WorldWideScience

Sample records for hohlraum plasma filling

  1. Gas-filled hohlraum fabrication

    International Nuclear Information System (INIS)

    Salazar, M.A.; Gobby, P.L.; Foreman, L.R.; Bush, H. Jr.; Gomez, V.M.; Moore, J.E.; Stone, G.F.

    1995-01-01

    Los Alamos National Laboratory (LANL) researchers have fabricated and fielded gas-filled hohlraums at the Lawrence Livermore National Laboratory (LLNL) Nova laser. Fill pressures of 1--5 atmospheres have been typical. We describe the production of the parts, their assembly and fielding. Emphasis is placed on the production of gas-tight polyimide windows and the fielding apparatus and procedure

  2. Gas-filled hohlraum experiments at the National Ignition Facility

    International Nuclear Information System (INIS)

    Fernandez, Juan C.; Goldman, S.R.; Kline, J.L.; Dodd, E.S.; Gautier, C.; Grim, G.P.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.; Schmidt, D.W.; Workman, J.B.; Braun, D.G.; Dewald, E.L.; Landen, O.L.; Campbell, K.M.; Holder, J.P.; MacKinnon, A.J.; Niemann, C.; Schein, J.

    2006-01-01

    Experiments done at the National Ignition Facility laser [J. A. Paisner, E. M. Campbell, and W. Hogan, Fusion Technol. 26, 755 (1994)] using gas-filled hohlraums demonstrate a key ignition design feature, i.e., using plasma pressure from a gas fill to tamp the hohlraum-wall expansion for the duration of the laser pulse. Moreover, our understanding of hohlraum energetics and the ability to predict the hohlraum soft-x-ray drive has been validated in ignition-relevant conditions. Finally, the laser reflectivity from stimulated Raman scattering in the fill plasma, a key threat to hohlraum performance, is shown to be suppressed by choosing a design with a sufficiently high ratio of electron temperature to density

  3. Laser plasma interactions in hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.L.

    1994-10-05

    Lasers plasma instabilities are an important constraint in x-ray driven inertial confinement fusion. In hohlraums irradiated with 1.06 {mu}m light on the Shiva laser, plasma instabilities were extremely deleterious, driving the program to the use of shorter wavelength light. Excellent coupling has been achieved in hohlraums driven with 0.35 {mu}m light on the Nova laser. Considerable attention is being given to the scaling of this excellent coupling to the larger hohlraums for an ignition target. Various instability control mechanisms such as large plasma wave damping and laser beam incoherence are discussed, as well as scaling experiments to check the instability levels.

  4. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    International Nuclear Information System (INIS)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-01-01

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed

  5. Wall-shaped hohlraum influence on symmetry and energetics in gas-filled hohlraums

    Science.gov (United States)

    Tassin, Veronique; Philippe, Franck; Laffite, Stephane; Videau, Laurent; Monteil, Marie-Christine; Villette, Bruno; Stemmler, Philippe; Bednarczyk, Sophie; Peche, Emilie; Reneaume, Benoit; Thessieux, Christian

    2008-11-01

    On the way to the LMJ completion, achieving ignition with 40 quads in a 2-cone configuration will be attempted as a first step. Theoretical investigation of a rugby-shaped hohlraum shows energetics optimization and a better symmetry control compared to a cylindrical hohlraum [1]. We recently conducted experiments on the Omega laser facility with 3 different wall-shaped methane-filled hohlraum configurations. We present here the experimental results. Energetics benefits are shown for reduced wall area hohlraums. The wall-shaped hohlraum influence on time-dependent radiation symmetry is also discussed. For the 3 gas-filled hohlraums configurations, we compare the foamball early-time radiographs, the D2Ar-filled capsule time-integrated images and the core self-emission images. [1] M. Vandenboomgaerde, Phys. Rev. Lett., 99, 065004 (2007).

  6. Gas-filled hohlraum experiments at the national ignition facility.

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, J. C. (Juan C.); Gautier, D. C. (Donald Cort); Goldman, S. R. (Sanford R.); Grimm, B. M.; Hegelich, B. M. (Bjorn M.); Kline, J. L. (John L.); Montgomery, D. S. (David S.); Lanier, N. E. (Nicholas E.); Rose, H. A. (Harvey A.); Schmidt, D. M. (David M.); Swift, D. C.; Workman, J. B. (Jonathan B.); Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K. (Katherine); DeWald, E.; Glenzer, S. (Siegfried); Holder, J. (Joe P.); Kamperschroer, J. H. (James H.); Kimbrough, Joe (Joseph R.); Kirkwood, Robert (Bob); Landen, O. L. (Otto L.); Mccarville, Tom (Tomas J.); Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li [number : znumber] 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  7. Gas-filled hohlraum experiments at the national ignition facility

    International Nuclear Information System (INIS)

    Fernandez, J.C.; Gautier, D.C.; Goldman, S.R.; Grimm, B.M.; Hegelich, B.M.; Kline, J.L.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Schmidt, D.M.; Swift, D.C.; Workman, J.B.; Alvarez, Sharon; Bower, Dan; Braun, Dave; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J.H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O.L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M.; Watts, Phil; Young, Ben-li; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  8. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brown, G. V.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Regan, S. P. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Jaquez, J.; Huang, H. [General Atomics, San Diego, California 92121 (United States); Hansen, S. B. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2016-05-15

    The first measurement of the electron temperature (T{sub e}) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local T{sub e} via the collisional–radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dot location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation T{sub e} is evaluated at the measured dot trajectory. The peak T{sub e}, measured to be 4.2 keV ± 0.2 keV, is ∼0.5 keV hotter than the simulation prediction.

  9. Electromagnetic radiations from laser interaction with gas-filled Hohlraum

    Science.gov (United States)

    Yang, Ming; Yang, Yongmei; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2018-01-01

    The emission of intensive electromagnetic pulse (EMP) due to laser-target interactions at the ShenGuang-III laser facility has been evaluated by probes. EMP signals measured using the small discone antennas demonstrated two variation trends including a bilateral oscillation wave and a unilateral oscillation wave. The new trend of unilateral oscillation could be attributed to the hohlraum structure and low-Z gas in the hohlraum. The EMP waveform showed multiple peaks when the gas-filled hohlraum was shot by the high-power laser. Comparing the EMP signals with the verification of stimulated Raman scattering energy and hard x-ray energy spectrum, we found that the intensity of EMP signals decreased with the increase of the hohlraum size. The current results are expected to offer preliminary information to study physical processes on laser injecting gas-filled hohlraums in the National Ignition Facility implementation.

  10. Laser plasma interaction in rugby-shaped hohlraums

    Science.gov (United States)

    Masson-Laborde, P.-E.; Philippe, F.; Tassin, V.; Monteil, M.-C.; Gauthier, P.; Casner, A.; Depierreux, S.; Seytor, P.; Teychenne, D.; Loiseau, P.; Freymerie, P.

    2014-10-01

    Rugby shaped-hohlraum has proven to give high performance compared to a classical similar-diameter cylinder hohlraum. Due to this performance, this hohlraum has been chosen as baseline ignition target for the Laser MegaJoule (LMJ). Many experiments have therefore been performed during the last years on the Omega laser facility in order to study in details the rugby hohlraum. In this talk, we will discuss the interpretation of these experiments from the point of view of the laser plasma instability problem. Experimental comparisons have been done between rugby, cylinder and elliptical shape rugby hohlraums and we will discuss how the geometry differences will affect the evolution of laser plasma instabilities (LPI). The efficiency of laser smoothing techniques on these instabilities will also be discussed as well as gas filling effect. The experimental results will be compared with FCI2 hydroradiative calculations and linear postprocessing with Piranah. Experimental Raman and Brillouin spectrum, from which we can infer the location of the parametric instabilities, will be compared to simulated ones, and will give the possibility to compare LPI between the different hohlraum geometries.

  11. First laser-plasma interaction and hohlraum experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; Holder, J; McDonald, J W; Niemann, C; Mackinnon, A J; Hammel, B A [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550 (United States)

    2005-12-15

    Recently the first laser-plasma interaction and hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive inertial confinement fusion designs. The effects of laser beam smoothing by spectral dispersion and polarization smoothing on the intense (2 x 10{sup 15} W cm{sup -2}) beam propagation in gas-filled tubes has been studied at up to 7 mm plasma scales as found in indirect drive gas filled ignition hohlraum designs. These experiments have shown the expected full propagation without filamentation and beam break up when using full laser smoothing. In addition, vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the Nova and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment using in analytical models and radiation hydrodynamics calculations with the code LASNEX has been proven in these studies. The comparison of these results with modelling will be discussed.

  12. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums

    Science.gov (United States)

    Masson-Laborde, P. E.; Monteil, M. C.; Tassin, V.; Philippe, F.; Gauthier, P.; Casner, A.; Depierreux, S.; Neuville, C.; Villette, B.; Laffite, S.; Seytor, P.; Fremerye, P.; Seka, W.; Teychenné, D.; Debayle, A.; Marion, D.; Loiseau, P.; Casanova, M.

    2016-02-01

    Gas-filled rugby-shaped hohlraums have demonstrated high performances compared to a classical similar diameter cylinder hohlraum with a nearly 40% increase of x-ray drive, 10% higher measured peak drive temperature, and an increase in neutron production. Experimental comparisons have been done between rugby, cylinder, and elliptical hohlraums. The impact of these geometry differences on the laser plasma instabilities is examined. Using comparisons with hydrodynamic simulations carried out with the code FCI2 and postprocessed by Piranah, we have been able to reproduce the stimulated Raman and Brillouin scattering spectrum of the different beams. Using a methodology based on a statistical analysis for the gain calculations, we show that the behavior of the laser plasma instabilities in rugby hohlraums can be reproduced. The efficiency of laser smoothing techniques to mitigate these instabilities are discussed, and we show that while rugby hohlraums exhibit more laser plasma instabilities than cylinder hohlraum, the latter can be mitigated in the case of an elliptical hohlraum.

  13. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  14. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  15. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  16. Impeding hohlraum plasma stagnation in inertial-confinement fusion.

    Science.gov (United States)

    Li, C K; Séguin, F H; Frenje, J A; Rosenberg, M J; Rinderknecht, H G; Zylstra, A B; Petrasso, R D; Amendt, P A; Landen, O L; Mackinnon, A J; Town, R P J; Wilks, S C; Betti, R; Meyerhofer, D D; Soures, J M; Hund, J; Kilkenny, J D; Nikroo, A

    2012-01-13

    This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in the hohlraum interior. The potential roles of spontaneously generated electric and magnetic fields in the hohlraum dynamics and capsule implosion are discussed. It is shown that interpenetration of the two materials could result from the classical Rayleigh-Taylor instability occurring as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blowoff. This experiment showed new observations of the effects of the fill gas on x-ray driven implosions, and an improved understanding of these results could impact the ongoing ignition experiments at the National Ignition Facility.

  17. Mitigation of stimulated Raman scattering in hohlraum plasmas

    International Nuclear Information System (INIS)

    Kline, J L; Montgomery, D S; Rose, H A; Goldman, S R; Froula, D H; Ross, J S; Stevenson, R M; Lushnikov, P M

    2008-01-01

    One aspect of recent research to control Stimulated Raman Scattering (SRS) in hohlraum plasmas is the investigation of risk mitigation strategies for indirect drive inertial confinement fusion. Experimental tests of these strategies, based on prior theoretical and experimental knowledge of SRS, are performed in hohlraum experiments. In the last year, two strategies have been investigated. The first is the use of high Z dopants to reduce SRS backscatter. Forward stimulated Brillouin scattering (FSBS) could lead to beam spray reducing SRS. Since FSBS depends on the electron temperature and thermal effects depend strongly on Z 2 , a small amount of a high Z dopant, 1-2%, can have a large effect. Experiments have been conducted at the Omega laser to test this theory by varying the amount of Xe dopant in neo-pentane gas filled hohlraums. The experimental measurements do show a decrease in SRS backscatter as Xe dopant is added. However, there are still uncertainties regarding the responsible mechanism since increases inverse-Bremsstrahlung absorption of the SRS light may play a role. The second strategy investigated is using high kλ D plasmas to reduce SRS backscatter. Experiments conducted at the Omega laser facility in hohlraum plasmas determined the critical onset intensity for a range of kλ D . A scaling of the critical onset intensity as a function of kλ D has been determined

  18. Laser beam smoothing and backscatter saturation processes in plasmas relevant to national ignition facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Cohen, B.I.

    2001-01-01

    We have used gas-filled targets irradiated by the Nova laser to simulate National Ignition Facility (NIF) hohlraum plasmas and to study the dependence of Stimulated Raman (SRS) and Brillouin (SBS) Scattering on beam smoothing at a range of laser intensities (3ω, 2-410 15 Wcm -2 ) and plasma conditions. We have demonstrated the effectiveness of polarization smoothing as a potential upgrade to the NIF. Experiments with higher intensities and higher densities characteristic of 350eV hohlraum designs indicate that with appropriate beam smoothing the backscatter from such hohlraums may be tolerable. (author)

  19. Relationship between symmetry and laser pulse shape in low-fill hohlraums at the National Ignition Facility

    Science.gov (United States)

    MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.

    2017-10-01

    Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  20. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    Science.gov (United States)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U

  1. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    Science.gov (United States)

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.

    2017-05-01

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.

  2. 2D simulations of hohlraum targets for laser-plasma experiments and ion stopping measurement in hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Basko, M.M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). ExtreMe Matter Institute EMMI; Maruhn, J.; Tauschwitz, Anna [Frankfurt Univ. (Germany); Novikov, V.G.; Grushin, A.S. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2011-12-15

    An attractive way to create uniform plasma states at high temperatures and densities is by using hohlraums - cavities with heavy-metal walls that are either directly or indirectly heated by intense laser pulses to x-ray temperatures of tens and hundreds electron volts. A sample material, whose plasma state is to be studied, can be placed inside such a hohlraum (usually in the form of a low-density foam) and uniformly heated to a high temperature. In this case a high-Z hohlraum enclosure serves a double purpose: it prevents the hot plasma from rapid disassembly due to hydrodynamic expansion and, at the same time, suppresses its rapid radiative cooling by providing high diffusive resistivity for X-rays. Of course, both the inertial and the thermal confinement of high-temperature plasmas can be achieved only for a limited period of time - on the order of nanoseconds for millimeter-scale hohlraums. Some time ago such hohlraum targets were proposed for measurements of the stopping power of hot dense plasmas for fast ions at GSI (Darmstadt). Theoretical modeling of hohlraum targets has always been a challenging task for computational physics because it should combine multidimensional hydrodynamic simulations with the solution of the spectral transfer equation for thermal radiation. In this work we report on our latest progress in this direction, namely, we present the results of 2D (two-dimensional) simulations with a newly developed radiation-hydrodynamics code RALEF-2D of two types of the hohlraum targets proposed for experiments on the PHELIX laser at GSI. The first configuration is a simple spherical hohlraum with gold walls and empty interior, which has two holes - one for laser beam entrance, and the other for diagnostics. The hohlraums of this type have already been used in several experimental sessions with the NHELIX and PHELIX lasers at GSI. The second type is a two-chamber cylindrical hohlraum with a characteristic {omega}-shaped cross-section of the enclosure

  3. Suppression of Stimulated Brillouin Scattering in multiple-ion species inertial confinement fusion Hohlraum Plasmas

    International Nuclear Information System (INIS)

    Neumayer, P

    2007-01-01

    A long-standing problem in the field of laser-plasma interactions is to successfully employ multiple-ion species plasmas to reduce stimulated Brillouin scattering (SBS) in inertial confinement fusion (ICF) hohlraum conditions. Multiple-ion species increase significantly the linear Landau damping for acoustic waves. Consequently, recent hohlraum designs for indirect-drive ignition on the National Ignition Facility investigate wall liner material options so that the liner gain for parametric instabilities will be below threshold for the onset SBS. Although the effect of two-ion species plasmas on Landau damping has been directly observed with Thomson scattering, early experiments on SBS in these plasmas have suffered from competing non-linear effects or laser beam filamentation. In this study, a reduction of SBS scattering to below the percent level has been observed in hohlraums at Omega that emulate the plasma conditions in an indirect drive ICF experiments. These experiments have measured the laser-plasma interaction processes in ignition-relevant high-electron temperature regime demonstrating Landau damping as a controlling process for SBS. The hohlraums have been filled with various fractions of CO 2 and C 3 H 8 varying the ratio of the light (H) to heavy (C and O) ion density from 0 to 2.6. They have been heated by 14.5 kJ of 351-nm light, thus increasing progressively Landau damping by an order of magnitude at constant electron density and temperature. A delayed 351-nm interaction beam, spatially smoothed to produce a 200-(micro)m laser spot at best focus, has propagated along the axis of the hohlraum. The backscattered light, both into the lens and outside, the transmitted light through the hohlraum plasma and the radiation temperature of the hohlraum has been measured. For ignition relevant laser intensities (3-9 10 14 Wcm -2 ), we find that the SBS reflectivity scales as predicted with Landau damping from >30% to <1%. Simultaneously, the hohlraum radiation

  4. Proton imaging of hohlraum plasma stagnation in inertial-confinement-fusion experiments

    International Nuclear Information System (INIS)

    Li, C.K.; Séguin, F.H.; Frenje, J.A.; Sinenian, N.; Rosenberg, M.J.; Manuel, M.J.-E; Rinderknecht, H.G.; Zylstra, A.B.; Petrasso, R.D.; Amendt, P.A.; Landen, O.L.; Mackinnon, A.J.; Town, R.P.J.; Wilks, S.C.; Betti, R.; Meyerhofer, D.D.; Soures, J.M.; Hund, J.; Kilkenny, J.D.; Nikroo, A.

    2013-01-01

    Proton radiography of the spatial structure and temporal evolution of plasma blowing off from a hohlraum wall reveals how the fill gas compresses the wall blow-off, inhibits plasma jet formation and impedes plasma stagnation in the hohlraum interior. The roles of spontaneously generated electric and magnetic fields in hohlraum dynamics and capsule implosions are demonstrated. The heat flux is shown to rapidly convect the magnetic field due to the Nernst effect, which is shown to be ∼10 times faster than convection by the plasma fluid from expanded wall blow-off (v N ∼ 10v). This leads to inhibition of heat transfer from the gas region in the laser beam paths to the surrounding cold gas, resulting in a local plasma temperature increase. The experiments show that interpenetration of the two materials (gas and wall) occurs due to the classical Rayleigh–Taylor instability as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blow-off. This experiment provides physics insight into the effects of fill gas on x-ray-driven implosions, and would impact the ongoing ignition experiments at the National Ignition Facility. (paper)

  5. The size and structure of the laser entrance hole in gas-filled hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M. B., E-mail: schneider5@llnl.gov; MacLaren, S. A.; Widmann, K.; Meezan, N. B.; Hammer, J. H.; Yoxall, B. E.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Hinkel, D. E.; Hsing, W. W.; Kervin, M. L.; Landen, O. L.; Lindl, J. D.; May, M. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2015-12-15

    At the National Ignition Facility, a thermal X-ray drive is created by laser energy from 192 beams heating the inside walls of a gold cylinder called a “hohlraum.” The x-ray drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH radius decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma from the high-intensity region in the center of the LEH pushing radially outward. The x-ray drive on the capsule is deduced by measuring the time evolution and spectra of the x-radiation coming out of the LEH and correcting for geometry and for the radius of the LEH. Previously, the LEH radius was measured using time-integrated images in an x-ray band of 3–5 keV (outside the thermal x-ray region). For gas-filled hohlraums, the measurements showed that the LEH radius is larger than that predicted by the standard High Flux radiation-hydrodynamic model by about 10%. A new platform using a truncated hohlraum (“ViewFactor hohlraum”) is described, which allows time-resolved measurements of the LEH radius at thermal x-ray energies from two views, from outside the hohlraum and from inside the hohlraum. These measurements show that the LEH radius closes during the low power part of the pulse but opens up again at peak power. The LEH radius at peak power is larger than that predicted by the models by about 15%–20% and does not change very much with time. In addition, time-resolved images in a >4 keV (non-thermal) x-ray band show a ring of hot, optically thin gold plasma just inside the optically thick LEH plasma. The structure of this plasma varies with time and with Cross Beam Energy Transfer.

  6. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility

    Directory of Open Access Journals (Sweden)

    Yaohua Chen

    2017-03-01

    Full Text Available We present our recent laser-plasmas instability (LPI comparison experiment at the SGIII laser facility between the spherical and cylindrical hohlraums. Three kinds of filling are considered: vacuum, gas-filling with or without a capsule inside. A spherical hohlraum of 3.6 mm in diameter, and a cylindrical hohlraum of 2.4 mm × 4.3 mm are used. The capsule diameter is 0.96 mm. A flat-top laser pulse with 3 ns duration and up to 92.73 kJ energy is used. The experiment has shown that the LPI level in the spherical hohlraum is close to that of the outer beam in the cylindrical hohlraum, while much lower than that of the inner beam. The experiment is further simulated by using our 2-dimensional radiation hydrodynamic code LARED-Integration, and the laser back-scattering fraction and the stimulated Raman scatter (SRS spectrum are post-processed by the high efficiency code of laser interaction with plasmas HLIP. According to the simulation, the plasma waves are strongly damped and the SRS is mainly developed at the plasma conditions of electron density from 0.08 nc to 0.1 nc and electron temperature from 1.5 keV to 2.0 keV inside the hohlraums. However, obvious differences between the simulation and experiment are found, such as that the SRS back-scattering is underestimated, and the numerical SRS spectrum peaks at a larger wavelength and at a later time than the data. These differences indicate that the development of a 3D radiation hydrodynamic code, with more accurate physics models, is mandatory for spherical hohlraum study.

  7. Gas-filled Rugby hohlraum energetics and implosions experiments on OMEGA

    Science.gov (United States)

    Casner, Alexis; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M. C.; Villette, B.; Reverdin, C.

    2010-11-01

    Recent experiments [1,2] have validated the x-ray drive enhancement provided by rugby-shaped hohlraums over cylinders in the indirect drive (ID) approach to inertial confinement fusion (ICF). This class of hohlraum is the baseline design for the Laser Mégajoule program, is also applicable to the National Ignition Facility and could therefore benefit ID Inertial Fusion Energy studies. We have carried out a serie of energetics and implosions experiments with OMEGA ``scale 1'' rugby hohlraums [1,2]. For empty hohlraums these experiments provide complementary measurements of backscattered light along 42 cone, as well as detailed drive history. In the case of gas-filled rugby hohlraums we have also study implosion performance (symmetry, yield, bangtime, hotspot spectra...) using a high contrast shaped pulse leading to a different implosion regime and for a range of capsule convergence ratios. These results will be compared with FCI2 hydrocodes calculations and future experimental campaigns will be suggested. [4pt] [1] F. Philippe et al., Phys. Rev. Lett. 104, 035004 (2010). [0pt] [2] H. Robey et al., Phys. Plasnas 17, 056313 (2010).

  8. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F.; Villette, B. [CEA, DAM, DIF, F-91297 Arpajon (France); Michel, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Giraldez, E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; and others

    2014-07-15

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  9. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Science.gov (United States)

    Philippe, F.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Villette, B.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; Michel, P.; Frenje, J.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Sorce, C.; Stoeckl, C.; Nikroo, A.; Giraldez, E.

    2014-07-01

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  10. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    International Nuclear Information System (INIS)

    Philippe, F.; Villette, B.; Michel, P.; Petrasso, R.; Stoeckl, C.; Giraldez, E.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.

    2014-01-01

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results

  11. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Tassin, V. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Depierreux, S. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Gauthier, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Masson-Laborde, P. E. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Monteil, M. C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Seytor, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Villette, B. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Lasinski, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ross, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Amendt, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doeppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wallace, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Michel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu-Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Glebov, V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Sorce, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Stoeckl, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Nikroo, A. [General Atomics, San Diego, CA (United States); Giraldez, E. [General Atomics, San Diego, CA (United States)

    2014-07-25

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  12. 3D integrated HYDRA simulations of hohlraums including fill tubes

    Science.gov (United States)

    Marinak, M. M.; Milovich, J.; Hammel, B. A.; Macphee, A. G.; Smalyuk, V. A.; Kerbel, G. D.; Sepke, S.; Patel, M. V.

    2017-10-01

    Measurements of fill tube perturbations from hydro growth radiography (HGR) experiments on the National Ignition Facility show spoke perturbations in the ablator radiating from the base of the tube. These correspond to the shadow of the 10 μm diameter glass fill tube cast by hot spots at early time. We present 3D integrated HYDRA simulations of these experiments which include the fill tube. Meshing techniques are described which were employed to resolve the fill tube structure and associated perturbations in the simulations. We examine the extent to which the specific illumination geometry necessary to accommodate a backlighter in the HGR experiment contributes to the spoke pattern. Simulations presented include high resolution calculations run on the Trinity machine operated by the Alliance for Computing at Extreme Scale (ACES) partnership. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  13. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    Science.gov (United States)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-03-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2.

  14. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    International Nuclear Information System (INIS)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-01-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2. (paper)

  15. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    International Nuclear Information System (INIS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-01-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion

  16. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Science.gov (United States)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  17. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California, 94550 (United States)

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  18. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    Science.gov (United States)

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  19. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    Science.gov (United States)

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  20. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    Science.gov (United States)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  1. Laser-plasma interactions and implosion symmetry in rugby hohlraums

    Science.gov (United States)

    Michel, Pierre; Berger, R. L.; Lasinski, B. F.; Ross, J. S.; Divol, L.; Williams, E. A.; Meeker, D.; Langdon, B. A.; Park, H.; Amendt, P.

    2011-10-01

    Cross-beam energy transfer is studied in the context of ``rugby''-hohlraum experiments at the Omega laser facility in FY11, in preparation for future NIF experiments. The transfer acts in opposite direction between rugby and cylinder hohlraums due to the different beam pointing geometries and flow patterns. Its interaction with backscatter is also different as both happen in similar regions inside rugby hohlraums. We will analyze the effects of non-linearities and temporal beam smoothing on energy transfer using the code pF3d. Calculations will be compared to experiments at Omega; analysis of future rugby hohlraum experiments on NIF will also be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. First hohlraum drive studies on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, E.L.; Landen, O.L.; Suter, L.J.; Schein, J.; Holder, J.; Campbell, K.; Glenzer, S.H.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Schneider, M.S.; Haynam, C.; Hinkel, D.; Hammel, B.A.

    2006-01-01

    The first hohlraum experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] using the first four laser beams have activated the indirect-drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 9 TW, 1 to 9 ns long square pulses and energies of up to 17 kJ to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed previously at other laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums

  3. Optimizing implosion yields using rugby-shaped hohlraums

    Science.gov (United States)

    Park, Hye-Sook; Robey, H.; Amendt, P.; Philippe, F.; Casner, A.; Caillaud, T.; Bourgade, J.-L.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Glebov, V. Yu.

    2009-11-01

    We present the first experimental results on optimizing capsule implosion experiments by using rugby-shaped hohlraums [1] on the Omega laser, University of Rochester. This campaign compared D2-filled capsule performance between standard cylindrical Au hohlraums and rugby-shaped hohlraums for demonstrating the energetics advantages of the rugby geometry. Not only did the rugby-shaped hohlraums show nearly 20% more x-ray drive energy over the cylindrical hohlraums, but also the high-performance design of the capsules provided nearly 20 times more DD neutrons than in any previous Omega hohlraum campaigns, thereby enabling use of neutron temporal diagnostics. Comparison with simulations on neutron burn histories, x-ray core imaging, backscattered laser light and radiation temperature are presented. [1] P. Amendt et al., Phys. Plasmas 15, 012702 (2008)

  4. Laser scattering in large-scale-length plasmas relevant to National Ignition Facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Afeyan, B.B.

    1996-10-01

    We have used homogeneous plasmas of high density (up to 1.3 X 10 21 electrons per cm 3 ) and temperature (∼ 3 keV) with large density scale lengths (∼2 mm) to approximate conditions within National Ignition Facility (NIF) hohlraums. Within these plasmas we have studied the dependence of stimulated Raman (SRS) and Brillouin (SBS) scattering on beam smoothing and plasma conditions at the relevant laser intensity (3ω, 2 X 10 15 Wcm 2 ). Both SBS and SRS are reduced by the use of smoothing by spectral dispersion (SSD)

  5. Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, D L; Landen, O L; Suter, L J; Schein, J; Holder, J.; Campbell, K.; Glenzer, S H.; McDonald, J W.; Niemann, C.; Mackinnon, A J.; Schneider, M S.; Haynam, C.; Hinkel, D.; Hammel, B.A.

    2005-01-01

    The first hohlraum experiments on the National Ignition Facility (NIF) using the first four laser beams have activated the indirect drive experimental capabilities and tested radiation temperature limits imposed by hohlraum plasma filling. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1 ns to 9 ns long square pulses and energies of up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Furthermore, for a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of plasma filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with analytical modeling that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits on full NIF (1.8 MJ) that are significantly greater than required for ignition hohlraums

  6. The near vacuum hohlraum campaign at the NIF: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2016-05-15

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.

  7. The near vacuum hohlraum campaign at the NIF: A new approach

    Science.gov (United States)

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Mackinnon, A. J.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G.; Haan, S.; Izumi, N.; Hatarik, R.; Sterne, P.; Celliers, P.; Ralph, J.; Rygg, R.; Strozzi, D.; Kilkenny, J.; Rosenberg, M.; Rinderknecht, H.; Sio, H.; Gatu-Johnson, M.; Frenje, J.; Petrasso, R.; Zylstra, A.; Town, R.; Hurricane, O.; Nikroo, A.; Edwards, M. J.

    2016-05-01

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.

  8. Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility

    Science.gov (United States)

    Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno

    2017-10-01

    We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.

  9. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R. [Commissariat à l' Energie Atomique, DAM, DIF, F-91297 Arpajon (France); Henry, O.; Raffestin, D. [Commissariat à l' Energie Atomique, DAM, CESTA, F-33114 Le Barp (France)

    2015-02-15

    Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C{sub 5}H{sub 12}) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 10{sup 14} W/cm{sup 2}, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.

  10. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on NIF

    Science.gov (United States)

    Callahan, Debra

    2017-10-01

    Over the past two years, we have been exploring low gasfill hohlraums (He fill at 0.3-0.6 mg/cc) as an alternate to the high gasfill hohlraums used in NIC and the High Foot campaigns (He fill at 1-1.6 mg/cc). These low fill hohlraums have significantly reduced laser-plasma instabilities and increased coupling to the target as compared to the high fill hohlraums and take us to a new region of parameter space where the hohlraum is limited by hydrodynamic motion of the hohlraum wall rather than by laser plasma interactions. The outer cone laser beams interacting with the hohlraum wall produce a ``bubble'' of low density, high Z material that moves toward the center of the hohlraum. This gold or depleted uranium bubble eventually intercepts the inner cone beams and prevents the inner cone beams from reaching the waist of the hohlraum-where they are needed to get a symmetric implosion. Thus, the speed of the bubble expansion sets the allowable pulse duration in a given size hohlraum. Data and simulations suggest that the bubble is launched by the early part of the laser pulse (``picket'') and the gold/gas interfaces moves nearly linearly in time toward the axis of the hohlraum. The velocity of the bubble is related to the square root of the energy in the picket of the pulse - thus the picket energy and pulse duration set the allowable hohlraum size and case-to-capsule ratio. In this talk, will discuss a data based model to describe the bubble motion and apply this model to a broad set of data from a variety of ablators (CH, HDC, Be), pulse durations (6-14 ns), case-to-capsule ratios (rhohl/rcap of 3-4.2), hohlraum sizes (5.4-6.7 mm diameter), and hohlraum gasfill densities (0.3-0.6 mg/cc). We will discuss how this model can help guide future designs and how improvements in the hohlraum (foam liners, hohlraum shape) can open up new parts of parameter space. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National

  11. LDRD Final Report: Advanced Hohlraum Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Ogden S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-08

    Indirect drive inertial confinement fusion (ICF) experiments to date have mostly used cylindrical, laser-heated, gas-filled hohlraums to produce the radiation drive needed to symmetrically implode DT-filled fusion capsules. These hohlraums have generally been unable to produce a symmetric radiation drive through the end of the desired drive pulse, and are plagued with complications due to laser-plasma interactions (LPI) that have made it difficult to predict their performance. In this project we developed several alternate hohlraum concepts. These new hohlraums utilize different hohlraum geometries, radiation shields, and foam materials in an attempt to improve performance relative to cylindrical hohlraums. Each alternate design was optimized using radiation hydrodynamic (RH) design codes to implode a reference DT capsule with a high-density carbon (HDC) ablator. The laser power and energy required to produce the desired time-dependent radiation drive, and the resulting time-dependent radiation symmetry for each new concept were compared to the results for a reference cylindrical hohlraum. Since several of the new designs needed extra laser entrance holes (LEHs), techniques to keep small LEHs open longer, including high-Z foam liners and low-Z wires at the LEH axis, were investigated numerically. Supporting experiments and target fabrication efforts were also done as part of this project. On the Janus laser facility plastic tubes open at one end (halfraums) and filled with SiO2 or Ta2O5 foam were heated with a single 2w laser. Laser propagation and backscatter were measured. Generally the measured propagation was slower than calculated, and the measured laser backscatter was less than calculated. A comparable, scaled up experiment was designed for the NIF facility and four targets were built. Since low density gold foam was identified as a desirable material for lining the LEH and the hohlraum wall, a technique was developed to

  12. Gas-filled targets for large scalelength plasma interaction experiments on Nova

    International Nuclear Information System (INIS)

    Powers, L.V.; Berger, R.L.; Munro, D.H.

    1994-11-01

    Stimulated Brillouin backscatter from large scale length gas-filled targets has been measured on Nova. These targets were designed to approximate conditions in indirect drive ignition target designs in underdense plasma electron density (n e ∼10 21 /cm 3 ), temperature (T e >3 keV), and gradient scale lengths (L n ∼ mm, L v >6 mm) as well as calculated gain for stimulated Brillouin scattering (SBS). The targets used in these experiments were gas-filled balloons with polyimide walls (gasbags) and gas-filled hohlraums. Detailed characterization using x-ray imaging and x-ray and optical spectroscopy verifies that the calculated plasma conditions are achieved. Time-resolved SBS backscatter from these targets is <3% for conditions similar to ignition target designs

  13. Progress in octahedral spherical hohlraum study

    Directory of Open Access Journals (Sweden)

    Ke Lan

    2016-01-01

    Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.

  14. Characteristics of ICF Relevant Hohlraums Driven by X-Rays from a Z-Pinch

    Energy Technology Data Exchange (ETDEWEB)

    BOWERS,R.L.; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSKA,W.; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,RICHARD E.; PETERSON,D.L.; PETERSON,R.R.; RUGGLES,LAURENCE E.; RUIZ,CARLOS L.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; VESEY,ROGER A.

    1999-11-03

    Radiation environments characteristic of those encountered during the low-temperature foot pulse and subsequent higher-temperature early-step pulses (without the foot pulse) required for indirect-drive ICF ignition on the National ignition Facility have been produced in hohlraums driven by x-rays from a z-pinch. These environments provide a platform to better understand the dynamics of full-scale NIF hohlraums, ablator material, and capsules prior to NIF completion. Radiation temperature, plasma fill, and wall motion of these hohlraums are discussed.

  15. Characteristics of ICF Relevant Hohlraums Driven by X-Rays from a Z-Pinch

    International Nuclear Information System (INIS)

    BOWERS, R.L.; CHANDLER, GORDON A.; HEBRON, DAVID E.; LEEPER, RAMON J.; MATUSKA, W.; MOCK, RAYMOND CECIL; NASH, THOMAS J.; OLSON, RICHARD E.; PETERSON, D.L.; PETERSON, R.R.; RUGGLES, LAURENCE E.; RUIZ, CARLOS L.; SANFORD, THOMAS W. L.; SIMPSON, WALTER W.; VESEY, ROGER A.

    1999-01-01

    Radiation environments characteristic of those encountered during the low-temperature foot pulse and subsequent higher-temperature early-step pulses (without the foot pulse) required for indirect-drive ICF ignition on the National ignition Facility have been produced in hohlraums driven by x-rays from a z-pinch. These environments provide a platform to better understand the dynamics of full-scale NIF hohlraums, ablator material, and capsules prior to NIF completion. Radiation temperature, plasma fill, and wall motion of these hohlraums are discussed

  16. Hollow wall to stabilize and enhance ignition hohlraums

    Science.gov (United States)

    Vandenboomgaerde, M.; Grisollet, A.; Bonnefille, M.; Clérouin, J.; Arnault, P.; Desbiens, N.; Videau, L.

    2018-01-01

    In the context of the indirect-drive scheme of the inertial-confinement fusion, performance of the gas-filled hohlraums at the National Ignition Facility appears to be reduced. Experiments ascertain a limited efficacy of the laser beam propagation and x-ray conversion. One identified issue is the growth of the gold plasma plume (or bubble) which is generated near the ends of the hohlraum by the impact of the laser beams. This bubble impedes the laser propagation towards the equator of the hohlraum. Furthermore, for high foot or low foot laser pulses, the gold-gas interface of the bubble can be unstable. If this instability should grow to mixing, the x-ray conversion could be degraded. A novel hollow-walled hohlraum is designed, which drastically reduces the growth of the gold bubble and stabilizes the gold-gas interface. The hollow walls are built from the combination of a thin gold foil and a gold domed-wall. We theoretically explain how the bubble expansion can be delayed and the gold-gas interface stabilized. This advanced design lets the laser beams reach the waist of the hohlraum. As a result, the x-ray drive on the capsule is enhanced, and more spherical implosions are obtained. Furthermore, this design only requires intermediate gas fill density to be efficient.

  17. Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement

    Science.gov (United States)

    Amendt, Peter; Cerjan, C.; Hinkel, D. E.; Milovich, J. L.; Park, H.-S.; Robey, H. F.

    2008-01-01

    A suite of experimental designs for the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] using rugby and cylindrical hohlraums is proposed to confirm the energetics benefits of rugby-shaped hohlraums over cylinders under optimal implosion symmetry conditions. Postprocessed Dante x-ray drive measurements predict a 12-17eV (23%-36%) peak hohlraum temperature (x-ray flux) enhancement for a 1ns flattop laser drive history. Simulated core self-emission x-ray histories also show earlier implosion times by 200-400ps, depending on the hohlraum case-to-capsule ratio and laser-entrance-hole size. Capsules filled with 10 or 50atm of deuterium (DD) are predicted to give in excess of 1010 neutrons in two-dimensional hohlraum simulations in the absence of mix, enabling DD burn history measurements for the first time in indirect-drive on Omega. Capsule designs with 50atm of DHe3 are also proposed to make use of proton slowing for independently verifying the drive benefits of rugby hohlraums. Scale-5/4 hohlraum designs are also introduced to provide further margin to potential laser-plasma-induced backscatter and hot-electron production.

  18. Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement

    International Nuclear Information System (INIS)

    Amendt, Peter; Cerjan, C.; Hinkel, D. E.; Milovich, J. L.; Park, H.-S.; Robey, H. F.

    2008-01-01

    A suite of experimental designs for the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] using rugby and cylindrical hohlraums is proposed to confirm the energetics benefits of rugby-shaped hohlraums over cylinders under optimal implosion symmetry conditions. Postprocessed Dante x-ray drive measurements predict a 12-17 eV (23%-36%) peak hohlraum temperature (x-ray flux) enhancement for a 1 ns flattop laser drive history. Simulated core self-emission x-ray histories also show earlier implosion times by 200-400 ps, depending on the hohlraum case-to-capsule ratio and laser-entrance-hole size. Capsules filled with 10 or 50 atm of deuterium (DD) are predicted to give in excess of 10 10 neutrons in two-dimensional hohlraum simulations in the absence of mix, enabling DD burn history measurements for the first time in indirect-drive on Omega. Capsule designs with 50 atm of D 3 He are also proposed to make use of proton slowing for independently verifying the drive benefits of rugby hohlraums. Scale-5/4 hohlraum designs are also introduced to provide further margin to potential laser-plasma-induced backscatter and hot-electron production

  19. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-03-15

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions

  20. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-01-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P_2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using

  1. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Science.gov (United States)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-03-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different

  2. Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.; OLSON,RICHARD E.; MOCK,RAYMOND CECIL; CHANDLER,GORDON A.; LEEPER,RAMON J.; NASH,THOMAS J.; RUGGLES,LAURENCE E.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; PETERSON,D.L.; BOWERS,R.L.; MATUSKA,W.

