institutions to assist Lithuania, both in providing loans and grants for decommissioning and (in the case of the EU) providing Structural Adjustment Funds for the regional economic development of the Visaginas area, then solutions to the problems of closure can be found. But if the Government delays putting into place the necessary conditions, then Lithuania will be left to solve the problems of - inter alia necessary - closure of Ignalina NPP on its own. (author)

  12. CD-SEM metrology of spike detection on sub-40 nm contact holes

    Science.gov (United States)

    Momonoi, Yoshinori; Osabe, Taro; Yamaguchi, Atsuko; Mclellan Martin, Erin; Koyanagi, Hajime; Colburn, Matthew E.; Torii, Kazuyoshi

    2010-03-01

    In this work, for the purpose of contact-hole process control, new metrics for contact-hole edge roughness (CER) are being proposed. The metrics are correlated to lithographic process variation which result in increased electric fields; a primary driver of time-dependent dielectric breakdown (TDDB). Electric field strength at the tip of spoke-shaped CER has been simulated; and new hole-feature metrics have been introduced. An algorithm for defining critical features like spoke angle, spoke length, etc has been defined. In addition, a method for identifying at-risk holes has been demonstrated. The number of spike holes can determine slight defocus conditions that are not detected though the conventional CER metrics. The newly proposed metrics can identify contact holes with a propensity for increased electric field concentration and are expected to improve contact-hole reliability in the sub-40-nm contact-hole process.

  13. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    prominences, have a significantly higher rate of occurrence in the vicinity of coronal .... coronal holes due to the birth of new holes or the growth of existing holes. .... Statistics of newly formed coronal hole areas (NFOCHA) associated with ...

  14. Star clusters containing massive, central black holes: evolution calculations

    International Nuclear Information System (INIS)

    Marchant, A.B.

    1980-01-01

    This dissertation presents a detailed, two-dimensional simulations of star cluster evolution. A Monte-Carlo method is adapted to simulate the development with time of isolated star clusters. Clusters which evolve on relaxation timescales with and without central black holes are treated. The method is flexible and rugged, rather than highly accurate. It treats the boundary conditions of stellar evaporation and tidal disruption by a central black hole in a precise, stochastic fashion. Dynamical cloning and renormalization and the use of a time-step adjustment algorithm enhance the feasibility of the method which simulates systems with wide ranges of intrinsic length and time scales. First, the method is applied to follow the development and core collapse of an initial Plummer-model cluster without a central black hole. Agreement of these results for early times with the results of previous authors serves as a verification of this method. Three calculations of cluster re-expansion, each beginning with the insertion of a black hole at the center of a highly collapsed cluster core is presented. Each case is characterized by a different value of initial black hole mass or black hole accretion efficiency for the consumption of debris from disrupted stars. It is found that for the special cases examined here substantial, but not catastrophic, growth of the central black hole may accompany core re-expansion. Also, the observability of the evolutionary phases associated with core collapse and re-expansion, constraints on x-ray sources which could be associated with growing black holes, and the observable signature of the cusp of stars surrounding a central black hole are discussed

  15. [Long-term outcome of vitrectomy combined with internal limiting membrane peeling for idiopathic macular holes].

    Science.gov (United States)

    Yamamoto, Kaori; Hori, Sadao

    2011-01-01

    To elucidate the long-term outcome of internal limiting membrane (ILM) peeling on visual function during vitrectomy for idiopathic macular holes using scanning laser ophthalmoscope (SLO) microperimetry. Prospective uncontrolled study. We studied 31 eyes (29 patients) with idiopathic macular holes. All patients underwent vitrectomy with ILM peeling. The SLO microperimetry was performed preoperatively, and once a year for 3 years postoperatively to detect scotomas in and around the macular holes, and both within and in close vicinity to the areas of ILM peeling. Closure of macular holes after one surgery was confirmed in all cases except for 2 with second surgery. The visual acuity by logarithmic minimum angle of resolution (logMAR) averaged 0.71 +/- 0.36 before surgery, 0.23 +/- 0.31 one year, 0.14 +/- 0.27 two years and 0.12 +/- 0.26 three years after surgery. There was significant improvement up to 2 years after the surgery. All scotomas detected before surgery in the holes, and 77.4% of those detected around the holes decreased gradually. No scotomas were detected in or around the area of ILM peeling either before or after surgery. ILM peeling in vitrectomy for idiopathic macular holes successfully improved visual acuity and did not influence retinal sensitivity in and around the area of ILM peeling. The scotomas detected in and around the holes before surgery gradually reduced or disappeared.

  16. Minidisks in Binary Black Hole Accretion

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  17. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  18. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  19. Post-closure resaturation of a deep radioactive waste repository

    International Nuclear Information System (INIS)

    Cox, I.C.S.; Rodwell, W.R.

    1989-03-01

    The post-closure resaturation of a deep radioactive waste repository has been modelled for a number of generic disposal concepts. A combination of numerical ground water flow simulations and analytical calculations has been used to investigate the variation of repository fluid pressure and degree of water saturation with time, and to determine the factors influencing resaturation times. The host rock permeability was found to be the most important determining factor. For geological environments regarded as likely for a waste repository, resaturation is predicted to be a short term process compared with gas generation and contaminant migration timescales. (author)

  20. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  1. Classical black holes: the nonlinear dynamics of curved spacetime.

    Science.gov (United States)

    Thorne, Kip S

    2012-08-03

    Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.

  2. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  3. 2101-M pond closure plan

    International Nuclear Information System (INIS)

    1993-06-01

    This document describes activities for the closure of a surface impoundment (2101-M Pond) at the Hanford Site. The 2101-H Pond was initially constructed in 1953 to serve as a drainage collection area for the 2101-H Building. (Until the Basalt Waste Isolation Project (BWIP) Laboratory was constructed in the 2101-M Building in 1979--1981, the only source contributing discharge to the pond was condensate water from the 2101-H Building heating, ventilation, and air conditioning (HVAC) system. The drains for the BWIP Laboratory rooms were plumbed into a 4-in., cast-iron, low-pressure drain pipe that carries waste water from the HVAC system to the pond. During the active life of the BWIP Laboratory, solutions of dissolved barium in groundwater samples were discharged to the 2101-M Pond via the laboratory drains. As a result of the discharges, a Part A permit application was initially submitted to the Washington State Department of Ecology (Ecology) in August 1986 which designates the 2101-M Pond as a surface impoundment

  4. Black Holes and Firewalls

    Science.gov (United States)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  5. SURGICAL OUTCOMES AFTER INVERTED INTERNAL LIMITING MEMBRANE FLAP VERSUS CONVENTIONAL PEELING FOR VERY LARGE MACULAR HOLES.

    Science.gov (United States)

    Narayanan, Raja; Singh, Sumit R; Taylor, Stanford; Berrocal, Maria H; Chhablani, Jay; Tyagi, Mudit; Ohno-Matsui, Kyoko; Pappuru, Rajeev R; Apte, Rajendra S

    2018-04-23

    To evaluate the anatomical and visual outcomes of inverted flap technique of peeling of internal limiting membrane (ILM) versus standard peeling of ILM for macular holes of basal diameter more than 800 μm. Patients with very large idiopathic macular holes more than 800 μm in basal diameter (ranging from 243 μm to 840 μm in minimum diameter) were retrospectively included in the study. In Group A, 18 eyes of 18 patients underwent ILM peeling using the inverted flap technique. In Group B, 18 eyes of 18 patients underwent conventional ILM peeling. The primary endpoint was the rate of hole closure at 6 months after surgery. The secondary outcome measure was the change in best-corrected visual acuity at 6 months after surgery. There were no significant differences in ocular characteristics of the study groups at baseline except for the age distribution. Mean macular hole diameter was 1,162.8 ± 206.0 μm and 1,229.6 ± 228.1 μm in Group A and Group B, respectively. The hole closure rate was 88.9% (16/18) in Group A and 77.8% (14/18) in Group B (P = 0.66). The mean gain in best-corrected visual acuity was higher in Group A than in Group B (P = 0.12) at 6 months, but this was not statistically significant. There were no severe ocular adverse events in either group. In this multicenter series, inverted ILM flap technique did not lead to significantly higher anatomical closure rates than conventional ILM peeling in large macular holes more than 800 μm in diameter.

  6. Cyanoacrylate for Intraoral Wound Closure: A Possibility?

    Directory of Open Access Journals (Sweden)

    Parimala Sagar

    2015-01-01

    Full Text Available Wound closure is a part of any surgical procedure and the objective of laceration repair or incision closure is to approximate the edges of a wound so that natural healing process may occur. Over the years new biomaterials have been discovered as an alternate to conventional suture materials. Cyanoacrylate bioadhesives are one among them. They carry the advantages of rapid application, patient comfort, resistance to infection, hemostatic properties, and no suture removal anxiety. Hence this study was undertaken to study the effect of long chain cyanoacrylate as an adhesive for intraoral wound closure and also to explore its hemostatic and antibacterial effects. Isoamyl-2-cyanoacrylate (AMCRYLATE was used as the adhesive in the study. In conclusion isoamyl cyanoacrylate can be used for intraoral wound closure, as an alternative to sutures for gluing the mucoperiosteum to bone, for example, after impaction removal, periapical surgeries, and cleft repair. Its hemostatic and antibacterial activity has to be further evaluated.

  7. Reliability assessment of underground shaft closure

    International Nuclear Information System (INIS)

    Fossum, A.F.; Munson, D.E.

    1994-01-01

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties

  8. Initial-State Graviton Radiation in Quantum Black Hole Production

    CERN Document Server

    AUTHOR|(CDS)2262067

    2017-01-01

    Monte Carlo simulation of quantum black hole production in the ATLAS experiment that allows for graviton radiation in the initial state is discussed and studied. It is concluded that, using trapped surface calculations and graviton emission, a black hole signal would be significant for Planck scales up to 4.5 TeV given a proton-proton luminosity of 37 fb$^{-1}$ in the 13 TeV LHC configuration.

  9. Beyond the black hole

    International Nuclear Information System (INIS)

    Boslough, J.

    1985-01-01

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  10. Bumpy black holes

    OpenAIRE

    Emparan, Roberto; Figueras, Pau; Martinez, Marina

    2014-01-01

    We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary non-monotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black ring...

  11. 32 CFR 989.25 - Base closure and realignment.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Base closure and realignment. 989.25 Section 989... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.25 Base closure and realignment. Base closure or realignment may entail special requirements for environmental analysis. The permanent base closure...

  12. Transcatheter closure of ventricular septal defect with Occlutech Duct Occluder.

    Science.gov (United States)

    Atik-Ugan, Sezen; Saltik, Irfan Levent

    2018-04-01

    Patent ductus arteriosus occluders are used for transcatheter closure of ventricular septal defects, as well as for closure of patent ductus arteriosus. The Occlutech Duct Occluder is a newly introduced device for transcatheter closure of patent ductus arteriosus. Here, we present a case in which the Occlutech Duct Occluder was successfully used on a patient for the closure of a perimembraneous ventricular septal defect.

  13. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part I

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this first lecture, we introduce the basic ideas of numerical relativity, highlighting the challenges that arise in simulating gravitational wave sources on a computer.

  14. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part III

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this third and final lecture, we present applications of the results of numerical relativity simulations to gravitational wave detection and astrophysics.

  15. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  16. Comparison of different moment-closure approximations for stochastic chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Schnoerr, David [School of Biological Sciences, University of Edinburgh, Edinburgh (United Kingdom); School of Informatics, University of Edinburgh, Edinburgh (United Kingdom); Sanguinetti, Guido [School of Informatics, University of Edinburgh, Edinburgh (United Kingdom); Grima, Ramon [School of Biological Sciences, University of Edinburgh, Edinburgh (United Kingdom)

    2015-11-14

    In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose deterministic rate equations show the properties of bistability, ultrasensitivity, and oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied MAs. In particular, we found that (i) the size of the region of parameter space where a closure gives physically meaningful results, e.g., positive mean and variance, is considerably larger for the normal closure than for the other three closures, (ii) the accuracy of the predictions of the four closures (relative to simulations using the stochastic simulation algorithm) is comparable in those regions of parameter space where all closures give physically meaningful results, and (iii) the Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in molecule numbers. We also describe the new software package MOCA which enables the automated numerical analysis of various MA methods in a graphical user interface and which was used to perform the comparative analysis presented in this paper. MOCA allows the user to develop novel closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity functions, thus being applicable to virtually any chemical reaction system.

  17. Black holes and holography

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2012-01-01

    The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.

  18. Special closures for steel drum shipping containers

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Otts, J.V.

    1976-01-01

    The objective of this program was to develop special lid closures for typical, steel drum, radioactive material shipping containers. Previous experience and testing had shown that the existing container was adequate to withstand the required environmental tests for certification, but that the lid and closure were just marginally effective. Specifically, the lid closure failed to consistently maintain a tight seal between the container and the lid after drop tests, thus causing the package contents to be vulnerable in the subsequent fire test. Recognizing the deficiency, the United States Energy Research and Development Administration requested the development of new closure(s) which would: (1) be as strong and resistant to a drop as the bottom of the container; (2) have minimal economic impact on the overall container cost; (3) maximize the use of existing container designs; (4) consider crush loads; and (5) result in less dependence on personnel and loading procedures. Several techniques were evaluated and found to be more effective than the standard closure mechanism. Of these, three new closure techniques were designed, fabricated, and proven to be structurally adequate to provide containment when a 454-kg drum was drop tested from 9.14-m onto an unyielding surface. The three designs were: (1) a 152-mm long lid extension or skirt welded to the standard drum lid, (2) a separate inner lid, with 152-mm long skirt and (3) C-clamps used at the container-lid interface. Based upon structural integrity, economic impact, and minimal design change, the lid extension is the recommended special closure

  19. Factors affecting closure of a temporary stoma.

    Science.gov (United States)