    2000-07-10

    A z-pinch radiation source has been developed that generates 60 {+-} 20 KJ of x-rays with a peak power of 13 {+-} 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 {+-} 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 {+-} 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm{sup 3} CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approximately}40% with only a 3--5% decrease in peak temperature, in agreement with measurements.

  3. Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

    International Nuclear Information System (INIS)

    Sanford, Thomas W.L.; Olson, Richard E.; Mock, Raymond Cecil; Chandler, Gordon A.; Leeper, Ramon J.; Nash, Thomas J.; Ruggles, Laurence E.; Simpson, Walter W.; Struve, Kenneth W.; Peterson, D.L.; Bowers, R.L.; Matuska, W.

    2000-01-01

    A z-pinch radiation source has been developed that generates 60 ± 20 KJ of x-rays with a peak power of 13 ± 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 ± 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 ± 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm 3 CH 2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ∼40% with only a 3--5% decrease in peak temperature, in agreement with measurements

  4. Progress of Rugby Hohlraum Experiments on Omega

    Science.gov (United States)

    Philippe, Franck; Tassin, Veronique; Casner, Alexis; Gauthier, Pascal; Seytor, Patricia; Monteil, Marie-Christine; Park, Hye-Sook; Robey, Harry; Ross, Steven; Amendt, Peter; Girard, Frederic; Villette, Bruno; Reverdin, Charles; Loiseau, Pascal; Caillaud, Tony; Landoas, Olivier; Li, Chi Kang; Petrasso, Richard; Seguin, Fredrick; Rosenberg, Markus

    2011-10-01

    The rugby hohlraum concept is predicted to enable better coupling and higher gains in the indirect drive approach to ignition. A collaborative experimental program is currently pursued on OMEGA to test this concept in preparation for future megajoule-scale ignition designs. A direct comparison of gas-filled rugby hohlraums with classical cylinders was recently performed, showing a significant (up to ~40%) observed x-ray drive enhancement and neutron yields that are consistently higher in the rugby case. This work extends and confirms our previous findings in empty rugby hohlraums.

  5. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

    Directory of Open Access Journals (Sweden)

    Guoli Ren

    2017-01-01

    Full Text Available The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG series laser facilities and the National Ignition Facility (NIF experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model. This work confirms the value of the energy balance model for ignition target design and experimental data assessment, and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created, meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.

  6. Status Update: Modeling Energy Balance in NIF Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    We have developed a standardized methodology to model hohlraum drive in NIF experiments. We compare simulation results to experiments by 1) comparing hohlraum xray fluxes and 2) comparing capsule metrics, such as bang times. Long-pulse, high gas-fill hohlraums require a 20-28% reduction in simulated drive and inclusion of ~15% backscatter to match experiment through (1) and (2). Short-pulse, low fill or near-vacuum hohlraums require a 10% reduction in simulated drive to match experiment through (2); no reduction through (1). Ongoing work focuses on physical model modifications to improve these matches.

  7. Initial Computational Study of a New Multi-Hole Hohlraum (the "Midraum")

    Energy Technology Data Exchange (ETDEWEB)

    Tabak, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-02

    Existing cylindrical hohlraums with two oppositely positioned laser entrance holes (LEHs) have multiple constraints. Their goal is to produce radiation sources distributed over the sky, as visible from the spherical implosion capsule, with most of the deposition near the zeroes of the fourth Legendre polynomial in cosine of the polar angle. This requires some of the laser light to propagate across the hohlraum to positions near the hohlraum symmetry plane. The ratio of case spherical radius to capsule spherical radius should exceed 3 so that the light doesn’t pass through over-dense ablator plasma. Radiation transport can smooth higher radiation modes. For capsules that demand long pulse lengths, hohlraum walls can blow in and change the position where light is absorbed. This changes the radiation symmetry in a time dependent fashion. This affects both P2 and P4. This wall motion can be reduced by introducing fill gas into the hohlraum. The gas provides back pressure and tamps the wall motion. Adding the fill gas comes at some cost. It leads to increased absorption of laser light along the path. The fill gas adds heat capacity to the system, ultimately requiring more laser energy to meet the radiation flux goals, both in total and particularly in the amount of radiation coming from the vicinity of the capsule waist. Given the existing beam pointing at NIF energy from the outer beams must be transferred into the inner beams. Cross beam energy transport (CBET) is accomplished via a plasma instability. This transfer is not perfectly predictable. In addition, the higher intensity required to make up for the losses along the long path can lead to stimulated backscatter as well as the generation of suprathermal electrons. The inner beams will pass through the plasma ablated from the capsule toward the end of the pulse. Heating this plasma acts as another parasitic loss. In addition, the light passing through the turbulent blow-off can be refracted in unpredictable

  8. Radiation drive in laser heated hohlraums

    International Nuclear Information System (INIS)

    Suter, L.J.; Kauffman, R.L.; Darrow, C.B.

    1995-01-01

    Nearly 10 years of Nova experiments and analysis have lead to a relatively detailed quantitative and qualitative understanding of radiation drive in laser heated hohlraums. Our most successful quantitative modelling tool is 2D Lasnex numerical simulations. Analysis of the simulations provides us with insight into the details of the hohlraum drive. In particular we find hohlraum radiation conversion efficiency becomes quite high with longer pulses as the accumulated, high Z blow-off plasma begins to radiate. Extensive Nova experiments corroborate our quantitative and qualitative understanding

  9. Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.

    Science.gov (United States)

    Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H

    2007-02-23

    We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  10. Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120--160 eV

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L. (and others)

    2000-11-01

    A Z-pinch radiation source has been developed that generates 60{+-}20 kJ of x rays with a peak power of 13{+-}4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122{+-}6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155{+-}8 eV -- providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh--Taylor instability in the r--z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approx}40% with only a 3%--5% decrease in peak temperature, in agreement with measurements.

  11. Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120--160 eV

    International Nuclear Information System (INIS)

    Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L.

    2000-01-01

    A Z-pinch radiation source has been developed that generates 60±20 kJ of x rays with a peak power of 13±4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122±6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155±8 eV -- providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh--Taylor instability in the r--z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH 2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ∼40% with only a 3%--5% decrease in peak temperature, in agreement with measurements

  12. Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120-160 eV

    Science.gov (United States)

    Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L.; Bowers, R. L.; Matuska, W.

    2000-11-01

    A Z-pinch radiation source has been developed that generates 60±20 kJ of x rays with a peak power of 13±4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122±6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155±8 eV—providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ˜40% with only a 3%-5% decrease in peak temperature, in agreement with measurements.

  13. Plasma-filled diode based on the coaxial gun

    Science.gov (United States)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  14. Plasma-filled diode based on the coaxial gun.

    Science.gov (United States)

    Zherlitsyn, A A; Kovalchuk, B M; Pedin, N N

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  15. Plasma-filled diode based on the coaxial gun

    Energy Technology Data Exchange (ETDEWEB)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N. [Institute of High Current Electronics, 2/3 Academichesky Avenue, 634055 Tomsk (Russian Federation)

    2012-10-15

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

  16. Plasma-filled diode based on the coaxial gun

    International Nuclear Information System (INIS)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-01-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  17. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-09-15

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.

  18. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    International Nuclear Information System (INIS)

    Lan, Ke; Zheng, Wudi

    2014-01-01

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums

  19. Characterisation of Plasma Filled Rod Pinch electron beam diode operation

    Science.gov (United States)

    MacDonald, James; Bland, Simon; Chittenden, Jeremy

    2016-10-01

    The plasma filled rod pinch diode (aka PFRP) offers a small radiographic spot size and a high brightness source. It operates in a very similar to plasma opening switches and dense plasma focus devices - with a plasma prefill, supplied via a number of simple coaxial plasma guns, being snowploughed along a thin rod cathode, before detaching at the end. The aim of this study is to model the PFRP and understand the factors that affect its performance, potentially improving future output. Given the dependence on the PFRP on the prefill, we are making detailed measurements of the density (1015-1018 cm-3), velocity, ionisation and temperature of the plasma emitted from a plasma gun/set of plasma guns. This will then be used to provide initial conditions to the Gorgon 3D MHD code, and the dynamics of the entire rod pinch process studied.

  20. Progress in hohlraum physics for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. D., E-mail: moody4@llnl.gov; Callahan, D. A.; Hinkel, D. E.; Amendt, P. A.; Baker, K. L.; Bradley, D.; Celliers, P. M.; Dewald, E. L.; Divol, L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Jones, O.; Haan, S. W.; Ho, D.; Hopkins, L. B.; Izumi, N.; Kalantar, D.; Kauffman, R. L.; Kilkenny, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

    2014-05-15

    Advances in hohlraums for inertial confinement fusion at the National Ignition Facility (NIF) were made this past year in hohlraum efficiency, dynamic shape control, and hot electron and x-ray preheat control. Recent experiments are exploring hohlraum behavior over a large landscape of parameters by changing the hohlraum shape, gas-fill, and laser pulse. Radiation hydrodynamic modeling, which uses measured backscatter, shows that gas-filled hohlraums utilize between 60% and 75% of the laser power to match the measured bang-time, whereas near-vacuum hohlraums utilize 98%. Experiments seem to be pointing to deficiencies in the hohlraum (instead of capsule) modeling to explain most of the inefficiency in gas-filled targets. Experiments have begun quantifying the Cross Beam Energy Transfer (CBET) rate at several points in time for hohlraum experiments that utilize CBET for implosion symmetry. These measurements will allow better control of the dynamic implosion symmetry for these targets. New techniques are being developed to measure the hot electron energy and energy spectra generated at both early and late time. Rugby hohlraums offer a target which requires little to no CBET and may be less vulnerable to undesirable dynamic symmetry “swings.” A method for detecting the effect of the energetic electrons on the fuel offers a direct measure of the hot electron effects as well as a means to test energetic electron mitigation methods. At higher hohlraum radiation temperatures (including near vacuum hohlraums), the increased hard x-rays (1.8–4 keV) may pose an x-ray preheat problem. Future experiments will explore controlling these x-rays with advanced wall materials.

  1. Experimental room temperature hohlraum performance study on the National Ignition Facility

    Science.gov (United States)

    Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Kline, J. L.; Glenzer, S. H.; Albert, F.; Benedetti, L. R.; Divol, L.; MacKinnon, A. J.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.

    2016-12-01

    Room temperature or "warm" (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or "cryo" (˜20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ˜2.5 × less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Finally, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.

  2. High Performance Capsule Implosions on the Omega Laser Facility with Rugby Hohlraums

    Science.gov (United States)

    Robey, Harry F.

    2009-11-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly-driven capsule implosions [1]. This concept has recently been tested in a series of shots on the OMEGA laser facility at the Laboratory for Laser Energetics at the University of Rochester. In this talk, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. Not only did the rugby hohlraums demonstrate 18% more x-ray drive energy as compared with the cylinders, but the high-performance design of these implosions (both cylinder and rugby) also provided 20X more DD neutrons than any previous indirectly-driven campaign on Omega (and 3X more than ever achieved on Nova implosions driven with nearly twice the laser energy). This increase in performance enables, for the first time, a measurement of the neutron burn history of an indirectly-driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D^3He rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in excellent agreement. The design techniques employed in this campaign, e.g., smaller NIF-like laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility. [4pt] [1] P. Amendt, C. Cerjan, D. E. Hinkel, J. L. Milovich, H.-S. Park, and H. F. Robey, ``Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement'', Phys. Plasmas 15, 012702 (2008).

  3. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Hinkel, D E; Callahan, D A; Moody, J D; Amendt, P A; Lasinski, B F; MacGowan, B J; Meeker, D; Michel, P A; Ralph, J; Rosen, M D; Ross, J S; Schneider, M B; Storm, E; Strozzi, D J; Williams, E A

    2016-01-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented. (paper)

  4. Study on characteristics of coupled cavity chain filled with plasma

    International Nuclear Information System (INIS)

    Li Jianqing; Xiao Shu; Mo Yuanlong

    2003-01-01

    In this paper, by using rigorous field analysis, a coupled-cavity (CC) chain filled with plasma has been analyzed. How the hybrid wave between the cavity mode and plasma mode is formed has been studied. The periodical CC chain filled with plasma demonstrates periodical TG modes with a cutoff frequency of zero. When the plasma density increase to a large scale, the cavity mode of the CC chain overlaps the TG mode, these two modes couple with each other and form the hybrid modes. In the case of hybrid modes, the 'cold' bandwidth and the 'warm' bandwidth expand, and the coupled impedance increases about 5 times larger than that of the vacuum. As a whole, the slow wave characteristics are improved substantially due to the formation of the hybrid mode

  5. A comparative study of x-ray emission from laser spots in laser-heated hohlraums relative to spots on simple disk targets

    International Nuclear Information System (INIS)

    Ze, F.; Langer, S.H.; Kauffman, R.L.; Kilkenny, J.D.; Landen, O.; Ress, D.; Rosen, M.D.; Suter, L.J.; Wallace, R.J.; Wiedwald, J.D.

    1997-01-01

    In this paper we report the results of experiments that compare the x-ray emission from a laser spot in a radiation-filled hohlraum to that from a similar laser spot on a simple disk target. The studies were done using the Nova laser facility [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)] in its 0.35 μm wavelength, 1 ns square pulse configuration. Focal spot intensities were 2 endash 3.5x10 15 W/cm 2 . X-ray images measured x-ray conversion in a hohlraum and from an isolated disk simultaneously. A laser spot inside a hohlraum emitted more x rays, after subtracting the background emission from the hohlraum walls, than a spot on a disk. Numerical models suggest the enhanced spot emission inside the hohlraum is due to an increase in lateral transport relative to the disk. Filamentation in the hohlraum will also increase the spot size. The models agree fairly well with the results on spot spreading but do not explain the overall increase in conversion efficiency. copyright 1997 American Institute of Physics

  6. Gas-filled capillaries for plasma-based accelerators

    International Nuclear Information System (INIS)

    Filippi, F; Anania, M P; Brentegani, E; Biagioni, A; Chiadroni, E; Ferrario, M; Pompili, R; Romeo, S; Cianchi, A; Zigler, A

    2017-01-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented. (paper)

  7. Gas-filled capillaries for plasma-based accelerators

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  8. Wave propagation in plasma-filled wave-guide

    International Nuclear Information System (INIS)

    Leprince, Philippe

    1966-01-01

    This research thesis reports the study of wave propagation along a plasma column without external magnetic field. The author first present and comment various theoretical results, and dispersion curves plotted for the main modes (particularly, the bipolar mode). He tries to define fundamental magnitudes which characterise a plasma-filled wave-guide. He reports the comparison of some experimental results with the previous theoretical results. Based on the study of the bipolar mode, the author develops a method of measurement of plasma column density. In the last part, the author reports the study of the resonance of a plasma-containing cavity. Several resonances are highlighted and new dispersion curves are plotted by using a varying length cavity. He also addresses the coupling of plasma modes with guide modes, and thus indicates the shape of Brillouin diagrams for a plasma-filled wave-guide. Moreover, some phenomena highlighted during plasma column density measurements by using the cavity method could then be explained [fr

  9. Cherenkov radiation in a plasma-filled, dielectric coaxial waveguide

    International Nuclear Information System (INIS)

    Wu Jianqiang

    2004-01-01

    Using the self-consistent linear field theory, Cherenkov radiation excitated by the beam-wave interaction of a thin annular relativistic electron beam in a plasma-filled, dielectric coaxial cylindrical waveguide was analyzed. The dispersion equation of the interaction, the synchronized condition and the wave growth rate were derived. The energy exchange between the wave and the electron beam in the presence of background plasma was discussed, and the effects of plasma density on the dispersion characteristics, the wave growth rate and the beam-wave energy exchange were calculated and discussed. It was clear that the Cherenkov radiation results from the coupling between the slow TM mode propagated along the waveguide and the negative-energy space-charge mode propagated along the beam, and the coupling strength is proportional to the beam density. It was theoretically demonstrated that due to the background plasma, the plasma-filled coaxial cylindrical Cherenkov maser could operate at higher frequency, get higher wave growth rate, or have higher beam current at the same operating frequency, leading to higher microwave output power. (authors)

  10. Foil-less plasma-filled diode for HPM generator

    International Nuclear Information System (INIS)

    Eltchaninov, A A; Kovalchuk, B M; Kurkan, I K; Zherlitsyn, A A

    2014-01-01

    Plasma-filled diode regarded as perspective source of electron beam feeding HPM generator of GW power level, comparing to conventional explosive emission vacuum diode. Electron beam generation occurs in plasma double layer, where plasma boundary plays as an anode. It allows cancelling the usage of anode foils or grids in HPM generators with the virtual cathode, which could limit its life time to few shots. The presence of ions in the e-beam drift space could raise the limiting current for a drift space, but it could affect to microwave generation also. Sectioned plasma-filled diode with beam current of about 100 kA, electron beam energy of about 0.5 MV and beam current density of 1-10 kA/cm 2 was realized. Cylindrical transport channel with the diameter of 200 mm and the length of about 30 cm was attached to the diode. Beam current measurements in a drift space were performed. Computer simulations of electron beam transport with the presence of ions were carried out with the 2.5D axisymmetric version of PiC-code KARAT. Obtained results would help optimizing electrodynamic system of HPM generator subjected to the presence of ions

  11. Tetrahedral hohlraums at omega

    International Nuclear Information System (INIS)

    Kyrala, G.A.; Goldman, S.R.; Batha, S.H.; Wallace, J.M.; Klare, K.A.; Schappert, G.T.; Oertel, J.; Turner, R.E.

    2000-01-01

    We have initiated a study of the usefulness of tetrahedrally illuminated spherical hohlraums, using the Omega laser beams, to drive planar shocks in packages that require indirect drive. A first suite of experiments used spherical hohlraums with a 2-μm thick gold wall surrounded by a 100-μm thick epoxy layer and had an internal diameter of 2.8 mm. Four laser entrance holes each of diameter 700 μm, located on the tips of a regular tetrahedron were used. The shock velocities and the shock uniformities were measured using optical shock break out techniques. The hohlraum x-ray radiation spectrum was also measured using a 10-channel x-ray detector. Tentatively, peak temperatures approaching 195 eV were achieved and shock speeds of 60 μm/ns were measured, when the hohlraum was driven by 22 kJ of 3 ω radiation. (authors)

  12. Implosion spectroscopy in Rugby hohlraums on OMEGA

    Science.gov (United States)

    Philippe, Franck; Tassin, Veronique; Bitaud, Laurent; Seytor, Patricia; Reverdin, Charles

    2014-10-01

    The rugby hohlraum concept has been validated in previous experiments on the OMEGA laser facility. This new hohlraum type can now be used as a well-characterized experimental platform to study indirect drive implosion, at higher radiation temperatures than would be feasible at this scale with classical cylindrical hohlraums. Recent experiments have focused on the late stages of implosion and hotspot behavior. The capsules included both a thin buried Titanium tracer layer, 0-3 microns from the inner surface, Argon dopant in the deuterium gas fuel and Germanium doped CH shells, providing a variety of spectral signatures of the plasma conditions in different parts of the target. X-ray spectroscopy and imaging were used to study compression, Rayleigh-Taylor instabilities growth at the inner surface and mix between the shell and gas.

  13. Self-similar compression of a magnetized plasma filled liner

    International Nuclear Information System (INIS)

    Felber, F.S.; Liberman, M.A.; Velikovich, A.L.

    1985-01-01

    New analytic, one-dimensional, self-similar solutions of magnetohydrodynamic equations describing the compression of a magnetized plasma by a thin cylindrical liner are presented. The solutions include several features that have not been included in an earlier self-similar solution of the equations of ideal magnetohydrodynamics. These features are the effects of finite plasma electrical conductivity, induction heating, thermal conductivity and related thermogalvanomagnetic effects, plasma turbulence, and plasma boundary effects. These solutions have been motivated by recent suggestions for production of ultrahigh magnetic fields by new methods. The methods involve radially imploding plasmas in which axial magnetic fields have been entrained. These methods may be capable of producing controlled magnetic fields up to approx. = 100 MG. Specific methods of implosion suggested were by ablative radial acceleration of a liner by a laser and by a gas-puff Z pinch. The model presented here addresses the first of these methods. The solutions derived here are used to estimate magnetic flux losses out of the compression volume, and to indicate conditions under which an impulsively-accelerated, plasma-filled liner may compress an axial magnetic field to large magnitude

  14. pF3D Simulations of Large Outer-Beam Brillouin Scattering from NIF Rugby Hohlraums

    Science.gov (United States)

    Langer, Steven; Strozzi, David; Chapman, Thomas; Amendt, Peter

    2015-11-01

    We assess the cause of large outer-beam stimulated Brillouin scattering (SBS) in a NIF shot with a rugby-shaped hohlraum, which has less wall surface loss and thus higher x-ray drive than a cylindrical hohlraum of the same radius. This shot differed from a prior rugby shot with low SBS in three ways: outer beam pointing, split-pointing of the four beams within each outer-beam quadruplet, and a small amount of neon added to the hohlraum helium fill gas. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles from the radiation-hydrodynamics code Lasnex. We determine which change between the two shots increased the SBS by adding them one at a time to the simulations. We compare the simulations to experimental data for total SBS power, its spatial distribution at the lens, and the SBS spectrum. For each shot, we use profiles from Lasnex simulations with and without a model for mix at the hohlraum wall-gas interface. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674893.

  15. High performance capsule implosions on the OMEGA Laser facility with rugby hohlraums

    International Nuclear Information System (INIS)

    Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Doeppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Seguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.

    2010-01-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D 2 -filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≅20x more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≅3x more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D 3 He rather than D 2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].

  16. Hohlraum drive and implosion experiments on Nova. Revision 1

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Suter, L.J.; Cable, M.D.

    1994-01-01

    Experiments on Nova have demonstrated hohlraum radiation temperatures up to 300 eV and in lower temperature experiments reproducible time integrated symmetry to 1--2%. Detailed 2-D LASNEX simulations satisfactorily reproduce Nova's drive and symmetry scaling data bases. Hohlraums has been used for implosion experiments achieving convergence ratios (initial capsule radius/final fuel radius) up to 24 with high density glass surrounding a hot gas fill

  17. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies

    Energy Technology Data Exchange (ETDEWEB)

    BOWERS,RICHARD; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSLKA,WALTER; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,CRAIG L.; PETERSON,BOB; PETERSON,DARRELL; RUGGLES,LAURENCE E.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; VESEY,ROGER A.

    1999-11-01

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch magnet on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {approx}85 eV for a duration of {approx}10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approx}122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approx}150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T{approx}(P/A){sup 1/4}. P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.

  18. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies

    International Nuclear Information System (INIS)

    Sandord, T.W.L.; Olson, R.E.; Chandler, G.A.; Hebron, D.E.; Mock, R.C.; Leeper, R.J.; Nash, T.J.; Ruggles, L.E.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.; Bowers, R.L.; Matuska, W.; Peterson, D.L.; Peterson, R.R.

    1999-01-01

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch target on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-microm-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm 3 CH, for example, produces foot-pulse conditions of minus85 eV for a duration of approximately 10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm 3 CH generates first-step-pulse conditions of approximately 122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to approximately 150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation (T-(P/A) 1/4 ). P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less

  19. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies

    Energy Technology Data Exchange (ETDEWEB)

    Sandord, T.W.L.; Olson, R.E.; Chandler, G.A.; Hebron, D.E.; Mock, R.C.; Leeper, R.J.; Nash, T.J.; Ruggles, L.E.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.; Bowers, R.L.; Matuska, W.; Peterson, D.L.; Peterson, R.R.

    1999-08-25

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch target on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {minus}85 eV for a duration of {approximately} 10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approximately} 122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approximately} 150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation (T-(P/A){sup 1/4}). P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.

  20. Z-pinch generated X-rays in static-wall-hohlraum geometry demonstrate potential for indirect-drive ICF studies

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Olson, R.E.; Mock, R.C.; Chandler, G.A.; Hebron, D.E.; Leeper, R.J.; Nash, T.J.; Ruggles, L.E.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.; Bowers, R.L.; Matuska, W.; Peterson, D.L.; Peterson, R.R.

    2000-01-01

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch target on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry [Fusion Technol. 35, 260 (1999)]. A 2-μm-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm 3 CH, for example, produces foot-pulse conditions of ∼85 eV for a duration of ∼10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm 3 CH generates first-step-pulse conditions of ∼122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to ∼150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T∼(P/A) 1/4 . P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of 10 -3 g/cm 3 or less. (authors)

  1. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies

    International Nuclear Information System (INIS)

    Sanford, Thomas W.L.; Bowers, Richard; Chandler, Gordon A.; Hebron, David E.; Leeper, Ramon J.; Matulska, W Alter; Mock, Raymond Cecil; Nash, Thomas J.; Olson, Craig L.; Peterson, Bob; Peterson, Darrell; Ruggles, Laurence E.; Simpson, Walter W.; Struve, Kenneth W.; Vesey, Roger A.

    1999-01-01

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch magnet on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-microm-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm 3 CH, for example, produces foot-pulse conditions of ∼85 eV for a duration of ∼10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm 3 CH generates first-step-pulse conditions of ∼122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to ∼150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T∼(P/A) 1/4 . P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less

  2. Low-foot rugby hohlraum experiments on the NIF: Wall-gas mix and a connection with missing x-ray drive energy?

    Science.gov (United States)

    Amendt, Peter; Ross, J. Steven; Schneider, Marilyn; Jones, Oggie; Milovich, Jose; Moody, John

    2014-10-01

    Rugby-shaped hohlraums on the NIF have shown strong symmetry anomalies when simulated with the high-flux model. The wall-gas interface is Rayleigh-Taylor unstable and may lead to the formation of a late-time mix layer that impedes inner- cone propagation, resulting in a drive asymmetry on the capsule. Due to the rugby curvature near the laser entrance hole, the effect of mix may be more pronounced than in cylinders. At the same time a persistent pattern of 15--25% missing energy has been inferred in gas-filled hohlraums (ρ >= 0 . 96 mg/cc). A possible physical connection between formation of a mix layer and the plasma adiabatic lapse rate, where a temperature-gradient reversal is predicted to occur, is explored. Such a profile reversal, in turn, hinders electron conduction to the dense (ρ > 0 . 2 g/cc) Au region responsible for ~900 eV drive x-ray emission, leading to a hotter coronal plasma and reduced hohlraum efficiency. Remedial measures for recovering the loss in hohlraum efficiency through the use of higher-Z gas fills are explored. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. Scaling laws for specialized hohlraums

    International Nuclear Information System (INIS)

    Rosen, M.D.

    1993-01-01

    The author presents scaling laws for the behavior of hohlraums that are somewhat more complex than a simple sphere or cylinder. In particular the author considers hohlraums that are in what has become known as a open-quotes primaryclose quotes open-quotes secondaryclose quotes configuration, namely geometries in which the laser is absorbed in a primary region of a hohlraum, and only radiation energy is transported to a secondary part of the hohlraum that is shielded from seeing the laser light directly. Such hohlraums have been in use of late for doing LTE opacity experiments on a sample in the secondary and in recently proposed open-quotes shimmedclose quotes hohlraums that use gold disks on axis to block a capsule's view of the cold laser entrance hole. The temperature/drive of the secondary, derived herein, scales somewhat differently than the drive in simple hohlraums

  4. Kinetic modeling of Nernst effect in magnetized hohlraums.

    Science.gov (United States)

    Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R

    2016-04-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

  5. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  6. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes

    International Nuclear Information System (INIS)

    Jiang, Shaoen; Ding, Yongkun; Huang, Yunbao; Li, Haiyan; Jing, Longfei; Huang, Tianxuan

    2016-01-01

    The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule

  7. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shaoen; Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Huang, Yunbao, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Li, Haiyan [Key Laboratory of Computer Integrated Manufacturing System, Guangdong University of Technology, Guangzhou 510006 (China); Jing, Longfei, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Huang, Tianxuan [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-01-15

    The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule.

  8. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N., E-mail: izumi2@llnl.gov; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Jaquez, J. [General Atomics, San Diego, California 9212 (United States)

    2016-11-15

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  9. Z-pinch driven hohlraums design for the 100 nanoseconds current time scale; Conception de cavites radiatives chauffees par plasma de striction magnetique en regime 100ns

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, F

    2003-12-15

    This work estimates Z-pinch driven hohlraums capabilities to obtain high temperatures (>200 eV). Simple models are proposed to calculate the performances offered by currents of 5 to 100 MA in 100 ns. The one dimensional physics of the Z-pinch at the length scale of its thickness and the hydrodynamics instabilities are studied. Then the enhancement of hohlraums performances with double nested Z-pinches or the use of an axial magnetic field is analysed. Z-pinch direct drive approach for inertial confinement fusion is finally considered. All the presented results are based on theoretical and 2D numerical approach and on the analysis of experimental results which were obtained on the american 'Z' generator. Annexes recall radiation MHD equations and check their validity for Z-pinch implosion. (author)

  10. Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept

    International Nuclear Information System (INIS)

    Cuneo, Michael E.; Vesey, Roger A.; Porter, John L. Jr.; Chandler, Gordon A.; Fehl, David L.; Gilliland, Terrance L.; Hanson, David L.; McGurn, John S.; Reynolds, Paul G.; Ruggles, Laurence E.; Seamen, Hans; Spielman, Rick B.; Struve, Ken W.; Stygar, William A.; Simpson, Walter W.; Torres, Jose A.; Wenger, David F.; Hammer, James H.; Rambo, Peter W.; Peterson, Darrell L.

    2001-01-01

    Initial experiments to study the Z-pinch-driven hohlraum high-yield inertial confinement fusion (ICF) concept of Hammer, Tabak, and Porter [Hammer et al., Phys. Plasmas 6, 2129 (1999)] are described. The relationship between measured pinch power, hohlraum temperature, and secondary hohlraum coupling ('hohlraum energetics') is well understood from zero-dimensional semianalytic, and two-dimensional view factor and radiation magnetohydrodynamics models. These experiments have shown the highest x-ray powers coupled to any Z-pinch-driven secondary hohlraum (26±5 TW), indicating the concept could scale to fusion yields of >200 MJ. A novel, single-sided power feed, double-pinch driven secondary that meets the pinch simultaneity requirements for polar radiation symmetry has also been developed. This source will permit investigation of the pinch power balance and hohlraum geometry requirements for ICF relevant secondary radiation symmetry, leading to a capsule implosion capability on the Z accelerator [Spielman et al., Phys. Plasmas 5, 2105 (1998)

  11. Experimental high power plasma-filled backward wave oscillator results

    International Nuclear Information System (INIS)

    Minami, K.; Lou, W.R.; Destler, W.W.; Kehs, R.A.; Granatstein, V.L.; Carmel, Y.

    1988-01-01

    Previous results have indicated that a background gas can be used to increase the output microwave power of relativistic backward wave oscillators (BWOs) two or three times the vacuum case. In their experiments, two methods of plasma production are investigated in detail: the use of the electron beam to ionize a background gas, and the use of a plasma gun to inject a background plasma into the slow-wave structure of a BWO. It is found in the first case that there was a resonant increase in microwave power at a particular pressure of the background gas by a factor of ten. In the second case, power also increased compared with power production in vacuum. Detailed results are presented and the relative merits of the two approaches is discussed and compared with theoretical expectations

  12. Plasma filled diodes and application to a PEOS

    International Nuclear Information System (INIS)

    Grossmann, J.M.; Ottinger, P.F.; Drobot, A.T.; Seftor, L.

    1985-01-01

    Pinched beam diodes generally begin operation at large impedances until the diode has had time to turn on (at which point strong electric fields turn on electric emission at the cathode). Current turn-on is accompanied by a sharp drop in impedance and is accomplished initially through space charge limited flow. As the current increases, the diode impedance will be determined by critical current flow when the electron beam pinches. Eventually the diode shorts out by gap closure as the high density electrode plasmas expand cross the AK gap. After turn-on, then, the diode acts as a low impedance load which is favorable for coupling to a PEOS by allowing for strong insulation of the electron flow from the PEOS to the load. It would be advantageous when using a PEOS to have the impedance of the diode low even at early times. This can be accomplished by introducing a low density plasma in the region between the cathode and the anode. The plasma initially presents the PEOS with a low impedance current path at the load as the switch opens - thereby reducing current losses upstream of the load. As the switch opens, the impedance of the diode can increase as the diode plasma erodes away, and the diode gap opens

  13. Linear theory of plasma filled backward wave oscillator

    Indian Academy of Sciences (India)

    An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.

  14. Ion production and bipolar fluxes in a high-current plasma-filled diode

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.

    1982-01-01

    The model and the evolution of behaviour of binary layers (BL) in expanding plasma of high current plasma-filled diode are described. The model estimates ion current and the laws of plasma expansion at the stage of BL intensive growth. The density range (10 12 -10 15 cm -3 ) is determined in which diode impedance growth takes place in connection with BL appearance. The density of ion current at the outlet of diode is 10 A/cm 2

  15. Opportunities of influence of plasma streams formed in IKA with continuos nor king gas filling en the surface of materials

    International Nuclear Information System (INIS)

    Useinov, B.M.; Useinova, A.M.; Amrenova, A.U.; Pusankov, S.A.; Sartin, S.A.; Virko, P.G.

    2001-01-01

    The results of the investigation of influence of plasma stream formed in IKA with continuous working gas filling on the surface of stainless steel 12X18H10T and aluminum are given in this article. It is shown here that the effect of influence of plasma stream on the surface of materials depends on the way of working gas filling. There is the comparison of influence of plasma stream formed in plasma accelerator with impulse and continuous working gas filling

  16. Plasma-filled diode experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Rochau, G.E.; McDaniel, D.H.; Moore, W.B.; Zuchowski, N.; Padilla, R.

    1987-01-01

    The PBFA-II accelerator is designed to use a Plasma Opening Switch (POS) for pulse shaping and voltage multiplication using inductive storage. The vacuum section of the machine consists of a set of short magnetically insulated transmission lines (MITLs) that both act as a voltage adder for series stacking of the pulses out of the 72 parallel plate water lines, and as a 100 nH (total) storage inductor upstream of a biconically shaped POS region. There are two POS plasma injection areas, located above and below an equatorial load, which has consisted of either a short circuit, a blade (electron beam) diode, or an Applied B magnetically insulated ion diode. The POS is designed to conduct up to 6 MA, and open into a 5 ohm diode load in 10 ns or less. Under these conditions, the voltage at the load is predicted to exceed 24 MV. Initial POS experiments using these loads have produced 1) opening times of typically 20 ns or longer, 2) poor current transfer efficiency (less than 50%) when load impedances averaged 2 ohms or more, and 3) differential switch opening in azimuthal segments of the power feed, thought to be caused by poor plasma uniformity across the flashboard plasma source. One possible explanation for 2) is that efficient transfer out of the POS requires that the current carried to the load be magnetically insulated, or else considerable energy will be deposited in the feed region between the POS and load. This had indeed been observed. The problem is further exacerbated by the longer current turn-on times that occur when an ion diode is used as the load

  17. First Octahedral Spherical Hohlraum Energetics Experiment at the SGIII Laser Facility

    Science.gov (United States)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xufei; Ren, Guoli; Cao, Hui; Li, Shu; Lan, Ke; Liu, Jie; Li, Yongsheng; Li, Sanwei; Guo, Liang; Liu, Yonggang; Yang, Dong; Jiang, Xiaohua; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Wang, Zhebin; Deng, Keli; Wang, Qiangqiang; Deng, Bo; Wang, Feng; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Gu, Qianqian; He, Zhibing; Du, Kai; Deng, Xuewei; Zhou, Wei; Wang, Liquan; Huang, Xiaoxia; Wang, Yuancheng; Hu, Dongxia; Zheng, Kuixing; Zhu, Qihua; Ding, Yongkun

    2018-04-01

    The first octahedral spherical hohlraum energetics experiment is accomplished at the SGIII laser facility. For the first time, the 32 laser beams are injected into the octahedral spherical hohlraum through six laser entrance holes. Two techniques are used to diagnose the radiation field of the octahedral spherical hohlraum in order to obtain comprehensive experimental data. The radiation flux streaming out of laser entrance holes is measured by six flat-response x-ray detectors (FXRDs) and four M -band x-ray detectors, which are placed at different locations of the SGIII target chamber. The radiation temperature is derived from the measured flux of FXRD by using the blackbody assumption. The peak radiation temperature inside hohlraum is determined by the shock wave technique. The experimental results show that the octahedral spherical hohlraum radiation temperature is in the range of 170-182 eV with drive laser energies of 71 kJ to 84 kJ. The radiation temperature inside the hohlraum determined by the shock wave technique is about 175 eV at 71 kJ. For the flat-top laser pulse of 3 ns, the conversion efficiency of gas-filled octahedral spherical hohlraum from laser into soft x rays is about 80% according to the two-dimensional numerical simulation.

  18. Essential Characteristics of Plasma Antennas Filled with He-Ar Penning Gases

    International Nuclear Information System (INIS)

    Sun Naifeng; Li Wenzhong; Wang Shiqing; Li Jian; Ci Jiaxiang

    2012-01-01

    Based on the essential theory of Penning gases, the discharge characteristics of He-Ar Penning gases in insulating tubes were analyzed qualitatively. The relation between the effective length of an antenna column filled with He-Ar Penning gases and the applied radio frequency (RF) power was investigated both theoretically and experimentally. The distribution of the plasma density along the antenna column in different conditions was studied. The receiving characteristics of local frequency modulated (FM) electromagnetic waves by the plasma antenna filled with He-Ar Penning gases were compared with those by an aluminum antenna with the same dimensions. Results show that it is feasible to take plasma antennas filled with He-Ar Penning gases as receiving antennas.

  19. Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums

    International Nuclear Information System (INIS)

    Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Monteil, M. C.; Liberatore, S.; Park, H. S.; Amendt, P.; Robey, H.; Sorce, C.; Li, C. K.; Seguin, F.; Rosenberg, M.; Petrasso, R.; Glebov, V.; Stoeckl, C.

    2010-01-01

    Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums used for D 2 and D 3 He-filled capsules implosions on the Omega laser facility, demonstrating an increase of x-ray flux by 18% in rugby-shaped hohlraums. The highest yields to date for deuterium gas implosions in indirect drive on Omega (1.5x10 10 neutrons) were obtained, allowing for the first time the measurement of a DD burn history. Proton spectra measurements provide additional validation of the higher drive in rugby-shaped hohlraums.

  20. Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums

    Science.gov (United States)

    Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Monteil, M. C.; Liberatore, S.; Park, H. S.; Amendt, P.; Robey, H.; Sorce, C.; Li, C. K.; Seguin, F.; Rosenberg, M.; Petrasso, R.; Glebov, V.; Stoeckl, C.

    2010-01-01

    Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums used for D2 and DHe3-filled capsules implosions on the Omega laser facility, demonstrating an increase of x-ray flux by 18% in rugby-shaped hohlraums. The highest yields to date for deuterium gas implosions in indirect drive on Omega (1.5×1010 neutrons) were obtained, allowing for the first time the measurement of a DD burn history. Proton spectra measurements provide additional validation of the higher drive in rugby-shaped hohlraums.

  1. Characterization of diagnostic hole-closure in Z-pinch driven hohlraums

    International Nuclear Information System (INIS)

    Baker, K. L.; Porter, J. L.; Ruggles, L. E.; Chandler, G. A.; Deeney, Chris; Vargas, M.; Moats, Ann; Struve, Ken; Torres, J.; McGurn, J. S.

    2000-01-01

    In this article we investigate the partial closure of diagnostic holes in Z-pinch driven hohlraums. These hohlraums differ from current laser-driven hohlraums in a number of ways such as their larger size, greater x-ray drive energy, and lower temperature. Although the diameter of the diagnostic holes on these Z-pinch driven hohlraums can be much greater than their laser-driven counterparts, 4 mm in diameter or larger, radiation impinges on the wall material surrounding the hole for the duration of the Z pinch, nearly 100 ns. This incident radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and partially obscure this diagnostic hole. This partial obscuration reduces the effective area over which diagnostics view the hohlraum's radiation. This reduction in area can lead to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. In this article we describe the techniques used to characterize the hole-closure in these hohlraums and present the experimental measurements of this process. (c) 2000 American Institute of Physics

  2. Characterization of diagnostic hole-closure in Z-pinch driven hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Porter, J. L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Ruggles, L. E. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Chandler, G. A. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Deeney, Chris [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Vargas, M. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Moats, Ann [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Struve, Ken [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Torres, J. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); McGurn, J. S. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)] (and others)

    2000-02-01

    In this article we investigate the partial closure of diagnostic holes in Z-pinch driven hohlraums. These hohlraums differ from current laser-driven hohlraums in a number of ways such as their larger size, greater x-ray drive energy, and lower temperature. Although the diameter of the diagnostic holes on these Z-pinch driven hohlraums can be much greater than their laser-driven counterparts, 4 mm in diameter or larger, radiation impinges on the wall material surrounding the hole for the duration of the Z pinch, nearly 100 ns. This incident radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and partially obscure this diagnostic hole. This partial obscuration reduces the effective area over which diagnostics view the hohlraum's radiation. This reduction in area can lead to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. In this article we describe the techniques used to characterize the hole-closure in these hohlraums and present the experimental measurements of this process. (c) 2000 American Institute of Physics.

  3. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter, E-mail: amendt1@llnl.gov; Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    Rugby-shaped gold hohlraums driven by a nominal low-adiabat laser pulse shape have been tested on the National Ignition Facility. The rugby affords a higher coupling efficiency than a comparably sized cylinder hohlraum or, alternatively, improved drive symmetry and laser beam clearances for a larger hohlraum with similar cylinder wall area and laser energy. A first (large rugby hohlraum) shot at low energy (0.75 MJ) to test laser backscatter resulted in a moderately oblate CH capsule implosion, followed by a high energy shot (1.3 MJ) that gave a highly oblate compressed core according to both time-integrated and –resolved x-ray images. These implosions used low wavelength separation (1.0 Å) between the outer and inner cones to provide an alternative platform free of significant cross-beam energy transfer for simplified hohlraum dynamics. Post-shot 2- and 3-D radiation-hydrodynamic simulations using the high-flux model [M. D. Rosen et al., High Energy Density Phys. 7, 180 (2011)], however, give nearly round implosions for both shots, in striking contrast with observations. An analytic assessment of Rayleigh-Taylor hydrodynamic instability growth on the gold–helium gas-fill interface shows the potential for significant linear growth, saturation and transition to a highly nonlinear state. Candidate seeds for instability growth include laser speckle during the early-time laser picket episode in the presence of only partial temporal beam smoothing (1-D smoothing by spectral dispersion and polarization smoothing) and intensity modulations from quad-to-quad and beam overlap. Radiation-hydrodynamic 2-D simulations adapted to include a dynamic fall-line mix model across the unstable Au-He interface show good agreement with the observed implosion symmetry for both shots using an interface-to-fall-line penetration fraction of 100%. Physically, the potential development of an instability layer in a rugby hohlraum is tantamount to an enhanced wall motion leading to

  4. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration

    International Nuclear Information System (INIS)

    Amendt, Peter; Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David

    2014-01-01

    Rugby-shaped gold hohlraums driven by a nominal low-adiabat laser pulse shape have been tested on the National Ignition Facility. The rugby affords a higher coupling efficiency than a comparably sized cylinder hohlraum or, alternatively, improved drive symmetry and laser beam clearances for a larger hohlraum with similar cylinder wall area and laser energy. A first (large rugby hohlraum) shot at low energy (0.75 MJ) to test laser backscatter resulted in a moderately oblate CH capsule implosion, followed by a high energy shot (1.3 MJ) that gave a highly oblate compressed core according to both time-integrated and –resolved x-ray images. These implosions used low wavelength separation (1.0 Å) between the outer and inner cones to provide an alternative platform free of significant cross-beam energy transfer for simplified hohlraum dynamics. Post-shot 2- and 3-D radiation-hydrodynamic simulations using the high-flux model [M. D. Rosen et al., High Energy Density Phys. 7, 180 (2011)], however, give nearly round implosions for both shots, in striking contrast with observations. An analytic assessment of Rayleigh-Taylor hydrodynamic instability growth on the gold–helium gas-fill interface shows the potential for significant linear growth, saturation and transition to a highly nonlinear state. Candidate seeds for instability growth include laser speckle during the early-time laser picket episode in the presence of only partial temporal beam smoothing (1-D smoothing by spectral dispersion and polarization smoothing) and intensity modulations from quad-to-quad and beam overlap. Radiation-hydrodynamic 2-D simulations adapted to include a dynamic fall-line mix model across the unstable Au-He interface show good agreement with the observed implosion symmetry for both shots using an interface-to-fall-line penetration fraction of 100%. Physically, the potential development of an instability layer in a rugby hohlraum is tantamount to an enhanced wall motion leading to

  5. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration

    Science.gov (United States)

    Amendt, Peter; Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David

    2014-11-01

    Rugby-shaped gold hohlraums driven by a nominal low-adiabat laser pulse shape have been tested on the National Ignition Facility. The rugby affords a higher coupling efficiency than a comparably sized cylinder hohlraum or, alternatively, improved drive symmetry and laser beam clearances for a larger hohlraum with similar cylinder wall area and laser energy. A first (large rugby hohlraum) shot at low energy (0.75 MJ) to test laser backscatter resulted in a moderately oblate CH capsule implosion, followed by a high energy shot (1.3 MJ) that gave a highly oblate compressed core according to both time-integrated and -resolved x-ray images. These implosions used low wavelength separation (1.0 Å) between the outer and inner cones to provide an alternative platform free of significant cross-beam energy transfer for simplified hohlraum dynamics. Post-shot 2- and 3-D radiation-hydrodynamic simulations using the high-flux model [M. D. Rosen et al., High Energy Density Phys. 7, 180 (2011)], however, give nearly round implosions for both shots, in striking contrast with observations. An analytic assessment of Rayleigh-Taylor hydrodynamic instability growth on the gold-helium gas-fill interface shows the potential for significant linear growth, saturation and transition to a highly nonlinear state. Candidate seeds for instability growth include laser speckle during the early-time laser picket episode in the presence of only partial temporal beam smoothing (1-D smoothing by spectral dispersion and polarization smoothing) and intensity modulations from quad-to-quad and beam overlap. Radiation-hydrodynamic 2-D simulations adapted to include a dynamic fall-line mix model across the unstable Au-He interface show good agreement with the observed implosion symmetry for both shots using an interface-to-fall-line penetration fraction of 100%. Physically, the potential development of an instability layer in a rugby hohlraum is tantamount to an enhanced wall motion leading to hindered

  6. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Markos, Christos; Bang, Ole

    2017-01-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 mu m. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity...

  7. Elaboration of metallic and composite fillings by plasma transferred arc. Process analysis and tribological study

    International Nuclear Information System (INIS)

    Rochette, Philippe

    1987-01-01

    The experimental part of this research thesis addresses the parametric study of two surface filling processes (by plasma transferred arc, and by plasma arc projection followed by a coating remelting by electron beam), the elaboration by plasma transferred arc and the metallurgical characterization of fillings of nickel base alloys and composite materials made of tungsten carbides dispersed in a nickel matrix, and the characterization of fretting wear of the so-elaborated fillings in aqueous environment. The results show that the plasma transferred arc filling technique allows coating quality and microstructure to be controlled by adjusting the mass energy of the transferred arc. Besides, this technique results in a very good control of nickel alloy coatings. The various studied composites show that it is better to use a matrix with very few alloying elements or pre-coated carbides in order to avoid any cracking phenomenon. The content of dispersed carbides must not be greater than 60 per cent in weight. The best wear behaviour is obtained with polyhedral tungsten carbides dispersed within a low alloyed nickel matrix [fr

  8. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

    Science.gov (United States)

    Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A

    2010-10-01

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.

  9. Enthalpy generation from mixing in hohlraum-driven targets

    Science.gov (United States)

    Amendt, Peter; Milovich, Jose

    2016-10-01

    The increase in enthalpy from the physical mixing of two initially separated materials is analytically estimated and applied to ICF implosions and gas-filled hohlraums. Pressure and temperature gradients across a classical interface are shown to be the origin of enthalpy generation from mixing. The amount of enthalpy generation is estimated to be on the order of 100 Joules for a 10 micron-scale annular mixing layer between the solid deuterium-tritium fuel and the undoped high-density carbon ablator of a NIF-scale implosion. A potential resonance is found between the mixing layer thickness and gravitational (Cs2/ g) and temperature-gradient scale lengths, leading to elevated enthalpy generation. These results suggest that if mixing occurs in current capsule designs for the National Ignition Facility, the ignition margin may be appreciably eroded by the associated enthalpy of mixing. The degree of enthalpy generation from mixing of high- Z hohlraum wall material and low- Z gas fills is estimated to be on the order of 100 kJ or more for recent NIF-scale hohlraum experiments, which is consistent with the inferred missing energy based on observed delays in capsule implosion times. Work performed under the auspices of Lawrence Livermore National Security, LLC (LLNS) under Contract No. DE-AC52-07NA27344.

  10. The LMJ project - status of our knowledge in hohlraum energetics physics: production and control of the radiation flux

    International Nuclear Information System (INIS)

    Dattolo, E.

    2001-09-01

    CEA-DAM in France is working on Inertial controlled Fusion (ICF) since the beginning of nineties. In an indirect drive scheme, the laser light is converted in X-ray in a hohlraum made with an high-Z material. Part of this radiation flux is absorbed by a micro-balloon filled with DT, placed in the center of the hohlraum, and generates its implosion, ignition and burn. This paper gives the status of our knowledge and studies for production and control of the radiation flux in the hohlraum, in the perspective of the Laser MegaJoule (LMJ). (authors)

  11. Kinetic modeling of Nernst effect in magnetized hohlraums

    OpenAIRE

    Joglekar, A. S.; Ridgers, Christopher Paul; Kingham, R J; Thomas, A. G. R.

    2016-01-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such...

  12. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser

    Science.gov (United States)

    Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.; Thomas, C. A.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Casey, D. T.; Chapman, T.; Czajka, C. E.; Dewald, E. L.; Divol, L.; Döppner, T.; Hinkel, D. E.; Hohenberger, M.; Jarrott, L. C.; Khan, S. F.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacLaren, S. A.; Masse, L. P.; Meezan, N. B.; Pak, A. E.; Salmonson, J. D.; Woods, D. T.; Izumi, N.; Ma, T.; Mariscal, D. A.; Nagel, S. R.; Kline, J. L.; Kyrala, G. A.; Loomis, E. N.; Yi, S. A.; Zylstra, A. B.; Batha, S. H.

    2018-05-01

    We present a data-based model for low mode asymmetry in low gas-fill hohlraum experiments on the National Ignition Facility {NIF [Moses et al., Fusion Sci. Technol. 69, 1 (2016)]} laser. This model is based on the hypothesis that the asymmetry in these low fill hohlraums is dominated by the hydrodynamics of the expanding, low density, high-Z (gold or uranium) "bubble," which occurs where the intense outer cone laser beams hit the high-Z hohlraum wall. We developed a simple model which states that the implosion symmetry becomes more oblate as the high-Z bubble size becomes large compared to the hohlraum radius or the capsule size becomes large compared to the hohlraum radius. This simple model captures the trends that we see in data that span much of the parameter space of interest for NIF ignition experiments. We are now using this model as a constraint on new designs for experiments on the NIF.

  13. Field stability by the electron beam in a warm magnetized plasma-filled waveguide

    International Nuclear Information System (INIS)

    Khalil, Sh.M.; Sayed, Y.A.; EI-Shorbagy, Kh.H.; EI-Gendy, A.T.

    2002-11-01

    We study the effect of the electron beam on the field stability and minimizing the energy losses in waveguide filled with plasma. Analytical calculations are performed to find the plasma dielectric tensor. By applying the boundary conditions at the plasma-conductor interface, we derive the dispersion equations, which describe the propagated E- and H- waves and their damping rate. The necessary condition for the field stability in the waveguide and the amplification coefficient for the E- wave are obtained. Realistic plasma conditions (i.e. its warmness and inhomogeneity under the effect of an external static magnetic field) are taken into consideration. The electron beam is found to play a crucial role in controlling the field attenuation in waveguide. (author)

  14. Development of a Z-pinch-driven ICF hohlraum concept on Z

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Porter, J.L. Jr.; Vesey, R.A.

    1999-01-01

    Recent development of high power z-pinches (> 150 MW) on the Z driver has permitted the study of high-temperature, radiation-driven hohlraums. Three complementary, Z-pinch source-hohlraum-ICF capsule configurations are being developed to harness the x-ray output of these Z-pinch's. These are the dynamic-hohlraum, static-wall hohlraum, and Z-pinch-driven hohlraum concepts. Each has different potential strengths and concerns. In this paper, the authors report on the first experiments with the Z-pinch-driven hohlraum (ZPDH) concept. A high-yield ICF capsule design for this concept appears feasible, when driven by z-pinches from a 60 MA-class driver. Initial experiments characterize the behavior of the spoke array on Z-pinch performance and x-ray transmission, and the uniformity of radiation flux incident on a foam capsule in the secondary, for a single-sided drive. Measurements of x-ray wall re-emission power and spectrum, radiation temperatures, spoke-plasma location, and drive uniformity will be presented and compared with 0-D energetics, 2-D Lasnex rad-hydro, and 3-D radiosity calculations of energy transport and drive uniformity

  15. Development of a Z-pinch-driven ICF hohlraum concept on Z

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, M E; Porter, Jr, J L; Vesey, R A [and others

    1999-07-01

    Recent development of high power z-pinches (> 150 MW) on the Z driver has permitted the study of high-temperature, radiation-driven hohlraums. Three complementary, Z-pinch source-hohlraum-ICF capsule configurations are being developed to harness the x-ray output of these Z-pinch's. These are the dynamic-hohlraum, static-wall hohlraum, and Z-pinch-driven hohlraum concepts. Each has different potential strengths and concerns. In this paper, the authors report on the first experiments with the Z-pinch-driven hohlraum (ZPDH) concept. A high-yield ICF capsule design for this concept appears feasible, when driven by z-pinches from a 60 MA-class driver. Initial experiments characterize the behavior of the spoke array on Z-pinch performance and x-ray transmission, and the uniformity of radiation flux incident on a foam capsule in the secondary, for a single-sided drive. Measurements of x-ray wall re-emission power and spectrum, radiation temperatures, spoke-plasma location, and drive uniformity will be presented and compared with 0-D energetics, 2-D Lasnex rad-hydro, and 3-D radiosity calculations of energy transport and drive uniformity.

  16. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    Science.gov (United States)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  17. Lifetime and shelf life of sealed tritium-filled plasma focus chambers with gas generator

    Directory of Open Access Journals (Sweden)

    B.D. Lemeshko

    2017-11-01

    Full Text Available The paper describes the operation features of plasma focus chambers using deuterium–tritium mixture. Handling tritium requires the use of sealed, vacuum-tight plasma focus chambers. In these chambers, there is an accumulation of the impurity gases released from the inside surfaces of the electrodes and the insulator while moving plasma current sheath inside chambers interacting with β-electrons generated due to the decay of tritium. Decay of tritium is also accompanied by the accumulation of helium. Impurities lead to a decreased yield of neutron emission from plasma focus chambers, especially for long term operation. The paper presents an option of absorption type gas generator in the chamber based on porous titanium, which allows to significantly increase the lifetime and shelf life of tritium chambers. It also shows the results of experiments on the comparison of the operation of sealed plasma focus chambers with and without the gas generator. Keywords: Plasma focus, Neutron yield, Tritium-filled plasma focus chambers, PACS Codes: 29.25.-v, 52.58.Lq

  18. Optimization of the NIF ignition point design hohlraum

    International Nuclear Information System (INIS)

    Callahan, D A; Hinkel, D E; Berger, R L; Divol, L; Dixit, S N; Edwards, M J; Haan, S W; Jones, O S; Lindl, J D; Meezan, N B; Michel, P A; Pollaine, S M; Suter, L J; Town, R P J; Bradley, P A

    2008-01-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt

  19. Optimization of the NIF ignition point design hohlraum

    Science.gov (United States)

    Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.

    2008-05-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.

  20. Increasing Z-pinch vacuum hohlraum capsule coupling efficiency

    International Nuclear Information System (INIS)

    Callahan, Debbie; Vesey, Roger Alan; Cochrane, Kyle Robert; Nikroo, A.; Bennett, Guy R.; Schroen, Diana Grace; Ruggles, Laurence E.; Porter, John L.; Streit, Jon; Mehlhorn, Thomas Alan; Cuneo, Michael Edward

    2004-01-01

    Symmetric capsule implosions in the double-ended vacuum hohlraum (DEH) on Z have demonstrated convergence ratios of 14-21 for 2.15-mm plastic ablator capsules absorbing 5-7 kJ of x-rays, based on backlit images of the compressed ablator remaining at peak convergence (1). Experiments with DD-filled 3.3-mm diameter capsules designed to absorb 14 kJ of x-rays have begun as an integrated test of drive temperature and symmetry, complementary to thin-shell symmetry diagnostic capsules. These capsule implosions are characterized by excellent control of symmetry (< 3% time-integrated), but low hohlraum efficiency (< 2%). Possible methods to increase the capsule absorbed energy in the DEH include mixed-component hohlraums, large diameter foam ablator capsules, transmissive shine shields between the z-pinch and capsule, higher spoke electrode x-ray transmission, a double-sided power feed, and smaller initial radius z-pinch wire arrays. Simulations will explore the potential for each of these modifications to increase the capsule coupling efficiency for near-term experiments on Z and ZR

  1. Improved performance of a plasma filled diode when driven by a PEOS

    International Nuclear Information System (INIS)

    Goyer, J.R.; Barreto, G.; Sincerny, P.S.; Krishnan, M.

    1988-01-01

    The plasma filled diode (PFD) has been used successfully to provide pulse compression and power multiplication for the fast Marx bank EYESS at Physics International. It has been found that the addition of a plasma erosion opening switch (PEOS) between the Marx bank and PFD increases the voltage and power at the diode while reducing the FWHM of the power pulse. Typical results obtained when using the PFD alone are power pulsewidths of 150 ns (FWHM) with a peak power of 500 GW at 1.1 MV. When the PEOS is included, the power pulsewidth narrows to 90 ns (FWHM) and the peak power increases to 550 GW at 1.5 MV. A description is given of the Marx bank, diode hardware, and plasma injection technique along with a presentation of diagnostic waveforms

  2. Hohlraum manufacture for inertial confinement fusion

    International Nuclear Information System (INIS)

    Foreman, L.R.; Gobby, P.; Bartos, J.

    1994-01-01

    Hohlraums are an integral part of indirect drive targets for Inertial Confinement Fusion (ICF) research. Hohlraums are made by an electroforming process that combines elements of micromachining and coating technology. The authors describe how these target element are made and extension of the method that allow fabrication of other, more complex target components

  3. Comparison of high-density carbon implosions in unlined uranium versus gold hohlraums

    Science.gov (United States)

    Dewald, Eduard; Meezan, Nathan; Tommasini, Riccardo; Khan, Shahab; MacKinnon, Andrew; Berzak Hopkins, Laura; Divol, Laurent; Lepape, Sebastien; Moore, Alastair; Schneider, Marilyn; Pak, Arthur; Nikroo, Abbas; Landen, Otto

    2016-10-01

    In Inertial Confinement Fusion (ICF) implosions, laser energy is converted to x-ray radiation in hohlraums with High-Z walls. At radiation temperatures near 300 eV relevant for ICF experiments, the radiative losses in heating the wall are lower for U than for Au hohlraums. Furthermore, the intensity of the ``M-band'' x-rays with photon energies h ν >1.8 keV is lower for uranium, allowing for reduced capsule dopant concentrations employed to minimize inner ablator preheat and hence keep favorable fuel/ablator interface Atwood numbers. This in turn improves the ablator rocket efficiency and reduces the risk of polluting the hot-spot with emissive dopant material. The first uranium vacuum hohlraum experiments on the National Ignition Facility (NIF) with undoped high-density carbon (HDC, or diamond) capsules have demonstrated 30% lower ``M-band'' intensity relative to Au, resulting in lower inflight ablator thickness due to reduced preheat. In addition, fusion neutron yields are 2x higher in U than in Au hohlraums for D2-gas filled capsule implosions at ICF relevant velocities of 380 +/-20 km/s. These results have led the NIF ICF implosions to routinely employ U hohlraums. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. System for deuterium-tritium mixture filling the working chamber of a dense plasma focus device

    International Nuclear Information System (INIS)

    Bondar', A.I.; Vyskubov, V.P.; Gerasimov, S.A.

    1981-01-01

    A gas-vacuum system designed for filling the gas-discharge chamber of a plasma focus device with equal-coaponent deuterium-tritium mixture is described. The system consists of a unit for gaseous mixture prepa ration and a unit for mixture absorption and device evacuation. The system provides the gaseous mixture purification of O 2 and N 2 impurities. Final tritium content in the gas-discharge chamber after tritium removal is not greater than 2x10 8 Bq/l. Tritium content in a sealed box in which the device is placed does not exceed 30 Bq/l that is less than limiting safe value. The conclusion is made that the described system design gives an opportunity to begin experimental studies at plasma focus devices with deuterium-tritium mixture [ru

  5. Target design for high fusion yield with the double Z-pinch-driven hohlraum

    International Nuclear Information System (INIS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-01-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P 2 ,P 4 ) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work

  6. 3D Simulations of the ``Keyhole'' Hohlraum for Shock Timing on NIF

    Science.gov (United States)

    Robey, H. F.; Marinak, M. M.; Munro, D. H.; Jones, O. S.

    2007-11-01

    Ignition implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of steps, which launch a series of shocks through the ablator and DT fuel. The relative timing of these shocks must be tuned to better than +/- 100ps to maintain the DT fuel on a sufficiently low adiabat. To meet these requirements, pre-ignition tuning experiments using a modified hohlraum geometry are being planned. This modified geometry, known as the ``keyhole'' hohlraum, adds a re-entrant gold cone, which passes through the hohlraum and capsule walls, to provide an optical line-of-sight to directly measure the shocks as they break out of the ablator. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The drive conditions and the resulting effect on shock timing in the keyhole hohlraum will be compared with the corresponding results for the standard ignition hohlraum. [1] M.M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).

  7. Computational modeling of z-pinch-driven hohlraum experiments on Z

    International Nuclear Information System (INIS)

    Vesey, R.A.; Porter, J.L. Jr.; Cuneo, M.E.

    1999-01-01

    The high-yield inertial confinement fusion concept based on a double-ended z-pinch driven hohlraum tolerates the degree of spatial inhomogeneity present in z-pinch plasma radiation sources by utilizing a relatively large hohlraum wall surface to provide spatial smoothing of the radiation delivered to the fusion capsule. The z-pinch radiation sources are separated from the capsule by radial spoke arrays. Key physics issues for this concept are the behavior of the spoke array (effect on the z-pinch performance, x-ray transmission) and the uniformity of the radiation flux incident on the surface of the capsule. Experiments are underway on the Z accelerator at Sandia National laboratories to gain understanding of these issues in a single-sided drive geometry. These experiments seek to measure the radiation coupling among the z-pinch, source hohlraum, and secondary hohlraum, as well as the uniformity of the radiation flux striking a foam witness ball diagnostic positioned in the secondary hohlraum. This paper will present the results of computational modeling of various aspects of these experiments

  8. 0-d energetics scaling models for Z-pinch-driven hohlraums

    International Nuclear Information System (INIS)

    CUNEO, MICHAEL E.; VESEY, ROGER A.; HAMMER, J.H.; PORTER, JOHN L.

    2000-01-01

    Wire array Z-pinches on the Z accelerator provide the most intense laboratory source of soft x-rays in the world. The unique combination of a highly-Planckian radiation source with high x-ray production efficiency (15% wall plug), large x-ray powers and energies ( >150 TW, ge1 MJ in 7 ns), large characteristic hohlraum volumes (0.5 to >10 cm 3 ), and long pulse-lengths (5 to 20 ns) may make Z-pinches a good match to the requirements for driving high-yield scale ICF capsules with adequate radiation symmetry and margin. The Z-pinch driven hohlraum approach of Hammer and Porter [Phys.Plasmas, 6, 2129(1999)] may provide a conservative and robust solution to the requirements for high yield, and is currently being studied on the Z accelerator. This paper describes a multiple region, 0-d hohlraum energetic model for Z-pinch driven hohlraums in four configurations. The authors observe consistency between the models and the measured x-ray powers and hohlraum wall temperatures to within ±20% in flux, for the four configurations

  9. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-06-15

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

  10. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  11. Experiment on a large-diameter plasma-filled backward-wave oscillator

    International Nuclear Information System (INIS)

    Ogura, K.; Minami, K.; Kurashina, K.I.; Kim, W.; Watanabe, T.; Ishii, K.; Sugito, S.

    1995-01-01

    A large-diameter plasma-filled backward-wave oscillator (BWO) is investigated experimentally. The parameters of slow wave structure are chosen so that the oscillation frequency is about 20GHz at 60keV beam energy. Plasma is produced by the beam and has favorable effects for beam propagation and Cerenkov oscillations. The output power of the BWO with plasma is observed to be three to six times that of vacuum BWO. The power level is several kilowatts and the efficiency is about 0.01%. For Cerenkov oscillations of a large-diameter BWO, the beam energy mainly determines the starting conditions for oscillation. The output power is strongly enhanced when the guiding magnetic field approaches the fundamental electron cyclotron resonance. This mechanism is closely related to the anomalous Doppler cyclotron resonance. The maximum power of 480kW with an efficiency of 5% is achieved even for a relatively low beam energy of 60keV. ((orig.))

  12. Hohlraum Radiation Drive Measurements on the Omega Laser

    International Nuclear Information System (INIS)

    Decker, C.; Turner, R.E.; Landen, O.L.; Suter, L.J.; Amendt, P.; Kornblum, H.N.; Hammel, B.A.; Murphy, T.J.; Wallace, J.; Delamater, N.D.; Gobby, P.; Hauer, A.A.; Magelssen, G.R.; Oertel, J.A.; Knauer, J.; Marshall, F.J.; Bradley, D.; Seka, W.; Soures, J.M.

    1997-01-01

    Time-resolved drive measurements with thin-walled hohlraum targets on Omega [J.M.Soures et al., Phys.Plasmas 3, 2108 (1996)] are presented and compared with two-dimensional hydrodynamical simulations. For the first time, radiation fluxes are measured through the laser entrance hole instead of through a diagnostic side hole. We find improved agreement between time dependent experiments and simulations using this new technique. In addition, the drive history obtained in this manner correlates well with the drive onto the capsule at target center. copyright 1997 The American Physical Society

  13. The LMJ project - status of our knowledge in hohlraum energetics physics: production and control of the radiation flux; Projet laser megajoule - les etudes et activites dans le domaine de la physique de la cavite (hohlraum): production et controle du flux radiatif

    Energy Technology Data Exchange (ETDEWEB)

    Dattolo, E

    2001-09-01

    CEA-DAM in France is working on Inertial controlled Fusion (ICF) since the beginning of nineties. In an indirect drive scheme, the laser light is converted in X-ray in a hohlraum made with an high-Z material. Part of this radiation flux is absorbed by a micro-balloon filled with DT, placed in the center of the hohlraum, and generates its implosion, ignition and burn. This paper gives the status of our knowledge and studies for production and control of the radiation flux in the hohlraum, in the perspective of the Laser MegaJoule (LMJ). (authors)

  14. The Kelvin-Helmholtz instability in National Ignition Facility hohlraums as a source of gold-gas mixing

    Energy Technology Data Exchange (ETDEWEB)

    Vandenboomgaerde, M.; Bonnefille, M.; Gauthier, P. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-05-15

    Highly resolved radiation-hydrodynamics FCI2 simulations have been performed to model laser experiments on the National Ignition Facility. In these experiments, cylindrical gas-filled hohlraums with gold walls are driven by a 20 ns laser pulse. For the first time, simulations show the appearance of Kelvin-Helmholtz (KH) vortices at the interface between the expanding wall material and the gas fill. In this paper, we determine the mechanisms which generate this instability: the increase of the gas pressure around the expanding gold plasma leads to the aggregation of an over-dense gold layer simultaneously with shear flows. At the surface of this layer, all the conditions are met for a KH instability to grow. Later on, as the interface decelerates, the Rayleigh-Taylor instability also comes into play. A potential scenario for the generation of a mixing zone at the gold-gas interface due to the KH instability is presented. Our estimates of the Reynolds number and the plasma diffusion width at the interface support the possibility of such a mix. The key role of the first nanosecond of the laser pulse in the instability occurrence is also underlined.

  15. Observation of hydrodynamic processes of radiation-ablated plasma in a small hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hang; Kuang, Longyu; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com; Ding, Yongkun, E-mail: ding-yk@vip.sina.com [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China); Song, Tianming; Yang, Jiamin, E-mail: yjm70018@sina.cn; Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China); Hu, Guangyue; Zhao, Bin; Zheng, Jian [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-07-15

    In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2–5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.

  16. Pulsed power driven hohlraum research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Leeper, R.J.; Alberts, T.E.; Allshouse, G.A.

    1996-01-01

    Three pulsed power driven hohlraum concepts are being investigated at Sandia for application to inertial fusion research. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. Research on these hohlraum systems will continue on Sandia's PBFA II-Z facility

  17. Cylindrical target Li-beam-driven hohlraum experiments

    International Nuclear Information System (INIS)

    Derzon, M.S.; Aubert, J.; Chandler, G.A.

    1998-06-01

    The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 ± 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy (∼10 MeV at the gas cell) at the target at a peak power of 2.5 ± 0.3 TW/cm 2 and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of ∼2 cm/micros is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented

  18. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR

    International Nuclear Information System (INIS)

    Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

    2007-01-01

    We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays

  19. Pulsed power driven hohlraum research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, R J; Alberts, T E; Allshouse, G A [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    Three pulsed power driven hohlraum concepts are being investigated at Sandia National Laboratories. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. The paper is an overview of the experiments that have been conducted on these hohlraum systems and discusses several new and novel hohlraum characterization diagnostics that have been developed for this work. These diagnostics include an active shock breakout measurement of hohlraum temperature and a new transmission grating spectrograph for detailed thermal radiation spectral measurements. (author). 3 figs., 6 refs.

  20. Pulsed power driven hohlraum research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Leeper, R.J.; Alberts, T.E.; Allshouse, G.A.

    1996-01-01

    Three pulsed power driven hohlraum concepts are being investigated at Sandia National Laboratories. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. The paper is an overview of the experiments that have been conducted on these hohlraum systems and discusses several new and novel hohlraum characterization diagnostics that have been developed for this work. These diagnostics include an active shock breakout measurement of hohlraum temperature and a new transmission grating spectrograph for detailed thermal radiation spectral measurements. (author). 3 figs., 6 refs

  1. Analytic Models of High-Temperature Hohlraums

    International Nuclear Information System (INIS)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

    2000-01-01

    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P s = (A s +(1minusα W )A W +A H )σT R 4 + (4Vσ/c)(dT R r /dt) where P S is the total power radiated by the source, A s is the source area, A W is the area of the cavity wall excluding the source and holes in the wall, A H is the area of the holes, σ is the Stefan-Boltzmann constant, T R is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo α W triple b ond (T W /T R ) 4 where T W is the brightness temperature of area A W . The net power radiated by the source P N = P S -A S σT R 4 , which suggests that for laser-driven hohlraums the conversion efficiency η CE be defined as P N /P LASER . The characteristic time required to change T R 4 in response to a change in P N is 4V/C((lminusα W )A W +A H ). Using this model, T R , α W , and η CE can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P N = {(1minusα W )A W +A H +((1minusα C )(A S +A W α W )A C /A T = )}σT RC 4 where α C is the capsule albedo, A C is the capsule area, A T triple b ond (A S +A W +A H ), and T RC is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented

  2. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; Robey, H. F.; Kritcher, A. L.; Milovich, J. L.; Salmonson, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-07-15

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.

  3. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    Energy Technology Data Exchange (ETDEWEB)

    Kantsyrev, V. L., E-mail: victor@unr.edu; Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C. [Physics Department, University of Nevada, Reno, NV 89557 (United States); Chuvatin, A. S. [Laboratorie de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Rudakov, L. I. [Icarus Research Inc., P.O. Box 30780, Bethesda, MD 20824-0780 (United States); Velikovich, A. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Cuneo, M. E.; Jones, B.; Vesey, R. A. [Sandia National Laboratories, Albuquerque, NM 87110 (United States)

    2014-12-15

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.

  4. Analytic theory of the Rayleigh-Taylor instability in a uniform density plasma-filled ion diode

    International Nuclear Information System (INIS)

    Hussey, T.W.; Payne, S.S.

    1987-04-01

    The J-vector x B-vector forces associated with the surface current of a plasma-filled ion diode will accelerate this plasma fill toward the anode surface. It is well known that such a configuration with a high I is susceptible to the hydromagnetic Rayleigh-Taylor instability in certain geometries. A number of ion diode plasma sources have been proposed, most of which have a falling density going away from the wall. A somewhat more unstable case, however, is that of uniform density. In this report we attempt to establish an upper limit on this effect with a simple analytic model in which a uniform-density plasma is accelerated by the magnetic field anticipated in a PBFA-II diode. We estimate the number of linear e-foldings experienced by an unstable surface as well as the most damaging wavelength initial perturbation. This model, which accounts approximately for stabilization due to field diffusion, suggests that even with a uniform fill, densities in excess of a few 10 15 are probably not damaged by the instability. In addition, even lower densities might be tolerated if perturbations near the most damaging wavelength can be kept very small

  5. Fluorescence imaging as a diagnostic of M-band x-ray drive condition in hohlraum with fluorescent Si targets

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei

    2017-01-01

    Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball. (paper)

  6. The physics of radiation driven ICF hohlraums

    International Nuclear Information System (INIS)

    Rosen, M.D.

    1995-01-01

    On the Nova Laser at LLNL, we have recently demonstrated many of the key elements required for assuring that the next proposed laser, the National Ignition Facility (NIF) will drive an Inertial Confinement Fusion (ICF) target to ignition. The target uses the recently declassified indirect drive (sometimes referred to as open-quotes radiation driveclose quotes) approach which converts laser light to x-rays inside a gold cylinder, which then acts as an x-ray open-quotes ovenclose quotes (called a hohlraum) to drive the fusion capsule in its center. On Nova we've demonstrated good understanding of the temperatures reached in hohlraums and of the ways to control the uniformity with which the x-rays drive the spherical fusion capsules. In this lecture we briefly review the fundamentals of ICF, and describe the capsule implosion symmetry advantages of the hohlraum approach. We then concentrate on a quantitative understanding of the scaling of radiation drive with hohlraum size and wall material, and with laser pulse length and power. We demonstrate that coupling efficiency of x-ray drive to the capsule increases as we proceed from Nova to the NIF and eventually to a reactor, thus increasing the gain of the system

  7. Effect of gas filling pressure and operation energy on ion and neutron emission in a medium energy plasma focus device

    Science.gov (United States)

    Niranjan, Ram; Rout, R. K.; Srivastava, Rohit; Kaushik, T. C.

    2018-03-01

    The effects of gas filling pressure and operation energy on deuterium ions and neutrons have been studied in a medium energy plasma focus device, MEPF-12. The deuterium gas filling pressure was varied from 1 to 10 mbar at an operation energy of 9.7 kJ. Also, the operation energy was varied from 3.9 to 9.7 kJ at a deuterium gas filling pressure of 4 mbar. Time resolved emission of deuterium ions was measured using a Faraday cup. Simultaneously, time integrated and time resolved emissions of neutrons were measured using a silver activation detector and plastic scintillator detector, respectively. Various characteristics (fluence, peak density, and most probable energy) of deuterium ions were estimated using the Faraday cup signal. The fluence was found to be nearly independent of the gas filling pressure and operation energy, but the peak density and most probable energy of deuterium ions were found to be varying. The neutron yield was observed to be varying with the gas filling pressure and operation energy. The effect of ions on neutrons emission was observed at each operation condition.

  8. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    Science.gov (United States)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  9. Eigenmodes of a microwave cavity partially filled with an anisotropic hot plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1978-01-01

    The eigenmodes of a microwave cavity, which contains a uniform hot plasma with anisotropic temperature, are determined using the linearized fluid equations together with Maxwell's equations. Conditions are discussed under which hot plasma mode and the cold plasma mode are decoupled. The frequency shift of the microwave cavity is calculated and the theoretical results are shown to be in very good qualitative agreement with published experimental results obtained for the TM 010 mode. (author)

  10. High Foot Implosion Experiments in Rugby Hohlraums

    Science.gov (United States)

    Ralph, Joseph; Leidinger, J.-P.; Callahan, D.; Kaiser, P.; Morice, O.; Marion, D.; Moody, J. D.; Ross, J. S.; Amendt, P.; Kritcher, A. L.; Milovich, J. L.; Strozzi, D.; Hinkel, D.; Michel, P.; Berzak Hopkins, L.; Pak, A.; Dewald, E. L.; Divol, L.; Khan, S.; Rygg, R.; Hurricane, O.; Lawrence Livermore National Lab Team; CEA/DAM Team

    2015-11-01

    The rugby hohlraum design is aimed at providing uniform x-ray drive on the capsule while minimizing the need for crossed beam energy transfer (CBET). As part of a series of experiments at the NIF using rugby hohlraums, design improvements in dual axis shock tuning experiments produced some of the most symmetric shocks measured on implosion experiments at the NIF. Additionally, tuning of the in-flight shell and hot spot shape have demonstrated that capsules can be tuned between oblate and prolate with measured velocities of nearly 340 km/s. However, these experimental measurements were accompanied by high levels of Stimulated Raman Scattering (SRS) that may result from the long inner beam path length, reamplification of the inner SRS by the outers, significant (CBET) or a combination of these. All rugby shots results were achieved with lower levels of hot electrons that can preheat the DT fuel layer for increased adiabat and reduced areal density. Detailed results from these experiments and those planned throughout the summer will be presented and compared with results obtained from cylindrical hohlraums. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Lab under Contract DE-AC52-07NA27344.

  11. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    International Nuclear Information System (INIS)

    Anders, Andre; Kauffeldt, Marina; Roy, Prabir; Oks, Efim

    2010-01-01

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  12. Specific features of X-ray generation by plasma focus chambers with deuterium and deuterium–tritium fillings

    Energy Technology Data Exchange (ETDEWEB)

    Dulatov, A. K., E-mail: bogolubov@vniia.ru; Krapiva, P. S.; Lemeshko, B. D.; Mikhailov, Yu. V.; Moskalenko, I. N.; Prokuratov, I. A.; Selifanov, A. N. [All-Russia Research Institute of Automatics (Russian Federation)

    2016-01-15

    The process of hard X-ray (HXR) generation in plasma focus (PF) chambers was studied experimentally. The radiation was recorded using scintillation detectors with a high time resolution and thermoluminescent detectors in combination with the method of absorbing filters. Time-resolved analysis of the processes of neutron and X-ray generation in PFs is performed. The spectra of HXR emission from PF chambers with deuterium and deuterium–tritium fillings are determined. In experiments with PF chambers filled with a deuterium–tritium mixture, in addition to the HXR pulse with photon energies of up to 200–300 keV, a γ-ray pulse with photon energies of up to 2.5–3.0 MeV is recorded, and a mechanism of its generation is proposed.

  13. Three-dimensional modeling of capsule implosions in OMEGA tetrahedral hohlraums

    International Nuclear Information System (INIS)

    Schnittman, J. D.; Craxton, R. S.