    Taylor, Claire; Varma, Sarah

    2012-01-01

    The purpose of the study was to examine time to reversal of a temporary ostomy, reasons for delayed closure, and patient satisfaction with the scheduling of their closure and related hospital care. Cross-sectional, descriptive study. The target population comprised patients who underwent creation of a temporary ostomy and reversal surgery within one National Health System Hospital Trust in the United Kingdom. The population served by this Trust are ethnically and socioeconomically diverse, predominantly living in urban areas around Greater London. Sixty-one persons who met inclusion criteria were identified. A two-step analytical process was undertaken. First, a literature review examining incidence and causes of delayed stoma closure was undertaken. Second, a postal survey of all patients who had had their stoma closed in 2009 was conducted. Respondents were allowed 2 weeks to complete and return the questionnaire. The survey instrument was developed locally and subjected to content validation using ostomy patients, surgical and nursing colleagues. It consisted of 9 questions querying time from original surgery to closure, reasons for delaying closure surgery beyond 12 weeks, and satisfaction with care. Twenty-seven patients returned their questionnaires, indicating they consented to participate; a response rate of 44%. Half of the respondents (n = 14 [52%]) underwent closure surgery within 6 months of stoma formation; the remaining 48% waited more than 6 months (median: 6.5 months, range: 1.5-26 months). Thirteen patients (48%) reported a delay in receiving their stoma closure; the main reason cited was the need for a course of adjuvant postoperative chemotherapy. Three quarters of respondents (22 [74%]) were satisfied with the overall care they received. Findings from this study suggest that stoma closure may be associated with fewest complications if performed before 12 weeks.

  20. Exceptional closure of UNIQA office at CERN

    CERN Multimedia

    HR Department

    2009-01-01

    The UNIQA office at CERN will be closed from Wednesday 18 February to Friday 20 February due to painting work. During this closure, the Headquarters of UNIQA in Geneva will remain at the disposal of the members. See details https://cern.ch/chis/UNIQA_Offices.asp The CERN office will re-open on Monday 23 February according to the normal schedule. We apologise for any inconvenience caused by this closure.

  1. ASD Closure in Structural Heart Disease.

    Science.gov (United States)

    Wiktor, Dominik M; Carroll, John D

    2018-04-17

    While the safety and efficacy of percutaneous ASD closure has been established, new data have recently emerged regarding the negative impact of residual iatrogenic ASD (iASD) following left heart structural interventions. Additionally, new devices with potential advantages have recently been studied. We will review here the potential indications for closure of iASD along with new generation closure devices and potential late complications requiring long-term follow-up. With the expansion of left-heart structural interventions and large-bore transseptal access, there has been growing experience gained with management of residual iASD. Some recently published reports have implicated residual iASD after these procedures as a potential source of diminished clinical outcomes and mortality. Additionally, recent trials investigating new generation closure devices as well as expanding knowledge regarding late complications of percutaneous ASD closure have been published. While percutaneous ASD closure is no longer a novel approach to managing septal defects, there are several contemporary issues related to residual iASD following large-bore transseptal access and new generation devices which serve as an impetus for this review. Ongoing attention to potential late complications and decreasing their incidence with ongoing study is clearly needed.

  2. Percutaneous Transcatheter PDA Device Closure in Infancy

    International Nuclear Information System (INIS)

    Ullah, M.; Sultan, M.; Akhtar, K.; Sadiq, N.; Akbar, H.

    2014-01-01

    Objective: To evaluate the results and complications associated with transcatheter closure of patent ductus arteriosus (PDA) in infants. Study Design: Quasi-experimental study. Place and Duration of Study: Paediatric Cardiology Department of Armed Forces Institute of Cardiology / National Institute of Heart Diseases (AFIC/NIHD), Rawalpindi, from December 2010 to June 2012. Methodology: Infants undergoing transcatheter device closure of PDA were included. All patients were evaluated by experienced Paediatric Cardiologists with 2-D echocardiography and Doppler before the procedure. Success of closure and complications were recorded. Results: The age of patients varied from 05 - 12 months and 31 (56.4%) were females. Out of the 55 infants, 3 (5.4%) were not offered device closure after aortogram (two large tubular type ducts and one tiny duct, considered unsuitable for device closure); while in 50 (96.1%) patients out of remaining 52, the duct was successfully closed with transcatheter PDA device or coil. In one infant, device deployment resulted in acquired coarctation, necessitating device retrieval by Snare followed by surgical duct interruption and another patient had non-fatal cardiac arrest during device deployment leading to abandonment of procedure and subsequent successful surgical interruption. Local vascular complications occurred in 12 (21.8%) of cases and all were satisfactorily treated. Conclusion: Transcatheter device closure of PDA in infants was an effective procedure in the majority of cases; however, here were considerable number of local access site vascular complications. (author)

  3. Electron holes observed in the Moon Plasma Wake

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Electrostatic instabilities are predicted in the magnetized wake of plasma flowing past a non-magnetic absorbing object such as a probe or the moon. Analysis of the data from the Artemis satellites, now orbiting the moon at distances ten moon radii and less, shows very clear evidence of fast-moving isolated solitary potential structures causing bipolar electric field excursions as they pass the satellite's probes. These structures have all the hallmarks of electron holes: BGK solitons typically a few Debye-lengths in size, self-sustaining by a deficit of phase-space density on trapped orbits. Electron holes are now observed to be widespread in space plasmas. They have been observed in PIC simulations of the moon wake to be the non-linear consequence of the predicted electron instabilities. Simulations document hole prevalence, speed, length, and depth; and theory can explain many of these features from kinetic analysis. The solar wind wake is certainly the cause of the overwhelming majority of the holes observed by Artemis, because we observe almost all holes to be in or very near to the wake. We compare theory and simulation of the hole generation, lifetime, and transport mechanisms with observations. Work partially supported by NASA Grant NNX16AG82G.

  4. 105-DR Large Sodium Fire Facility closure activities evaluation report

    International Nuclear Information System (INIS)

    Adler, J.G.