    2000-01-01

    Tetrahedral hohlraums have been proposed as a means for achieving the highly uniform implosions needed for ignition with inertial confinement fusion (ICF) [J. D. Schnittman and R. S. Craxton, Phys. Plasmas 3, 3786 (1996)]. Recent experiments on the OMEGA laser system have achieved good drive uniformity consistent with theoretical predictions [J. M. Wallace et al., Phys. Rev. Lett. 82, 3807 (1999)]. To better understand these experiments and future investigations of high-convergence ICF implosions, the three-dimensional (3-D) view-factor code BUTTERCUP has been expanded to model the time-dependent radiation transport in the hohlraum and the hydrodynamic implosion of the capsule. Additionally, a 3-D postprocessor has been written to simulate x-ray images of the imploded core. Despite BUTTERCUP's relative simplicity, its predictions for radiation drive temperatures, fusion yields, and core deformation show close agreement with experiment. (c) 2000 American Institute of Physics

  14. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    Science.gov (United States)

    Amendt, Peter

    2006-10-01

    The goal of demonstrating ignition on the National Ignition Facility (NIF) has motivated a revisit of double-shell (DS) [1] targets as a complementary path to the baseline cryogenic single-shell approach [2]. Benefits of DS targets include room-temperature deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances [3], and loose shock timing requirements. On the other hand, DS ignition presents several challenges, including room-temperature containment of high-pressure DT (790 atm) in the inner shell; strict concentricity requirements on the two shells; development of nanoporous, low-density, metallic foams for structural support of the inner shell and hydrodynamic instability mitigation; and effective control of perturbation growth on the high-Atwood number interface between the DT fuel and the high-Z inner shell. Recent progress in DS ignition target designs using vacuum hohlraums is described, offering the potential for low levels of laser backscatter from stimulated Raman and Brillouin processes. In addition, vacuum hohlraums have the operational advantages of room temperature fielding and fabrication simplicity, as well as benefiting from extensive benchmarking on the Nova and Omega laser facilities. As an alternative to standard cylindrical hohlraums, a rugby-shaped geometry is also introduced that may provide energetics and symmetry tuning benefits for more robust DS designs with yields exceeding 10 MJ for 2 MJ of 3w laser energy. The recent progress in hohlraum designs and required advanced materials development are scheduled to culminate in a prototype demonstration of a NIF-scale ignition-ready DS in 2007. [1] P. Amendt et al., PoP 9, 2221 (2002). [2] J.D. Lindl et al., PoP 11, 339 (2004). [3] M.N. Chizhkov et al., Laser Part. Beams 23, 261 (2005). In collaboration with C. Cerjan, A. Hamza, J. Milovich and H. Robey.

  15. Hohlraum Target Alignment from X-ray Detector Images using Starburst Design Patterns

    International Nuclear Information System (INIS)

    Leach, R.R.; Conder, A.; Edwards, O.; Kroll, J.; Kozioziemski, B.; Mapoles, E.; McGuigan, D.; Wilhelmsen, K.

    2010-01-01

    National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to initiate a fusion reaction. The target container, or hohlraum, must be accurately aligned to an x-ray imaging system to allow careful monitoring of the frozen fuel layer in the target. To achieve alignment, x-ray images are acquired through starburst-shaped windows cut into opposite sides of the hohlraum. When the hohlraum is in alignment, the starburst pattern pairs match nearly exactly and allow a clear view of the ice layer formation on the edge of the target capsule. During the alignment process, x-ray image analysis is applied to determine the direction and magnitude of adjustment required. X-ray detector and source are moved in concert during the alignment process. The automated pointing alignment system described here is both accurate and efficient. In this paper, we describe the control and associated image processing that enables automation of the starburst pointing alignment.

  16. X-ray radiation source based on a plasma filled diode

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar, A S [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation). Russian Federal Nuclear Center

    1997-12-31

    The results are given of studies on a plasma X-ray source providing 2.5 krad of radiation dose per pulse over an area of 100 cm{sup 2} in the quantum energy range between 20 and 500 keV. The pulse duration was 100 ns. The spectral radiation distribution was obtained under various operating conditions of plasma and diode. A Marx generator served as the starting power source of 120 kJ with a discharge time of T/4=10{sup -6} s. A short electromagnetic pulse (10{sup -7} s) was shaped using plasma erosion opening switches. (author). 5 figs., 4 refs.

  17. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    CERN Document Server

    Ciocarlan, C.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.; 10.1063/1.4822333

    2013-01-01

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive selffocusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.01018 cm3, the peak normalized...

  18. Radiation symmetry control for inertial confinement fusion capsule implosions in double Z-pinch hohlraums on Z

    International Nuclear Information System (INIS)

    Vesey, Roger A.; Cuneo, Michael E.; Porter, John L. Jr.; Adams, Richard G.; Aragon, Rafael A.; Rambo, Patrick K.; Ruggles, Laurence E.; Simpson, Walter W.; Smith, Ian C.; Bennett, Guy R.

    2003-01-01

    The double Z-pinch hohlraum high-yield concept [Hammer et al., Phys. Plasmas 6, 2129 (1999)] utilizes two 63-MA Z pinches to heat separate primary hohlraums at either end of a secondary hohlraum containing the cryogenic fusion capsule. Recent experiments on the Z accelerator [Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories have developed an advanced single-sided power feed, double Z-pinch load to study radiation symmetry and pinch power balance using implosion capsules [Cuneo et al., Phys. Rev. Lett. 88, 215004 (2002)]. Point-projection x-ray imaging with the Z-Beamlet Laser mapped the trajectory and distortion of 2-mm diameter plastic ablator capsules. Using the backlit capsule distortion as a symmetry diagnostic, the ability to predictably tune symmetry at the 2 Legendre mode asymmetry coefficient over a range of ±6% (±2% considering points nearest the optimum) was achieved by varying the length of the cylindrical secondary hohlraum containing the capsule, in agreement with viewfactor and radiation-hydrodynamics simulations

  19. Plasma polymerization coating of D-T filled glass shells for laser fusion targets

    International Nuclear Information System (INIS)

    Johnson, W.L.; Hatcher, C.W.; Hendricks, C.D.; Letts, S.A.; Lorensen, L.E.

    1977-01-01

    Three plasma sources are described which activate monomers of perfluoro-2-butene or tetrafluoroethylene to produce coatings 10 to 20 μm thick with surfaces finishes <0.1 μm. Electrical and chemical controls of the polymerization processes are shown to improve the surface finish

  20. Fabrication and testing of gas filled targets for large scale plasma experiments on Nova

    International Nuclear Information System (INIS)

    Stone, G.F.; Spragge, M.; Wallace, R.J.; Rivers, C.J.

    1995-01-01

    An experimental campaign on the Nova laser was started in July 1993 to study one st of target conditions for the point design of the National Ignition Facility (NIF). The targets were specified to investigate the current NIF target conditions--a plasma of ∼3 keV electron temperature and an electron density of ∼1.0 E + 21 cm -3 . A gas cell target design was chosen to confine as gas of ∼0.01 cm 3 in volume at ∼ 1 atmosphere. This paper will describe the major steps and processes necessary in the fabrication, testing and delivery of these targets for shots on the Nova Laser at LLNL

  1. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    International Nuclear Information System (INIS)

    Amendt, Peter; Cerjan, C.; Hamza, A.; Hinkel, D. E.; Milovich, J. L.; Robey, H. F.

    2007-01-01

    The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (≅4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (≅790 atm) in the inner shell, strict concentricity requirements on the two shells ( 2 nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010

  2. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited).

    Science.gov (United States)

    Kyrala, G A; Dixit, S; Glenzer, S; Kalantar, D; Bradley, D; Izumi, N; Meezan, N; Landen, O L; Callahan, D; Weber, S V; Holder, J P; Glenn, S; Edwards, M J; Bell, P; Kimbrough, J; Koch, J; Prasad, R; Suter, L; Kline, J L; Kilkenny, J

    2010-10-01

    Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.

  3. Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge

    International Nuclear Information System (INIS)

    Metel, A. S.; Grigoriev, S. N.; Melnik, Yu. A.; Panin, V. V.

    2009-01-01

    Experimental study of a glow discharge with electrostatic confinement of electrons is carried out in the vacuum chamber volume V ∼ 0.12 m 3 of a technological system 'Bulat-6' in argon pressure range 0.005-5 Pa. The chamber is used as a hollow cathode of the discharge with the inner surface area S ∼ 1.5 m 2 . It is equipped with two feedthroughs, which make it possible to immerse in the discharge plasma interchangeable anodes with surface area S a ranging from ∼0.001 to ∼0.1 m 2 , as well as floating electrodes isolated from both the chamber and the anode. Dependences of the cathode fall U c = 0.4-3 kV on the pressure p at a constant discharge current in the range I = 0.2-2 A proved that aperture of the electron escape out of the electrostatic trap is equal to the sum S o = S a + S f of the anode surface S a and the floating electrode surface S f . The sum S o defines the lower limit p o of the pressure range, in which U c is independent of p. At p o the cathode fall U c grows up dramatically, when the pressure decreases, and the pressure p tends to the limit p ex , which is in fact the discharge extinction pressure. At p ∼ p ex electrons emitted by the cathode and the first generation of fast electrons produced in the cathode sheath spend almost all their energy up to 3 keV on heating the anode and the floating electrode up to 600-800 o C and higher. In this case the gas in the chamber is being ionized by the next generations of electrons produced in the cathode sheath, their energy being one order of magnitude lower. When S a 1/2 S, where m is the electron mass and M is the ion mass, the anode may be additionally heated by plasma electrons accelerated by the anode fall of potential U a up to 0.5 kV.

  4. Osseous Flap of Galea and Periosteum Filled With Mesenchymal Stem Cells, Platelet-Rich Plasma, Bone Dust, and Hyaluronic Acid.

    Science.gov (United States)

    Brock, Ryane Schmidt; Viterbo, Fausto; Deffune, Elenice; Domingues, Maria Aparecida Custodio; Mamprim, Maria Jaqueline; Paschoalinotte, Eloisa Elena

    2017-10-01

    Reconstructive surgery to craniofacial deformities caused by tumor ressections, traumas or congenital malformation are frequent in medicine practice. It aims to provide the patients with better quality of life and functional improvement of speech, breathing, chewing, and swallowing. Many are the techniques described in the literature to recover bone defects. This study evaluated a vascularized galeal and periosteum flap in rabbits, which could possibly substitute the bone graft in reconstructive surgery, especially for facial defects. It involved rabbits, divided into 12 groups, submitted to a surgical procedure to construct the galea and periosteum cranial flap filled with fragments of cranial bone, platelet-rich plasma, mesenchimal stem cells, and hyaluronic acid. The evaluation methods included image examinations and histological analysis.The results demonstrated bone formation with the use of platelet-rich plasma, mesenchimal stem cells, and bone fragments. The use of several enrichment materials of osseous cellular stimulation improved the quality and bone tissue organization. The more enrichment factor used, the better the tissue quality result was.Much research should be done to improve the methods and to analyze if results in human have the same bone formation as it happened in rabbits.

  5. Laser-generated magnetic fields in quasi-hohlraum geometries

    Science.gov (United States)

    Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John

    2014-10-01

    Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.

  6. Maintenance of the resonance in a cavity filled with a variable density plasma; Entretien de la resonance d'une cavite chargee par un plasma de densite variable

    Energy Technology Data Exchange (ETDEWEB)

    Melin, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A study has been made of the possibility of keeping in resonance a cavity filled with a plasma of variable density; only the low HF power zone has been examined (less than a few dozen W). A calculation is first made, for the chosen experimental conditions, of the slipping of the resonance frequency of a cavity as a function of the plasma parameters (density, temperature), with a view to obtaining an idea of its importance. A description is then given of the experimental set-up: the S band cavity (3000 Mc/sec) is supplied by a carcinotron type generator; use is made of the plasma of a positive column whose density ({approx}10{sup 11} cm{sup -3}) can easily be controlled so as to obtain slipping of the cavity frequency ({delta}F{sub max} {approx} 50 Mc/s). The zone of automatic agreement thus obtained for the S band is 3 per cent continuously ({approx}100 Mc/s) and 1 per cent ({approx}30 Mc/s) with a response time of 10 {mu}s (sudden changes in density, {delta}n {approx} 5.10{sup 10} cm{sup 3}). These characteristics already compare very favorably with existing systems, and can easily be improved. (author) [French] On etudie une possibilite de maintenir a la resonance une cavite chargee par un plasma dont la densite varie; on se limite au domaine des puissances HF faibles (< quelques dizaines de W). On calcule tout d'abord, pour les conditions experimentales choisies, le glissement de la frequence de resonance d'une cavite en fonction des parametres du plasma, densite, temperature, pour en evaluer les ordres de grandeur. On decrit ensuite la realisation experimentale: la cavite bande S (3000 Mc/s) est alimentee par un generateur du type carcinotron; on utilise le plasma d'une colonne positive, dont on controle facilement la densite ({approx}10{sup 11} cm{sup -3}) pour faire glisser en frequence la cavite ({delta}F{sub max} {approx} 50 Mc/s). La zone d'accord automatique obtenue ainsi pour la bande S est de 3 pour cent en continu ({approx}100 Mc/s), de 1 pour cent

  7. Hohlraum modeling for opacity experiments on the National Ignition Facility

    Science.gov (United States)

    Dodd, E. S.; DeVolder, B. G.; Martin, M. E.; Krasheninnikova, N. S.; Tregillis, I. L.; Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Moore, A. S.; Kline, J. L.; Johns, H. M.; Liedahl, D. A.; Cardenas, T.; Olson, R. E.; Wilde, B. H.; Urbatsch, T. J.

    2018-06-01

    This paper discusses the modeling of experiments that measure iron opacity in local thermodynamic equilibrium (LTE) using laser-driven hohlraums at the National Ignition Facility (NIF). A previous set of experiments fielded at Sandia's Z facility [Bailey et al., Nature 517, 56 (2015)] have shown up to factors of two discrepancies between the theory and experiment, casting doubt on the validity of the opacity models. The purpose of the new experiments is to make corroborating measurements at the same densities and temperatures, with the initial measurements made at a temperature of 160 eV and an electron density of 0.7 × 1022 cm-3. The X-ray hot spots of a laser-driven hohlraum are not in LTE, and the iron must be shielded from a direct line-of-sight to obtain the data [Perry et al., Phys. Rev. B 54, 5617 (1996)]. This shielding is provided either with the internal structure (e.g., baffles) or external wall shapes that divide the hohlraum into a laser-heated portion and an LTE portion. In contrast, most inertial confinement fusion hohlraums are simple cylinders lacking complex gold walls, and the design codes are not typically applied to targets like those for the opacity experiments. We will discuss the initial basis for the modeling using LASNEX, and the subsequent modeling of five different hohlraum geometries that have been fielded on the NIF to date. This includes a comparison of calculated and measured radiation temperatures.

  8. Reducing wall plasma expansion with gold foam irradiated by laser

    International Nuclear Information System (INIS)

    Zhang, Lu; Ding, Yongkun; Jiang, Shaoen; Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping

    2015-01-01

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum

  9. Reducing wall plasma expansion with gold foam irradiated by laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com; Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)

    2015-11-15

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.

  10. Electroless plating technology of integral hohlraum Cu target

    International Nuclear Information System (INIS)

    Liu Jiguang; Fu Qu; Wan Xiaobo; Zhou Lan; Xiao Jiang

    2005-01-01

    The electroless plating method of making integral hohlraum Cu target and corrosion-resistant technology of target's surface were researched. The actual process was as follows, choosing plexiglass (PMMA) as arbor, taking cationic activation and electroless plating Cu on the arbor surface, taking arbor surface passivation and chemical etching by C 6 H 5 N 3 solution. The technology is easy to realize and its cost is lower, so it is of great reference value for fabricating other integral hohlraum metal or alloy targets used for inertial confinement fusion study. (author)

  11. Lithium beam characterization of cylindrical PBFA II hohlraum experiments

    International Nuclear Information System (INIS)

    Moats, A.R.; Derzon, M.S.; Chandler, G.A.; Haill, T.A.; Johnson, D.J.; Leeper, R.J.; Ruiz, C.L.; Wenger, D.F.

    1995-01-01

    Sandia National Laboratories is actively engaged in exploring indirect-drive inertial confinement fusion on the Particle Beam Fusion Accelerator (PBFA II) with pulsed-power accelerated lithium ions as the driver. Experiments utilizing cylindrical hohlraum targets were conducted in 1994. Using the incoming ion beam-induced line radiation from titanium wires surrounding these hohlraums, beam profiles during these experiments have been measured and characterized. These data, their comparison/cross-correlation with particle-based beam diagnostics, and an analysis of the beam parameters that most significantly influence target temperature are presented

  12. Soft X-Ray Measurements of Z-Pinch-Driven Vacuum Hohlraums

    International Nuclear Information System (INIS)

    Baker, K.L.; Porter, J.L.; Ruggles, L.E.; Chandler, G.A.; Deeney, Chris; Varas, M.; Moats, Ann; Struve, Ken; Torres, J.; McGurn, J.; Simpson, W.W.; Fehl, D.L.; Chrien, R.E.; Matuska, W.; Idzorek, G.C.

    1999-01-01

    This article reports the experimental characterization of a z-pinch driven-vacuum hohlraum. The authors have measured soft x-ray fluxes of 5 x 10 12 W/cm 2 radiating from the walls of hohlraums which are 2.4--2.5 cm in diameter by 1 cm tall. The x-ray source used to drive these hohlraums was a z-pinch consisting of a 300 wire tungsten array driven by a 2 MA, 100 ns current pulse. In this hohlraum geometry, the z-pinch x-ray source can produce energies in excess of 800 kJ and powers in excess of 100 TW to drive these hohlraums. The x-rays released in these hohlraums represent greater than a factor of 25 in energy and more than a factor of three in x-ray power over previous laboratory-driven hohlraums

  13. Characterization of Blistering and Delamination in Depleted Uranium Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Biobaum, K. J. M.

    2013-03-01

    Blistering and delamination are the primary failure mechanisms during the processing of depleted uranium (DU) hohlraums. These hohlraums consist of a sputter-deposited DU layer sandwiched between two sputter-deposited layers of gold; a final thick gold layer is electrodeposited on the exterior. The hohlraum is deposited on a copper-coated aluminum mandrel; the Al and Cu are removed with chemical etching after the gold and DU layers are deposited. After the mandrel is removed, blistering and delamination are observed on the interiors of some hohlraums, particularly at the radius region. It is hypothesized that blisters are caused by pinholes in the copper and gold layers; etchant leaking through these holes reaches the DU layer and causes it to oxidize, resulting in a blister. Depending on the residual stress in the deposited layers, blistering can initiate larger-scale delamination at layer interfaces. Scanning electron microscopy indicates that inhomogeneities in the machined aluminum mandrel are replicated in the sputter-deposited copper layer. Furthermore, the Cu layer exhibits columnar growth with pinholes that likely allow etchant to come in contact with the gold layer. Any inhomogeneities or pinholes in this initial gold layer then become nucleation sites for blistering. Using a focused ion beam system to etch through the gold layer and extract a cross-sectional sample for transmission electron microscopy, amorphous, intermixed layers at the gold/DU interfaces are observed. Nanometer-sized bubbles in the sputtered and electrodeposited gold layers are also present. Characterization of the morphology and composition of the deposited layers is the first step in determining modifications to processing parameters, with the goal of attaining a significant improvement in hohlraum yield.

  14. Confinement of laser plasma expansion with strong external magnetic field

    Science.gov (United States)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  15. Characterizing NIF hohlraum energy and particle transport using mid-Z spectroscopic tracer materials

    Science.gov (United States)

    Moody, J. D.; Barrios, M. A.; Widmann, K.; Suter, L. J.; Liedahl, D. A.; Schneider, M. B.; Thorn, D. B.; Farmer, W. A.; Landen, O. L.; Kauffman, R. L.; Jarrott, C.; Sherlock, M. W.; Chen, H.; Jones, O.; MacLaren, S. A.; Eder, D.; Strozzi, D. J.; Meezan, N. B.; Nikroo, A.; Kroll, J. J.; Johnson, S.; Jaquez, J.; Huang, H.

    2017-10-01

    Line emission from mid-Z dopants placed at several spatial locations is used to determine the electron temperature (Te) and plasma flow in NIF hohlraums. Laser drive ablates the dopant and launches it on a trajectory recorded with a framing camera. Analysis of temporally streaked spectroscopy provides an estimate of the time-resolved Te. The estimated temperature gradients show evidence for significantly restricted thermal conduction. Non-local thermal conductivity can account for part of this; additional effects due to magnetic fields, return-current instabilities, ion acoustic turbulence and other physics are considered. We describe our findings and discuss interpretations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Use of d-3He proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with approximately 0.2 NIF scale high temperature Hohlraums at Omega.

    Science.gov (United States)

    Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J

    2008-10-01

    We present the calculations and preliminary results from experiments on the Omega laser facility using d-(3)He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 microm length x 1200 microm diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-(3)He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.

  17. Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

    International Nuclear Information System (INIS)

    Bliss, David Emery; Vesey, Roger Alan; Rambo, Patrick K.; Lebedev, Sergey V.; Hanson, David L.; Nash, Thomas J.; Yu, Edmund P.; Matzen, Maurice Keith; Afeyan, Bedros B.; Smith, Ian Craig; Stygar, William A.; Porter, John Larry Jr.; Cuneo, Michael Edward; Bennett, Guy R.; Campbell, Robert B.; Sinars, Daniel Brian; Chittenden, Jeremy Paul; Waisman, Eduardo Mario; Mehlhorn, Thomas Alan

    2005-01-01

    Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 ± 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

  18. High-energy 4ω probe laser for laser-plasma experiments at Nova

    International Nuclear Information System (INIS)

    Glenzer, S.H.; Weiland, T.L.; Bower, J.; MacKinnon, A.J.; MacGowan, B.J.

    1999-01-01

    For the characterization of inertial confinement fusion plasmas, we implemented a high-energy 4ω probe laser at the Nova laser facility. A total energy of >50 J at 4ω, a focal spot size of order 100 μm, and a pointing accuracy of 100 μm was demonstrated for target shots. This laser provides intensities of up to 3x10 14 Wcm -2 and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4ω probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n e >2x10 21 cm -3 which represents the highest density plasma so far being diagnosed with Thomson scattering. copyright 1999 American Institute of Physics

  19. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light

    Science.gov (United States)

    Chen, Yao-Hua; Lan, Ke; Zheng, Wanguo; Campbell, E. M.

    2018-02-01

    The majority of solid state laser facilities built for laser fusion research irradiate targets with third harmonic light (0.35 μm) up-converted from the fundamental Nd wavelength at 1.05 μm. The motivation for this choice of wavelength is improved laser-plasma coupling. Significant disadvantages to this choice of wavelength are the reduced damage threshold of optical components and the efficiency of energy conversion to third harmonic light. Both these issues are significantly improved if second harmonic (0.53 μm) radiation is used, but theory and experiments have shown lower optical to x-ray energy conversion efficiency and increased levels of laser-plasma instabilities, resulting in reduced laser-target coupling. In this letter, we propose to use a 0.53 μm laser for the laser ignition facilities and use a low density foam wall to increase the coupling efficiency from the laser to the capsule and present two-dimensional radiation-hydrodynamic simulations of 0.53 μm laser light irradiating an octahedral-spherical hohlraum with a low density foam wall. The simulations show that the reduced optical depth of the foam wall leads to an increased laser-light conversion into thermal x-rays and about 10% higher radiation flux on the capsule than that achieved with 0.35 μm light irradiating a solid density wall commonly used in laser indirect drive fusion research. The details of the simulations and their implications and suggestions for wavelength scaling coupled with innovative hohlraum designs will be discussed.

  20. High Temperature Dynamic Hohlraums on the Pulsed Power Driver Z

    International Nuclear Information System (INIS)

    Armijo, J.; Chandler, G.A.; Cooper, G.; Derzon, M.S.; Fehl, D.; Gilliland, T.; Hawn, R.; Hebron, D.; Hurst, M.; Jobe, D.; Lash, J.; Lazier, S.; Leeper, R.; McGurn, J.; McKenney, J.; Mock, R.; Nash, T.J.; Nielsen, D.; Ruiz, C.; Ryan, P.; Seaman, J.F.; Torres, J.

    1999-01-01

    In the concept of the dynamic hohlraum an imploding z-pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 LMA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diameters with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diameter. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 CV by stabilizing the pinch with a solid current return can. A current return can with 9 slots imprints 9 filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diameter capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diameter. Dynamic hohlraum shots including pellets are scheduled to take place on Z in September of 1998

  1. Simulation of the hohlraum for a laser facility of Megajoule scale

    Energy Technology Data Exchange (ETDEWEB)

    Chizhkov, M N; Kozmanov, M Y U; Lebedev, S N; Lykov, V A; Rykovanova, V V; Seleznev, V N; Selezneva, K I; Stryakhnina, O V; Shestakov, A A; Vronskiy, A V, E-mail: M.N.Chizhkov@VNIITF.r [Russian Federal Nuclear Center - VNIITF Vasilieva str. 13, Snezhinsk, Chelyabinsk reg., 456770 (Russian Federation)

    2010-08-01

    2D calculations of the promising laser hohlraums were performed with using of the Sinara computer code. These hohlraums are intended for achievement of indirectly-driven thermonuclear ignition at laser energy above 1 MJ. Two calculation variants of the laser assembly with the form close to a rugby ball were carried out: with laser entrance hole shields and without shields. Time dependent hohlraum radiation temperature and x-ray flux asymmetry on a target were obtained.

  2. Simulation of the hohlraum for a laser facility of Megajoule scale

    International Nuclear Information System (INIS)

    Chizhkov, M N; Kozmanov, M Y U; Lebedev, S N; Lykov, V A; Rykovanova, V V; Seleznev, V N; Selezneva, K I; Stryakhnina, O V; Shestakov, A A; Vronskiy, A V

    2010-01-01

    2D calculations of the promising laser hohlraums were performed with using of the Sinara computer code. These hohlraums are intended for achievement of indirectly-driven thermonuclear ignition at laser energy above 1 MJ. Two calculation variants of the laser assembly with the form close to a rugby ball were carried out: with laser entrance hole shields and without shields. Time dependent hohlraum radiation temperature and x-ray flux asymmetry on a target were obtained.

  3. Prolate-Spheroid ('Rugby-Shaped') Hohlraum for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Vandenboomgaerde, M.; Bastian, J.; Casner, A.; Galmiche, D.; Jadaud, J.-P.; Laffite, S.; Liberatore, S.; Malinie, G.; Philippe, F.

    2007-01-01

    A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy

  4. [Time resolved plasma spectroscopy of imploded gas-filled microballoons: The next generation]. Final technical report, 17 April 1995--30 September 1997

    International Nuclear Information System (INIS)

    Hooper, C.F. Jr.

    1998-03-01

    This report is comprised of three documents which deal with plasma spectroscopy of laser-produced plasmas. In Appendix A the authors present a discussion of plasma line broadening with emphasis on the effects of accounting for ion-dynamic corrections. For two decades, high power lasers have been used to implode microballoons filled with gases such as neon, argon, deuterium, or mixtures of deuterium and argon. These implosions have generated high-temperature (∼ 1 keV) and high density (∼ 10 23 /cc--10 25 /cc) plasmas. As a result of these experiments, the authors are able to observe the radiative properties of highly charged ions in the presence of a variety of strongly coupled plasmas. Spectral radiation observed from these experiments is frequently in the x-ray region and the radiative properties are greatly influenced by plasma effects. In section 2 of this paper the authors discuss the theoretical techniques employed to interpret these spectra and describe two sets of implosion experiments. In section 3 they list some conclusions. Appendix B presents more research related to ion-dynamic corrections. The authors examine the combined effects of ion dynamics and opacity on line profiles used in the analysis of hot dense plasmas. Specifically, they have calculated Stark broadened line profiles for both resonance and satellite lines in highly stripped Ar ions, both in the quasi-static ion approximation, and including the effects of ion dynamics. Using the results of an NLTE kinetics code, combined with an escape factor formalism to account for the effects of radiative transfer, they have calculated the relative intensities of these lines, as well as the effects of opacity on their profiles. This model spectra is used in the analysis of experimental data. In a series of experiments performed at the Laboratory for Laser Energetics plastic microballoons filled with DD and doped with Ar were imploded using the Omega laser system. Here, the authors use time-resolved K

  5. Symmetry control in subscale near-vacuum hohlraums

    Science.gov (United States)

    Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Mackinnon, A.; Zylstra, A. B.; Rinderknecht, H. G.; Sio, H.; Petrasso, R. D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J.

    2016-05-01

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.

  6. Lithium ion beam driven hohlraums for PBFA II

    International Nuclear Information System (INIS)

    Dukart, R.J.

    1994-01-01

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities

  7. Symmetry control in subscale near-vacuum hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D., E-mail: turnbull2@llnl.gov; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J. [National Ignition Facility, LLNL, Livermore, California 94550 (United States); Mackinnon, A. [National Ignition Facility, LLNL, Livermore, California 94550 (United States); Linac Coherent Light Source, SLAC, Menlo Park, California 94025 (United States); Zylstra, A. B. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rinderknecht, H. G. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); National Ignition Facility, LLNL, Livermore, California 94550 (United States); Sio, H.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States)

    2016-05-15

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.

  8. Hohlraums energy balance and x-ray drive

    International Nuclear Information System (INIS)

    Kilkenny, J.D.

    1994-01-01

    For many years there has been an active ICF program in the US concentrating on x-ray drive. X-ray drive is produced by focusing laser beams into a high Z hohlraum. Conceptually, the radiation field comes close to thermodynamic equilibrium, that is it becomes isotropic and Planckian. These properties lead to the benefits of x-ray drive--it is relatively easy to obtain drive symmetry on a capsule with no small scalelengths drive perturbations. Other advantages of x-ray drive is the higher mass ablation rate, leading to lower growth rates for hydrodynamic instabilities. X-ray drive has disadvantages, principally the loss of energy to the walls of the hohlraum. This report is divided into the following sections: (1) review of blackbody radiation; (2) laser absorption and conversion to x-rays; (3) x-ray absorption coefficient in matter and Rosseland mean free path; (4) Marshak waves in high Z material; (5) x-ray albedo; and (6) power balance and hohlraum temperature

  9. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, A. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation); Kornilov, S. Yu., E-mail: kornilovsy@gmail.com; Rempe, N. G. [Tomsk State University of Control Systems and Radioelectronics (Russian Federation); Shidlovskiy, S. V. [Tomsk State University (Russian Federation); Shklyaev, V. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2016-07-15

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  10. A review of laser–plasma interaction physics of indirect-drive fusion

    International Nuclear Information System (INIS)

    Kirkwood, R K; Moody, J D; Dewald, E; Glenzer, S; Divol, L; Michel, P; Hinkel, D; Berger, R; Williams, E; Milovich, J; MacGowan, B; Landen, O; Rosen, M; Lindl, J; Kline, J; Yin, L; Rose, H

    2013-01-01

    The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser–plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the

  11. Simulation of oscillatory processes in a beam-plasma system with a virtual cathode in gas-filled interaction space

    International Nuclear Information System (INIS)

    Filatov, R. A.; Hramov, A. E.

    2011-01-01

    Physical processes occurring in an intense electron beam with a virtual cathode in an interaction space filled with neutral gas are studied in a two-dimensional model. A mathematical model is proposed for investigating complicated self-consistent processes of neutral gas ionization by the beam electrons and the dynamics of an electron beam and heavy positive ions in the common space charge field with allowance for the two-dimensional motion of charged particles. Three characteristic dynamic regimes of the system are revealed: complete suppression of oscillations of the virtual cathode as a result of neutralizing its space charge by positive ions; the pulsed generation regime, in which the ions dynamics repeatedly suppresses and restores the virtual cathode oscillations; and the continuous generation regime with an anomalously high level of noisy oscillations.

  12. Dispersion relation and electron acceleration in the combined circular and elliptical metallic-dielectric waveguide filled by plasma

    Science.gov (United States)

    Abdoli-Arani, A.; Montazeri, M. M.

    2018-04-01

    Two special types of metallic waveguide having dielectric cladding and plasma core including the combined circular and elliptical structure are studied. Longitudinal and transverse field components in the different regions are obtained. Applying the boundary conditions, dispersion relations of the electromagnetic waves in the structures are obtained and then plotted. The acceleration of an injected external relativistic electron in the considered waveguides is studied. The obtained differential equations related to electron motion are solved by the fourth-order Runge-Kutta method. Numerical computations are made, and the results are graphically presented.

  13. Demonstration of Enhanced Radiation Drive in Hohlraums Made from a Mixture of High-Z Wall Materials

    International Nuclear Information System (INIS)

    Schein, Jochen; Jones, Ogden; Rosen, Mordecai; Dewald, Eduard; Glenzer, Siegfried; Gunther, Janelle; Hammel, Bruce; Landen, Otto; Suter, Laurence; Wallace, Russell

    2007-01-01

    We present results from experiments, numerical simulations and analytic modeling, demonstrating enhanced hohlraum performance. Care in the fabrication and handling of hohlraums with walls consisting of high-Z mixtures (cocktails) has led to our demonstration, for the first time, of a significant increase in radiation temperature compared to a pure Au hohlraum that is in agreement with predictions and is ascribable to reduced wall losses. The data suggest that a National Ignition Facility ignition hohlraum made of a U:Au:Dy cocktail should have ∼17% reduction in wall losses compared to a similar gold hohlraum

  14. FABRICATION OF WINDOW SADDLES FOR NIF CRYOGENIC HOHLRAUMS

    International Nuclear Information System (INIS)

    GIRALDEZ, E; KAAE, J.L

    2003-09-01

    OAK-B135 A planar diagnostic viewing port attached to the cylindrical wall of the NIF cryogenic hohlraum requires a saddle-like transition piece. While the basic design of this window saddle is straightforward, its fabrication is not, given the scale and precision of the component. They solved the problem through the use of a two segment copper mandrel to electroform the gold window saddle. The segments were micro-machined using a combination of single-point diamond turning and single point diamond milling. These processes as well as the electroplating conditions, final machining and mandrel removal are described in this paper

  15. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole

    Directory of Open Access Journals (Sweden)

    Wenyi Huo

    2016-01-01

    Full Text Available The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion. While, in contrast to the cylindrical hohlraums, the narrow space between the laser beams and the spherical hohlraum wall is usually commented. In this Letter, we address this crucial issue and report our experimental work conducted on the SGIII-prototype laser facility which unambiguously demonstrates that a simple design of cylindrical laser entrance hole (LEH can dramatically improve the laser propagation inside the spherical hohlraums. In addition, the laser beam deflection in the hohlraum is observed for the first time in the experiments. Our 2-dimensional simulation results also verify qualitatively the advantages of the spherical hohlraums with cylindrical LEHs. Our results imply the prospect of adopting the cylindrical LEHs in future spherical ignition hohlraum design.

  16. Detailed spectral simulations in support of PBFA-Z dynamic hohlraum Z-pinch experiments

    International Nuclear Information System (INIS)

    MacFarlane, J.J.; Wang, P.; Derzon, M.S.; Haill, A.; Nash, T.J.; Peterson, D.L.

    1997-01-01

    In PBFA-Z dynamic hohlraum Z-pinch experiments, 16--18 MA of current is delivered to a load comprises of a tungsten wire array surrounding a low-density cylindrical CH foam. The magnetic field accelerates the W plasma radially inward at velocities ∼ 40--60 cm/micros. The W plasma impacts into the foam, generating a high T R radiation field which diffuses into the foam. The authors are investigating several types of spectral diagnostics which can be used to characterize the time-dependent conditions in the foam. In addition, they are examining the potential ramifications of axial jetting on the interpretation of axial x-ray diagnostics. In the analysis, results from 2-D radiation-magnetohydrodynamics simulations are post-processed using a hybrid spectral analysis code in which low-Z material is treated using a detailed collisional-radiative atomic model, while high-Z material is modeled using LTE UTA (unresolved transition array) opacities. They will present results from recent simulations and discuss ramifications for x-ray diagnostics

  17. Pulsed neutron generators based on the sealed chambers of plasma focus design with D and DT fillings

    International Nuclear Information System (INIS)

    Yurkov, D I; Dulatov, A K; Lemeshko, B D; Golikov, A V; Andreev, D A; Mikhailov, Yu V; Prokuratov, I A; Selifanov, A N

    2015-01-01

    Development of neutron generators using plasma focus (PF) chambers is being conducted in the All-Russia Scientific Research Institute of Automatics (VNIIA) during more than 25 years. PF is a source of soft and hard x-rays and neutrons 2.5 MeV (D) or 14 MeV (DT). Pulses of x-rays and neutrons have a duration of about several tens of nanoseconds, which defines the scope of such generators—the study of ultrafast processes. VNIIA has developed a series of pulse neutron generators covering the range of outputs 10 7 –10 12 n/pulse with resources on the order of 10 3 –10 4 switches, depending on purposes. Generators have weights in the range of 30–700 kg, which allows referring them to the class of transportable generators. Generators include sealed PF chambers, whose manufacture was mastered by VNIIA vacuum tube production plant. A number of optimized PF chambers, designed for use in generators with a certain yield of neutrons has been developed. The use of gas generator based on gas absorber of hydrogen isotopes, enabled to increase the self-life and resource of PF chambers. Currently, the PF chambers withstand up to 1000 switches and have the safety of not less than 5 years. Using a generator with a gas heater, significantly increased security of PF chambers, because deuterium-tritium mixture is released only during work, other times it is in a bound state in the working element of the gas generator. (paper)

  18. Dynamic hohlraum and ICF pellet implosion experiments on Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Derzon, M.S.; Chandler, G.A.

    1999-01-01

    By stabilizing an imploding z-pinch on Z (20 MA, 100 ns) with a solid current return can and a nested wire array the authors have achieved dynamic hohlraum radiation temperatures over 200 eV at a diameter of approximately 1 mm. The pinch configuration yielding this temperature is a nested tungsten wire array of 240 and 120 wires at 4 and 2 cm diameters weighing 2 and 1 mg, 1 cm long, imploding onto a 5 mm diameter, 14 mg/cc cylindrical CH foam, weighing 3 mg. They have used a single 4 cm diameter tungsten wire array to drive a 1.6 mm diameter ICF capsule mounted in a 6 mg/cc foam inside a 3 mg copper annulus at 5 mm diameter, and measured x-ray emissions indicative of the pellet implosion. Mounting the pellet in foam may have caused the hohlraum to become equator-hot. They will present results from upcoming pellet experiments in which the pellet is mounted by thread and driven by a larger diameter, 6 or 7 mm, copper annulus to improve radiation drive symmetry. They will also discuss designs for tapered foam annular targets that distort a cylindrical pinch into a quasi-sphere that will wrap around an ICF pellet to further improve drive symmetry

  19. Studies on radiation symmetrization in heavy-ion driven hohlraum targets

    International Nuclear Information System (INIS)

    Temporal, M.; Atzeni, S.

    1993-01-01

    Radiation symmetrization within spherical, ellipsoidal and cylindral hohlraum targets for heavy ion inertial confinement fusion (ICF) is studied by means of a 3-D numerical, static model, in which realistic assumptions are made concerning the geometry of the system and, particularly, of the radiation converters. Among the systems so far studied, only spherical hohlraums with six converters achieve the illumination symmetry of the fusion capsule considered necessary for ICF applications. A parametric study of cylindrical hohlraums enlightens the effect of several parameter changes, and suggests directions for further studies, aiming at the design of two-converter targets

  20. Assessing the existence of non-LTE behavior in aluminum K-shell diagnostic lines from dynamic hohlraum driven experiments

    International Nuclear Information System (INIS)

    Sherrill, M E

    2015-01-01

    We describe in this work a study designed to obtain insight into the sensitivity of foil targets driven out of local thermodynamic equilibrium (LTE) by an idealized dynamic hohlraum during its brightest phase. This work is motivated by a perceived over-prediction of the plasma temperature by current LTE spectral modeling of opacity experiments performed by Bailey et al at the Sandia Z facility. Although several aspects of this modeling study parallel the SNL/LANL opacity experiments, this work is primarily intended to gain insight into radiatively over-driven systems. The results from this idealized study suggest that a non-LTE population distribution with qualities similar to an LTE distribution at higher material temperatures are possible, and therefore support a further theoretical investigation with experimental parameters. (special issue paper)

  1. Experimental results and modeling of a dynamic hohlraum on SATURN

    International Nuclear Information System (INIS)

    Derzon, M.S.; Allshouse, G.O.; Deeney, C.; Leeper, R.J.; Nash, T.J.; Matuska, W.; Peterson, D.L.; MacFarlane, J.J.; Ryutov, D.D.