    1996-01-01

    This report evaluates the closure activities at the 105-DR Large Sodium Fire Facility. The closure activities discussed include: the closure activities for the structures, equipment, soil, and gravel scrubber; decontamination methods; materials made available for recycling or reuse; and waste management. The evaluation compares these activities to the regulatory requirements and closure plan requirements. The report concludes that the areas identified in the closure plan can be clean closed

  5. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, G.A.; Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States); Davies, P.B. [Sandia National Labs., Albuquerque, NM (United States)

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  6. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    International Nuclear Information System (INIS)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time

  7. Primary closure in colon trauma.

    Science.gov (United States)

    Salinas-Aragón, Luis Enrique; Guevara-Torres, Lorenzo; Vaca-Pérez, Enrique; Belmares-Taboada, Jaime Arístides; Ortiz-Castillo, Fátima de Guadalupe; Sánchez-Aguilar, Martín

    2009-01-01

    Primary repair of colon injuries is an accepted therapeutic option; however, controversy persists regarding its safety. Our objective was to report the evolution and presence of complications in patients with colon injury who underwent primary closure and to determine if the time interval (>6 h), degree of injury, contamination, anatomic site injured, PATI (Penetrating Abdominal Trauma Index) >25, and the presence of other injuries in colon trauma are associated with increased morbidity and mortality. This was a prospective, observational, longitudinal and descriptive study conducted at the Central Hospital "Dr. Ignacio Morones Prieto," San Luis Potosí, Mexico, from January 1, 2003 to December 31, 2007. We included patients with abdominal trauma with colon injury subjected to surgical treatment. chi(2) was used for basic statistical analysis. There were 481 patients with abdominal trauma who underwent surgery; 77(16.1%) had colon injury. Ninety percent (n = 69) were treated in the first 6 h; 91% (n = 70) were due to penetrating injuries, and gunshot wound accounted for 48% (n = 37). Transverse colon was the most frequently injured (38%) (n = 29). Grade I and II injuries accounted for 75.3% (n = 58). Procedures included primary repair (76.66 %) (n = 46); resection with anastomosis (8.3%) (n = 5); and colostomy (15%) (n = 9). Associated injuries were present in 76.6% (n = 59). There was some degree of contamination in 85.7% (n = 66); 82.8% (58) had PATI colon injury. Primary repair is a safe procedure for treatment of colon injuries. Patients with primary repair had lower morbidity (p <0.009). Surgery during the first 6 h (p <0.006) and in hemodynamically stable patients (p <0.014) had a lower risk of complications.

  8. Accelerating cleanup: Paths to closure

    International Nuclear Information System (INIS)

    1998-06-01

    This report describes the status of Environmental Management's (EM's) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE's 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM's accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document

  9. Reconstructing the massive black hole cosmic history through gravitational waves

    International Nuclear Information System (INIS)

    Sesana, Alberto; Gair, Jonathan; Berti, Emanuele; Volonteri, Marta

    2011-01-01

    The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of 'electromagnetically invisible' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ''feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of 'model mixing', by drawing the observed population from some combination of the 'pure' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ''mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.

  10. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  11. BLACK HOLE-GALAXY CORRELATIONS WITHOUT SELF-REGULATION

    International Nuclear Information System (INIS)

    Anglés-Alcázar, Daniel; Özel, Feryal; Davé, Romeel

    2013-01-01

    Recent models of black hole growth in a cosmological context have forwarded a paradigm in which the growth is self-regulated by feedback from the black hole itself. Here we use cosmological zoom simulations of galaxy formation down to z = 2 to show that such strong self-regulation is required in the popular spherical Bondi accretion model, but that a plausible alternative model in which black hole growth is limited by galaxy-scale torques does not require self-regulation. Instead, this torque-limited accretion model yields black holes and galaxies evolving on average along the observed scaling relations by relying only on a fixed, 5% mass retention rate onto the black hole from the radius at which the accretion flow is fed. Feedback from the black hole may (and likely does) occur, but does not need to couple to galaxy-scale gas in order to regulate black hole growth. We show that this result is insensitive to variations in the initial black hole mass, stellar feedback, or other implementation details. The torque-limited model allows for high accretion rates at very early epochs (unlike the Bondi case), which if viable can help explain the rapid early growth of black holes, while by z ∼ 2 it yields Eddington factors of ∼1%-10%. This model also yields a less direct correspondence between major merger events and rapid phases of black hole growth. Instead, growth is more closely tied to cosmological disk feeding, which may help explain observational studies showing that, at least at z ∼> 1, active galaxies do not preferentially show merger signatures.

  12. Black Hole Area Quantization rule from Black Hole Mass Fluctuations

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...

  13. Study on antioxidant experiment on forged steel tube sheet and tube hole for steam generator

    International Nuclear Information System (INIS)

    Zong Hai; Wang Detai; Ding Yang

    2012-01-01

    Antioxidant experiment on forged steel tube sheet and tube hole for steam generator was studied and the influence of different simulated heat treatments on the antioxidant performance of tube sheet and tube hole was made. The influence of different antioxidant methods on the size of tube hole was drawn. Furthermore, the change of size and weight of 18MnD5 forged steel tube sheet on the condition of different simulated heat treatments was also studied. The analytical results have proved reference information for the use of 18MnD5 material and for key processes of processing tube hole and wearing and expanding U-style tube. (authors)

  14. The doubling of stellar black hole nuclei

    Science.gov (United States)

    Kazandjian, Mher V.; Touma, J. R.

    2013-04-01

    It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.

  15. Black hole feedback on the first galaxies

    Science.gov (United States)

    Jeon, Myoungwon; Pawlik, Andreas H.; Greif, Thomas H.; Glover, Simon C. O.; Bromm, Volker; Milosavljević, Miloš; Klessen, Ralf S.

    2012-09-01

    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through selfconsistent, cosmological simulations. X-ray radiation fromthe accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback startingwith the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.

  16. 40 CFR 264.228 - Closure and post-closure care.

    Science.gov (United States)

    2010-07-01

    ... remaining wastes to a bearing capacity sufficient to support final cover; and (iii) Cover the surface....112 must include both a plan for complying with paragraph (a)(1) of this section and a contingent plan... practicably removed at closure; and (ii) The owner or operator must prepare a contingent post-closure plan...

  17. Post-operative analgesic requirement in non-closure and closure of peritoneum during open appendectomy

    International Nuclear Information System (INIS)

    Khan, A.W.; Maqsood, R.; Saleem, M.M.

    2017-01-01

    To compare the mean post-operative analgesic requirement in non-closure and closure of peritoneum during open appendectomy. Study Design: Randomized controlled trial. Place and Duration of Study: Department of General Surgery Combined Military Hospital Quetta, from 1st August 2014 to 30th April 2015. Material and Methods: A total of 60 patients were included in this study and were divided into two groups of 30 each. Patients in group A underwent open appendectomy with closure of peritoneum while patients in group B had non-closure of peritoneum during the same procedure. Post-operatively, pain severity was assessed on visual analogue scale (VAS) numeric pain distress scale. On presence of VAS numeric pain distress scale between 5 to 7, intramuscular (IM) diclofenac sodium was given and on score >7, intravascular (IV) tramadol was given. The final outcome was measured at day 0 and day 1. Results: Pain score and analgesic requirements were significantly less in non-closure group than closure group on day 0 and day 1, showing statistically significant difference between the two groups. Conclusion: Mean post-operative analgesic requirement is significantly less in non-closure group as compared to closure group during open appendectomy. (author)

  18. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  19. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  20. Quantum effects in black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1979-01-01

    A strict definition of black holes is presented and some properties with regard to their mass are enumerated. The Hawking quantum effect - the effect of vacuum instability in the black hole gravitational field, as a result of shich the black hole radiates as a heated body is analyzed. It is shown that in order to obtain results on the black hole radiation it is sufficient to predetermine the in-vacuum state at a time moment in the past, when the collapsing body has a large size, and its gravitational field can be neglected. The causes and the place of particle production by the black hole, and also the space-time inside the black hole, are considered

  1. Particle creation by black holes

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1975-01-01

    In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de

  2. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  3. Scalp Wound Closure with K wires: An alternative easier method to scalp wound closure.