    1998-06-01

    Experiments were performed at SATURN, a high current z-pinch, to explore the feasibility of creating a hohlraum by imploding a tungsten wire array onto a low-density foam. Emission measurements in the 200--280 eV energy band were consistent with a 110--135 eV Planckian before the target shock heated, or stagnated, on-axis. Peak pinch radiation temperatures of nominally 160 eV were obtained. Measured early time x-ray emission histories and temperature estimates agree well with modeled performance in the 200--280 eV band using a 2D radiation magneto-hydrodynamics code. However, significant differences are observed in comparisons of the x-ray images and 2D simulations

  2. Effects of irradiation distance on supply of reactive oxygen species to the bottom of a Petri dish filled with liquid by an atmospheric O{sub 2}/He plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Toshiyuki, E-mail: kawasaki@nbu.ac.jp; Kusumegi, Shota; Kudo, Akihiro; Sakanoshita, Tomohiro; Tsurumaru, Takuya; Sato, Akihiro [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Uchida, Giichiro [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Koga, Kazunori; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2016-05-07

    The impact of irradiation distances on plasma jet-induced specific effects on the supply of reactive oxygen species (ROS) to the bottom of a Petri dish filled with liquid was investigated using a KI-starch gel reagent that can be employed as a ROS indicator even in water. O{sub 3} exposure experiments without plasma irradiation were also performed to elucidate the specific effects of the plasma jet. Relative concentrations of ROS transported to the bottom were evaluated using absorbance measurements. The results indicated that ROS supply to the bottom is markedly enhanced by the plasma jet irradiation at shorter irradiation distances, whereas similar results could not be obtained for the O{sub 3} exposure. In these cases, the liquid mixing in the depth direction was also enhanced by the plasma jet irradiation only, and the supply of reactive atomic oxygen to the liquid surface was markedly increased as well.

  3. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Neumayer, P.; Landen, O. L.; Girard, F.; Jadaud, J. P.; Wagon, F.; Huser, G.; Schein, J.; Constantin, C.

    2008-01-01

    The conversion efficiency of 351 nm laser light to soft x rays (0.1-5 keV) was measured for Au, U, and high Z mixture ''cocktails'' used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  4. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    International Nuclear Information System (INIS)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-01-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MegaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ=35, 50, and 70 μm) and two-mode perturbations (wavelength λ=35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  5. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    Science.gov (United States)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-09-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MégaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ =35, 50, and 70 μm) and two-mode perturbations (wavelength λ =35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  6. Full aperture backscatter signal analysis of laser with hohlraum on Shenguang II laser facility

    International Nuclear Information System (INIS)

    Jiao Chunye; Wang Feng; Liu Shenye; Jiang Xiaohua; Li Sanwei; Liu Yonggang; Yang Jiamin; Gu Yuqiu; Wang Chuanke

    2010-01-01

    Full aperture backscatter system and experimental measurement of hohlraum with 351 nm wavelength laser on Shenguang II laser facility is reported. FABS optical path has been analyzed and the backscattering light completely entered FABS collecting optical path. FABS existed the background light when the eight beams symmetrically acted on hohlraum. The background light is composed of 526.5 nm and 1053 nm wavelength remains while the 1053 nm wavelength changes into 351 nm wavelength, according to records of laser sensitive paper and optical filter. The background light accounts for 15% of FABS energy from experimental measurement result. (authors)

  7. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    Science.gov (United States)

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  8. Nernst Effect in Magnetized Plasmas

    OpenAIRE

    Joglekar, Archis S.; Thomas, Alexander G. R.; Ridgers, Christopher P.; Kingham, Robert J.

    2015-01-01

    We present nanosecond timescale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's Law, including Nernst advection of magnetic fields. In addition to showing the prevalence of non-local behavior, we demonstrate that effects such...

  9. Numerical simulations of radiation hydrodynamics and modeling of high temperature hohlraum cavities

    International Nuclear Information System (INIS)

    Gupta, N.K.; Godwal, B.K.

    2003-10-01

    A summary of our efforts towards the validation of radiation hydrodynamics and opacity models are presented. Effects of various parameters on the radiation temperature inside an inertial confinement fusion (ICF) hohlraum, the effects of non-local thermodynamic equilibrium conditions on emission and absorption, and the hydrodynamics of aluminium and gold foils driven by radiation are studied. LTE and non-LTE predictions for emitted radiation are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. It is shown that the mixing of two high Z materials can lead to an enhancement in the Rosseland mean. An experimental study of soft x-ray emission from laser-irradiated Au-Cu mix-Z targets confirmed these predictions. It is seen that only multi group non-LTE radiation transport is able to explain experimentally observed features in the conversion efficiency of laser light to x-rays. One group radiation transport under predicts the radiation temperature. It is shown that erroneous results can be obtained if the space mesh in the hohlraum wall is not fine enough. Hydrodynamics of a wedge shaped aluminium foil driven by the hohlraum radiation is also presented and results are compared with NOVA laser experiments. Laser driven shock wave EOS and gold hohlraum experiments carried out at CAT are analyzed and they confirmed our theoretical estimates. (author)

  10. Dynamics of the spectral behaviour of an ultrashort laser pulse in an argon-gas-filled capillary discharge-preformed plasma channel

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-11-01

    Full Text Available We have reported the argon plasma waveguide produced in an alumina (Al2O3 capillary discharge and used to guide ultrashort laser pulses at intensities of the order of 1016  W/cm2. A one-dimensional magnetohydrodynamic (MHD code was used to evaluate the average degree of ionization of Ar in the preformed plasma channel. The spectrum of the propagated laser pulse in the Ar plasma waveguide was not modified and was well reproduced by a particle-in-cell (PIC simulation under initial ion charge state of Ar3+ in the preformed plasma waveguide. The optimum timing for the laser pulse injection was around 150 ns after initiation of a discharge with a peak current of 200 A.

  11. About Dental Amalgam Fillings

    Science.gov (United States)

    ... and Medical Procedures Dental Devices Dental Amalgam About Dental Amalgam Fillings Share Tweet Linkedin Pin it More ... should I have my fillings removed? What is dental amalgam? Dental amalgam is a dental filling material ...

  12. Hohlraum glint and laser pre-pulse detector for NIF experiments using velocity interferometer system for any reflector.

    Science.gov (United States)

    Moody, J D; Clancy, T J; Frieders, G; Celliers, P M; Ralph, J; Turnbull, D P

    2014-11-01

    Laser pre-pulse and early-time laser reflection from the hohlraum wall onto the capsule (termed "glint") can cause capsule imprint and unwanted early-time shocks on indirect drive implosion experiments. In a minor modification to the existing velocity interferometer system for any reflector diagnostic on NIF a fast-response vacuum photodiode was added to detect this light. The measurements show evidence of laser pre-pulse and possible light reflection off the hohlraum wall and onto the capsule.

  13. High-temperature dynamic hohlraums on the pulsed power driver Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Derzon, M.S.; Chandler, G.A.; Leeper, R.; Fehl, D.; Lash, J.; Ruiz, C.; Cooper, G.; Seaman, J.F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Hurst, M.; Mock, R.; Ryan, P.; Nielsen, D.; Armijo, J.; McKenney, J.; Hawn, R.; Hebron, D.; MacFarlane, J.J.; Petersen, D.; Bowers, R.; Matuska, W.; Ryutov, D.D.

    1999-01-01

    In the concept of the dynamic hohlraum an imploding Z pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision, the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal, the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 MA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diam with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diam. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 eV by stabilizing the pinch with a solid current return can. A current return can with nine slots imprints nine filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diam capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diam. Dynamic hohlraum shots including pellets were scheduled to take place on Z in September of 1998. copyright 1999 American Institute of Physics

  14. Excitation of higher radial modes of azimuthal surface waves in the electron cyclotron frequency range by rotating relativistic flow of electrons in cylindrical waveguides partially filled by plasmas

    Science.gov (United States)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.

  15. Z-pinch driven hohlraums design for the 100 nanoseconds current time scale

    International Nuclear Information System (INIS)

    Hamann, F.

    2003-12-01

    This work estimates Z-pinch driven hohlraums capabilities to obtain high temperatures (>200 eV). Simple models are proposed to calculate the performances offered by currents of 5 to 100 MA in 100 ns. The one dimensional physics of the Z-pinch at the length scale of its thickness and the hydrodynamics instabilities are studied. Then the enhancement of hohlraums performances with double nested Z-pinches or the use of an axial magnetic field is analysed. Z-pinch direct drive approach for inertial confinement fusion is finally considered. All the presented results are based on theoretical and 2D numerical approach and on the analysis of experimental results which were obtained on the american 'Z' generator. Annexes recall radiation MHD equations and check their validity for Z-pinch implosion. (author)

  16. 2-D simulation of hohlraum targets for HIDIF: gold vs. beryllium converters

    International Nuclear Information System (INIS)

    Honrubia, J.J.; Meyer-ter-Vehn, J.

    2000-01-01

    Two cylindrical hohlraum targets for heavy-ion-fusion are compared from the point of view of total ion-energy required to ignite a specified capsule. Target a, a simple bare gold cylindrical cavity behaves much more efficiently than Target b, the former one internally cladded with solid beryllium where convenient, to ensure ion energy conversion to X-rays mainly in this cladding. A discussion of the problem is provided. (authors)

  17. Planar hydrodynamic instability computations and experiments with rugby-shaped hohlraums at the Omega laser

    International Nuclear Information System (INIS)

    Vandenboomgaerde, M; Liberatore, S; Galmiche, D; Casner, A; Huser, G; Jadaud, J P; Villette, B

    2008-01-01

    Implosion of inertial confinement fusion (ICF) capsule is very sensitive to the growth of sphericity perturbations. The control of the feeding of such perturbations and their transport ('feedthrough') through the ablator is a key point to reach ignition. Since 2002, experiments have been designed and performed on the Omega laser facility in order to study these phenomena in planar geometry. A new 'rugby shaped' hohlraum was used. We present experimental results and comparisons with numerical simulations

  18. Planar hydrodynamic instability computations and experiments with rugby-shaped hohlraums at the Omega laser

    Energy Technology Data Exchange (ETDEWEB)

    Vandenboomgaerde, M; Liberatore, S; Galmiche, D; Casner, A; Huser, G; Jadaud, J P; Villette, B [Commissariat a l' Energie Atomique, CEA/DAM-Ile de France, BP 12, 91680 Bruyeres-Le-Chatel (France)

    2008-05-15

    Implosion of inertial confinement fusion (ICF) capsule is very sensitive to the growth of sphericity perturbations. The control of the feeding of such perturbations and their transport ('feedthrough') through the ablator is a key point to reach ignition. Since 2002, experiments have been designed and performed on the Omega laser facility in order to study these phenomena in planar geometry. A new 'rugby shaped' hohlraum was used. We present experimental results and comparisons with numerical simulations.

  19. Numerical simulations of inertial confinement fusion hohlraum with LARED-integration code

    International Nuclear Information System (INIS)

    Li Jinghong; Li Shuanggui; Zhai Chuanlei

    2011-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happened in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (author)

  20. Multi-keV x-ray sources from metal-lined cylindrical hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2012-08-15

    As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are {approx}6%-8% for titanium, {approx}2% for copper, and {approx}0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.

  1. Multi-keV x-ray sources from metal-lined cylindrical hohlraums

    International Nuclear Information System (INIS)

    Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.

    2012-01-01

    As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are ∼6%-8% for titanium, ∼2% for copper, and ∼0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.

  2. Multi-keV x-ray sources from metal-lined cylindrical hohlraums

    Science.gov (United States)

    Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.

    2012-08-01

    As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are ˜6%-8% for titanium, ˜2% for copper, and ˜0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.

  3. Mode-selective symmetry control for indirect-drive inertial confinement fusion hohlraums

    International Nuclear Information System (INIS)

    Vesey, R. A.; Slutz, S. A.; Herrmann, M. C.; Mehlhorn, T. A.; Campbell, R. B.

    2008-01-01

    Achieving a high degree of radiation symmetry is a critical feature of target designs for indirect-drive inertial confinement fusion. Typically, the radiation flux incident on the capsule is required to be uniform to 1% or better. It is generally possible to design a hohlraum that provides low values of higher-order asymmetry (Legendre mode P 10 and above) due to geometric averaging effects. Because low-order intrinsic asymmetry (e.g., Legendre modes P 2 and P 4 ) are less strongly reduced by geometric averaging alone, the development of innovative control techniques has been an active area of research in the inertial fusion community over the years. Shields placed inside the hohlraum are one example of a technique that has often been proposed and incorporated into hohlraum target designs. Simple mathematical considerations are presented indicating that radiation shields may be designed to specifically tune lower-order modes (e.g., P 4 ) without deleterious effects on the higher order modes. Two-dimensional view factor and radiation-hydrodynamics simulations confirm these results and support such a path to achieving a highly symmetric x-ray flux. The term ''mode-selective'' is used because these shields, essentially ring structures offset from the capsule, are designed to affect only a specific Legendre mode (or multiple modes) of interest

  4. Demonstration of high coupling efficiency to Al capsule in rugby hohlraum on NIF

    Science.gov (United States)

    Ping, Y.; Smalyuk, V.; Amendt, P.; Bennett, D.; Chen, H.; Dewald, E.; Goyon, C.; Graziani, F.; Johnson, S.; Khan, S.; Landen, O.; Nikroo, A.; Pino, J.; Ralph, J.; Seugling, R.; Strozzi, D.; Tipton, R.; Tommasini, R.; Wang, M.; Loomis, E.; Merritt, E.; Montgomery, D.

    2017-10-01

    A new design of the double-shell approach predicts a high coupling efficiency from the hohlraum to the capsule, with 700 kJ in the capsule instead of 200kJ in the conventional low-Z single-shell scheme, improving prospects of double-shell performance. A recent experiment on NIF has evaluated a first step toward this goal of energy coupling using 0.7x subscale Al capsule, Au rugby hohlraum and 1MJ drive. A shell velocity of 150 μm/ns was measured, DANTE peak temperature of 255 eV was measured, and shell kinetic energy of 36 kJ was inferred using a rocket model, all close to predictions and consistent with 330kJ of total energy coupled to the capsule. Data analysis and more results from subsequent experiments will be presented. In the next step, an additional 2x increase of total coupled energy up to 700 kJ is projected for full-scale 2-MJ drive in U Rugby hohlraum. This work was performed under DOE contract DE-AC52-07NA27344.

  5. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    Science.gov (United States)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  6. THE INCLINATION ANGLE AND EVOLUTION OF THE BRAKING INDEX OF PULSARS WITH PLASMA-FILLED MAGNETOSPHERE: APPLICATION TO THE HIGH BRAKING INDEX OF PSR J1640–4631

    International Nuclear Information System (INIS)

    Ekşi, K. Y.; Andaç, I. C.; Çıkıntoğlu, S.; Motlagh, A. Vahdat; Gügercinoğlu, E.; Kızıltan, B.

    2016-01-01

    The recently discovered rotationally powered pulsar PSR J1640–4631 is the first to have a braking index measured, with high enough precision, that is greater than 3. An inclined magnetic rotator in vacuum or plasma would be subject not only to spin-down but also to an alignment torque. The vacuum model can address the braking index only for an almost orthogonal rotator, which is incompatible with the single-peaked pulse profile. The magnetic dipole model with the corotating plasma predicts braking indices between 3 and 3.25. We find that the braking index of 3.15 is consistent with two different inclination angles, 18.°5 ± 3° and 56° ± 4°. The smaller angle is preferred given that the pulse profile has a single peak and the radio output of the source is weak. We infer the change in the inclination angle to be at the rate −0.°23 per century, three times smaller in absolute value than the rate recently observed for the Crab pulsar.

  7. Crystal spectroscopy of silicon aero-gel end-caps driven by a dynamic hohlraum on Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Sanford, T.W.L.; Mock, R.C.; Leeper, R.J.; Chandler, G.A.; Bailey, J.E.; McKenney, J.L.; Mehlhorn, T.A.; Seaman, J.F.; McGurn, J.; Schroen, D.; Russell, C.; Lake, P.E.; Jobe, D.O.; Gilliland, T.; Nielsen, D.S.; Lucas, J.; Moore, T.; Torres, J.A.; MacFarlane, J.J.; Apruzese, J.P.; Chrien, R.; Idzorek, G.; Peterson, D.L.; Watt, R.

    2005-01-01

    We present results from crystal spectroscopic analysis of silicon aero-gel foams heated by dynamic hohlraums on Z. The dynamic hohlraum on Z creates a radiation source with a 230-eV average temperature over a 2.4-mm diameter. In these experiments silicon aero-gel foams with 10-mg/cm3 densities and 1.7-mm lengths were placed on both ends of the dynamic hohlraum. Several crystal spectrometers were placed both above and below the z-pinch to diagnose the temperature of the silicon aero-gel foam using the K-shell lines of silicon. The crystal spectrometers were (1) temporally integrated and spatially resolved, (2) temporally resolved and spatially integrated, and (3) both temporally and spatially resolved. The results indicate that the dynamic hohlraum heats the silicon aero-gel to approximately 150-eV at peak power. As the dynamic hohlraum source cools after peak power the silicon aero-gel continues to heat and jets axially at an average velocity of approximately 50-cm/μs. The spectroscopy has also shown that the reason for the up/down asymmetry in radiated power on Z is that tungsten enters the line-of-sight on the bottom of the machine much more than on the top

  8. Sodium fill of FFTF

    International Nuclear Information System (INIS)

    Waldo, J.B.; Greenwell, R.K.; Keasling, T.A.; Collins, J.R.; Klos, D.B.

    1980-02-01

    With construction of the Fast Flux Test Facility (FFTF) completed, the first major objective in the startup program was to fill the sodium systems. A sodium fill sequence was developed to match construction completion, and as systems became available, they were inerted, preheated, and filled with sodium. The secondary sodium systems were filled first while dry refueling system testing was in progress in the reactor vessel. The reactor vessel and the primary loops were filled last. This paper describes the methods used and some of the key results achieved for this major FFTF objective

  9. Modeling Laser-Plasma Interaction over a Suite of NIF Experiments

    Science.gov (United States)

    Strozzi, D. J.; Berger, R. L.; Jones, O. S.; Chapman, T.; Woods, D. T.; MacLaren, S. A.; Michel, P.; Divol, L.

    2017-10-01

    We systematically study laser-plasma interaction (LPI) on NIF indirect-drive experiments, namely backscatter and cross-beam energy transfer. LLNL's best practice radiation-hydrodynamic simulation methodology in the Lasnex simulation code is employed without ad-hoc tuning to match experimental data. This entails converged numerical resolution, an improved DCA model for coronal (ne 1 keV) gold opacity, electron heat flux strongly limited to 0.03neTe3 / 2 me- 1 / 2 , and the inline CBET model. The rad-hydro plasma conditions are used for LPI analysis, namely linear instability gains, and the paraxial-envelope code pF3D. Simulated scattered-light spectra are also compared to measurements. We initially focus on shots with low backscatter, so its self-consistent treatment should not be important. These shots have low hohlraum fill density and short laser pulses, and the only significant backscatter is outer-beams Brillouin. Our long-term goals are to understand reflectivity trends to guide target design and develop LPI mitigation strategies. Work performed under auspices of US DoE by LLNL under Contract DE-AC52-07NA27344.

  10. Comprehensive diagnostic set for intense lithium ion hohlraum experiments on PBFA II

    International Nuclear Information System (INIS)

    Leeper, R.J.; Bailey, J.E.; Carlson, A.L.

    1994-01-01

    A review of the comprehensive diagnostic package developed at Sandia National Laboratories for intense lithium ion hohlraum target experiments on PBFA II will be presented. This package contains an extensive suite of x-ray spectral and imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics, time-integrated and time-resolved grazing incidence spectrographs, a transmission grating spectrography, an elliptical crystal spectrograph, a bolometer array, an eleven element x-ray diode (XRD) array, and an eleven element PIN diode detector array. A hohlraum temperature measurement technique under development is a shock breakout diagnostic that measures the radiation pressure at the hohlraum wall. The incident Li beam symmetry and an estimate of incident Li beam power density are measured from ion beam-induced characteristic x-ray line and neutron emissions. An attempt to measure the Li beam intensity directly on target used Rutherford scattered ions into an ion movie camera and a magnetic spectrograph. The philosophy used in designing all the diagnostics in the set has emphasized redundant and independent measurements of fundamental physical quantities relevant to the performance of the target. Details of each diagnostic, its integration, data reduction procedures, and recent PBFA-II data will be discussed

  11. Reproducibility of hohlraum-driven implosion symmetry on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kyrala G.A.

    2013-11-01

    Full Text Available Indirectly driven Symcap capsules are used at the NIF to obtain information about ignition capsule implosion performance, in particular shape. Symcaps replace the cryogenic fuel layer with an equivalent ablator mass and can be similarly diagnosed. Symcaps are good symmetry surrogates to an ignition capsule after the peak of the drive, radiation-hydrodynamics simulations predict that doping of the symcaps vary the behavior of the implosion. We compare the equatorial shapes of a symcap doped with Si or Ge, as well as examine the reproducibility of the shape measurement using two symcaps with the same hohlraum and laser conditions.

  12. High performance capsule implosions driven by the Z-pinch dynamic hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Bailey, J E [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Chandler, G A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Cooper, G [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Dunham, G S [K-tech Corporation, 10800 Gibson S E, Albuquerque, NM 87123 (United States); Lake, P W [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Leeper, R J [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Lemke, R W [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Mehlhorn, T A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Nikroo, A [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); Peterson, K J [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Ruiz, C L [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Schroen, D G [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); Slutz, S A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Steinman, D [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); Stygar, W A [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States); Varnum, W [Sandia National Laboratories, PO Box 5800 MS 1196, Albuquerque, NM 87185 (United States)

    2007-12-15

    The Z-pinch dynamic hohlraum (ZPDH) is a high-power x-ray source that has been used in a variety of high energy-density experiments including inertial confinement fusion (ICF) studies. The system consists of a tungsten wire-array Z pinch that implodes onto a low-density CH{sub 2} foam converter launching a radiating shock that heats the hohlraum to radiation temperatures >200 eV. Through time-gated pinhole camera measurements, the mean shock speed is measured from 28 experiments to be 326 {+-} 4 {mu}m ns{sup -1} with a shot-to-shot standard deviation of 7%. Broad-band x-ray measurements indicate that the shot-to-shot reproducibility in the power emission and pulse-shape of the source shock is <15% and {approx}5%, respectively. Calculations have shown that an ICF capsule placed at the center of the foam in the ZPDH can absorb >40 kJ of x-ray energy, within a factor of 4 of the energy believed sufficient for ICF ignition. The capsule types imploded by the ZPDH have evolved over four years culminating in a design that produces record indirect-drive DD thermonuclear neutron yields of up to 3.5E11.

  13. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    Science.gov (United States)

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  14. Usefulness of a Rugby-shaped hohlraum in a Laser M'egaJoule (LMJ) 40-quad configuration

    Science.gov (United States)

    Malinie, G.; Vandenboomgaerde, M.; Bastian, J.; Galmiche, D.; Laffite, S.; Liberatore, S.

    2007-11-01

    The LMJ setup will consist of 60 quads in a 3-cone configuration, at angles 33.2^o, 49^o and 59.5^o. First ignition attempts in indirect drive are planned to be made on the way to the completion of the full facility, with only 40 quads in a 2-cone configuration, at angles 33.2^o and 49^o. By analytic considerations, we show that in a 40-quad configuration, the angular location of the hohlraum outer irradiating ring, as seen from the capsule, must be closer to the laser entrance hole than with the full LMJ. The use of a Rugby-shaped hohlraum instead of a cylinder therefore allows to keep a correct symmetry while reducing the wall surface, which improves the global energetic efficiency of the target. Simplified 2D numerical simulations of Rugby hohlraums are presented, achieving a yield of about 30 MJ with our 1.215 mm-radius, CH-uniform-ablator capsule. These results suggests this kind of hohlraum might be an interesting candidate for 40-quad ignition experiments. Work on optimizing the present design and refining the numerical simulations is currently pursued.

  15. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    International Nuclear Information System (INIS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  16. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  17. Progress in z-pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sanford, T W L; Nash, T J; Olson, R E; Bliss, D E; Lemke, R W; Olson, C L; Ruiz, C L; Mock, R C; Bailey, J E; Chandler, G A; Cuneo, M E; Leeper, R J; Matzen, M K; Mehlhorn, T A; Slutz, S A; Stygar, W A; Peterson, D L; Chrien, R E; Watt, R G; Roderick, N F; Cooper, G W; Apruzese, J P; Sarkisov, G S; Chittenden, J P; Haines, M G

    2004-01-01

    Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions

  18. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  19. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.

  20. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    International Nuclear Information System (INIS)

    Meezan, N. B.; Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.

    2015-01-01

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10 15 neutrons, 40% of the 1D simulated yield

  1. Development of soft x-ray tracer diagnostics for hohlraum experiments

    International Nuclear Information System (INIS)

    MacFarlane, J.J.; Cohen, D.H.; Wang, P.; Peterson, R.R.; Moses, G.A.

    1998-04-01

    The purpose of this report is to summarize work performed by the University of Wisconsin during fiscal year 1996 under the NLUF contract DE-FG-96SF21015. This contract involved the development of soft x-ray spectral diagnostics from tracer layers in hohlraum witness plates. This effort was originally intended to be focused on OMEGA experiments, but the experiments were changed to NOVA because initial indirect drive shots had not yet been performed on the OMEGA upgrade. Data were collected in a series of experiments between January 1997 and October 1997. Experiments were delayed somewhat due to bringing up the Hettrick spectrometer on the NOVA target chamber. The tasks related to the planning, carrying out, and modeling of the experiments are outlined in Table 1.1 and detailed in the remainder of this report

  2. Rayleigh-Taylor instabilities in indirect laser drive with rugby-shaped hohlraums

    International Nuclear Information System (INIS)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.P.; Richard, A.; Liberatore, S.; Vandenboomgaerde, M.

    2009-01-01

    The mastering of the development of hydrodynamic instabilities like Rayleigh-Taylor instabilities is an important milestone on the way to perform efficient laser implosions. The complexity of these instabilities implies an experimental validation of the theoretical models and their computer simulations. An experimental platform involving the Omega laser has allowed us to perform indirect drive with rugby-shaped hohlraums. The experiments have validated the growth of 2- and 3-dimensional initial defects as predicted by theory. We have shown that the 3-dimensional defect saturates for an higher amplitude than the 2-dimensional one does. The experiments have been made by using a plastic shell doped with Germanium (CH:Ge). (A.C.)

  3. Hohlraum energetics scaling to 520 TW on the National Ignition Facilitya)

    Science.gov (United States)

    Kline, J. L.; Callahan, D. A.; Glenzer, S. H.; Meezan, N. B.; Moody, J. D.; Hinkel, D. E.; Jones, O. S.; MacKinnon, A. J.; Bennedetti, R.; Berger, R. L.; Bradley, D.; Dewald, E. L.; Bass, I.; Bennett, C.; Bowers, M.; Brunton, G.; Bude, J.; Burkhart, S.; Condor, A.; Di Nicola, J. M.; Di Nicola, P.; Dixit, S. N.; Doeppner, T.; Dzenitis, E. G.; Erbert, G.; Folta, J.; Grim, G.; Glenn, S.; Hamza, A.; Haan, S. W.; Heebner, J.; Henesian, M.; Hermann, M.; Hicks, D. G.; Hsing, W. W.; Izumi, N.; Jancaitis, K.; Jones, O. S.; Kalantar, D.; Khan, S. F.; Kirkwood, R.; Kyrala, G. A.; LaFortune, K.; Landen, O. L.; Lagin, L.; Larson, D.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Michel, P. A.; Miller, P.; Montincelli, M.; Moore, A. S.; Nikroo, A.; Nostrand, M.; Olson, R. E.; Pak, A.; Park, H. S.; Patel, J. P.; Pelz, L.; Ralph, J.; Regan, S. P.; Robey, H. F.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Shaw, M.; Smalyuk, V. A.; Strozzi, D. J.; Suratwala, T.; Suter, L. J.; Tommasini, R.; Town, R. P. J.; Van Wonterghem, B.; Wegner, P.; Widmann, K.; Widmayer, C.; Wilkens, H.; Williams, E. A.; Edwards, M. J.; Remington, B. A.; MacGowan, B. J.; Kilkenny, J. D.; Lindl, J. D.; Atherton, L. J.; Batha, S. H.; Moses, E.

    2013-05-01

    Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ˜330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.

  4. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  5. Tension-filled Governance?

    DEFF Research Database (Denmark)

    Celik, Tim Holst

    on the statesituated tension-filled functional relationship between legitimation and accumulation, the study both historically and theoretically reworks this approach and reapplies it for the post-1970s/1990s governance period. It asks whether and to what extent governance has served as a distinctive post- 1970s/1990s...

  6. filled neutron detectors

    Indian Academy of Sciences (India)

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter ...

  7. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  8. Experiments on the indirect heating of low density aerogels for applications in heavy ion stopping in plasma

    International Nuclear Information System (INIS)

    Rosmej, O.N.; Blazevic, A.; Suslov, N.; Kunin, A.; Pinegin, A.; Schaefer, D.; Nisius, Th.; Zhao, Y.; Rinecker, T.; Wiechula, J.

    2010-01-01

    Complete text of publication follows. The unique combination of a Petawatt High-Energy Laser System for Ion beam eXperiments - 'Phelix' (Nd:glass, 1053 nm, 300-500 J, 1-15 ns) and intense heavy ion beams of the UNILAC accelerator at GSI-Darmstadt allow creating and probing of hot plasma with a density of some percentage of solid-state density. The experimental program aims at the investigation of fundamental features of heavy ion stopping in ionized matter in view of promising applications for the Heavy Ion Fusion and astrophysics. For combined experiments on the interaction of heavy ion beams with ionized matter (GSI) a high density plasma target with homogeneous in time (∼ 5 ns) and space (∼ 1 mm) plasma parameters in required. For these purposes we are developing the combined target which consists on the Gold hohlraum (converter) and low Z foam target heated by the hohlraum radiation before probed by an ion bunch. Foam targets are rather promising due to the effective conversion of the deposited radiation energy into the internal plasma energy and slow hydrodynamic response on the heating. Direct irradiation of the Gold converter walls with a nanosecond pulse delivered by the PHELIX-laser system (GSI) leads to hohlraum radiation spectra in the photon energy range of 50-500 eV. Expected temperatures of the foam targets heated by this radiation amount to 20-30 eV at electron densities of 10 21 cm -3 . The results of the last hohlraum experiments carried out at PHELIX-laser energies of 200-250 J will be presented. In experiments the hohlraum radiation field, the conversion efficiency of the laser energy into soft X-rays, duration of the soft X-ray pulse, and parameters of the heated with X-rays foam targets have been measured. Acknowledgements. This work is supported by ISTC 2264 grant.

  9. Predicting the Equilibrium Deuterium-Tritium Fuel Layer Thickness Profile in an Indirect-Drive Hohlraum Capsule

    International Nuclear Information System (INIS)

    Sanchez, Jorge J.; Giedt, Warren H.

    2004-01-01

    A numerical procedure for calculating the equilibrium thickness distribution of a thin layer of deuterium and tritium on the inner surface of an indirect drive target sphere (∼2.0 mm in diameter) is described. Starting with an assumed uniform thickness layer and with specified thermal boundary conditions, the temperature distribution throughout the capsule and hohlraum (including natural convection in the hohlraum gas) is calculated. Results are used to make a first estimate of the final non-uniform thickness distribution of the layer. This thickness distribution is then used to make a second calculation of the temperature distribution with the same boundary conditions. Legendre polynomial coefficients are evaluated for the two temperature distributions and the two thickness profiles. Final equilibrium Legendre coefficients are determined by linear extrapolation. From these coefficients, the equilibrium layer thickness can be computed

  10. Systolic ventricular filling.

    Science.gov (United States)

    Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio; Komeda, Masashi; Cox, James; Flotats, A; Ballester-Rodes, Manel; Carreras-Costa, Francesc

    2004-03-01

    The evidence of the ventricular myocardial band (VMB) has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium, making it possible to understand the principles governing electrical, mechanical and energetical events within the human heart. From the earliest Erasistratus' observations, principal mechanisms responsible for the ventricular filling have still remained obscured. Contemporary experimental and clinical investigations unequivocally support the attitude that only powerful suction force, developed by the normal ventricles, would be able to produce an efficient filling of the ventricular cavities. The true origin and the precise time frame for generating such force are still controversial. Elastic recoil and muscular contraction were the most commonly mentioned, but yet, still not clearly explained mechanisms involved in the ventricular suction. Classical concepts about timing of successive mechanical events during the cardiac cycle, also do not offer understandable insight into the mechanism of the ventricular filling. The net result is the current state of insufficient knowledge of systolic and particularly diastolic function of normal and diseased heart. Here we summarize experimental evidence and theoretical backgrounds, which could be useful in understanding the phenomenon of the ventricular filling. Anatomy of the VMB, and recent proofs for its segmental electrical and mechanical activation, undoubtedly indicates that ventricular filling is the consequence of an active muscular contraction. Contraction of the ascendent segment of the VMB, with simultaneous shortening and rectifying of its fibers, produces the paradoxical increase of the ventricular volume and lengthening of its long axis. Specific spatial arrangement of the ascendent segment fibers, their interaction with adjacent descendent segment fibers, elastic elements and intra-cavitary blood volume (hemoskeleton), explain the physical principles

  11. On the control of filamentation of intense laser beams propagating in underdense plasma

    International Nuclear Information System (INIS)

    Williams, E.A.

    2006-01-01

    In indirect drive inertial confinement fusion ignition designs, the laser energy is delivered into the hohlraum through the laser entrance holes (LEHs), which are sized as small as practicable to minimize x-ray radiation losses. On the other hand, deleterious laser plasma processes, such as filamentation and stimulated backscatter, typically increase with laser intensity. Ideally, therefore, the laser spot shape should be a close fit to the LEH, with uniform (envelope) intensity in the spot and minimal energy at larger radii spilling onto the LEH material. This keeps the laser intensity as low as possible, consistent with the area of the LEH aperture and the power requirements of the design. This can be achieved (at least for apertures significantly larger than the laser's aberrated focal spot) by the use of custom-designed phase plates. However, outfitting the 192-beam National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Tech. 26, 755 1994)] laser with multiple sets of phase plates optimized for a variety of different LEH aperture sizes is an expensive proposition. It is thus important to assess the impact on laser-plasma interaction processes of using phase plates with a smaller than optimum focal spot (or even no phase plates at all!) and then defocusing the beam to expand it to fill the LEH and lower its intensity. Significant effects are found from changes in the characteristic sizes of the laser speckle, from the lack of uniformity of the laser envelope out of the focal plane and on the efficacy of additional polarization smoothing and/or smoothing by spectral dispersion (SSD). These effects are quantified with analytic estimates and simulations using PF3D, our laser-plasma interaction code

  12. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1996-01-01

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li + ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤ 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum

  13. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li+ ion beam-driven hohlraums

    International Nuclear Information System (INIS)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1997-01-01

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li + ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (≤100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time endash history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. copyright 1997 American Institute of Physics

  14. Maximum credibly yield for deuteriuim-filled double shell imaging targets meeting requirements for yield bin Category A

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Douglas Carl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loomis, Eric Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-17

    We are anticipating our first NIF double shell shot using an aluminum ablator and a glass inner shell filled with deuterium shown in figure 1. The expected yield is between a few 1010 to a few 1011 dd neutrons. The maximum credible yield is 5e+13. This memo describes why, and what would be expected with variations on the target. This memo evaluates the maximum credible yield for deuterium filled double shell capsule targets with an aluminum ablator shell and a glass inner shell in yield Category A (< 1014 neutrons). It also pertains to fills of gas diluted with hydrogen, helium (3He or 4He), or any other fuel except tritium. This memo does not apply to lower z ablator dopants, such as beryllium, as this would increase the ablation efficiency. This evaluation is for 5.75 scale hohlraum targets of either gold or uranium with helium gas fills with density between 0 and 1.6 mg/cc. It could be extended to other hohlraum sizes and shapes with slight modifications. At present only laser pulse energies up to 1.5 MJ were considered with a single step laser pulse of arbitrary shape. Since yield decreases with laser energy for this target, the memo could be extended to higher laser energies if desired. These maximum laser parameters of pulses addressed here are near the edge of NIF’s capability, and constitute the operating envelope for experiments covered by this memo. We have not considered multiple step pulses, would probably create no advantages in performance, and are not planned for double shell capsules. The main target variables are summarized in Table 1 and explained in detail in the memo. Predicted neutron yields are based on 1D and 2D clean simulations.

  15. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  16. Benign gastric filling defect

    International Nuclear Information System (INIS)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y.

    1979-01-01

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  17. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y. [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  18. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K K; Lee, Y H; Cho, O K; Park, C Y [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  19. 5. Laser plasma interaction

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Bandulet, H.

    2002-01-01

    Imprint elimination, smoothing and preheat control are considerable problems in inertial fusion and their possible solution can be achieved by using low-density porous materials as a buffer in target design. The articles gathered in this document present various aspects of the laser-plasma interaction, among which we have noticed: -) numerical algorithmic improvements of the Vlasov solver toward the simulation of the laser-plasma interaction are proposed, -) the dependence of radiation temperatures and X-ray conversion efficiencies of hohlraum on the target structures and laser irradiation conditions are investigated, -) a study of laser interaction with ultra low-density (0,5 - 20 mg/cm 3 ) porous media analyzing backscattered light at incident laser frequency ω 0 and its harmonics 3*ω 0 /2 and 2*ω 0 is presented, -) investigations of laser interaction with solid targets and crater formation are carried out with the objective to determine the ablation loading efficiency, -) a self organization in an intense laser-driven plasma and the measure of the relative degree of order of the states in an open system based on the S-theorem are investigated, and -) the existence and stability of electromagnetic solitons generated in a relativistic interaction of an intense laser light with uniform under-dense cold plasma are studied

  20. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  1. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  2. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  3. Preparing for faster filling

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the programmed technical stop last week, operators focussed on preparing the machine for faster filling, which includes multibunch injection and a faster pre-cycle phase.   The LHC1 screen shot during the first multibunch injection operation. The LHC operational schedule incorporates a technical stop for preventive maintenance roughly every six weeks of stable operation, during which several interventions on the various machines are carried out. Last week these included the replacement of a faulty magnet in the SPS pre-accelerator, which required the subsequent re-setting of the system of particle extraction and transfer to the LHC. At the end of last week, all the machines were handed back for operation and work could start on accommodating all the changes made into the complex systems in order for normal operation to be resumed. These ‘recovery’ operations continued through the weekend and into this week. At the beginning of this week, operators succeeded in pro...

  4. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  5. An investigation of the opacity of high-Z mixture and implications for inertial confinement fusion hohlraum design

    International Nuclear Information System (INIS)

    Wang, P.; MacFarlane, J.J.; Orzechowski, T.J.

    1997-01-01

    We use an unresolved transition array model to investigate the opacities of high-Z materials and their mixtures which are of interest to indirect-drive inertial confinement fusion hohlraum design. In particular, we report on calculated opacities for pure Au, Gd, and Sm, as well as Au endash Sm and Au endash Gd mixtures. Our results indicate that mixtures of Au endash Gd and Au endash Sm can produce a significant enhancement in the Rosseland mean opacity. Radiation hydrodynamics simulations of Au radiation burnthrough are also presented, and compared with NOVA experimental data. copyright 1997 American Institute of Physics

  6. X-ray Conversion Efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E.; Rosen, M.; Glenzer, S.H.; Suter, L.J.; Girard, F.; Jadaud, J.P.; Schein, J.; Constantin, C.G.; Neumayer, P.; Landen, O.

    2008-01-01

    We measure the conversion efficiency of 351 nm laser light to soft x-rays (0.1-5 keV) for Au, U and high Z mixtures 'cocktails' used for hohlraum wall materials in indirect drive ICF. We use spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments on NIF. The absolute time and spectrally-resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses is subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. Our LASNEX simulations show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux

  7. Ignition target and laser-plasma instabilities

    International Nuclear Information System (INIS)

    Laffite, S.; Loiseau, P.

    2010-01-01

    For the first time indirect drive ignition targets have been designed with the constraint of limiting laser-plasma instabilities. The amplification of these instabilities is directly proportional to the luminous flux density, it means to the sizes of the focal spots too. This study shows that increasing the sizes of the focal spots does not reduce linear amplification gains in a proportional way because the global optimization of the target implies changes in hydrodynamical conditions that in turn have an impact on the value of the amplification gain. The design of the target is a 2-step approach: the first step aims at assuring a uniform irradiation and compression of the target. The first step requires information concerning the laser focusing spots, the dimensions of the hohlraum, the inert gas contained in it, the materials of the wall. The second step is an optimization approach whose aim is to reduce the risk of laser-plasmas instabilities. This optimization is made through simulations of the amplification gains of stimulated Raman and Brillouin backscattering. This method has allowed us to design an optimized target for a rugby-shaped hohlraum. (A.C.)

  8. The First Experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Glenzer, S. H.; Dewald, E. L.; Landen, O. L.; Suter, L. J.; Jones, O. S.; Schein, J.; Froula, L.; Divol, K.; Campbell, K.; Schneider, M. S.; McDonal, J. W.; Niemann, C.; Mackinnon, A. J.

    2005-01-01

    Recently the first hohlraum and laser propagation experiments have been performed at the National Ignition Facility (NIF) in support of indirect dd drive Inertial Confinement Fusion (ICR) and High Energy Density Physics. Vacuum hohlraums have been irradiated with laser powers up to 8 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several drive diagnostics, to study the hohlraum radiation temperature scaling with the lase power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. The experiments have validated analytical models and LASNEX calculations of hohlraum plasma filling and coronal hohlraum radiation production. furthermore, the effects of laser beam smooching by spectral dispersion (SSD) and polarization smoothing (PS) on the laser beam propagation has been studied in plasmas with sizes that reach for the first time the laser propagation length in indirect-drive gas-filled ignition hohlraum designs. the long scale gas-filled target experiments have shown propagation over 7 mm of low Z plasma without filamentation and beam break up when using full laser smoothing. The comparison of these results with modeling will be discussed. (Author)

  9. The First Experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S. H.; Dewald, E. L.; Landen, O. L.; Suter, L. J.; Jones, O. S.; Schein, J.; Froula, L.; Divol, K.; Campbell, K.; Schneider, M. S.; McDonal, J. W.; Niemann, C.; Mackinnon, A. J.

    2005-07-01

    Recently the first hohlraum and laser propagation experiments have been performed at the National Ignition Facility (NIF) in support of indirect dd drive Inertial Confinement Fusion (ICR) and High Energy Density Physics. Vacuum hohlraums have been irradiated with laser powers up to 8 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several drive diagnostics, to study the hohlraum radiation temperature scaling with the lase power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. The experiments have validated analytical models and LASNEX calculations of hohlraum plasma filling and coronal hohlraum radiation production. furthermore, the effects of laser beam smooching by spectral dispersion (SSD) and polarization smoothing (PS) on the laser beam propagation has been studied in plasmas with sizes that reach for the first time the laser propagation length in indirect-drive gas-filled ignition hohlraum designs. the long scale gas-filled target experiments have shown propagation over 7 mm of low Z plasma without filamentation and beam break up when using full laser smoothing. The comparison of these results with modeling will be discussed. (Author)

  10. Symmetry control using beam phasing in ∼0.2 NIF scale high temperature Hohlraum experiment on OMEGA

    International Nuclear Information System (INIS)

    Delamater, Norman D.; Wilson, Goug C.; Kyrala, George A.; Seifter, Achim; Hoffman, N.M.; Dodd, E.; Glebov, V.

    2009-01-01

    Results are shown from recent experiments at the Omega laser facility, using 40 Omega beams driving the hohlraum with 3 cones from each side and up to 19.5 kJ of laser energy. Beam phasing is achieved by decreasing the energy separately in each of the three cones, by 3 kJ, for a total drive energy of 16.5kJ. This results in a more asymmetric drive, which will vary the shape of the imploded symmetry capsule core from round to oblate or prolate in a systematic and controlled manner. These results would be the first demonstration of beam phasing for implosions in such 'high temperature' (275 eV) hohlraums at Omega. Dante measurements confirmed the predicted peak drive temperatures of 275 eV. Implosion core time dependent x-ray images were obtained from framing camera data which show the expected change in symmetry due to beam phasing and which also agree well with post processed hydro code calculations. Time resolved hard x-ray data has been obtained and it was found that the hard x-rays are correlated mainly with the low angle 21 o degree cone.

  11. Apparatus for filling a container with radioactive solid wastes

    International Nuclear Information System (INIS)

    Adachi, T.; Hiratake, S.

    1984-01-01

    In apparatus for filling a container suitable for storage with radioactive solid wastes arising from atomic power plants or the like, a plasma arc is irradiated toward a portion of the wastes to melt the portion of the wastes; portions of the wastes are successively moved so as to be subjected to irradiation of the plasma arc to continuously melt the wastes; and the melts obtained by melting the wastes are permitted to flow down toward the bottom of the container

  12. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.; Cachim, P.B.; Da Costa, Pedro M. F. J.

    2014-01-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  13. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  14. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ; Caracterizacion del flujo neutronico en el Hohlraum de la columna termica del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Palacios, J.C.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: adl@nuclear.inin.mx

    2006-07-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  15. Radiopacity of root filling materials

    International Nuclear Information System (INIS)

    Beyer-Olsen, E.M.

    1983-01-01

    A method for measuring the radiopacity of root filling materials is described. Direct measurements were made of the optic density values of the materials in comparison with a standard curve relating optic density to the thickness of an aluminium step wedge exposed simultaneously. By proper selection of film and conditions for exposure and development, it was possible to obtain a near-linear standard curve which added to the safety and reproducibility of the method. The technique of radiographic assessment was modified from clinical procedures in evaluating the obturation in radiographs, and it was aimed at detecting slits or voids between the dental wall and the filling material. This radiographic assessment of potensial leakage was compared with actual in vitro lekage of dye (basic fuchsin) into the roots of filled teeth. The result of the investigation show that root filling materials display a very wide range of radiopacity, from less than 3 mm to more than 12 mm of aluminium. It also seem that tooth roots that appear to be well obturated by radiographic evaluation, stand a good chance of beeing resistant to leakage in vitro, and that the type of filling material rather than its radiographic appearance, determines the susceptibility of the filled tooth to leakage in vitro. As an appendix the report contains a survey of radiopaque additives in root filling materials

  16. Removal of root filling materials.

    LENUS (Irish Health Repository)

    Duncan, H.F. Chong, B.S.

    2011-05-01

    Safe, successful and effective removal of root filling materials is an integral component of non-surgical root canal re-treatment. Access to the root canal system must be achieved in order to negotiate to the canal terminus so that deficiencies in the original treatment can be rectified. Since a range of materials have been advocated for filling root canals, different techniques are required for their removal. The management of commonly encountered root filling materials during non-surgical re-treatment, including the clinical procedures necessary for removal and the associated risks, are reviewed. As gutta-percha is the most widely used and accepted root filling material, there is a greater emphasis on its removal in this review.

  17. Better building of valley fills

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1980-03-01

    Current US regulations for building valley fills or head of hollow fills to hold excess spoil resulting from contour mining are meeting with considerable opposition, particularly from operators in steep-slope areas. An alternative method has been submitted to the Office of Surface Mining by Virgina. Known as the zoned concept method, it has already been used successfully in building water-holding dams and coal refuse embankments on sloping terrain. The ways in which drainage and seepage are managed are described.

  18. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  19. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    Science.gov (United States)

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  20. Characterization of nova plasmas using an x-ray spectrometer with temporal and spatial resolution

    International Nuclear Information System (INIS)

    Back, C.A.; Kauffman, R.L.; Bell, P.; Kilkenny, J.D.

    1994-05-01

    Spectroscopic diagnostics have great potential to obtain high temperature measurements of plasmas created in ICF targets. The plasmas may be over 1 mm in size and therefore, one of the first steps in making accurate spectroscopic measurements has been to improve the resolution of the instrument. A spectrograph is now available for Nova experiments which takes advantage of gated technology by coupling a Bragg crystal to a microchannel plate that can record data over a 250 ps time frame. The crystal disperses the x-rays, while slits add the ability to image the plasmas in the perpendicular direction. The characteristics of this diagnostic, TSPEC, will be evaluated for laser-produced plasmas. Recent data will be presented from colliding plasmas and large-scale hohlraums which indicate that imaging can greatly enhance the ability to diagnose these plasmas

  1. QENS investigation of filled rubbers

    CERN Document Server

    Triolo, A; Desmedt, A; Pieper, J K; Lo Celso, F; Triolo, R; Negroni, F; Arrighi, V; Qian, H; Frick, B

    2002-01-01

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface. (orig.)

  2. Gas-Filled Capillary Model

    International Nuclear Information System (INIS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-01-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration -- Laser Wakefield (STELLA-LW) experiment

  3. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  4. Space-filling polyhedral sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  5. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  6. Hard-to-fill vacancies.

    Science.gov (United States)

    Williams, Ruth

    2010-09-29

    Skills for Health has launched a set of resources to help healthcare employers tackle hard-to-fill entry-level vacancies and provide sustainable employment for local unemployed people. The Sector Employability Toolkit aims to reduce recruitment and retention costs for entry-level posts and repare people for employment through pre-job training programmes, and support employers to develop local partnerships to gain access to wider pools of candidates and funding streams.

  7. The x-ray laser as a tool for imaging plasmas

    International Nuclear Information System (INIS)

    Libby, S.B.; Da Silva, L.B.; Barbee, T.W. Jr.

    1995-07-01

    The x-ray laser is now being used at LLNL as a tool for measuring the behaviors of hot dense plasmas. In particular, we have used the 155 Angstrom yttrium laser to study transient plasmas by both radiography and moire deflectrometry. These techniques have been used to probe long scale length plasmas at electron densities exceeding 10 22 cm -3 . Recent advances in multilayer technology have made it possible to directly image ion densities in directly driven thin foils to an accuracy of 1--2 μm. In addition, we have constructed an x-ray laser Mach-Zehnder interferometer using multilayer beam-splitters. This interferometer yields direct 2D projections of electron densities in plasmas with micron spatial resolution. In addition, this interferometer can be used to measure spectral line shapes to high accuracy. Among the subject plasmas under study are laser irradiated planar targets, gold hohlraums, and x-ray lasers themselves

  8. Selection and specification criteria for fills for cut-and-fill mining

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, E. G.

    1980-05-15

    Because of significant differences in placement and loading conditions, the ideal fill material for a cut-and-fill operation has different characteristics to those for a fill for a filled open stoping operation. The differing requirements of the two mining operations must be understood and accounted for in establishing fill selection and specification criteria. Within the paper, aspects of the particular requirements of cut-and-fill mining are analyzed and related to the specific fill tests and properties required. Emphasis is placed upon the role of fill in ground support, though this cannot be isolated from overall fill performance. Where appropriate, test data are introduced and areas requiring continuing research highlighted.

  9. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Science.gov (United States)

    2010-07-01

    ... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.72 Disposal of excess spoil: Valley fill/head-of-hollow fills.... Uncontrolled surface drainage may not be directed over the outslope of the fill. (2) Runoff from areas above the fill and runoff from the surface of the fill shall be diverted into stabilized diversion channels...

  10. Plasma-filled rippled wall rectangular backward wave oscillator ...

    Indian Academy of Sciences (India)

    and (iv) the beam is free from any kind of macroscopic instabilities. We choose transverse magnetic modes (TM) because their axial electric field compo- nent drives the axial bunching of the electron beam. In mathematical terms we express the propagation field equation as exp{−i[knz − ωt]}, following the Floquet's theorem.

  11. Plasma processing of microcrystalline silicon films : filling in the gaps

    NARCIS (Netherlands)

    Bronneberg, A.C.

    2012-01-01

    Hydrogenated microcrystalline silicon (µc-Si:H) is a mixed-phase material consisting of crystalline silicon grains, hydrogenated amorphous silicon (a-Si:H) tissue, and voids. Microcrystalline silicon is extensively used as absorber layer in thin-film tandem solar cells, combining the advantages of a

  12. Technology of hardening fills for mined spaces

    International Nuclear Information System (INIS)

    Simek, P.; Holas, M.; Chyla, A.; Pech, P.

    1985-01-01

    The technology is described of hardening fills for mined spaces of uranium deposits in North Bohemian chalk. A special equipment was developed for the controlled preparation of a hardening mixture. The composition of the fill is determined by the strength of the filled rock, expecially by the standard strength, i.e., the minimal strength of the filling under uniaxial pressure. The said parameter determines the consumption of binding materials and thereby the total costs of the filling. A description is presented of the filling technology, including rabbit tube transport of the mixture and quality control. (Pu)

  13. Charge balancing fill rate monitor

    International Nuclear Information System (INIS)

    Rothman, J.L.; Blum, E.B.

    1995-01-01

    A fill rate monitor has been developed for the NSLS storage rings to allow machine tuning over a very large dynamic range of beam current. Synchrotron light, focused on a photodiode, produces a signal proportional to the beam current. A charge balancing circuit processes the diode current, creating an output signal proportional to the current injected into the ring. The unit operates linearly over a dynamic range of 120 dB and can resolve pulses of injected beam as small as 1 μA

  14. Bio-inspired dental fillings

    Science.gov (United States)

    Deyhle, Hans; Bunk, Oliver; Buser, Stefan; Krastl, Gabriel; Zitzmann, Nicola U.; Ilgenstein, Bernd; Beckmann, Felix; Pfeiffer, Franz; Weiger, Roland; Müller, Bert

    2009-08-01

    Human teeth are anisotropic composites. Dentin as the core material of the tooth consists of nanometer-sized calcium phosphate crystallites embedded in collagen fiber networks. It shows its anisotropy on the micrometer scale by its well-oriented microtubules. The detailed three-dimensional nanostructure of the hard tissues namely dentin and enamel, however, is not understood, although numerous studies on the anisotropic mechanical properties have been performed and evaluated to explain the tooth function including the enamel-dentin junction acting as effective crack barrier. Small angle X-ray scattering (SAXS) with a spatial resolution in the 10 μm range allows determining the size and orientation of the constituents on the nanometer scale with reasonable precision. So far, only some dental materials, i.e. the fiber reinforced posts exhibit anisotropic properties related to the micrometer-size glass fibers. Dental fillings, composed of nanostructures oriented similar to the natural hard tissues of teeth, however, do not exist at all. The current X-ray-based investigations of extracted human teeth provide evidence for oriented micro- and nanostructures in dentin and enamel. These fundamental quantitative findings result in profound knowledge to develop biologically inspired dental fillings with superior resistance to thermal and mechanical shocks.

  15. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ

    International Nuclear Information System (INIS)

    Delfin L, A.; Palacios, J.C.; Alonso, G.

    2006-01-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  16. Vertical Scan-Conversion for Filling Purposes

    OpenAIRE

    Hersch, R. D.

    1988-01-01

    Conventional scan-conversion algorithms were developed independently of filling algorithms. They cause many problems, when used for filling purposes. However, today's raster printers and plotters require extended use of filling, especially for the generation of typographic characters and graphic line art. A new scan-conversion algorithm, called vertical scan-conversion has been specifically designed to meet the requirements of parity scan line fill algorithms. Vertical scan-conversion ensures...

  17. Introduction to complex plasmas

    International Nuclear Information System (INIS)

    Bonitz, Michael; Ludwig, Patrick; Horing, Norman

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates. (orig.)

  18. Introduction to Complex Plasmas

    CERN Document Server

    Bonitz, Michael; Ludwig, Patrick

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.

  19. 7 CFR 58.923 - Filling containers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filling containers. 58.923 Section 58.923 Agriculture... Procedures § 58.923 Filling containers. (a) The filling of small containers with product shall be done in a sanitary manner. The containers shall not contaminate or detract from the quality of the product in any way...

  20. Wire-Array Precursor Plasma Interactions With On-Axis Foam Targets

    Science.gov (United States)

    Palmer, J. B. A.; Bland, S. N.

    2005-10-01

    The Dynamic Hohlraum (DH) Z-pinch on Z at Sandia National Laboratory (SNL) has been used to drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP) relevant experiments. The power pulse from the DH cannot yet be reproduced using codes that can reproduce the performance of a Vacuum Hohlraum (VH) configuration on Z. Unlike the VH the DH has a low-density CH foam cylinder placed on the array axis. Production of precursor plasma, prior to the main implosion, is not included in the codes. This plasma is accelerated towards the array axis by the global J x B force and impacts onto the on-axis target. This bombardment alters the foam in various ways. Experiments have been performed on the 1 MA MAGPIE generator at Imperial College, London, to investigate the effect of this precursor bombardment. Diagnostics used were point-projection radiography with x-pinches, x-ray emission framing cameras, shadowgraphy and photoconduction diodes. Results show ablation of low-density plasma from the foam surface and compression of the foam by precursor pressure. Research sponsored by AWE, SNL, the SSAA program of NNSA under DOE Cooperative Agreement DE-FC03-02NA00057.

  1. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  2. Review of fill mining technology in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K. H.; Hedley, D. G.F.

    1980-05-15

    The Canadian mining industry has a long history of being in the fore-front in developing new technology in underground hardrock mines. Examples include the development of hydraulic and cemented fills, undercut-and-fill, mechanized cut-and-fill, post pillar, vertical retreat and blasthole mining methods. The evolution of this technology is briefly described in an historical review. Backfill serves many functions, although it is generally considered in terms of its support capabilities. These functions, mainly related to the mining method used, are evaluated in regard to regional support, pillar support, fill roof, working floor, dilution control and waste disposal. With the advent of blasthole and vertical retreat methods for pillar recovery operations, the freestanding height of backfill walls has assumed greater importance. Consequently, more attention is being given to what fill properties are required to achieve fill wall exposures up to 25 m wide by 90 m high. With the large increases in energy costs, alternatives to partially replace Portland cement in fill are being examined. The validation of mining concepts and the interaction of backfill is perhaps best evaluated by in-situ measurements. Examples are given of stress, deformation and fill pressure measurements in longitudinal cut-and-fill, post pillar mining and blasthole stoping with delayed fill which were taken in several mines in Canada. Finally, the overall design procedure used in deciding mining method, stope and pillar dimensions, sequence of extraction, fill properties and support systems at a new mine is described.

  3. Operation feedback of hydrogen filling station

    International Nuclear Information System (INIS)

    Pregassame, S.; Barral, K.; Allidieres, L.; Charbonneau, T.; Lacombe, Y.

    2004-01-01

    One of the technical challenges of hydrogen technology is the development of hydrogen infrastructures which satisfy either safety requirements and reliability of filling processes. AIR LIQUIDE realized an hydrogen filling station in Sassenage (France) operational since September 2003. This station is able to fill 3 buses a day up to 350bar by equilibrium with high pressure buffers. In parallel with commercial stations, the group wanted to create a testing ground in real conditions running with several objectives: validate on a full scale bench a simulation tool able to predict the temperature of both gas and cylinder's materials during filling processes; define the best filling procedures in order to reach mass, temperature and filling time targets; analyse the temperature distribution and evolution inside the cylinder; get a general knowledge about hydrogen stations from safety and reliability point of view; operate the first full scale refuelling station in France. The station is also up-graded for 700bar filling from either a liquid hydrogen source or a gas booster, with cold filling possibility. This paper presents the results concerning 350bar filling : thermal effects, optimal filling procedures and influence of parameters such as climatic conditions are discussed. (author)

  4. Dielectric-filled radiofrequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Faehl, R J; Keinigs, R K; Pogue, E W [Los Alamos National Lab., NM (United States)

    1997-12-31

    High current, high brightness electron beam accelerators promise to open up dramatic new applications. Linear induction accelerators are currently viewed as the appropriate technology for these applications. A concept by Humphries and Hwang may permit radiofrequency accelerators to fulfill the same functions with greater simplicity and enhanced flexibility. This concept involves the replacement of vacuum rf cavities with dielectric filled ones. Simple analysis indicates that the resonant frequencies are reduced by a factor of ({epsilon}{sub 0}/{epsilon}){sup 1/2} while the stored energy is increased by {epsilon}/{epsilon}{sub 0}. For a high dielectric constant like water, this factor can approach 80. A series of numerical calculations of simple pill-box cavities was performed. Eigenfunctions and resonant frequencies for a full system configuration, including dielectric material, vacuum beamline, and a ceramic window separating the two have been computed. These calculations are compared with the results of a small experimental cavity which have been constructed and operated. Low power tests show excellent agreement. (author). 4 figs., 8 refs.

  5. Iron filled carbon nanostructures from different precursors

    International Nuclear Information System (INIS)

    Costa, S.; Borowiak-Palen, E.; Bachmatiuk, A.; Ruemmeli, M.H.; Gemming, T.; Kalenczuk, R.J.

    2008-01-01

    Here, we present a study on the synthesis of different nanostructures with one single-step in situ filling (encapsulation) via carbon vapor deposition (CVD). Ferrocene, acetylferrocene and iron (II) nitrate as iron precursors were explored. The application of each of these compounds resulted in different carbon nanomaterials such as: iron filled multiwalled carbon nanotubes with a low filling ratio (Fe-MWCNT), iron filled nanocapsules and unfilled MWCNT. The as-produced samples were purified by high temperature annealing and acid treatment. The purified materials were characterised using transmission electron microscopy (TEM) and Raman spectroscopy

  6. Characterization of Low Density Glass Filled Epoxies

    National Research Council Canada - National Science Library

    Quesenberry, Matthew

    2003-01-01

    This report discusses the experimental determination and modeling of several thermophysical and mechanical properties of glass filled epoxy composite systems for potential use as electronic potting compounds...

  7. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J; Latkowski, J

    2010-12-03

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  8. Enhancement of absorption of lower hybrid wave by filling the spectral gap

    International Nuclear Information System (INIS)

    Ide, S.; Naito, O.; Kondoh, T.; Ikeda, Y.; Ushigusa, K.

    1994-01-01

    The interaction between a lower hybrid wave (LHW) and electrons in a plasma has been investigated. An LHW of low phase velocity was injected into a plasma in addition to a high phase velocity LHW so as to fill the spectral gap which lies between the phase velocity of the faster wave and the thermal velocity of the electrons. It was found that the absorption of the faster wave was enhanced at the plasma outer region by injecting these waves simultaneously. As a result LH-driven current in the inner region of the plasma was reduced by the power absorbed in the outer region. The increase of the power absorption is attributed to the filling of the spectral gap by the slower wave

  9. 7 CFR 58.730 - Filling containers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filling containers. 58.730 Section 58.730 Agriculture... Procedures § 58.730 Filling containers. Hot fluid cheese from the cookers may be held in hotwells or hoppers... shall effectively measure the desired amount of product into the pouch or container in a sanitary manner...

  10. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre...

  11. Raman spectra of filled carbon nanotubes

    International Nuclear Information System (INIS)

    Bose, S.M.; Behera, S.N.; Sarangi, S.N.; Entel, P.

    2004-01-01

    The Raman spectra of a metallic carbon nanotube filled with atoms or molecules have been investigated theoretically. It is found that there will be a three way splitting of the main Raman lines due to the interaction of the nanotube phonon with the collective excitations (plasmons) of the conduction electrons of the nanotube as well as its coupling with the phonon of the filling material. The positions and relative strengths of these Raman peaks depend on the strength of the electron-phonon interaction, phonon frequency of the filling atom and the strength of interaction of the nanotube phonon and the phonon of the filling atoms. Careful experimental studies of the Raman spectra of filled nanotubes should show these three peaks. It is also shown that in a semiconducting nanotube the Raman line will split into two and should be observed experimentally

  12. Picosecond Soft-X-ray studies of Dense Plasma Regimes Progress Report (April 1, 2006 - March 31, 2007)

    International Nuclear Information System (INIS)

    Rocca, Jorge; Marconi, Mario; Shlyaptsev, Vyacheslav; Dunn, James; Moon, Stephen; Nilsen, Joseph

    2007-01-01

    The goal of this project is to investigate and characterize high-density converging plasma configurations using new soft x-ray laser based interferometric techniques. The results are used to verify and validate multi-dimensional hydrodynamic codes in plasma regimes which densities and size exceed those that can be probed with optical laser beams. The dynamics of converging plasmas created by laser irradiation of half-hohlraum cylindrical cavities targets was probed using a compact 46.9 nm soft x-ray laser. The results were used for comparison with extensive simulations conducted with the multi-dimensional hydrodynamic code HYDRA. As part of this study we have also investigated plasma regimes in which the index of refraction of the plasmas can not be defined solely based on the contribution of free electron, as is usually assumed for multiply ionized plasmas. Our results demonstrate the existence of plasma regimes in which the contribution of bound electrons from ions dominates the refractive index at soft x-ray wavelengths. We are also working in extending plasma interferometry to the sub 10 nm wavelength range. In the process we are advancing soft x-ray laser plasma diagnostics techniques to allow the measurement of large-scale, high-density plasmas with picosecond temporal resolution and micrometer spatial resolution, laying the foundations for future advanced diagnostics at high energy density DOE facilities. Dense plasma diagnostics, soft x-ray laser interferometry, converging plasmas

  13. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  14. Rayleigh-Taylor instabilities in indirect laser drive with rugby-shaped hohlraums; Experiences d'instabilites Rayleigh-Taylor en attaque indirecte avec des cavites rugby

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.P.; Richard, A.; Liberatore, S.; Vandenboomgaerde, M. [CEA Bruyeres-le-Chatel, 91 (France)

    2009-07-01

    The mastering of the development of hydrodynamic instabilities like Rayleigh-Taylor instabilities is an important milestone on the way to perform efficient laser implosions. The complexity of these instabilities implies an experimental validation of the theoretical models and their computer simulations. An experimental platform involving the Omega laser has allowed us to perform indirect drive with rugby-shaped hohlraums. The experiments have validated the growth of 2- and 3-dimensional initial defects as predicted by theory. We have shown that the 3-dimensional defect saturates for an higher amplitude than the 2-dimensional one does. The experiments have been made by using a plastic shell doped with Germanium (CH:Ge). (A.C.)

  15. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    Science.gov (United States)

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  16. Text-Filled Stacked Area Graphs

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    -filled stacked area graphs; i.e., graphs that feature stacked areas that are filled with small-typed text. Since these graphs allow for computing the text layout automatically, it is possible to include large amounts of textual detail with very little effort. We discuss the most important challenges and some...... solutions for the design of text-filled stacked area graphs with the help of an exemplary visualization of the genres, publication years, and titles of a database of several thousand PC games....

  17. Droplet Measurement below Single-Layer Grid Fill

    Directory of Open Access Journals (Sweden)

    Vitkovic Pavol

    2016-01-01

    Full Text Available The main part of the heat transfer in a cooling tower is in a fill zone. This one is consist of a cooling fill. For the cooling tower is used a film fill or grid fill or splash fill in the generally. The grid fill has lower heat transfer performance like film fill usually. But their advantage is high resistance to blockage of the fill. The grid fill is consisted with independent layers made from plastic usually. The layers consist of several bars connected to the different shapes. For experiment was used the rhombus shape. The drops diameter was measured above and below the Grid fill.

  18. Hohlraum targets for HIDIF

    International Nuclear Information System (INIS)

    Ramis, R.; Ramirez, J.; Meyer-ter-Vehn, J.

    2000-01-01

    An optimized high gain IFE indirect target design is presented. Beam parameters (5 MJ of 5 GeV Bi + ions in 10-20 ns and focal spot of 3 mm radius) are in agreement to the ones considered recently for the European Study Group on Heavy Ion Driven Inertial Fusion (HIDIF). The energy yield is close to 530 MJ, giving a large enough gain appropriate for industrial energy production. Numerical and analytical modeling are described and discussed. (authors)

  19. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    Science.gov (United States)

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  20. Dural sinus filling defect: intrasigmoid encephalocele

    Science.gov (United States)

    Karatag, Ozan; Cosar, Murat; Kizildag, Betul; Sen, Halil Murat

    2013-01-01

    Filling defects of dural venous sinuses are considered to be a challenging problem especially in case of symptomatic patients. Many lesions have to be ruled out such as sinus thrombosis, arachnoid granulations and tumours. Encephalocele into dural sinus is also a rare cause of these filling defects of dural sinuses. Here, we report an extremely rare case with spontaneous occult invagination of temporal brain tissue into the left sigmoid sinus and accompanying cerebellar ectopia. PMID:24311424

  1. Assessment of periapical health, quality of root canal filling, and ...

    African Journals Online (AJOL)

    Sixty three teeth were found to have short root canal fillings, whereas 74 teeth had adequate root canal fillings, and the remaining 10 teeth had over extended root canal filling. A significant correlation was observed between the length of root filling and apical periodontitis (P = 0,023). Inadequately dense root canal filling was ...

  2. Non-LTE modeling of the radiative properties of high-Z plasma using linear response methodology

    Science.gov (United States)

    Foord, Mark; Harte, Judy; Scott, Howard

    2017-10-01

    Non-local thermodynamic equilibrium (NLTE) atomic processes play a key role in the radiation flow and energetics in highly ionized high temperature plasma encountered in inertial confinement fusion (ICF) and astrophysical applications. Modeling complex high-Z atomic systems, such as gold used in ICF hohlraums, is particularly challenging given the complexity and intractable number of atomic states involved. Practical considerations, i.e. speed and memory, in large radiation-hydrodynamic simulations further limit model complexity. We present here a methodology for utilizing tabulated NLTE radiative and EOS properties for use in our radiation-hydrodynamic codes. This approach uses tabulated data, previously calculated with complex atomic models, modified to include a general non-Planckian radiation field using a linear response methodology. This approach extends near-LTE response method to conditions far from LTE. Comparisons of this tabular method with in-line NLTE simulations of a laser heated 1-D hohlraum will be presented, which show good agreement in the time-evolution of the plasma conditions. This work was performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Topological materials discovery using electron filling constraints

    Science.gov (United States)

    Chen, Ru; Po, Hoi Chun; Neaton, Jeffrey B.; Vishwanath, Ashvin

    2018-01-01

    Nodal semimetals are classes of topological materials that have nodal-point or nodal-line Fermi surfaces, which give them novel transport and topological properties. Despite being highly sought after, there are currently very few experimental realizations, and identifying new materials candidates has mainly relied on exhaustive database searches. Here we show how recent studies on the interplay between electron filling and nonsymmorphic space-group symmetries can guide the search for filling-enforced nodal semimetals. We recast the previously derived constraints on the allowed band-insulator fillings in any space group into a new form, which enables effective screening of materials candidates based solely on their space group, electron count in the formula unit, and multiplicity of the formula unit. This criterion greatly reduces the computation load for discovering topological materials in a database of previously synthesized compounds. As a demonstration, we focus on a few selected nonsymmorphic space groups which are predicted to host filling-enforced Dirac semimetals. Of the more than 30,000 entires listed, our filling criterion alone eliminates 96% of the entries before they are passed on for further analysis. We discover a handful of candidates from this guided search; among them, the monoclinic crystal Ca2Pt2Ga is particularly promising.

  4. NSLS-II filling pattern measurement

    International Nuclear Information System (INIS)

    Yong Hu; Dalesio, L.B.; Kiman Ha; Pinayev, I.

    2012-01-01

    Multi-bunch injection will be deployed at NSLS-II. High bandwidth diagnostic beam monitors with high speed digitizers are used to measure bunch-by-bunch charge variation. In order to minimize intensity-correlated orbit oscillations due to uneven bunch patterns, we need to measure the filling pattern (also named bunch pattern or bunch structure). This paper focuses on filling pattern measurements: how to measure bunch structure and make this information available in EPICS-based control system. This measurement requires combination of 3 types of beam monitors (Wall Current Monitor, Fast Current Transformer and Beam Position Monitor), data acquisition and controls (fast digitizer, EPICS software, etc.) and Event Timing system. High-bandwidth filling pattern monitor requires high-speed digitizer to sample its analog output signal. The evaluation results of commercial fast digitizer Agilent Acqiris and high bandwidth detector Bergoz FCT are presented. We have also tested the algorithm software for filling pattern measurement as well as the interface to event timing system. It appears that filling pattern measurement system is well understood and the tests for control hardware and software have given good results

  5. Improving the support characteristics of hydraulic fill

    Energy Technology Data Exchange (ETDEWEB)

    Corson, D. R.; Dorman, K. R.; Sprute, R. H.

    1980-05-15

    Extensive laboratory and field testing has defined the physical properties of hydraulic fill. Effect of void ratio on percolation rate has been quantified, and tests were developed to estimate waterflow through fill material in a given state underground. Beneficial effect on fill's support capability through addition of cement alone or in conjunction with vibratory compaction has been investigated. Two separate field studies in operating cut-and-fill mines measured vein-wall deformation and loads imposed on backfilled stopes. Technology has been developed that will effectively and efficiently dewater and densify ultra-fine-grained slurries typical of metal mine hydraulic backfill. At least two operators are using this electrokinetic technique to dewater slimes collected in underground sumps or impoundments. This technique opens up the possibility of using the total unclassified tailings product as a hydraulic backfill. Theoretical enhancement of ground support and rock-burst control through improved support capability will be tested in a full-scale mine stope installation. Both a horizontal layer and a vertical column of high modulus fill will be placed in an attempt to reduce stope wall closure, support more ground pressure, and lessen rock-burst occurrence.

  6. Fissure fillings from Finnsjoen and Studsvik Sweden

    International Nuclear Information System (INIS)

    Tullborg, E.-L.; Larsson, S.Aa.

    1982-12-01

    Samples were taken from cores and collected at different levels. The bedrock at Finnsjoen is a Svecokarelian granite-granodiorite, the most frequent mineral in the fissures being calcite. The water from boreholes have a mean S 18 O value of -12 per thousand and saturated by calcite. Isotopically three different groups of calcite have been distinguished. Ages of 29+-13x10 3 years to 79+-25x10 3 years were estimated. Two generations of quartz were recognized the minerals prehnite and lanmontite were found Most fissure filling materials have cation exchange capacities. The bedrock at Studsvik is a Svecokarelian gneiss of sedimentary type which is migmatized with calcite and chlorite as fissure filling minerals. Most fissure fillings are thin and simple Claby minerals of smectite type are also frequent. (G.B.)

  7. One-dimensional Gromov minimal filling problem

    International Nuclear Information System (INIS)

    Ivanov, Alexandr O; Tuzhilin, Alexey A

    2012-01-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  8. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  9. Posterior bulk-filled resin composite restorations.

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using...... Class II, 4 SDR-CeramX mono+ and 6 CeramXmono+-only restorations. The main reasons for failurewere tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1...

  10. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  11. Creep of granulated loose-fill insulation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    This report presents a proposal for a standardised method for creep tests and the necessary theoretical framework that can be used to describe creep of a granulated loose-fill material. Furthermore results from a round robin test are shown. The round robin test was carried out in collaboration...... with SP-Building Physics in Sweden and VTT Building Technology in Finland. For the round robin test a cellulosic fibre insulation material was used. The proposed standardised method for creep tests and theories are limited to cases when the granulated loose-fill material is exposed to a constant...

  12. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  13. The structure of filled skutterudites and the local vibration behavior of the filling atom

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaojuan [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Dongguan Institute of Neutron Science, Dongguan 523808 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zong, Peng-an [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Chen, Xihong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Tao, Juzhou, E-mail: taoj@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Dongguan Institute of Neutron Science, Dongguan 523808 (China); Lin, He, E-mail: linhe@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204 (China)

    2017-02-15

    Both of atomic pair distribution function (PDF) and extended x-ray absorption fine structure (EXAFS) experiments have been carried out on unfilled and Yb-filled skutterudites Yb{sub x}Co{sub 4}Sb{sub 12} (x=0, 0.15, 0.2 and 0.25) samples. The structure refinements on PDF data confirm the large amplitude vibration of Yb atom and the dependence of Yb vibration amplitude on the filling content. Temperature dependent EXAFS experiment on filled skutterudites have been carried out at Yb L{sub Ⅲ}-edge in order to explore the local vibration behavior of filled atom. EXAFS experiments show that the Einstein temperature of the filled atom is very low (70.9 K) which agrees with the rattling behavior.

  14. Form Filling with Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2002-01-01

    This paper describes a newly started Ph.D. project with the aim of simulating the form filling ability of Self-Compacting Concrete (SCC) taking into account the form geometry, reinforcement configuration, casting technique, and the rheological properties of the concrete. Comparative studies...

  15. Stock keeping unit fill rate specification

    NARCIS (Netherlands)

    Teunter, R. H.; Syntetos, A. A.; Babai, M. Z.

    2017-01-01

    The fill rate is the most widely applied service level measure in industry and yet there is minimal advice available on how it should be differentiated on an individual Stock Keeping Unit (SKU) basis given that there is an overall system target service level. The typical approach utilized in

  16. New Skeletal-Space-Filling Models

    Science.gov (United States)

    Clarke, Frank H.

    1977-01-01

    Describes plastic, skeletal molecular models that are color-coded and can illustrate both the conformation and overall shape of small molecules. They can also be converted to space-filling counterparts by the additions of color-coded polystyrene spheres. (MLH)

  17. Safety distances for hydrogen filling stations

    NARCIS (Netherlands)

    Matthijsen, A J C M; Kooi, E S

    2006-01-01

    In the context of spatial planning the Dutch Ministry of Housing, Spatial Planning and the Environment asked the Centre for External Safety of the National Institute for Public Health and the Environment (RIVM) to advice on safe distances pertaining to hydrogen filling stations. The RIVM made use of

  18. Banach spaces that realize minimal fillings

    International Nuclear Information System (INIS)

    Bednov, B. B.; Borodin, P. A.

    2014-01-01

    It is proved that a real Banach space realizes minimal fillings for all its finite subsets (a shortest network spanning a fixed finite subset always exists and has the minimum possible length) if and only if it is a predual of L 1 . The spaces L 1 are characterized in terms of Steiner points (medians). Bibliography: 25 titles. (paper)

  19. INS gas-filled recoil isotope separator

    International Nuclear Information System (INIS)

    Miyatake, M.; Nomura, T.; Kawakami, H.

    1986-09-01

    The characteristics and performance of a small sized gas-filled recoil isotope separator recently made at INS are described. The total efficiency and the ΔBρ/Bρ values have been measured using low velocity 16 O, 40 Ar and 68 As ions and found to be 10 and 5 %, respectively. The Z-dependence of the mean charge is discussed. (author)

  20. Stability of fruit bases and chocolate fillings

    Directory of Open Access Journals (Sweden)

    Joice Natali Miquelim

    2011-03-01

    Full Text Available Syrups with high sugar content and dehydrated fruits in its composition can be added to chocolate fillings to reduce the need of artificial flavor and dyes attributing a natural appeal to the product. Fruit bases were produced with lyophilized strawberry, passion fruit, and sliced orange peel. Rheological dynamic oscillatory tests were applied to determine the products stability and tendency of shelf life. Values of G´ G´´ were found for orange flavor during the 90 days of storage. It was observed that shear stress values did not vary significantly suggesting product stability during the studied period. For all fillings, it was found a behavior similar to the fruit base indicating that it has great influence on the filling behavior and its stability. The use of a sugar matrix in fillings provided good shelf life for the fruit base, which could be kept under room temperature conditions for a period as long as one year. The good stability and storage conditions allow the use of fruit base for handmade products as well as for industrialized products.

  1. Full-waveform inversion: Filling the gaps

    KAUST Repository

    Beydoun, Wafik B.; Alkhalifah, Tariq Ali

    2015-01-01

    After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi

  2. Safety Distances for hydrogen filling stations

    Energy Technology Data Exchange (ETDEWEB)

    Matthijsen, A. J. C. M.; Kooi, E. S.

    2005-07-01

    In the Netherlands there is a growing interest in using natural gas as a transport fuel. The most important drivers behind this development are formed by poor inner city air quality and the decision to close several LPG filling stations. Dwellings are not allowed within the safety distances of 45 or 110 meters from the tanker filling point of these LPG stations, depending on the capacity of the station. Another driver is global warming. We are carrying out a study on station supply, compression, storage and filling for natural gas stations, and a similar, simultaneous study on hydrogen as a followup to our risk analysis for the hydrogen filling station in Amsterdam. Here, three buses drive on hydrogen as part of the European CUTE project. Driving on natural gas is an important step in the transition to cars on hydrogen. This study was commissioned by the Dutch Ministry of Spatial Planning, Housing and the Environment to advise on external safety aspects of future hydrogen filling stations. According to Dutch law homes may not be built within an individual risk contour of 10-6 per year of a dangerous object, such as a plant with hazardous materials or a filling station. An individual risk contour of 10-6 is represented by a line around a dangerous object that connects locations with an individual risk level of 10-6 per year. An individual 'located' within this contour line has a chance of one per million per year or more to be killed as a result of an accident caused by this object. The longest distance between the object and such a contour is called a 'safety distance'. A study on safety distances is now in progress for different kinds of hydrogen filling stations (e. g. gaseous and liquid hydrogen) and for different capacities, such as big, medium and small stations. The focus is on different kinds of hydrogen production and the hydrogen supply of the filling station. To decide on the design and supply of the hydrogen station, we examined the

  3. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  4. Root canal filling using Resilon: a review.