    Science.gov (United States)

    Ramesh, S; Ajik, S

    2012-12-01

    Scalp defects and lacerations present a reconstructive challenge to plastic surgeons. Many methods have been described from the use of skin grafting to rotation flaps. Here we present a method of closure of a contaminated scalp wound with the use of Kirschner wires. In our case, closure of scalp laceration was made possible with the use of 1.4 Kirschner wires and cable tie/ zip tie fasteners. The duration to closure of wound was 10 days. In reconstructing the scalp defect, this method was found to adhere to principles of scalp reconstruction. There were no post operative complications found from the procedure. On initial application on the edge of the wound, tension applied caused the K wires to cut through the wound edge. On replacement of K wires 1cm away from wound edge the procedure was not plagued by any further complication. In conclusion we find scalp closure with Kirschner wires are a simple and effective method for scalp wound closure.

  4. Are black holes overproduced during preheating?

    International Nuclear Information System (INIS)

    Suyama, Teruaki; Tanaka, Takahiro; Bassett, Bruce; Kudoh, Hideaki

    2005-01-01

    We provide a simple but robust argument that primordial black hole production generically does not exceed astrophysical bounds during the resonant preheating phase after inflation. This conclusion is supported by fully nonlinear lattice simulations of various models in two and three dimensions which include rescattering but neglect metric perturbations. We examine the degree to which preheating amplifies density perturbations at the Hubble scale and show that, at the end of the parametric resonance, power spectra are universal, with no memory of the power spectrum at the end of inflation. In addition, we show how the probability distribution of density perturbations changes from exponential on very small scales to Gaussian when smoothed over the Hubble scale - the crucial length for studies of primordial black hole formation - hence justifying the standard assumption of Gaussianity

  5. Black-hole universe: time evolution.

    Science.gov (United States)

    Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi

    2013-10-18

    Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.

  6. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  7. Relativistic hydrodynamics in the presence of puncture black holes

    International Nuclear Information System (INIS)

    Faber, Joshua A.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke; Baumgarte, Thomas W.

    2007-01-01

    Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole-neutron star problem using conformal thin-sandwich initial data

  8. Iron Kα line of Kerr black holes with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yueying; Zhou, Menglei; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Cárdenas-Avendaño, Alejandro [Programa de Matemática, Fundación Universitaria Konrad Lorenz, Carrera 9 Bis No. 62-43, 110231 Bogotá (Colombia); Herdeiro, Carlos A R; Radu, Eugen, E-mail: yyni13@fudan.edu.cn, E-mail: mlzhou13@fudan.edu.cn, E-mail: alejandro.cardenasa@konradlorenz.edu.co, E-mail: bambi@fudan.edu.cn, E-mail: herdeiro@ua.pt, E-mail: eugen.radu@ua.pt [Departamento de Física da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro (Portugal)

    2016-07-01

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J , these objects are characterized by a Noether charge Q , measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q , ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. In the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q , because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.

  9. Dynamical evolution of quasicircular binary black hole data

    International Nuclear Information System (INIS)

    Alcubierre, Miguel; Bruegmann, Bernd; Diener, Peter; Guzman, F. Siddhartha; Hawke, Ian; Hawley, Scott; Herrmann, Frank; Pollney, Denis; Thornburg, Jonathan; Koppitz, Michael; Seidel, Edward

    2005-01-01

    We study the fully nonlinear dynamical evolution of binary black hole data, whose orbital parameters are specified via the effective potential method for determining quasicircular orbits. The cases studied range from the Cook-Baumgarte innermost stable circular orbit (ISCO) to significantly beyond that separation. In all cases we find the black holes to coalesce (as determined by the appearance of a common apparent horizon) in less than half an orbital period. The results of the numerical simulations indicate that the initial holes are not actually in quasicircular orbits, but that they are in fact nearly plunging together. The dynamics of the final horizon are studied to determine physical parameters of the final black hole, such as its spin, mass, and oscillation frequency, revealing information about the inspiral process. We show that considerable resolution is required to extract accurate physical information from the final black hole formed in the merger process, and that the quasinormal modes of the final hole are strongly excited in the merger process. For the ISCO case, by comparing physical measurements of the final black hole formed to the initial data, we estimate that less than 3% of the total energy is radiated in the merger process

  10. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-04-05

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  11. Stomal Closure: Strategies to Prevent Incisional Hernia

    Science.gov (United States)

    Harries, Rhiannon L.; Torkington, Jared

    2018-01-01

    Incisional hernias following ostomy reversal occur frequently. Incisional hernias at the site of a previous stoma closure can cause significant morbidity, impaired quality of life, lead to life-threatening hernia incarceration or strangulation and result in a significant financial burden on health care systems Despite this, the evidence base on the subject is limited. Many recognised risk factors for the development of incisional hernia following ostomy reversal are related to patient factors such as age, malignancy, diabetes, COPD, hypertension and obesity, and are not easily correctable. There is a limited amount of evidence to suggest that prophylactic mesh reinforcement may be of benefit to reduce the post stoma closure incisional hernia rate but a further large scale randomised controlled trial is due to report in the near future. There appears to be weak evidence to suggest that surgeons should favour circular, or “purse-string” closure of the skin following stoma closure in order to reduce the risk of SSI, which in turn may reduce incisional hernia formation. There remains the need for further evidence in relation to suture technique, skin closure techniques, mechanical bowel preparation and oral antibiotic prescription focusing on incisional hernia development as an outcome measure. Within this review, we discuss in detail the evidence base for the risk factors for the development of, and the strategies to prevent ostomy reversal site incisional hernias. PMID:29670882

  12. Angle closure glaucoma in congenital ectropion uvea

    Directory of Open Access Journals (Sweden)

    Grace M. Wang

    2018-06-01

    Full Text Available Purpose: Congenital ectropion uvea is a rare anomaly, which is associated with open, but dysplastic iridocorneal angles that cause childhood glaucoma. Herein, we present 3 cases of angle-closure glaucoma in children with congenital ectropion uvea. Observations: Three children were initially diagnosed with unilateral glaucoma secondary to congenital ectropion uvea at 7, 8 and 13 years of age. The three cases showed 360° of ectropion uvea and iris stromal atrophy in the affected eye. In one case, we have photographic documentation of progression to complete angle closure, which necessitated placement of a glaucoma drainage device 3 years after combined trabeculotomy and trabeculectomy. The 2 other cases, which presented as complete angle closure, also underwent glaucoma drainage device implantation. All three cases had early glaucoma drainage device encapsulation (within 4 months and required additional surgery (cycloablation or trabeculectomy. Conclusions and importance: Congenital ectropion uvea can be associated with angle-closure glaucoma, and placement of glaucoma drainage devices in all 3 of our cases showed early failure due to plate encapsulation. Glaucoma in congenital ectropion uvea requires attention to angle configuration and often requires multiple surgeries to obtain intraocular pressure control. Keywords: Congenital ectropion uvea, Juvenile glaucoma, Angle-closure glaucoma, Glaucoma drainage device

  13. Closure of shallow underground injection wells

    International Nuclear Information System (INIS)

    Veil, J.A.; Grunewald, B.

    1993-01-01

    Shallow injection wells have long been used for disposing liquid wastes. Some of these wells have received hazardous or radioactive wastes. According to US Environmental Protection Agency (EPA) regulations, Class IV wells are those injection wells through which hazardous or radioactive wastes are injected into or above an underground source of drinking water (USDW). These wells must be closed. Generally Class V wells are injection wells through which fluids that do not contain hazardous or radioactive wastes are injected into or above a USDW. Class V wells that are responsible for violations of drinking water regulations or that pose a threat to human health must also be closed. Although EPA regulations require closure of certain types of shallow injection wells, they do not provide specific details on the closure process. This paper describes the regulatory background, DOE requirements, and the steps in a shallow injection well closure process: Identification of wells needing closure; monitoring and disposal of accumulated substances; filling and sealing of wells; and remediation. In addition, the paper describes a major national EPA shallow injection well enforcement initiative, including closure plan guidance for wells used to dispose of wastes from service station operations

  14. Stomal Closure: Strategies to Prevent Incisional Hernia

    Directory of Open Access Journals (Sweden)

    Rhiannon L. Harries

    2018-04-01

    Full Text Available Incisional hernias following ostomy reversal occur frequently. Incisional hernias at the site of a previous stoma closure can cause significant morbidity, impaired quality of life, lead to life-threatening hernia incarceration or strangulation and result in a significant financial burden on health care systems Despite this, the evidence base on the subject is limited. Many recognised risk factors for the development of incisional hernia following ostomy reversal are related to patient factors such as age, malignancy, diabetes, COPD, hypertension and obesity, and are not easily correctable. There is a limited amount of evidence to suggest that prophylactic mesh reinforcement may be of benefit to reduce the post stoma closure incisional hernia rate but a further large scale randomised controlled trial is due to report in the near future. There appears to be weak evidence to suggest that surgeons should favour circular, or “purse-string” closure of the skin following stoma closure in order to reduce the risk of SSI, which in turn may reduce incisional hernia formation. There remains the need for further evidence in relation to suture technique, skin closure techniques, mechanical bowel preparation and oral antibiotic prescription focusing on incisional hernia development as an outcome measure. Within this review, we discuss in detail the evidence base for the risk factors for the development of, and the strategies to prevent ostomy reversal site incisional hernias.

  15. Strategic Planning for Hot Cell Closure

    International Nuclear Information System (INIS)

    LANGSTAFF, D.C.

    2001-01-01

    The United States Department of Energy (DOE) and its contractor were remediating a large hot cell complex to mitigate the radiological hazard. A Resource Conservation and Recovery Act (RCRA) closure unit was determined to be located within the complex. The regulator established a challenge to develop an acceptable closure plan on a short schedule (four months). The scope of the plan was to remove all excess equipment and mixed waste from the closure unit, establish the requirements of the legally binding Closure Plan and develop an acceptable schedule. The complex has several highly radioactive tanks, tank vaults, piping, and large hot cells containing complex chemical processing equipment. Driven by a strong need to develop an effective strategy to meet cleanup commitments, three principles were followed to develop an acceptable plan: (1) Use a team approach, (2) Establish a buffer zone to support closure, and (3) Use good practice when planning the work sequence. The team was composed of DOE, contractor, and Washington State Department of Ecology (Regulator) staff. The team approach utilized member expertise and fostered member involvement and communication. The buffer zone established an area between the unregulated parts of the building and the areas that were allegedly not in compliance with environmental standards. Introduction of the buffer zone provided simplicity, clarity, and flexibility into the process. Using good practice means using the DOE Integrated Safety Management Core Functions for planning and implementing work safely. Paying adequate attention to detail when the situation required contributed to the process credibility and a successful plan

  16. Acceleration of black hole universe

    Science.gov (United States)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  17. On black hole horizon fluctuations

    International Nuclear Information System (INIS)

    Tuchin, K.L.

    1999-01-01

    A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken

  18. Black holes and the multiverse

    International Nuclear Information System (INIS)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-01-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse

  19. Black holes and the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  20. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  1. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    Strominger, A.

    1996-01-01

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  2. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  3. Black Hole Paradox Solved By NASA's Chandra

    Science.gov (United States)

    2006-06-01

    . Using Chandra, Miller and his team provided crucial evidence for the role of magnetic forces in the black hole accretion process. The X-ray spectrum, the number of X-rays at different energies, showed that the speed and density of the wind from J1655's disk corresponded to computer simulation predictions for magnetically-driven winds. The spectral fingerprint also ruled out the two other major competing theories to winds driven by magnetic fields. "In 1973, theorists came up with the idea that magnetic fields could drive the generation of light by gas falling onto black holes," said co-author John Raymond of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Now, over 30 years later, we finally may have convincing evidence." Evidence for Wind in the GRO J1655-40 Spectrum Evidence for Wind in the GRO J1655-40 Spectrum This deeper understanding of how black holes accrete matter also teaches astronomers about other properties of black holes, including how they grow. "Just as a doctor wants to understand the causes of an illness and not merely the symptoms, astronomers try to understand what causes phenomena they see in the Universe," said co-author Danny Steeghs also of the Harvard-Smithsonian Center for Astrophysics. "By understanding what makes material release energy as it falls onto black holes, we may also learn how matter falls onto other important objects." In addition to accretion disks around black holes, magnetic fields may play an important role in disks detected around young sun-like stars where planets are forming, as well as ultra-dense objects called neutron stars. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  4. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  5. Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Directory of Open Access Journals (Sweden)

    K. J. Sanchez

    2017-08-01

    Full Text Available Top-down and bottom-up aerosol–cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding European collaborative project, with the goal of understanding key processes affecting aerosol–cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN concentration were used to initiate a 1-D microphysical aerosol–cloud parcel model (ACPM. UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF by between 25 and 60 W m−2. After

  6. A nonlinear structural subgrid-scale closure for compressible MHD. I. Derivation and energy dissipation properties

    Energy Technology Data Exchange (ETDEWEB)

    Vlaykov, Dimitar G., E-mail: Dimitar.Vlaykov@ds.mpg.de [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany); Grete, Philipp [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, Wolfram [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Schleicher, Dominik R. G. [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C (Chile)

    2016-06-15

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.

  7. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Chen, Longqing; Syed, Ahad A.; Wang, Xianbin

    2014-01-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  8. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng

    2014-04-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  9. Is black-hole ringdown a memory of its progenitor?

    Science.gov (United States)

    Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S

    2012-10-05

    We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.

  10. Black holes as critical point of quantum phase transition.

    Science.gov (United States)

    Dvali, Gia; Gomez, Cesar

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  11. The immediate environment of an astrophysical black hole

    Science.gov (United States)

    Contopoulos, I.