    LENUS (Irish Health Repository)

    Shanahan, D J

    2011-07-01

    Root canal treatment is achieved by chemo-mechanical debridement of the root canal system followed by filling. The filling material \\'entombs\\' residual bacteria and acts as a barrier which prevents the entrance of oral microorganisms and reinfection of the root canal system through microleakage. However, filling with contemporary root filling materials such as gutta-percha offers limited long-term resistance to microorganisms; as a result other materials such as Resilon have been investigated as alternatives. The aim of this review was to analyse the literature to consider whether Resilon is a suitable root canal filling material. A MEDLINE and Cochrane library search including various keyword searches identified several papers which investigated or discussed Resilon or RealSeal\\/Epiphany. Analysis of the literature demonstrated that the bulk of the literature is in vitro in nature, based largely on leakage-type studies, and demonstrates a wide variety of methodologies with conflicting findings; as a result meaningful conclusions are difficult. Within the limit of these in vitro studies Resilon appears to perform adequately in comparison to gutta-percha, however, as a result of the questionable merit of such studies, it cannot presently be considered an evidence-based alternative to the current gold standard gutta-percha. It is imperative that before Resilon is considered as a replacement material, a better understanding of the physical properties of the resin sealer and the reality of the adhesive \\'monoblock\\' are elucidated. The literature also demonstrates a paucity of quality long-term clinical outcome studies which will need to be addressed before firm conclusions can be reached.

  5. Laser driven implosion of gas filled microballoons

    International Nuclear Information System (INIS)

    Key, M.H.; Evans, R.G.; Nicholas, D.J.

    1978-01-01

    The characteristics of the exploding pusher compression process have been studied experimentally and by computer modelling. Time and space resolved imaging and spectroscopy of X-ray emission has been used to determine the plasma parameters in both the outer corona and the implosion core. Neutron yield has been applied as an ion temperature indicator. The data thus obtained are related to 1D computer modelling with emphasis on the role of hot electron energy transport. Physical processes in the plasma corona have been investigated through observations of fast ions, hard X-rays and harmonic generation. Diagnostic methods for dense implosion plasma will be discussed. (author)

  6. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  7. Plasma interpenetration study on the Omega laser facility

    Science.gov (United States)

    Le Pape, Sebastien; Divol, Laurent; Ross, Steven; Wilks, Scott; Amendt, Peter; Berzak Hopkins, Laura; Huser, Gael; Moody, John; MacKinnon, Andy; Meezan, Nathan

    2016-10-01

    The Near Vacuum Campaign on the National Ignition Facility has sparked an interest on the nature of the gold/carbon interface at high velocity, high electron temperature, low-electron density. Indeed radiation-hydrodynamic simulations have been unable to accurately reproduce the experimental shape of the hot spot resulting from implosion driven in Near Vacuum Holhraum. The experimental data are suggesting that the inner beams are freely propagating to the waist of the hohlraum when simulations predict that a density ridge at the gold/carbon interface blocks the inner beams. The discrepancy between experimental data and simulation might be explained by the fluid description of the plasma interface in a rad-hydro code which is probably not valid in when two plasma at high velocity, high temperature are meeting. To test our assumption, we went to the Omega laser facility to study gold/carbon interface in the relevant regime. Time resolved images of the self-emission as well as Thomson scattering data will be presented. For the first time, a transition from a multifluid to a single fluid is observed as plasmas are interacting. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  8. Via fill properties of organic BARCs in dual-damascene application

    Science.gov (United States)

    Huang, Runhui

    2004-05-01

    With the introduction of copper as the interconnect metal, the Dual Damascene (DD) process has been integrated into integrated circuit (IC) device fabrication. The DD process utilizes organic bottom anti-reflective coatings (BARCs) not only to eliminate the thin film interference effects but also to act as via fill materials. However, three serious processing problems are encountered with organic BARCs. One is the formation of voids, which are trapped gas bubbles (evaporating solvent, byproduct of the curing reaction and air) inside the vias. Another problem is non-uniform BARC layer thickness in different via pitch areas. The third problem is the formation of fences during plasma etch. Fences are formed from materials that are removed by plasma and subsequently deposited on the sidewall surrounding the via openings during the etching process. Voids can cause variations in BARC top thickness, optical properties, via fill percentage, and plasma etch rate. This study focuses on the factors that influence the formation of voids and addresses the ways to eliminate them by optimizing the compositions of formulations and the processing conditions. Effects of molecular weight of the polymer, nature of the crosslinker, additives, and bake temperature were examined. The molecular weight of the polymer is one of the important factors that needs to be controlled carefully. Polymers with high molecular weights tend to trap voids inside the vias. Low molecular weight polymers have low Tg and low viscosity, which enables good thermal flow so that the BARC can fill vias easily without voids. Several kinds of crosslinkers were investigated in this study. When used with the same polymer system, formulations with different crosslinkers show varying results that affect planar fill, sidewall coverage, and, in some cases, voids. Additives also can change via fill behavior dramatically, and choosing the right additive will improve the via fill property. Processing conditions such as

  9. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2011-01-01

    This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total quantities the order fill rate would be the preferred service level m...

  10. Production of a rapidly rotating plasma by cross-field injection of gun-produced plasma

    International Nuclear Information System (INIS)

    Ohzu, Akira; Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi

    1984-01-01

    Cross-field plasma injection with use of a JxB plasma gun is described as a method to produce rapidly rotating plasma in a crossed electric and magnetic field system. The rotational velocity of the plasma is seriously limited by neutrals surrounding the plasma through strong interactions at the boundary layer. The concentration of neutrals can be reduced by the injection of fully or partially ionized plasma into the discharge volume instead of filling the volume with an operating gas. With use of this method, it is observed that the rotational velocity increases by a factor of 2 to 3 when compared with the conventional method of stationary gas-filling. (author)

  11. Flammability of Gas-Filled Polymers

    Directory of Open Access Journals (Sweden)

    Ushkov Valentin Anatol'evich

    2017-09-01

    Full Text Available The regularities of flame propagation on the horizontal surface of gas-filled polymers are considered depending on the concentration of oxygen in the oxidizer flow. The values of the coefficients in the expression describing relationship between the rate of flame propagation on the surface of foams and oxygen concentration are obtained. It was shown that with the mass content of reactive organophosphorus compounds reaching 4.0...5.9%, non-smoldering resole foam plastics with high performance characteristics are obtained. It was found that in order to obtain moderately combustible polyurethane foams based on oxyethylated phosphorus-containing polyols, the phosphorus concentration should not exceed 3 % of mass. To obtain flame-retardant urea-formaldehyde foam cellular plastics, the concentration of phosphorus should not exceed 0.3 % of mass. Physical-mechanical properties and flammability indices of developed gas-filled polymers based on reactive oligomers are presented.

  12. Form Filling with Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2007-01-01

    to the prospects of improving the structural quality, working environment, productivity, and architectural appearance. However, especially in vertical applications there is a great unused potential. Controlling the casting process is important in many different industries such as the metal, plastic, and food...... the framework of Computational Fluid Dynamics (CFD). CFD is applied to simulate the homogeneous form filling characteristics, i.e. the form filling ability and flow patterns, taking into account the rheological properties and casting technique. It is assumed that the rheological properties of SCC follow...... dimensions. For the heterogeneous flow phenomena, this project focusses on the assessment of blocking, which is of special interest in relation to high quality and complicated structures with a dense reinforcement configuration. A phenomenological micro-mechanical model has been developed, which introduces...

  13. Rainwater drained through fully filled pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, B; Koestel, P

    1989-02-01

    The conventional rainwater drainage system according to DIN 1986 always seems to be a point of problemacy in the building services as far as the occupancy of installation shafts and ducts is at stake. The excavation work and the necessary gravity lines are considered to be expensive. The consideration of the necessary slope complicates the installation additionally. Basing on those considerations, the raindraining system with fully filled pipes has been developed. DIN 1986, edition June 1988, part 1, point 6.1.1 allows to install rainwater pipes operated as planned, fully filled without slope. An enterprise specialised in building services investigated all system laws because only by a hydraulically exact balance, the function of the rainwater drainage system operated by negative and positive pressure can be insured. The results of those investigations are integrated in a computer program developed for this purpose.

  14. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  15. Moon - 'Ghost' craters formed during Mare filling.

    Science.gov (United States)

    Cruikshank, D. P.; Hartmann, W. K.; Wood, C. A.

    1973-01-01

    This paper discusses formation of 'pathological' cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D less than 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.

  16. Mobile myelographic filling defects: Spinal cysticercosis

    Energy Technology Data Exchange (ETDEWEB)

    Savoiardo, M.; Cimino, C.; Passerini, A.; La Mantia, L.

    1986-03-01

    Cysticercosis usually affects the brain and is easily demonstrated by CT. Spinal cysticercosis is much rarer and is usually diagnosed only at surgery. Myelographic demonstration of multiple rounded filling defects, some of which were mobile, allowed diagnosis of spinal extramedullary cysticercosis in an unsuspected case. The literature on spinal cysticercosis is briefly reviewed. Diagnosis is important in view of the recent development of medical treatment.

  17. The partially filled viscous ring damper.

    Science.gov (United States)

    Alfriend, K. T.

    1973-01-01

    The problem of a spinning satellite with a partially filled viscous ring damper is investigated. It is shown that there are two distinct modes of motion, the nutation-synchronous mode and spin-synchronous mode. From an approximate solution of the equations of motion a time constant is obtained for each mode. From a consideration of the fluid dynamics several methods are developed for determining the damping constant.

  18. Pulse formation of gas-filled counter

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Teshima, Kazunori; Shizuma, Kiyoshi; Hasai, Hiromi

    1991-01-01

    The pulse formation of gas-filled counter has been calculated by simple models for the proportional and self-quenching streamer (SQS) modes. Calculated pulse shapes of counter output have accurately reproduced the observed ones for both modes. As a result, it is shown that the special density distribution of ion pairs in a streamer can be estimated with the rising part of observed pulse shape, using the model. (author)

  19. Full-waveform inversion: Filling the gaps

    KAUST Repository

    Beydoun, Wafik B.

    2015-09-01

    After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi, UAE. The workshop was organized by SEG, and its partner sponsors were Saudi Aramco (gold sponsor), ExxonMobil, and CGG. Read More: http://library.seg.org/doi/10.1190/tle34091106.1

  20. Air filled porosity in composting processes

    International Nuclear Information System (INIS)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-01-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  1. Boron filled siloxane polymers for radiation shielding

    Science.gov (United States)

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton; Simmonds, Steve; Cox, Brad; Pacheco, Adam; Cady, Carl

    2018-03-01

    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield, and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. Our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.

  2. MORPHOLOGICAL FILLING OF DIGITAL ELEVATION MODELS

    Directory of Open Access Journals (Sweden)

    T. Krauß

    2012-09-01

    Full Text Available In this paper a new approach for a more detailed post processing and filling of digital elevation models (DEMs in urban areas is presented. To reach the required specifications in a first step the errors in digital surface models (DSMs generated by dense stereo algorithms are analyzed and methods for detection and classification of the different types of errors are implemented. Subsequently the classified erroneous areas are handled in separate manner to eliminate outliers and fill the DSM properly. The errors which can be detected in DSMs range from outliers – single pixels or small areas containing extremely high or low values – over noise from mismatches, single small holes to occlusions, where large areas are not visible in one of the images of the stereo pair. To validate the presented method artificial DSMs are generated and superimposed with all different kinds of described errors like noise (small holes cut in, outliers (small areas moved up/down, occlusions (larger areas beneath steep walls and so on. The method is subsequently applied to the artificial DSMs and the resulting filled DSMs are compared to the original artificial DSMs without the introduced errors. Also the method is applied to stereo satellite generated DSMs from the ISPRS Comission 1 WG4 benchmark dataset and the results are checked with the also provided first pulse laser DSM data. Finally the results are discussed, strengths and weaknesses of the approach are shown and suggestions for application and optimization are given.

  3. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described for electron beam heating of a high-density plasma to drive a fast liner. An annular or solid relativistic electron beam is used to heat a plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the plasma then converges on a fast liner to explosively or ablatively drive the liner to implosion. (U.K.)

  4. Theory for beam-plasma millimeter-wave radiation source experiments

    International Nuclear Information System (INIS)

    Rosenberg, M.; Krall, N.A.

    1989-01-01

    This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed

  5. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  6. A lumped parameter model of plasma focus

    International Nuclear Information System (INIS)

    Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro

    1999-01-01

    A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)

  7. Optimization of the parameters of plasma liners with zero-dimensional models

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I. [Siberian Division, Institute of High Current Electronics, RAS Tomsk Polytechnic University, Tomsk 634055 (Russian Federation)

    2013-11-15

    The efficiency of conversion of the energy stored in the capacitor bank of a high-current pulse generator into the kinetic energy of an imploding plasma liner is analyzed. The analysis is performed by using a model consisting of LC circuit equations and equations of motion of a cylindrical shell. It is shown that efficient energy conversion can be attained only with a low-inductance generator. The mode of an 'ideal' load is considered where the load current at the final stage of implosion is close to zero. The advantages of this mode are, first, high efficiency of energy conversion (80%) and, second, improved stability of the shell implosion. In addition, for inertial confinement fusion realized by the scheme of a Z pinch dynamic hohlraum, not one but several fusion targets can be placed in the cavity on the pinch axis due to the large length of the liner.

  8. Fissure fillings from Gideaa, central Sweden

    International Nuclear Information System (INIS)

    Tullborg, E.L.; Larsson, S.Aa.

    1983-08-01

    The most frequent fissure filling minerals at Gideaa are calcite, chlorite, pyrite, laumontite, stilbite, smectite, quartz and epidote. Potentially young minerals, i.e. minerals which can be formed during present conditions, are smectite, calcite and quartz, Equilibrium calculations show that these minerals can be stable in the water analysed from Gideaa. In borehole Gi 2, the water exhibits a greater equilibrium with existing minerals in the fissures than water from Gi 4. This is due to the recharge of the water in Gi 4 and discharge of the water in Gi 2. When carbonate saturated water penetrated through the bedrock, calcite precipitated within the more superficial portions of the rock. However, both calcite and zeolite fissures fillings are associated with certain zones in the drill holes. A large number of fractures can be concluded to be of post-Jotnian age. Stilbite, calcite and smectite are associated with these fractures. Laumontite can also be assumed to belong here. The dolerites in the area exhibit a high fracture frequency but a relatively low hydraulic conductivity. This is due to the fact that smectite is very prevalent in the dolerite fractures, Several generations of fracturefilling minerals (above all calcite) have been found in a single fracture. Stable isotope analyses of fissure filling calcites indicate that there are three different groups of calcite. Most of the calcites could not have been precipitated from water of present-day isotope composition at Gideaa, whereas recent calcite may be found in one of the groups. Another group of calcite was precipitated during hydro-thermal conditions.(author)

  9. The effect of tube filling on the electronic properties of Fe filled carbon nanotubes

    International Nuclear Information System (INIS)

    Linganiso, Ella C.; Chimowa, George; Franklyn, Paul J.; Bhattacharyya, Somnath; Coville, Neil J.

    2012-01-01

    Graphical abstract: HRTEM image of a twisted CNT filled with a bent single crystal of Fe. Insets from top to bottom show the power spectra of the corresponding regions, indicating the twisting of the Fe lattice. Inset in the top right shows the relative angling of the lattice fringes to accommodate the twisting of the Fe. Highlights: ► Synthesis of Fe filled CNTs with Fe content varying from 3 to 35%. ► TEM analysis indicates that Fe in the tubes is in contact with the CNTs. ► TEM analysis reveals that α-Fe crystallizes after CNT formation. ► Temperature dependent electronic transport measurements performed. ► Conductivity varies with the % Fe filling in the CNTs. - Abstract: Carbon nanotubes filled with Fe nanostructures (Fe-CNTs) were synthesized using an injection method in a 1-stage horizontal CVD furnace and a bubbling method in a 2-stage horizontal CVD reactor. Fe-CNTs were obtained through the pyrolysis of a mixture of dichlorobenzene and ferrocene in 5%H 2 /Ar. Metal impurities from the Fe-CNTs were removed using 1 M HCl solution. CNTs filled with crystalline Fe nanoparticles, nanorods and nanowires were obtained using these procedures. An intimate interaction between the Fe and the CNT was established by HRTEM studies. The α-Fe phase was observed to be the most dominant fraction found in the synthesized Fe-CNTs. The Fe 2 O 3 residue obtained from the TGA analysis revealed the amount of Fe filled inside the CNTs and this ranged between 3 and 31% by mass after purification. The temperature dependence of the conductivity in the temperature range between 2.5 and 100 K for an entangled network of Fe-CNTs was measured. An increase in conductivity due to the increased Fe filling inside the CNTs with increased temperature was observed. The observed temperature dependence was explained in terms of variable range hopping (VRH) conduction mechanisms. A transition from Efros–Shklovskii behavior at low % Fe filling of the CNTs to Mott 3D VRH behavior at

  10. Multiple scattering theory for space filling potentials

    International Nuclear Information System (INIS)

    Butler, W.H.; Brown, R.G.; Nesbet, R.K.

    1990-01-01

    Multiple scattering theory (MST) provides an efficient technique for solving the wave equation for the special case of muffin-tin potentials. Here MST is extended to treat space filling non-muffin tin potentials and its validity, accuracy and efficiency are tested by application of the two dimensional empty lattice test. For this test it is found that the traditional formulation of MST does not coverage as the number of partial waves is increased. A simple modification of MST, however, allows this problem to be solved exactly and efficiently. 15 refs., 3 tabs

  11. Hydraulic fracturing of rock-fill dam

    Directory of Open Access Journals (Sweden)

    Jun-Jie WANG

    2016-02-01

    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  12. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  13. Carbon Nanotubes Filled with Ferromagnetic Materials

    Science.gov (United States)

    Weissker, Uhland; Hampel, Silke; Leonhardt, Albrecht; Büchner, Bernd

    2010-01-01

    Carbon nanotubes (CNT) filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD) methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology. PMID:28883334

  14. Le déficit de filles

    International Development Research Centre (IDRC) Digital Library (Canada)

    de la population est une tendance plus récente. C. Le déficit de filles. Le déséquilibre du ratio hommes-femmes en Inde. D. R. O. I. T. S. D. E. S. F. E. M. M. E. S. E. T. P. A. R. T. IC. I. P. A. T. IO. N. C. I. T. O. Y. E. N. N. E. CENTRE DE. RECHERCHES. POUR LE. DÉVELOPPEMENT. INTERNATIONAL. CRDI : Jason Taylor ...

  15. Evaluation of Flowable Fill Surface Performance

    Science.gov (United States)

    2016-11-01

    general, traditional flowable fill is a low- viscosity , grout-like, cementitious blend commonly composed of portland cement, fine aggregate, and water...93.7 45.0 19.6 % Finer No. 200 7.0 0.5 9.1 % Gravel 2.2 0.0 56.1 % Sand 90.8 99.5 34.8 % Silt 3.2 < 0.5 6.8 % Clay 3.8 < 0.5 2.3 Fineness Modulus

  16. Plasma centrifuges

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    2000-01-01

    The review of the most important studies on the isotope separation processes in the rotating plasma is presented. The device is described and the characteristics of operation of the pulse plasma centrifuges with weakly and strongly ionized plasma as well as the stationary plasma centrifuges with the medium weak ionization and devices, applying the stationary vacuum arc with the high ionization rate and the stationary beam-plasma discharge with complete ionization, are presented. The possible mechanisms of the isotope separation in plasma centrifuges are considered. The specific energy consumption for isotope separation in these devices is discussed [ru

  17. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  18. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  19. Plasma focusing in coaxial gun

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.; El-Khalafawy, T.

    1986-01-01

    A capacitor bank has been discharged between two coaxial electrodes of 6.6 cm outer diameter, 3.2 cm inner diameter and length of 31.5 cm. filled with hydrogen gas at pressure of 310 μHg. Results show that, the axial and radial plasma current reach a maximum value at a position adjacent to the gun muzzle, at which the plasma focus occurs. The measurement of the electron temperature and density and azimuthal electric field along the axis of the expansion chamber, gives a maximum value at z∼18 cm from the gun muzzle, while the axial plasma current and velocity has a minimum value at that position. These results indicate that a second point of a plasma focus has been formed at z∼18 cm from the gun muzzle, along the axis of the expansion chamber

  20. Absorption Spectra of BaF2 Sm2O3, Sm, Gd, and Ho Plasmas

    Science.gov (United States)

    Martin, Michael; Bastiani-Ceccotti, Serena

    2009-11-01

    Knowledge of the opacities of high Z element plasmas is important in indirect drive ICF and the study of stellar evolution. There are few experimental measurements of this quantity, and its theoretical determination is difficult due to the number of possible bound electron configurations. This study aims to better the theoretical understanding of this parameter by looking at the 3d-4f transitions of BaF2, Sm2O3, Sm, Gd, and Ho plasmas at the LULI2000 facility. The plasmas are produced by radiative heating and are cold, 15 -- 40 eV, and relatively dense, ˜ .01gm/cm^3 A plasma is produced by a .5 ns laser pulse irradiating a gold hohlraum and then probed by an x-ray source created by a gold foil irradiated by a 10 ps laser pulse. The transmission is found with simultaneous source and absorption measurements by an x-ray spectrometer in the 8 - 20 å range We will compare the results with statistical atomic structure codes. From this experiment we will gain further insight into the spectral broadening of neighboring Z elements due to changing plasma temperature and into mixture thermodynamics. This is a first step towards an experimental study of astrophysical domains.

  1. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongsheng [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Graduate School, China Academy of Engineering Physics, Beijing 100088 (China); Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Lan, Ke; Ye, Wenhua, E-mail: ye-wenhua@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zhang, Weiyan [China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-07-15

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting “tent.” Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  2. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    Science.gov (United States)

    Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan

    2016-07-01

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting "tent." Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  3. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    International Nuclear Information System (INIS)

    Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan

    2016-01-01

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting “tent.” Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  4. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  5. Fissure fillings from the Klipperaas study site

    International Nuclear Information System (INIS)

    Tullborg, E.L.

    1986-07-01

    The Klipperaas study site is located within the Smaaland-Vaermland granitoid belt in southern Sweden. The area investigated can be subdivided into blocks with different hydraulic character and fracture frequency of the rocks. A fissure filling, study has been carried out within the area. This includes identification of the minerals, mineral frequency, textures within the fissures and isotope analyses of calcites. Four generation of fissure fillings, within the time space c. 1600 M.a. to present, has been distinguished. These are 1) quartz; 2) epidote + muscovite and adularia + hematite; 3) calcite + chlorite +/hematite; 4) calcite, clay minerals and Fe-oxyhydroxide. It is observed that the surface water affect the uppermost part of the bedrock resulting in calcite dissolution, break down of pyrite and precipitation of Fe-oxyhydroxide. It is also obvious from the fracture calcite frequency that calcite dissolution is more intensive close to and within the fracture zones. There, Fe-oxyhydroxide can be found down to at least 400 m depth. This gives valuable information about the physic-chemical character of the groundwater within the bedrock. Several fracture zones have been reactivated. It is also suspected that relatively late movements have taken place causing crushing of the rock and only a slight cementation of the crushed material is visible. Some of the fracture zones correspond to mafic dikes. These zones exhibit lower hydraulic conductivity than other zones due to fracture sealing by clay minerals but also by chlorite and calcite. (author)

  6. GRAVITY PIPELINE TRANSPORT FOR HARDENING FILLING MIXTURES

    Directory of Open Access Journals (Sweden)

    Leonid KROUPNIK

    2015-12-01

    Full Text Available In underground mining of solid minerals becoming increasingly common development system with stowing hardening mixtures. In this case the natural ore array after it is replaced by an artificial excavation of solidified filling mixture consisting of binder, aggregates and water. Such a mixture is prepared on the surface on special stowing complexes and transported underground at special stowing pipelines. However, it is transported to the horizons of a few kilometers, which requires a sustainable mode of motion of such a mixture in the pipeline. Hardening stowing mixture changes its rheological characteristics over time, which complicates the calculation of the parameters of pipeline transportation. The article suggests a method of determining the initial parameters of such mixtures: the status coefficient, indicator of transportability, coefficient of hydrodynamic resistance to motion of the mixture. These indicators characterize the mixture in terms of the possibility to transport it through pipes. On the basis of these indicators is proposed methodology for calculating the parameters of pipeline transport hardening filling mixtures in drift mode when traffic on the horizontal part of the mixture under pressure column of the mixture in the vertical part of the backfill of the pipeline. This technique allows stable operation is guaranteed to provide pipeline transportation.

  7. Filling behaviour of wood plastic composites

    Science.gov (United States)

    Duretek, I.; Lucyshyn, T.; Holzer, C.

    2017-01-01

    Wood plastic composites (WPC) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth’s resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection moulding processes. This work presents the results of numerical simulation and experimental visualisation of the mould filling process in injection moulding of WPC. The 3D injection moulding simulations were done with the commercial software package Autodesk® Moldflow® Insight 2016 (AMI). The mould filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the moulded part, especially at high filler content.

  8. Vlasov-Fokker-Planck modeling of magnetized plasma

    International Nuclear Information System (INIS)

    Thomas, Alexander

    2016-01-01

    Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm's law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.

  9. Vlasov-Fokker-Planck modeling of magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-08-01

    Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm’s law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.

  10. Electrical and thermal transport properties of Y bxCo4Sb12 filled skutterudites with ultrahigh carrier concentrations

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2015-11-01

    Full Text Available For filled skutterudites, element Yb is one of the most common and important fillers. However, the optimal carrier concentration range in Y bxCo4Sb12 filled skutterudites has not been determined as a result of the low Yb filling fraction limit. In this study, a non-equilibrium fabrication process (MS-SPS process, consisting of a melt-spinning method and a spark plasma sintering technique, has been applied to prepare Y bxCo4Sb12 samples. The Yb filling fraction is successfully extended to 0.35, which provides the possibility to clarify the optimal carrier concentration range for Yb-filled skutterudites. High carrier concentrations, with a maximum of around 1 × 1021 cm−3, were achieved in the MS-SPS Y bxCo4Sb12 samples due to the significantly enhanced Yb filling fractions. The phase compositions, lattice parameters, electrical and thermal transport properties of the MS-SPS Y bxCo4Sb12 samples with high carrier concentrations were systematically investigated. An optimal carrier concentration range of around 5 ∼ 6 × 1020 cm−3, corresponding to the actual Yb filling fraction of around 0.21∼0.26, has been determined, which displays the highest thermoelectric performance in Y bxCo4Sb12 thermoelectric materials.

  11. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described of providing electron beam heating of a high-density plasma to drive a fast liner to implode a structured microsphere. An annular relativistic electron beam is used to heat an annular plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the annular plasma then converges on a fast liner to explosively or ablatively drive the liner to convergence to implode the structured microsphere. (U.K.)

  12. 21 CFR 872.3310 - Coating material for resin fillings.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to the...

  13. 33 CFR 183.564 - Fuel tank fill system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five...

  14. 46 CFR 98.25-65 - Filling density.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that may...

  15. 21 CFR 872.3820 - Root canal filling resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate, intended...

  16. 46 CFR 98.25-50 - Filling and discharge pipes.

    Science.gov (United States)

    2010-10-01

    ... with a secondary remote control of a type acceptable to the Commandant. (c) The excess flow, internal... 46 Shipping 4 2010-10-01 2010-10-01 false Filling and discharge pipes. 98.25-50 Section 98.25-50... § 98.25-50 Filling and discharge pipes. (a) Filling connections shall be provided with one of the...

  17. Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility

    Science.gov (United States)

    Zha, Weiyi; Yang, Dong; Xu, Tao; Liu, Yonggang; Wang, Feng; Peng, Xiaoshi; Li, Yulong; Wei, Huiyue; Liu, Xiangming; Mei, Yu; Yan, Yadong; He, Junhua; Li, Zhichao; Li, Sanwei; Jiang, Xiaohua; Guo, Liang; Xie, Xufei; Pan, Kaiqiang; Liu, Shenye; Jiang, Shaoen; Zhang, Baohan; Ding, Yongkun

    2018-01-01

    In laser driven hohlraums, laser beams on the same incident cone may have different beam and plasma conditions, causing beam-to-beam backscatter difference and subsequent azimuthal variations in the x-ray drive on the capsule. To elucidate the large variation of backscatter proportion from beam to beam in some gas-filled hohlraum shots on Shenguang-III, two 28.5° beams have been measured with the Stimulated Raman Scattering (SRS) time-resolved spectra. A bifurcated fiber is used to sample two beams and then coupled to a spectrometer and streak camera combination to reduce the cost. The SRS spectra, characterized by a broad wavelength, were further corrected considering the temporal distortion and intensity modulation caused by components along the light path. This measurement will improve the understanding of the beam propagation inside the hohlraum and related laser plasma instabilities.

  18. Colloid transport in model fracture filling materials

    Science.gov (United States)

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  19. Filling bore-holes with explosive

    Energy Technology Data Exchange (ETDEWEB)

    Alfredsson, S H

    1965-03-02

    In this device for filling boreholes formed in a rock formation with particulate explosive, the explosive is conveyed into the hole by means of a pressure fluid through a tube which has a lesser diameter than the hole. The tube is characterized by a lattice work arranged externally on it, and having a structure adapted to allow passage of a pressure fluid returning between the tube and the wall of the hole, but retaining particles of explosive entrained by the returning pressure fluid. In another arrangement of the device, the lattice work has the form of a brush, including filaments or bristles which are dimensioned to bridge the spacing between the tube and the wall of the hole. (12 claims)

  20. Alleviate Cellular Congestion Through Opportunistic Trough Filling

    Directory of Open Access Journals (Sweden)

    Yichuan Wang

    2014-04-01

    Full Text Available The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly in both large and small time scales. To alleviate network congestion and improve network performance, we present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time as the performance metrics. Simulation results show promising performance improvement over the standard schemes. The work shed lights on addressing the pressing issue of cellular overload.

  1. Internal Accident Report: fill it out!

    CERN Multimedia

    2012-01-01

    It is important to report all accidents, near-misses and dangerous situations so that they can be avoided in the future.   Reporting these events allows the relevant services to take appropriate action and implement corrective and preventive measures. It should be noted that the routing of the internal accident report was recently changed to make sure that the people who need to know are informed. Without information, corrective action is not possible. Without corrective action, there is a risk that the events will recur. As soon as you experience or see something amiss, fill out an internal accident report! If you have any questions the HSE Unit will be happy to answer them. Contact us at safety-general@cern.ch. The HSE Unit

  2. Neutron transmission measurements on hydrogen filled microspheres

    International Nuclear Information System (INIS)

    Dyrnjaja, Eva; Hummel, Stefan; Keding, Marcus; Smolle, Marie-Theres; Gerger, Joachim; Zawisky, Michael

    2014-01-01

    Hollow microspheres are promising candidates for future hydrogen storage technologies. Although the physical process for hydrogen diffusion through glass is well understood, measurements of static quantities (e.q. hydrogen pressure inside the spheres) as well as dynamic properties (e.g. diffusion rate of hydrogen through glass) are still difficult to handle due to the small size of the spheres (d≈15μm). For diffusion rate measurements, the long-term stability of the experiment is also mandatory due to the relatively slow diffusion rate. In this work, we present an accurate and long-term stable measurement technique for static and dynamic properties, using neutron radiography. Furthermore, possible applications for hydrogen filled microspheres within the scope of radiation issues are discussed

  3. LHC Abort Gap Filling by Proton Beam

    CERN Document Server

    Fartoukh, Stéphane David; Shaposhnikova, Elena

    2004-01-01

    Safe operation of the LHC beam dump relies on the possibility of firing the abort kicker at any moment during beam operation. One of the necessary conditions for this is that the number of particles in the abort gap should be below some critical level defined by quench limits. Various scenarios can lead to particles filling the abort gap. Time scales associated with these scenarios are estimated for injection energy and also coast where synchrotron radiation losses are not negligible for uncaptured particle motion. Two cases are considered, with RF on and RF off. The equilibrium distribution of lost particles in the abort gap defines the requirements for maximum tolerable relative loss rate and as a consequence the minimum acceptable longitudinal lifetime of the proton beam in collision.

  4. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  5. Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation

    International Nuclear Information System (INIS)

    You, S.; Yun, G.S.; Bellan, P.M.

    2005-01-01

    Highly collimated, plasma-filled magnetic-flux tubes are frequently observed on galactic, stellar, and laboratory scales. We propose that a single, universal magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic-flux tubes are ubiquitous. Experimental evidence from carefully diagnosed laboratory simulations of astrophysical jets confirms this assertion and is reported here. The magnetohydrodynamic process pumps plasma into a magnetic-flux tube and the stagnation of the resulting flow causes this flux tube to become collimated

  6. Plasma chromatography

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the fundamental theory and various applications of ion mobility spectroscopy. Plasma chromatography developed from research on the diffusion and mobility of ions. Topics considered include instrument design and description (e.g., performance, spectral interpretation, sample handling, mass spectrometry), the role of ion mobility in plasma chromatography (e.g., kinetic theory of ion transport), atmospheric pressure ionization (e.g., rate equations), the characterization of isomers by plasma chromatography (e.g., molecular ion characteristics, polynuclear aromatics), plasma chromatography as a gas chromatographic detection method (e.g., qualitative analysis, continuous mobility monitoring, quantitative analysis), the analysis of toxic vapors by plasma chromatography (e.g., plasma chromatograph calibration, instrument control and data processing), the analysis of semiconductor devices and microelectronic packages by plasma chromatography/mass spectroscopy (e.g., analysis of organic surface contaminants, analysis of water in sealed electronic packages), and instrument design and automation (hardware, software)

  7. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2011-01-01

    This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total quantities the order fill rate would be the preferred service level...... measure. The main result shows how the order and volume fill rates are related in magnitude. Earlier results derived for a single-item, single-stage, continuous review inventory system with backordering and constant lead times controlled by a base-stock policy are extended in different directions...

  8. High Temperature Plasmas Theory and Mathematical Tools for Laser and Fusion Plasmas

    CERN Document Server

    Spatschek, Karl-Heinz

    2012-01-01

    Filling the gap for a treatment of the subject as an advanced course in theoretical physics with a huge potential for future applications, this monograph discusses aspects of these applications and provides theoretical methods and tools for their investigation. Throughout this coherent and up-to-date work the main emphasis is on classical plasmas at high-temperatures, drawing on the experienced author's specialist background. As such, it covers the key areas of magnetic fusion plasma, laser-plasma-interaction and astrophysical plasmas, while also including nonlinear waves and phenomena.

  9. Delayed effects of cold atmospheric plasma on vascular cells

    NARCIS (Netherlands)

    Stoffels, Eva; Roks, Anton J. M.; Deelmm, Leo E.

    2008-01-01

    We investigated the long-term behaviour of vascular cells (endothelial and smooth muscle) after exposure to a cold atmospheric plasma source. The cells were treated through a gas-permeable membrane, in order to simulate intravenous treatment with a gas plasma-filled catheter. Such indirect treatment

  10. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases.

    Science.gov (United States)

    Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin

    2016-04-04

    We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation.

  11. Growth of Pd-Filled Carbon Nanotubes on the Tip of Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Tomokazu Sakamoto

    2009-01-01

    Full Text Available We have synthesized Pd-filled carbon nanotubes (CNTs oriented perpendicular to Si substrates using a microwave plasma-enhanced chemical vapor deposition (MPECVD for the application of scanning probe microscopy (SPM tip. Prior to the CVD growth, Al thin film (10 nm was coated on the substrate as a buffer layer followed by depositing a 5∼40 nm-thick Pd film as a catalyst. The diameter and areal density of CNTs grown depend largely on the initial Pd thickness. Scanning electron microscopy (SEM and transmission electron microscopy (TEM images clearly show that Pd is successfully encapsulated into the CNTs, probably leading to higher conductivity. Using optimum growth conditions, Pd-filled CNTs are successfully grown on the apex of the conventional SPM cantilever.

  12. Beam acceleration in plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Antanasijevic, R.; Banjanac, R.; Dragic, A.; Maric, Z.; Stanojevic, J.; Udovicic, V. E-mail: udovicic@atom.phy.bg.ac.yu; Vukovic, J

    2001-06-01

    The proton beam emission from the small 8 kJ plasma focus device operated with the H{sub 2} filling was analyzed. Maximum energy and yield were obtained using NTD. The fast protons were registered with the energy up to 500 keV using the polycarbonate absorbers with the different thickness.

  13. Beam acceleration in plasma focus device

    International Nuclear Information System (INIS)

    Antanasijevic, R.; Banjanac, R.; Dragic, A.; Maric, Z.; Stanojevic, J.; Udovicic, V.; Vukovic, J.

    2001-01-01

    The proton beam emission from the small 8 kJ plasma focus device operated with the H 2 filling was analyzed. Maximum energy and yield were obtained using NTD. The fast protons were registered with the energy up to 500 keV using the polycarbonate absorbers with the different thickness

  14. 6-7 Mev Characteristic Gamma-Ray Source Using A Plasma Opening Switch And A Marx Bank

    Science.gov (United States)

    2011-06-01

    of Hawk, including the POS, is shown in Fig. 2a. The POS consists of 12 plasma guns made from coaxial cables that inject ionized plasma radially...inward between two coaxial conductors prior to firing the generator. The POS plasma conducts the generator current as a short circuit for about 700...vacuum gap in the plasma . High-energy electron- and ion-beams form in the plasma -filled coaxial region, with ions from the plasma and the polyethylene

  15. Filled aperture concepts for the Terrestrial Planet Finder

    Science.gov (United States)

    Ridgway, Stephen T.

    2003-02-01

    Filled aperture telescopes can deliver a real, high Strehl image which is well suited for discrimination of faint planets in the vicinity of bright stars and against an extended exo-zodiacal light. A filled aperture offers a rich variety of PSF control and diffraction suppression techniques. Filled apertures are under consideration for a wide spectral range, including visible and thermal-IR, each of which offers a significant selection of biomarker molecular bands. A filled aperture visible TPF may be simpler in several respects than a thermal-IR nuller. The required aperture size (or baseline) is much smaller, and no cryogenic systems are required. A filled aperture TPF would look and act like a normal telescope - vendors and users alike would be comfortable with its design and operation. Filled aperture telescopes pose significant challenges in production of large primary mirrors, and in very stringent wavefront requirements. Stability of the wavefront control, and hence of the PSF, is a major issue for filled aperture systems. Several groups have concluded that these and other issues can be resolved, and that filled aperture options are competitive for a TPF precursor and/or for the full TPF mission. Ball, Boeing-SVS and TRW have recently returned architecture reviews on filled aperture TPF concepts. In this paper, I will review some of the major considerations underlying these filled aperture concepts, and suggest key issues in a TPF Buyers Guide.

  16. Surface Patterning Using Diazonium Ink Filled Nanopipette.

    Science.gov (United States)

    Zhou, Min; Yu, Yun; Blanchard, Pierre-Yves; Mirkin, Michael V

    2015-11-03

    Molecular grafting of diazonium is a widely employed surface modification technique. Local electrografting of this species is a promising approach to surface doping and related properties tailoring. The instability of diazonium cation complicates this process, so that this species was generated in situ in many reported studies. In this Article, we report the egress transfer of aryl diazonium cation across the liquid/liquid interface supported at the nanopipette tip that can be used for controlled delivery this species to the external aqueous phase for local substrate patterning. An aryl diazonium salt was prepared with weakly coordinating and lipophilic tetrakis(pentafluorophenyl)borate anion stable as a solid and soluble in low polarity media. The chemically stable solution of this salt in 1,2-dichloroethane can be used as "diazonium ink". The ink-filled nanopipette was employed as a tip in the scanning electrochemical microscope (SECM) for surface patterning with the spatial resolution controlled by the pipette orifice radius and a few nanometers film thickness. The submicrometer-size grafted spots produced on the HOPG surface were located and imaged with the atomic force microscope (AFM).