    2018-01-01

    In view of the upcoming observations with the Event Horizon Telescope (EHT), we present our thoughts on the immediate environment of an astrophysical black hole. We are concerned that two approximations used in general relativistic magnetohydrodynamic numerical simulations, namely numerical density floors implemented near the base of the black hole jet, and a magnetic field that comes from large distances, may mislead our interpretation of the observations. We predict that three physical processes will manifest themselves in EHT observations, namely dynamic pair formation just above the horizon, electromagnetic energy dissipation along the boundary of the black hole jet, and a region of weak magnetic field separating the black hole jet from the disc wind.

  12. A mapping closure for turbulent scalar mixing using a time-evolving reference field

    Science.gov (United States)

    Girimaji, Sharath S.

    1992-01-01

    A general mapping-closure approach for modeling scalar mixing in homogeneous turbulence is developed. This approach is different from the previous methods in that the reference field also evolves according to the same equations as the physical scalar field. The use of a time-evolving Gaussian reference field results in a model that is similar to the mapping closure model of Pope (1991), which is based on the methodology of Chen et al. (1989). Both models yield identical relationships between the scalar variance and higher-order moments, which are in good agreement with heat conduction simulation data and can be consistent with any type of epsilon(phi) evolution. The present methodology can be extended to any reference field whose behavior is known. The possibility of a beta-pdf reference field is explored. The shortcomings of the mapping closure methods are discussed, and the limit at which the mapping becomes invalid is identified.

  13. Biological constraints do not entail cognitive closure.

    Science.gov (United States)

    Vlerick, Michael

    2014-12-01

    From the premise that our biology imposes cognitive constraints on our epistemic activities, a series of prominent authors--most notably Fodor, Chomsky and McGinn--have argued that we are cognitively closed to certain aspects and properties of the world. Cognitive constraints, they argue, entail cognitive closure. I argue that this is not the case. More precisely, I detect two unwarranted conflations at the core of arguments deriving closure from constraints. The first is a conflation of what I will refer to as 'representation' and 'object of representation'. The second confuses the cognitive scope of the assisted mind for that of the unassisted mind. Cognitive closure, I conclude, cannot be established from pointing out the (uncontroversial) existence of cognitive constraints. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  15. Primary closure of equine laryngotomy incisions

    DEFF Research Database (Denmark)

    Lindegaard, C.; Karlsson, L.; Ekstrøm, Claus Thorn

    2016-01-01

    incision between January 1995 and June 2012 were reviewed. Horses with a laryngotomy incision closed in three layers for primary healing were included. Descriptive data on healing characteristics and complications of laryngotomy wounds were collected from the medical records and via follow......The objective was to report healing characteristics and complications after primary closure of equine laryngotomies and analyse factors potentially associated with complications. This retrospective case series of the medical records of horses (n = 180) undergoing laryngoplasty and laryngotomy...... after primary closure of equine laryngotomy incisions are infrequent and considered of minimal severity and can be performed safely when paying careful attention to the closure of the cricothyroid membrane....

  16. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    Science.gov (United States)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron

  17. 30 CFR 57.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  18. 30 CFR 56.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  19. A kinematic view of loop closure.

    Science.gov (United States)

    Coutsias, Evangelos A; Seok, Chaok; Jacobson, Matthew P; Dill, Ken A

    2004-03-01

    We consider the problem of loop closure, i.e., of finding the ensemble of possible backbone structures of a chain segment of a protein molecule that is geometrically consistent with preceding and following parts of the chain whose structures are given. We reduce this problem of determining the loop conformations of six torsions to finding the real roots of a 16th degree polynomial in one variable, based on the robotics literature on the kinematics of the equivalent rotator linkage in the most general case of oblique rotators. We provide a simple intuitive view and derivation of the polynomial for the case in which each of the three pair of torsional axes has a common point. Our method generalizes previous work on analytical loop closure in that the torsion angles need not be consecutive, and any rigid intervening segments are allowed between the free torsions. Our approach also allows for a small degree of flexibility in the bond angles and the peptide torsion angles; this substantially enlarges the space of solvable configurations as is demonstrated by an application of the method to the modeling of cyclic pentapeptides. We give further applications to two important problems. First, we show that this analytical loop closure algorithm can be efficiently combined with an existing loop-construction algorithm to sample loops longer than three residues. Second, we show that Monte Carlo minimization is made severalfold more efficient by employing the local moves generated by the loop closure algorithm, when applied to the global minimization of an eight-residue loop. Our loop closure algorithm is freely available at http://dillgroup. ucsf.edu/loop_closure/. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 510-528, 2004

  20. Hole transport in c-plane InGaN-based green laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Liu, Jianping, E-mail: jpliu2010@sinano.ac.cn; Tian, Aiqin; Zhang, Feng; Feng, Meixin; Hu, Weiwei; Zhang, Shuming; Ikeda, Masao; Li, Deyao; Zhang, Liqun; Yang, Hui [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); School of Nano Technology and Nano Bionics, University of Science and Technology of China, Suzhou 215123 (China)

    2016-08-29

    Hole transport in c-plane InGaN-based green laser diodes (LDs) has been investigated by both simulations and experiments. It is found that holes can overflow from the green double quantum wells (DQWs) at high current density, which reduces carrier injection efficiency of c-plane InGaN-based green LDs. A heavily silicon-doped layer right below the green DQWs can effectively suppress hole overflow from the green DQWs.

  1. Reactor vessel closure head replacements in 1997

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The Framatome-Jeumont Industrie consortium have completed in 1997 28 reactor vessel (RV) closure head replacements, including five on 1300 MWe class PWR units. Framatome manages the operations and handles removal and reinstallation of equipment (not including the control rod drive mechanisms (CRDM)) and the requalification tests, while JI, which manufactures the CRDMs, is involved in the CRDM cutting, re-machining and welding operations, using tools of original design, in order to optimize the RV closure head operation in terms of costs, schedule and dosage

  2. Closure properties of Watson-Crick grammars

    Science.gov (United States)

    Zulkufli, Nurul Liyana binti Mohamad; Turaev, Sherzod; Tamrin, Mohd Izzuddin Mohd; Azeddine, Messikh

    2015-12-01

    In this paper, we define Watson-Crick context-free grammars, as an extension of Watson-Crick regular grammars and Watson-Crick linear grammars with context-free grammar rules. We show the relation of Watson-Crick (regular and linear) grammars to the sticker systems, and study some of the important closure properties of the Watson-Crick grammars. We establish that the Watson-Crick regular grammars are closed under almost all of the main closure operations, while the differences between other Watson-Crick grammars with their corresponding Chomsky grammars depend on the computational power of the Watson-Crick grammars which still need to be studied.

  3. Straight line closure of congenital macrostomia

    Directory of Open Access Journals (Sweden)

    Schwarz Richard

    2004-01-01

    Full Text Available The results of patients operated on by Nepal Cleft Lip and Palate Association (NECLAPA surgeons for congenital macrostomia were prospectively studied between January 2000 and December 2002. There were four males and three females with a median age of 10 years. Three had an associated branchial arch syndrome. In all patients an overlapping repair of orbicularis oris was done. Six patients had a straight line closure with excellent cosmetic results and one a Z-plasty with a more obvious scar. All had a normal appearing commissure. Overlapping orbicularis repair with straight line skin closure for this rare congenital anomaly is recommended.