  17. [Creep of amalgam fillings under clasp rests].

    Science.gov (United States)

    Borchers, L; Jung, T; West, M

    1989-10-01

    A clinically realistic experiment was set up to obtain information on the amount of vertical settling of clasp rests in amalgam restorations under functional loading. Mesioocclusal cavities were prepared in 16 lower molar specimens cast in brass. The cavities were filled with amalgam and provided with a mesial rest seat. A constant load of 100 N was applied via a simplified (experimental) saddle to a cobalt-chromium E-clasp cast to the saddle. The duration of the load corresponded to 160 days of clinical function. The chronological course of vertical displacement was analyzed mathematically. According to this result the process can be divided into three components: settling immediately upon load initiation (mean value 96 microns, transition creep (mean value 25 microns) and creep ata constant rate (mean value 15 microns). The mean overall vertical displacement of the rests was 136 microns, the maximum value 287 microns. These findings suggest that vertical settling of a clasp rest into its seat in an amalgam restoration may eventually result in significant changes in occlusion and may almost completely exhaust gingival resilience.

  18. Polymer deformation and filling modes during microembossing

    Science.gov (United States)

    Rowland, Harry D.; King, William P.

    2004-12-01

    This work investigates the initial stages of polymer deformation during hot embossing micro-manufacturing at processing temperatures near the glass transition temperature (Tg) of polymer films having sufficient thickness such that polymer flow is not supply limited. Several stages of polymer flow can be observed by employing stamp geometries of various widths and varying imprint conditions of time and temperature to modulate polymer viscosity. Experiments investigate conditions affecting cavity filling phenomena, including apparent polymer viscosity. Stamps with periodic ridges of height and width 4 µm and periodicity 30, 50 and 100 µm emboss trenches into polymethyl methacrylate films at Tg - 10 °C time, temperature and load are correlated with replicated polymer shape, height and imprinted area. Polymer replicates are measured by atomic force microscopy and inspected by scanning electron microscopy. Cavity size and the temperature dependence of polymer viscosity significantly influence the nature of polymer deformation in hot embossing micro-manufacturing and must be accounted for in rational process design.

  19. Turbulent flow in a partially filled pipe

    Science.gov (United States)

    Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David

    2017-11-01

    Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.

  20. Plasma physics

    CERN Document Server

    Drummond, James E

    1961-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  1. Plasma generator

    International Nuclear Information System (INIS)

    Omichi, Takeo; Yamanaka, Toshiyuki.

    1976-01-01

    Object: To recycle a coolant in a sealed hollow portion formed interiorly of a plasma limiter itself to thereby to cause direct contact between the coolant and the plasma limiter and increase of contact area therebetween to cool the plasma limiter. Structure: The heat resulting from plasma generated during operation and applied to the body of the plasma limiter is transmitted to the coolant, which recycles through an inlet and outlet pipe, an inlet and outlet nozzle and a hollow portion to hold the plasma limiter at a level less than a predetermined temperature. On the other hand, the heater wire is, at the time of emergency operation, energized to heat the plasma limiter, but this heat is transmitted to the limiter body to increase the temperature thereof. However, the coolant recycling the hollow portion comes into direct contact with the limiter body, and since the plasma limiter surround the hollow portion, the heat amount transmitted from the limiter body to the coolant increases to sufficiently cool the plasma limiter. (Yoshihara, H.)

  2. Properties of the Dense Plasma Produced in Plasma Focus

    International Nuclear Information System (INIS)

    Peacock, N.J.; Wilcock, P.D.; Speer, R.J.; Morgan, P.D.

    1969-01-01

    The plasma produced by the focus or quasi-cylindrical magnetic compression which occurs at the open end of a metal-walled, coaxial plasma gun has been studied, using the electrical waveforms and the electromagnetic and reaction particle, emission. The electromagnetic radiation in the XUV region of the spectrum has previously been briefly reported, and the present paper describes further more detailed analyses of the line emission at wavelengths shorter than 10 Å when impurities are added to the gas filling. The emission is characteristic of a plasma with a temperature of a few keV and a density greater than 10 19 cm -3 , while the appearance of optical transitions in highly stripped ions, e. g. A XVIII, gives a measure of the thermalization in the plasma. The stored electrical energy has been doubled and the scaling of the neutron emission with the applied voltage and the initial particle density is presented. The duration of the neutron and X-ray emission is considerably longer than the observed instability growth time in the plasma filament. Calculations of the mode of heating and the confinement of the plasma are compared with experimental observations. (author)

  3. Influence of capillary die geometry on wall slip of highly filled powder injection molding compounds

    Czech Academy of Sciences Publication Activity Database

    Sanétrník, D.; Hausnerová, B.; Filip, Petr; Hnátková, E.

    2018-01-01

    Roč. 325, February (2018), s. 615-619 ISSN 0032-5910 R&D Projects: GA ČR GA17-26808S Grant - others:Ministerstvo školství, mládeže a tělovýchovy (MŠMT)(CZ) LO1504 Institutional support: RVO:67985874 Keywords : powder injection molding * highly filled polymer * wall slip * capillary entrance angle Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.942, year: 2016

  4. Experiments on the Scaling of Ionization Balance vs. Electron and Radiation Temperature in Non-LTE Gold Plasmas

    International Nuclear Information System (INIS)

    Heeter, R.F.; Hansen, S.B.; Beiersdorfer, P.; Foord, M.E.; Fournier, K.B.; Froula, D.H.; Mackinnon, A.J.; May, M.J.; Schneider, M.B.; Young, B.K.F.

    2004-01-01

    Understanding and predicting the behavior of high-Z non-LTE plasmas is important for developing indirect-drive inertial confinement fusion. Extending earlier work from the Nova laser, we present results from experiments using the Omega laser to study the ionization balance of gold as a function of electron and radiation temperature. In these experiments, gold samples embedded in Be disks expand under direct laser heating to ne ≅ 1021cm-3, with Te varying from 0.8 to 2.5 keV. An additional finite radiation field with effective temperature Tr up to 150 eV is provided by placing the gold Be disks inside truncated 1.2 mm diameter tungsten-coated cylindrical hohlraums with full laser entrance holes. Densities are measured by imaging of plasma expansion. Electron temperatures are diagnosed with either 2ω or 4ω Thomson scattering, and also K-shell spectroscopy of KCl tracers co-mixed with the gold. Hohlraum flux and effective radiation temperature are measured using an absolutely-calibrated multichannel filtered diode array. Spectroscopic measurements of the M-shell gold emission in the 2.9-4 keV spectral range provide ionization balance and charge state distribution information. The spectra show strong variation with Te, strong variation with the applied Tr, at Te below 1.6 keV, and relatively little variation with Tr at higher Te (upwards of 2 keV). We summarize our most recent spectral analyses and discuss emerging and outstanding issues

  5. Improved thermoelectric performance of n-type Ca and Ca-Ce filled skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Daniel R.; Liu, Chang; Ellison, Nicole D. [Optimal CAE, Plymouth, Michigan 48170 (United States); Salvador, James R.; Meyer, Martin S.; Haddad, Daad B. [General Motors Research and Development, Warren, Michigan 48090 (United States); Wang, Hsin; Cai, W. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-12-28

    Thermoelectric (TE) technology for use in automotive waste heat recovery is being advanced by General Motors with support from the US Department of Energy. Skutterudites are a very promising material for this application of TE technology due to their superior mechanical properties and good TE performance. Double-filled Yb{sub x}Ba{sub y}Co{sub 4}Sb{sub 12} with ZT values around 1.1 at 750 K are the best performing n-type skutterudites produced on a large scale using an economically viable approach of melt spinning (MS) in conjunction with spark plasma sintering (SPS). Another economical production method on the tons scale, the melt quench annealing (MQA) technique, has been recently claimed by Treibacher Industrie AG, further information is available [G. Rogl et al., Acta Mater. 76, 434–448 (2014)]. A possible hurdle to commercial implementation of these materials is the use of rare earths as the fillers to reduce thermal conductivity and improve the electrical transport properties. It will be shown herein that skutterudites double-filled with Ca and Ce, both of which are lower-cost fillers, display markedly different TE properties depending on whether they are produced by MQA or MS + SPS synthesis techniques. Ca and Ce double-filled skutterudites prepared by MS + SPS have TE properties that are superior to the same compositions prepared by MQA and that are comparable to the best performing Yb and Ba filled materials. Furthermore, the results of this study suggest that the unusually poor transport properties of MQA Ca-filled skutterudites can be ascribed to deleterious secondary phases, which is contrary to reports in the literature attempting to explain these irregularities via band structure features.

  6. Sorption of Np (Ⅴ) on Beishan granite fracture filling materials

    International Nuclear Information System (INIS)

    Jiang Tao; Wang Bo; Bao Liangjin; Zhou Duo; Long Haoqi; Song Zhixin; Chen Xi

    2012-01-01

    The sorption behaviors of Np (Ⅴ) on the granite fracture filling materials were studied by batch experiments under anaerobic in Beishan groundwater. The impact of pH of groundwater, CO 3 2- , humic acid and different components of granite fracture filling materials on sorption of Np (Ⅴ) was investigated. The results show that the granite fracture filling materials have strong capacity of Np (Ⅴ) adsorption. The value of K d , for Np (Ⅴ) sorption on the granite fracture filling materials is 843 mL/g. With the increase of pH, the value of K d increases at first and then decreases. K d of Np sorption on granite fracture filling materials in the presence of CO 3 2- and humic acid decreases. The chlorite and feldspar are major contributors to the sorption of Np (Ⅴ) on Beishan granite fracture filling materials. (authors)

  7. Effects of selective attention on perceptual filling-in.

    Science.gov (United States)

    De Weerd, P; Smith, E; Greenberg, P

    2006-03-01

    After few seconds, a figure steadily presented in peripheral vision becomes perceptually filled-in by its background, as if it "disappeared". We report that directing attention to the color, shape, or location of a figure increased the probability of perceiving filling-in compared to unattended figures, without modifying the time required for filling-in. This effect could be augmented by boosting attention. Furthermore, the frequency distribution of filling-in response times for attended figures could be predicted by multiplying the frequencies of response times for unattended figures with a constant. We propose that, after failure of figure-ground segregation, the neural interpolation processes that produce perceptual filling-in are enhanced in attended figure regions. As filling-in processes are involved in surface perception, the present study demonstrates that even very early visual processes are subject to modulation by cognitive factors.

  8. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2014-01-01

    This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total demanded quantity the order fill rate would be the preferred service...... level measure. The main result shows how the order and volume fill rates are related in magnitude. Earlier results derived for a single-item, single-stage, continuous review inventory system with backordering and constant lead times controlled by a base-stock policy are extended in different directions...... extensions consider more general inventory control review policies with backordering, as well as some relations between service measures. A particularly important result in the paper concerns an alternative service measure, the customer order fill rate, and shows how this measure always exceeds the other two...

  9. Bridge between fusion plasma and plasma processing

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Takamura, Shuichi

    2008-01-01

    In the present review, relationship between fusion plasma and processing plasma is discussed. From boundary-plasma studies in fusion devices new applications such as high-density plasma sources, erosion of graphite in a hydrogen plasma, formation of helium bubbles in high-melting-point metals and the use of toroidal plasmas for plasma processing are emerging. The authors would like to discuss a possibility of knowledge transfer from fusion plasmas to processing plasmas. (T. Ikehata)

  10. Curing characteristics of flowable and sculptable bulk-fill composites

    OpenAIRE

    Miletic, Vesna; Pongpruenska, Pong; De Munck, Jan; Brooks, Neil R; Van Meerbeek, Bart

    2016-01-01

    OBJECTIVES: The aim of this study was to determine and correlate the degree of conversion (DC) with Vickers hardness (VH) and translucency parameter (TP) with the depth of cure (DoC) of five bulk-fill composites. MATERIALS AND METHODS: Six specimens per group, consisting of Tetric EvoCeram Bulk Fill ("TEC Bulk," Ivoclar Vivadent), SonicFill (Kerr), SDR Smart Dentin Replacement ("SDR," Dentsply), Xenius base ("Xenius," StickTech; commercialized as EverX Posterior, GC), Filtek Bul...

  11. Fundamentals of Plasma Physics

    International Nuclear Information System (INIS)

    Cargill, P J

    2007-01-01

    The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, 'The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For

  12. The Validity of a Paraxial Approximation in the Simulation of Laser Plasma Interactions

    International Nuclear Information System (INIS)

    Hyole, E. M.

    2000-01-01

    The design of high-power lasers such as those used for inertial confinement fusion demands accurate modeling of the interaction between lasers and plasmas. In inertial confinement fusion, initial laser pulses ablate material from the hohlraum, which contains the target, creating a plasma. Plasma density variations due to plasma motion, ablating material and the ponderomotive force exerted by the laser on the plasma disrupt smooth laser propagation, undesirably focusing and scattering the light. Accurate and efficient computational simulations aid immensely in developing an understanding of these effects. In this paper, we compare the accuracy of two methods for calculating the propagation of laser light through plasmas. A full laser-plasma simulation typically consists of a fluid model for the plasma motion and a laser propagation model. These two pieces interact with each other as follows. First, given the plasma density, one propagates the laser with a refractive index determined by this density. Then, given the laser intensities, the calculation of one time step of the plasma motion provides a new density for the laser propagation. Because this procedure repeats over many time steps, each piece must be performed accurately and efficiently. In general, calculation of the light intensities necessitates the solution of the Helmholtz equation with a variable index of refraction. The Helmholtz equation becomes extremely difficult and time-consuming to solve as the problem size increases. The size of laser-plasma problems of present interest far exceeds current capabilities. To avoid solving the full Helmholtz equation one may use a partial approximation. Generally speaking the partial approximation applies when one expects negligible backscattering of the light and only mild scattering transverse to the direction of light propagation. This approximation results in a differential equation that is first-order in the propagation direction that can be integrated

  13. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  14. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1991-06-01

    The Magneto-Fluid Dynamics Division continues to study a broad range of problems originating in plasma physics. Its principal focus is fusion plasma physics, and most particularly topics of particular significance for the world magnetic fusion program. During the calendar year 1990 we explored a wide range of topics including RF-induced transport as a plasma control mechanism, edge plasma modelling, further statistical analysis of L and H mode tokamak plasmas, antenna design, simulation of the edge of a tokamak plasma and the L-H transition, interpretation of the CCT experimental results at UCLA, turbulent transport, studies in chaos, the validity of moment approximations to kinetic equations and improved neoclassical modelling. In more basic studies we examined the statistical mechanisms of Coulomb systems and applied plasma ballooning mode theory to conventional fluids in order to obtain novel fluid dynamics stability results. In space plasma physics we examined the problem of reconnection, the effect of Alfven waves in space environments, and correct formulation of boundary conditions of the Earth for waves in the ionosphere

  15. Plasma container

    International Nuclear Information System (INIS)

    Ebisawa, Katsuyuki.

    1985-01-01

    Purpose: To enable to easily detect that the thickness of material to be abraded is reduced to an allowable limit from the outerside of the plasma container even during usual operation in a plasma vessel for a thermonuclear device. Constitution: A labelled material is disposed to the inside or rear face of constituent members of a plasma container undergoing the irradiation of plasma particles. A limiter plate to be abraded in the plasma container is composed of an armour member and heat removing plate, in which the armour member is made of graphite and heat-removing plate is made of copper. If the armour member is continuously abraded under the effect of sputtering due to plasma particles, silicon nitride embedded so far in the graphite at last appears on the surface of the limiter plate to undergo the impact shocks of the plasma particles. Accordingly, abrasion of the limiter material can be detected by a detector comprising gas chromatography and it can easily be detected from the outside of the plasma content even during normal operation. (Horiuchi, T.)

  16. [Cermet cements for milk tooth fillings. Preliminary results].

    Science.gov (United States)

    Hickel, R; Petschelt, A; Voss, A

    1989-06-01

    106 Ketac-Silver fillings in deciduous molars were reevaluated after 1 to 3.3 years, i.e. 25 month on the average. About 90% of 50 occlusal fillings and about 84% of 56 multisurface restorations were unchanged. Without claiming statistical evidence for their conclusiveness, we consider these results as an indication that cermet cements are a useful alternative to amalgam fillings in deciduous teeth, particularly since the life of these fillings is limited to the time until the milk tooth is physiologically lost.

  17. Method for automatic filling of nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Bezold, H.

    1979-01-01

    Prior to welding the zirconium alloy cladding tubes with end caps, they are automatically filled with nuclear fuel tablets and ceramic insulating tablets. The tablets are introduced into magazine drums and led through a drying oven to a discharging station. The empty cladding tubes are removed from this discharging station and filled with tablets. A filling stamp pushes out the columns of tablets in the magazine tubes of the magazine drum into the cladding tube. Weight and measurement of length determine the filled state of the cladding tube. The cladding tubes are then led to the welding station via a conveyor belt. (DG) [de

  18. Initial settlements of rock fills on soft clay

    OpenAIRE

    Pedersen, Truls Martens

    2012-01-01

    Rock fills that hit the seabed will remold the underlying material. If this material is a clay with sufficiently low shear strength, it will adopt rheological properties, causing flow through the rock fill, and contributing to the initial settlements of the rock fill in addition to conventional consolidation theory. The settlements of the rocks depend upon the height of the rock fill and how the rocks have been laid out. This is due to the viscosity of the clay, and the fact that clay is thix...

  19. Cosmic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [California Univ., San Diego, La Jolla (USA)

    1981-01-01

    The properties of space plasmas are analyzed, based on laboratory results and data obtained by in situ measurements in the magnetosphere (including the heliosphere). Attention is given to the question of how much knowledge can be gained by a systematic comparison of different regions of plasma, and plasmas are considered with linear dimensions varying from laboratory size up to the Hubble distance. The traditional magnetic field description of plasmas is supplemented by an electric current description and it is demonstrated that many problems are easier to understand with a dualistic approach. Using the general plasma properties obtained, the origin and evolution of the solar system is summarized and the evolution and present structure of the universe (cosmology) is discussed.

  20. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A relativistic electron beam generator or accelerator produces a high-voltage electron beam which is modulated to initiate electron bunching within the beam which is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10 17 to 10 20 electrons per cubic centimeter. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target. The high-temperature plasma can be used to heat a high Z material to generate radiation. Alternatively, a tunable radiation source is produced by using a moderate Z gas or a mixture of high Z and low Z gas as the target plasma. (author)

  1. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  2. Increasing Polymer Solar Cell Fill Factor by Trap-Filling with F4-TCNQ at Parts Per Thousand Concentration.

    Science.gov (United States)

    Yan, Han; Manion, Joseph G; Yuan, Mingjian; García de Arquer, F Pelayo; McKeown, George R; Beaupré, Serge; Leclerc, Mario; Sargent, Edward H; Seferos, Dwight S

    2016-08-01

    Intrinsic traps in organic semiconductors can be eliminated by trap-filling with F4-TCNQ. Photovoltaic tests show that devices with F4-TCNQ at parts per thousand concentration outperform control devices due to an improved fill factor. Further studies confirm the trap-filling pathway and demonstrate the general nature of this finding. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. COMSOL Multiphysics Model for HLW Canister Filling

    Energy Technology Data Exchange (ETDEWEB)

    Kesterson, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-11

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. Wastes containing high concentrations of Al2O3 and Na2O can contribute to nepheline (generally NaAlSiO4) crystallization, which can sharply reduce the chemical durability of high level waste (HLW) glass. Nepheline crystallization can occur during slow cooling of the glass within the stainless steel canister. The purpose of this work was to develop a model that can be used to predict temperatures of the glass in a WTP HLW canister during filling and cooling. The intent of the model is to support scoping work in the laboratory. It is not intended to provide precise predictions of temperature profiles, but rather to provide a simplified representation of glass cooling profiles within a full scale, WTP HLW canister under various glass pouring rates. These data will be used to support laboratory studies for an improved understanding of the mechanisms of nepheline crystallization. The model was created using COMSOL Multiphysics, a commercially available software. The model results were compared to available experimental data, TRR-PLT-080, and were found to yield sufficient results for the scoping nature of the study. The simulated temperatures were within 60 ºC for the centerline, 0.0762m (3 inch) from centerline, and 0.2286m (9 inch) from centerline thermocouples once the thermocouples were covered with glass. The temperature difference between the experimental and simulated values reduced to 40 ºC, 4 hours after the thermocouple was covered, and down to 20 ºC, 6 hours after the thermocouple was covered

  4. Nonlocal transport in hot plasma. Part I

    International Nuclear Information System (INIS)

    Brantov, A. V.; Bychenkov, V. Yu.

    2013-01-01

    The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a self-consistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclassical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 10 13 –10 16 W/cm 2

  5. Plasma opening switch experiments on supermite

    International Nuclear Information System (INIS)

    Mendel, C.W.; Quintenz, J.P.; Rosenthal, S.E.; Savage, M.E.

    1988-01-01

    Experiments using plasma opening switches with fast field coils and plasmas injected on slow magnetic fields are described. Data showing the measurement of the field penetration into the volume that initially held the plasma fill will be shown. Assuming the plasma is mostly pushed back from the coil, rather than being penetrated by the magnetic field allows the density to be calculated, and gives densities of a few times 10 13 cm -3 for our usual operating range. The data makes it clear that the switch is open well before the initial plasma volume is completely penetrated by the magnetic fields. Additional measurements relating to the magnetic field penetration distance and physical penetration mechanism are presented. Other data presented show a magnetic insulation problem which must be solved before very large voltage multiplication can be accomplished with sufficient switch efficiency

  6. Estimation of water-filled and air-filled porosity in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.

    1993-01-01

    Water content and porosity vary considerably within the unsaturated zone at Yucca Mountain. Measurement of these quantities has been based on core samples. A log-based approach offers the advantage of in-situ measurements, continuous throughout the borehole. This paper describes an algorithm which determines the air-filled and water-filled porosities from density and dielectric logs. The responses of density and dielectric logs are formulated in terms of the matrix properties, air-filled porosity and water-filled porosity. Porosity values obtained from logs from borehole USW G-2 are in reasonable agreement with estimates from core determinations

  7. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    International Nuclear Information System (INIS)

    Filippi, F.; Mostacci, A.; Palumbo, L.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Ferrario, M.; Cianchi, A.; Zigler, A.

    2016-01-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC-LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 10 16 –10 17  cm −3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  8. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  9. Electron density measurement of a colliding plasma using soft x-ray laser interferometry

    International Nuclear Information System (INIS)

    Wan, A.S.; Back, C.A.; Barbee, T.W.Jr.; Cauble, R.; Celliers, P.; DaSilva, L.B.; Glenzer, S.; Moreno, J.C.; Rambo, P.W.; Stone, G.F.; Trebes, J.E.; Weber, F.

    1996-05-01

    The understanding of the collision and subsequent interaction of counter-streaming high-density plasmas is important for the design of indirectly-driven inertial confinement fusion (ICF) hohlraums. We have employed a soft x-ray Mach-Zehnder interferometer, using a Ne- like Y x-ray laser at 155 angstrom as the probe source, to study interpenetration and stagnation of two colliding plasmas. We observed a peaked density profile at the symmetry axis with a wide stagnation region with width of order 100 μm. We compare the measured density profile with density profiles calculated by the radiation hydrodynamic code LASNEX and a multi-specie fluid code which allows for interpenetration. The measured density profile falls in between the calculated profiles using collisionless and fluid approximations. By using different target materials and irradiation configurations, we can vary the collisionality of the plasma. We hope to use the soft x-ray laser interferometry as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy- density physics experiments

  10. Plasma universe

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-04-01

    Traditionally the views in our cosmic environment have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasma. Such a medium may also emit synchrotron radiation which is observable in the radio region. If we try to base a model of the universe on the plasma phenomena mentioned we find that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasma. This approach is possible because it is likely that the basic properties of plasma are the same everywhere. In order to test the usefulness of the plasma universe model we apply it to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4-5 bilions years ago with an accuracy of better than 1 percent

  11. Plasma physics

    International Nuclear Information System (INIS)

    1979-01-01

    This report contains the papers delivered at the AEB - Natal University summer school on plasma physics held in Durban during January 1979. The following topics were discussed: Tokamak devices; MHD stability; trapped particles in tori; Tokamak results and experiments; operating regime of the AEB Tokamak; Tokamak equilibrium; high beta Tokamak equilibria; ideal Tokamak stability; resistive MHD instabilities; Tokamak diagnostics; Tokamak control and data acquisition; feedback control of Tokamaks; heating and refuelling; neutral beam injection; radio frequency heating; nonlinear drift wave induced plasma transport; toroidal plasma boundary layers; microinstabilities and injected beams and quasilinear theory of the ion acoustic instability

  12. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  13. Using Habit Reversal to Decrease Filled Pauses in Public Speaking

    Science.gov (United States)

    Mancuso, Carolyn; Miltenberger, Raymond G.

    2016-01-01

    This study evaluated the effectiveness of simplified habit reversal in reducing filled pauses that occur during public speaking. Filled pauses consist of "uh," "um," or "er"; clicking sounds; and misuse of the word "like." After baseline, participants received habit reversal training that consisted of…

  14. Optimization of foam-filled bitubal structures for crashworthiness criteria

    International Nuclear Information System (INIS)

    Zhang, Yong; Sun, Guangyong; Li, Guangyao; Luo, Zhen; Li, Qing

    2012-01-01

    Highlights: ► The paper aims to optimize foam-filled bitubal squared column for crashworthiness. ► It explores different formulations and configurations of design. ► The optimal foam-filled bitubal column is better than foam-filled monotubal column. ► The optimal foam-filled bitubal column is better than empty bitubal column. -- Abstract: Thin-walled structures have been widely used as key components in automobile and aerospace industry to improve the crashworthiness and safety of vehicles while maintaining overall light-weight. This paper aims to explore the design issue of thin-walled bitubal column structures filled with aluminum foam. As a relatively new filler material, aluminum foam can increase crashworthiness without sacrificing too much weight. To optimize crashworthiness of the foam-filled bitubal square column, the Kriging meta-modeling technique is adopted herein to formulate the objective and constraint functions. The genetic algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) are used to seek the optimal solutions to the single and multiobjective optimization problems, respectively. To compare with other thin-walled configurations, the design optimization is also conducted for empty bitubal column and foam-filled monotubal column. The results demonstrate that the foam-filled bitubal configuration has more room to enhance the crashworthiness and can be an efficient energy absorber.

  15. Theory Of Dewetting In A Filled Elastomer Under Stress

    Science.gov (United States)

    Peng, Steven T. J.

    1993-01-01

    Report presents theoretical study of dewetting between elastomeric binder and filler particles of highly filled elastomer under multiaxial tension and resulting dilatation of elastomer. Study directed toward understanding and predicting nonlinear stress-vs.-strain behavior of filled elastomeric rocket propellant, also applicable to rubber in highly loaded tire or in damping pad.

  16. Predicting heat transfer in long, R-134a filled thermosyphons

    NARCIS (Netherlands)

    Grooten, M.H.M.; Geld, van der C.W.M.

    2008-01-01

    When traditional air-to-air cooling is too voluminous, heat exchangers with long thermosyphons offer a good alternative. Experiments with a single thermosyphon with a large length-to-diameter ratio (188) and filled with R-134a are presented and analyzed. Saturation temperatures, filling ratios, and

  17. Radiodiagnosis of filled retention bronchial cysts and lung tuberculomes

    International Nuclear Information System (INIS)

    Gudz', A.E.

    1987-01-01

    Radiological semiotics of filled retention bronchial cysts in 23 patients and of lung tuberculomes in 52 is studied on the basis of the data on roentgenography, tomography and bronchography. Characteristic radiological signs of retention bronchial cysts and tuberculomes are determined. Significance of each radiological sign for differential diagnosis of filled retention bronchial cysts and lung tuberculomes is estimated

  18. CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS 1990

    Science.gov (United States)

    The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). Work included determination of radon concentrations...

  19. Simulation of mould filling process for composite skeleton castings

    Directory of Open Access Journals (Sweden)

    M. Dziuba

    2008-04-01

    Full Text Available In this work authors showed selected results of simulation and experimental studies on temperature distribution during solidification of skeleton casting and mould filling process. The aim of conducted simulations was the choice of thermal and geometrical parameters for the needs of designed calculations of the skeleton castings and the estimation of the guidelines for the technology of manufacturing. The subject of numerical simulation was the analysis of ability of filling the channels of core by liquid metal at estability technological parameters.. Below the assumptions and results of the initial simulated calculations are presented. The total number of the nodes in the casting was 1920 and of the connectors was 5280 what gave filling of 100% for the nodes and 99,56% for the connectors in the results of the simulation. Together it resulted as 99,78 % of filling the volume of the casting. The nodes and connectors were filled up to the 30 level of the casting in the simulation. The all connectors were filled up to the 25 level of the casting in the simulation. Starting from the 25 level individual connectors at the side surface of the casting weren’t filled up. The connectors weren’t supplied by multi-level getting system. The differences of filling the levels are little (maximally 5 per cent.

  20. The automatic liquid nitrogen filling system for GDA detectors

    Indian Academy of Sciences (India)

    In addition, no physical access to the beam hall is required during routine filling operation. The system consists of ... PSI with the manual valve (MV) on the dewar kept open. For filling the detectors on one ... sequence the opening/closing of the valves depending upon the outlet temperature. By monitoring the time taken for ...

  1. Method and apparatus for filling cryogenic liquid cylinders

    International Nuclear Information System (INIS)

    Remes, S.

    1984-01-01

    A method and apparatus are disclosed for filling a portable cryogenic liquid cylinder from a large stand tank. The invention employs a regulator valve to perform an automatic throttling function whereby the pressure in the liquid cylinder is maintained at a value slightly lower than the upstream pressure in the stand tank. This significantly reduces filling losses due to flashing

  2. Gap filling strategies and error in estimating annual soil respiration

    Science.gov (United States)

    Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap-filling of automated records to produce a complete time series. While many gap-filling methodologies have been employed, there is ...

  3. Rapid filling of pipelines with the SPH particle method

    NARCIS (Netherlands)

    Hou, Q.; Zhang, L.X.; Tijsseling, A.S.; Kruisbrink, A.C.H.

    2011-01-01

    The paper reports the development and application of a SPH (smoothed particle hydrodynamics) based simulation of rapid filling of pipelines, for which the rigid-column model is commonly used. In this paper the water-hammer equations with a moving boundary are used to model the pipe filling process,

  4. Rapid filling of pipelines with the SPH particle method

    NARCIS (Netherlands)

    Hou, Q.; Zhang, L.X.; Tijsseling, A.S.; Kruisbrink, A.C.H.

    2012-01-01

    The paper reports the development and application of a SPH (smoothed particle hydrodynamics) based simulation of rapid filling of pipelines, for which the rigid-column model is commonly used. In this paper the water-hammer equations with a moving boundary are used to model the pipe filling process,

  5. Process for automatic filling of nuclear fuel rod cans

    International Nuclear Information System (INIS)

    Bezold, H.

    1977-01-01

    A drying section is inserted in the production line for the automation of the filling process for fuel rods with nuclear fuel pellets. The pellets are taken in a drum magazine to a drying furnace and then pushed out one after the other into the can to be filled. (TK) [de

  6. 46 CFR 151.03-21 - Filling density.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...

  7. Excavation/Fill/Soil Disturbance, Self-Study #31419

    Energy Technology Data Exchange (ETDEWEB)

    Grogin, Phillip W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-06

    This course, Excavation/Fill/Soil Disturbance Self-Study (#31419), presents an overview of the hazards, controls, and requirements that affect safe excavations at Los Alamos National Laboratory (LANL). An overview of the LANL excavation/fill/soil disturbance permit (EXID permit) approval process is also presented, along with potholing requirements for planning and performing excavations at LANL.

  8. Microbiological studies on bacterial isolates from penicillins filling ...

    African Journals Online (AJOL)

    Aseptic processing is a critical method for the preparation of thermolabile sterile parenteral drug products. Sterile β-lactam antibiotics are extremely deactivated by heat, so the method of choice for their processing is through aseptic filling. The consequences of contamination on aseptically-filled products are harmful to the ...

  9. 27 CFR 4.72 - Metric standards of fill.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Metric standards of fill. 4.72 Section 4.72 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Standards of Fill for Wine § 4.72 Metric...

  10. Plasma dynamics in aluminium wire array Z-pinch implosions

    International Nuclear Information System (INIS)

    Bland, S.N.

    2001-01-01

    The wire array Z-pinch is the world's most powerful laboratory X-ray source. An achieved power of ∼280TW has generated great interest in the use of these devices as a source of hohlraum heating for inertial confinement fusion experiments. However, the physics underlying how wire array Z-pinches implode is not well understood. This thesis presents the first detailed measurements of plasma dynamics in wire array experiments. The MAGPIE generator, with currents of up to 1.4MA, 150ns 10-90% rise-time, was used to implode arrays of 16mm diameter typically containing between 8 and 64 15μm aluminium wires. Diagnostics included: end and side-on laser probing with interferometry, schlieren and shadowgraphy channels; radial and axial streak photography; gated X-ray imaging; XUV and hard X-ray spectrometry; filtered XRDs and diamond PCDs; and a novel X-ray backlighting system to probe high density plasma. It was found that the plasma formed from the wires consisted of cold, dense cores, which ablated producing hot, low density coronal plasma. After an initial acceleration around the cores, coronal plasma streams flowed force-free towards the axis, with an instability wavelength determined by the core size. At ∼50% of the implosion time, the streams collided on axis forming a precursor plasma which appeared to be uniform, stable, and inertially confined. The existence of core-corona structure significantly affected implosion dynamics. For arrays with <64 wires, the wire cores remained in their original positions until ∼80% of the implosion time before accelerating rapidly. At 64 wires a transition in implosion trajectories to 0-D like occurred indicating a possible merger of current carrying plasma close to the cores - the cores themselves did not merge. During implosion, the cores initially developed uncorrelated instabilities that then transformed into a longer wavelength global mode of instability. The study of nested arrays (2 concentric arrays, one inside the other

  11. Water balance of an earth fill built of organic clay

    Directory of Open Access Journals (Sweden)

    Birle Emanuel

    2016-01-01

    Full Text Available The paper presents investigations on the water balance of an earth fill built of organic clay in humid climate. As the organic soil used for the fill contains geogenetically elevated concentrations of arsenic, particular attention is paid on the seepage flow through the fill. The test fill is 5 m high, 30 m long and 25 m wide. The fill consists of the organic clay compacted at water contents wet and dry of Proctor Optimum covered by a drainage mat and a 60 cm thick top layer. For the determination of the water balance extensive measuring systems were installed. The seepage at the bottom measured so far was less than 2 % of the precipitation. The interflow in the drainage mat above the compacted organic clay was of similar magnitude. The estimated evapotranspiration reached approx. 84 % of the precipitation. According to these measurements the percolation is much lower than the percolation of many landfill covers in humid climates.

  12. Development of gap filling technique in HLW repository

    International Nuclear Information System (INIS)

    Nakashima, Hitoshi; Saito, Akira; Ishii, Takashi; Toguri, Satohito; Okihara, Mitsunobu; Iwasa, Kengo

    2016-01-01

    HLW is supposed to be disposed underground at depths more than 300 m in Japan. Buffer is an artificial barrier that controls radionuclides migrating into the groundwater. The buffer would be made of a natural swelling clay, bentonite. Construction technology for the buffer has been studied for many years, but studies for the gaps surrounding the buffer are little. The proper handling of the gaps is important for guaranteeing the functions of the buffer. In this paper, gap filling techniques using bentonite pellets have been developed in order to the gap having the same performance as the buffer. A new method for manufacturing high-density spherical pellets has been developed to fill the gap higher density ever reported. For the bentonite pellets, the filling performance and how to use were determined. And full-scale filling tests provided availability of the bentonite pellets and filling techniques. (author)

  13. Magnetically Active and Coated Gadolinium-Filled Carbon Nanotubes

    KAUST Repository

    Fidiani, Elok; Da Costa, Pedro M. F. J.; Wolter, Anja U. B.; Maier, Diana; Buechner, Bernd; Hampel, Silke

    2013-01-01

    Gd-filled carbon nanotubes (which include the so-called gadonanotubes(1)) have been attracting much interest due to their potential use in medical diagnostic applications. In the present work, a vacuum filling method was performed to confine gadolinium(III) iodide in carbon nanotubes (CNTs). Filling yields in excess of 50% were obtained. Cleaning and dosing of the external walls was undertaken, as well as the study of the filled CNT magnetic properties. Overall, we found that the encapsulating procedure can lead to reduction of the lanthanide metal and induce disorder in the initial GdI3-type structure. Notwithstanding, the magnetic response of the material is not compromised, retaining a strong paramagnetic response and an effective magnetic moment of similar to 6 mu B. Our results may entice further investigation into whether an analogous Gd3+ to Gd2+ reduction takes place in other Gd-filled CNT systems.

  14. Magnetically Active and Coated Gadolinium-Filled Carbon Nanotubes

    KAUST Repository

    Fidiani, Elok

    2013-08-15

    Gd-filled carbon nanotubes (which include the so-called gadonanotubes(1)) have been attracting much interest due to their potential use in medical diagnostic applications. In the present work, a vacuum filling method was performed to confine gadolinium(III) iodide in carbon nanotubes (CNTs). Filling yields in excess of 50% were obtained. Cleaning and dosing of the external walls was undertaken, as well as the study of the filled CNT magnetic properties. Overall, we found that the encapsulating procedure can lead to reduction of the lanthanide metal and induce disorder in the initial GdI3-type structure. Notwithstanding, the magnetic response of the material is not compromised, retaining a strong paramagnetic response and an effective magnetic moment of similar to 6 mu B. Our results may entice further investigation into whether an analogous Gd3+ to Gd2+ reduction takes place in other Gd-filled CNT systems.

  15. ADVANTAGES AND DISADVANTAGES OF THE SONICFILL™ METHOD FOR LATERAL FILLINGS

    Directory of Open Access Journals (Sweden)

    Nicolae BARANOV

    2017-06-01

    Full Text Available The aim of the study was to evaluate the advantages and disadvantages of bulk-fill type fillings realized with SONICFill™ over an 18 month interval, on a batch of patients with different ages and occupations. Materials and methods: the study was performed on a batch of 73 patients who addressed the Clinical of OdontologyEndodontics within the Platform of Practical Training (PIP of the Faculty of Dental Medicine of the ”Apollonia” University of Iaşi, between Octomber 1, 2014 - May 1, 2016, subjected to 91 bulk-fill fillings with SonicFill™ on the posterior teeth. Results and discussion: out of the total number of 73 patients, 56 came from the urban environment, and 17 - from the rural medium, the highest ratio being represented by the 21-30 year age group (45%, closely followed by the 31-40 year one (40%. As for gender distribution within the batch, nearly two-thirds are women, the rest being men. The education level influenced patients’ decision – that of accepting a new method of filling application. As to the types of teeth to which restorations were applied, the highest ratio is represented by lower molars (41%, followed by upper molars (23% and mandibular premolars (20%, the lowest number of restorations being applied to maxillary premolars. Out of the total number of 91 bulk-fill restorations, 28 were applied over a base filling while, in 63 restorations, the basic filling was absent. Conclusions: The SonicFill ™ system for bulk-fill posterior restorations has a number of advantages, such as: high photopolymerization depth, significant reduction of setting contraction, better composite adaptation to the cavity walls, long-term predictable clinical results.

  16. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  17. Laser Plasmas

    Indian Academy of Sciences (India)

    -focusing in a plasma ... Center for Energy Studies, Indian Institute of Technology, New Delhi 110 016, India; Tata Consultancy Services, Gurgaon, India; Ideal Institute of Technology, Ghaziabad, India; Center for Research in Cognitive, ...

  18. Plasma will…

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg

    2016-01-01

    Roč. 174, č. 3 (2016), s. 486-487 ISSN 0007-0963 Institutional support: RVO:68378271 Keywords : plasma * ionized gas Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.706, year: 2016

  19. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  20. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)