  4. Environmental considerations in mine closure planning

    International Nuclear Information System (INIS)

    Ricks, G.

    1997-01-01

    Mine closure planning considers the best ways to plan and manage the environmental changes and socio-economic effects associated with the closing of mines. While the criteria for judging successful closures may vary, it is particularly important for physical, chemical and biological stability to be achieved and for final land use to be appropriate. Trust funds are increasingly favoured as a practical means of fulfilling the requirement for a financial surety and of ensuring that financial provision is available at the end of the mine's life. (author)

  5. Uncertainty Quantification of Multi-Phase Closures

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-27

    In the ensemble-averaged dispersed phase formulation used for CFD of multiphase ows in nuclear reactor thermohydraulics, closures of interphase transfer of mass, momentum, and energy constitute, by far, the biggest source of error and uncertainty. Reliable estimators of this source of error and uncertainty are currently non-existent. Here, we report on how modern Validation and Uncertainty Quanti cation (VUQ) techniques can be leveraged to not only quantify such errors and uncertainties, but also to uncover (unintended) interactions between closures of di erent phenomena. As such this approach serves as a valuable aide in the research and development of multiphase closures. The joint modeling of lift, drag, wall lubrication, and turbulent dispersion|forces that lead to tranfer of momentum between the liquid and gas phases|is examined in the frame- work of validation of the adiabatic but turbulent experiments of Liu and Banko , 1993. An extensive calibration study is undertaken with a popular combination of closure relations and the popular k-ϵ turbulence model in a Bayesian framework. When a wide range of super cial liquid and gas velocities and void fractions is considered, it is found that this set of closures can be validated against the experimental data only by allowing large variations in the coe cients associated with the closures. We argue that such an extent of variation is a measure of uncertainty induced by the chosen set of closures. We also nd that while mean uid velocity and void fraction pro les are properly t, uctuating uid velocity may or may not be properly t. This aspect needs to be investigated further. The popular set of closures considered contains ad-hoc components and are undesirable from a predictive modeling point of view. Consequently, we next consider improvements that are being developed by the MIT group under CASL and which remove the ad-hoc elements. We use non-intrusive methodologies for sensitivity analysis and calibration (using

  6. Laser peripheral iridoplasty for angle-closure.

    Science.gov (United States)

    Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto

    2012-02-15

    Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations.   To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations

  7. Special closure for radioactive shipping container

    International Nuclear Information System (INIS)

    Otts, J.V.

    1976-03-01

    The objective of this program was to develop a special lid closure for radioactive material shipping containers, typically steel drums. Three closure techniques were designed, fabricated, and proven to be structurally adequate to protect 1000 lb when dropped 30 ft. The three designs were (1) a 6-in. lid extension (skirt), (2) a 6-in. inner lid, and (3) c-clamps used at the container/lid interface. Based upon structural integrity, economic impact, and minimal design change, the 6-in. lid extension is recommended

  8. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  9. Featured Image: Making a Rapidly Rotating Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  10. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  11. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  12. Optical appearance of white holes

    International Nuclear Information System (INIS)

    Lake, K.; Roeder, R.C.

    1978-01-01

    The detailed optical properties of white holes are examined within the framework of geometrical optics. It is shown that the appearance of the objects most likely to be observed at late times is in fact determined by their early histories. These ccalculations indicate that one cannot invoke the simple concept of a stable white hole as a ''natural'' explanation of highly energetic astrophysical phenomena

  13. Black holes and everyday physics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    Black holes have piqued much curiosity. But thus far they have been important only in ''remote'' subjects like astrophysics and quantum gravity. It is shown that the situation can be improved. By a judicious application of black hole physics, one can obtain new results in ''everyday physics''. For example, black holes yield a quantum universal upper bound on the entropy-to-energy ratio for ordinary thermodynamical systems which was unknown earlier. It can be checked, albeit with much labor, by ordinary statistical methods. Black holes set a limitation on the number of species of elementary particles-quarks, leptons, neutrinos - which may exist. And black holes lead to a fundamental limitation on the rate at which information can be transferred for given message energy by any communication system. (author)

  14. The search for black holes

    International Nuclear Information System (INIS)

    Torn, K.

    1976-01-01

    Conceivable experimental investigations to prove the existence of black holes are discussed. Double system with a black hole turning around a star-satellite are in the spotlight. X-radiation emmited by such systems and resulting from accretion of the stellar gas by a black hole, and the gas heating when falling on the black hole might prove the model suggested. A source of strong X-radiation observed in the Cygnus star cluster and referred to as Cygnus X-1 may be thus identified as a black hole. Direct registration of short X-ray pulses with msec intervals might prove the suggestion. The lack of appropriate astrophysic facilities is pointed out to be the major difficulty on the way of experimental verifications

  15. Black hole final state conspiracies

    International Nuclear Information System (INIS)

    McInnes, Brett

    2009-01-01

    The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of 'conspiracies' between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required 'conspiracies' if real black holes are described by some kind of sum over all AdS black holes having the same entropy

  16. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  17. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  18. Recommended management practices for operation and closure of shallow injection wells at DOE facilities

    International Nuclear Information System (INIS)

    1993-07-01

    The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state's regulations and Federal regulations, and any closure guidelines for Class IV and V wells

  19. Massive disc formation in the tidal disruption of a neutron star by a nearly extremal black hole

    International Nuclear Information System (INIS)

    Lovelace, Geoffrey; Kidder, Lawrence E; Duez, Matthew D; Foucart, Francois; Pfeiffer, Harald P; Scheel, Mark A; Szilágyi, Béla

    2013-01-01

    Black hole–neutron star (BHNS) binaries are important sources of gravitational waves for second-generation interferometers, and BHNS mergers are also a proposed engine for short, hard gamma-ray bursts. The behavior of both the spacetime (and thus the emitted gravitational waves) and the neutron-star matter in a BHNS merger depend strongly and nonlinearly on the black hole's spin. While there is a significant possibility that astrophysical black holes could have spins that are nearly extremal (i.e. near the theoretical maximum), to date fully relativistic simulations of BHNS binaries have included black-hole spins only up to S/M 2 = 0.9, which corresponds to the black hole having approximately half as much rotational energy as possible, given the black hole's mass. In this paper, we present a new simulation of a BHNS binary with a mass ratio q = 3 and black-hole spin S/M 2 = 0.97, the highest simulated to date. We find that the black hole's large spin leads to the most massive accretion disc and the largest tidal tail outflow of any fully relativistic BHNS simulations to date, even exceeding the results implied by extrapolating results from simulations with lower black-hole spin. The disc appears to be remarkably stable. We also find that the high black-hole spin persists until shortly before the time of merger; afterward, both merger and accretion spin down the black hole. (paper)

  20. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.